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ABSTRACT  

This research explores the use of the tree distances of Buttrey and 

Whitaker to visualize multidimensional data of mixed-variable types, having both 

numerical and categorical data. Tree distances measure dissimilarities among 

observations in a data set while exploiting desirable properties of classification 

and regression trees: ease of handling of most variable types, indifference to 

variable scaling, resistance to noise and outliers, accommodations for missing 

values, and computational ease. In this research, we map the dissimilarities 

using Classical Multidimensional Scaling to a lower-dimensional Euclidean space 

in order to provide an analyst with a comfortable framework, which supplies 

visual cues in order to help find patterns and gain insights about the data. We 

offer in this thesis several algorithms for coloring observations in the lower-

dimensional mappings in order to focus the analyst’s attention on the most 

important and interesting relationships in the data set. In addition, through our 

visualization, we gain a deeper understanding of the properties of tree distances 

and propose a modification. Our framework can be used on any military data set 

that involves mixed or non-mixed variables and is valuable for analysts who wish 

to shed light on data during the exploratory phase of analysis. 
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EXECUTIVE SUMMARY  

Visualization is a key tool for an analyst who wishes to explore data sets. 

Large number of military data sets are of mixed-type data. They contain more 

than one type of variables, numerical, ordinal or categorical. Johansson et al. 

(2008) mention that there is no agreed similarity measurement for mixed-type 

data and therefore no generalize framework for visualization of this type of data. 

In this thesis, we propose a novel visualization technique by the name “tree 

distance visualization” for mixed-type data based on the tree distances 

developed by Buttrey (2006) and expanded by Buttrey and Whitaker (2015a, 

2015b). The tree distances measure the dissimilarities of a mixed-type data using 

trees. They calculate the dissimilarities while exploiting the relationships between 

the different variables. They have several advantages: ease of handling of most 

variable types, indifference to variable scaling, resistance to noise and outliers 

and accommodations for missing values (Buttrey and Whitaker 2015a). 

Tree distance visualization is based on two major components: the tree 

distances and Classical Multidimensional Scaling, or CMDS (Gower, 1966). The 

algorithm calculates the dissimilarities among the observations in the data using 

one of the four variants of the tree distances (Buttrey and Whitaker 2015a). Then 

the algorithm maps them into lower-Euclidean space using CMDS while 

minimizing the stress (Kruskal and Wish 1978), which is a measure of the 

difference between the original dissimilarities and the distances among 

observations in the new space. 

Coloring the mappings of the tree distance visualization is an essential 

tool for providing an analyst visual cues which helps create insights about the 

data. We provide in this thesis three algorithms that we developed in order to 

automate the coloring task. They include the maximum deviance ratio that uses 

the deviance reduction assessment for the quality of the trees created to 

compute the dissimilarities, in order to identify the variables to color the mapping 

by. The second is the purity method that finds categorical variables to color the 
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mapping by using the spatial properties of the mapping with respect to the 

variables’ values. The third method we developed is the pruning method that 

exploits the structure of the trees created in order to compute the dissimilarities. 

The method assigns colors for ranges of values for a specific variable in interest. 

We continue the thesis by explaining the strong dependence issue, which 

we discovered while using the tree distance visualization. The tree distances for 

a data set that contain variables with strong dependence among them will have 

biased distances if the strong dependence is a constructed dependence. 

Examples for constructed dependence include a variable measured more than 

once in different units, summary variables, and a monotonic function of a 

variable. We suggest a modification to the tree distances that identify strong 

dependence variables using the trees created to compute the tree distances. Our 

modification is implemented in the tree distances R package (“treeClust,” Buttrey 

2015). 

The end of the thesis contains a discussion about some of the properties 

of the tree distance visualization. We consider the tendency of observations to 

collapse into several distinct points in the mapping. We discuss the equal 

distance property for different clusters in the tree distance mapping having an 

equal distance among them, regardless of the structure of the original data set. 

We consider a special shape that appears in several numeric data sets’ 

mappings: the “snake” shape. We finish the thesis by providing a visual 

representation of the differences among the tree distances variants (Buttrey and 

Whitaker 2015a).  
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I. INTRODUCTION 

Gaining insights about and from data is one of the major tasks of a 

data analyst. The world is flooded with information in a larger volume and with 

more variety and complexity than ever before. In the military domain, large 

numbers of data sets are of mixed data types, having both numerical and 

categorical variables. Examples of these data sets include manpower data, 

which can include numerical variables such as age and time in service, and 

categorical variables such as service, military occupational specialty, and pay 

grade.  

 Over the years, many techniques have been developed to analyze and 

find patterns in multidimensional data. These techniques can be grouped into 

tasks such as classification, regression, clustering, visualization, and more. 

Visualization of data exploits the human ability to recognize patterns using the 

sense of sight. An analyst can gain insights about patterns such as clusters, 

trends, outliers, and more by observing a mapping of multidimensional data in 

lower-dimensional space. Visualization of mixed data types is a nontrivial 

task. There are techniques for visualization of categorical data sets (e.g. 

Meyer, Zelies, and Hornik 2006) and also for numerical data sets such as 

parallel coordinate plots (Inselberg and Dimsdale 1990) and projection pursuit 

(Friedman and Tukey 1974), but only a few for mixed data because it is more 

difficult to combine categorical and numerical variables (for examples see 

Johansson 2008). 

In this thesis, we suggest a new technique for the visualization of 

mixed data. The method combines the tree distances of Buttrey (2006) and 

Buttrey and Whitaker (2015a) implemented in the R statistical Environment (R 

Core Team 2013) by the package treeClust (Buttrey 2015) and Classical 

Multidimensional Scaling, or CMDS of Gower (1966), to visualize mixed data 

in a lower-dimensional mapping in order to supply an analyst with visual tools 

for gaining insights. Tree distance visualization can be used for any type of 

data—numerical, categorical, or mixed data types. The visualization is 
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resistant to noise variables in the data and outliers and indifferent to linear 

transformations of the data. 

This chapter is organized as follows: Section A contains an example of 

the tree distance visualization technique using the Iris data set. Section B 

covers related works for distance measurement and visualization of mixed 

data types. Section C outlines the structure of the rest of the thesis.  

A. TREE DISTANCE VISUAL IZATION—IRIS EXAMPLE 

In this section, we demonstrate some of the properties of tree distance 

visualization. We provide in this section only sufficient details about the 

process in order to display the main ideas of the thesis. In later chapters, we 

provide a much more in-depth description of the data and the process. In this 

example, we are using the well-known Iris data set (for details, see Chapter 

II). The Iris data set contains three types of irises and has four numerical 

variables describing different properties of them. We demonstrate in this 

section some of the insights that can be gained by using the tree distance 

visualization technique. 

Figure 1 shows the Iris data set mapped into a two-dimensional 

Euclidean space based on the tree distances variant, d1 (for details, see 

Chapter II). We label the axes of mapped Euclidean space by “a1,” “a2,” and 

“a3” if needed so as not to confuse these axes with the variables in the data 

set. Figures 2 and 3 show the same mapping colored by two variables of the 

Iris data set, the sepal and petal lengths. The process by which we select the 

most promising variables to color by and how to color those variables are 

described in Chapter IV.  
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Figure 1. Iris data set mapping using d1 colored by the iris type 

Legend: Setosa – blue, Versicolor – red, and Virginica - green 

 

 

Figure 2. Iris data set mapping using d1 colored by the petal length 

Legend: petal length (cm) - (1, 1.9] – purple, (1.9, 4.8] – black, and (4.8, 6.9] 
– pink 
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Figure 3. Iris data set mapping using d1 colored by the sepal length 

Legend: (4.3, 5.4] – orange, (5.4, 6] – sky blue, (6, 6.7] – magenta, and (6.7, 
7.9] - green 

Viewing all three figures, an analyst can deduce several insights about 

the data. We state several of them here. First, the three types of irises are 

separated in the data set. The tree distance visualization algorithm does not 

perfectly separate the Versicolor and Virginica irises; therefore, they probably 

share some key features in the original data set. The Setosa irises seem to be 

well separated from the others. Second, there is a clear connection between 

the iris’s type and petal length. The Setosa irises have petal lengths between 

1.0 cm and 1.9 cm, while the Versicolor’s petal lengths are longer, and the 

Virginica’s petal lengths are the longest of them all. Third, there is a 

connection between the iris’s type and its sepal length. For example, the 

majority of the Virginica irises do not have sepal lengths shorter than 6.0 cm. 

Fourth, there is a connection between the sepal and the petal length. Irises 

with long petal lengths have long sepal lengths and vice versa.  

The tree distance visualization produces these plots automatically for a 

requested data set, choosing the variables to color by and the ranges to 

assign for each color. The insights stated previously about the data can be 

gained in a couple of minutes of analyzing the three figures. They provide an 

important understanding about a four-dimensional data set using two-
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dimensional visualization, and they do not require an analyst to do any 

calculations.  

B. RELATED WORK  

The tree distance visualization maps a mixed-type data set into a low-

dimensional Euclidean space in order to communicate insight about patterns 

in the data to an analyst. The key is to put variables of different types and 

different scale on the same footing before mapping the data into a two- or 

three- dimensional space. We describe in this section three types of methods 

and algorithms: dissimilarities calculations for mixed data types, mapping 

algorithms of dissimilarities into lower-dimensional Euclidean spaces, and 

techniques for mapping mixed data types directly into lower-dimensional 

Euclidean spaces.      

1. Dissimilarities Calculation Methods for Mixed Data Type 

In this subsection, we review two methods for computing dissimilarities 

for mixed data types. The first, the Gower dissimilarity (Gower 1971), is the 

most commonly used dissimilarity for mixed data. The second, random forest 

proximity (Breiman 2001), is the dissimilarity most similar to tree distances. 

We note that the distances in this thesis are not necessarily metric, but they 

are dissimilarities. They are non-negative, symmetric, and the dissimilarity 

between a point and itself is zero (Hastie, Tibshirani, and Friedman 2009).   

The Gower dissimilarity (Gower 1971) is a weighted sum of 

dissimilarities computed for each variable in a data set. For numerical 

variables, the method calculates the Manhattan distance between two 

observations while scaling the distance to be between 0 and 1 by a linear 

scaling. For categorical variables, the value of the dissimilarity component is 0 

if the values of the observations are equal for that variable and 1 otherwise. 

For observations ix  and jx , the kth component is calculated as described on 

in (1).  
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where to accommodate missing values ,i j�G is 0 if either observation is missing 

variable k and 1 otherwise. 

Computation of Gower dissimilarities is fast and scaling of numeric 

variables is automatic. One of its disadvantages with respect to the 

visualization task is its problem in handling skewed numeric variables and 

outliers. The scaling technique of the Gower dissimilarities is linear and 

depends on the extreme values of the variable. If the variable’s distribution is 

skewed or there is an outlier that significantly changes the range of the 

variable, most of the measured dissimilarities components of this variable will 

be very small, and a few of them will be close to 1. This phenomenon clusters 

most of the data observations very close to one another in the visualization 

mapping and reduces the ability of an analyst to identify the true clusters in 

the data. An example of the use of Gower dissimilarities and CMDS for 

visualization can be found in Kagie, van Wezel and Groenen’s (2007) 

example of visualizing online shopping.    

The random forests method (Breiman 2001) is a supervised learning 

method based on ensembles of classification or regression trees. 

Nonetheless, it can be used for unsupervised proximities calculation (Breiman 

and Cutler 2003) of mixed data types and therefore for unsupervised 



 7 

visualization (Liaw and Wiener 2002). In order to calculate the proximities, the 

method creates a simulated space using the original data set. In the new 

space, the original observations have a response variable value of 1. In 

addition, artificial observations are created using the empirical marginal 

distribution of the original variables, with a response variable value of 0. The 

random forest is grown over the simulated data. As with the tree distances, 

two observations are similar if they fall in the same leaves. The calculation of 

the dissimilarity is done by counting the number of shared leaves for two 

observations and normalizing it by dividing by twice the number of trees. The 

proximities are between 0 and 1, and the dissimilarities are calculated by 

taking the complimentary value. Liaw and Wiener (2002) demonstrate the use 

of random forests proximities for visualization. They used the CMDS for 

mapping the dissimilarities. 

2. Mapping  techniques  

There are many mapping techniques for data in high dimensions into 

lower-dimensional Euclidean space. These include principal component 

analysis, factor analysis, projection pursuit, and independent component 

analysis, among others. For a review, see Fodor (2002). In this subsection, 

we review a new technique desigined to visualize clusters in high-dimensional 

data, t-Distributed Stochastic Neighbor Embedding (t-SNE; van der Maaten 

and Hinton 2008).  

The t-SNE algorithm is a mapping technique that aims to remedy the 

phenomenon of unseparated clusters in lower dimension after scaling: the 

crowding problem (van der Maaten and Hinton 2008). This phenomenon 

occurs because small dissimilarities measured in high dimensions among 

many observations do not have enough space when algorithms map them 

into lower dimensions. Therefore, most of the algorithms solve this problem by 

filling the gaps between different groups in the mapping, exploiting the fact 

that there are large dissimilarities among the groups. This solution reduces 

the ability of an analyst to differentiate among the clusters in the data set. The 

t-SNE algorithm is based on Stochastic Neighbor Embedding (SNE), which 

uses conditional distributions between the observations in the data. t-SNE 
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exploits the heavy-tail property of the Student’s T distribution in order to solve 

the crowding problem (van der Maaten and Hinton 2008). 

3. Visualization  Techniques for Mixed Data Sets  

There are few recent works about visualization techniques of mixed 

data types. Johansson, Jern, and Johansson (2008) describe an interactive 

algorithm for the visualization of mixed data sets. Their algorithm quantifies 

the categorical variables and converts them to a numerical representation 

before visualizing them. The framework uses user feedback in order to adjust 

the visualization. The framework calculates the Multiple Correspondence 

Analysis (MCA; Johansson, Jern, and Johansson 2008) of the categorical 

variables by creating contingency tables of the relationships between the 

categorical variables. The numerical variables are converted into categorical 

variables manually by the analyst or as a result of a clustering process. The 

MCA coverts the categorical variables into a numerical representation. The 

last step of the MCA is to visualize the numerical representation. The parallel 

variables visualization algorithm is the chosen algorithm for this part. The 

manual interface enables the analyst to use his or her subject matter 

knowledge about the data.  

C. THESIS OUTLINE 

This section presents the outline of the rest of the thesis. Chapter II 

contains the background for this thesis. It describes the components of the 

tree distance visualization method, including tree distances (Buttrey and 

Whitaker 2015a) and CMDS (Gower 1966). The second part of Chapter II 

describes the different data sets we used in this thesis in order to test, 

evaluate and demonstrate the different properties of the tree distance 

visualization method. 

Chapter III discusses the different coloring techniques of the tree 

distance visualization’s mappings in order to assist the analyst who explores 

the data looking for patterns. In the beginning of the chapter, we demonstrate 

the importance of coloring in the process of making insights about the data 

using the Splice data set (Noordewier, Towell, and Shavlik 1991). We 
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continue by describing three methods for identifying the appropriate variables 

by which to color the mappings. The first method is the regression method of 

Kruskal and Wish (1978), and the other two were developed specifically for 

tree distance visualization: the maximum deviance ratio and the purity 

methods. At the end of Chapter III, we introduce our pruning method for 

choosing values of a variable for coloring. 

Chapter IV discusses the issue of strong dependence among variables 

in a data set and their influence on the tree distances and the tree distance 

visualization method. We describe the problem of having constructed 

dependence among variables in a data set, and demonstrate it using the 

Splice data set. We offer a remedy for the problem by adding an additional 

step for identifying and removing constructed dependence in a data set and 

discuss its advantages and disadvantages. We demonstrate the positive 

effect of the proposed solutions on the mappings of the Credit data set 

(Lichman, 2013) and the Splice data set with a constructed dependence 

addition. 

Chapter V includes a discussion about the tree distance visualization 

method. The beginning of the chapter discusses the reasons that tree 

distance visualization is a suitable visualization method for an analyst who 

desires to study the clustering properties of the data. We mention a couple of 

properties of the method, such as the collapsing tendency of similar 

observations, as well as the equal distance property. These properties help 

the analyst to understand the relationships inside the data regardless of the 

scale of the variables. We continue the chapter by discussing the different 

mappings generated for the same data set by the different variants of the tree 

distances. Chapter VI contains our summary and conclusions. In this chapter, 

we point to a number of possible questions that can be researched for future 

work. This section includes questions about the dimension in which the 

mappings should be created, the result of repeating the process of the tree 

distance visualization method on the mapping of the data, and the effect of 

different visualization techniques using tree distances.       
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II. BACKGROUND  

In this chapter, we review the two major steps of our visualization 

approach: the tree distances algorithm developed by Buttrey (2006) and 

expanded and implemented by Buttrey and Whitaker (2015a, 2015b) and the 

visualization of the dissimilarities in a lower-dimensional Euclidean space 

using Gower’s CMDS (Gower 1966). We describe the entire tree distance 

visualization process composed of these two steps. We also describe in this 

chapter the data sets used to test our method.  

The chapter is organized as follows: Section A describes tree 

distances, their four variants, and the motivation for using them. Section B 

describes CMDS. Section C describes the whole process involving both tree 

distances and CMDS. We also describe in Section C the additional process of 

adding an artificial noise for enhancing visualization. Section D includes a 

short description of the data sets used in this thesis. Section E is the chapter’s 

summary.  

A. TREE DISTANCES 

Tree distances (Buttrey and Whitaker 2015a) are at the core of our 

visualization method. The four variants of tree distances are discussed in this 

section. We finish the section with the motivation for using tree distances for 

measuring dissimilarities between observations in mixed data–type data sets.  

When looking at classification or regression trees, “two observations 

are similar if they fall in the same leaf” (Buttrey and Whitaker 2015a). For 

each variable in the data set, the algorithm to compute tree distances builds a 

tree with that variable as the response variable and the rest of the variables 

as predictor variables. Mixed variable data sets are allowed because 

regression trees are built for numeric responses and classification trees are 

built for categorical responses. Any variable type can act as a predictor 

variable. Thus, a data set with p variables results in p trees. Each tree is 

pruned to its “optimal” size using cross-validation (Buttrey and Whitaker 

2015a). 
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The “deviance reduction ratio” is a measure of the goodness of a tree. 

The deviance of a node in a tree is “measured by the sum of squares of 

deviations from the mean for a numeric response variable, and by the 

multinomial deviance for a categorical one” (Buttrey and Whitaker 2015a). 

The deviance of the tree, is the sum of deviances for each leaf (terminal 

node). The deviance reduction ratio is calculated by the ratio of the difference 

between the root node deviance and the tree deviance to the root node 

deviance. The larger the ratio, the better the tree reduces the deviance, and 

therefore the better the explanation of the response variable by the predictors. 

The ratio is between 0 and 1. If the ratio equals 1, then the response variable 

is explained completely by the tree. The deviance reduction ratio is similar to 
2R , which is a classical statistical measurement for the goodness of a linear 

model. We use the term 2R  analog interchangeably with the deviance 

reduction ratio. 

Once the trees are built, with each tree corresponding to a different 

variable in the data set, the dissimilarity between two observations is 

measured based on the number of trees in which those observations fall into 

the same leaf. The calculation of the dissimilarities can be represented as 

follows: For data sets with n observations and p variables, 1,.., , 1,..,i n t p� � 

denotes the leaf of the tht  tree into which the thi observation falls by ( )tL i : tw  is 

the weight of the tht  tree; ( , )td i j is the contribution of the tree t to the 

dissimilarity between observations i and j. The tree distance dissimilarity 

between observations i and j is calculated by the following formula: 

t
1

( , ) d ( , ) (i) ( ))
p

t
t t

t

d i j w i j I L L j
� 

� ���� �z�¦  (      (3) 

where ( )I �x  is equal to 1 if the condition is true and equal to 0 otherwise. 

There are four variants of the tree distances algorithm. The differences 

between the variants are the weights, tw , and the tree’s contributions, ( , )td i j . 

The d1 variant’s weight and tree contribution is equal to 1 across all trees and 

pairs of observations. The d2 variant also has a tree contribution of 1 across 

all pairs of observations, but it differs from d1 in the weighting factor. For d2, 
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the weight of each tree equals the ratio between the 2R  analog of the tree and 

the maximum 2R  analog across all the trees. This variation gives larger 

weight for “better” trees. In the third variation, d3, weights of the trees are 

equal to 1, whereas the ( , )td i j  are computed to reflect how “far apart” the 

leaves ( )tL i  and (j)tL are; the distance is calculated by the ratio of the 

decreased deviance between each leaf and their first shared parent node. 

The last variation, d4, is a combination of d2 and d3. The d4 variant has the 

same weights as d2 and the same ( , )td i j  calculation as d3. A more detailed 

discussion about the four variations, including examples, can be found in 

Buttrey and Whitaker (2015a). 

Using tree distances has several advantages for measuring 

dissimilarities between observations. The first advantage is that the algorithm 

works on mixed data type data sets, which can include numerical, categorical, 

or ordinal variables, and any mix of them. The second advantage is the 

resistance to noise variables. The tree associated with a noise variable 

usually consists only of a root node. The tree classifies all the observations to 

the same leaf, and therefore, there is no contribution of that noise variable to 

the total dissimilarities calculation. The third advantage is the “invariance” to 

different scales of the data. The tree grows the nodes with respect to the 

deviance reduction. The tree’s splits are not changed by a scale (or location 

change) for either the response variables or the predictor variable. Therefore, 

the same dissimilarities are measured for a variable and a linear function of it. 

Thus, choice of scale does not influence the measurement of dissimilarities. 

For example a data set may contain one variable measured in kilometers and 

another measured in centimeters. Further a monotonic function of the 

predictor variables will not change the splits of a tree. The algorithm measures 

the distances by the leaves of the trees and not by the original scale. 

Furthermore, unlike Gower dissimilarities, tree distances are resistant to 

outliers. 

Buttrey and Whitaker (2015a) demonstrate the advantages of the tree 

distances in their paper. They show that the tree distances perform well most 
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of the time compared to other distance-measuring techniques in clustering 

tasks. 

B. CLASSICAL MULTIDIMEN SIONAL SCALING  

Gower (1966) introduced CMDS as “principal coordinates analysis.” 

This method maps dissimilarities between high-dimensional items into a 

Euclidean space in a requested dimension, while keeping the distances 

between the points in the new space as close as possible to the original 

dissimilarities (Kruskal and Wish 1978). The scaling allows the discovery and 

visualization of the hidden structure of the data, which often enables the 

analyst to gain quick insights about the data, especially when it contains 

relationships (similarities or dissimilarities) among data points instead of real 

values. The scaling is used in a variety of applications, such as to reduce 

numerical multidimensional data for visualization into lower-dimensional 

Euclidean space, determine the structure of social groups based on the 

members’ perceptions of each other, and to structure products based on 

consumer reviews (Kruskal and Wish 1978, 6). 

“Stress” is the basic concept behind CMDS. It describes the difference 

between the original dissimilarities and those created by the new configuration 

(Kruskal and Wish 1978). Assume a configuration of points in the lower-

dimensional Euclidean space where every observation i from the original data 

corresponds to a point in the new space. Denote by , ji�G  the original 

dissimilarities between observations i and j, and , jid  for the distances between 

the corresponding points in the new Euclidean space. Stress is defined as the 

square root of the sum of squared differences between the original 

dissimilarities and the new distances scaled by the sum of the squared 

distances in the new space (Kruskal and Wish 1978). The mathematical 

formulation of the stress is as follows: 

2
, , j

,
2

,
,

( )

( )

i j i
i j

i j
i j

d

stress
d

�G ��

� 
�¦

�¦
     (4) 



 15 

Stress is non-negative. If the stress equals 0, the original dissimilarities 

equal the new distances, and therefore the mapping captures perfectly the 

relationships in the original data. Large stress means a bad fit of the data into 

the lower-dimensional Euclidean space. 

CMDS is an optimization program that finds a mapping to minimize 

stress for a given set of dissimilarities. The optimization is subject to a 

constraint that the mean values of all axes in the new Euclidean space are 0, 

so the mapping is centered at the origin. 

The scaling is invariant to rotations and reflections (Kruskal and Wish 

1978, 82). The reason for this invariance is that rotated or reflected mappings 

have the same inter-point distances. Therefore, the axes of the new lower- 

dimensional Euclidean space have no immediate meaning. Kruskal and Wish 

(1978, 30–45) discussed how to interpret the meaning of the different axes of 

a mapping. In Chapter III, we discuss these and suggest two new methods for 

interpreting the mappings based on tree distances using CMDS. 

C. THE TREE DISTANCE VISUAL IZATION PROCESS 

In this section, we describe the tree distance visualization process, 

whose key steps are using tree distances for calculating dissimilarities and 

then applying CMDS. An analyst who desires to use the tree distance 

visualization technique needs to decide the values of two parameters: the tree 

distances variant (d1, d2, d3, or d4) and the dimension of the space into 

which the analyst wishes to map the observations. The tree distance 

visualization algorithm first calculates the dissimilarities according to the 

requested variant of the tree distances. After the dissimilarities are computed, 

the algorithm maps the observations into a space with the requested 

dimensions using CMDS. The output of the algorithm is the configuration of 

the observations in the new lower-dimensional Euclidean space. 

The process can end after the scaling step. We provide two optional 

additional steps that can be used after scaling. In Chapter III, we show how to 

add color to the mapping to enhance its interpretability. The second optional 

step is the addition of artificial noise to create a more understandable 
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mapping. Many tree distances have value 0. This happens because the tree 

distances are based on leaves of trees, which form a gross partition of the 

data. In our experience, it is common that observations that fall in the same 

leaf in one tree also do so in the other trees. This phenomenon of a large 

number of zero dissimilarities is good for clustering (because the observations 

share the same cluster), but hamper visualization. There is a problem of 

recognizing how many points are in the same location in space if several 

points are in exactly the same position. A more severe problem occurs when 

trying to color the points with respect to a given value. If the points in the 

same location do not all share the same value, what should the color of the 

point be? 

Our solution is to add artificial noise to the dissimilarities before 

mapping them to the lower dimensional Euclidean space. Adding a small 

amount of noise does not change the gross structure of the data, but it does 

separate points in the same location so the analyst can understand the size of 

clusters and see the correct color assigned to the value of each observation. 

For each distance, we add an absolute value of a noise that is sampled from a 

normal distribution, with a mean of 0 and standard deviation equal to one-

tenth of the minimum absolute difference between all pairs of dissimilarities 

computed for the data set.  

Figures 4 and 5 show a visualization using d1 of the 150 observations 

of the Iris data set (described in the next section), colored by the Iris class. 

Figure 4 is a mapping without artificial noise, and Figure 5 has the added 

artificial noise. In Figure 4, only 25 points out of 150 unique observations are 

visible in the mapping because many of the points are in the same position, 

and therefore an analyst cannot differentiate among them. Some of those 

points have different values (Versicolor and Virginica) that are only visible with 

the added noise in Figure 5. 
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Figure 4. Iris data mapping using d1 colored by the Iris class; 
without noise 

 

Legend Setosa – red, Versicolor – blue, and Virginica – green 

 

Figure 5. Iris data mapping colored by the Iris class; with noise 

Legend Setosa – red, Versicolor – blue and Virginica – green 

D. THE DATA SETS 

In this thesis, we apply our tree distance visualization to several data 

sets in order to evaluate its performance. The data sets include all-numeric 

data sets along with categorical data sets and mixed data type data sets. In 

this section, we briefly describe the different data sets. All of our data is taken 

from the UC Irvine Machine Learning Repository (Lichman 2013).  
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(1) Iris 

The Iris data set is one of the best-known data sets in the world for 

classification. The data set was first introduced by Fisher (Fisher 1936). Each 

observation is classified into one of three types of irises: “Setosa,” 

“Versicolor,” and “Virginica.” The data set includes four numeric variables that 

describe the different flowers’ properties. The variables are: septal length and 

width, and petal length and width. The data set contains 150 observations, 

which are split equally among the classes. 

(2) Splice 

The Splice data set is a genetic data set that contains sequences of 

DNA (Noordewier, Towell, and Shavlik 1991). There are three different 

classes that represent two types of genetic splice and their absence. The 

classes are exon/intron boundaries (“EI”), intron/exon boundaries (“IE”), and 

neither above (“N”). There are 60 variables (named “V4,” “V5,” ..., “V63”) for 

the data, which represent the genetic sequence. All variables are categorical, 

and the most common levels are “A,” “G,” “T,” and “C.” Observations with any 

other levels for any of the 60 variables are removed from the data set for our 

purposes. The resulting data contains 3,175 observations. The EI class 

contains 762 observations, the IE class contains 765 observations, and the N 

class contains the remaining 1,648 observations. 

(3) Credit 

The Credit data set is a credit card applications data (Lichman, 2013). 

The data set is anonymous—all the variables’ names were omitted for privacy 

reasons. The data consists of 653 observations that are split into two classes. 

Three hundred fifty seven observations are of type “-,” and the rest are of type 

“+.” There are 15 variables. Nine of the variables are categorical, and the rest 

are continuous.   

(4) Seeds 

The Seeds data set is an agricultural data set that describes the 

kernels of three different types of wheat: “Kama,” “Rosa,” and “Canadian” 
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(Charytanowicz et al. 2010). Each class consists of 70 observations; there are 

210 in total. The seven continuous variables of the data describe the different 

properties of the kernels: the area, the perimeter, the length, and more.  

E. SUMMARY 

In this background chapter, we reviewed the components of the tree 

distance visualization and the data sets that we used in our research. We 

reviewed the first step of the process: computing the tree distances for 

measuring dissimilarities among observations in a mixed data type data set. 

We reviewed the four variants of the tree distances and the motivation behind 

using them. Then we reviewed the second part of the visualization algorithm: 

CMDS. The scaling maps the dissimilarities between all pairs of observations 

into a lower-dimensional Euclidean space. We defined stress as a function of 

the difference between the original dissimilarities and the distances in the 

mapped Euclidean space. CMDS finds a configuration in the mapped 

Euclidean space that minimizes stress. We then reviewed the complete tree 

distance visualization process, with two optional additional steps. At the end 

of the chapter, we described the different data sets that we used in our 

research, the Iris, the Splice, the Credit, and the Seeds data sets. 
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III. COLORING THE TREE DISTANCES MAPPINGS FOR 
INSIGHTS 

One of the big advantages of visualization is the ability to gain insights, 

most of them quickly and without performing calculations. The tree distances 

mapping creates a configuration of observations in space. Coloring the 

observations by the different values of certain data set variables can shed a 

light on the relationships among the data set’s variables. The tree distances 

measure the distance between observations using the different nodes of trees 

that are grown as a function of the variables’ relationships. Therefore, different 

spatial regions in the mapping created by the algorithm should represent 

differences in the relationship among one or more variables of the data set. 

Insights are easily drawn if the variables for coloring are chosen wisely and an 

analyst can effectively explore the mapping with respect to the variables. 

In this chapter, we discuss how to decide which variables to color by 

and how to color by their values. We give an example in Section A using the 

Splice data set. We continue by explaining in Section B the different 

techniques for automating the coloring. Many data sets have a large number 

of variables, so it is important to choose those that are dominant in the 

mapping. We cover several methods for this task, including the regression 

method suggested by Kruskal and Wish (1978), a method based on trees’ 2R  

analog that we call the maximum deviance ratio method, and a method based 

on the “purity” of observations with respect to each variable in a subset of a 

partition of the lower-dimensional Euclidean space. 

In the chapter, we consider a coloring scheme to be good if insights 

can be made from it. A good coloring scheme has logic—the map is divided 

by the colors, so a certain partition could be considered as colored mainly by 

colors that correspond to a subset of values of the data. A good coloring 

provides information about the spatial configuration of the observations and 

the data.  
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A. COLORING SPLICE BY I TS CLASS AND THE V35  VARIABLE  

An example of insight that can be drawn from tree distance 

visualization is given by the Splice data set. The data set, which is described 

in detail in Chapter II, has three levels to its class: “EI,”“IE,” and “N.” V35 is 

one of the variables in the data set, and it contains four levels: “A,” “C,” “G,” 

and “T.” The mapping of the Splice data using d4 is shown in Figures 6 and 7, 

which are snapshots of interactive 3D plots. Figures 6 and 7 are colored by 

the Splice class and V35 levels, respectively.  

 

 

Figure 6. Splice data mapping using d4; colored by Splice Class 

Legend “EI” – red, “IE” – blue, and “N” – green 
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Figure 7. Splice data mapping using d4; colored by levels of V35  

Legend “T” – yellow, “C” – brown, “G” – pink, and “A” - purple 

Viewing the two mappings in Figures 6 and 7 colored by the Splice 

class and V35 variable, an analyst can easily conclude that the majority of the 

“EI” observations have level “T” for the V35 variable. The analyst infers this by 

observing the lower-left cluster in Figure 7, which has only the level “T” for the 

V35 variable (the mapping actually splits by the levels of V35) and by 

observing from Figure 6 that most of the “EI” observations are in the same 

lower-left cluster. It is also obvious that an observation with level “T” for the 

V35 variable does not have to be from class “EI” because the lower-left 

cluster also contains many “N” and “IE” observations. We summarize in Table 

1 the distribution of the “EI” class and level “T” in the V35 variable. 
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Table 1.   The relationship between the “T” level for variable V35 
and the “EI” class for  Splice class 

 Class “EI” Classes “N” and “IE Total 
V35 Level “T”  755 699 1424 
V35 Levels  
“C,” “G” and “A” 

7 1744 1751 

Total  762 2413 3715 

 

While 99% of the observations of class “EI” have level “T” for the V35 

variable, 53% of the “T” observations are from class “EI.” The insight is 

immediate from comparing the different coloring of the mapping without 

gathering statistics on the data set such as in Table 1. This example 

demonstrates the power of colored visualization in gaining quick insights 

about the relationships among the variables in the data.  

B. CHOOSING VARIABLES F OR COLORING 

Visualization using tree distances is suited for data sets with large 

numbers of variables. We want visualizations that help the analyst understand 

such data. Therefore, when we color, it is important to decide which variables 

of the whole set of variables to select. We aim to choose those that give the 

greatest insight with the smallest number of different coloring schemes and 

with minimum effort by the analyst.   

Finding the important variables in a data set, often called variable 

selection, is a problem that has been extensively researched and documented 

(e.g., Hastie,, Tibshirani, and Friedman 2009). Most of the known techniques 

for this task are applied only to numerical data sets. Principal component 

analysis is a commonly used example for these kinds of numerical techniques 

(Jolliffe 1986). Breiman (2001) suggests a method for identifying the most 

important variables in a tree-related domain using random forests for mixed 

data types. 

We focus our discussion on methods that address specifically the 

characteristics of the tree distance visualization process. We consider three 

methods in this chapter. We start with the classical regression method 

suggested by Kruskal and Wish (1978) which fits a regression, linear or 



 25 

logistic, between the coordinates of the data and the different variables. We 

discuss its disadvantages, which leads us to develop two new methods: the 

maximum deviance ratio method, which takes advantage of the information 

about the trees generated to compute tree distances, and the purity method 

that finds the variables that have the most pure areas in the data. We 

continue by considering the advantages and the disadvantages of each 

method and providing examples. 

1. The Regression Method  

Regression is a common tool for creating inferences from 

multidimensional scaling (Kruskal and Wish 1978, 36). If we regress a 

variable against the coordinates of the map, we have a statistical test for the 

relationship between the position (coordinates) in the mapping and the 

variable. If there is a significant statistical relationship, the direction of the 

relationship can be obtained from normalizing the coefficients of the 

coordinates (Kruskal and Wish 1978, 37–39). The final result is a linear 

relationship between a direction in space and the variable. A dummy example 

of such a relationship could be “increasing the value of axis a1 by 1 increases 

on average the value of variable Y by 2.1.” The method provides both the 

important variables for coloring (by statistical significance and weight of 

coefficients) and the relationship itself. Logistic regression can also be used 

for categorical values using the same principles as linear variables.  

There are several advantages of the regression method. The linear and 

logistic regression are easy to understand and very common methods in 

statistical applications. They are well supported theoretically and have a large 

number of commonly used implementations.  

We tested the regression method on several data sets, and our 

conclusion is that the regression method has a severe drawback that does not 

make it the best option for use. CMDS applied to the tree distances does not 

tend to map different well-separated groups or clusters of observations in a 

linear configuration. One of the common configurations (but not the only one) 

created by the algorithm is a circle or sphere or a “horseshoe” (Kruskal and 
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Wish 1978) configuration of the different clusters. One explanation for this 

phenomenon could be that tree distances create an equal separation between 

different clusters, and the ideal way to order equal-distance objects in space 

is a sphere or a circle. A linear regression on the linear representation of the 

coordinates cannot explain a sphere or circle configuration well. Therefore, 

linear regression methods are not the right tool for this task.  

A simple example of this behavior can be observed in the Iris data set 

mapping, colored by petal length, shown in Figure 8. 

 

 

Figure 8. Iris data map by d1 color-coded by petal length 

Legend (1, 1.9] – red, (1.9,4.8] – blue and (4.8, 6.9] – green 

Although the relationship is not perfect, it is clear that the petal length 

increases with counterclockwise rotation from a starting point at the lower 

values of a1 (the red cluster). The relationship is not linear.  

Another problem is that the tree distances are calculated using the 

tree’s properties and depends how far apart tree leaves are, not on the values 

of the variable itself. Therefore, there is no guarantee that the change of the 

variable by the coordinates is linear and not another increasing function.  

These drawbacks are also valid for logistic regression. We recommend 

not using regression as a variable importance method.  
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2. Maximum Deviance Ratio Method  

The tree distance algorithm produces a deviance reduction ratio, which 

can be used as a 2R  analog, for each tree that it creates. As mentioned in 

Chapter II, the 2R  analog is a measure of the performance of a tree. The 

higher the ratio is (close to 1), the better a tree explains the response variable 

as a function of the predictor variables.  

Trees are grown with each of the variables used in turn as the 

response variable while the rest of the variables are treated as predictor 

variables. The 2R  analog indicates how much the predictor variables reduce 

the deviance of the root node. The better the response is explained by the 

other variables, the higher its 2R  analog. Therefore, a simple approach for 

finding important variables is to choose the trees with the highest  analog. 

In addition, as described in Chapter II, the d2–d4 distance variants weigh the 

contribution of each variable by the deviance reduction ratio of the associated 

tree. For these distances, there is an additional reason for using the 2R  

analog as an indicator for the important variables.  

In Table 2, we demonstrate the maximum deviance ratio method using 

the Seeds data set, which was introduced in Chapter II, and the d1 variant. 

Table 2.   Deviance ratio deduction per variable; Seeds data set 

Variable 2R  analog 
V1 0.968 
V2 0.962 
V3 0.878 
V4 0.947 
V5 0.933 
V6 0.445 
V7 0.890 

 

Table 2 shows the analog 2R  for each variable’s associated tree. It is 

possible that a variables associated tree can have a 0 for its 2R  analog. This 

happens when the associated tree is discarded because it contains only a 

root node. We consider the two extremes: the variable with the highest  2R  

2R
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analog and the one with the lowest. Those are V1 with 0.968, and V6 with 

0.445, respectively. Figure 9 shows the Seeds mapping for two dimensions 

using d1 colored by V1, while Figure 10 shows the same map colored by V6.  

 

 

Figure 9. Seeds data set mapped using d1; colored by V1 

Legend: (10.6,12.8] – red, (12.8, 15.6] – blue and (15.6, 21.2] – green 

 

 

Figure 10. Seeds data set mapped using d1; colored by V6 

Legend: (0.765, 3.13] – red, (3.13, 3.69] – blue, (3.69, 4.33] – green, and 
(4.33, 8.46] - yellow 

It is clear that the coloring scheme based on V1, the variable with the 

maximum 2R  analog, almost partitions the observations in the 2D mapping. 

Coloring by V6, with the minimum 2R  analog, colors almost randomly. This 

example fits our hypothesis about the relationship between the analog 2R  and 
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the coloring. We have observed the successful performance of the maximum 

deviance ratio method on other data sets, such as Iris, Splice, and Credit.  

An advantage of the maximum deviance ratio is that it is very fast. The 

deviance ratio table is one of the basic outputs of the tree distance algorithm. 

Ordering the variables by the ratio is an easy, fast task.  

For many data sets, the most interesting variables can be identified as 

those that have the largest 2R  analog. However, this is not always the case. 

The reason for this is that the relationship between a variable and the 

distances could be the result of the tree associated with the variable, or the 

other trees that could be split by the variable values. An example of this is that 

the most important variable chosen by the purity method for coloring the 

Splice data is variable V35, See section 3.A.3. The associated tree of V35 

was discarded in the algorithmic process because there are so many “T” level 

values for the variable, so the resulting tree consists only the root node, which 

predicts “T.”  

3. The Purity Method  

The purity method is our proposed method for identifying which 

categorical variable to color by. This method can also be used for numerical 

variables converted to categorical. In the next section we introduce a 

technique, the pruning method, by which numerical variables can be made 

categorical using results from the tree distance computations. We start the 

discussion about the purity method by defining a couple of terms. We define a 

region of a partition of the mapping to be “pure” with respect to a certain 

categorical variable (including the data set class) if the region contains only 

one level of the variable.  

“Purity” means how pure a region is. We can calculate a measure of 

purity by calculating the total number of observations inside a specific region 

and computing the distribution of them among the different levels of the 

variable. Purity is then defined by the ratio of the number of observations at 

the most common level to the total number of observations in the region. The 

maximum purity is 1, which occurs if all the observations share the same 
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level. The minimum purity for a region with 1n �t  observations is 1
n which 

occurs when none of the observations share the same level. 

We can assume that if we partition the space into reasonably-sized 

regions and the majority of the partitions have high purity with respect to a 

certain categorical variable, then coloring observation by the variable will be 

useful.  

There are several drawbacks to this assumption. First, what are 

reasonably-sized regions? If the size of the regions is too large, the purity 

value will be low. As an extreme example, if the mapping contains two 

separate equal-sized clusters, each with a different level, the purity of the total 

space is 0.5, while a partition which separates the two clusters will have 

regions with purity 1.  

On the other hand, the smaller the size of the region, the less 

information can be obtained from calculating the purity. For example, if we 

divide a mapping into regions in which each one contains only one 

observation, then the purity of all of the regions is the maximum, 1, but this 

does not aid our understanding. In our research, we find that several trials 

usually give reasonably-sized partitions, which balances the two extremes of 

regions which are too large and regions which are too small.  

The other drawback is the fact that even if each region has a high 

purity level, this does not assure that there is a continuity between adjacent 

partitions. Returning to the example of a region for each observation, high 

purity does not guarantee that adjacent region will contain the same most 

frequent value of the variables. We find that although this drawback exists in 

theory, if we divide the mapping into reasonably-sized regions, we tend to get 

reasonable results in the data sets we explore. A sensitivity analysis of the 

size of the partitions can identify the existence of this problem. If the purity 

does not change severely as a result of a small change in the partition’s size, 

we can assume the data splits solidly.   

The purity method splits the mapping into equally-sized boxes in two- 

or three- dimensions, depending on the map dimensionality. Then it calculates 
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the purity of each box with respect to each variable. The last step is ordering 

the variables by the number of boxes with purity larger than 0.9. The boxes 

are common among all the variables. 

We demonstrate this method using the Splice data set using d1 

mapped into three dimensions. The Splice data set contains 60 categorical 

variables. We choose to split the map into 216 equal sized boxes, which are 

five cuts (six areas) per dimension. A bar plot of the percentage of boxes with 

purity above 0.9 by variable is shown in Figure 11.  

 

 
(a) 

  
(b) 

Figure 11. Bar plot of the percent of boxes with purity above 0.9 per 
variable in the Splice data mapped using d1 

Note. The plot (a) has all the variables of the Splice data, while plot (b) has 
only the top 10 deviance reduction ratio variables 
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From the bar plot Figure 11 (b), it is clear that there are five variables 

with high purity percentages: V35, V32, V33, V34, and V38, while the other 

variables have low purity percentages. We examine the mapping color-coded 

by three variables: the top two pure variables, V35 and V32, and the one with 

the lowest purity, V61. 

Figure 12 shows the Splice mapping of d1 color-coded by V35. It is 

clear V35 has a pure region at the negative values of axis a1 of the level “T.” 

The positive values of axis a1 contain the rest of the levels without a visible 

ordering. 

 

  

Figure 12. Splice data map by d1 color-coded by V35 

Legend “A” – red, “G” – green, “C” – blue, and “T” – yellow 
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Figure 13. Purity histogram of V35 in Splice mapping using d1 

 

Figure 13 shows the distribution of the purity of V35. The large number 

of pure regions corresponds to the regions that contain the “T” value of V35 

and correspond to the yellow cluster in Figure 12. The other regions are much 

less pure, and they represent the multicolored cluster of observations in 

Figure 12. 

From the Splice mapping colored by V32 in Figure 14, it is easy to see 

that the “A” values of V32 are concentrated in a specific region of the 

mapping. It is also clear that the separation of the “A” values from the other 

values is not clean, which is the reason V32 has fewer regions that V35 with 

purity larger than 0.9. 



 34 

 

Figure 14. Splice data mapping using d1 color coded by V32 

Legend “A” – red, “G” – green, “C” – blue, and “T” – yellow 

Figure 15 is a histogram of the purity by V32 of the different regions in 

the Splice mapping. Figure 15 shows a plot similar to the V35 histogram in 

Figure 12, but with fewer pure boxes. 

  

Figure 15. Purity histogram - V32 in Splice mapping using d1 
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In contrast to both V35 and V32, which have a large number of pure 

boxes, V63 has the lowest number of pure boxes. Examining the Splice map 

colored by V61 and the purity histogram in Figures 16 and 17, respectively, 

one can see that the values of V61 are spread quite randomly over the map. 

There is still a moderate number of pure boxes, but they are not significant 

enough or close enough to each other to uncover a pattern in the data with 

respect to V61. 

 

 

Figure 16. Splice data mapping using d1 color coded by V61 

Legend “A” – red, “G” – green, “C” – blue, and “T” – yellow 
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Figure 17. Purity histogram – V61 in Splice mapping using d1 

 

In conclusion, this method can help identify important variables for 

coloring a lower-dimensional mapping of the data. The graphical colored 

mapping of the data aids in uncovering patterns and drawing conclusions. 

C. CHOOSING VALUES FOR COLORING (PRUNING METHOD) 

Once an interesting variable has been chosen, the question is how to 

color it. For categorical variables, most of the time the answer is simple—

assign a color for each level of the variable. Assigning a different color for 

each value of a numerical variable in the data set creates confusing coloring. 

The problem also occurs with categorical variables with large numbers of 

levels. 

In this section, we cover our suggested method for coloring a single 

variable: the pruning method, which is applicable both for categorical and 

numerical variables. 

Our proposed solution is the pruning method, which is based on the 

trees used to compute tree distances. We describe the method in relation to 

numerical variables, but it can also be extended to categorical variables. The 

pruning method can only be used on variables that have associated trees. As 
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described in Chapter II, a tree comprises several nodes, which contain 

several observations following If-Then conditions. The deviance of the 

observations in each node is smaller than the deviance of its parent node. 

Therefore, values of the variable of observations in the nodes can indicate 

how to “cut” values of a numerical variable. The leaves of a tree are natural 

candidates. But in order not to select too many values, it is possible to set a 

threshold for the number of observations in a node. Only nodes with large 

numbers of observations in them are selected as indicators, which reduces 

the potential number of splits. 

The pruning method steps are as follows:  

1. Select the lowest nodes in each branch of the variable’s 
associated tree that contain more observations than a threshold 
value. 

2. Calculate the mean of the variable’s values for each selected 
node, add these to the list of the minimum and maximum values 
of the variable, and order the values. For each ordered pair of 
means in this set, we call the smaller of the two L and the larger 
H. 

3. For each pair of ordered nodes, compute the median value 
among observations that are both larger than L and also smaller 
than H. Each node’s mean is an estimator of the values inside 
the nodes. We are interested in the midpoints between the 
nodes because they represent the split of the tree that creates 
the two nodes, which in turn determine the dissimilarities. The 
median values are the proposed cutting values for the variable. 
There could be other possibilities for calculating the cutting 
values, such as the mean or a simple average of the cutting 
values. 

4. Assign a different color to each interval defined by the values. 

How can one decide on an appropriate threshold? One suggestion is to 

start with the number of groups that the analyst wants to split the data into. 

The number of original classes (if it is known) is a possible good choice, but 

there could be others. Assuming that the size of the groups should be roughly 

the same, the threshold is the number of observations divided by the number 

of groups, plus a small value (for example, 5% of the number of 

observations). Because we seek to find the largest number of nodes in each 

branch that have fewer observations than the threshold, we add an additional 
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buffer of a small value for the sake of sensitivity. If the data splits in a 

reasonable way, the result is roughly the same number of cuts as the number 

of groups that were chosen. 

The pruning method has several advantages. The main advantage is 

the fact that this method is based on the trees used to compute the trees 

distances. Another advantage of using the pruning method is the uneven 

ranges it creates. The trees can cut the variables unevenly because the data’s 

distribution does not have to be uniform. The distances measured using the 

trees are linearly correlated not with the variables, but with the splits of the 

trees. Therefore, coloring by the nodes properties using the pruning method 

creates uneven assignments to the colors, but relates better to the mapping 

than even assignments and can help to explain uneven distributions of the 

data. 

The last advantage that we mention is the fact that the pruning method 

is fast. It is based on analyzing one tree, which is much smaller than the 

whole data set. The heaviest computational step is computing the median, 

and this could be replaced by faster methods, such as the simple average of 

the cutting values.   

The major disadvantage of the pruning method is the need for the 

variable to have an associated tree. Not every important variable has an 

associated tree, which contains more than a root node. The pruning method 

exploits the properties of the trees, and therefore cannot work on variables 

with only a root node. 

Another disadvantage is that the method assumes that the tree and the 

data set behave “nicely.” When using a threshold to control the number of 

groups, we assume the groups will split mostly evenly. When using the 

median for finding the cutting values, we assume the data set distributes well 

between the mean values of the nodes, and so forth. 

The last disadvantage of the pruning method is the inability to identify 

discontinuity in the data. There could be a situation where the values of a 

specific variable are distributed only in specific regions. The pruning method 
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calculates the ranges between the different cuts. It also includes values that 

invalid in the data, which could lead to misleading interpretation of the 

relationships among the variables. 

The Iris data set is a good example for the pruning method. Figure 5, 

shown previously in the chapter, is colored using the pruning method, where 

the selected variable is the petal length. The threshold is set in order to create 

three groups, which correspond to the number of the classes of the data. The 

value of the threshold is 58. The reader can observe that the method splits the 

variable into the different clusters of the map. The splits are not equal in their 

range; one of them has a width of 0.9 cm, while the others are more similar to 

each other with widths of 2.9 cm and 2.1 cm.  

D. CONCLUSIONS 

A well-colored map of a data set can lead to meaningful insights about 

the data. In this chapter, we covered several aspects of coloring the maps 

created by tree distances. We started with an example of the insights an 

analyst can create of the Splice data set using tree distances color-coded 

mapping. We then described several techniques for choosing a coloring 

scheme that would produce insights. We reviewed several methods that 

produce candidates for important variables to color the mapping with respect 

to the variables. The methods included Kruskal and Wish’s (1978) regression 

methods, and we proposed two new methods, which are unique to tree 

distances mapping—the maximum deviance ratio and the purity methods. We 

reviewed each method, discussed their advantages and disadvantages, and 

analyzed examples of several of them. We continued with a discussion of how 

to color the map according to a single variable. Finally, we proposed the 

pruning method as a tree-based method for assigning colors for ranges of the 

variable. 
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IV. STRONG DEPENDENCE AMONG VARIABLES  

In this chapter, we discuss the issue of data sets containing sets of 

strongly dependent variables, which can bias the results of tree distances. 

In most situations, variables in data sets exhibit dependence. Often the 

dependence is between measurements of related attributes (e.g., height, 

weight, and body fat percent), all of which might be important for the task at 

hand. Indeed, the tree distances exploit such dependence. However, just as 

often, in large data sets, variables exhibit strong dependence by virtue of how 

they are constructed (e.g., one variable for temperature measured in 

Fahrenheit and another variable with the same temperatures measured in 

Celsius). Dependence among these variables in no way sheds insight into the 

nature of the data and should not influence analytical results. We can define 

this type of dependence as constructed dependence. We expect to see more 

of constructed dependence in the big-data era, where a large number of data 

sets are created by merging and combining different data sets. 

In the first section of the chapter, we describe how such constructed 

dependence can cause problems in interpreting visualizations based on tree 

distances. We illustrate these issues with the Splice data. The second section 

of the chapter modifies the tree distance algorithm to address this problem. 

We describe the modification and its advantages and disadvantages, and 

finally we give examples of experiments of our proposed modified algorithm 

applied to several data sets. 

A. THE ISSUE OF STRONG DEPENDENCE  

In this section, we discuss the problems associated with strong 

dependence and how to account for them. 

1. Theoretical Analysis  

Tree distances measure dissimilarities by exploiting dependencies 

among variables in a data set. Problems occur when the dependence among 
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the variables is a result of constructed dependence. This phenomenon could 

happen, for example, when 

1. The variable is recorded twice. 

2. The variable is recorded in two different units of measurements, 
such as temperature in Celsius and in Fahrenheit. 

3. One numeric variable is a monotonic function of another variable 
in the data set, such as including population size and the log of 
population size in the same data set. 

4. One of the variables is a summary of the other, such as 
temperature in Fahrenheit and a categorical variable of two 
levels, “Cold” and “Hot,” with respect to some threshold.  

5. A categorical variable is constructed with levels that are 
collapsed versions of another categorical variable. This 
happens, for example, when several levels of a categorical 
variable are combined into “Other” and both the new variable 
and the old variable are retained. 

There are two consequences of using tree distances with data 

containing a set of such variables. First, because of the strong dependence, 

the trees for the relevant variables contain only the constructed dependent 

variables. This is because they “explain” one another perfectly and there is no 

need for other variables. This “blocks” the tree from representing the 

relationships between the variable and other variables, and thus we lose 

information about the structure of the data. Second, the strong dependence 

results in a large deviance reduction. The tree distance variants d2, d3, and 

d4, take into account the deviance reduction. The tree distances d2 and d4 

weight the contribution of each variable by its deviance reduction ratio. In 

addition, d3 and d4 use deviance reduction within each tree to compute inter-

leaf distances. Especially with d2 and d4, variables with strong constructed 

dependence make the major contribution to the dissimilarities. This results in 

high bias for the dependent-redundant variables, which eliminates the other 

variables.  

If the dependence between variables is “natural,” the consequences 

could be a virtue—a true representation of the data. But if it is because of 

constructed dependence, we lose important information about the data, and 

the results could be highly biased.  
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2. Case Study: Splice Data Set  

We review in detail an example of the issue of strong dependence 

using the Splice data set, which was described in Chapter II. As illustrated in 

the next subsection (Section A.2.a), the Splice data does not contain strongly 

dependent variables, so in Section A.2.b, we illustrate the effects of adding 

artificial strongly dependent variables to the Splice data set for comparison.  

a. Splice Data Mapped Using d1 and d4  

If we calculate the tree distances for the Splice data, we get the 

reduction in the deviance ratio (DevRat) per variable plot, as shown in Figure 

18.  

 

Figure 18. Reduction in 2R  analog (deviance ratio-DevRat) per 
variable for the Splice data 

 

We can see that none of the variables has a 2R  analog, the deviance 

reduction ratio, larger than 0.15. We focus our analysis on d1 and d4 

distances as the two extreme tree distances variants with respect to the 2R  

analog. The d1 is not affected by the 2R  analog, and d4 is a weighted 

contribution of each tree’s 2R  analog. The plots in Figures 19 and 20 are 3D 

mappings of the Splice data visualized using d1 and d4. The colors 

correspond to the three different levels of class, “EI,” “IE,” and “N.” 
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Figure 19. Splice data mapped using d1 colored by Splice class 
levels  

Legend “EI” – red, “IE” – blue, and “N” – green 

 

Figure 20. Splice data mapped using d4 colored by Splice class 
levels 

Legend “EI” – red, “IE” – blue, and “N” – green 

Examining the mappings in Figures 19 and 20, one can see two large groups 

divided into smaller groups. We can see that it is possible to identify spatially 

the different classes from the mapping based on either d1 or d4 dissimilarities. 
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Tree distances split the data by the important variables and their relationships 

and spreads the non-important variables’ values almost randomly through the 

lower dimension mapping. For example, if we color the mappings of Figures 

19 and 20 by variable V4, a non-important variable, we get Figures 21 and 22 

for d1 and d4, respectively. 

 

Figure 21. Splice data mapped by d1 colored by V4  

Legend  “C” – brown, “A” – purple, “G” – pink, and “T” – yellow 

 

Figure 22. Splice data mapped by d4 colored by V4  

Legend  “C” – brown, “A” – purple, “G” – pink, and “T” – yellow 
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These plots suggest that the tree distance algorithm does not consider 

V4 as an important variable. The colors corresponding to different levels of V4 

are spread almost randomly over the mapping in the different groups. 

b. Splice Data With Constructed  Dependence 

In this section, we examine the impact of constructing variables that 

are strongly dependent on existing variables in the data set. We start by 

adding a copy of the variable V4 to the Splice data set. With the addition of 

“V0,” an exact copy of V4, to the data, we get the deviance ratio plot shown in 

Figure 23. 

 

Figure 23. Reduction in deviance ratio per variable for the Splice 
data with additional V0 variable, a constructed 

dependence variable to V4 

 

The deviance reduction ratios of the artificial variable V0 and V4 are 

very high compared to the deviance reduction ratios of the rest of the 

variables. Both are equal to 1, indicating that the leaves for both trees are 

pure and the trees perfectly predict their corresponding variables.  

We see in Figure 24 that the tree created for V4 is based only on the 

V0 variable and has pure leaves. Similarly, the tree for the V0 variable is only 

split on V4 and also has pure leaves. 
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Figure 24. The V4 associated tree 

V4-associated tree based only on the V0 variable 

Each node representation consists of the most common level of the node, the 
ratio between the most common level of the node and the number of the 

observation in the node, and the percent representation of that ratio.  

With the added artificial variable, the mapping based on d1 does not 

seem to change as shown in Figure 25, but the mapping based on d4 

changes considerably as shown in Figure 26. 
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Figure 25. Splice with additional correlated variable V0 mapping 
based on d1 colored by Splice class levels 

Legend “EI” – red, “IE” – blue, and “N” – green. The map is similar to the map 
of the original Splice data mapped by d1. 

 

 

Figure 26. Splice with additional correlated variable V0 mapped with 
d4 colored by Splice class levels 

Legend “EI” – red, “IE” – blue and “N” – green. The map is different from the 
map of the original Splice data mapped by d4. 

There are three very distinct columns in Figure 26. The content of the 

columns is ordered internally according to the Splice levels. The greens are 
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higher on the a3 axis and the blues and reds are lower on the a3 axis. If we 

color the data by V4, we can see in Figure 27 that with the addition of the 

artificial variable V0, V4 is now the dominant variable in the data. 

 

 

Figure 27. Splice with additional correlated variable V0 mapping 
based on d4 colored by V4 values 

Legend  “C” – brown, “A” – purple, “G” – pink, and “T” – yellow. V4 is the 
dominant variable of the visualization.  

It is clear that the mapping is influenced severely by the dependence 

between V4 and the artificial variable.  

3. Discussion  

The fact that the d4 mapping is affected by introducing the artificial 

high-correlated variable, and the d1 mapping is not, means that at least in the 

Splice data, the weighting of each variable’s contribution in d4 by the 

deviance causes the more severe problem. The fact that including V0 causes 

the V4 tree to depend only on V0, blocking V4’s dependence on other 

variables, does not seem to be a problem when all variables are weighted 

equally as they are for d1. Even when choosing to experiment with more 
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important variables such as V33, the mapping based on d1 remains largely 

unaffected. Our hypothesis is that because there are many highly dependent 

variables within the Splice data and the data structure is revealed by other 

variables, “losing” information from the two variables corresponding to the 

trees that the algorithm removed variables does not result in a visible change 

in d1 dissimilarities.  

The Splice data set is not unique in having these issues. We 

experiment with adding correlated variables to all other data sets we examine 

in this thesis: Iris, Credit, and Seeds. In Iris, adding a copied variable does not 

result in a large change in the mapping for all of the distances. Our hypothesis 

is because the initial deviance reduction ratio of all the variables is very close 

to 1 (it is always 0.62 or above), adding another high deviance reduction ratio 

tree does not significantly change the computation. 

In Credit, there is a severe change for the d4 mapping, just as in 

Splice. Credit also has some change in the d1 mapping. Our hypothesis is the 

reason that d1 mapping changes for Credit and not for Splice is because 

there are not a lot of variables in Credit compared to Splice. Credit also has a 

constructed strong dependence in it without adding a correlated artificial 

variable. In Section 4.B, we discuss Credit maps in more detail. 

4. How Does the Deviance Change as a Factor of the Amount 
of Correlation? 

Most of the time, highly dependent variables are not perfect copies of 

each other. We want to understand the impact of non-identical but strongly 

dependent variables on the reduced deviance ratio in order to understand the 

impact on the mapping.  

For Splice, we create another column that is highly dependent on V4. 

We copy V4 where a certain percentage of the values are randomly 

permuted. Permutation reduces the dependence between V4 and the 

constructed variable. While doing so, we keep the marginal distributions of V4 

and the constructed variables the same. The percentage permuted is varied 

from 0 to 100%. After permuting, we grow the trees as usual and measure the 

reduction in the deviance ratio of the permuted variable. Figure 28 is a graph 
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of the reduction of the deviance ratio for the tree corresponding to the 

permuted variable versus the percent permuted. 

 

 

Figure 28. Reduction in 2R analogy (Deviance Reduction Dev-Rat) 
for V4 as a function of the percent of permutation 

In this example, the dependence must be quite strong before the 2R  

analog suffers a severe impact. For example, 20% permuted results in a 

roughly 40% reduction of the deviance ratio. The graph in Figure 11 remains 

similar if we choose other, more important variables to permute. Permuting 

variables from all the other data sets we examined in this thesis results in the 

same behavior and similar numbers (between 35%–45% reduction) for the 2R  

analog.  

B. A PROPOSED SOLUTION 

In this section, we discuss our proposed solution for the strong 

dependence issue. Our proposed solution is to replace the trees that split on 

only one variable and have an 2R  analog above a certain fixed threshold. The 

algorithm tries to grow a replacement tree based on all the variables except 

the one with the high correlation. If there is another highly correlated variable, 

the algorithm continues to replace trees until a tree without these properties is 
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found or no trees are found, in which case the variable does not have an 

associated tree. 

1. Advantages and Disadvantages  

The advantages of the proposed algorithm are: 

1. There is no need for a separate procedure in order to find pairs 
of strongly dependent variables.  

2. The solution can identify dependence between any 
combinations of variables—numerical and numerical, numerical 
and categorical, categorical and ordinal, and so on. If a variable 
has a high dependence with another variable, the tree prefers 
choosing that variable before the others, no matter the type.  

3. The solution does not omit the variables’ associated trees 
completely, but instead grows trees referring to the other 
variables, which could be important in revealing additional 
connections in the data. 

4. If there are no strongly depended variables in the data set, the 
proposed solution and the current solution produce the exact 
same results.  

There are several disadvantages of the proposed solution. First, the 

proposed algorithm cannot distinguish between constructed strong 

dependence and other forms of strong dependence. The proposed algorithm 

discards pairs of strongly dependent variables in the same way for all forms of 

dependence.   

Second, if there are strongly dependent variables, the computation 

time of the algorithm increases because of the need to grow additional trees. 

We can calculate the new running time as follows: The algorithm for 

calculating distances for visualization has two stages, growing trees and 

calculating distances. The current algorithm grows p trees, where p is the 

number of variables in the data. There are n observations in the data. The 

runtime of growing one tree is  2( )O np  (Su 2006), so the total time of this part 

is 3( )O np  . Finding the correct leaf for an observation in a tree is a constant 

time operation, and comparing n observations to each other is 2( )O n  in order 

to create the inter-point distances. Therefore, the total runtime of the current 

tree distance algorithm is 3 2( )O np n�� .  
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For the proposed solution in the worst case, the algorithm grows p 

trees. The runtime of growing the trees is 4( p )O n . The calculation of the 

distances’ runtime does not change. The runtime of the whole algorithm is  
4 2( )O np n��  compared to the 3 2( )O np n��  of the current algorithm. Most of the 

time, the runtime of the algorithm is equal to the runtime of the current 

algorithm, and it increases only in cases of high dependence.  

Third, the proposed solution addresses only strong dependence 

between two variables. It does not deal with a situation where a variable is 

strongly dependent on a linear combination of other variables, such as if one 

of the variables is the sum of two or more variables.   

Fourth, the ideal threshold for the deviance ratio could be different for 

different data sets. In particular, this could happen if the threshold is set 

higher than the 2R  analog of a natural strong dependence variable in the data 

set. 

2. Proposed Solution Experiments  

In order to test the proposed algorithm, we run it with a comparison of 

the current algorithm on two data sets: the Credit data set and the artificial 

Splice data set with the extra copy of V4 variable. The Credit data set is a 

good example of a data set with natural strong dependence variables.  

In all the experiments in this chapter, the chosen threshold for the 

deviance reduction ratio is 0.9. We choose 0.9 based on Figure 28 and the 

experiments resulting in permuting variables. Many data sets, such as Iris, 

have a deviance reduction ratio higher than 0.85 for non-constructed 

variables. However, the trees are a combination of several variables. A 

deviance reduction ratio of 0.9 and higher, in a tree with only one variable as 

the predictor variable, is a good indication of a constructed dependence. We 

conduct experiments on all the data sets that were used in this thesis with 

different thresholds, and our conclusion is that 0.9 balances the need to 

identify as much constructed dependence as possible (reduce the false-

negative) without damaging the connections between true dependent 

variables (increase the false-positive). 
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3. Credit Data Set Experiment  

Plotting the deviance ratio per variable for the original distances of the 

credit data in Figure 29 shows that some of the variables have high 

correlation. V4, V5, and V10 have a deviance reduction ratio larger than 0.97. 

Mapping d1 into three-dimensional Euclidean space gives Figure 30. 

 

 

Figure 29. 2R  analog (DevRat) per variable of Credit data set using 
the current tree distance algorithm 

 

 

Figure 30. Mapping Credit using d1 of the current solution, colored 
by Credit class 

Legend “+” – Blue and “-” – Red 
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The reader can see that the two levels of Credit class are spread 

among four clusters. It is arguable that in some of the clusters, there is some 

separation of the Credit class, but the separation is not optimal. Color-coding 

the map by some of the high deviance variables demonstrates the bias of the 

current tree distance algorithm, as shown in Figures 31 and 32. 

 

 

Figure 31. Mapping Credit using d1 of the current solution colored 
by V5 

Legend “g” – green, “p” – black, and “gg” – yellow 
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Figure 32. Mapping Credit using d1 of the current solution colored 
by V10 

Legend “t” – purple and “f” – black  

It is clear by viewing Figures 31 and 32 color-coded, respectively, by 

V5 and V10 that the mapping is split perfectly by V5 and V10 (and also V4 

and V11, which are the strongly dependent variables of V5 and V10, 

respectively). We can conclude that tree distances d1 splits the Credit data by 

the highly correlated variables but does not perform well in separating the 

Credit class. 

We now apply our proposed algorithm to the Credit data. The deviance 

reduction ratio plot in Figure 33 shows that there is no tree with a deviance 

reduction ratio higher than 0.45 for the new algorithm. The algorithm omits the 

strongly dependent trees of the variables V4, V5, and V10. For the variables 

V4 and V5 the algorithm has not found replacement trees, while it replaced 

the tree for V10 with a tree built on several variables: V6, V9, V14, and V15. 

The 2R  analog of the new tree is 0.24 instead of the original 1 2R  analog’s 

value. 
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Figure 33. 2R  analog  (DevRat) per variable of Credit data using the 
proposed algorithm 

 

Figure 34 shows the 3D mapping based on d1 created by the proposed 

algorithm. The new mapping splits the data better than the original algorithm. 

At the negative a1 values, most of the observations are red from type “-,” 

where at the positive a1 values, there are more blue observations from type 

“+.” 
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Figure 34. Mapping Credit using d1 of the proposed solution colored 
by Credit class 

Legend “+” – Blue and “-” – Red 

If we color-code the map by V5 as shown in Figure 35, there is no 

visible relationship between V5 and the observations’ locations. If we color-

code the map by V10 as shown in Figure 36, we find a relationship between 

the “t” value and the “+” class. This relationship seems to be a legitimate 

relationship in the data because the proposed algorithm does not completely 

remove the V10 tree, but replaces it with another one. Our proposed algorithm 

is successful in finding the hidden structure of the Credit data.  
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Figure 35. Mapping Credit using d1 of the proposed solution colored 
by V5 

Legend “g” – green, “p” – black, and “gg” – yellow 
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Figure 36. Mapping Credit using d1 of the proposed solution colored 
by V10 

Legend “t” – purple and “f” – pink  

4. Artificial Splice Data Set Experiment  

Earlier in this chapter we introduced the Artificial Splice data set, which 

is the Splice data set with an additional column that is equal to the V4 

variable. We demonstrated how the additional variable completely changes 

the mapping of d4 using the current algorithm, where the mapping is biased 

for V4. In this experiment, we run the proposed algorithm on the Artificial 

Splice data set. In Figure 37, the deviance reduction ratio of the proposed 

algorithm is plotted, and it is different than the one created by the current 

algorithm. 
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Figure 37. 2R  analog (DevRat)  per variable of Artificial Splice Data 
using the proposed algorithm 

The deviance reduction ratio plot does not contain any ratio above 

0.15, while in the current algorithm there are two variables with a deviance 

reduction ratio of 1: V4 and its copy, V10. Mapping the distances measured 

by d4 of the proposed solution creates the images in Figure 38 and Figure 39, 

color-coded by Splice class and V4, respectively. 
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Figure 38. Mapping Artificial Splice data using d4 of the proposed 
solution, colored by Splice class 

Legend “EI” – red, “IE” – blue, and “N” – green 

 

 

Figure 39. Mapping Artificial Splice data using d4 of the proposed 
solution, colored by V4 

Legend “C” – blue, “A” – red, “G” – green, and “T” – yellow 
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It is clear that the proposed algorithm does not split the Splice data by 

V4, which indicates that it was not influenced by the strong dependence. 

Comparing the map of the proposed algorithm to the map of the current 

algorithm of the original Splice data, we can see that they are very similar to 

one another and the insights that can be gained from them are the same. 

In summary, we can conclude that the proposed algorithm can treat a 

lot of the disadvantages of the problems associated with highly dependent 

variables while preserving the characteristics of the original mapping. 

C. SUMMARY 

In this chapter we reviewed the phenomena associated with strong 

dependence among variables. We discussed why the existence of 

constructed strong dependence in a data set can bias the tree distances. A 

few real data examples of the biased mapping were given. 

We described a proposed solution to the problem and discussed its 

strengths and weaknesses. At the end, we demonstrated how the proposed 

solution deals with the problem while having negligible impact on the 

mapping. 
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V. DISCUSSION 

In this chapter, we discuss several attributes and characteristics of the 

tree distance visualization method. Some of these are also attributes and 

characteristics of tree distances, which are easy to detect and understand 

using visualization. Section A of this chapter introduces two prominent 

patterns that occur often: the “collapsing” tendency and the “snake” shape. 

We discuss in Section A the collapsing tendency, its implications, and benefits 

for an analyst who explores the data set in search of clusters. We discuss the 

reasons for the snake shape and the insights that can be gained from it. 

Section B discusses the different properties of the variants, d1–d4, and their 

influence on the mappings.  

In this chapter, all the figures created by using tree distance 

visualization were created without the addition of artificial noise. 

A. CLUSTER PROPERTIES OF THE TREE DISTANCE ALGORITHM  

In this section, we discuss several properties of the tree distances that 

make them a good tool for analyzing data from a clustering perspective. 

Subsection A.1 discusses the tendency of observations to collapse to a single 

point and includes a discussion about dimensionality reduction and outlier 

treatment. This property enables an analyst to capture the high-level structure 

of the clusters’ relationships in the data set while ignoring unnecessary 

information about the variability of the data for that level of analysis. 

Subsection A.2 discusses the nearly-equal distances phenomenon an analyst 

should be aware of because of its influence on the order and configuration of 

the observations in the mapping. Finally, Subsection A.3 discusses the snake 

shape phenomenon that occurs in numerical data sets, which leads to a quick 

understanding of numerical data sets that do not consist of clear clusters.  

Tree distance visualization is a suitable tool for a clustering analysis 

task. The main reason for this is the way the trees partition the data into large 

groups using leaves. Distances are measured in respect to the relationships 

between the leaves of the tree, not the specific observations. Therefore, the 
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tree distance visualization shows the connections between the different 

groups of the data, which may be identified as the connections between 

clusters or sub-clusters of the data.    

We use the Iris data set, the Seeds data set, and two artificial data sets 

in order to discuss these properties. The Iris and Seeds data sets are 

described in Chapter II. The two artificial data sets are created in order to 

emphasize the collapsing tendency and the equal distance property. The two 

artificial data sets are described as follows: The first, or the original artificial 

data set, is a two-dimensional data set that consists of two clusters, each of 

30 observations. The observations for each cluster are sampled from a 

multivariate normal distribution. The blue cluster’s observations values are 

sampled from a bivariate Normal distribution with means 3, variance 1, and 

correlation 0, while the red cluster’s observations values are sampled from the 

bivariate Normal distribution with means 20, variance 2, and correlation 0. 

Figure 40 shows the data set plot in the original space. The second artificial 

data set, or the new artificial data set, consists of another cluster, the green 

cluster, sampled from the bivariate normal distribution with means 10, 

variance 0.5, and correlation 0. Figure 45 shows the new artificial data set. 

 

 

Figure 40. The artificial data set colored by the type 
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1. Observations’  Collapsi ng Tendency  

In this section, we discuss the tendency of similar observations to 

collapse into a single point in the mapping of the tree distance visualization in 

certain scenarios with certain data structures. This tendency results in 

possible dimensionality and variability reduction and outliers’ removal from the 

mapping. All these phenomena can help the analyst identify the cluster 

structure of the data set.  

By definition, the dissimilarity between two observations that fall in the 

same leaves for all the trees is zero. The leaves represent different partitions 

of the data, each by its associated variable. If the original data consists of 

groups of observations that share similar properties and differ in their 

properties from other groups of observations, the trees grow leaves according 

to the groups. Therefore, similar observations fall into the same leaves, and 

their distance from one another is zero. This means that although there is 

variability among these observations in several dimensions in the original data 

set, the distances measured in the mapping of the tree distance visualization 

are all zero. Another consequence of observations falling in the same leaf is 

that their distance from other observations that do not fall in the same leaf is 

equal for all the observations in the leaf. This happens because they all share 

the same leaf, and the dissimilarities are measured with respect to the leaves’ 

relationships. The distance is measured by the leaves’ relationship, and all the 

observations with zero dissimilarities are mapped, or “collapse,” to the same 

location in the new lower-dimensional Euclidean space. The stress is 

minimized for configuration where all the points with zero dissimilarities 

among them are mapped to a single point in the new space. 

We demonstrate this tendency by examining the original artificial data 

set and the Iris data set. For the artificial data set, the observations are 

sampled from multivariate normal distributions, and therefore they are each 

different, even in the same group. For example, the ranges of observations for 

the blue group are 0.67–5.15 and 1.1–4.62 for the x and y axes, respectively. 

There is dependence among the axes of the artificial data set in the original 

space. Because of the combination of the two clusters in one data set, high 
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values of the x variable correspond with high values of the y variable in the 

gross level. The trees grown to compute tree distances on the artificial data 

set are shown in Figure 41. 

 

 

Figure 41. The trees created to compute tree distances algorithm on 
the artificial data set 

 

Each tree partitions the space into two regions with each partition 

splitting the data set into the same subsets. When measuring the distance 

using the tree distance algorithm, all the blue observations fall in the same 

leaves (the leaves to the left in Figure 2) and all the red observations fall in 

the opposing leaves. Therefore, for all the different variants, d1–d4, the 
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dissimilarities among the observations that share the same group are zero, 

and their dissimilarities from the observations in the different group are 

constant but different for each tree distances variant. The visualization of the 

artificial data set using d1 is shown in Figure 42. The figure consists of only 

two distinct points, one for the red points and one for the blue points. Each of 

the points consists of 30 observations; each of the 30 has zero distance to 

any of the others.  

 

 

Figure 42. Artificial data set mapping using d1 

 

An analyst examining Figure 39 can understand that the data consists 

of two separated clusters without getting into the variability details of the 

clusters. Observations in the artificial data sets lay in the two-dimensional 

Euclidean space. The configuration of the data using tree distance 

visualization can be considered one-dimensional mapping. All the “a2” values 

of the new configuration equal zero, and there are only non-zero values in one 

dimension, the “a1” dimension. The tree distance visualization reduces the 

dimensionality of the artificial data set from two to one dimension. This 

tendency does not depend on the number of original dimensions. If the 

artificial data set’s observations were sampled from a higher dimensional 

multivariate normal distribution (e.g., 20-dimensional) with sufficient 

separation for the trees to capture, the tree distance visualization would be 
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the same as Figure 42. The analyst’s insights about the data are the same, 

regardless of the original dimensions—there are still two clusters in the data. 

This means that if the structure of the clusters in the data allows, the tree 

distance visualization reduces the dimensionality of the original data set. 

We can also demonstrate the collapsing property on a non-artificial 

data set, the Iris data set. Figure 43 is a matrix of all pairs of scatter plots of 

the data set plotted one against the other, colored by the Iris class. 

 

 

Figure 43. Iris data set, colored by the Iris class. 

Legend: Setosa – red, Versicolor – blue, and Virginica – green 

Clearly, the Setosa observations are separated from those of the other 

classes. For example, only the Setosa observations have Petal Length 

smaller than two. Figure 44 shows the mapping of the Iris data using d1. The 

Setosa observations do not collapse to a single point in space, but instead to 

three points. Each of them consists of more than 10 distinct observations. The 

partitioning of the space is not perfect for the Setosa class, but it is close to 

perfect, where all the observations for that class have been collapsed to one 

out of three distinct and close points.  
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Figure 44. Iris data mapping using d1 

Legend: Setosa – red, Versicolor – blue, Virginica – green, and “Mix classes 
of Versicolor and Virginica” – purple 

The number of observations in each point is attached to the point. 

For the Versicolor and the Virginica classes, the observations are more 

spread, although they still collapsed to several points in space. It is visible that 

there are quite separate Versicolor and Virginica regions in space. There are 

observations lying between the Virginica and Versicolor regions. These 

observations do not fall exclusively in leaves shared with one of the classes, 

but with both. The distance between two points in space is a function of the 

number of leaves they share. Therefore, the points between the regions 

represent observations that fall in some leaves with Versicolor observations 

and some with Virginica observations. Some of the observations have the 

same dissimilarity from the cluster’s observations, but they differ from each 

other by the specific leaves they share with the cluster. Therefore, the 

dissimilarities between them are not equal to zero, and they are mapped to 

different locations with similar distance to the cluster’s observations. In 

summary, an analyst can deduce that there is not a clear separation between 

the Versicolor and the Virginica classes.  

The collapsing tendency can position outliers with other observations. If 

outliers are present in the data, they belong to leaves containing other 

observations. Therefore, the mapping of the data typically does not explicitly 
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show outliers and allows the analyst to focus on the relationships between the 

different clusters.  

2. Nearly -Equal Distances  

The clusters in tree distance visualization mappings tend to be distant 

one from another by a nearly equal distance. This property can deform the 

order of clusters in a data set’s mapping, and it helps explain the snake shape 

phenomenon. For d1, the distance between two observations is proportional 

to the number of leaves they do not share with each other. This implies that 

for a set of clusters that do not share any leaves with each other, the 

dissimilarities measured among them are equal for all pairs of clusters. The 

reason is the number of leaves they do not share with each other is the 

maximum number of leaves, which is proportional to the number of trees or 

variables. This phenomenon occurs regardless of the original configuration 

and relationships between the observations. Figure 45 shows the new artificial 

data set, which is the original data set with an additional green cluster 

between the original two clusters. The blue observations are closer to the 

green observations than to the red observations in both dimensions. Figure 46 

shows the trees created to compute the tree distances on the new artificial 

data set. 
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Figure 45. The new artificial data set consisting of an additional 
green cluster 
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Figure 46. The trees created for tree distances on the new artificial 
data set; each leaf is colored by the corresponding cluster 

 

All of the observations are split among the three leaves according to 

their cluster because the trees are able to differentiate between the clusters. 

Figure 47 shows the visualization of the new artificial data set using d1. 
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Figure 47. The new artificial data set mapping using d1 

The number of observations in each point is attached to the point. 

The new mapping consists of three distinct points that represent the 

three different clusters of the data set. The distances among the three points 

are equal to each other. This is because they represent the maximum 

separation between points in this configuration; they are different in both of 

the trees. Therefore, the original ordering of the data is not preserved. The 

blue cluster is as close to the red cluster in Figure 47 as it is to the green 

cluster. Another example of the equal distances property can be seen in the 

Iris data. For the irises’ petal length, the Setosa are closer to the Versicolor 

than to the “Virginica,” as can be observed in Figure 45. In the mapping in the 

new low-dimensional Euclidean space presented in Figure 47, it can be seen 

that the average distances between the different clusters are equal.   

An analyst who researches the mapping of the new artificial data set in 

Figure 47 can determine that there are three different groups in the dataset. 

The researcher cannot deduce the ordering of the clusters in the original 

space, but she or he can deduce that there are three different groups, no 

matter the dimensionality of the original data set.    

 

The phenomenon of equal distances happens for d1 because the 

distance measured between two observations that do not share the same leaf 
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in a specific tree is one, regardless of the deviance reduction ratio and the 

relationship among the leaves. For the rest of the tree distances variants, d2–

d4, the dissimilarities among the different clusters can be different as a result 

of the different measurements. However, for some of the data sets we 

examined, the configuration is not different for the different variants of the tree 

distances, and therefore there the phenomenon of almost equal distances 

occurs also for those variants in these specific scenarios. We expand the 

discussion of the similarities and differences between the different tree 

distances variants in Section B.  

3. “Snake” Shape Mapping  

Some of the numeric data set mappings using tree distances have a 

“snake” shape, which is a not simple cluster mapping. This snake shape is 

similar to what Hastie et al. (2009,  595) call a “star” shape for proximity plots 

of random forests (Brieman 2001). In the tree distance visualization mapping, 

the snake shape represents the change in numeric variables. Because the 

tree distances exploit dependencies in the data set, the snake shape 

represents the change in more than one numeric variable. The snake shape 

phenomenon occurs mostly when there is a monotonic relationship among 

variables for which the observations are not separated into clusters.  

Our hypothesis for the cause of the snake shape phenomenon is as 

follows: The associated tree for a variable partitions the continuous variables 

into small pieces that represent different partitions of the data. Because there 

can be several variables in a data set, there is a reasonable possibility that 

the partitioning of the variables do not exactly fit one another. Therefore, there 

are small values of dissimilarities between nearby points because once in a 

while they fall in different leaves. These small dissimilarities create an order in 

the dissimilarities’ set because they occur between close points in the original 

data set’s variables. When CMDS minimizes the stress, a configuration where 

these points are adjacent to each other will have a low stress compares to a 

configuration where they are separated. Observations that are far from one 

another tend to have the maximum distance between them, as discussed in 

Subsection A.2. Therefore, the mapping tends to have a spherical or a 
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horseshoe-like shape because this shape needed to maintain equal 

distances. The shape is not a perfect horseshoe, but has more sharp edges. 

As mentioned before, the maximum dissimilarity between two observations in 

the configuration depends on the number of trees in the data because the 

largest dissimilarity occurs often for observations that fall in different leaves 

across all the trees. For observations having small dissimilarities to a pair of 

observations with the maximum dissimilarity between them, there is a 

combinatorial number of possible positions in the configuration. The reason is 

that there is a combinatorial number of possibilities for the relationship among 

the leaves. Therefore, in lower-dimensional Euclidean space, there is a 

problem fitting the observations between pairs of observations with the 

maximum dissimilarity. This, we assume, forces the CMDS to position the 

observations not in a perfect spherical shape, but instead to relax the stress 

by creating sharp edges.        

Figure 48 is the mapping of the Seeds data set using d1, with part (a) 

colored by the Seeds class, part (b) colored by V1, and part (c) colored by V2. 

The variables and cuts were chosen by the maximum deviance ratio and 

pruning methods (see Chapter III). 

 

(a) 

Legend “1” – blue, “2” – red, and “3” green 
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(b) 

Legend (10.6-12.8] – purple, (12.8-15.6] – brown, and (15.6, 21.2] – pink 

 

(c) 

Figure 48. Seeds data set mapping using d1 colored by (a) Seed 
class, (b) V1, and (c) V2. 

Legend (12.4-13.7] – black, (13.7-14.9] – yellow, and (14.9, 17.3] – magenta 

The values of both V1 and V2 increase generally in a clockwise 

direction in the configuration when starting at the top observations (high 

values of a2). The Seeds classes are generally aligned with the cuts of both of 
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the variables. Figure 49 shows the monotonic dependence between V1 and 

V2, which contributes to the snake shape of the mapping. 

 

Figure 49. The monotonic increasing dependence between V1 and 
V2 in the Seeds data set 

 

B. THE VARIANTS’ INFLUENCE ON THE MAPPING 

Buttrey and Whitaker (2015a) compare the performances of the 

different variants of tree distances. Their conclusion is that there is no clear 

best performer for all the data sets, but d2 in general performs well using the 

partitioning around medoids (PAM) algorithm (Kaufman and Rousseeuw 

1990), for clustering. Visualization can help explain some of the phenomena 

of the tree distances. In Subsection C.1, we use the Splice data as an 

example to discuss the differences in the mappings for the different variants. 

Our main conclusion is that for the Splice data set, all the variants except d1 

emphasize the role of a certain variable in expense of other variables. In 

Subsection C.2, we discuss why the mappings are similar for different variants 

in some of the data sets despite the differences in the dissimilarity 

calculations.  
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1. Splice Mappings Using the Different Variants 

In this subsection, we demonstrate the influence of the variant 

selection on the Splice data set, which has been described in Chapter II. We 

use Splice’s results in order to discuss some of the differences in the different 

variants. We also discuss Buttrey and Whitaker’s (2015a) findings on the best 

performance of d4 in the clustering task of the Splice data set. 

Figure 50 shows Splice mapping using d1 into three dimensions and 

colored by the Splice class’s levels. It is clear that except for a few 

observations, there are clear partitions in the mapping by the Splice class. 

The partitions are clear and pure (see definition in Chapter III), but there is no 

space between the different groups. They are visible only by coloring the 

mapping.   
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Figure 50. Splice data set mapping using d1 colored by Splice class 

Legend “EI” – red, “IE” – blue, and “N” – green  

Buttrey and Whitaker (2015a) compare the clustering performance of 

different clustering algorithms on the different variants. Figure 51 shows the 
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Splice mapping using d1, now colored by the clusters assigned by the PAM 

algorithm on the original dissimilarities. It is important to notice that the 

mapping is in three dimensions and the original dissimilarities are in a much 

higher dimensional space (the dimension is given by the sum of the number of 

leaves across all the trees for the data). Therefore, there is a difference in the 

distances in the mapping and the original dissimilarities that the algorithms 

use (which is expressed by the stress value). This can result in a less straight-

forward behavior of the clustering algorithms’ results in the mappings than 

desired. 

 

  

Figure 51. Splice data set mapping using d1 colored by the PAM 
algorithm clusters results 

 

By comparing Figures 50 and 51, it is seen that the clusters created by 

the PAM algorithm do not fit the Splice class. The d1 variant is the poorest 

variant  using the PAM algorithm. Figures 50 and 51’s differences shed some 

light on the reasons for the poor clustering results.  

Figure 52 shows the Splice mapping using d2 colored by the Splice 

class. The figure is similar to Figure 16 of the d1 mapping. The d2 variant is 

different from d1 in the weighting of each tree contribution to the dissimilarities 
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calculation (see Chapter II). The weighting is determined by the 2R  analog. 

Figure 18 in Chapter III shows the 2R  analog for the Splice data set. There is 

no visible difference between the mappings of d1 and d2, despite the different 

weighting. 

 

 

 

 

Figure 52. Splice data set mapping using d2 colored by Splice class 

Legend “EI” – red, “IE” – blue, and “N” – green  
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Figure 53 shows the Splice mapping using d3. Figure 53 is similar to 

Figures 50 and 52 with one noticeable difference. The data forms two 

observable clusters in Figure 53. These clusters exist also in Figures 50 and 

53, but in those figures, they are much less separated. Coloring the mapping 

by the V35 variable of the Splice data set produces Figure 54. It is clear that 

the separation of the two clusters is driven by the values of V35. One cluster 

consists only of the “T” level’s observations of V35, while the other clusters 

consist of all the rest of the levels. It is also clear that the separation is not 

related directly to the Splice class levels, except for the fact that one of the 

clusters has many more “IE” observations. 



 85 

 

 

Figure 53. Splice data set mapping using d3 colored by Splice class 

Legend “EI” – red, “IE” – blue, and “N” – green  
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Figure 54. Splice data set mapping using d3 colored by V35 

Legend “T” – yellow, “C” – black, “G” – pink, and “A” – purple 

The reason for the separation is the difference in the calculation of the 

dissimilarity’s value, ( , )td i j , for each tree. ( , )td i j  for d3 is calculated based 

on the relationship between the leaves (i)tL  and (j)tL  in the tree. The farther 

they are, meaning the larger the deviance reduction ratio of their shared 

parent, the larger the difference between them. From Figure 51, it seems that 

level “T” of the V35 variable’s observations fall far from the other levels. It is 

important to notice that the effect of d3 is also a result of the goodness of the 

tree, its 2R  analog. The difference between the leaves calculated by ( , )td i j  is 

calculated using the deviance reduction ratio inside the tree. The larger the 

deviance is reduced for the whole tree (larger 2R  analog), the higher the 

possibility of a large deviance change for specific nodes in the tree.  

Figure 55 shows the d3 mapping colored by the PAM algorithm’s 

clusters. It seems that the PAM algorithm splits the data roughly by the spatial 

properties of the mapping. Comparing Figures 53 and 55, an analyst can 
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identify better correlation between the PAM’s results and the Splice class than 

for d1, which corresponds to the results of Buttrey and Whitaker (2015a).  

 

 

 

 

Figure 55. Splice data set mapping using d3 colored by the PAM 
algorithm clusters results 
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Figure 56 shows the Splice data set mapping using d4 colored by the 

Splice class. The mapping is split into eight columns, which are grouped 

roughly into four clusters. The order of the observations is similar to the order 

in the rest of the mappings. Figures 57 and 58 show the d4 mapping colored 

by V35 and V32 variables, respectively.    
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Figure 56. Splice data set mapping using d4 colored by Splice class 

Legend “EI” – red, “IE” – blue, and “N” – green  
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Figure 57. Splice data set mapping using d4 colored by V35 

Legend “T” – yellow, “C” – black, “G” – pink, and “A” – purple 
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Figure 58. Splice data set mapping using d4 colored by V32 

Legend “T” – green, “C” – sky blue, “G” – magenta, and “A” – orange 

V35 and V32 variables form the cluster split in the mapping. The 

dissimilarities for d4 are calculated the same way as for d3, and the different 

weight of the trees is calculates similarly to d2. The effect of this combination 

is that the mapping is driven by variables that have the largest deviance 

change. There is a compound effect in which the change in the deviance is 

large for those variables that have a large deviance reduction ratio. 
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Figure 59. Splice data set mapping using d4 colored by PAM 
clustering algorithm’s results 

 

Figure 59 shows the d4 mapping colored by the clusters identified by 

the PAM algorithm. It is clear that the clusters are not created directly as a 

factor of the columns. This may be the result of the fact that the mapping is a 

three-dimensional representation of much higher-dimensional data. 

Comparing Figure 59 and Figure 56 shows that the PAM’s clusters are similar 

to the Splice clusters, although not equal. This comparison is a visual 

representation of the fact that the d4 has the best performance for the PAM 

clustering task for Buttrey and Whitaker (2015a). 

2. Similar Mapping for Different Variants of the Tree Distances  

Although the different variants of tree distances calculate the 

dissimilarities between the observations differently, there are data sets in 

which some of their mappings, if not all of them, are very similar one to 

another. 
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The cases in which the mappings are similar to one another depends 

on the calculation of the dissimilarities. The d2’s dissimilarities are calculated 

using the
2R  analog, d3’s dissimilarities are measured using the leaves’ 

deviance difference, and d4 combines both calculations. If the 
2R  analog, the 

deviance reduction ratio, is similar among all the trees in the data set, the 

weights of the different trees are similar to each other. In this case, the 

mappings using d1 and d2 are similar to one another, and the mappings using 

d3 and d4 are similar to one another but not necessarily to d1 or d2. If the 

trees have similar structure, the differences in the leaves’ deviance can be 

similar among all the trees. In such a case, d1’s and d3’s mappings are 

similar, and d2’s mapping is similar to d4’s. If both of the conditions apply, d1 

and d4 are also similar, and therefore all the mappings are similar.  

Figure 60 shows the mappings of the Seeds data set using the four 

variants. It is clear that d1’s and d2’s mappings are very similar to one 

another, as are d3’s and d4’s mappings. The d1’s and d3’s mappings and 

therefore also d2’s and d4’s mappings are different. The 2R  analog range for 

the trees created to compute the tree distances is 0.878–0.968 except for one 

tree, which has a low 2R  analog. Because the 2R  analog is similar for most of 

the trees, the similarities between the mappings are created. The trees of the 

Seeds data do not have a similar structure. One of the trees consists of 25 

nodes, while another consists of only nine nodes. Therefore, d1’s mapping is 

different from d3’s, and d2’s mapping is different from d4’s. 
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Figure 60. Seeds data set mapping using the four variants 

Each plot is a mapping of the data using a different variant, d1–d4, to be 
viewed in a clockwise direction starting at the top left. 

Legend: “1” – blue, “2” – red, and “3” – green 
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VI. CONCLUSIONS 

In this thesis, we presented a framework for visualizing multivariate 

mixed-type data based on the tree distances of Buttrey (2006) and Buttrey 

and Whitaker (2015a, 2015b). Our tree distance visualization process 

includes methods for choosing which variables to use in coloring and how to 

assign colors to the values of numeric variables and categorical variables with 

many levels. 

We explained why coloring the mappings correctly is an important goal 

for a visualization algorithm, and we demonstrated this using the coloring of 

the Splice data set. We discussed the disadvantages of Kruskal and Wish’s 

(1978) regression method for finding the appropriate variables by which to 

color the mappings, which led us to develop two methods: the purity method 

and the maximum deviance ratio method. We also introduced our pruning 

method for choosing values of a variable for coloring. 

We illustrated how to identify strong dependence among variables that 

can bias tree distances and their visualization. In addition, we proposed a 

modification of the original tree distances algorithm to mitigate the effects of 

such dependence. We note that this modification has already been 

implemented in the R package treeClust (Buttrey 2015). 

We discussed several issues of the tree distance visualization method. 

We explained why it is a visualization technique that suits the clustering 

problem. We described some properties of the method, such as the collapsing 

tendency of similar observations, which is their tendency to group in one point 

in the mapping, as well as the equal distance property, which helps the 

analyst understand the relationships inside the data regardless of the scale of 

the variables. We also discussed the different mappings generated for the 

same data set by the different variants of the tree distances.  

There are several paths for future work on tree distance visualization. 

First, it is not clear which dimension of the lower-dimensional Euclidean space 

the dissimilarities should be mapped into. All of the examples in this thesis are 

in two- or three-dimensional Euclidean space because an analyst cannot 
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easily examine higher dimensions. As we discuss in Section A.1, the tree 

distances can reduce the dimensionality of the data if the data’s high-

dimensional clusters can be identified by the trees. There could be a situation 

in which the original dissimilarities cannot be mapped into two or three 

dimensions without compromising the stress. For example, four clusters, each 

separated from the others and therefore having the same dissimilarity from 

one another, cannot necessarily be mapped into two-dimensional Euclidean 

space and keep the property of equal distances. In these cases, the stress, 

which is a measurement of the difference between the original dissimilarities 

and the new distances, is not equal to zero. The stress increases or does not 

decrease as the dimension of the mapped space reduces (Kruskal and Wish 

1978). Kruskal and Wish (1978) suggest two techniques for identifying the 

dimension to map into using the stress obtained for different dimensions. 

Further research can explore the application of these two techniques or others 

for tree distance visualization. 

Second, there could be a situation in which a mapping created by the 

tree distance visualization has too much variability to see important patterns 

because most but not all observations fall in the same leaves. In Section A, 

we described how tree distances reduce the variability of observations. 

Applying the tree distance visualization to the new mapping can reduce the 

variability even more. Preliminary experiments show that the variability is 

indeed reduced for a couple of data sets if the process of tree distance 

visualization is applied iteratively. Applying the tree distance algorithm 

repeatedly tends to revel a representation of the highest level in the hierarchy 

of clusters in the data set. Further research is required to determine if 

repeated visualization can reveal more information about the data, perhaps by 

reducing the dimensionality to two or three dimensions.   

Third, there are other mapping techniques for dissimilarities mapping 

techniques that could be used instead of the CMDS. The most promising 

candidate is the t-SNE (van der Maaten and Hinton 2008). The t-SNE is 

suited for high-dimensional data which consists of several classes, which 

correspond to the tree distances results.  
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