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ABSTRACT

The error in computing the pressure gradient force near steep topography using terrain following ( o') coordinates
is investigated in an ocean model using the family of vertical differencing schemes proposed by Arakawa and
Suarez. The truncation error is estimated by substituting known buoyancy profiles into the finite difference
hydrostatic and pressure gradient terms. The error due to “hydrostatic inconsistency,” which is not simply a
space truncation error, is also documented. The results show that the pressure gradient error is spread throughout
the water column, and it is sensitive to the vertical resolution and to the placement of the grid points relative
to the vertical structure of the buoyancy field being modeled. Removing a reference state, as suggested for the
atmosphere by Gary, reduces the truncation error associated with the two lowest vertical modes by a factor of
2 to 3. As an example, the error in computing the pressure gradient using a standard 10-level primitive equation
model applied to buoyancy profiles and topographic slopes typical of the California Current region corresponds
to a false geostrophic current of the order of 10-12 cm s™'. The analogous error in a hydrostatically consistent
30-level model with the reference state removed is about an order of magnitude smaller.

1. Introduction

In terrain following (o) coordinates, the pressure
gradient force is the sum of two terms. One term in-
volves the gradient of pressure along a constant o-sur-
face and the other involves the gradient of bottom to-
pography. Near steep topography these terms are large,
comparable in magnitude, and opposite in sign. In such
a case, a small error in computing either term near
steep topography can resuit in a large error in the total
pressure gradient force. Since large topographic slopes
are common in the ocean, it is important to know the
accuracy with which oceanic flows over abrupt topog-
raphy can be modeled using the primitive equations
in o-coordinates. The purpose of this study is to in-
vestigate a number of schemes for the pressure gradient
force in the context of an ocean model and to document
the ability of the schemes to compute an accurate pres-
sure gradient force over steep topography.

Meteorologists working in numerical weather pre-
diction have been aware of the difficulties of modeling
flow over steep topography for a long time. In partic-
ular, a number of methods have been proposed to re-
duce the error in the pressure gradient force when using
o-coordinates. For example, Corby et al. (1972) and
Simmons and Burridge (1981) developed a vertical fi-
nite difference scheme for the hydrostatic equation in
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which the pressure gradient is exact when the temper-
ature is a linear function of the natural logarithm of
pressure. Following Corby et al. (1972) and Simmons
and Burridge (1981), Arakawa and Suarez (1983 ) de-
rived a family of numerical schemes for the primitive
equations of atmospheric motion in o-coordinates in
which the pressure gradient is exact for certain atmo-
spheres, The schemes also retain other important
properties of the continuous equations. Arakawa and
Suarez (1983) expected that with no error in the pres-
sure gradient for this given, typical, atmosphere, large
errors would be avoided in more general cases.

Using a different approach, Gary (1973) showed that
the size of the two terms in the pressure gradient in o-
coordinates is reduced, and the truncation error there-
fore reduced, if a horizontally uniform reference state
density field, and its associated hydrostatic pressure
field, is removed before computing the individual pres-
sure gradient terms. Gary’s results were confirmed by
Johnson and Uccellini (1983) who found that the
pressure gradient error in the case of stratified flow
over an isolated mountain was reduced by a factor of
four when an adiabatic reference state was removed
from the hydrostatic equation. However, Sundqvist
(1975, 1976) distinguished between truncation errors
due to horizontal differencing and vertical differencing,
and showed that the most significant errors are pro-
duced by sharp temperature inversions such as those
that occur at the tropopause. Sundqvist also noted that
the pressure gradient error is not likely to be reduced
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by subtracting a reference state because it is the higher
vertical modes that cause the most difficulties in the
difference formulations. In the case of the atmosphere
therefore, it is not entirely clear how much the pressure
gradient error can be reduced, in general, by simply
removing a reference state. In the case of the ocean,
the technique might prove useful in limited area models
where the departure of the density from a suitably cho-
sen reference state is relatively small. However, it may
be of little help in global models where the density
difference from a given reference state is not small.
The effect of removing a reference state in the ocean
1s documented below.

In addition to the truncation error problem, Rous-
seau and Pham (1971), Janji¢ (1977), and Mesinger
(1982) have identified a problem of “hydrostatic con-
sistency” associated with the o-coordinate system. A
sufficient condition for a finite difference scheme to be
hydrostatically consistent is, in terms of the notation
used below,

oaD

Da ox < do.

(1)

This condition, which requires a sufficiently small grid
size for a given vertical grid increment, guarantees that
the o-surface immediately below (above) a given o-
surface remains below (above) the given o-surface
within a horizontal distance of one grid interval. If (1)
is not satisfied, the finite difference scheme is hydro-
statically inconsistent and nonconvergent (Mesinger
and Janji¢, 1985). The importance of this requirement
is emphasized below.

Using the above meterological experience and re-
search as background, this study analyzes and docu-
ments the errors in computing the pressure gradient
force in g-coordinate ocean models. This is done by
computing the truncation error for known analytic
profiles of density and pressure that are typical of the
real ocean. The results show the level of accuracy that
is attainable, and the horizontal and vertical resolution
that is required, to compute the pressure gradient force
near steep topography in o-coordinate ocean models.

2. The horizontal pressure gradient in o-coordinates

The horizontal pressure gradient in the x-direction
is written in o-coordinates as

9\ _op\ _

ax/, dxJ,
where p is pressure, z is height measured upward from
the undisturbed sea surface, D the ocean depth, and ¢
= z/D < 0 the nondimensional, terrain-following ver-

tical coordinate. The hydrostatic equation in ¢-coor-
dinates is

o9pdD

D do ox’ 2)

p
= —pgD

e 3)
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where p is density and g is gravity. As indicated in the
Introduction, we want to examine the effect on the
pressure gradient of removing a reference state that
depends only on z from each of the terms in (2). To-
ward this end, p is expressed in terms of a reference
state that depends only on z, p(z), and a deviation
from that state, p’

p=p+tp. 4)

Substituting (4) into (3) and integrating allows the
pressure to be expressed as

p=pt+p+p,

where py = p(x, y, 0, t) is the pressure at ¢ = 0, and
0

5= [ pepas )
0

v = [ oenis. (6)

In a rigid lid model, the external mode and the in-
ternal modes are computed separately. The pressure
gradient force that drives the internal modes in such a
model is the difference between the pressure gradient
and the vertical average of the pressure gradient. This
internal pressure gradient force is independent of py.
Since p is a function of z only, the hydrostatic equation
in z coordinates can be used to show that p is also a
function of z only. Thus, from (4), the internal pressure
gradient force is

%) Eg_fc) Dfpax)
%) 5L %)

Using (2), the last two terms can be expressed in -
coordinates as

ap) _op’

(7)

J‘O [8p’ o op' BD]
- |- do
-1|dx D dc dx
Since only the disturbance part of the pressure appears
on the right-hand side of (8), the individual terms are
much smaller, and the truncation errors are perhaps
smaller, than they would be if the reference state were
not removed (Gary 1973). This point is addressed be-
low (Tables 1 and 2).

In using (8) to compute the internal pressure gra-
dient force it is convenient to introduce the disturbance
buoyancy b,

(8)

b=-—g,
Po

(%)
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TABLE 1. Pressure gradient error (cm s7*).
Reference state removed.

Vertical resolution (K)

Mode
number 5 10 15 20 25 30 35
1 399 095 040 022 016 0.09 0.07
2 3.63 .72 081 045 029 020 0.14
3 1890 343 1.57 097 057 042 0.30

where p is a constant reference density. Defining B by

)]
Bzf bd¢ (10)
aB
5;**17, (11)

allows the disturbance hydrostatic equation (6) to be
written as

p' = —poDB, (12)
)
ai = poDb. (13)

Using (12) and (13), the internal pressure gradient
force can be written in terms of b and B as

1 dp 9 oD
_ = = | — + b_.__
Po é)x)Z (ax (DB) + o ax)

0 /9 aD
+ f_l (a (DB) + ob —é;)da. (14)

The finite difference schemes for the internal pressure
gradient are based on (10), (11)and (14). Three special
cases are of interest.

If b is constant in the vertical, b = b(x, y, ¢), then
B = —ob from (10) and

0 1
J‘_l obdo = ~§b.

Using these in ( 14) yields

(15)

14p b
—=) = D= 16
Do ax)z ( 2) dx (16)
If b varies only in the vertical, b = b(z), then
ab ¢ db aD
——= 17
ax Ddo dx’ (7

Using this along with (10), the first two terms on the
right side of (14) become
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—(DB)+ b—=Df a—bdf

+(f bd§‘+ab)%q

= ( 0—§(§'b)d§'+ ab)

=0. (18)

Thus, a density field that varies only in the vertical
(such as a z-dependent reference state) produces no
horizontal pressure gradient.

If the disturbance buoyancy varies along the isobaths
as well as in the vertical, say b = b(y, z), then the
same procedure that led to (18) now gives

3 aD 0 5" b 8D
T pBy+apE=p| T2¥
ax (DB +ab » D 3o’ ax
D D

+B(;—+ b"—

09 o, oD
—( ] ﬁ(ba)da +0b)a

= 0. (19)

Thus, the across-isobath (x) ¢component of the internal
pressure gradient vanishes in this case also.

3. The discrete pressure gradient

In this section we examine the error in the finite
difference pressure gradient for given buoyancy profiles.
The first two subsections examine special cases that
can be treated analytically, while the last subsection
considers buoyancy profiles that are more represen-
tative of model (and ocean) data. The finite difference
scheme analyzed below makes use of the Arakawa B
grid (Arakawa and Lamb 1977) in the horizontal and
a staggered grid in the vertical. The particular use of
the B-scheme is irrelevant, however, since the critical
factor leading to the truncation error in (14) is the
vertical finite difference scheme that is used for the
hydrostatic equation (11) that relates B to b. Quantities
that are defined for the layers, such as b, B and é¢, are
identified by integer values of the vertical index k.
Quantities identified at the top and bottom of the ocean

TABLE 2. Pressure gradient error (cm s™).
Reference state not removed.

Vertical resolution (K)

Mode
number 5 10 15 20 25 30 35
1 1068 258 1.16 064 042 027 0.21
2 875 363 167 093 0.60 040 0.28
3 1221 403 188 1.01 066 040 0.35
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and at the interfaces between the layers, such as g, are
identified by half integer values of k. Denoting the K-
1 interface values of o by 64412, k= 1,+ + -, K-1, the
layer thicknesses are defined by

(20)

where by definition ¢,/ = 0 and 6k, = — 1. The
caret is used to identify variables defined at the layer
interfaces. From (20), it follows that

00k = Ok—172 —Ok+1/2,

K
E 50k = 1.
k=1

(21)
The layer values of ¢ are defined by

ok = = (k172 + Gr=172), (22)

N )=

from which it follows that
K

> oxdoy = — 1

(23
k=1 2 )

The finite difference approximation to (14), after mul-
tiplying by the grid size éx, is denoted PX and given
by

K
PX = Plk - E Plk'ao'k'

k'=1
Pl, = —[6(DB”) + ,b*6, D ].

In (25), standard notation for horizontal averaging and
differencing is used.

Arakawa and Suarez (1983 ) show that the most ac-
curate form of the hydrostatic equation is achieved by
defining both buoyancy b and its integral B at the k-
layers. Given K values of by, the integral form (10) is

k-1
B, = 2 bibop + % bidoy.
k=1

(24)

(25)

(26)

The differential form (11), defined at the interfaces
between layers, is obtained by writing (26) for layer k&
and k + 1, respectively, and subtracting them. The
result is

Bl = %b,(Sal (273)

B — Biti = —birija(ox — 041),  (27b)

where
7 1
brr1y2 = 3 (brbok + bri1daps1)/(ok — oks1).  (28)

Equation (28) is the finite difference analog of the mean
value of b between the layers k and k + 1. With
br+1/2 defined by (28), (27) is the most accurate pos-
sible discretization of (11). When a weighted average
in the form of (28) is also used to define interface values
of the temperature in the vertical advection terms in
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the thermodynamic equation [instead of the usual un-
weighted average T'y+;,2 = 1 (T + Ti+1)], the domain
integral of 72 is no longer conserved under adiabatic
processes by the finite difference scheme. However, the
finite-difference analog of the energy conversion term
has the same form in the kinetic energy and thermo-
dynamic equations. If one were to use (27) and (28)
for the hydrostatic equation and use the usual un-
weighted average for Ty.,, in the thermodynamic
equation, the resulting finite difference scheme would
conserve the domain integral of 72 under adiabatic
processes, but it would not maintain the potential to
kinetic energy conversion. These various finite-differ-
ence options and their consequences are thoroughly
discussed by Arakawa and Suarez (1983) who argue
for giving up conservation of 72 in favor of maintaining
the proper energy conversions and an accurate hydro-
static equation.

a. Vertically isopycnal disturbance

To examine the finite-difference pressure gradient,
suppose b is independent of the vertical index k. In
this case (26) along with (20) and (22) show that B,
= —bgy. Using this and (23), along with a finite-dif-
ference identity of the form

8(FG) = F*8,G + G*o,F (29)
in (25) allows (24) to be expressed as
PX = (3(Db) — b*8,D Yo
—— K
— (3(Db) — b8, D") 3. orrdo
k=1
= (ak + %)D_"Bxby. (30)

Since (30) is a finite-difference analog of (16), the nu-
merical form of the pressure gradient is exact for a
vertically isopycnal disturbance.

b. Horizontally isopycnal disturbance

To examine the discrete pressure gradient analyti-
cally, suppose b is a linear function of z only. Thus,
let

bk= b0+N020’kD, (31)

where by is a constant buoyancy and Ny is a constant
buoyancy frequency. Substituting (31) into (26) and
using (20) and (22) gives

By = —booi — No*D(63-12 + 63412)/4.  (32)

When (31)and (32) are substituted into (25) and (24),
the terms containing b, cancel as they do in the con-
tinuous equations. Thus, PX becomes

K
PX = sz - 2 szfadk',

k’=1

(33)
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where
P2,
= N2 (63172 + 634172)8x(DD)/4 — 0,>No’D*3,D’.
(34)

Making use of difference identities of the form (29)
as before, yields

PX = @N2D%6,D’, (35)

where

[Py ) 2
& = [5 (k-1/2 + Ohr1s2) — ok

K
-2
k=1
It can be shown that (35) and (36) also hold in the
more general case in which b, and N,” are allowed to
depend on y so that b depends only on z (linearly)
and the along-isobath coordinate y, as in (19). Since
in general, ¢, # 0, the pressure gradient does not vanish
in the discrete equations as it does in the continuous
equations. Thus, the finite-difference scheme produces
an erroneous pressure gradient in this case. The diffi-
culty lies in the fact that the finite-difference analog of
o? in (36) is the average (67—y/2 + 67+1,2)/2 rather
than the more accurate local value o,2. Another
expression for ¢ is obtained by substituting

1,4 ~
[5 (6%—1/2 + Ghre1p2) — aif]éok'. (36)

. B 1
Ok-1/2 = Ok — 5 doy

~ 1
Oiy12 = o + 3 ooy

for the ¢ s in (36). The result is

5Uk2 K 50’/('2
={—=] - Sy
(5)-z2(5)=

(37)

From (37) it is seen that the error factor ¢ is equal to
the difference between (30 /2)? and the vertical average
of this quantity. The discrete pressure gradient will be
exact (e = 0) in this case only if the o-levels are spaced
uniformly in the vertical. If the grid spacing is smaller
near the surface and larger at depth, ¢, will be negative
in the upper ocean and positive in the deeper ocean.
According to (35) the erroneous pressure gradient will
tend to produce a geostrophic flow along the isobaths
with shallow water to the right in the upper layers and
to the left in the lower layers. For example, in an eastern
boundary coastal model, in which D decreases eastward
over the continental rise and slope, the error in the
pressure gradient force will tend to produce a false geo-
strophic current that is poleward in the upper layers
and equatorward in the lower layers. Above a sea-
mount, the error corresponds to a false high pressure
in the upper part of the water column and a false low
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pressure in the lower part of the water column, centered
over the seamount.

The false pressure gradient in (35) can be expressed
as an erroneous geostrophic current parallel to the iso-
baths,

PX _ N& 8D
ox

V: = —_—
T fax *f

where f'is the Coriolis parameter and dx is the zonal
grid size. The error depends on the bottom depth and
slope, the disturbance buoyancy frequency and the er-
ror factor ¢. It may be especially large in models of
coastal upwelling over the continental rise and slope.
In such regions the ocean departs significantly from a
(removable) reference state that depends on z only.
Typical values of the relevant parameters in such a
region are No?> ~ 1 X 10™°s™2, D ~ 2 X 103 m, and
(8,D)/bx ~ 5 X 1072, which gives

V.~ 10¢ (ms™!).

(38)

(39)

The value of ¢, and therefore V., depends on the
number and placement of the os-levels in the vertical.
To investigate this dependence, consider the following
parametric expression for oy,

a k— 1\
where P is the parameter that determines how the K
o-levels are distributed in the vertical. Uniform vertical
grid spacing is obtained with P = 1, while increasingly
finer resolution near the surface is obtained with P> 1.
Bryan and Cox (1967) used this form with P = 2.
Figure 1 shows the vertical profiles of 6 and V, for
three (affordable) values of K with P = 2. In this case
it can be shown from (37) that ¢, and hence V, is a
linear function of ¢. As seen in Fig. 1b, the false geo-
strophic current at the sea surface is 5 cm s™! in a 10-
level model but it is only 1.2 cm s™! in a 20-level model.
The error is the same at the ocean bottom, only op-
posite in sign. As noted earlier in connection with (35),
the false geostrophic flow is always directed parallel to
the isobaths. Figure 2 shows a similar plot of é¢ and
V. for three values of P with K = 20. As P is increased
above 1, the resolution is increasingly variable in the
vertical and the error becomes larger. The salient part
of these results are summarized in Fig. 3, which shows
the maximum values of V. as a function of X for three
different values of P. The curves above zero (¥, > 0)
show the values of V., at the sea surface while the curves
below zero (V, < 0) show the values at the ocean bot-
tom. The error would appear to be intolerable in mod-
els with fewer than 10 levels, and it does not fall below
1 cm s7! until K > 30. For many problems, a false
geostrophic current of even 1 cm s~ parallel to the
isobaths along the continental slope would be a serious
error.

(40)
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Ve (cm/s)

1.0

F1G. 1. Profiles of (a) 8o, computed from (20) using (40) with P = 2 and (b) V, computed
computed from (39). Profiles are shown for K = 10, 20 and 30.

¢. Modal buoyancy profiles

The foregoing error analysis assumes that the dis-
turbance buoyancy is either constant with depth, or
varies linearly with depth. To examine a more relevant
vertical structure, the error in the discrete pressure gra-
dient force is computed using disturbance buoyancy
profiles associated with the first three baroclinic Rossby
modes. The modes were computed from an analytically
prescribed mean buoyancy frequency typical of the
California Current region and these are shown in Fig,
4. The results presented below are not sensitive to the
details of the profiles and would, therefore, be repre-
sentative of any coastal region with a main thermocline
having a vertical scale of several hundred meters.

8o

The truncation error in computing the pressure gra-
dient force from a given disturbance buoyancy profile
was estimated as follows. Let 7',(z) denote the tem-
perature disturbance of unit amplitude associated with
the mth vertical mode in Fig. 4, where m = 1, 2 or 3.
If the temperature disturbance at two locations sepa-
rated by a distance éxis T,,(z), then, neglecting salinity
effects, the resulting disturbance buoyancy b = b,(z)
is the same at the two points and by (14) and (18) the
internal horizontal pressure gradient vanishes. To test
the discrete pressure gradient force in the presence of
a sloping bottom, T,,(z) was used to define a distur-
bance temperature profile at two grid points, separated
by a distance of éx = 1 km, having an average depth
of 2 km and a bottom slope of 0.05. The disturbance

V€ {cm/s)

l.oL p-2 P73

| p=2

P=1

FI1G. 2. Profiles of (2) do; computed from (20) using (40) with K = 20 and (b) V, computed
from (39). Profiles are shown for P = 1, 2 and 3.
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Ve (cm/s)

-50 I 1 I 1 L 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

FIG. 3. Maximum values of V, as a function of K with P = 1, 2,
and 3. Positive values of V¥, occur at the sea surface and negative
values occur at the ocean bottom.

buoyancy was computed by neglecting salinity and us-
ing b(z) = agT,(z), where o = 2.5 X 107* K ! is the
thermal expansion coefficient. The discrete pressure
gradient force was computed from (24 ) using the hy-
drostatic equation in the form (27). Since the actual
pressure gradient force is known to vanish in this case,
any nonzero value computed by the finite difference
scheme is the truncation error. The results are presented
in Figs. 5 and 6.

The dependence of the discrete pressure gradient
force error on the number and placement of the model
levels in the vertical is shown in Fig. 5. For convenience,
as before, the pressure gradient force errors are ex-
pressed as a geostrophic current at 38°N. The error
distributions in Fig. 5 have a number of interesting
features. As in the case in which b(z) is linear in z
(Fig. 2), the error is spread throughout the water col-
umn. A modal temperature disturbance of 1°K am-
plitude produces a false geostrophic current with a typ-
ical magnitude of 1-5 cm s™'. The errors for all modes
are distinctly larger in a 10-level model than in either
a 20-level or 30-level model.

These results are summarized in Fig. 6 which shows
the maximum error for each mode as a function of the
number of model levels. The finite difference scheme
converges since the errors approach zero as the number
of vertical levels is increased. The rate of convergence
is rather slow for K > 20, with the error in mode 3
approximately 1 cm s~! for K = 20. Although there
are many ocean modeling problems for which an er-
roneous geostrophic current of 1 cm™! is tolerable, there
are some problems for which such an error is clearly
unacceptable.
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The above results are based on calculations in which
an optimal reference state was subtracted from the hy-
drostatic equation. To examine the effect that this has
on the results, the calculations shown in Fig. 6 were
recomputed with the reference state density p(z) not
removed. This reference state is the same that was used
to compute the modes in Fig. 4. It is based on an ex-
ponential temperature profile with an amplitude of
10°C and a scale depth of 500 m. The results, both
with and without the reference state subtracted, are
presented in Tables 1 and 2. The tables show the max-
imum truncation error in the water column for each
mode as a function of the number of model levels, K
= 5,10, + + « 35. By comparing the two tables it can
be seen that subtracting the reference state (Table 1)
reduces the truncation error only for the lower modes.
The error in mode 1 is reduced by almost a factor of
3 and the error in mode 2 is reduced by about a factor
of 2. However, the error in mode 3 is essentially unaf-
fected by subtracting the reference state. These results
are not inconsistent with those of Gary (1973) and
Johnson and Uccellini (1983), who found that sub-
tracting the reference state reduced the truncation error
in the specific atmospheric cases that they examined.
The results are also consistent with those of Sundqvist
(1975) in that the truncation error associated with the
higher vertical modes are largely unaffected by sub-
tracting the reference state.

The above results can be used to estimate the pres-
sure gradient error for any buoyancy profile that can
be expressed as a linear combination of the first three
modes in Fig. 4. Consider for example the density fluc-
tuations associated with mesoscale features off the west
coast of North America. Rienecker et al. (1987) showed

Depth (km)
T

2..

FIG. 4. The temperature disturbance of unit amplitude (1°K) as-
sociated with each of the first three baroclinic Rossby modes computed
for a 2000 m deep ocean with a mean stratification representative of
the California Current.
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2F - r
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L

.04 -

FIG. 5. Vertical profiles of the pressure gradient force error for three different values of K (top, middle
and bottom row, respectively ) and three different values of P (left, middle and right columns, respectively ).
In each frame, the errors are shown for the three disturbance temperature profiles shown in Fig. 4, and they
are expressed as a geostrophic current (cm s™') at 38°N.

that over 90 percent of the variance in the water column
is explained by the first EOF (empirical orthogonal
function) of density. The pattern of the first EOF (Ri-
enecker et al.’s Fig. 8a) bears a close resemblance to
the third dynamical mode in Fig. 4. Considering a typ-
ical disturbance amplitude of 3°C, Tables ! and 2 in-
dicate that the pressure gradient error in a 10-level
model over the continental rise would be about 10 or
12 cm s, depending on whether a reference state den-
sity profile is removed or not. The corresponding error
in a 30-level model would be about an order of mag-
nitude smaller.

As a final example of the kind of error that exists
near steep topography in s-coordinate models, we show
the truncation error using a horizontal and vertical res-
olution that results in a hydrostatically inconsistent
scheme. The results shown in Fig. 6, computed with
ox = 1 km, are all based on a hydrostatically consistent
scheme since (1) is satisfied for K < 50. To examine
inconsistent schemes, we recomputed the largest trun-
cation error in the water column, as in Fig. 6, but with
different values of the grid size 6x. Figure 7 shows the
results for 6x = 5 and 10 km, respectively. With éx = 5
km (Fig. 7a), the consistency requirement (1) is sat-
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FIG. 6. Maximum value of the pressure gradient force error as a
function of the number of model levels, K, for each modal temper-
ature disturbance shown in Fig. 4. In this computation P = 2, however,
the results are similar for p = 1 and 3.

isfied only for K < 25. Larger values of K result in
sufficiently small 6o that (1) is violated. In this situation
the scheme does not converge, and increasing the ver-
tical resolution beyond K = 25 results in a larger trun-
cation error, as pointed out by Janji¢ (1977) and Mes-
inger (1982). As predicted by (1), the situation is worse
with éx = 10 km (Fig. 7b). In this case, the scheme is
hydrostatically consistent only for K < 12. This ex-
ample clearly shows the complex nature of the pressure
gradient force error in o-coordinate models. It is ob-
viously essential to choose the horizontal and vertical
resolution carefully, not only to accommodate the par-
ticular ocean problem at hand, but also to satisfy the
hydrostatic consistency condition (1).

5. Summary and conclusions

This study analyzes and documents the truncation
error and the error due to hydrostatic inconsistency,
associated with computing the pressure gradient force
over steep topography in s-coordinate ocean models.
The intent of the study is neither to advocate nor to
discredit the use of s-coordinates for studying flow over
steep topography. The purpose is simply to document
the errors associated with given profiles of buoyancy
and pressure typical of synoptic disturbances in the
ocean. A major objective is to investigate how the errors
depend on the model parameters, primarily resolution,
and the vertical structure of the disturbance.

The results show that if the finite difference scheme
satisfies the condition for hydrostatic consistency (1),
the errors can be reduced to tolerable levels with suf-
ficiently high resolution. For moderately high vertical
resolution, e.g., K =~ 20, Fig. 6 and Table 1 show that
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the maximum error in the water column, expressed as
a geostrophic current, is a little less than 1 cm s™! for
a topographic slope of 0.05 and modal amplitudes of
1°K. The error is smaller for modes 1 and 2 if a proper
reference state is removed. Since this analysis is linear
in the slope and modal amplitude, the result can be
used to estimate the truncation error associated with
any other topographic slope or modal amplitude. Thus
for example, the truncation error associated with a
mode 3 temperature disturbance of 2°K amplitude
over a topographic slope of 0.10 would be four times
greater than that shown in Fig. 6. The pressure gradient
error associated with mesoscale features over the con-
tinental rise off the west coast of North America using
a hydrostatically consistent 30-level model is estimated
to be about 1 cm s~%.

No attempt has been made to analyze the influence
of the truncation error on the actual performance of a
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F1G. 7. As in Fig. 6 except computed with (a) éx
= 5km and (b) éx = 10 km.
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model. It is important to do so however, because the
truncation error is really the simplest measure of the
overall accuracy of the finite difference scheme. It is
likely that the effect of truncation error in a model will
be much more difficult to determine than the trunca-
tion error itself. The effect is likely to depend on factors
other than just the resolution. As pointed out by Ara-
kawa and Suarez (1983), such things as the integral
properties of the finite difference scheme could play a
very important role in constraining the effects of the
truncation errors analyzed in this study. This topic is
left for a future study.
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