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ABSTRACT 

A microelectromechanical direction-finding sensor has been developed based on 

the mechanically coupled ears of the Ormia ochracea fly. Previous designs determined 

the direction of sound relative to the normal of the sensor by using the sound pressure 

level at the sensor. However, these designs suffered from a left-right ambiguity. To 

overcome these shortcomings, a dual sensor assembly was created. Two sensors co-

located at an offset angle allow direction finding across 120°. This eliminated ambiguous 

angles and the requirement for a sound pressure level. 

For this study, the dual sensor assembly was fabricated using two custom circuit 

boards powered by a 9V battery and arranged on a 3D-printed mount. The resonant 

frequency of the sensors produced a 260 V/Pa output at 1.690 kHz ± 20 Hz. Experimental 

work was done in an anechoic chamber, and outputs were captured using lock-in 

amplifiers. The angle error ranged from less than 0.3° close to the normal axis (0°) to 3.4° 

at the limits of coverage, ± 60°. The outcome of this research is that it is possible to 

operate this microelectromechanical direction-finding sensor assembly to find the bearing 

of a signal on resonance over an angular range of 120° with a maximum uncertainty of 

3.4°. 
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I. INTRODUCTION 

A. BACKGROUND 

In 1776 the physicist J. B. Venturi, most widely known for his work in fluid 

dynamics, surmised that the ability to find the direction of a sound source was based on 

the amplitude difference between two ears [1]. Lord Rayleigh confirmed this in 1907 by 

concluding that the different distances sound traveled to each ear resulted in a phase 

difference for periodic sound waves, which is detected by an amplitude difference [2]. In 

animals with a relatively large ear separation compared to the sound wavelength, the 

delay of the sound arrival, inter-aural time difference (ITD), and variation in the pressure 

field between ears, inter-aural level difference (ILD), allows for direction finding (DF). 

Humans use this principle to determine sound direction with up to 2 degree accuracy [3]. 

This study explores a novel approach to direction finding also found in nature, the 

parasitic fly Ormia ochracea. 

1. The Ormia Ochracea 

The Ormia ochracea fly is particularly adept at direction finding a sound source. 

However, because of its small size, something more must be taking place. The female of 

this species seek out chirping crickets to lay their eggs on, and do so with an accuracy of 

less than 2 degrees. The two eardrums of the fly are separated by a mere 1.5 mm, yet it 

homes in on the cricket chirping with a 7 cm wavelength, using an ITD of at most 2.5 µs 

and negligible ILD [4].  
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Figure 1 Ormia ochracea ears and corresponding mechanical model. 

 
Each ear is modeled as a rigid bar with damping and spring constants. The intertympanal 

bridge is a pivot with similar damping and spring constants. This allows for relatively 
simple transfer functions to describe system operation in the steady state during sound 

excitation. From [4]. 

Shown in Figure 1, the fly’s ears consist of two thin hardened membranes, 

prosternal tympanal membranes, each of which has a stiff rod coupling their movement 

to a pair of auditory sensing organs, the bulbae acusticae, inside the head. These 

membranes are connected together at the center of the head by a bridge known as the 

intertympanal bridge. In Figure 1 these structures are shown and have been modeled by a 

dual cantilever arrangement that incorporates the damping of both tympanal membranes 

and the intertympanal bridge. “In effect, the mechanical system expands the interaural 

amplitude and time differences. This results from its sensitivity to the difference between 

the forces on the two sides of the ear. … Because the intertympanal bridge pivots about 

its center, the system is very sensitive to the difference in these forces [4].”  

Miles et al. [4] go on to confirm that this mechanical model sufficiently captures 

the important motion of the Ormia ochracea ear and show that the ears have two natural 

resonant frequencies. In the first mode the ears move out of phase with each other in a 

pure rocking mode. This rocking mode is a result of the difference between the forces on 
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each ear. The second mode has the ears moving identically and in phase, resulting in a 

pure bending mode about the tympanal bridge. The bending mode is a result of the sum 

of the forces on the ears. These modes, caused by the mechanical link between eardrums, 

give the Ormia ochracea “remarkable sensitivity to the direction of an incident sound 

stimulus [4].”  

It is reasonable to expect that the bending mode produces greater displacement of 

the ears, because it is the result of a sum of the forces. Also, because this is a resonant 

response, the signal to noise ratio (SNR) of the sensor is inherently better than a sensor 

that takes stimulus from a wider range of frequencies. 

2. The Size Advantage 

Capitalizing on the bending mode of this coupled ear system leads to sensors that 

are significantly smaller than traditional microphone DF systems (see Chapter I.A.3). 

Smaller sensors use very little power and can be installed in many places without 

disruption to the environment or other equipment. Multiple sensors can be installed in 

varying locations to allow for greater coverage and survivability over single systems of 

interconnected microphones. More sensors with low power requirements and simple 

interface protocols will be easily incorporated into information management and display 

systems. 

Due to their small size, fabrication is done using microelectromechanical (MEM) 

techniques. This approach allows the production of many identical sensors with high 

fidelity to the design, allowing the resonant frequency range to be controlled reliably.  

3. Existing Acoustic DF Technology 

Direction finding of sounds is not a new challenge. Companies such as Raytheon 

and Qinetiq sell devices aimed at detecting the source of incoming gunfire. Raytheon 

BBN Technologies offers the Boomerang System shown in Figure 2 and Figure 3. 
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Figure 2 Raytheon BBN Technologies Boomerang III. 

 
Intended to be mounted on a vehicle or building, the Boomerang III uses multiple 

microphones to detect incoming fire of plus or minus 15 degrees. (From [5]) 

Figure 3 Raytheon BBN Technologies Boomerang Warrior-X. 

 
A shoulder-mounted device detects incoming fire and provides visual and/or audio 

announcement via speaker, earpiece or lightweight display with an accuracy of plus or 
minus 15 degrees. (From [6]) 
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Boomerang units … use seven small microphones, arranged like the spine 
of a sea urchin, to detect both the muzzle blast and the shock wave from a 
speeding bullet. Once a sniper’s bullet is detected, Boomerang’s display 
panel, which is located inside the vehicle, alerts soldiers through an LED 
12-hour clock image display panel and speaker mounted inside the vehicle 
that a bullet has been fired, and gives its direction and elevation. The 
system resets for subsequent shot detection. [7]  

According to unclassified information found at [5], [7] and [8], the Boomerang 

system provides shooter direction to plus or minus 15 degrees within 2 seconds for shot 

miss distances of 1 to 30 m for shots taken up to ¼ mile away.  

Qinetiq offers a similar system to the Boomerang, the EARS Gunshot 

Localization system. The shoulder mounted version utilizes four acoustic detectors to 

locate incoming fire and weighs between 0.45 and 0.9 kg [9], [10]. The system is also 

available in vehicle mounted and stationary versions. Visually the shoulder-mounted 

version looks remarkably similar in size (472 cc) and placement to the Boomerang 

Warrior-X (Figure 4). 
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Figure 4 Qinetiq EARS Gunshot Localization system. 

 
This shoulder-mounted version runs on two CR123 li-ion batteries for up 
to 14 hours and provides voice and visual alerts with an accuracy of plus 

or minus 7.5 degrees. (From [9]). 

Qinetiq documentation boasts an accuracy of plus or minus 7.5 degrees bearing 

accuracy within < 1 second with detection ranges greater than 400 m. Output is provided 

through audio or visual interfaces (e.g., 3 o’clock, 400 meters) [9]. 

4. Previous Work at NPS 

Touse et al. [11] have demonstrated a microelectromechanical system (MEMS) 

directional sound sensor based on the fly’s eardrums. Fabrication of sensors was 

performed by MEMSCAP®, a commercial foundry specializing in Silicon-on-Insulator 

Multi User Manufacturing Process (SOIMUMPS) [12]. In their process, the SOI 

substrate thickness is 400 µm with a 25 µm-thick device layer, and etching is available on 

both sides of the SOI wafer that results in a 25 µm device with a trench on the back. The 

sensor was operated at the bending frequency due to its large amplitude of vibration. 

Because the bending mode is excited by the pressure gradient of the sound, the sensor 
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acts as a pressure gradient microphone with an amplitude, which demonstrates a cosine 

dependence to the direction of sound.  

The previous work with single sensors used a spherical coordinate system (Figure 

5) where the bending plates corresponding to the fly’s ears lay in the xy plane, and the 

hinge between the plates was in the y-direction. All measurements were taken using 

sources located in the xz plane by varying the polar angle θ and thus using azimuth 

angles of ϕ = 0° or ϕ = 180°. 

Figure 5 Spherical coordinates. 

 
During this study it should be considered that the sensor being evaluated is located at the 

origin of a spherical coordinate system with the z-axis normal to the sensor face. 
Incoming sound is measured at varying angles of θ while maintaining ϕ = 0° or ϕ = 180°. 

(From [13]). 

Since the first generation of sensors was developed, 11 further iterations of the 

design have been produced to refine the design. Highly sensitive comb fingers have been 

added and optimized to improve the sensor readout [14]. The sensor dimensions can be 

adjusted to result in a resonant frequency between 1 and 20 kHz. All generations have 

been based on the design shown in Figure 6. 
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Figure 6 Early generation MEMS acoustic DF sensor. 

 
Photo of first-generation MEMS sensor showing the wings, bridge, and legs used to 

replicate the Ormia ochracea in a Si substrate. Inter-digitated comb finger capacitors on 
the outer edge of the wings provide the mechanism to detect wing movement through 

varying capacitance as the comb fingers move relative to each other. (From [11]). 

The sensors use capacitive comb fingers to produce an electrical output 

proportional to wing displacement. M. Touse showed that, as the wings of the sensor 

move relative to the substrate, an external electronic circuit could be used to sense the 

corresponding change in capacitance and amplify the resulting voltage [11]. J. Roth 

determined that an unpackaged die of Irvine Sensors’ Universal Capacitive Readout IC 

(MS3110) is suitable for this purpose [15]. A demonstration version of a sensor, 

stabilizing capacitors, and the MS3110 is pictured in Figure 7.  
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Figure 7 Previous generation sensor. 

 
A previous generation sensor made on a ceramic hybrid mounting package. The MEMS 

DF sensor is located on the right side, with the MS3110 readout chip and stabilizing 
capacitors on the left. All connections between the readout, sensor, and interface lines are 

wirebonded. Individual wires on the back of the package provide programming and 
output interface. Fabrication and use are possible but are delicate and cumbersome. 

The sensor has a predictable response to excitation at the bending resonant 

frequency as shown in Figure 8 and represented by: 

   (1) 

where P is the sensor readout output, α is a normalization constant applied according to 

sensor baseline readings, Po is the amplitude of the incoming sound pressure, and θ is the 

direction of arrival. In order to independently predict the incoming sound direction, the 

sound pressure at the source must be known.  
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Figure 8 Measured and theoretical responses of a single sensor. 

 
The measured output follows a cosine dependence that can be used to determine incident 
angle from a given sensor output. An angle ambiguity exists on either side of 0° (normal 

incidence) where the same sensor output occurs for both azimuthal angles in the xz-plane. 
(After [11]). 

Furthermore, there is an ambiguity mirrored across the normal axis of the device 

as shown in Figure 8. The Ormia ochracea fly solves the problem of ambiguity by 

coupling the rocking and bending modes to generate two different vibrational amplitudes 

at the two eardrums [4]. However, despite the efforts to date, practical use of the rocking 

mode is yet to be realized by properly coupling the two modes. One attractive way to 

solve both the angular ambiguity and the requirement to know the sound pressure is to 

use multiple sensors. 

B. OBJECTIVE AND THESIS ORGANIZATION 

In the context of the previous section. the objective of this thesis is to continue 

development of a MEMS DF sensor system by integrating two sensors with more robust 

readout circuitry and optimize the system for high resolution sound direction detection. 
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This thesis is an important step in achieving the goal of the project proposed at 

[16]:  

To develop an acoustic direction finding (DF) system for sniper fire 
detection based on a recently developed MEMS directional microphone 
that mimics the ears of the fly Ormia ochracea. The resonant excitation 
employed in the detection enhances the S/N compared to omni-directional 
microphones used in current DF systems. This translates into enhanced 
direction finding accuracy. 

This thesis is organized into four chapters. Chapter I gave an introduction of the 

overall project that this thesis supports, the previous work conducted, and the genesis of 

the sensor being designed. Chapter II details the theory of direction finding using 

multiple sensors. This is how the aforementioned angular ambiguity and requirement to 

measure source level will be avoided by concurrent processing of two sensors’ outputs. 

Chapter III contains descriptions, diagrams, and troubleshooting details associated 

with verifying the theoretical approach of Chapter II in an anechoic chamber. Details of 

creating sensors based on commercially fabricated printed circuit boards (PCBs), 3D-

printed sensor mounts, sensor calibration, and anechoic chamber setup are included. 

Chapter IV contains the results of testing in the NPS anechoic chamber. Chapter 

V provides an assessment of the experimental results, discussion on the relative success 

of the work done, and recommendations for further work. 

All references to decibel measurements use the standard reference pressure level 

in air, 20 µPa. 
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II. DIRECTION FINDING USING MULTIPLE SENSORS 

A single DF sound sensor in the bending mode performs adequately to provide 

the polar angle in a 90° range; however, as shown in Figure 8, the azimuthal angle cannot 

be determined. In addition, to properly resolve the polar angle using (1), the source level 

Po must be known. Two DF sensors arranged as per Figure 9 to form a dual sensor 

assembly can solve these challenges with minimal post-processing. In this case, the xy-

plane of the coordinate system used to define the angles is oriented along the red 

substrate holding the sensors. Again, the y-axis runs in the direction of the hinges 

between the plates, and measurements are taken by varying the polar angle in the xz-

plane. 

Figure 9 Arrangement of multiple MEMS DF sensors. 

 
In this arrangement, two sensors are co-located at an angle θoff such that the incident 

sound will interact at θ - θoff at the left sensor and θ + θoff at the right sensor. This will 
provide an effective coverage of θ from -90+θoff to + 90-θoff with no angle ambiguity or 

requirement to measure the incoming sound level. (From [17]). 

Because each sensor produces an output (P) cosine dependence as in (1) and both 

are symmetrically positioned at an offset angle θoff, the azimuthal angle ambiguity in the 

xz-plane can be resolved. Both sensors are co-located in close proximity to each other, 

such that the amplitude of sound pressure can be considered nearly the same at both 
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sensors. Applying (1) to the left (index L) and right (index R) sensors, the pressure 

experienced by the two sensors can be written as: 

  (2) 

  (3) 

Combining the difference and sum of both returns allows for cancellation of the 

source level and resolution of angle ambiguity. 

  (4)  

The use of common trigonometric identities simplifies this to: 

   (5) 

which can be readily solved in terms of the known quantities of a received sound: 

  (6) 

Because the sensor output measures the magnitude of the wing displacement, 

equation (1) relies on the absolute value of cosine. This absolute value propagates 

through the calculations leading to (4) as a limitation on the angles it is valid for, θ = ± 

60° when θoff = 30° [17]. 

Figure 10 shows the theoretical normalized response of two individual sensors 

arranged with an offset angle of θoff = 30° as illustrated in Figure 9. 
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Figure 10 Theoretical response of two sensors. 

 
Theoretical normalized response of two individual sensors arranged with an offset angle 
of θoff = 30°. This will give unambiguous sensor outputs across a range of θ = ± 60° from 

normal incidence. 

Figure 11 shows the theoretical direction of arrival and the corresponding sensor 

response when calculated as the difference divided by the sum of individual sensor 

outputs. This matches the left side of (5) and offers unambiguous direction finding 

between ± 60° from normal incidence. 
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Figure 11 Difference divided by sum of sensor outputs. 

 
Matching the left side of (5) theoretical sensor output is plotted vs. incident sound angle. 
Unambiguous readings cover the range of θ = ± 60° from normal incidence, the effective 

angular range of the sensor. 

In practice, the dual sensor unit will be calibrated and the output normalized to 

balance any differences between individual sensors. The motivation and effectiveness of 

this approach are discussed in the next chapter. 
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III. EXPERIMENTAL STUDY 

A. PRE-EXPERIMENT DEVELOPMENT 

Prior to conducting the planned experiment a new sensor mount and circuit boards 

were designed and characterization of the latest generation of sensor carried out. 

1. Sensor Characterization 

Figure 12 shows the latest generation of sensor used in experimental work for this 

thesis.  

Figure 12 Generation 12 DF sensor. 

 
This generation 12 DF sensor is used for the experimental work in this thesis. The sensor 

is glued to the printed circuit board (PCB) with an open cavity below to allow for the 
acoustic pressure to interact with both sides of the device. The three wirebond 

connections provide the required capacitive inputs to readout circuitry. 

Before experimental work could begin in the anechoic chamber, each individual 

sensor was excited with a linear sweep of sound to measure its frequency response. A 

laser beam from a laser vibrometer was shined on the outer edge of the sensor wing to 

measure wing displacement. The sound pressure level (SPL) at the sensor was found to 
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be approximately 54 dB. Table 1 details the settings of the laser vibrometer used to 

produce the frequency response in Figure 13. 

Table 1 Laser vibrometer settings. 

Setting Value 

Frequency Sweep 500-4000 Hz 

Amplitude 0.1 A 

Gain 5 

Sweep Time 1.28 s 

FFT Lines 12000 



 19 

Figure 13 Frequency response of a single sensor. 

 
Rocking and bending resonant peaks are clearly seen in this data produced using laser 

vibrometry. 

The resonance frequency of the bending mode was confirmed as 1.690 kHz ± 20 

Hz by laser vibrometry. At this frequency, the linear relationship between sound pressure 

and displacement was measured and is shown in Figure 14. 
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Figure 14 Displacement vs. sound pressure for a single sensor. 

 
Sensor displacement using normally incident sound. Observed error using multiple 

measurements at each sound pressure was ±4 nm. The resulting sensitivity is 25 µm/Pa.  

2. Mount 

In order to reliably form the dual sensor assembly at an angle θoff (Figure 9), a 

mount was designed that uses nylon bolts to hold the sensors in position (Figure 15). The 

mount was printed on a MakerBot 3D printer and mounted atop a ½-in rod so it can be 

inserted into the anechoic chamber rotating chuck. 
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Figure 15 Mount design. 

 
Design used to 3D print the mount that will hold both sensors at an angle of θoff = 30° as 

per Figure 9. Nylon nuts and bolts are placed through the rear channels to provide a 
clamp to hold the PCBs. 

3. Printed Circuit Board  

For electronic readout purposes, the Irvine Sensor Corporation MS3110 Universal 

Capacitive Readout IC is used. The MS3110 is a general purpose, ultra low noise 

complementary metal-oxide semiconductor integrated circuit CMOS IC intended to 

support a variety of MEMS sensors that require a high resolution capacitive readout 

interface [18]. This IC will translate the change in capacitance caused by movement of 

the sensor comb finger capacitors into an analog output. It is a 16-pin SOIC package that 

operates using 5V power supply supported by four stabilizing capacitors. Gain, 

bandwidth, and capacitive balancing are programmed using a PC-based utility to match 

the sensor and application required. All settings are stored in onboard electrically 

erasable programmable read only memory (EEPROM) that is automatically loaded when 

power is applied.  
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The previous generations of DF sensors were mounted with the MS3110 on a 

hybrid ceramic prototyping board. This approach was initially attempted, but it proved 

unreliable and time consuming to connect the sensor and readout electronics to the board 

using delicate wirebonding. In addition, this required that 12 individual wires be 

connected during the calibration and programming of the MS3110. While this allowed 

for flexibility during previous development projects, it was too cumbersome when 

working with co-located sensors, so a PCB was designed. 

The PCB was designed using free layout software available from the fabrication 

facility used, Advanced Circuits [19]. A two-layer design is used, with copper 

interconnects and vias providing connections between elements on the top and bottom of 

the PCB. A solder mask is also applied to select areas to facilitate soldering the MS3110 

chip, capacitors, switches, voltage regulator, and connectors. Finally, bondable gold is 

added to three connection pads allowing for the sensor to be linked to readout circuitry 

using wirebonding techniques. 

The PCB has the following important features: 

1. Interconnections to minimize the number of wirebonds required during 
construction 

2. A robust wire connection to the MS3110 programming board 

3. Battery power source 

4. On/off power switch 

The circuit schematic is shown in Figure 16, and the PCB layout is shown in 

Figure 17. 



 23 

Figure 16 Circuit schematic. 

 
The circuit schematic of the PCB details all components required to support the sensor. 

The 9V source shown is a standard battery, in this case an Energizer 522, which supplies 
a LM7805 voltage regulator, which in turn powers the circuit at 5V. The MS3110 

interfaces the sensor (COM, REF, and DEV connections) with programming pins and 
Vout on the right side of the schematic. COM provides a common reference between the 

sensor and IC. REF and DEV connect to either side of the comb finger capacitors, 
allowing differential measurement to take place. 
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Figure 17 PCB layout. 

 
The PCB is a two-layer board measuring 1¾ by 2¼ inches. Purple and teal items are 

silkscreened reference markers. The large area on the left allows for clamping and can be 
removed after fabrication. The square at the top is bordered by small holes and gets 

removed to allow for a cavity below the MEMS sensor. Routes and vias form a copper 
layer with solder masking on the red pads shown. Bondable gold is also added to the top 
surface to permit wirebonding between the sensor and three adjacent connection pads. 

a. Battery Power 

As can be seen in Figure 17, the PCB is designed to use a coin cell battery holder. 

The intention was to use two 3V Panasonic CR1612 batteries in series to provide 6V to 

operate the board at 5V via a LM78L05 voltage regulator. These batteries proved to have 

insufficient capacity, offering only 40 mAh to the circuit [20]. The MS3110 readout chip 

is rated to draw between 3 and 6 mA [21]. This meant that the batteries drained too 

quickly for practical use in testing or operation. 

The solution was to use an Energizer 9V battery with a capacity of 400-600 mAh 

[22], located externally. 
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b. Output Wires 

The intent for connecting the output signal was to use a SubMiniature version A 

(SMA) connection at the bottom right corner of Figure 17. The connectors ordered 

unfortunately did not match the holes in the PCB design, so individual wires were 

soldered to the connections in a twisted pair configuration. 

c. Connection to Programming Board 

A 16-wire flat ribbon cable was used to connect the PCB to the MS3110 

programming board. The programming board was originally designed to program and 

calibrate the MS3110 chip before it is soldered onto a PCB. Modifications were made so 

the MS3110 can be programmed at any time. The programming board, detailed in [18], 

has a 16-pin connection (J10) that provides some of the output required; the remaining 

connections were made with wire on the underside of the board. The board is well 

marked, and there are numerous soldering points to connect the required points on the 

board (HV16, V2P25, +V, Vout, and J9A) to J10. The pinout of J10 is shown in Figure 

19. These modifications ensure that the MS3110 programming board will program the 

chip after the PCB is assembled, a vital capability to balance the capacitance and output 

gain of the sensor. 

Figure 18 shows a photo of the top of the programming board. Figure 19 details a 

basic schematic of the board and the changes made to jumper J10 to use it as a ribbon 

cable connection with the sensor. Figure 20 shows the underside of the programming 

board to highlight the wire connections made to J10. 
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Figure 18 MS3110 programming board. 

 
This board is used for sensor setup that is essential for the sensor output to operate in the 

desired gain and sensitivity ranges. 
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Figure 19 Programming board schematic. 

 
(a.) Programming board schematic from the original manufacturer. (b.) Original J10 

connections hard wired in the programming board by the manufacturer. (c.) Completed 
J10 pinout achieved by soldering new wires on the underside of the programming board. 
These connections match with the sensor PCB via ribbon cable to permit programming of 

the sensor at any time. 
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Figure 20 Programming board bottom view. 

This view shows additional wires used to set up programming connection using 

J10. Each connection has multiple possible sources on the programming board and can 

come from any point on the board. The only exception to this is the J9 TESTSEL line, 

which must be taken from the bottom pin of J9. The ribbon cables shown here are not 

used and remain only to provide legacy support to previous generation sensors.  

d. Bondable Gold

To make the PCB bond pads receptive to wirebonding, gold must be laid over the 

three connection pads seen in Figure 17. The simplest way of doing this during 

manufacturing is to have soft bondable gold laid over all of the copper wire on the board, 

including the connection pads. To improve bonding thicker gold is generally better [23]. 

For this project. a minimum of 20 microinches of soft bondable gold was added during 

manufacturing. 
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e. PCB as Operated 

Once modifications were made to the programming board, the PCB sensor 

assemblies were constructed using PCB soldering techniques and three wirebonds 

between the sensor and connection pads using a Leica 4524A Digital Wirebonder (Figure 

21). The delicate wirebonds were done last using careful placement of the PCB to avoid 

heat damage to any components (Figure 22). The wirebonder settings used are shown in 

Table 2. 

 

Figure 21 Leica 4524A Digital Wirebonder. 
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Figure 22 PCB on Leica 4524A Digital Wirebonder heat table. 

 
The PCB is held on Leica 4524A Digital Wirebonder heat table with a C 
clamp. This allows heat to be applied to the PCB underneath the sensor 

and three connection pads while protecting the readout circuitry. 

Table 2 Wirebonding settings. 

 First bond 
(Sensor) 

Second Bond 
(PCB) 

Search 1.2 1.2 
Power 1.8 1.6 
Time 5 7 
Force 1.2 3 
Loop - 5 
Tail - 4 
Ball - 3.5 
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The most difficult bond is the second bond onto the PCB connection pads. Just 

prior to bonding, the pads are cleaned with isopropanol to remove residue and oxidation. 

The time, force, and tail settings were frequently adjusted to successfully complete the 

second bond.  

Two modifications need to be made to the PCB before it will function correctly. 

Due to oversight in the design, PCB pins PCB4 and PCB7 need to be connected with a 

wire. This is due to confusion of the nature of the test select (TESTSEL) line on the 

programming board during design. During normal operation, jumper J9 makes the 

TESTSEL line continuous. When calibrating the sensor in accordance with [24], one step 

requires J9 to be removed and the current in the line adjusted to 10 µA. For this reason 

the PCB must be connected to the correct (bottom) side the TESTSEL line when it is split 

by J9, an issue solved by connecting pins PCB4 and PCB7 on the bottom of the PCB and 

removing the top connector portion of PCB7.   

Shown in Figure 23, pins PCB12, PCB13, and PCB14 must be removed to isolate 

the CS1, CS2, and CSCOM connections. These are the three connections that the 

MS3110 uses to measure the change in capacitance as sensor wings move, so they must 

be as short as possible with no extraneous connections.  
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Figure 23 PCB ribbon cable connection. 

 
Details of the PCB ribbon cable connection. One jumper wire is required and should be 
soldered on the underside of the board. Pins with an ‘x’ should be removed with wire 

cutters such that they do not make connection with the ribbon cable. 

This preparation work resulted in two PCB-based sensors (Figure 24) mounted for 

experimental work (Figure 25). 
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Figure 24 Assembled PCB. 

 
A fully assembled PCB with sensor and readout circuitry. The sensor on the left is glued 
to the PCB with a cavity underneath to allow for interaction with both sides of the sensor 

wings. The MS3110 capacitive readout is centrally located with four stabilizing 
capacitors (C1 through C4). At the top of the board is the ribbon cable connection used 
for programming and a power switch to conserve battery life. The 5V regulator (Reg) 

supplies power from the external 9V battery via the power switch. Output is taken from 
the top right corner (CONN1). 
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Figure 25 Dual sensor assembly. 

 
Dual sensor assembly as operated. Both sensor PCBs are identical and mounted at θoff = 

30°. One external 9V battery (not shown) powers both sensors. 

4. Sensor Capacitance Balancing and Gain Setting 

As detailed in [18], in order for the MS3110 to properly react to changes in 

capacitance at the sensor, it must be balanced using the built-in internal capacitors. The 

desired gain is set according to the expected capacitance variations and intended sound 

level. This gain affects the output, Vo, according to the MS3110 transfer function: 

   (7) 

where Vref is the MS3110 reference voltage, GAINSEL is the output buffer gain 

selection, CS2 and CS1 are balance trim capacitors, and CF is the feedback capacitor. The 

procedure in the MS3110 Quick Start Guide explains how to set the values of CS2, CS1 

and CF [24]. For this project, Vref is set to 2.25 V and GAINSEL set to 4.  
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If internal gain is set too low, then nothing will be detected. Conversely, set the gain too 

high and the chip output will saturate, rendering a constant output. Prior to the final 

experiment, measurements were made to determine the lowest source level that a single 

sensor could detect. Table 3 shows the settings used for these high gain measurements. 

Table 3 MS3110 high gain settings used to determine the highest voltage to 
displacement performance offered by the sensor. 

CF 0.513 pF 
CS1 0.437 pF 
CS2 1.197 pF 
Gain 4 
LPF 3dB Frequency 3.0 kHz 

 

The sensor response at different sound levels was verified to ensure it replicated 

previous results in [15]. The sensor responded as expected down to a sound level of 33dB 

(Figure 26). Below this level, the sensor continued to respond with a similar cosine shape 

but was significantly degraded by noise within the testing chamber. 

The experimental setup to obtain the data shown in Figure 26 is explained in 

detail in Chapter III.B. 
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Figure 26 Single sensor response at varying sound levels. 

 
360̊ sweeps of a single sensor using high gain settings found in Table 3.  

For DF measurements using two sensors, the settings in Table 4 were used. 

Table 4 MS3110 normal operation settings used for DF operations. 

 Sensor 1 Sensor 2 
CF 0.988 pF 0.513 pF 
CS1 0.114 pF 0.437 pF 
CS2 0.171 pF 1.197 pF 
Gain 4 4 
LPF 3dB Frequency 3.0 kHz 3.0 kHz 

 

The sensitivity of an individual sensor was tested and plotted as voltage output vs. 

incident sound pressure at the sensor. Pressures varying from 1 to 4 mPa at normal 

(θ = 0°) were used to show that the sensor response is linear. With the gain settings of 
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Sensor 2 in Table 4 the sensitivity is calculated to be 260 V/Pa (Figure 27), which 

corresponds to 0.1 V/nm (displacement of the wing edge). 

Figure 27 Sensor sensitivity.  

 
Single sensor output using incident sound at θ = 0°. Variations in measurements gave the 
output an error of  ± 0.04 V. The resulting sensitivity of a single sensor is calculated as 

260 V/Pa using a linear fit line. 

B. EXPERIMENT SETUP  

After the pre-experiment development was completed, the NPS anechoic chamber 

was set up to perform a DF experiment using the dual sensor assembly shown in Figure 

25. This section describes the equipment and configuration used to conduct this 

experiment as shown in Figure 28. 
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Figure 28 Experimental setup diagram. 

 
Experimental setup in the NPS anechoic chamber and control room. The sensor assembly 
is mounted on a remote controlled rotator 5 m away from the speaker used for excitation. 
This speaker is driven by a function generator, potentiometer, and variable amplifier to 

achieve the desired sound level at the sensor. Lock-in amplifiers, one per sensor channel, 
are used to capture the sensor output. 

1. Excitation 

The excitation used for the experiment is a sine wave at 1690 Hz of varying 

amplitude. This frequency is sufficiently near the resonance frequency of both sensors to 

generate a strong response (Figure 29). A typical gunshot creates broadband sound over 

125 to 5000 Hz [25], and the excitation frequency is suitable for detecting a gunshot.  
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Figure 29 Frequency response of sensors.  

 

A speaker located at normal incidence to each sensor (θ = 0°) provided a frequency 
sweep to measure the frequency response of both sensors. Both sensors are from the same 
fabrication lot and demonstrate a similar resonant frequency of approximately 1690 Hz. 

The 1690 Hz signal is created by an Agilent 33220A signal generator. This 

generator uses a digital to analog converter to create the signal. To ensure that the 

generator functions in a region that noise and quantization errors are minimized two 

further elements are included: a variable amplifier and potentiometer. The amplifier 

allows for the SPL to be raised with gain of 1, 2, 5, and 10. The potentiometer is used to 

reduce the SPL without changing the function generator amplitude, thus keeping the 

function generator at an optimal output level. The potentiometer forms a voltage divider 

with the speaker, effectively reducing the voltage (amplitude) driving the speaker.  

To calibrate this signal generation circuit, a B&K pressure field microphone is 

placed as close as possible to the dual sensor assembly position and readings taken using 

the arrangement shown in Figure 30. 
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Figure 30 Source calibration using omni-directional microphone. 

 
Setup for sound source calibration using a B&K pressure field microphone. Taking 
readings in the optimal operating region of the microphone (over 52 dB) allows a 

calibration graph to be created. This calibration graph is used to predict the sound level at 
the sensor as the amplitude is lowered. Although not required for actual direction finding, 

the sound level used shows sensor performance.   

The omnidirectional microphone’s optimal operating region is above 52 dB, so a 

series of readings were taken to generate a linear best-fit line [26]. The output of the 

B&K microphone is amplified by an inline amplifier and captured using a Stanford 

Research Systems SR850 Lock-In Amplifier. The resulting calibration graph is shown in 

Figure 31 and equations (8) and (9). The outputs of the signal generator, amplifier, and 

potentiometer are linear, giving a linear relationship between the function generator 

output and SPL. 



 41 

Figure 31 Omni-directional microphone calibration results. 

 
To gain accurate knowledge of the sound level at the sensor an omni-directional 

microphone was used to calibrate the speaker and driver used. Operating the microphone 
above the minimum manufacturer prescribed sound pressure level, measurements were 
taken and a linear fit line produced using the source excitation voltage as independent 

variable. Observed variations in lock-in amplifier output and microphone specifications 
gave an error of 0.002 Pa to the measurements. This approach allowed accurate 

prediction of the sound level at the sensor using sound levels below the minimum 
threshold of the microphone.  

   (8) 

  re 20µPa (9) 

2. Sensor Normalization and Reference Curve 

To compensate for individual sensor characteristics due to fabrication and 

assembly differences, a reference curve is generated before the dual sensor assembly can 

provide DF information. This allows for the output from each side of the sensor to be 
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normalized between 0 and 1, removing any variations between individual MS3110 

outputs due to the nature of balancing capacitance and gain (as discussed in Chapter 

III.A.4).  

The theory provided in Chapter II can be adapted to allow for this normalization 

   (10) 
   (11) 

where α1 and α2 are normalization constants adjusted such that  and 

, therefore the normalized magnitude, Pn = 1. 

Combining the difference and sum of both returns allows for cancellation of the 

source level and resolution of angle ambiguity. 
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The use of common trigonometric identities simplifies this to: 

    (13) 

which can be readily solved in terms of the known quantities of a received sound: 

   (14) 

The normalized experimental data for the two sensors as a function of direction of 

sound are shown in Figure 32. Both sensors show slight offset from the expected 

locations of the null responses, which could be due to the interaction of sound with the 

relatively large package used in the measurement. 
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Figure 32 Measured normalized response of left and right sensors. 

 
Sensor responses were normalized using α1 = 9.7898 and α2 = 30.187 as per (10) and 

(11). 

Subsequent DF measurements will use α1 = 9.7898 and α2 = 30.187 and (14) to 

determine the direction of incoming sound.  
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IV. MEASUREMENTS AND RESULTS

To demonstrate that the knowledge of the sound source level of an incoming 

signal is not required when taking DF measurements, the dual sensor assembly was 

placed at known angles while varying the level of incident sound.  

To cancel out the unknown sound level of the source, the experimental responses 

of the left and right sensors in Figure 32 were combined, taking the ratio of their 

difference and sum as described in Chapter II Section 2. The result is shown in Figure 33.  

Figure 33 Difference of sensor signals divided by their sum. 

Plot of individual sensor output difference divided by sum as in (13). This plot follows 
that expected by theory with the only notable offset at θ = -60°. This offset does not 
impede the sensor from direction finding over the intended angular range of 120°. 

Figure 33 shows good agreement to the theoretical predictions shown in Figure 

11. The intended range of θ = ±60° is successfully covered with no ambiguity and can be
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used for direction finding. Notable departures from theory occur at the extremes of the 

angular range, ±60°. At these large angles, the sensor response does not reach the 

theoretical values of ±1. The source of this can be due to the offsets observed in Figure 

32, where the amplitude of both sensors does not fully reach 1 a.u. and nulls do not go to 

0 exactly at their respective minimums. This is the result of individual sensor output that 

follows, but does not exactly replicate a cosine shape in (1). As mentioned earlier, this 

could be due to reflections of sound from components around the sensor such as the PCB, 

mount, and wires. The effect of these deviations is minimized by normalizing the 

magnitude of individual sensor outputs and does not inhibit the sensor’s ability to find 

direction. 

The outputs of the sensor were measured for a set of angles between +/- 60o with 

varying sound pressure from 33 to 54 dB. Then the outputs were processed (as detailed in 

Chapter III.B.2) to obtain the angle, and the results are shown in Table 5, where SPL is 

the measured sound pressure level at the sensor. For each angle of incidence, average of 

the measured direction over the source level and its standard deviation (S.D.) are also 

shown in Table 5.  
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Table 5 Measured angles at 10° increments of incident direction. 

Angle  
(°) Sensor Result (°)    

 SPL (dB)    

 33 35 37.5 42 49 54 
Average 
Measure
d Angle 

Average 
Deviatio

n  
S.D. 

-60 -58.75 -55.00 -56.50 -56.25 -57.00 -58.50 -57.0 3.0 1.30 
-50 -50.75 -51.25 -53.75 -53.75 -54.00 -51.50 -52.5 2.5 1.35 
-40 -40.25 -42.25 -41.50 -42.50 -43.50 -40.25 -41.8 1.8 1.19 
-30 -31.00 -30.25 -31.25 -32.5 -31.75 -30.75 -31.2 1.2 0.72 
-20 -20.75 -24.00 -21.25 -22.5 -24.25 -18.75 -21.9 1.9 1.91 
-10 -11.00 -10.00 -7.50 -10.00 -9.50 -10.75 -9.8 0.2 1.14 
0 -2.00 -1.75 1.75 0.50 -0.25 -0.25 -0.3 0.3 1.28 
10 10.00 9.25 9.75 9.75 11.25 11.00 10.2 0.2 0.72 
20 19.50 15.75 18.75 19.50 16.00 21.00 18.4 1.6 1.92 
30 28.50 29.25 29.25 28.50 27.00 30.5 28.8 1.2 1.06 
40 38.00 38.50 37.50 36.50 36.50 39.75 37.8 2.2 1.14 
50 47.50 47.00 46.00 46.00 46.00 47.75 46.7 3.3 0.74 
60 59.00 54.50 56.25 56.25 54.75 59.00 56.6 3.4 1.81 

 

The average sensor result across all sound levels measured, along with an ideal 

theoretical reference line are plotted in Figure 34. The source levels used (33 to 54 dB) 

lie in the normal operation range of the sensor where the response is linear (no saturation 

of the sensor output occurred). The data shown confirms that the sensor can accurately 

determine the direction without knowing the source strength.  
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Figure 34 Measured angle results for sound pressure between 33 and 54 dB. 

Experimental results plotted using the average sensor result information in Table 5. Six 
measurements were averaged over sound levels varying between 33 and 54 dB to create 

each data point. Sound level had no effect on the sensor’s ability to direction find the 
source at these levels. 

Errors in the measurements taken were consistent across all sound levels, so a 

varying sound level does not introduce errors when in the operating range of the sensor. 

Across the range of angles measured, the greatest errors were found on the outer angles 

of the measurement range, near ± 60°. This gave a maximum error of 3.4° with a standard 

deviation of 1.8°. These deviations were mainly due to spurious reflections off other parts 

of the sensor assembly and equipment in the anechoic chamber. This caused individual 

sensor outputs to vary from the expected cosine shape in (1) and resulted in minimums 

and maximums that do not reach 0 and 1 (see Figure 32). These variations introduced 

error that grew larger as the relative angle increased. Smaller systematic errors at all 

angles are attributed to noise in the readout circuitry and coaxial connection between the 

chamber and control room. 
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Considering these sources of error, Table 5 lists the average sensor result across 

all sound levels, along with the average error and standard deviation of the readings 

taken. Figure 34 plots the average angle across all sound levels in 10° increments using 

the maximum error observed, 3.4°. 
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V. CONCLUSION 

A. SUMMARY 

A MEMS direction-finding sensor has been developed similar to the mechanically 

coupled ears of the Ormia ochracea fly. The mechanical coupling of the ears gives two 

resonant frequencies for the rocking and bending modes that allow for precise angle of 

arrival calculation. While in nature the fly is suspected of using both modes, the MEMS 

sensor developed capitalizes on the bending mode. This mode is strongest for sources that 

are normal to the sensor where the pressure differential between the front and back 

surfaces is largest.  At the beginning of this study, a single sensor had been paired with an 

Irvine Systems MS3110 readout chip. The resulting output followed a cosine dependence 

with a peak output at normal incidence diminishing to minimum output at ± 90° similar 

to a pressure gradient microphone. 

This was an important success in the development of an acoustic direction-finding 

system, but there remained important limitations that needed to be overcome. The sound 

pressure level at the sensor had to be known to determine the angle of arrival. Assuming 

this was known or measured, a result could be calculated but consisted of two ambiguous 

angles, mirrored on either side of the sensor’s normal axis. 

To avoid the requirement to know the sound pressure level at the sensor, a dual 

sensor assembly was created. Two sensors are co-located at an angle, and their outputs 

are combined through basic mathematic operations. After calibration, the sum of the 

sensor outputs is divided into the difference and adjusted for the offset angle used. This 

results in an output that follows a tangent dependence, with a unique output for each 

angle across a 120° range with no requirement for the sound pressure level at the sensor. 

For this study, the dual sensor assembly was fabricated using two custom 

designed PCBs powered by a 9V battery and arranged on a 3D printed mount. The 

resonant frequency of the sensors in bending mode produced a 260 V/Pa output at 1.690 

kHz ± 20 Hz. Experimental work was done in an anechoic chamber using an 

electrodynamic loudspeaker operating at resonance as a driver. Outputs were captured 
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using lock-in amplifiers and results manually calculated. Measurements were taken in 10° 

increments over an angular range of 120° with sound levels at the sensor varying from 33 

dB to 54 dB. The angle error, in degrees, ranged from less than 0.3° in the region close to 

the normal axis (0°) to 3.4° at the outside limits of coverage, ± 60°. The outcome of this 

research is that it is possible to operate this MEMS DF dual sensor assembly to determine 

the direction of a signal on resonance over an angular range of 120° with a maximum 

error of 3.4°. 

These results represent a significant advancement in the development of a MEMS 

acoustic direction-finding sensor. This study has addressed the limitations of the previous 

generation while at the same time creating a more robust and repeatable sensor circuit 

board, mount, and power supply.  

B. FUTURE WORK 

The sensor has been made much more self-contained and reproducible than ever 

before. This work must continue however. Processing and calculations currently being 

done offline need to be incorporated into the sensor, and an improved interface needs to 

be developed.  

It is recommended that a new PCB be designed that will hold a microprocessor 

and both individual sensors in one unit. The microprocessor should be chosen to allow 

for analog interface channels for sensor input, the required interface for result output, and 

a method of filtering the input signal similar to the lock-in amplifiers used in this study. 

These developments should be done with consideration for follow on growth, 

namely incorporating three sets of sensors in an array covering 360°. Sound damping on 

the rear side of the sensor assembly will need to be addressed by either physical shielding 

or intelligent processing. Each sensor assembly will provide readings for a 120° range 

and be combined to produce seamless coverage.  

Finally, studies should also be performed to examine the ability of the dual sensor 

assembly to determine the bearing of sound sources that are not located in the xz-plane. 
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This would help decide whether additional sensor assemblies would be needed to achieve 

full polar and azimuthal direction finding ability. 
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APPENDIX.  STANFORD RESEARCH SYSTEMS SR850 LOCK-IN 
AMPLIFIER SETTINGS 

As outlined in [27], the Stanford SR850 Lock-In Amplifier is initially reset to 

factory default settings. The following coaxial wire connections are made: 

• Reference In: Signal generator output 

• Signal In: Sensor output 

The following settings are entered into the SR850: 

Ref Phase Tab 

• Ref Source: External 

• Ref Slope: Rising 

Gain TC Tab 

• Time Constant: 300 ms 

Trace Scan 

• Trace: 3 (R, magnitude) 

• Sample Rate: 8 Hz 

• Scan Length: as required to capture event 

• Display Scale 

• Format: Single 

• Display Scale Type: Chart, trace 3 (magnitude) 
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