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The sample size decision is crucial to the success of any sampling experiment. More samples imply better
confidence and precision in the results, but require higher costs in terms of time, computing power, and
money. Analysts often choose sequential stopping rules on an ad hoc basis to obtain confidence intervals
with desired properties without requiring large sample sizes. However, the choice of stopping rule can affect
the quality of the interval produced in terms of the coverage, precision, and replication cost. This article
introduces methods for choosing and evaluating stopping rules for confidence interval procedures. We develop
a general framework for assessing the quality of a broad class of stopping rules applied to independent and
identically distributed data. We introduce coverage profiles that plot the coverage according to the stopping
time and reveal situations when the coverage could be unexpectedly low. Finally, we recommend simple
techniques for obtaining acceptable or optimal rules.
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1. INTRODUCTION

Any simulation or sampling experiment requires a method for choosing the number
of observations to collect. The sampling decision is often determined by budgetary
constraints, in that there is limited time and money to execute the experiment. The
goal is to balance high quality in the statistical results against increased effort required.
Usually, a confidence interval is used to estimate relevant system parameters, though
other methods have been suggested [Song and Schmeiser 2009]. Most methods are
similar in that they provide some estimate of the mean output quantity, and a level
of uncertainty associated with that estimate. Quality of the confidence interval is
determined by its achieved confidence level and its precision (or half-width). Generally,
a higher sample size is required to achieve higher quality in the results. We refer to
procedures designed to generate confidence intervals as confidence interval procedures
(CIPs). CIPs can be applied to replications of a computer simulation, or to observations
sampled from a physical experiment.

Existing sequential stopping rules attempt to present sampling algorithms that pro-
vide the user with the desired quality in the output interval using a minimum number
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18:2 D. I. Singham

of samples. Without knowledge of the distribution of the data, it can be hard to know
in advance what would be an appropriate sample size. If the replication cost is low or
zero, sequential rules can be used to determine a natural time to stop as otherwise
the experiment could run indefinitely. If the replication cost is high, sequential rules
can be used to stop as early as possible while still attempting to maintain interval
quality. Sampling stops when there is enough output to produce a confidence interval
supposedly having the desired confidence level and precision. What is often ignored is
the quality of the stopping rule itself. The true coverage of a procedure (the probability
that a CIP delivers an interval that contains the true value of the parameter being
estimated) is often less than what is intended.

There are many causes for deviation in the coverage. One cause is when the prop-
erties of the data are different than those assumed by the method (many methods
assume independence and/or normality in the data). However, there is often a loss in
the coverage induced by the use of a stopping rule itself, even if the data meet all
the assumptions of the procedure. Rules to determine sample sizes of experiments
are often chosen on an ad hoc basis, and without knowledge of their quality. If there
is a high cost to each replication, the user may design a procedure to stop as early as
possible, with an unknown detrimental effect on the results. If the true coverage of the
procedure is low, the user has underestimated the risk associated with his or her model.
If the true coverage is high, then the procedure has required more replications than
necessary. The objective of this article is to introduce graphical and numerical methods
for evaluating the coverage of sequential CIPs under a broad context. Additionally, we
compare solutions for improving CIP performance (in terms of the coverage and the
expected number of observations required).

Approaches to evaluating losses in the coverage and choosing optimal parameters
for absolute-precision stopping rules were developed in Singham and Schruben [2012].
That paper derived the coverage when the simulation output was independent and
identically distributed (i.i.d.) with a normal distribution, and generated coverage con-
tours to find optimal stopping rule parameters. In this article, we develop a frame-
work for evaluating the coverage for a broad class of CIPs where stopping depends on
functions of sample statistics of the data. The framework does not require a specific
stopping rule structure (so includes absolute- and relative-precision rules), and also
does not make distributional assumptions on the data, although the data must be i.i.d.
Additionally, the framework explains how stopping and the coverage are determined
by the evolution of the joint distribution of state statistics used in the CIP. Although we
often rely on one commonly used CIP to illustrate the ideas in this article, the methods
introduced apply to a much broader class of CIPs.

To better understand these types of stopping rules, we discuss parameters used in
CIPs and methods for evaluating CIP performance. We present a graphical represen-
tation of sequential stopping rules for CIPs and compare it to fixed-sampling represen-
tations introduced by Kang and Schmeiser [1990]. Additionally, we introduce coverage
profiles that map the coverage according to the stopping time of a rule. Although the
coverage of a procedure might be nominal over many replications, particular intervals
may have a smaller chance of covering the true mean if the procedure stopped early.
Coverage profiles demonstrate how increasing the starting sample size can drastically
improve the coverage, because instances where early stopping happens contribute
disproportionately to a poor coverage. Many sequential procedures suggest a higher
starting sample size to avoid a low coverage, and here we quantify the effects of this
strategy.

Most of the current literature addresses the coverage problem by relying on asymp-
totic results (such as Chow and Robbins [1965]) where a nominal coverage is achieved
as the sample size approaches infinity. Here, we focus on finite-sample solutions where
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we also include the expected stopping time as a measure of quality. Traditionally, small
desired precision values have been suggested to push the sample size high enough to
obtain a coverage that is close to nominal. We compare this method and new methods
with those suggested in Singham and Schruben [2012], and analyze the costs associated
with each method.

We describe some background and notation for sequential stopping rules in Section 2.
We discuss the relationships between stopping rule parameters and the graphical
representations for evaluating the coverage in Section 3. Section 4 describes how the
coverage for stopping rules can be calculated in the general case. Section 5 discusses
methods for choosing stopping rule parameters to obtain improved or optimal results
and Section 6 compares these methods and concludes.

2. BACKGROUND

This section introduces notation and examples of the types of sequential stopping
rules we consider and a review of the relevant literature. We emphasize that the rules
presented here and in later sections are examples that illustrate the new methods for
evaluating stopping rules, and we are not necessarily promoting the use of particular
rules.

Sequential CIPs are designed to deliver confidence intervals for simulation output
that meet the specifications of the modeler. Two parameters that are often chosen in
advance are the desired confidence coefficient (η) and the desired half-width (δ) of the
output confidence interval. Let k be the number of observations collected to produce
a confidence interval. The value of k can be incremented as observations are added
until an interval with confidence coefficient η and half-width smaller than δ can be
generated. For sequential rules, the stopping time is random and denoted as k∗.

A basic sequential stopping rule for estimating the sample mean, μ, using chosen
parameters η and δ works as follows. We call this particular rule CIP1 and use it as an
example throughout this article. Suppose that CIP1 is applied to simulation output that
is assumed to be i.i.d. normally distributed. After the user has generated k simulation
output samples, the half-width of a confidence interval for the mean can be calculated
using the following standard formula:

Hη,k = tη,k−1

√
S2

k

k
,

where S2
k is the sample variance of the k observations and tη,k−1 is the (1+η)/2 quantile

of the t-distribution with k − 1 degrees of freedom. If Hη,k ≤ δ, then the procedure
stops and returns the interval [Xk − δ, Xk + δ], where Xk is the sample mean of the k
observations. If Hη,k > δ, then k is incremented by 1 and the half-width is checked again
after including the new observation. The stopping time k∗ can be defined according to
the following rule:

k∗ = min
k≥2

{k : Hη,k ≤ δ} (CIP1).

The result of the experiment is a value k∗, and an interval that either covers μ, or fails
to cover it. Repeating this experiment multiple times yields an estimate of the coverage
of the procedure, which is the proportion of times the resulting interval covers the true
parameter. We denote the true coverage of a procedure by the function η∗(η, δ, kmin),
where kmin is the starting sample size, and we will attempt to calculate the value of
this function for various input parameters. Many sequential procedures assume that
kmin is somewhere between 10 and 30. However, in very expensive experiments (or in
clinical trials, where a patient’s health is at stake), a smaller value of kmin may be
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18:4 D. I. Singham

used. A procedure that returns a nominal coverage is one where the actual coverage
obtained is equal to the coverage desired. The function Ek∗(η, δ, kmin) is the expected
stopping time for a rule, and is another measure of the quality of a CIP. We abbreviate
the notation for these functions to η∗ and Ek∗. For small δ, the values of η∗ and Ek∗
usually increase as η increases and as δ decreases to 0. Note that the functions η∗ and
Ek∗ apply to any CIP that requires a confidence coefficient, a precision parameter, and
a starting sample size, not just CIP1.

We note that many recent CIPs exist and can be applied to data that are not inde-
pendent or normally distributed, and these may use relative precision stopping rules
instead of absolute precision rules. Many of these rules do not check the stopping con-
dition at each observation, but calculate an appropriate number of replications of data
to simulate before checking the rule using the batch means method (for an example,
see Chen [2012]). We use CIP1 as an example throughout this article because it is
simple enough that when applied to i.i.d. normal data, the coverage and distribution of
k∗ can be derived explicitly as in Singham and Schruben [2012], but the methodology
and graphical tools developed can apply to many other types of rules.

This article considers the coverage performance of a general class of CIPs that depend
on functions of sample statistics of the data. Any function of the sample mean and
sample variance can be used to determine the stopping time. Relative-precision rules
are included in this class, where stopping occurs when the half-width is less than or
equal to some fraction of the sample mean, assuming the true mean is positive. We
define a simple version of this rule as CIP2:

k∗ = min
k≥2

{k : Hη,k ≤ δXk} (CIP2).

Relative-precision rules can be useful if the user does not know what amount of pre-
cision will be appropriate given the unknown scale of the sample mean. One potential
problem with relative-precision rules is that if the sample mean happens to be too
large relative to the sample variance, then stopping might occur early, thus hurting
the coverage.

Previous analytical results for i.i.d. data state that as δ approaches 0, the coverage
of absolute-precision stopping rules approaches η [Chow and Robbins 1965; Glynn and
Whitt 1992]. The relative-precision case is studied in Nadas [1969]. This asymptotic
validity is often used to justify using sampling rules with small values of δ. Early
papers such as Ray [1957] and Law and Carson [1979] document losses in the cov-
erage because of sequential sampling. Law and Kelton [1982] conducted a survey of
sequential procedures, and found some rules that performed favorably, although they
acknowledged that small sample sizes could lead to a loss in the coverage. Fixed-sample
analysis of confidence interval coverage for small samples was investigated in Sargent
et al. [1992], where the authors study the importance of having an unbiased variance
estimator. Finite-sample analytical results for i.i.d. normally distributed data with
known variance were studied in Singham and Schruben [2009], where the distribution
of the stopping time and the loss in the coverage were calculated. Because of increased
computational power, analysis for larger sample sizes is now readily available in a
sequential setting.

3. GRAPHICAL REPRESENTATION OF STOPPING RULES

This section analyzes the effects of various parameters on the quality of stopping
rules using graphical methods. Before we discuss these methods, we offer a visual
representation of sequential stopping rules that is analogous to the confidence interval
coverage plots introduced in Kang and Schmeiser [1990] and motivate the framework
presented in Section 4.
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Fig. 1. Left: Intervals generated from multiple realizations of a fixed-sampling experiment. Intervals in the
shaded area cover the true mean and meet the precision requirement. Right: The path to stopping for one
realization of a relative-precision sequential rule. Intervals that stop in the bold portion of the line succeed
in covering μ.

3.1. Visualizing coverage

Graphical representations of confidence interval coverage were introduced in Kang and
Schmeiser [1990]. Here, we use the same idea of plotting confidence intervals against
the sample mean and half-width in order to estimate CIP coverage. The left plot of
Figure 1 shows the results of a fixed-sampling experiment with the crosses marking
the center point and half-width of the resulting intervals. We add a horizontal line
to mark the desired maximum precision amount of the output interval. The crosses
that fall within the lines forming the “V” succeed in covering the true mean. Each line
forming the “V” is at a 45-degree angle from the horizontal axis. The crosses that fall
below the horizontal line meet the precision requirement. The right plot shows the
graphical representation of one realization of a relative-precision sequential sampling
rule, and includes a slanted line to mark when the stopping criterion is reached. The
jagged line is the path taken by a realization of a CIP as observations are collected. The
procedure stops when the stopping line is reached, and the coverage is determined by
the proportion of times the path stops in the coverage region. For the fixed-sampling
rule, calculating the coverage analytically involves taking the probability-weighted
area over the coverage region. For the sequential stopping rule, we derive the coverage
in Section 4 by calculating the probability that the path stops in the coverage region.

Next, we discuss graphical methods for evaluating the performance of stopping rules.
Many evaluations of the coverage consist of choosing a few test parameters and com-
paring the actual coverage to nominal. Graphical methods can be used to evaluate the
coverage over a range of parameters, thus aiding in the choice of rules. We use these
methods to determine the worst-case coverage scenarios, and we design policies to im-
prove the coverage for those cases (leading to conservative coverages in the general
case).

Table I lists three graphical tools for evaluating stopping rules. Each tool compares
different performance metrics against different parameters. The coverage function,
developed by Schruben [1980], compares the true coverage to that intended for all η.
Schmeiser and Yeh [2002] use coverage functions to develop a single dimensionless
criterion by integrating the deviation of the coverage function from nominal coverage.
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18:6 D. I. Singham

Table I. Graphical Methods for Evaluating the Coverage

Inputs Outputs
Coverage functions [Schruben 1980] η η∗
Coverage contours [Singham and Schruben 2012] η, δ η∗, Ek∗
Coverage profiles k∗ η∗(k∗)

Coverage contours compare rules over the space of (η, δ) and display metrics such as
η∗ and Ek∗ [Singham and Schruben 2012]. In the next section, we introduce coverage
profiles that map the coverage according to the stopping time of a rule.

3.2. Coverage Profiles

We introduce a new way of evaluating stopping rules by comparing the coverage at
different stopping times. This allows us to see how good (or bad) the coverage is if a
rule happens to stop early. Early stopping can happen when the first few data points
are unusually close together, driving the sample variance down. A valid stopping rule
is one that delivers intervals that cover the true parameter with probability η. We
define the notion of an “optimal stopping rule” for a particular type of rule and data
type as a stopping rule using parameters that minimize the expected stopping time
while delivering at least a nominal coverage and meeting a precision constraint.

However, in reality, an experiment is typically conducted only once, and a randomly
bad confidence interval could mean an imprecise result for decision-making, even if
the procedure used delivers a nominal coverage on average. We introduce coverage
profiles to explain the relationship between the coverage and the stopping time. Cov-
erage profiles plot the coverage of the stopping rule given different stopping times.
The stopping time of a procedure is often an indicator of the quality of the coverage
of the interval. A stopping rule requiring many samples is likely to obtain a better
coverage because more information has been collected. A run that stops after two or
three samples might have a worse coverage because a randomly too-small half-width
led to stopping. Coverage profiles provide information on how much to increase the
starting sample size to reduce the probability of early stopping and to improve the
coverage.

Let c(k) be the coverage of a stopping rule given that k∗ = k. Figure 2 plots values
of c(k) using CIP1 with parameters (0.9,0.3,2) applied to N (0, 1) data. This rule starts
with two samples, so when the stopping rule is met early (say, k∗ = 2), c(k) is much less
than when it meets the stopping rule at k∗ = 60. We call the values of c(k) a coverage
profile, and use them to evaluate the quality of the stopping rule. The stopping rule used
in Figure 2 has an overall coverage of 83%, on average, which can be calculated using
either the method in Singham and Schruben [2012], or empirical testing. If stopping
happens early, the potential undercoverage is even worse. Coverage profiles can be
used to determine if there are enough samples to obtain a good interval, or to fix a
minimum sample size. The overall probability of coverage can be calculated according
to the following:

P(Cover) =
∑

k

P (Cover | Stop at k )P(Stop at k )

=
∑

k

c(k)p(k), (1)

where p(k) is the distribution of the stopping time, or P(k∗ = k). It should be noted
that c(k) and p(k) are rarely independent, although they are for CIP1 where the data
are independent and normally distributed and the stopping rule depends only on the
sample variance and not the sample mean. This is because c(k) can be calculated
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Selecting Stopping Rules for Confidence Interval Procedures 18:7

Fig. 2. Coverage profile and stopping time distribution for CIP1 with η = 0.9, δ = 0.3, and kmin = 2 applied
to N (0, 1) data. Left: Coverage profile c(k). Right: Distribution function p(k).

explicitly and does not depend on the historical values of the sample variance (only the
current value of the sample variance is needed to determine if stopping should occur).
The independence of the sample mean at stopping from the sample variance history
is proven in Robbins [1959], and alternate proofs are given in Singham and Schruben
[2012]. Let FXk

(x) be the cumulative distribution function of the sample mean of k
realizations, where Xk ∼ N (μ, σ 2/k) and σ 2 is the variance of the data. Then c(k) is the
probability that Xk is between μ+δ and μ−δ at stopping, which is FXk

(μ+δ)−FXk
(μ−δ).

The left plot of Figure 2 displays the values of c(k) for an implementation of CIP1, so
it remains to calculate p(k). For normally distributed data, this distribution can be cal-
culated analytically for absolute-precision rules, as derived in Singham and Schruben
[2012], and it can be estimated using simulation for any distribution. The right plot
of Figure 2 shows the distribution of the stopping time for the same rule. The mode of
the distribution is at k∗ = 2, but this is also the stopping time with the worst coverage
according to c(k). This motivates an exploration into increasing the minimum sam-
ple size to see how much the coverage will improve by avoiding early stopping. Many
stopping rules improve the coverage by pushing the density of k∗ out to higher values.
For example, using a smaller value of δ or a higher value of η forces higher stopping
times, which reallocates weight to higher values of c(k) (note that c(k) may also change,
depending on the rule and distribution of the data). Section 5.4 will discuss specific
methods for using coverage profiles to improve the coverage by increasing kmin.

4. CALCULATING COVERAGE OF SEQUENTIAL RULES

Before we present solutions to the coverage problem in Section 5, we explain how the
structure of stopping rules can be generalized. We evaluate sequential CIPs by seeing
how they perform when applied to data with known distributions. Previous work in
Singham and Schruben [2012] derived c(k) and p(k) for CIP1 applied to normal data.
This section generalizes those results to any distribution, and allows for different stop-
ping rule structures (not limited to absolute-precision or relative-precision rules). We
present a numerical integration scheme to calculate the coverage. Simulation methods
can easily be employed to obtain the same information, but the integration method
demonstrates the underlying components of stopping rule performance. Because we
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18:8 D. I. Singham

are able to obtain similar results using both methods, we suggest practitioners use
simulation, as it is faster to implement and execute.

4.1. Generalized Stopping Rules

The most basic stopping rule (CIP1) uses t-distribution confidence intervals and has an
absolute-precision stopping rule as described earlier. For some purposes, understanding
the performance of this rule might be sufficient. Whereas normality and independence
are rarely valid assumptions to make for real data, these assumptions allow us to isolate
the effects of the stopping rule on the coverage results. To calculate performance under
broader conditions, we will attempt to generalize stopping rule performance across
different metrics and data distributions. We require notation for statistics that make
up stopping criteria, and functions that can be applied to these statistics to determine
if the stopping rule has been met and if the output interval covers the true parameter
being estimated.

Suppose we receive i.i.d. observations (or simulation replications) X1, X2, . . . , Xk. To
evaluate the true coverage of a CIP applied to a particular type of data, we assume that
the mean μ is known. We define a vector vk that contains the statistics of the data at
time k that need to be collected to evaluate the stopping rule. We index this vector by k
because it will evolve as k increases and samples are collected. For CIP1, the required
statistics are the sample mean, Xk, and the sample variance, S2

k , so vk = (Xk, S2
k ). If

we suspect our data are non-normal, we can use a modified Cornish-Fisher expansion
as is done in Tafazzoli et al. [2011] to obtain confidence intervals that are calculated
using the skewness of the data. In this case, one of the statistics in the vector vk would
be the sample skewness.

Let Tk(vk) be the function that returns 1 if the stopping rule is met (not necessarily
for the first time) at k when the statistics take values vk, and 0 otherwise. Again, we
index the function Tk by k to denote that the value of k matters in function evaluation.
For each sample collected, we evaluate Tk(vk) to determine if stopping has occurred.
Hence, for a particular sample path, k∗ is equal to mink≥kmin{k : Tk(vk) = 1}. We also
define a function Ck(vk) that returns 1 if the interval returned by vk includes μ, and
0 otherwise. For a relative-precision rule, Tk(vk) = 1 if Hη,k ≤ δXk, and Ck(vk) = 1 if
|Xk − μ| ≤ δXk. For CIP1, the functions Tk(vk) and Ck(vk) are:

Tk
(
Xk, S2

k

) =
{

1 if Hη,k ≤ δ
0 o.w. Ck

(
Xk, S2

k

) =
{

1 if |Xk − μ| ≤ δ
0 o.w.

(2)

What will be helpful in numerically calculating the coverage of specific stopping
rules is to have a way of updating the values from vk−1 to vk for a new observation, Xk.
For example, if the stopping rule and the coverage criteria only depend on the sample
mean and sample variance, then we can update from vk−1 = (Xk−1, S2

k−1) to vk using
the following formulas:

Xk = (k − 1)Xk−1 + Xk

k
, S2

k = k − 2
k − 1

S2
k−1 + (Xk − Xk−1)2

k
. (3)

The updating formula for S2
k is found in Welford [1962]. If a relationship between the

time steps exists, it becomes easier to update the conditional probability of stopping
at k, given that stopping has not occurred yet. The only information that needs to be
maintained are the values of vk−1 and the new observation Xk. Of course, if the stopping
rule requires a more-detailed data history, then those values must also be recorded
in vk.

For an interval generated from a given fixed sample size k, we calculate the probabil-
ity that the stopping rule is met and that the interval covers μ. We do this by taking the
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Selecting Stopping Rules for Confidence Interval Procedures 18:9

probability-weighted integral over the space of vk that results in meeting the stopping
rule and covering μ. Let fvk be the joint density function of the statistics in vk for a
fixed k, and denote the m components of vk as v1, v2, . . . , vm. Then for a fixed sample
size k, we calculate the probability that the interval meets the stopping rule, that it
covers the true mean, and that it meets both conditions. These three probabilities are:

P(Stopping rule met at k ) =
∫

v1

· · ·
∫

vm

Tk(vk) fvk(vk)dvm · · · dv1 (4)

P(Cover at k ) =
∫

v1

· · ·
∫

vm

Ck(vk) fvk(vk)dvm · · · dv1

P(Stop and Cover at k ) =
∫

v1

· · ·
∫

vm

Tk(vk) Ck(vk) fvk(vk) dvm · · · dv1. (5)

Equation (5) is the probability weighted integral over the values of vk for which both
the stopping rule is met and μ is covered, as in the shaded area in the left plot of
Figure 1. The indicator function for the intersection of both the stopping and coverage
events is equal to the product of each event’s indicator function. For CIP1 (but using a
fixed sample size), Equation (5) becomes:

P(Stop and Cover at k ) =
∫ ∞

x=−∞

∫ ∞

y=0

Tk (x , y)Ck (x , y)fJk
(x , y)dydx ,

where fJk is the joint density of (Xk, S2
k ) at time k and Tk(x, y) and Ck(x, y) are evaluated

according to Equation (2). The probability that the interval covers the true parameter
given that it meets the stopping rule is Equation (5) divided by Equation (4). For
sequential stopping rules, we need to monitor the movement from the nonstopping
region at k−1 to the stopping region at k, and calculate the probability that the interval
covers μ at stopping. Rather than considering the probability-weighted areas as in the
fixed-sample-size case, consider a random stopping time model for the movement of vk
toward the stopping region. We break down the coverage according to k∗, and for each
k calculate the probability that the procedure stops and covers at k (denoted PSC(k)):

η∗ = P(Cover) =
∑
k

P (Stop at k and Cover μ) =
∑

k

PSC(k),

which is a way of rewriting Equation (1). Denote the joint probability distribution
function of vk with the event that stopping has not occurred before k by fGk(vk). Given
that the values of vk can take a number of paths as the experiment proceeds, fGk is
the probability it ever reaches vk at k. Integrating over possible values of vk yields the
probability that the procedure ever reaches time k:

P(k∗ ≥ k) =
∫

v1

· · ·
∫

vm

fGk(vk)dvm · · · dv1.

Calculate PSC(k) as

PSC(k) =
∫

v1

· · ·
∫

vm

Tk(vk) Ck(vk) fGk(vk) dvm · · · dv1, (6)

where using fGk incorporates the probability that the procedure reaches time k, and
Tk(vk) and Ck(vk) account for stopping and covering μ at time k. As in Equation (5),
we calculate the probability that both the stopping and coverage conditions are met
by taking the probability weighted integral over the sample statistic space where both
indicator functions are true. In this case, the distribution of the sample statistics ( fGk)
is influenced by the fact that we are using a sequential rule and the stopping condition

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 3, Article 18, Publication date: July 2014.



18:10 D. I. Singham

has not been met prior to k. The probability of stopping at k is the probability of the
procedure making it to time k and meeting the stopping rule at k:

P(k∗ = k) =
∫

v1

· · ·
∫

vm

Tk(vk) fGk(vk) dvm · · · dv1.

It remains to calculate fGk. For CIPs that rely on the sample statistics Xk and S2
k ,

we have functions that update values of Xk−1 and S2
k−1 based on a new observation

Xk to calculate Xk and S2
k according to Equation (3). We invert these functions so that

given Xk, S2
k , and Xk, we find the corresponding values of Xk−1 and S2

k−1. Define these
inverting functions for general vk as Ik, where vk−1 ← Ik(vk, Xk). Then calculate fGk(vk)
as

fGk(vk) =
∫

z
[1 − Tk−1(Ik(vk, z))] fGk−1 (Ik(vk, z)) fXk(z)dz, (7)

where fXk is the probability distribution function of the observation Xk. Equation (7) is
derived by integrating over all possible values of Xk, and for each Xk inferring the value
of vk−1 that, when updated with Xk, leads to vk. We integrate the probability-weighted
areas over vk−1, where stopping did not happen (hence allowing the process to make it
to vk). Singham and Schruben [2012] derive a related conditional distribution explicitly
for CIP1 applied to normally distributed data.

4.2. Numerical Procedure

The main goal is to calculate PSC(k) for each k ≥ kmin. To do this, we develop a numerical
integration scheme to calculate fGk. We discretize the space along each dimension of
vk and discretize the support of Xk. The first step is to calculate the joint distribution
of vkmin to initialize the procedure. We use a Newton-Cotes method with a rectangular
rule approximation. Then we use a discretized version of Equation (5) to calculate
PSC(kmin). The problem becomes a matter of calculating probabilities for a discrete set of
states.

To continue to step kmin + 1, consider the transition from time k − 1 to k. We project
the distribution of vk forward using known relationships among vk−1, vk, and Xk. In
order for the system to be in state vk and for stopping to occur after time k − 1, we
project the distribution of the system at states vk−1 (where stopping does not occur)
forward by integrating over the possible values of Xk that lead to the resulting states
vk. For example, if we were starting at time k − 1 = kmin = 2, we would begin with the
possible values of v2 where T2(v2) = 0. Initialize fG3 (v3) = 0 for all states in v3. For
each v2 where T2(v2) = 0, we loop over the discretized possible values of X3, calculate
the appropriate values of v3, and increment fG3 (v3) by fG2 (v2) fX3 (X3). In this way, we
calculate the probability that the system reaches a particular set of values v3 without
stopping beforehand. At each stage after calculating fGk, we calculate the probability
of stopping at k and covering the true mean using Equation (6).

The main input to this procedure is a discretization of the support of the statistics
of vk and Xk and the associated probability weights at each increment of Xk. We use
the probability weights of Xk to calculate the joint densities of statistics such as Xk
and S2

k using the updating functions. Error is introduced because Tk(vk) and Ck(vk)
are evaluated at the centers of each rectangle of the discretization, but those values
are applied over the entire rectangle. Increasing the number of discretization points
improves the solution, but there appears to be a negative bias. The coverage delivered
by the integration will generally be less than the true coverage, but will approach the
true value as the discretization is refined. The left plot of Figure 1 shows the regions
for which Tk(vk) and Ck(vk) evaluate to 1 or 0. It is important for the discretization to
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be fine enough at the corresponding values of Xk and S2
k on the boundary of the shaded

triangle for the solution to converge. Note also that the value of S2
k that corresponds to

the half-width threshold required for stopping increases as k increases.

4.3. Numerical Results

Simulation can be used to estimate the distribution of k∗ and the probability of covering
μ by repeatedly applying the stopping rule to random data simulated from a known
distribution. Both numerical integration and simulation lead to approximate results,
with longer computation times required to get better results. Generally, we recommend
simulation because the implementation and run time are faster than for numerical
integration. Our routine involved discretization of Xk and the statistics in vk into at
least 2,000 increments. The simulation results use 10 million replications for each
experiment.

We briefly highlight examples illustrating the types of rules that the procedure
just described can be applied to, and we compare the performance with simulation
methods. The first example is CIP1 using η = 0.9, δ = 0.3 applied to N (0, 1) data.
Using the method in Section 4.2, we were able to numerically derive the values of
PSC(k) and the overall coverage as approximately 83% and the expected stopping time
as approximately 28. The code was written in C and ran on a single processor with
2GB of memory in 7.5 hours. A simulation applying the stopping rule 10 million times
returned values for each PSC(k) that were within 0.3% of the numerical results in
15 minutes, with an overall difference in the coverage of under 0.5%.

Consider the relative precision rule CIP2 applied to data that are exponentially
distributed with mean 1. We find a difference in the coverage delivered by the analytical
and simulation methods to be less than 0.15%, and the maximum difference in PSC(k)
was less than 0.04%. Simulation results were computed in 26 minutes, whereas the
numerical results took 15 hours to compute.

As a final example, consider a situation where a performance measure of a system
is compared to a fixed value, c, and we are interested in estimating if the system
performance is better or worse than c. A naive sequential experiment involves sampling
until an interval with confidence coefficient η can be generated that does not include c.
Once this interval is generated, the sample mean is compared to c to provide an estimate
of whether the true performance μ is greater or less than c. Modifying the functions
Tk(vk) and Ck(vk) allows us to run this experiment, and we find that using η = 0.9,
c = 0.3, with data that are distributed as N (0, 1), both the numerical and simulation
methods suggest this procedure will deliver the correct answer approximately 93% of
the time. Of course, more-sophisticated methods exist for comparing the performance
of two systems using sequential methods (see Kim and Nelson [2001]).

5. SOLUTIONS FOR IMPROVED COVERAGE

In this section, we analyze different reasons for low coverages of CIPs and present
possible solutions. Some of these solutions are the result of optimization models, and
some are the result of worst-case analysis. Because the underlying distribution of
simulation output is rarely known, we encourage modelers to use these policies to
obtain conservative rules, rather than rules optimized for a particular distribution.
Asymptotically, stopping rules of type CIP1 (and other similar types) obtain a nominal
coverage as δ approaches 0. This section presents methods for obtaining an improved
coverage in a finite-sample setting. We vary the parameters η, δ and kmin and assume
that we desire some fixed coverage ηo and precision δo. The results presented are
calculated using simulation unless otherwise indicated.
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Fig. 3. The function η∗(0.9, δ, 2) applied to N (0, 1) data, plotting the coverage at both limits and the worst
case.

5.1. Choosing a Precision

A common way to address the coverage problem is to choose a value of δ small enough
so that the asymptotic conditions approximately hold. Singham and Schruben [2012]
calculate coverage contours over the space of η and δ, and for all examples considered,
the coverage converges from below as δ approaches 0. By choosing a positive value of
δ, the stopping time is finite but the coverage is subnominal, which means the output
confidence interval is underestimating risk. Figure 3 plots the typical effect of δ on the
coverage. As δ decreases to 0, the coverage approaches nominal, and as δ increases, it
approaches 1 as the intervals become wide. There is a value of δ where the coverage is
worst, and we will use this value in later experiments to explore worst-case scenarios.

We can choose values of δ that are small enough to give a coverage that is close to
nominal, but the appropriate choice of δ depends on the underlying variance of the
data. Data with a higher variance require more samples on average to meet a precision
requirement than data with a lower variance, and hence has a better coverage for a
given value of δ. Data with a lower variance are likely to meet the precision requirement
earlier, and too few samples may lead to poor coverage values.

Generally, the value of δ may be prespecified by the user because some amount of
precision is desired. The stopping rule should be tested against data with the approx-
imate distribution of the simulation data. If the coverage level is too low, then the
value of δ can be decreased and the coverage tested until an acceptable level is found,
because the coverage generally increases as δ decreases. The following minimization
formulation shows how δ is often selected:

min
δ

Ek∗(ηo, δ, kmin) (8)

s.t. η∗(ηo, δ, kmin) ≥ ηo − ε

δ ≤ δo.

Because a nominal coverage cannot be obtained using this policy (except in the limit),
we must accept some lower coverage ηo −ε, where ε is a small positive number. Table II
lists values of δ required to achieve a subnominal coverage for different values of the
variance σ 2 (for normally distributed data) used in CIP1 and CIP2, where ε = 0.01.
For CIP1, we use N (0, σ 2) data, and for CIP2, we use N (5, σ 2) data. In addition to
the disadvantage of undercoverage, decreasing δ can be quite expensive. The following
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Table II. Values of δ Required for N (0, σ2) Data for CIP1 and N (5, σ2) for CIP2
For the four right-most columns, the first value is the value of δ required, the second value is the corresponding
Ek∗

Intended coverage Actual coverage σ 2 = 1/4 σ 2 = 1 σ 2 = 4 σ 2 = 100
CIP1 0.90 0.89 0.03, 743.6 0.06, 743.7 0.12, 743.5 0.63, 674.1

0.95 0.94 0.05, 381.4 0.11, 315.0 0.22, 315.0 1.14, 293.4
0.99 0.98 0.18, 53.0 0.37, 50.3 0.75, 49.0 3.74, 49.2

CIP2 0.90 0.89 <0.01, 743.4 0.01, 632.8 0.03, 684.8 0.10, 1067
0.95 0.94 0.01, 264.6 0.02, 288.1 0.05, 301.2 0.15, 674.1
0.99 0.98 0.04, 50.2 0.07, 55.9 0.14, 54.26 0.37, 191.8

policy describes how to choose δ when the coverage behaves as in Figure 3 and Ek∗
is increasing as δ decreases. For CIP2, we note that the particular values generated
depend on our choice of μ = 5 as relative precision rules use the sample mean to
determine stopping. However, we still observe similar asymptotic effects as δ decreases.

POLICY 1. Start with δ = δo. Decrease δ until η∗(ηo, δ, kmin) ≥ ηo − ε, where ε > 0 is
the acceptable loss in the coverage.

Policy 1 is the approach implied by Chow and Robbins [1965] and the resulting
asymptotic literature, but we do not recommend it because it fails to achieve a nominal
coverage and encourages high sample sizes. The results in the next sections suggest
that modifying η and kmin might be more effective.

5.2. Choosing a Confidence Coefficient

Singham and Schruben [2012] present coverage contours for evaluating this loss in the
coverage exactly when the data are normally distributed. The main result is that for a
given stopping rule and type of output data, the coverage can be estimated and optimal
stopping parameters found. Coverage contours were introduced to optimize η∗ and Ek∗
over η and δ. A similar optimization to Equation (8) with η as an additional decision
variable, is formulated as

min
η,δ

Ek∗(η, δ, kmin) (9)

s.t. η∗(η, δ, kmin) ≥ ηo

δ ≤ δo,

and the coverage is required to be ηo rather than ηo − ε. Optimizing over the space
of (η, δ) (minimizing Ek∗ while achieving η∗ ≥ ηo) delivers a solution that η should be
inflated to some value η′ > ηo while the stopping rule is in use, with the knowledge
that the coverage will be ηo at stopping, resulting in Policy 2. The inflated value of
η′ required to achieve the coverage for values of δ that result in the worst coverage
appears insensitive to the value of σ 2 for normally distributed data. Thus, if the data
are normally distributed and t-confidence intervals are used, Table 1 in Singham and
Schruben [2012] gives values of η′ that will achieve a coverage of at least ηo (for any
value of δ). In general, it is relatively cheap to increase the value of η used rather than
use a smaller δ.

POLICY 2. Start with η = ηo. Increase η until η∗(η, δ, kmin) ≥ ηo.

5.3. Adjusting for the Sample Skewness

One of the most common potential problems with sequential stopping rules in CIPs
is that the data are not independent or normally distributed. If the distribution can
be estimated, then the coverage contours calculated over the parameter space can
be used to choose an appropriately inflated value of η. If the half-width calculation
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Table III. Coverage of Stopping Rules Using the Cornish-Fisher Adjustment for Skewness (CIP1 and CIP2)

(0.90,0.30,2) (0.95,0.15,2)
(η, δ, kmin) No adj CF No adj CF
N (0, 1) 0.839 0.866 0.936 0.947

CIP1 Exp(1) 0.697 0.743 0.891 0.916
Gamma(2,2) 0.868 0.888 0.943 0.948

(0.90,0.30,2) (0.95,0.15,2)
(η, δ, kmin) No adj CF No adj CF
N (5, 1) 0.981 0.982 0.938 0.943

CIP2 Exp(1) 0.826 0.837 0.932 0.936
Gamma(2,2) 0.824 0.833 0.923 0.929

assumes normality, then η must be significantly inflated in order to compensate for
nonnormality [Singham and Schruben 2012]. A different CIP that takes into account
the distribution of the data can reduce the bias of the procedure. Section 4 describes
how the coverage can be calculated for various distributions and stopping rules, so the
effect of the mismatch between the data and assumptions of the rule can be calculated
directly.

If issues of dependence and nonnormality can be resolved by modifying the CIP,
then the bias induced by the sequential rule is the main bias remaining. However, in
many cases, the nature of the distribution and dependence will be unknown before the
experiment begins. One strategy, presented by Tafazzoli et al. [2011], is to estimate
the dependence and deviation from normality as batches of data are collected and to
adjust the t-value used for the confidence intervals accordingly. The authors are able
to achieve an improved coverage for many scenarios involving nonnormal distributions
by using a Cornish-Fisher adjustment suggested by Johnson [1978], and then using the
von Neumann test for randomness to determine when batch means are approximately
independent. We focus on the nonnormality adjustment in Policy 3.

POLICY 3. Use an adjustment for nonnormality to compute the half-width as the
sequential procedure progresses.

We use the adjustment for the skewness of the data as implemented by Tafazzoli
et al. [2011] as part of CIP1 applied to different data types. Table III lists the results
for two stopping rules, (0.90, 0.30, 2) and (0.95, 0.15, 2), where the second rule requires
intervals with a higher confidence coefficient and a smaller precision. We see that
adjusting for skewness does improve the coverage for both stopping rules when the
data have a skewed distribution, but not enough to entirely account for the bias in
the stopping rule. The improvement from using the adjustment is better when the
rules have a worse coverage, as in the rule (0.90, 0.30, 2). Adjusting the CIP to account
for nonnormality in the data can result in wider intervals even when the data are
normal, as small samples of normal data may exhibit skewness. Table III also shows
the effect of the skewness adjustment on relative precision rules. We see similar small
increases using the skewness adjustment for the relative precision rule as for the
absolute precision rule. We note that for N (5, 1), the stopping rule (0.90, 0.30, 2) may
have large values of δXk, leading to early stopping with wide intervals resulting in high
coverage.

5.4. Increasing the Starting Sample Size

Perhaps one of the easiest ways to improve the coverage is by increasing the starting
sample size. Many simulation experiments use a sequential rule automatically starting
with more than two samples. The choice of this starting sample size often depends on
the resources available. In this section, we describe how coverage profiles can be used
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Table IV. Optimal kmin Values for Worst-Case Stopping Rules Using Increased Values of kmin for CIP1 and CIP2
Expectations are rounded to the nearest integer. Ek∗(η′) refers to the expected stopping time using optimal policies
from Section 5.2.

ηo = 0.90 ηo = 0.95 ηo = 0.99
Rule Distribution k∗

min Ek∗ Ek∗(η′) k∗
min Ek∗ Ek∗(η′) k∗

min Ek∗ Ek∗(η′)
N (0, 1) 12 19 24 14 22 29 16 27 33

CIP1 Exp(1) 22 32 64 22 33 72 24 38 88
Gamma(2,2) 17 25 39 18 27 46 21 33 59

N (5, 1) 11 18 23 12 21 28 15 27 33
CIP2 Exp(1) 17 19 26 19 20 24 22 22 26

Gamma(2,2) 14 18 24 18 21 32 21 22 28

to choose a starting sample size to obtain a better coverage. We also describe how this
method can be cheaper than changing parameters η and δ. In general, a higher value
of Ek∗ implies a better coverage, but in a finite-sample environment, we want to keep
Ek∗ at reasonable values.

Recall that for a given stopping rule, p(k) is the probability of stopping at k, c(k) is
the coverage of the rule given that it stops at k, and an overall coverage is calculated
according to Equation (1). Because c(k) is often less than nominal for small values of
k, using a larger kmin will likely improve the coverage by avoiding stopping too early.
Coverage profiles can provide some sense of what the starting sample size should be.
If p(k) suggests that there is a significant probability of stopping at a k where c(k) is
low, stopping rules should be designed to reduce p(k) at that value of k.

POLICY 4. Increase kmin until η∗(η, δ, kmin) ≥ ηo.

If η∗ and Ek∗ are increasing in kmin, this policy will be optimal over possible values
of kmin. A heuristic is to increase kmin and recalculate p(k) and c(k) under the new
stopping rule until the coverage is at the desired level. The formulation is the same as
Equation (9), except the optimization occurs only over kmin. For many distributions, as
kmin approaches infinity, the coverage for CIP1 approaches 1 as the interval half-width
δ remains fixed and the variance of Xk decreases with larger values of k. We experiment
using the stopping rules that deliver the worst coverage for a given η (by choosing the
value of δ that has the worst coverage according to Section 5.1). For these rules, we
determine the smallest value of kmin required to deliver the coverage ηo. We call this
value k∗

min, and we also report the expected stopping time of the rule, which is compared
to that using inflated values of η as described in Section 5.2. The results for both CIP1
and CIP2 are in Table IV. It appears that for the worst-case scenarios, it is cheaper to
increase kmin than to inflate η. For CIP1 applied to nonnormal distributions, the differ-
ence between the Ek∗ values of the two methods is particularly high. This difference is
less extreme for CIP2, possibly because the mean and variance are correlated for the
exponential and gamma distributions. A sample with an unusually high sample mean
is likely to have a high sample variance, reducing the chance of early stopping under
a relative precision rule. A comparison of CIP2 to CIP1 reveals that similar values of
kmin are needed to avoid a loss in coverage for the worst-case choices of δ.

5.4.1. Lower Bound on the Coverage for Normally Distributed Data. Estimating the coverage
for stopping rules using different values of kmin can be done numerically or using
simulation. Either method can be time-consuming depending on the desired accuracy
of the results. In this section, we describe a method for obtaining a lower bound on the
coverage for values of kmin > 2 using just the information from the estimation of p(k)
and c(k) for kmin = 2. This lower bound is exact for CIP1 applied to normally distributed
data and is approximate for other distributions. Using these lower bound estimates for
the coverage, we choose a value of kmin that will deliver at least a nominal coverage.
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Table V. Values of k∗
min for Policy 5, and the Corresponding Ek∗ and η∗ Values

Expectations are rounded to the nearest integer.

ηo = 0.90 ηo = 0.95 ηo = 0.99
k∗

min Ek∗ η∗ k∗
min Ek∗ η∗ k∗

min Ek∗ η∗

N (0, 1) 15 20 0.909 16 22 0.954 19 28 0.991

We denote pi(k) as the probability of stopping at k using a rule with kmin = i, and
ci(k) as the corresponding probability of covering given that stopping occurs at k. We
assume that c(k) is independent of the stopping rule and p(k), which is true for CIP1
applied to normal data. This assumption generally does not hold, but as increasing
the starting sample size generally increases the overall coverage for the types of rules
we study, we expect that leaving c(k) the same will be a conservative approximation of
the coverage profile. Next, we construct an approximation for pi(k). Define p̂i(k) as the
modified distribution of p2(k) where we take the weight from all stopping times less
than i and add it to the weight at i:

p̂i(k) =
⎧⎨
⎩

p2(k) k > i∑i
j=2 p2( j) k = i

0 k < i.

Now assume that c(k) is increasing in k. This is true for CIP1 applied to normally
distributed data and often holds for other distributions as well. Then:∑

k

p2(k) c2(k) ≤
∑

k

p̂i(k) c2(k) ≤
∑

k

pi(k) c2(k). (10)

The coverage using p̂i(k) has at least the coverage of a rule starting with only two
samples. Next, we show that

∑
k p̂i(k)c2(k) ≤ ∑

k pi(k)c2(k). Starting with i samples
means that stopping can no longer occur at k < i, so the mass must be distributed
along the points k ≥ i. If c(k) is increasing in k, the lowest coverage can be calculated
by adding all the mass at i, which is how p̂i(k) is constructed. Hence, the true coverage
of starting at i is at least as good as that calculated using p̂i(k).

POLICY 5. Fixing ηo and δo, choose the smallest kmin value such that the lower bound
on the coverage,

∑
k p̂i(k) c2(k), is at least ηo.

Policy 5 will have a coverage that is at least nominal but also may require a higher
starting sample size and expected number of replications than Policy 4, as seen in
Table V. For CIP1 applied to normal data, this method will result in a quick lower
bound on the coverage without needing to recalculate c(k) and p(k). Generally, c(k)
is increasing in k for k larger than some finite integer. For other distributions and
relative-precision rules, c(k) is not necessarily independent of the stopping rule, so it
is possible that c(k) will decrease when a larger kmin is used, though in general this is
unlikely to happen. If c(k) is decreasing in k, then early stopping is less of an issue.

A final option is to design stopping rules so that c(k) ≥ ηo for all k. This would imply
that any interval would have the appropriate level of risk, preventing the option of
early stopping leading to a particularly bad interval. This could involve increasing kmin
to be large enough that enough samples will be generated to obtain a nominal coverage
for any stopping time. If the user was willing to compromise on δ, a procedure could
be designed that would inflate the interval depending on the stopping time. The main
point is that the user should consider the interplay between c(k) and p(k) in designing
stopping rules in order to determine where the low coverage is coming from and how
it can be prevented.
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The first policy of decreasing δ appears to be the most costly because it only achieves
nominal coverage in the limit. Choosing a smaller value of δ pushes the density of
the stopping time out to higher values where coverage is higher. The policy of increas-
ing kmin also works in this way by reducing the probability of low coverage at early
stopping. The policy of increasing η also involves reallocating the distribution of the
stopping time to higher values and inflating values of c(k) by using a higher confidence
coefficient. The third policy of adjusting for sample skewness also leads to increased
values of c(k) by generating intervals that better match the skewness in the data.
One could use a combination of these rules (by inflating the confidence coefficient,
choosing a larger starting sample, and adjusting for skewness) to achieve improved
results.

6. CONCLUSIONS

This article analyzes the parameters of a class of stopping rules for CIPs and gives a
framework for assessing their quality. We exploit the tradeoffs between these parame-
ters to provide simple rules that either reduce the risk of a poor coverage, or minimize
the expected stopping time while meeting performance constraints. Optimal rules can
be determined if certain assumptions are made about the data, but in reality the dis-
tribution of simulation output is usually not known. We describe general guidelines
motivated by worst-case analyses to suggest conservative rules that can be used in the
absence of concrete knowledge of stopping rule performance. Most of the methods work
by increasing the expected number of replications to prevent early stopping, but we
can modify the stopping time distribution in an efficient way to prevent overly large
sample sizes.

Even if the data meet all the assumptions underlying a rule, there is usually a bias
associated with stopping rules that leads to a reduction in the coverage and under-
estimation of risk for decision making. Graphical tools such as coverage functions,
contours, and profiles are available to visualize the effect of a CIP on the coverage. Nu-
merical techniques and simulation methods can be used to estimate CIP performance,
but we recommend using simulation methods because they are faster and easy to
implement.

We describe simple solutions for improving the coverage and results to guide users
in their choice of stopping rule parameters. Adjustments to the confidence coefficient,
precision parameter, and starting sample size can improve the coverage, and the CIP
itself can be changed by taking into account the distribution of the underlying data.
The simplest solutions we can offer are to increase the starting sample size as high
as is computationally reasonable and to use an inflated value of η to determine when
stopping occurs. These techniques seem to provide the greatest increase in the coverage
relative to the increased computational cost. We note that for extremely expensive
experiments, increasing the starting sample size may not be an option. The user may
need to compromise on the confidence or precision in order to obtain an acceptable
coverage with few samples.

Because optimal rules require assumptions on the data, we emphasize the impor-
tance of formulating conservative rules. In the absence of information about the dis-
tribution of the simulation output, the best advice we can give is to estimate stopping
rule performance for ideal data and for extreme data. For example, if the CIP assumes
normality, stopping rule performance should be tested on normal data to isolate the
bias associated with the rule, but it should also be tested on a distribution such as
the exponential to determine how poor the coverage might be if the distribution is
different than anticipated. The solutions suggested here can be applied to these test
distributions with the intent of deriving a conservative rule.
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