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Vertical shear is a main contributor to intensity change
predictors for SHIPS

Forecast interval (h) (statistical TC intensity forecast model)
Variable 12 24 36 48 60 72
POT +0.62 +0.69 +0.73 +0.79 +0.84 +0.96
SHR —035 -043 -043 -043 —-044 -—-042

DVMX +040 +030 +0.23 +0.18 +0.13 +0.08
TABLE 1. Predictors used in the DK94 (first 11) and later versions of SHIPS.

1) POT Maximum possible intensity-initial intensity
2) SHR Magnitude of 850-200-mb vertical shear
3) DVMX Intensity change during previous 12 h

Understanding of governing processes is still incomplete.

Our goal: Improve understanding by analyzing idealized
numerical experiments.




Numerical experiment: spin up TC and hit it with shear

as pioneered by e.g. Bender 1997, and Frank & Ritchie 1999, 2001
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Numerical model: the virtue of simplicity

* RAMS (non-hydrostatic)
. surface fluxes:
» bulk aerodynamic formula, C,/Cp = 1
- Deacon’ s formula for drag coefficients
« parameterizations:
. Warm rain microphysics
» N0 cumulus convection scheme
- NO radiative processes
. turbulence (based on Smagorinsky)
« SST = 28.5°C, f-plane
. double, two-way nested domain, 5 km
. intense and resilient TCs

Focus on structural changes (meso-3 scale)
and conceptual understanding




An unsung pathway to shear-induced weakening
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Thermodynamic impact on inflow layer:
significant 6, depression: O(15 K)
—> reduction of eyewall 6, by a few Kelvin
- (relative) weakening of some 10 m/s




Weakening of TC's thermodynamic (Carnot) cycle
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distinct, shear-induced thermodynamic impact on inflow layer




A distinct structural change

averaged over inflow layer top of mﬂow layer (1km)
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shear vector
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Formation of convective asymmetry

outside of the eyewall
“stationary band complex” (SBC)
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Downdraft formation and the “stationary band complex”

shear vector

vertical cross section along 75 km radius:
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low level updrafts

downdrafts form underneath the helical updrafts of the SBC
precipitation evaporating in unsaturated air below




Dynamic contribution to “stationary band complex” formation

Tilt evolves consistent with balanced dynamics (not shown here)
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Forcing of vertical motion by low-level vorticity anomaly

[km]

vertical motion:

~ 1 #1 —_— =
WEkman /2 HBL Z

wave # 1 asymmetry s

180

120

60

-60

-120

-180 P AR T R S S S SR
-180 -120 -60 0 60 120 180
[km]

BT ] [ [ [ | [ [ T

-153-100-50-30-20-10 10 20 30 50 100 150 cms?

frictional convergence
provided by vortex tilt:
favorable meso-f3 scale
environment for SBC
formation

balanced TC vortex dynamics

- thermodynamic impact




Kinematic contribution to “stationary band complex” formation

“moist envelope” = local (meso-[3 scale) region of high-8, air

Streamline in co-moving frame e 0, = “tracer” of full 3-D flow

—~ flow quasi-steady e 0.distribution governed by advection
| and steering of the quasi-steady flow
e moist envelope confined to TC

6 h average
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updrafts: mm——1ms?_— 0.25ms™?) environment for SBC formation




Shear-induced environmental storm-relative flow

Streamline in co-moving frame
- flow quasi-steady
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Shear-induced deformation of the “moist envelope”

Streamline in co-moving frame
- flow quasi-steady
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Downdrafts outside of the moist envelope

Streamline in co-moving frame
—> flow quasi-steady AN T
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outside of moist envelope




Robustness of results in our suite of experiments
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same general pattern:
a) SBC and
b) 6.-depression

+ same general tilt
behavior (not shown)

- results robust in
our suite of
experiments




Some suprrtmg ewdence from the real atmosphere
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Synthesis

tilt equilibrium

shear-

dynamic (vortex tilt) +

N vector

kinematic (moist envelope)
consequences of vertical shear
— favorable meso-f3 scale
environment for SBC formation



Synthesis

tilt equilibrium

shear-
N vector

swirling winds = helical updrafts
- precip falls into
environmental low-6, air

- downdrafts form and flush
low-6, into inflow layer

dynamic (vortex tilt) +
kinematic (moist envelope)
consequences of vertical shear
— favorable meso-f3 scale
environment for SBC formation




Conclusions

e shear-induced, thermodynamic impact on the inflow layer

e downdrafts associated with “stationary band complex”

 favorable meso-3 scale environment for SCB by vortex tilt
(dynamics) and distortion of moist envelope (kinematics)

e same basic structural evolution with associated weakening
is found for weaker TCs, more realistic values of C, and C,
and ice microphysics also
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Flow boundaries in idealized numerical experiment

6. = “tracer” of full 3-D flow
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1) 6, distribution = limit cycle =
distortion of moist envelope governed by steady, horizontal flow
2) Eyewall well protected from intrusion by steady, horizontal flow




Rapid and pronounced weakening with

ice microphysics associated with by the

far the most pronounced depression of
inflow layer 6,

AB, ~ 2-3 times of “warm rain”
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