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ABSTRACT 

The U.S. Navy’s concern with steam-induced jet engine stall has become more 

pertinent with the introduction of the F-35C.  During take offs on aircraft carriers, steam 

from aging catapult systems can potentially seep onto the flight deck.  When ingested 

into jet engines, this steam may increase the engines’ susceptibility to stall. The 

serpentine air inlet ducts and single engine of the F-35C could make it especially 

vulnerable to this steam-induced stall during takeoff.  To better understand and predict 

steam-induced stall, this study created a computational fluid dynamics (CFD) simulation 

of steam-induced stall on a single blade passage of a compressor rotor.  A single blade 

passage of the transonic Sanger rotor was generated using computer modeling software.  

This model was then used in the ANSYS CFX computational fluid dynamics program to 

simulate steady-state and steam ingestion operations at 95% and 100% rotor design 

speeds.  These CFD simulations generated compressor maps and throttle and steam-

induced stall points.  The CFD results were then compared to results from throttle-

induced stall and steam-induced stall experiments conducted on the Sanger rotor in the 

transonic compressor rig.  This study verified that CFD can estimate steam-induced stall 

operating margin reduction. 
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I. INTRODUCTION 

The U.S. Navy’s concern with steam-induced jet engine stall has become more 

pertinent with the introduction of the F-35C Lightning II, carrier variant.  During take 

offs on aircraft carriers, steam from aging catapult systems seeps onto the flight deck.  

When ingested into jet engines, this steam increases the engines’ susceptibility to stall.  In 

experiments conducted at Naval Air Station Patuxent River, steam ingestion caused pop 

stalls in F-18 aircraft.  Figure 1 displays an F-18 undergoing steam-induced pop stall.   

The serpentine air inlet and single engine of the F-35C make it especially vulnerable to 

this steam-induced stall during takeoff.  

 

Figure 1.   F–18 Undergoing Steam-Induced Pop Stall at Naval Station Patuxent River by 
Hurley [From 6] 

In order to investigate this phenomenon, the Naval Postgraduate School’s 

Turbopropulsion Laboratory has conducted multiple studies on a rotor-stator stage of a 

transonic compressor using the Transonic Compressor Rig.  Sanger [1] designed the 

rotor-stator stage at the NASA Glenn Research Center. 

Previous to this study, Levis [2] reestablished steam and throttle-induced stall 

characteristics of the rig at 70% and 90% of design speed in the rotor-only configuration 

after the honeycomb air inlet duct was replaced.  Payne [3] investigated stall precursors 

using hot film measurements in the rotor only configuration with throttle-induced stall at 
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90% and 95% of design speed and steam-induced stall at 70% of design speed.  Zarro [4] 

studied steam-induced stall at 90% and 95% of design speed in the rotor only 

configuration.  Zarro also composed a computational fluid dynamics model, using CFX, 

to replicate the rotor stage of the rig.  Koessler [5] investigated stall precursors, and 

reestablished a performance map for the rotor only configuration at 70%, 90%, 95% and 

100% of design speed.  Using steam pressurized to 9 atm, Koessler examined steam-

induced stall at 70%, 90%, and 95% of design speed.  Using the rig in the stator and rotor 

configuration, Hurley [6] analyzed both steam and throttle-induced stall at 70%, 80%, 

90%, 95%, and 100% of design speed. 

The current study has produced a computational fluid dynamic model of a single 

blade passage of the Sanger transonic compressor rotor stage.  This model produced 

compressor maps with throttle and steam ingestion stall points for 95% and 100% design 

speeds. In order to verify the model’s accuracy, physical rotor only compressor 

performance was tested at 70%, 80%, 90%, 95%, and 100% design speeds. Throttle stall 

experiments were conducted for all speeds and steam ingestion experiments were 

conducted for all but 100% speed.  New to these experiments was the partial ingestion of 

steam into the top half of the upstream throttle valve.  By comparing the CFD and 

physical experimental results to each other, flow, shock, and stall behavior can be better 

understood and predicted.   
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II. EXPERIMENTAL FACILITY AND PROCEDURE 

To establish the accuracy and validity of the CFD results, physical tests were 

conducted on the Transonic Compressor Rig.  Two different experimental setups were 

used: a throttle stall setup and a steam-induced stall setup.  The Transonic Compressor 

Rig was run in a rotor only configuration using a new and nearly pristine Sanger Rotor.    

Figure 2 displays the Sanger Rotor on the Transonic Compressor Rig.   

 

Figure 2.   Sanger Rotor on the Transonic Compressor Rig  

These experimental runs established compressor maps, throttle stall points, and 

steam-induced stall points for 70%, 80%, 90%, 95% speeds.  At 100% speed the steam 

ingestion experiment was not conducted because of compressor damage and safety 

concerns.  Payne [3], Zarro [4], and Hurley [6] have previously discussed the 

experimental setup, sensors, and data acquisition system used on the Transonic 

Compressor Rig.   
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A. THROTTLE STALL CASES 

This study used the same sensor and data acquisition configuration as Hurley [6], 

except an additional Kulite sensor has been placed behind the rotor at 104% of the axial 

chord.  Figure 3 shows the current Kulite arrangement.   

Flow Direction
Rotation Direction

Casing Projection

1,7&8
92

3
4

5

6

-63 %
-31%

0 %
26 %

52 %
78 %

162 %
104% Axial chord

10

 

Figure 3.   Current Kulite Arrangement 

To establish compressor maps and capture high-speed data of the throttle stall 

event an experimental procedure detailed by [6] was used.  The experimental procedure is 

summarized here.  Starting at completely open, the throttle was closed in a series of steps.  

At each step, high-speed and low-speed data was collected.  When the compressor neared 

stall, high-speed data was collected as the throttle closed in order to capture the entire 

stall event.  The compressor maps for 70%, 80%, 90%, 95%, and 100% speeds with their 

respective throttle stall points can be found in Figures 22 and 23 of Chapter VI.  

B. STEAM INGESTION STALL CASES 

For steam ingestion trials, an experimental procedure and sensor array similar to 

Hurley’s [6] was used.  Changes from Hurley’s work were the addition of six 

thermocouples placed upstream of the rotor to measure incoming steam-air mixture 

temperatures in the upper and lower half of the inlet.  Figure 4 shows the thermocouple 

arrangement within the Transonic Compressor Rig in relation to the rotor. 
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Figure 4.   Diagram of Thermocouple Array  

Measuring from the bottom of the annulus, thermocouples were placed at 12.7 

mm (0.50 in), 50.8 mm (2.0 in), 101.6 mm (4.0 in), 177.8 mm (7.0 inches), 228.6 mm 

(9.0 inches), and 266.7 mm (10.5 inches).  This thermocouple array was designed not 

only to record more accurate flow temperatures, but also to record the incoming flow 

temperature profile.  Figure 5 displays the inlet flow separator that was positioned within 

the plenum upstream of the throttle.   

 

Figure 5.   Transonic Compressor Rig Inlet with Flow Separator 
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Steam and air mixing occurred between the inlet and the rotor.  By initially 

separating the lower half of the inlet from the upper, this steam and air mixing should be 

reduced. Less mixing should produce more concentrated steam slugs.  A higher 

concentrated steam slug should simulate higher pressured steam ingestion without having 

to raise the pressure of the steam generator.  These less mixed steam slugs should reduce 

the steam-induced stall margin, with steam-induced stall occurring earlier on the 

compressor map.  Accurate steam ingestion data collected during these experiments will 

aid in constructing more realistic CFD simulations in future studies.  During steam 

ingestion high speed data was collected to capture the steam-induced stall event.  Steam 

ingestion trials were conducted at 70%, 80%, 90%, 95%, and 100% speeds in separated 

inlet configuration.   



 7

III. MODEL CONSTRUCTION 

The transonic compressor rig’s rotor had 22 blades, but for this study only a 

single passage was constructed for the computational fluid dynamic model.  Focusing on 

one passage rather than the entire rotor significantly reduced the computational time 

required for simulations. Zarro [4] previously created a computational fluid dynamic 

model of one rotor passage, but Zarro’s model was composed of a structured grid and this 

study’s model was composed of an unstructured grid with inflation layers.  In order to 

facilitate the construction of a structured grid, Zarro’s passage had considerable 

curvature, as seen in Figure 6.  This curvature may have increased errors in the 

computation at the periodic side boundaries of the rotor passage.  By creating a 

geometrically simpler rotor passage, the accuracy of the computational fluid dynamic 

model is expected to increase.  An unstructured grid also allows for simpler 

computational mesh refinement than a structured mesh.   

 

Figure 6.   Previous Structured Computational Grid Constructed by Zarro [After 4] 

The compressor annulus and blade geometry for this study’s model was provided 

by Zarro [4] and Hurley [6].  Both the annulus and rotor blade geometries have their 

origin set at the leading edge at the hub of the rotor blade.  An axial cross-section of the 

annulus with one rotor blade is shown in Figure 7.   

Periodic Boundaries 
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Figure 7.   Axial Cross Section of Annulus with one Rotor  

The rotor blade and the annulus models were each constructed separately using 

Solid Edge and then combined into one model using ANSY Workbench.  Figure 8 shows 

the annulus model and the single rotor passage model.  The rotor passage model extended 

33.87 mm (1.335 in) in front of the nose cone and 38.00 mm (1.496 in) past the rotor 

blade. The single rotor passage formed a wedge with an angle of 16.36 degrees (360/22),  

which corresponded to 1/22 of the entire annulus.  The passage began axially, then turned 

sharply through 16 degrees to include the whole rotor blade, finally returning to axial 

after passing the blade.  By only turning the passage while passing the blade, the model 

became geometrically simpler than Zarro’s.  This model was also the first CFD model of 

the Sanger rotor to include the nose-cone, which may significantly affect the flow into the 

rotor, thus including it may create more accurate simulations.   
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Figure 8.   Compressor Annulus (left) and Single Rotor Passage Models (right) 

In order to create the blade model, blade profiles at different heights were 

constructed.  Sample blade profiles can be found in Appendix A.  These profiles were 

used to define the two side surfaces of the blade.  The top most and bottom most profiles 

were used to define the bottom and top surfaces of blade.  These four surfaces were then 

stitched together to form the solid model of the blade.  For initial blade models only three 

profiles were used, but the final model used eleven profiles.  The rotor blade model was 

initially made to extend past the outer radius of the annulus.  This extension allowed for 

the construction of a preliminary computational model with no tip gap between the blade 

and the annulus casing.  To introduce a tip gap to the blade model, cuts were made to the 

solid blade model’s tip.  The final rotor blade model had a tip gap of 0.12984 mm 

(5.1118x10-3 in).  In the actual transonic compressor rig, rotor blade tip gaps between 

0.1524 mm (0.006 inches) and 0.3556 mm (0.014 in) have been measured.  These tip gap 

distances were measured when the rotor is stationary and cold.  Tip gap distances during 

operations were much reduced.   

Appendix B contains a modal analysis of the final blade model compared to 

actual violin bow testing on the rotor blades with a microphone-amplifier-spectrum 

analyzer by O’Brien.  The closeness of the modal analysis to the actual modal 
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frequencies shows the fidelity of the final rotor blade model.  Figure 9 displays the final 

blade model with the eleven blade profiles visible.   

 

Figure 9.   Final Rotor Blade Model with Profiles Shown 

To combine the annulus and rotor models into a complete single rotor blade 

passage model, the geometries of each model were exported from the solid modeling 

program Solid Edge and loaded into the analysis package ANSYS Workbench.  In the 

final model, the blade was exported as an IGES file and the annulus was exported as a 

STP file.  The blade solid model was subtracted from the annulus solid model, which 

created the completed single rotor blade passage.  Figures 10 through 14 show this model 

with the periodic boundaries, inlet, outlet, rotor blade and hub, and outer casing surfaces 

displayed. 
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Figure 10.   Periodic Boundaries 

 

Figure 11.   Inlet Boundary 
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Figure 12.   Outlet Boundary 

 

Figure 13.   Rotor Blade and Hub Boundary 
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Figure 14.   Outer Casing Boundary 

The unstructured grid of the rotor passage computational model was created using 

the CFX mesh model within ANYS Workbench. To develop a stable model, an iterative 

process was used to create the computational grid.  This iterative grid process is detailed 

in Appendix C. 

The final grid iteration used an eleven profile blade file, narrowed the tip gap, and 

refined the mesh on the hub nose.  The more refined rotor blade model was exported 

from Solid Works as an IGES file.  Like the previous grid, the annulus remained an STP 

file.  A tip gap of 0.12984 mm (5.1118 x 10-3 in) was present in this model.  This tip gap 

more closely matched the actual tip gap in the transonic compressor rig.  Surface 

detection was also turned on and at least four elements were placed between each surface.  

Like the previous grid, this grid had five layers of inflation boundaries with a maximum 

thickness of 8.8 mm (0.3465 in) on the outer casing and the rotor blade and hub 

boundaries.  The correct periodic boundary meshing remained from the previous model.   
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In order to refine the hub nose, the angular resolution on the hub nose surface was 

reduced from 30 degrees to 5 degrees.  Figure 15 shows the surface grid of the previous 

hub nose and this model’s hub nose.   

 

Figure 15.   Surface Grid on the Hub Nose Before and After Refinement 

The compete listing of meshing options chosen for this grid can be found in 

Appendix D.  This computational grid forms the preliminary grid for the steady state, 

quasi steady state, and steam ingestion simulations.  Table 1 shows a comparison of each 

iteration’s mesh elements.  The final grid is shown in Figure 16 with all the boundary 

surfaces highlighted with various arrow configurations. 
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Grid Iteration Elements Nodes Tetrahedra Pyramids Prisms 

1 66,337 15,989 66,337 0 0 

2 230,288 44,849 224,929 1,031 4,328 

3 817,314 189,311 706,720 1,722 108,872 

Table 1.   Geometry Comparison of Grid Iterations   

 
 
 
 

 

Figure 16.   Final Computational Grid 
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IV. STEADY-STATE ANALYSIS 

All simulations, both steady-state and quasi-steady-state, were conducted using 

ANSYS CFX.  CFX is a commercial computational fluid dynamics (CFD) program that 

uses an implicit code to solve the momentum and heat transfer equations.  Before testing 

quasi-steady-state steam induction into the rotor passage, a battery of single gas steady-

state simulations was conducted.  This steady-state analysis was composed of three 

phases: computational grid iteration testing, refined computational grid experimentation, 

and final steady-state simulation result generation.   

A. COMPUTATIONAL GRID ITERATION TESTING 

The goal of computational grid iteration testing was to ensure that each iteration 

of the computational grid produced grid independent solutions.  Once a computational 

grid iteration was proven stable, refinements and corrections were added until the final 

computational grid was created.  All simulations were conducted at 100% design speed, 

27,085 RPM, by using a rotating domain.  Air ideal gas was chosen as the domain fluid 

and k-epsilon was selected for turbulence modeling.  The outer casing was set as a 

smooth, adiabatic, counter rotating wall with no slip, and the rotor blade and hub 

boundary was set as a smooth, adiabatic wall with no slip.  The periodic boundaries were 

set using rotational periodicity about the x-axis.  The inlet was specified to have 0 Pa (0 

atm) stationary frame total pressure and 293.15 K (527.67 oR) stationary frame total 

temperature.  The outlet was set to have a static pressure.  This outlet static pressure was 

changed for different simulations to simulate throttling of the compressor.  Raising the 

outlet static pressure decreased the mass flow rate, while setting the pressure to 0 Pa (0 

atm) simulated an open throttle run.  Throttling by setting a back pressure was found to 

produce more stable simulations than throttling by setting an inlet mass flow rate. 

Throttling this way was also more realistic because it mimicked the physical 

experimental throttling technique.  These boundary conditions represent the default setup 

for all the simulations in this study.   
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The first grid iteration, no-tip-gap, was tested for stability at various back 

pressures using root mean squared convergence criteria with a residual target of 1 x 10-4.  

Basic compressor maps of these trials and experimental 100% speed data can be found in 

Figures 17 and 18.   
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Figure 17.   100% Speed Grid Iteration Total Pressure Ratio vs. Mass Flow Rate 
Compressor Map 
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Figure 18.   100% Speed Grid Iteration Total to Total Isentropic Efficiency vs. Mass 
Flow Rate Compressor Map 

With the first grid iteration having been proven stable, the second iteration, 1.00 

mm (0.03937 in) tip gap, was created and tested.  Using the same boundary conditions 

and simulation settings, the second grid iteration was tested at various back pressures.  

After demonstrating the stability of the second iteration, the final computational grid, 

eleven profile rotor blade and 0.12984 mm (5.1118 x 10-3 in) tip gap, was formed.  This 

grid was also tested and found to be stable under the same conditions as the previous 

iterations. The completion of the final computational grid’s stability testing ended the 

computational grid iteration testing phase. 

B. REFINED COMPUTATIONAL GRID EXPERIMENTATION 

In the Refined Computational Grid Experimentation phase, various changes to the 

solver settings were made in order to find an optimal procedure for generating steady-

state simulation results.   Different forms of mesh adaptation, convergence criteria, and 

turbulence modeling were used to determine which settings produce the most stable, 

accurate, and quickly converging steady-state simulations. 
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Mesh adaptation was accomplished in CFX by inserting mesh refinement into the 

solver settings.  Mesh adaptation modified the existing computational grid based on one 

or many chosen parameters after a selected level of convergence had been reached.  The 

process coarsened parts of the mesh with little change and refined parts of the mesh with 

large changes.  Mesh adaptation accomplished this modification by adding and 

subtracting nodes from the computational grid.  Mesh adaptation did not coarsen beyond 

the original mesh coarseness.  By adding and subtracting nodes, higher mesh resolution 

was obtained while increasing computational efficiency; the solver had fewer nodes to 

solve around areas of little change in the selected parameter and more nodes around areas 

of greater change in the selected parameter.  One solution run could have multiple mesh 

adaptations set to further refine the computational grid.  After each mesh adaptation, CFX 

restarted the solution process using the newly generated mesh.  Mesh adaptation could 

not add extra levels to the inflation boundary layers, but rather it added and subtracted 

nodes within the plane of each layer.   Because mesh adaptation did not change the initial 

models’ number of inflation layers, it did not correct the model’s low y+ resolution. 

Three steps of mesh adaptation around absolute pressure were tested during this 

phase.  Shock behavior and placement are crucial for determining the performance of the 

rotor, so obtaining high grid resolution around the shocks was sought.  Across shocks 

large pressure differences occur.  By setting mesh adaptation to refine around absolute 

pressure; these large shock pressure differences received more nodes.  More nodes about 

the shocks increased the shock resolution and reduced shock smearing.  Table 2 displays 

the computational grid differences between the initial model and the model after 

undergoing three steps of mesh adaptation. Since mesh adaptation increased shock 

resolution and solver efficiency without destabilizing the model, it was included in the 

final phase of steady-state simulations. 

 

Model Nodes Elements Tetrahedra Wedges Pyramids
Initial Mesh 189,311 817,314 706,720 108,872 1,722 
After Mesh 
Refinement 

384,882 1,407,855 1,064,801 340,980 2,074 

Table 2.   Comparison of Initial Mesh and Mesh after Three Steps of Adaptation 
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Initially root mean squared residual (RMS) convergence criteria was used in the 

steady-state simulations, but the maximum residual (MAX) convergence criteria was also 

tested.  RMS convergence was set to 1.0 x 10-5, which is considered good convergence, 

and MAX convergence was set to 1.0 x 10-4, also considered good convergence.  Using 

the MAX convergence criteria decreased the stability of simulations.  Certain simulations 

that converged while using RMS did not when using MAX.  This instability may have 

been caused by a region of unstable flow.  During certain MAX simulations, the solver 

would converge for the first two mesh adaptations, but would not converge after the third.  

The mesh adaptations may have been refining the grid around an unstable portion of the 

flow.  As this unstable region became more refined, the MAX solver could not reach a 

solution for this flow region.  In order to more fully investigate this inability to converge, 

the locations of high mesh refinement should be examined.  The solutions after each 

individual mesh refinement were not saved so this investigation was not conducted in this 

study.  Figure 19 shows the maximum residual plots of a RMS convergent run and a 

MAX convergent run under the same boundary conditions.  The RMS run produced 

tighter convergence. When both methods reached solutions, similar results were 

produced.  Since RMS convergence reached solutions more reliably than MAX 

convergence, RMS convergence was chosen for use in the final phase. 
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Figure 19.   Maximum Residuals from RMS Convergent Simulation (left) and MAX 
Convergent Simulation (right) 

In an attempt to improve the accuracy of the steady-state simulations, alternate 

turbulence models were tested.  In order to include transition from laminar to turbulent 

flow, the shear stress transport turbulence model was used with a gamma theta 

transitional turbulence model.  These SST simulations proved much less stable than the 

k-epsilon simulations: the SST simulations often would not converge when given 

boundary conditions that produced convergence with the k-epsilon model.  The eddy 

viscosity transport equation option of turbulence modeling was also tested.  Like the SST 

simulations, the eddy viscosity simulations were less stable then the k-epsilon 

simulations.  When the eddy viscosity simulations did converge, they gave nonsensical 

results, such as total to total isentropic efficiencies greater than one or exceedingly high 

total pressure ratios.  The eddy viscosity simulations took much longer to converge than 

the k-epsilon simulations; one eddy viscosity simulation took over four days to converge 

whereas the k-epsilon simulation with the same boundary conditions converged in less 

than four hours.  The poor y+ resolution of the computational grid may have caused the 

convergence and accuracy problems of the alternate turbulence model simulations.  The 

computational grid had a y+ resolution greater than one, and a y+ resolution of at least 
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one is recommended for good results with these turbulence models.  Mesh adaptation 

about y+ was used during the simulations to increase the y+ resolution, but even with 

mesh adaptation the smallest y+ present on the model was greater than one.  Also, the 

mesh adaptation about y+ may have been coarsening the grid about the shocks, as it 

attempted to refine the y+ resolution.  This coarsening about the shocks would have 

decreased the accuracy of the simulations.   Creating a much finer initial computational 

grid, with more and smaller inflation boundaries may solve these difficulties with 

alternate turbulence models, but the computational cost of the simulations would 

increase.  Because of its computational inexpensiveness and its reliable convergence 

behavior, the k-epsilon turbulence model was used in the final phase of steady-state 

simulations.  

C. FINAL STEADY-STATE SIMULATION RESULT GENERATION 

The final phase of steady-state simulations was used to create total pressure ratio 

vs. mass flow rate and total to total isentropic efficiency vs. mass flow rate compressor 

maps, and initial values for the quasi-steady-state simulations.  These simulations used 

three steps of mesh adaptation using absolute pressure as the refinement criteria,            

1.0 x 10-5 RMS convergence, and the k-epsilon turbulence model.  Simulations were 

conducted at 95% and 100% rotor speeds, 27,085 RPM and 25,730.8 RPM, respectively.   

A mixture of two fluids, air ideal gas and water ideal gas, was selected as the 

domain fluid, but the mass fraction of air was set to one.  A mixture must be chosen so 

that the steady-state simulations could be used as initial values for the quasi-steady-state 

simulations.  The quasi-steady-state simulations used a mixture of air ideal gas and water 

ideal gas to simulate steam ingestion and CFX required that the domain fluids of the 

initial conditions and the quasi-steady-state simulations match.  Because the mass 

fraction of air ideal gas was set to one, only air was present in the steady-state 

simulations.  To reduce shock smearing the Max Continuity Loops option in Expert 

Parameters was set to two and Compressibility Control and High Speed Numerics were 

turned on under Solver Control.  Appendix E lists the solver option settings of a typical 

simulation.   
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To generate the compressor maps, a simulation was first conducted with the outlet 

pressure equal to zero.  The outlet pressure was then raised for the next simulation.  

Raising the outlet pressure reduced the mass flow rate which simulated a closing throttle.  

Each successive simulation used the previous simulation’s final computational grid and 

solution as its initial computational grid and initial values. During post-processing, the 

compressor performance macro and mass flow function tools of CFX were used to find 

the total pressure ratio, total to total isentropic efficiency, and mass flow rate of each 

simulation.  The mass flow rate was multiplied by 22 to get the total mass flow rate 

through the compressor.  These simulations set the compressor inlet temperature at 

293.15 K (527.67 oR), which is three degrees higher than the reference temperature of 

288.15 K (518.67 oR).  To normalize the simulation results, the mass flow rate was 

corrected using the following relationship given by O’Brien [7] 




mmref    

where 
refT

T
  and 

refp

p
 .  θ = 1.0174 and δ = 1 for the simulations since the 

pressures were identical between the reference and the simulations.  
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V. QUASI-STEADY-STATE ANALYSIS 

Whereas the goal of the steady-state simulations was to develop compressor maps 

for 95% and 100% speeds, the goal of the quasi-steady-state simulations was to 

determine the location of throttle stall and steam-induced stall on those compressor maps 

and to observe compressor and flow behaviors prior to stall events.  Because both stall 

events are highly unsteady, a steady-state simulation would not accurately capture them.  

Though the steady-state simulations are not adequate, fully transient simulations of the 

stall events would be computationally expensive and therefore time consuming.  A quasi-

steady-state simulation method was developed to allow the propagation of the stall 

events’ unsteady features while mitigating computational costs.  The quasi-steady-state 

method used CFX’s transient simulation settings with large time steps, many coefficient 

loops, and initial values from steady-state simulation solutions.  For these simulations, 

time steps occurred every ten rotor revolutions.  Assigning ten rotor revolutions between 

time steps simplified simulation post processing.   Since the model’s domain rotates, 

having an integer number of rotations per time step ensured that the model is in the same 

location at every time step.  By fixing the model in space, quick comparisons of flow 

characteristics between time steps could be made.  A ten revolution time step also 

allowed for a simulation to be conducted in a moderate amount of time.  A maximum of 

100 coefficient loops per time step was assigned.  RMS residual convergence with a 

target of 1x10-4 was used for the coefficient loops.  Since CFX used an implicit solver, 

the simulation remained stable even with these large time steps.  By using many 

coefficient loops, each time step acted like its own steady-state simulation.  The previous 

time step solution provided initial values for the next time step steady-state simulation, 

and the boundary conditions were controlled in the simulation options.  Since the 

previous time step affected the current time step, unsteady flow features remained in the 

simulation.  This series of linked steady-state simulations captured unsteady effects and 

was relatively inexpensive computationally. 
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For quasi-steady-state simulations, a failure of a time step’s coefficient loop to 

converge within 100 iterations indicated stall.  To ensure that the simulation was in a stall 

mode and not just reaching convergence on the 100th iteration, a second 100 iteration 

time step was completed before terminating the simulation.  If a quasi-steady-state run 

completed without having a 100 iteration time step, no stall had occurred in that 

simulation.  Non-stalling simulations normally reached convergence between time steps 

in fewer than 10 coefficient loops. 

A. THROTTLE QUASI-STEADY-STATE SIMULATIONS 

Steady-state simulations cannot accurately predict the location of throttle stall on 

the compressor maps, because the steady-state simulations damp out the unsteady regions 

of the flow.  This forced stability resulted in compressor map points that extended far 

beyond the physical throttle stall points.  In order to model the flow’s instability at near 

stall points, quasi-steady-state simulations were conducted.  These simulations produced 

more realistic throttle stall points. 

Throttle stall simulations were conducted by choosing a likely compressor map 

point, and its steady-state simulation solution was used as an initial value for a quasi-

steady-state run.  The quasi-steady-state simulation’s boundary conditions matched the 

steady-state simulation's boundary conditions.  These simulations had a time step every 

ten rotor revolutions and the entire simulation lasted for four seconds. To implement 

these time step settings, the Simulation Type options are set to have 172 time steps of 

0.0233184 seconds for 95% speed and 181 time steps of 0.0221525 seconds for 100% 

speed.  Though these time steps seemed small, they were actually quite large and the 

RMS Courant number quickly exceeded a thousand.  This large Courant number would 

be problematic in a fully transient simulation, but in quasi-steady-state simulation the 

large Courant number was anticipated.  Appendix F gives a complete list of options set 

for the throttle stall simulations.   
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If stall occurred during a simulation, the next highest mass flow rate point was 

tested.  If stall did not occur during that higher mass flow rate simulation, the throttle stall 

point was set at the initial point.  If stall did not occur during the initial simulation the 

next lowest mass flow point was tested.  This process was repeated until stall occurred 

during a simulation. 

B. STEAM INGESTION STALL 

Simulating steam ingestion during a quasi-steady-state simulation required that 

the inlet temperature and air ideal gas mass fraction boundary conditions change while 

the simulation ran.  These inlet conditions were based on data collected from a previous 

steam ingestion experiment.  This experiment occurred at 95% speed.  100% speed 

steam-induced stall had not been physically conducted because the event would highly 

stress the rotor.  Because no 100% speed steam ingestion data exists, the 100% steam 

ingestion simulations were conducted with the 95% speed inlet transient data due to 

steam ingestion.  The CFX expression language was utilized to model inlet temperature 

and air mass fraction.  A series of step functions was written which generated a two-

second steady inlet condition followed by a two-second ramp to maximum temperature 

and minimum air mass fraction, followed by another ramp function to initial conditions.  

The second ramp function lasted for ten seconds for temperature and seven seconds for 

air mass fraction.  These temperature and mass fraction expressions were set as the inlet 

boundary conditions of the simulation. Figures 20 and 21 display the temperature and air 

mass fraction vs. time plot of the inlet expressions and an actual steam-induced stall 

event measured by Gannon et al. [8]. 
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Figure 20.    95% Speed Experimental and CFD Inlet Temperature Plots 
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Figure 21.   95% Speed Experimental and CFD Air Mass Fraction Plots 
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The CFD Code temperature started at a slightly higher value of 293.15 K (527.67 
oR) to match the steady-state simulation inlet boundary condition.  It also had a maximum 

temperature 2 K (3.6 oR) higher than the experimental value.  By increasing the 

maximum temperature value, both the CFD Code and Experimental temperatures had the 

same change in temperature.  Appendix G lists the solver settings for steam ingestion 

simulations and the code for the inlet expressions.   

A similar procedure to locating the throttle stall point was used to find the steam 

ingestion stall point.  Likely locations were tested and then outlet pressure was raised or 

lowered to adjust the mass flow rate in order to find the point where steam ingestion stall 

first occurred.  Like the throttle stall cases, the steam ingestion stall cases used the 

steady-state solutions as initial values.  Once a steam ingestion stall point was located, a 

quasi-steady-state simulation at the same outlet pressure with constant inlet conditions 

was conducted.  These simulations were carried out to verify that the steam ingestion 

modeling was the factor causing stall.  All the steam ingestion stall points remained 

stable when tested with constant inlet conditions.  Stall occurring during those constant 

inlet simulations would have indicated that the quasi-steady-state method is inherently 

unstable and therefore invalid.   

In addition to finding the locations of steam ingestion stall, flow conditions were 

recorded after every five time steps of every quasi-steady-state steam ingestion 

simulation.  By saving the flow data from these simulations, compressor and flow 

behaviors prior to stall can be observed.  Because the lack of solver convergence 

indicates stall, compressor and flow behavior cannot be observed during or after a stall 

has occurred.  The results just prior to stall behaviors are presented and discussed in 

Chapter VI.   

After locating the steam-induced stall point at 95% speed, the initial ramp 

function was modified to investigate the effect of ramp function slope on steam-induced 

stall.  These trials were conducted to determine whether ramp function steepness or final 

property magnitude had the greatest effect on steam-induced stall in the model.  Ninety-

five percent speed was chosen over 100% speed because the steam conditions used in the 

model were derived from a 95% speed physical experiment.  Two new ramp functions 
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were generated: one took twice as long to reach maximum temperature and minimum air 

mass fraction, four seconds, and the other took half as long, one second.  These new ramp 

function simulations were conducted at steam ingestion stall boundary conditions and 

boundary conditions one point before stall.  Any change in stall behavior would indicate 

that ramp function steepness plays a role in steam-induced stall; whereas no change in 

stall behavior would indicate that the final property values are the prominent stall 

consideration.  These simulations results indicated that steam function slope does not 

affect simulation steam-induced stall.  Detailed results of these simulations are presented 

in Chapter VI.   
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VI. RESULTS AND DISCUSSION 

By comparing the CFD and experimental results, the accuracy and relevance of 

the computational model could be evaluated.  The physical experimental results are 

presented first, followed by the CFD results.  The CFD results presentation and 

discussion is divided into overall performance trends, and individual simulation 

observations. In addition to presenting the physical and CFD data, a discussion is 

conducted on the influence of steam ingestion ramp function slope.  

A. PHYSICAL EXPERIMENTAL COMPRESSOR MAPS 

Figures 22 and 23 display the compressor maps for 70%, 80%, 90%, 95%, and 

100% speeds generated during this study.  These results are also tabulated in Appendix 

H.  The throttle surge line and steam surge line are indicated on the figures. Green circles 

indicate throttle stall points, and red circles represent steam stall points. 
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Figure 22.   Pressure Ratio vs. Mass Flow Rate Compressor  
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Figure 23.   Efficiency vs. Mass Flow Rate Compressor Map 

Differences in the efficiencies were observed between the throttle-induced stall 

data and the steam-induced stall data at high mass flow rates for 70% and 80% speeds.  

The throttle-induced stall data displayed higher efficiencies than the steam-induced stall 

data, though almost identical throttle settings were used for both tests.  The lower 

efficiencies of the steam-induced stall data may be due to the rotor blades having a wider 

tip-gap than the initial tip gaps during the throttle-induced stall tests.  The steam-induced 

stall trials were conducted after the entire set of throttle-induced stall trials. Because the 

rotor had stalled during these throttle-induced stall trials, the tip-gap was widened.  So 

during the steam-induced stall trials the rotor had a wider tip-gap than during the throttle-

induced stall trials.  This wider tip-gap would lower the efficiency of the rotor.  In future 

research, a steam-induced stall trial should be conducted directly following a throttle-

induced stall trial at a specific speed.  This method would enable more consistent tip gaps 

between steam-induced stall trials and throttle-induced stall trials.   
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The stall margin was calculated for each speed in both throttle-induced and steam-

induced stall modes.  By comparing the steam-induced stall and throttle-induced stall 

margins, the reduction in stall margin can be found for each speed line.  Hill and Peterson 

[9] define the stall margin based on mass flow rate as 

 
effpeak

surgeeffpeak

m

mm

 

 Margin Stall


 
  

Table 3 displays these throttle and steam-induced stall margins and stall margin 

reductions. 

  
70% 

Speed 
80% 

Speed 
90% 

Speed 
95% 

Speed 
100% 
Speed 

Throttle Stall Margin 0.2481 0.2375 0.1693 0.1331 0.1090 
Steam Stall Margin 0.2196 0.2079 0.1396 0.1031   

Stall Margin Reduction 0.1149 0.1244 0.1754 0.2252   

Table 3.   Experimental Throttle Stall Margin, Steam Stall Margin, and Stall Margin 
Reduction for 70%, 80%, 90%, 95%, and 100% Speeds 

This table shows that as rotational speed increased stall margin reduction also 

increased.  The table also shows that about a 3% decrease in stall margin exists between 

throttle and steam for all speeds.  The peak efficiency mass flow rates were found by 

fitting 4th degree polynomial curves to the efficiency vs. mass flow rate data.  The steam 

stall margin for 100% was not found, because no 100% speed steam-ingestion trials were 

conducted.   

B. NEW STEAM INGESTION DATA 

While conducting the 95% speed steam ingestion experiments, temperature data 

was taken using the new array of thermocouples preceding the rotor.  Figure 24 displays a 

plot of temperature and rotational speed vs. time during a steam-induced stall.  See Figure 

4 for the probe layout. 
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Figure 24.   95% Speed Physical Steam Ingestion Event Probe Temperature and Rotor 
Speed vs. Time Plot 

This new temperature plot displays significant differences to the simulation steam 

ingestion function.  The new plot reaches a higher temperature maximum, 324 K (583.2 
oR), in less time, one second, than the previous experiments [8].  The new panel allowing 

more steam to be ingested into the inlet caused this faster ramp and higher maximum 

temperature.  The mass fraction of air was not computed during these trials, but it should 

be investigated to confirm that more steam is entering the transonic compressor rig.  

As steam was ingested into the physical rotor, the rotor rotational speed increased.  

The CFD simulations did not account for this acceleration.  Because the CFD model's 

rotational speed remained constant during the modeling of the steam ingestion, its 

performance would be different than the experiment.  The steam ingestion function and 

the rotor speed acceleration differences may contribute to the discrepancies in steam-

induced stall locations on the compressor maps.  Figure 25 shows the measured 

instantaneous temperature distribution vertically across the inlet during the 95% speed 

test.  The red arrow indicates that steam entered the upper portion of the transonic 

compressor rig inlet.  
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Figure 25.   Spatial Temperature Distribution during 95% Speed Steam-Induced Stall 

The temperature distribution had a maximum occurring near the center of the 

annulus, which indicates that a large amount of flow mixing occurred as the steam was 

ingested.  The CFD simulations modeled uniform temperatures across the entire inlet at 

an instantaneous time.  Though this discrepancy may contribute to simulation error, the 

physical temperature difference between the minimum and maximum were only around 

2.5 degrees K (4.5 oR).  This temperature difference may be small enough to be 

inconsequential.  This plot indicates that the steam mixed rapidly with air within the inlet 

duct.   

C. TRANSONIC COMPRESSOR RIG MODIFICATIONS 

The initial flow separator design did not produce large enough spatial temperature 

gradients.  Figure 26 displays the spatial temperature distribution at the temperature 

zenith of a steam ingestion event during a 70% speed experiment. The red arrow 

represents steam entering the lower section of the inlet. While the temperatures were not 

uniform, there was not a considerable difference between the lower and upper sections.   
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Figure 26.   Probe Height vs. Temperature Plot at 70% Speed with Flow Separator 

Too much steam was expelled from the inlet plenum during the solenoid valve 

activation which opened the steam pipe.  In order to accelerate the flow at the point of 

steam injection, while not throttling the flow, a panel was placed over the inlet with two 

square openings that had the same combined area as the full open throttling holes.  Figure 

27 displays this panel on the transonic compressor rig inlet.   
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Figure 27.   Panel Covering Inlet of Transonic Compressor Rig with Upper Section 
Steam Injection Pipe Location 

The steam injector pipe was also modified to inject steam into the upper inlet 

section rather than the lower section.  By injecting steam into the upper section, flow 

mixing due to buoyancy forces would be reduced.  The panel and pipe location change 

did produce more complete steam ingestion, but they did not produce high temperature 

section differences.  Figure 28 shows a spatial temperature plot at the temperature zenith 

of steam ingestion experiment at 90% speed.   
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Figure 28.   Probe Height vs. Temperature Plot at 90% Speed with Separator, Panel, 
and Steam Pipe Location Change 

The red arrow represents steam entering the upper section of the inlet.  This 

experiment had the separator, panel, and upper section steam injector.  A large amount of 

flow mixing still occurred after the transonic compressor inlet, so modifications to the 

steam injector system at the inlet seemed to have little effect.  If the inlet was shortened 

to a length comparable to an aircraft inlet, mixing may be reduced. 

D. OVERALL CFD PERFORMANCE TRENDS 

1. 95 Percent Speed 

While discovering the 100% speed steam ingestion stall point, observations were 

made on the computational behavior of the onset of steam ingestion stall.  If a stall 

occurred, it happened during the initial ramp function to the maximum temperature and 

minimum air mass fraction.  Stall never occurred during the second ramp function back 

to initial conditions.  Simulations were then conducted using only the constant inlet 

condition period followed by the initial ramp function period.  Steam ingestion stall  
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occurred at the same location as before.  Because of this behavior, the 95% speed steam 

ingestion simulations were shortened to four seconds instead of 14.  Shortening the 

simulations reduced computational costs without affecting the simulation results.   

Figures 29 and 30 show the compressor maps for both CFD simulations and 

physical experimentation at 95% speed.   
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Figure 29.   95% Speed CFD and Physical Experiment Total Pressure Ratio vs.  
Mass Flow Rate Plot 
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Figure 30.   95% Speed CFD and Physical Experiment Total to Total Isentropic 
Efficiency vs. Mass Flow Rate Plot 

Throttle stall points are marked with green circles, and steam stall points are 

marked with red circles.  The simulation results and the physical extermination results did 

not exactly match, but many key similarities existed.  Both CFD pressure and efficiency 

curves’ shapes matched the physical experimentation curves’ shapes.  This shape 

matching indicates that the CFD model performed in a similar manner to the physical 

rotor.  Though their shapes matched, the CFD model under predicted the mass flow rate 

and over predicted the efficiency through the rotor.  The differences in mass flow rate 

may be a recurring discrepancy with the CFD program, or the CFD model’s rotor blade 

shape may not have exactly matched the physical rotor blade during operations.  When 

the rotor is run at speed, the rotor blades undergo an untwisting due to some heat but 

mainly due to centripetal forces.  As the blades untwist to their so called ‘hot’ shapes, 

they allow for more mass flow.  If the physical rotor blade was more untwisted than the 

CFD model blade, then the CFD simulations would under predict mass flow rate.  The 

over prediction of efficiency through the rotor most likely occurred from the CFD  
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simulation not accurately modeling all the various losses through the physical rotor.  

Though the CFD model predicted much higher efficiencies than the experimental results, 

it did closely predict the point of maximum efficiency.   

The stall points of the CFD model and the physical experimentation revealed 

significant trends.  The throttle-induced stall points of the CFD simulations occurred with 

more mass flow rate than the physical experiment.  This under prediction of the stall 

points may have been caused by the high Courant number of the quasi-steady-state 

simulations. In the 95% speed simulations the high Courant number may have amplified 

instabilities within the flow field causing earlier stall.  This instability amplification may 

have overcame the various stabilizing forces, such as periodicity, acting upon the model.  

Though the stall points occurred earlier in the CFD simulations, the difference in mass 

flow rate between the throttle and steam-induced stall points of the CFD simulations and 

physical are close.  Table 4 summarizes the stall margin comparisons between the CFD 

simulation and physical experiments. Both the CFD simulations and the physical 

experiments had similar stall margins and stall margin reductions.  The simulation's 

prediction of around 3% stall margin difference between throttle and steam closely 

matched the physical experiment.  This agreement in stall margin difference indicated 

that CFD can be used to estimate the location of steam-induced stall at 95% speed. 

  
Difference in 

Mass Flow Rate 
(kg/s) 

Throttle-
Induced Stall 

Margin 

Steam-
Induced Stall 

Margin 

Difference 
in Stall 
Margin 

Stall 
Margin 

Reduction
CFD 

Simulation 
0.2549 0.1268 0.0932 0.0336 0.2650 

Physical 
Experiment 

0.2238 0.1331 0.1031 0.0300 0.2252 

Table 4.   95% Speed Stall Margin Comparisons 

2. 100 Percent Speed 

Figures 31 and 32 display the compressor maps for both the CFD simulations and 

the physical experiments at 100% speed.   
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Figure 31.   100% Speed CFD and Physical Experiment Total Pressure Ratio vs.  
Mass Flow Rate Plot 
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Figure 32.   100% Speed CFD and Physical Experiment Total to Total Isentropic 
Efficiency vs. Mass Flow Rate Plot 
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Like the 95% speed maps, throttle stall points are marked with green circles and 

steam stall points are marked with red circles.  Similar trends occurred in the 100% speed 

results that occurred in the 95% results:  the CFD simulations produced curves with 

matching shapes, but the CFD model under predicts mass flow rate and over predicts 

efficiency.  These trends mostly likely occur for the same reasons discussed in the 95% 

speed results. 

Considerable differences existed between the locations of 100% speed stall points 

and the 95% speed ones.  Unlike the 95% speed simulations, the 100% speed simulations 

predicted throttle stall occurring with less mass flow rate than the physical experiment.  

This under prediction may be caused by less instability amplification occurring during 

100% speed simulations.  The rotor was designed with the aid of CFD programs to 

operate at 100% speed, thus the CFD model may be more computationally stable at 100% 

speed than at 95% speed.  The model's unblemished blade shape, perfect axi-symmetric 

blade placement, and periodic boundary conditions may also increase the simulations' 

ability to operate with less mass flow rate than the physical rotor. 

The physical steam-induced stall point was not found for 100% speed, so no 

comparison was made between it and the CFD prediction.  Though the CFD model and 

experimental results were not compared, the differences between the steam-induced stall 

margin reductions of the 95% speed CFD model and 100% speed CFD model can be 

examined.  The 95% speed CFD model had a stall margin reduction of 26.50% and the 

100% speed CFD model had 66.88%.  The 100% speed stall margin reduction is 

considerably larger than the 95% speed stall margin reduction.  This increase in steam 

stall margin may have been caused by the functions used to model steam ingestion.  Since 

no 100% speed steam ingestion trial has ever been conducted, there is no data regarding 

air mass fraction and mixture temperature at 100% speed.  Because there was no data 

available, the 95% speed steam ingestion functions were also used for 100% speed 

simulations.  Entirely different slopes, temperature maximums, and air mass fraction 

minimums may occur at 100% speed steam ingestion.  100% speed steam ingestion is 

expected to have a smaller mass fraction of steam than the 95% speed steam ingestion 

since a constant amount of steam is ingested regardless of rotor speed and 100% speed 
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trials have greater mass flow rates.  If those correct values are used for the 100% speed 

steam ingestion modeling, the 100% speed steam-induced stall point may occur with a 

smaller mass flow rate.  This smaller mass flow rate steam-induced stall point would 

produce a more reasonable stall margin reduction.  Conversely, the stall reduction margin 

of 100% speed may indeed be as large as the CFD model indicates, but no physical 

testing occurred to verify its prediction.   

3. The Effects of Periodicity 

Since only one rotor blade passage was modeled, periodic boundary conditions 

were set on the passage’s sides.  These periodic boundary conditions introduced specific 

behavior into the computational fluid dynamic model that affected the performance of the 

simulations.  Because the periodic boundary conditions forced identical fluid properties at 

the sides of the model, the simulations produced axis symmetric solutions.  In these cases 

the simulations acted like every blade of the rotor had identical flow fields.  In an actual 

rotor, flow field differences and instabilities exist between blades.  These differences and 

instabilities begin to form stall cells, which rotate around the compressor at speeds less 

than rotational speed [10].  Because the simulations are axis symmetric, they did not 

capture these stall precursor cells.  So when the CFD program simulated either throttle or 

steam-induced stall, it stimulated the entire compressor stalling simultaneously.  Stalling 

an entire axi-symmetric compressor simultaneously requires more throttling than stalling 

a complete compressor where individual passages may be more highly loaded.  In 

addition to misrepresenting stall mechanics, the periodic boundary conditions actively 

introduced stability into the flow field.  The forcing of identical fluid properties at the 

sides of the passage tends to damp out flow instabilities that form during quasi-steady-

state runs.  In throttle stall runs, these instabilities are inherent to the compressor 

operating at a low mass flow rate and in steam ingestion runs the changing inlet boundary 

conditions introduce instability into the flow field.  The periodic boundary conditions 

partially moderated these flow instabilities.  This moderation produced simulation results 

that stay stable beyond operating conditions where a full rotor simulation would have 

stalled.  This increased stability and the differences in stall mechanics may contribute to 

the CFD simulations predicting stall with less mass flow rate than actually occurred 
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during physical experimentation.  This phenomenon occurred during the 100% Speed 

simulations but not during the 95% speed simulations.  As previously discussed, the 95% 

speed simulations may have greater instability amplification than the 100% speed 

simulations.    

E. INDIVIDUAL CFD SIMULATION OBSERVATIONS 

1. Throttle Simulations 

Only the simulations from 95% speed are considered for discussion.  The 100% 

speed simulations follow the 95% speed simulations’ trends, but as mentioned previously 

the 100% speed steam ingestion simulations use 95% speed steam data.  Figures 33, 34, 

35, and 36 display the pressure distributions on the outer casing of each rotor passage as 

mass flow decreases.  Each figure’s corrected mass flow rate is listed in the figure title, 

and mass flow and blade movement direction are noted.   

 

 

 

Figure 33.   95% Speed Outer Casing Pressure Distribution at Open Throttle, 7.715 
kg/s (3.500 lbm/s) 

Flow Direction 

Blade Direction 
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Figure 34.   95% Speed Outer Casing Pressure Distribution Near Maximum 
Efficiency, 7.402 kg/s (3.358 lbm/s) 

 

 

Figure 35.   95% Speed Outer Casing Pressure Distribution at the Steam Stall Point, 
6.875 kg/s (3.118 lbm/s) 

Flow Direction 

Flow Direction 

Blade Direction 

Blade Direction 
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Figure 36.   95% Speed Outer Casing Pressure Distribution Near Stall, 6.620 kg/s 
(3.005 lbm/s) 

Since ANYS CFX did not have a shock detection function for rotating 

computational domains, the shocks had to be observed by examining the pressure plots.  

The shocks can be detected by large sudden changes in pressure.  These figures indicate 

that as mass flow decreased the shocks moved closer to the passage inlet.  This general 

shock behavior was also observed by Gannon and Hobson [11] and Davis [12] in the 

physical compressor using Kulite pressure sensors placed on the outer casing.   

2. Steam Ingestion Simulations 

Figures 37, 38, 39, and 40 display the pressure distribution on the outer casing as 

the rotor undergoes steam ingestion.  Each figure is labeled with simulation time and inlet 

temperature.  Mass flow and blade movement direction are noted on the figures.  Like the 

throttle cases, shocks can be detected by locating large sudden changes in pressure. 

Flow Direction 

Blade Direction 



 48

 

Figure 37.   95% Speed Outer Casing Pressure Distribution, Time = 0 seconds, Inlet 
Temperature = 293.15 K (527.67 oR) 

 

Figure 38.   95% Speed Outer Casing Pressure Distribution After a Half Second of 
Steam Ingestion, Time = 2.5 seconds, Inlet Temperature = 296.75 K (534.15 oR) 
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Flow Direction 

Blade Direction 
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Figure 39.   95% Speed Outer Casing Pressure Distribution After One Second of 
Steam Ingestion, Time = 3 seconds, Inlet Temperature = 300.5 K (540.9 oR) 

 

Figure 40.   95% Speed Outer Casing Pressure Distribution After 1.5 Seconds of 
Steam Ingestion, Time = 3.5 seconds, Inlet Temperature = 304.25 K (547.65 oR) 

Flow Direction 

Flow Direction 

Blade Direction 

Blade Direction 
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These figures show that as the steam ingestion simulation continue the shocks 

moved slightly towards the compressor inlet.  Also the low pressure and high speed zone 

intensified as steam ingestion occurs.  The shock movement towards the inlet that 

occurred during steam ingestion resembled shock behavior during throttling.  Mass flow 

rate and density also decreased during the simulated steam ingestion event.  Figure 41 

plots mass flow rate vs. time for the simulated steam ingestion event, and Figure 42 plots 

the average inlet density vs. time. 
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Figure 41.   95% Speed Mass Flow Rate Plot as Steam Ingestion Occurs 
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Figure 42.   95% Speed Average Inlet Density Plot as Steam Ingestion Occurs 

The linear change in mass flow rate and density seemed directly related to the 

linear changes in temperature and mass fraction.  The final steam ingestion mass flow 

rate at 95% speed of 6.258 kg/s (2.841 lbm/s) was less than the throttle stall mass flow 

rate of 6.620 kg/s (3.005 lbm/s).  The changing simulation gas properties may have 

reduced the mass flow rate to a throttle stall point.  These properties would be difficult to 

be properly non-dimensionalized and compared to the CFD compressor maps because the 

performance variables are dependent on specific heat ratio, γ.  The specific heat ratio 

changes as steam is ingested.  This dependency is given by Hill and Peterson [9] as,  
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Though this steam stall point cannot be accurately placed on the compressor maps as a 

throttle point, the simulation may be undergoing a throttle like stall. 
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In order to more fully grasp simulated shock behavior during a steam ingestion 

event, a Mach one isosurface was generated within the passage.  This isosurface was 

colored to display local temperature distribution.  Figures 43, 44, 45, and 46 display the 

isosurface, as time advanced within the simulation.  Each figure is labeled with time and 

inlet temperature.   

 

Figure 43.   95% Speed Mach One Isosurface, Time = 0 seconds, Inlet Temperature = 
293.15 K (518.67 oR) 
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Figure 44.   95% Speed Mach One Isosurface After a Half Second of Steam Ingestion, 
Time =2.5 seconds, Inlet Temperature = 296.75 K (527.67 oR) 

 

Figure 45.   95% Speed Mach One Isosurface After One Second of Steam Ingestion, 
Time = 3 seconds, Inlet Temperature = 300.5 K (534.15 oR) 
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Figure 46.   95% Speed Mach One Isosurface After 1.5 Seconds of Steam Ingestion, 
Time = 3.5 Seconds, Inlet Temperature = 304.25 K (540.9 oR) 

The Mach one surface approximates the location of the shocks within the passage.  

The extended isosurface flat section near the inlet of the passage is not a shock, but it 

indicates the location where the compressor rotates at Mach one.  As steam is ingested 

into the passage, the temperature of the isosurface along the rotational section increases 

and the isosurface shock approximations move towards the inlet as seen in comparison of 

Figure 44 to Figures 45 and 46.  The circles on the figures indicate a section of the 

isosurface that demonstrated this forward shock movement.  This behavior resembles the 

changes that occur while throttling.   

F. STEAM INGESTION RAMP FUNCTION SLOPE 

In order to determine the effect of varying the ramp function slope on the steam 

stall point location, two new ramp functions were created.  Figure 47 and Figure 48 

display the new temperature and air mass fraction ramp functions with the original ramp 

functions.   



 55

292

294

296

298

300

302

304

306

308

310

0 1 2 3 4 5 6 7

Time (seconds)

T
em

p
er

at
u

re
 (

K
)

Original
Slow
Fast

 

Figure 47.   95% Speed Various Temperature Ramp Functions 
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Figure 48.   95% Speed Various Air Mass Fraction Ramp Functions 

Changing the ramp function had no effect on the steam stall point: with all three 

ramp functions steam-induced stall occurred using the same outlet pressure conditions.  

Steam-induced stall did not occur when lower back pressures, and therefore higher mass 
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flow rates, were set.  These results indicate that final gas properties determined the steam-

induced stall point in the model rather than ramp function slope.  This ramp 

independence also supports the CFD rotor reaching a throttle stall point during steam 

ingestion.  While ramp function slope did not affect the model's steam-induced stall 

point, the physical rotor may react differently.  The physical rotor's steam stall mechanics 

differ from the CFD models, and, therefore, the ramp function slope may still have an 

effect on the physical steam-induced stall point.   
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VII. CONCLUSIONS 

The objective of this study to develop a CFD simulation to predict and model the 

performance of Sanger Rotor in both normal and steam ingestion operations was 

achieved.  Though the simulation results did not precisely match the physical 

experimental results, they did generate performance maps that matched the shape of the 

physical compressor maps.  Quasi-steady-state simulations were shown to retain flow 

instabilities that steady-state simulations damped out, while being computationally 

cheaper than fully transient simulations.  By maintaining these flow instabilities, more 

realistic simulation throttle-induced stall points were found.  Simulation steam-induced 

stall points were also found by using quasi-steady-state simulations combined with 

changing inlet conditions.  These simulation throttle points acted like their physical 

counterparts with steam-induced stall occurring at a higher mass flow rates than throttle-

induced stall.  The simulations’ ability to replicate these performance trends adds 

confidence to their predictions.  The 95% speed simulations had similar differences in 

stall margin between throttle and steam-induced stall as the physical experiment, which 

showed that CFD techniques can be used to estimate the stall reduction between throttle 

and steam-induced stall.  Though relatively basic simulations were conducted using only 

one blade passage, the CFD model created compressor maps and performance trends that 

approximated the physical Sanger rotor’s performance.  
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VIII. RECOMMENDATIONS 

Though the model did display considerable potential to simulate operating 

conditions on the Sanger rotor, additional modifications and research are needed to 

achieve higher levels of fidelity.  The next computational grid created should have a finer 

y+ resolution, which may allow for additional turbulence models to be tested as well as 

an increase in simulation accuracy.  The physical hot shape of the rotor blade should be 

examined to insure that it and the computer blade model match.  Simulation inlet 

temperature should be set at 288.15 K (518.67 oR) for non-steam ingestion simulations so 

that post-process mass flow rate normalization will be not required.  The steam ingestion 

functions should be changed to reflect the new physical temperature slopes and 

maximums.  The air mass fraction of this new steam ingestion data should also be 

examined in order to update the air mass fraction function.  A rotor over-speed should 

also be included in the simulation during steam ingestion.  Full rotor simulations should 

be conducted to investigate their performance versus the single blade passage model. 

Then a temperature distribution should be placed over the inlet that reflects the physical 

data.   Fully transient simulations with appropriate Courant numbers should be conducted 

at throttle stall.  A series of fully transient simulations should be run that have constant 

inlet conditions that are derived from specific times on the steam ingestion function.  By 

keeping inlet conditions constant but conducting multiple simulations along the steam 

ingestion function, fully transient steam ingestion simulations can be made without 

running for the entire steam ingestion event duration.  Fully transient simulations may 

provide more accurate flow field results than quasi-steady-state simulations.  By 

implementing and testing these changes, a more accurate CFD model may be constructed. 
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APPENDIX A: SAMPLE BLADE PROFILES 
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APPENDIX B: MODAL ANALYSIS ON A ROTOR BLADE 

A modal analysis was conducted on the rotor blade geometry using the ANSYS 

modal simulation.  The 11 profile final blade geometry was used in the simulation, and 

the bottom of the blade was fixed.  The following table displays the first three physical 

modal frequencies and the first five simulation frequencies.  The physical frequencies 

were found by O’Brien [7].   

Table 5.   Physical and Simulation Modal Frequency Comparison 

The first three simulation modal frequencies are close to the actual rotor blade 

frequencies.  The simulation only modeled one blade but the physical blades were tested 

on the full rotor.  The full rotor does have an effect on the individual blades’ modal 

frequencies, which would result in differences between the physical results and the 

simulation results.  The following five figures display the first five simulation modal 

frequencies’ total deformation.  The frequencies are given with a brief description of their 

movement characteristics. 

 
 

Figure 49.   Mode 1: 756.69 Hertz. The top of the blade moves back and forth. Not 
much twisting occurs in the blade. 

 

  Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 
Physical Frequencies (Hz) 750 2,700 3,000     

Simulation Frequencies 
(Hz) 

757 2,719 2,932 5,198 5,534 
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Figure 50.   Mode 2: 2,718.7 Hertz. The top of the blade twists. The front edge 
buckles. 

 

Figure 51.   Mode 3: 2,932 Hertz. The front tip bends back and forth. The blade twists 
slightly. 
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Figure 52.   Mode 4: 5,197.5 Hertz. The front tip bends back and forth, but less of the 
tip bends than in mode 3. The blade twists slightly. 

 

Figure 53.   Mode 5: 5,534.2 Hertz. The top of the blade twists and the front edge 
buckles.   
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APPENDIX C: GRID ITERATION PROCESS 

A coarse model was first created and tested, and then refinements to that model 

were added and tested until the final grid was achieved.  The first grid used a blade model 

composed of only three profiles and no tip gap.  This model used an annulus geometry 

file exported from Solid Works as an IGES file.  The use of an IGES file for the annulus 

created several geometric complications in the model.  In the process of exportation and 

importation, the outer casing surface of the annulus was divided into two surfaces, and 

the hub nose section was split into several surfaces.  Figure 54 displays these surfaces 

splits.   

 

Figure 54.   Split Surfaces on Outer Casing and Hub 

In addition to splitting surfaces, the annulus’s periodic sides had slightly different 

areas.  This difference in area prevented the construction of a one to one periodic grid on 

both periodic sides.  A periodic grid was established between the forward and rear 

periodic boundary sections, but the middle section was meshed without the periodic 

condition.  In order to create a periodic boundary condition on the periodic sides for the 

simulation, the entire periodic sides were set as periodic boundaries in CFX-Pre while 

defining the simulation.  On the middle sections, interpolation between sides was used 

since a one to one grid was not created.  This interpolation added error to the simulation 

and increased computational costs.  The meshing tool produced several warnings 

concerning small interior angles on the hub nose section surface grid.  These warnings 

were noted, but the warnings did not prevent the generation of a surface and a volume 
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grid.  This computational grid was then tested using CFX to check for stability and 

convergence.  The testing boundary conditions and methods was elaborated on in the 

Steady State Simulations section. 

The second computational grid iteration still used a three profile blade model, but 

it contained various improvements to the initial grid such as a tip gap between the rotor 

blade and outer casing.  This tip gap was set at 1.00 mm (0.03937 in).  This tip gap was 

significantly larger than the actual tip gap of the transonic compressor rig, but the tip gap 

did test the model’s ability to include a space between rotor blade and outer casing.  In 

order to place computational grid node points between the rotor blade and outer casing, 

the detect faces option of the proximity detection setting was turned on.  At least four 

elements were placed between each surface.  In addition to including a tip gap, this model 

exported the annulus from Solid Works as an STP file rather than an IGES file.  The use 

of an STP file resolved many of the initial model’s geometric problems.  The outer casing 

surface and hub nose surfaces were imported as complete surfaces.  Figure 55 displays 

these surfaces fully intact. 

 

Figure 55.   Fully Intact Outer Casing and Hub 

Because the hub nose was one surface, fewer warnings about small interior angles 

occurred while meshing.  Unlike the IGES export file, the STP export file had periodic 

sides with identical areas.  This agreement in area allowed for the construction of one to 

one periodic boundary grids on the entire periodic sides.  This grid construction 

eliminated interpolation on the periodic sides, and created more accurate and 

computationally cheaper simulations.  Because of the improvements gained from 

changing the annulus file from IGES to STP, changing the rotor blade file to an STP file 
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was attempted.  The blade STP file would not load into the ANSYS mesh program, so the 

original IGES file was used instead.  This model also incorporated inflation boundaries 

on the outer casing and rotor blade and hub boundaries.  Inflation boundaries were 

included to increase the simulation’s boundary layer resolution.  Five layers of inflation 

boundaries were set with a maximum thickness of 2.0 mm (0.07874 in).  Like the first 

grid iteration, this grid was tested in CFX for stability and convergence. 
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APPENDIX D: FINAL REFINED BLADE GRID MESH OPTIONS 

Geometry 
 Length Units: mm 
 Transparency (%): 0 
 Shine (%): 30 

 Verify Options 
 Short Edge Limit [mm]: 0.18 
 Sliver Factor Limit: 25 

Fix Options 
 Remove Short Edges: No 

Solid 
 Location: 1 Body 

Virtual Topology 
 Virtual Topology 

 Automatic Merge Strategy: Low 
Automatic Merge Option 

 Option: Entire Model 
Regions 
 Default 2D Region 
 Outlet 
 Inlet 
 Rotor Casing 
 Outer Casing 
Mesh 

 Default Mesh Scale [mm]: 8.8 
 Default Mesh Scale Factor [mm]: 1 

Spacing 
 Default Body Spacing 

 Maximum Spacing [mm]: 8.8 
Default Face Spacing 

 Option: Angular Resolution 
 Angular Resolution [Degrees]: 30 
 Minimum Edge Length [mm]: 0.44 
 Maximum Edge Length [mm]: 8.8 
 Radius of Influence [mm]: 0 
 Expansion Factor: 1.2 

Face Spacing 1 
 Option: Angular Resolution 
 Angular Resolution [Degrees]: 5 
 Minimum Edge Length [mm]: 0.44 
 Maximum Edge Length [mm]: 8.8 
 Radius of Influence [mm]: 0 
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 Expansion Factor: 1.2 
 Location: 1 2D Region (Nose) 

Controls 
Periodicity 
 Periodic Pairs 1 

 Location 1: 3 2D Regions 
 Location 2: 3 2D Regions 

Periodic Type 
 Option: Rotational 
 Point: 0 [mm], 0 [mm], 0 [mm] 
 Point: 1 [mm], 0 [mm], 0 [mm] 

Inflation 
 Inflation 

 Number of Inflated Layers: 5 
 Expansion Factor: 1.2 
 Number of Spreading Iterations: 4 
 Minimum Internal Angle [Degrees]: 2.5 
 Minimum External Angle [Degrees]: 10.0 

Inflation Option 
 Option: Total Thickness 
 Thickness Multiplier: 1 

Inflated Boundary 1 
 Location: 6 2D Regions 
 Maximum Thickness [mm]: 8.8 

Stretch 
 Stretch in X: 1 
 Stretch in Y: 1 
 Stretch in Z: 1 

Proximity 
 Edge Proximity: Yes 
 Surface Proximity: Yes 
 Elements Across Gap: 4 
 Maximum Number of Passes 5 

Options 
 Options 

 Global Mesh Scale: 1 
Surface Meshing 

 Option: Delaunay 
Meshing Strategy 

 Option: Advancing Front and Inflation 3D 
Volume Meshing 

 Option: Advancing Front 
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APPENDIX E: STEADY-STATE SIMULATION SOLVER 
SETTINGS 

Simulation 
 Simulation Type 
  Basic Settings 
  External Solver Coupling 

 Option: None 
Simulation Type 

 Option: Steady State 
Default Domain 
 General Options 
 Basic Settings 

 Location: B40 
 Domain Type: Fluid Domain 
 Fluid List: mixture 
 Coord Frame: Coord 0 
 Particle Tracking: unselected 

Domain Models 
Pressure 

 Reference Pressure: 1 [atm] 
Buoyancy 

 Option: Non Buoyant 
Domain Motion 

 Option: Rotating 
 Angular Velocity: 25730.8 [rev min^-1] 
 Alternate Rotational Model: unselected 

Axis Definition 
 Option: Coordinate Axis 
 Rotation Axis: Global X 

Mesh Deformation 
 Option: None 

Fluid Models 
Heat Transfer 

 Option: Total Energy 
 Incl. Viscous Work Term: selected 

Turbulence 
 Option: k-Epsilon 
 Wall Function: Scalable 

Reaction or Combustion 
 Option: None 

Thermal Radiation Model 
 Option: None 
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Component Details 
 Air Ideal Gas 
 Water Ideal Gas 
Air Ideal Gas 

 Option: Transport Equation 
 Kinematic Diffusivity: unselected 

Initialization 
 Domain Initialization: unselected 

Inlet 
 Basic Settings 

 Boundary Type: Inlet 
 Location: Inlet 
 Coord Frame: unselected 
 Frame Type: Stationary 

Boundary Details 
Flow Regime 

 Option: Subsonic 
Mass and Momentum 

 Option: Stat. Frame Tot. Press. 
 Relative Pressure: 0 [Pa] 

Flow Direction 
 Option: Normal to Boundary Condition 

Turbulence 
 Option: Medium (Intensity = 5%) 

Heat Transfer 
 Option: Stat. Frame Total Temp. 
 Stat. Frame Tot. Temp: 20 [C] 

Component Details 
 Air Ideal Gas 
Air Ideal Gas 
 Option: Mass Fraction 
 Mass Fraction: 1 

Sources 
 Boundary Source: unselected 

Plot Options 
 Boundary Contour: unselected 
 Boundary Vector: unselected 

Outer Casing 
 Basic Settings 

 Boundary Type: Wall 
 Location: Outer Casing 
 Coord Frame: unselected 
 Frame Type: Rotating 

Thin Surfaces 



 77

 Create Thin Surface Partner: unselected 
Boundary Details 
Wall Influence On Flow 

 Option: No Slip 
 Wall Velocity: selected 

o Option: Counter Rotating Wall 
Wall Roughness 

 Option Smooth Wall 
Heat Transfer 

 Option: Adiabatic 
Sources 

 Boundary Source: unselected 
Plot Options 

 Boundary Contour: unselected 
 Boundary Vector: unselected 

Outlet 
 Basic Settings 

 Boundary Type: Outlet 
 Location Outlet 
 Coord Frame: unselected 
 Frame Type: Stationary 

Boundary Details 
Flow Regime 

 Option: Subsonic 
Mass and Momentum 

 Option: Static Pressure 
 Relative Pressure: .15 [atm] 

Sources 
 Boundary Source: unselected 

Plot Options 
 Boundary Contour: unselected 
 Boundary Vector: unselected 

Periodic Side 1 
 Basic Settings 

 Boundary Type: Interface 
 Location: F47.40,F51.40,F41.40 
 Coord Frame: unselected 

Boundary Details 
Mass and Momentum 

 Option: Conservative Interface Flux 
Turbulence 

 Option: Conservative Interface Flux 
Heat Transfer 

 Option: Conservative Interface Flux 
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Component Details 
 Air Ideal Gas 
Air Ideal Gas 
 Option: Conservative Interface Flux 
 Nonoverlap Conditions: unselected 

Sources 
 Boundary Source: unselected 

Plot Options 
 Boundary Contour: unselected 
 Boundary Vector: unselected 

Periodic Side 2 
 Basic Settings 

 Boundary Type: Interface 
 Location: F44.40,F43.40,F46.40 
 Coord Frame: unselected 

Boundary Details 
Mass and Momentum 

 Option: Conservative Interface Flux 
Turbulence 

 Option: Conservative Interface Flux 
Heat Transfer 

 Option: Conservative Interface Flux 
Component Details 

 Air Ideal Gas 
Air Ideal Gas 
 Option: Conservative Interface Flux 
 Nonoverlap Conditions: unselected 

Sources 
 Boundary Source: unselected 

Plot Options 
 Boundary Contour: unselected 
 Boundary Vector: unselected 

Rotor Casing 
 Basic Settings 

 Boundary Type: Wall 
 Location: Rotor Casing 
 Coord Frame: unselected 
 Frame Type: Rotating 

Thin Surfaces 
 Create Thin Surface Partner: unselected 

Boundary Details 
Wall Influence On Flow 

 Option: No Slip 
 Wall Velocity: unselected 
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Wall Roughness 
 Option Smooth Wall 

Heat Transfer 
 Option: Adiabatic 

Sources 
 Boundary Source: unselected 

Plot Options 
 Boundary Contour: unselected 
 Boundary Vector: unselected 

Periodic 
 Basic Settings 

 Interface Type: Fluid Fluid 
Interface Side 1 

 Domain (Filter): Default Domain 
 Region List: F41.40,F47.40,F51.40 

Interface Side 2 
 Domain (Filter): Default Domain 
 Region List: F43.40,F44.40,F46.40 

Interface Models 
 Option: Rotational Periodicity 
Axis Definition 
 Option: Coordinate Axis 
 Rotation Axis: Global Axis 

Mesh Connection Method 
 Option: 1:1 

Solver 
Solution Units 
 Basic Settings 

 Mass Units: [kg] 
 Length Units: [m] 
 Time Units: [s] 
 Temperature Units [K] 
 Angle Units: selected 
 Angle Units: [rad] 
 Solid Angle Units: selected 
 Solid Angle Units: [sr] 

Solver Control 
 Basic Settings 
 Advection Scheme 

 Option: High Resolution 
Convergence Control 

 Minimum Number of Iterations: unselected 
 Max. Iterations: 10000 

Fluid Timescale Control 
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 Timescale Control: Auto Timescale 
 Length Scale Option: Conservative 
 Timescale Factor: 1.0 
 Maximum Timescale: unselected 

Convergence Criteria 
 Residual Type: RMS 
 Residual Target: 0.00001 
 Conservation Target: unselected 
 Elapsed Time Control: unselected 

Equation Class Settings 
Equation Class 

 Continuity 
 Continuity: unselected 

Advanced Options 
Dynamic Model Control 

 Global Dynamic Model Control: selected 
Compressibility Control: selected 

 High Speed Numerics: selected 
Output Control 
 Results 

 Option: Standard 
 File Compression: Default 
 Output Variable Operators: unselected 
 Output Boundary Flows: unselected 
 Output Equation Residuals: unselected 

Backup 
 None 

Monitor 
 Monitor Options: unselected 

Export 
 Efficiency Output: unselected 

Mesh Adaptation 
 Basic Settings 

 Activated Adaptation: selected 
 Region List: Assembly 
 Save Intermediate Files: selected 

Adaptation Criteria 
 Variables List: Absolute Pressure 
 Max. Num. Steps: 3 
 Option: Multiple of Initial Mesh 
 Node Factor: 2.0 

Adaptation Method 
 Option: Solution Variation 
 Minimum Edge Length: 0.0 
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Adaptation Convergence Criteria 
 Max. Iter. Per Step: 500 
 Residual Type: RMS 
 Target Residual: 0.0001 

Advanced Options 
 Node Alloc. Param.: 0.0 
 Number of Levels: 3 

Expert Parameters 
 Convergence Control 

   High Speed Models 
 Max continuity loops: selected 
 Max continuity loops: 2 

Materials 
 Air Ideal Gas 
 Water Ideal Gas 

mixture 
 Basic Settings 

 Option: Variable Composition Mixture 
 Material Group: User 
 Materials List: Air Ideal Gas, Water Ideal Gas 
 Material Description: unselected 
 Thermodynamic State: selected 
 Thermodynamic State: Gas 
 Coord Frame: unselected 

Mixture Properties 
 Mixture Properties: selected 
 Option: Ideal Mixture 

Thermodynamic Properties 
 Equation of State: selected 
 Option: Ideal Mixture 

Specific Heat Capacity 
 Option Ideal Mixture 

Transport Properties: all unselected 
Radiation Properties: all unselected 
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APPENDIX F: THROTTLE STALL SIMULATION SOLVER 
SETTINGS 

Simulation 
 Simulation Type 
  Basic Settings 
  External Solver Coupling 

 Option: None 
Simulation Type 

 Option: Transient 
Time Duration 

 Option: Total Time 
 Total Time: 4.01076 [s] 

Time Steps 
 Option: Timesteps 
 Timesteps: 172*.0233184 [s] 

Initial Time 
 Option: Automatic with Value 
 Time: 0 [s] 

Default Domain 
 General Options 
 Basic Settings 

 Location: B40 
 Domain Type: Fluid Domain 
 Fluid List: mixture 
 Coord Frame: Coord 0 
 Particle Tracking: unselected 

Domain Models 
Pressure 

 Reference Pressure: 1 [atm] 
Buoyancy 

 Option: Non Buoyant 
Domain Motion 

 Option: Rotating 
 Angular Velocity: 25730.8 [rev min^-1] 
 Alternate Rotational Model: unselected 

Axis Definition 
 Option: Coordinate Axis 
 Rotation Axis: Global X 

Mesh Deformation 
 Option: None 

Fluid Models 
Heat Transfer 
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 Option: Total Energy 
 Incl. Viscous Work Term: selected 

Turbulence 
 Option: k-Epsilon 
 Wall Function: Scalable 

Reaction or Combustion 
 Option: None 

Thermal Radiation Model 
 Option: None 

Component Details 
 Air Ideal Gas 
 Water Ideal Gas 
Air Ideal Gas 

 Option: Transport Equation 
 Kinematic Diffusivity: unselected 

Initialization 
 Domain Initialization: unselected 

Inlet 
 Basic Settings 

 Boundary Type: Inlet 
 Location: Inlet 
 Coord Frame: unselected 
 Frame Type: Stationary 

Boundary Details 
Flow Regime 

 Option: Subsonic 
Mass and Momentum 

 Option: Stat. Frame Tot. Press. 
 Relative Pressure: 0 [Pa] 

Flow Direction 
 Option: Normal to Boundary Condition 

Turbulence 
 Option: Medium (Intensity = 5%) 

Heat Transfer 
 Option: Stat. Frame Total Temp. 
 Stat. Frame Tot. Temp: 20 [C] 

Component Details 
 Air Ideal Gas 
Air Ideal Gas 
 Option: Mass Fraction 
 Mass Fraction: 1 

Sources 
 Boundary Source: unselected 

Plot Options 
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 Boundary Contour: unselected 
 Boundary Vector: unselected 

Outer Casing 
 Basic Settings 

 Boundary Type: Wall 
 Location: Outer Casing 
 Coord Frame: unselected 
 Frame Type: Rotating 

Thin Surfaces 
 Create Thin Surface Partner: unselected 

Boundary Details 
Wall Influence On Flow 

 Option: No Slip 
 Wall Velocity: selected 

o Option: Counter Rotating Wall 
Wall Roughness 

 Option Smooth Wall 
Heat Transfer 

 Option: Adiabatic 
Sources 

 Boundary Source: unselected 
Plot Options 

 Boundary Contour: unselected 
 Boundary Vector: unselected 

Outlet 
 Basic Settings 

 Boundary Type: Outlet 
 Location Outlet 
 Coord Frame: unselected 
 Frame Type: Stationary 

Boundary Details 
Flow Regime 

 Option: Subsonic 
Mass and Momentum 

 Option: Static Pressure 
 Relative Pressure: .15 [atm] 

Sources 
 Boundary Source: unselected 

Plot Options 
 Boundary Contour: unselected 
 Boundary Vector: unselected 

Periodic Side 1 
 Basic Settings 

 Boundary Type: Interface 
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 Location: F47.40,F51.40,F41.40 
 Coord Frame: unselected 

Boundary Details 
Mass and Momentum 

 Option: Conservative Interface Flux 
Turbulence 

 Option: Conservative Interface Flux 
Heat Transfer 

 Option: Conservative Interface Flux 
Component Details 

 Air Ideal Gas 
Air Ideal Gas 
 Option: Conservative Interface Flux 
 Nonoverlap Conditions: unselected 

Sources 
 Boundary Source: unselected 

Plot Options 
 Boundary Contour: unselected 
 Boundary Vector: unselected 

Periodic Side 2 
 Basic Settings 

 Boundary Type: Interface 
 Location: F44.40,F43.40,F46.40 
 Coord Frame: unselected 

Boundary Details 
Mass and Momentum 

 Option: Conservative Interface Flux 
Turbulence 

 Option: Conservative Interface Flux 
Heat Transfer 

 Option: Conservative Interface Flux 
Component Details 

 Air Ideal Gas 
Air Ideal Gas 
 Option: Conservative Interface Flux 
 Nonoverlap Conditions: unselected 

Sources 
 Boundary Source: unselected 

Plot Options 
 Boundary Contour: unselected 
 Boundary Vector: unselected 

Rotor Casing 
 Basic Settings 

 Boundary Type: Wall 
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 Location: Rotor Casing 
 Coord Frame: unselected 
 Frame Type: Rotating 

Thin Surfaces 
 Create Thin Surface Partner: unselected 

Boundary Details 
Wall Influence On Flow 

 Option: No Slip 
 Wall Velocity: unselected 

Wall Roughness 
 Option Smooth Wall 

Heat Transfer 
 Option: Adiabatic 

Sources 
 Boundary Source: unselected 

Plot Options 
 Boundary Contour: unselected 
 Boundary Vector: unselected 

Periodic 
 Basic Settings 

 Interface Type: Fluid Fluid 
Interface Side 1 

 Domain (Filter): Default Domain 
 Region List: F41.40,F47.40,F51.40 

Interface Side 2 
 Domain (Filter): Default Domain 
 Region List: F43.40,F44.40,F46.40 

Interface Models 
 Option: Rotational Periodicity 
Axis Definition 
 Option: Coordinate Axis 
 Rotation Axis: Global Axis 

Mesh Connection Method 
 Option: 1:1 

Solver 
Solution Units 
 Basic Settings 

 Mass Units: [kg] 
 Length Units: [m] 
 Time Units: [s] 
 Temperature Units [K] 
 Angle Units: selected 
 Angle Units: [rad] 
 Solid Angle Units: selected 
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 Solid Angle Units: [sr] 
Solver Control 
 Basic Settings 
 Advection Scheme 

 Option: High Resolution 
Transient Scheme 

 Option: Second Order Backward Euler 
Timestep Initialization 

 Option: Automatic 
 Lower Courant Number: unselected 
 Upper Courant Number: unselected 

Convergence Control 
 Minimum Number of Coefficient Loops: unselected 
 Max. Coeff. Loops: 100 

Fluid Timescale Control 
 Timescale Control: Coefficient Loops 

Convergence Criteria 
 Residual Type: RMS 
 Residual Target: 0.0001 
 Conservation Target: unselected 
 Elapsed Time Control: unselected 

Equation Class Settings 
Equation Class 

 Continuity 
 Continuity: unselected 

Advanced Options 
Dynamic Model Control 

 Global Dynamic Model Control: selected 
Compressibility Control: selected 

 High Speed Numerics: selected 
Output Control 
 Results 

 Option: Standard 
 File Compression: Default 
 Output Variable Operators: unselected 
 Output Boundary Flows: unselected 
 Output Equation Residuals: unselected 

Backup 
 None 

Trn Results 
Transient Results 1 

 Option Standard 
 File Compression: Default 
 Output Boundary Flows: selected 
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 Boundary Flows: All 
 Output Boundary Residuals: unselected 

Output Frequency 
 Option: Timestep Interval 
 Timestep Interval: 5 

Trn Stats 
none 
Monitor 

 Monitor Options: unselected 
Export 

 Efficiency Output: unselected 
Expert Parameters 
 Convergence Control 

   High Speed Models 
 Max continuity loops: selected 
 Max continuity loops: 2 

Materials 
 Air Ideal Gas 
 Water Ideal Gas 

mixture 
 Basic Settings 

 Option: Variable Composition Mixture 
 Material Group: User 
 Materials List: Air Ideal Gas, Water Ideal Gas 
 Material Description: unselected 
 Thermodynamic State: selected 
 Thermodynamic State: Gas 
 Coord Frame: unselected 

Mixture Properties 
 Mixture Properties: selected 
 Option: Ideal Mixture 

Thermodynamic Properties 
 Equation of State: selected 
 Option: Ideal Mixture 

Specific Heat Capacity 
 Option Ideal Mixture 

Transport Properties: all unselected 
Radiation Properties: all unselected 
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APPENDIX G: STEAM INGESTION SIMULATION SOLVER 
SETTINGS 

Simulation 
 Simulation Type 
  Basic Settings 
  External Solver Coupling 

 Option: None 
Simulation Type 

 Option: Transient 
Time Duration 

 Option: Total Time 
 Total Time: 4.01076 [s] 

Time Steps 
 Option: Timesteps 
 Timesteps: 172*.0233184 [s] 

Initial Time 
 Option: Automatic with Value 
 Time: 0 [s] 

Default Domain 
 General Options 
 Basic Settings 

 Location: B40 
 Domain Type: Fluid Domain 
 Fluid List: mixture 
 Coord Frame: Coord 0 
 Particle Tracking: unselected 

Domain Models 
Pressure 

 Reference Pressure: 1 [atm] 
Buoyancy 

 Option: Non Buoyant 
Domain Motion 

 Option: Rotating 
 Angular Velocity: 25730.8 [rev min^-1] 
 Alternate Rotational Model: unselected 

Axis Definition 
 Option: Coordinate Axis 
 Rotation Axis: Global X 

Mesh Deformation 
 Option: None 

Fluid Models 
Heat Transfer 
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 Option: Total Energy 
 Incl. Viscous Work Term: selected 

Turbulence 
 Option: k-Epsilon 
 Wall Function: Scalable 

Reaction or Combustion 
 Option: None 

Thermal Radiation Model 
 Option: None 

Component Details 
 Air Ideal Gas 
 Water Ideal Gas 
Air Ideal Gas 

 Option: Transport Equation 
 Kinematic Diffusivity: unselected 

Initialisation 
 Domain Initialisation: unselected 

Inlet 
 Basic Settings 

 Boundary Type: Inlet 
 Location: Inlet 
 Coord Frame: unselected 
 Frame Type: Stationary 

Boundary Details 
Flow Regime 

 Option: Subsonic 
Mass and Momentum 

 Option: Stat. Frame Tot. Press. 
 Relative Pressure: 0 [Pa] 

Flow Direction 
 Option: Normal to Boundary Condition 

Turbulence 
 Option: Medium (Intensity = 5%) 

Heat Transfer 
 Option: Stat. Frame Total Temp. 
 Stat. Frame Tot. Temp: Statements 

Component Details 
 Air Ideal Gas 
Air Ideal Gas 
 Option: Mass Fraction 
 Mass Fraction: mass fraction 

Sources 
 Boundary Source: unselected 

Plot Options 
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 Boundary Contour: unselected 
 Boundary Vector: unselected 

Outer Casing 
 Basic Settings 

 Boundary Type: Wall 
 Location: Outer Casing 
 Coord Frame: unselected 
 Frame Type: Rotating 

Thin Surfaces 
 Create Thin Surface Partner: unselected 

Boundary Details 
Wall Influence On Flow 

 Option: No Slip 
 Wall Velocity: selected 

o Option: Counter Rotating Wall 
Wall Roughness 

 Option Smooth Wall 
Heat Transfer 

 Option: Adiabatic 
Sources 

 Boundary Source: unselected 
Plot Options 

 Boundary Contour: unselected 
 Boundary Vector: unselected 

Outlet 
 Basic Settings 

 Boundary Type: Outlet 
 Location Outlet 
 Coord Frame: unselected 
 Frame Type: Stationary 

Boundary Details 
Flow Regime 

 Option: Subsonic 
Mass and Momentum 

 Option: Static Pressure 
 Relative Pressure: .15 [atm] 

Sources 
 Boundary Source: unselected 

Plot Options 
 Boundary Contour: unselected 
 Boundary Vector: unselected 

Periodic Side 1 
 Basic Settings 

 Boundary Type: Interface 



 94

 Location: F47.40,F51.40,F41.40 
 Coord Frame: unselected 

Boundary Details 
Mass and Momentum 

 Option: Conservative Interface Flux 
Turbulence 

 Option: Conservative Interface Flux 
Heat Transfer 

 Option: Conservative Interface Flux 
Component Details 

 Air Ideal Gas 
Air Ideal Gas 
 Option: Conservative Interface Flux 
 Nonoverlap Conditions: unselected 

Sources 
 Boundary Source: unselected 

Plot Options 
 Boundary Contour: unselected 
 Boundary Vector: unselected 

Periodic Side 2 
 Basic Settings 

 Boundary Type: Interface 
 Location: F44.40,F43.40,F46.40 
 Coord Frame: unselected 

Boundary Details 
Mass and Momentum 

 Option: Conservative Interface Flux 
Turbulence 

 Option: Conservative Interface Flux 
Heat Transfer 

 Option: Conservative Interface Flux 
Component Details 

 Air Ideal Gas 
Air Ideal Gas 
 Option: Conservative Interface Flux 
 Nonoverlap Conditions: unselected 

Sources 
 Boundary Source: unselected 

Plot Options 
 Boundary Contour: unselected 
 Boundary Vector: unselected 

Rotor Casing 
 Basic Settings 

 Boundary Type: Wall 
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 Location: Rotor Casing 
 Coord Frame: unselected 
 Frame Type: Rotating 

Thin Surfaces 
 Create Thin Surface Partner: unselected 

Boundary Details 
Wall Influence On Flow 

 Option: No Slip 
 Wall Velocity: unselected 

Wall Roughness 
 Option Smooth Wall 

Heat Transfer 
 Option: Adiabatic 

Sources 
 Boundary Source: unselected 

Plot Options 
 Boundary Contour: unselected 
 Boundary Vector: unselected 

Periodic 
 Basic Settings 

 Interface Type: Fluid Fluid 
Interface Side 1 

 Domain (Filter): Default Domain 
 Region List: F41.40,F47.40,F51.40 

Interface Side 2 
 Domain (Filter): Default Domain 
 Region List: F43.40,F44.40,F46.40 

Interface Models 
 Option: Rotational Periodicity 
Axis Definition 
 Option: Coordinate Axis 
 Rotation Axis: Global Axis 

Mesh Connection Method 
 Option: 1:1 

Solver 
Solution Units 
 Basic Settings 

 Mass Units: [kg] 
 Length Units: [m] 
 Time Units: [s] 
 Temperature Units [K] 
 Angle Units: selected 
 Angle Units: [rad] 
 Solid Angle Units: selected 
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 Solid Angle Units: [sr] 
Solver Control 
 Basic Settings 
 Advection Scheme 

 Option: High Resolution 
Transient Scheme 

 Option: Second Order Backward Euler 
Timestep Initialization 

 Option: Automatic 
 Lower Courant Number: unselected 
 Upper Courant Number: unselected 

Convergence Control 
 Minimum Number of Coefficient Loops: unselected 
 Max. Coeff. Loops: 100 

Fluid Timescale Control 
 Timescale Control: Coefficient Loops 

Convergence Criteria 
 Residual Type: RMS 
 Residual Target: 0.0001 
 Conservation Target: unselected 
 Elapsed Time Control: unselected 

Equation Class Settings 
Equation Class 

 Continuity 
 Continuity: unselected 

Advanced Options 
Dynamic Model Control 

 Global Dynamic Model Control: selected 
Compressibility Control: selected 

 High Speed Numerics: selected 
Output Control 
 Results 

 Option: Standard 
 File Compression: Default 
 Output Variable Operators: unselected 
 Output Boundary Flows: unselected 
 Output Equation Residuals: unselected 

Backup 
 None 

Trn Results 
Transient Results 1 

 Option Standard 
 File Compression: Default 
 Output Boundary Flows: selected 
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 Boundary Flows: All 
 Output Boundary Residuals: unselected 

Output Frequency 
 Option: Timestep Interval 
 Timestep Interval: 5 

Trn Stats 
none 
Monitor 

 Monitor Options: unselected 
Export 

 Efficiency Output: unselected 
Expert Parameters 
 Convergence Control 

   High Speed Models 
 Max continuity loops: selected 
 Max continuity loops: 2 

Materials 
 Air Ideal Gas 
 Water Ideal Gas 

mixture 
 Basic Settings 

 Option: Variable Composition Mixture 
 Material Group: User 
 Materials List: Air Ideal Gas, Water Ideal Gas 
 Material Description: unselected 
 Thermodynamic State: selected 
 Thermodynamic State: Gas 
 Coord Frame: unselected 

Mixture Properties 
 Mixture Properties: selected 
 Option: Ideal Mixture 

Thermodynamic Properties 
 Equation of State: selected 
 Option: Ideal Mixture 

Specific Heat Capacity 
 Option Ideal Mixture 

Transport Properties: all unselected 
Radiation Properties: all unselected 

 Expressions 
  Expres 

 20[C] 
Expres2 

 5[C]+7.5[C/s]*t 
Expres3 
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 -1.5[C/s]*t+41[C] 
Statements 

 Expres*step((t+.01[s])/(1[s]))- Expres*step((t-
2[s])/(1[s]))+Expres2* step((t-2[s])/(1[s]))- Expres2* step((t-
4[s])/(1[s]))+ Expres3* step((t-4[s])/(1[s]))- Expres3* step((t-
14[s])/(1[s]))+ Expres*step((t-14[s])/(1[s])) 

massfrac1 
 .014[s^-1]*t-.028 

massfrac2 
 -.004[s^-1]*t+.44 

mass fraction 
 1-(step(t*1[s^-1]-2)*massfrac1- step(t*1[s^-1]-4)*massfrac1+ 

step(t*1[s^-1]-4)*massfrac2- step(t*1[s^-1]-11)*massfrac2) 



 99

APPENDIX H: TABULATED EXPERIMENTAL RESULTS 

Throttle-Induced Stall Tests 
70% Speed    80% Speed   
Mass Flow 
Rate (kg/s) 

Efficiency 
Pressure 

Ratio 
 

Mass Flow 
Rate (kg/s) 

Efficiency 
Pressure 

Ratio 
6.1412 0.8758 1.1490  6.9373 0.8675 1.1967 
6.1397 0.8770 1.1499  6.9167 0.8683 1.1963 
6.1411 0.8759 1.1495  6.9205 0.8689 1.1965 
6.1301 0.8749 1.1496  6.9149 0.8671 1.1967 
5.7587 0.8569 1.1927  6.5633 0.8610 1.2627 
5.7497 0.8525 1.1919  6.5761 0.8607 1.2628 
5.7450 0.8484 1.1913  6.5481 0.8593 1.2619 
5.7403 0.8516 1.1919  6.5639 0.8603 1.2621 
5.4409 0.8354 1.2175  6.1917 0.8504 1.3044 
5.4242 0.8354 1.2175  6.1858 0.8547 1.3048 
5.4238 0.8380 1.2187  6.1999 0.8546 1.3050 
5.4258 0.8376 1.2179  6.2048 0.8561 1.3051 
5.1908 0.8342 1.2336  5.8776 0.8384 1.3321 
5.2017 0.8378 1.2342  5.8803 0.8350 1.3319 
5.1914 0.8395 1.2335  5.8857 0.8364 1.3326 
5.2033 0.8380 1.2336  5.8634 0.8310 1.3323 
5.0930 0.8263 1.2393  5.5760 0.8075 1.3537 
5.1005 0.8248 1.2397  5.5763 0.8070 1.3530 
5.0993 0.8253 1.2400  5.5677 0.8059 1.3527 
5.1199 0.8269 1.2395  5.5536 0.8067 1.3533 
4.9748 0.8190 1.2480  5.3050 0.7746 1.3696 
5.0007 0.8203 1.2488  5.3108 0.7768 1.3699 
4.9468 0.8161 1.2475  5.3047 0.7748 1.3691 
4.9849 0.8186 1.2475  5.2865 0.7714 1.3686 
4.8134 0.7986 1.2563  5.2293 0.7719 1.3729 
4.7834 0.7983 1.2572  5.2365 0.7685 1.3725 
4.8528 0.7992 1.2572  5.2506 0.7703 1.3731 
4.7714 0.7991 1.2564  5.2334 0.7711 1.3729 
4.6337 0.7829 1.2702  5.1789 0.7609 1.3765 
4.6010 0.7837 1.2702  5.1729 0.7619 1.3768 
4.6248 0.7792 1.2693  5.1732 0.7610 1.3764 
4.5078 0.7780 1.2690  5.1694 0.7661 1.3773 
4.3989 0.7636 1.2773  5.0915 0.7524 1.3812 
4.4632 0.7654 1.2775  5.0751 0.7462 1.3801 
4.4347 0.7647 1.2775  5.0756 0.7499 1.3812 
4.3984 0.7608 1.2766  5.0798 0.7481 1.3808 

    4.9941 0.7395 1.3850 
    4.9876 0.7422 1.3848 
    4.9919 0.7445 1.3846 
    4.9908 0.7480 1.3856 
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90% Speed    95% Speed   
Mass Flow 
Rate (kg/s) 

Efficiency 
Pressure 

Ratio 
 

Mass Flow 
Rate (kg/s) 

Efficiency 
Pressure 

Ratio 
7.6132 0.8374 1.2501  7.9570 0.8145 1.2780 
7.6097 0.8376 1.2500  7.9433 0.8160 1.2776 
7.6242 0.8281 1.2497  7.9707 0.8186 1.2783 
7.6178 0.8260 1.2497  7.9665 0.8172 1.2773 
7.4720 0.8584 1.3250  7.8382 0.8381 1.3690 
7.4871 0.8669 1.3255  7.8410 0.8409 1.3680 
7.4627 0.8631 1.3250  7.8296 0.8428 1.3687 
7.4787 0.8620 1.3255  7.8586 0.8474 1.3682 
7.2610 0.8545 1.3819  7.6848 0.8500 1.4413 
7.2731 0.8598 1.3825  7.6788 0.8448 1.4412 
7.2707 0.8629 1.3825  7.6783 0.8452 1.4411 
7.2697 0.8665 1.3833  7.6738 0.8414 1.4404 
7.0125 0.8604 1.4213  7.4469 0.8574 1.4832 
6.9954 0.8614 1.4214  7.4460 0.8568 1.4825 
7.0144 0.8633 1.4216  7.4512 0.8596 1.4840 
7.0007 0.8681 1.4216  7.4530 0.8548 1.4818 
6.5164 0.8213 1.4676  7.1023 0.8293 1.5311 
6.5232 0.8241 1.4670  7.0947 0.8270 1.5300 
6.5213 0.8272 1.4683  7.0792 0.8307 1.5321 
6.5417 0.8270 1.4674  7.0915 0.8285 1.5311 
6.0953 0.7878 1.4955  6.7510 0.8025 1.5566 
6.1073 0.7846 1.4957  6.7472 0.8004 1.5576 
6.1085 0.7818 1.4953  6.7557 0.8058 1.5585 
6.1068 0.7832 1.4954  6.7517 0.8036 1.5575 
5.9672 0.7672 1.5034  6.4829 0.7843 1.5756 
5.9582 0.7698 1.5033  6.4722 0.7833 1.5744 
5.9647 0.7682 1.5039  6.4680 0.7851 1.5749 
5.9567 0.7715 1.5037  6.4668 0.7832 1.5749 
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100% Speed   
Mass Flow 
Rate (kg/s) 

Efficiency 
Pressure 

Ratio 
8.2790 0.8092 1.3059 
8.2637 0.8043 1.3058 
8.2727 0.8049 1.3053 
8.2658 0.8032 1.3044 
8.2081 0.8322 1.4071 
8.2194 0.8312 1.4071 
8.1948 0.8295 1.4060 
8.1998 0.8297 1.4065 
8.1158 0.8506 1.4823 
8.1416 0.8539 1.4837 
8.1479 0.8535 1.4835 
8.1387 0.8519 1.4832 
7.9998 0.8622 1.5327 
7.9953 0.8645 1.5319 
8.0040 0.8614 1.5313 
8.0034 0.8623 1.5322 
7.6637 0.8313 1.5913 
7.6580 0.8287 1.5905 
7.6629 0.8310 1.5913 
7.6859 0.8293 1.5903 
8.2907 0.8105 1.3058 
8.2557 0.8058 1.3053 
8.2835 0.8021 1.3053 
8.2706 0.8042 1.3060 
8.2050 0.8500 1.4379 
8.1789 0.8453 1.4372 
8.1979 0.8437 1.4368 
8.1898 0.8464 1.4371 
8.0644 0.8610 1.5135 
8.0657 0.8591 1.5136 
8.0555 0.8611 1.5137 
8.0555 0.8552 1.5123 
7.8610 0.8541 1.5646 
7.8519 0.8521 1.5642 
7.8540 0.8477 1.5632 
7.8486 0.8472 1.5630 
7.6307 0.8354 1.6025 
7.6166 0.8335 1.6021 
7.6212 0.8317 1.6022 
7.6310 0.8323 1.6023 
7.3300 0.8169 1.6336 
7.3420 0.8192 1.6338 
7.3357 0.8149 1.6335 
7.3278 0.8133 1.6327 
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7.0747 0.7943 1.6502 
7.0765 0.7941 1.6516 
7.0852 0.7941 1.6507 
7.1099 0.7912 1.6510 
8.2648 0.8061 1.3059 
8.2687 0.8081 1.3061 
8.2624 0.8052 1.3066 
8.2661 0.8029 1.3070 
8.2054 0.8365 1.4040 
8.2085 0.8358 1.4038 
8.2194 0.8378 1.4042 
8.2255 0.8414 1.4048 
8.1254 0.8481 1.4745 
8.1171 0.8461 1.4747 
8.1173 0.8446 1.4741 
8.1205 0.8485 1.4752 
7.9654 0.8645 1.5356 
7.9756 0.8655 1.5360 
7.9820 0.8647 1.5359 
7.9614 0.8699 1.5364 
7.8694 0.8561 1.5567 
7.8811 0.8580 1.5582 
7.8777 0.8581 1.5574 
7.8722 0.8581 1.5575 
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Steam-Induced Stall Tests 
70% Speed      80% Speed     
Mass Flow 
Rate (kg/s) 

Efficiency 
Pressure 

Ratio 
 

Mass Flow 
Rate (kg/s) 

Efficiency 
Pressure 

Ratio 
6.0053 0.8364 1.1550  6.8971 0.8311 1.2035 
6.0043 0.8366 1.1547  6.9032 0.8324 1.2032 
6.0008 0.8383 1.1541  6.8784 0.8223 1.2027 
5.9962 0.8423 1.1546  6.8786 0.8267 1.2022 
5.6099 0.8396 1.1950  6.5447 0.8559 1.2615 
5.6174 0.8394 1.1950  6.5432 0.8566 1.2617 
5.6056 0.8443 1.1951  6.5449 0.8572 1.2612 
5.6200 0.8408 1.1950  6.5492 0.8605 1.2615 
5.0291 0.8116 1.2359  6.2362 0.8254 1.2946 
5.0681 0.8134 1.2357  6.2451 0.8282 1.2947 
5.0461 0.8089 1.2353  6.2585 0.8315 1.2952 
5.0358 0.8109 1.2354  6.2674 0.8448 1.2957 
4.8309 0.7868 1.2487  5.8695 0.8418 1.3293 
4.8255 0.7880 1.2483  5.8855 0.8371 1.3281 
4.8257 0.7872 1.2492  5.8651 0.8271 1.3278 
4.8300 0.7923 1.2492  5.8636 0.8217 1.3280 
4.6530 0.7671 1.2592  5.6776 0.8153 1.3412 
4.6528 0.7694 1.2588  5.6825 0.8120 1.3411 
4.6242 0.7655 1.2589  5.6653 0.8116 1.3411 
4.6571 0.7631 1.2585  5.6891 0.8111 1.3410 
4.5827 0.7563 1.2614  5.4110 0.7813 1.3588 
4.6019 0.7545 1.2612  5.3985 0.7804 1.3582 
4.6153 0.7534 1.2614  5.4011 0.7833 1.3579 
4.5659 0.7539 1.2616  5.3832 0.7865 1.3586 

    5.1918 0.7637 1.3729 
    5.1877 0.7639 1.3731 
    5.1901 0.7628 1.3728 
    5.1682 0.7585 1.3720 
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90% Speed    95% Speed   
Mass Flow 
Rate (kg/s) 

Efficiency 
Pressure 

Ratio 
 

Mass Flow 
Rate (kg/s) 

Efficiency 
Pressure 

Ratio 
7.3927 0.8414 1.3365  7.9330 0.8112 1.2884 
7.3843 0.8440 1.3369  7.9296 0.8110 1.2889 
7.3813 0.8468 1.3370  7.9323 0.8083 1.2883 
7.3874 0.8538 1.3362  7.9301 0.8079 1.2879 
7.1504 0.8551 1.3910  7.8123 0.8540 1.3737 
7.1474 0.8586 1.3913  7.8233 0.8514 1.3736 
7.1650 0.8589 1.3908  7.8114 0.8405 1.3721 
7.1511 0.8613 1.3904  7.8055 0.8437 1.3728 
6.9194 0.8461 1.4219  7.6245 0.8507 1.4358 
6.9365 0.8447 1.4207  7.6352 0.8525 1.4357 
6.9274 0.8476 1.4214  7.6482 0.8530 1.4364 
6.9352 0.8498 1.4212  7.6617 0.8541 1.4377 
6.4956 0.8208 1.4618  7.6559 0.8552 1.4368 
6.5133 0.8211 1.4620  7.6408 0.8522 1.4362 
6.5074 0.8210 1.4623  7.6516 0.8553 1.4372 
6.5064 0.8189 1.4616  7.4220 0.8542 1.4805 
6.1637 0.7890 1.4840  7.4306 0.8534 1.4799 
6.1658 0.7906 1.4839  7.3971 0.8513 1.4799 
6.1841 0.7933 1.4850  7.4139 0.8533 1.4801 
6.1860 0.7923 1.4850  7.2489 0.8324 1.5033 

    7.2309 0.8319 1.5020 
    7.2289 0.8320 1.5024 
    7.2443 0.8334 1.5026 
    7.0090 0.8142 1.5266 
    7.0082 0.8151 1.5271 
    6.9888 0.8160 1.5268 
    7.0225 0.8171 1.5276 
    6.6720 0.8009 1.5550 
    6.7150 0.7983 1.5534 
    6.6777 0.7976 1.5533 
    6.7202 0.7991 1.5533 
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