
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2013-12

Optimal patrol to detect attacks at dispersed
heterogeneous locations

McGrath, Richard G., Jr.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/48616

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

OPTIMAL PATROL TO DETECT ATTACKS AT

DISPERSED HETEROGENEOUS LOCATIONS

by

Richard G. McGrath, Jr.

December 2013

Dissertation Supervisor: Kyle Y. Lin

Approved for public release; distribution is unlimited



THIS PAGE INTENTIONALLY LEFT BLANK



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

December 2013 Dissertation

OPTIMAL PATROL TO DETECT ATTACKS AT DISPERSED
HETEROGENEOUS LOCATIONS

Richard G. McGrath, Jr.

Naval Postgraduate School
Monterey, CA 93943

Department of the Navy

Approved for public release; distribution is unlimited

The views expressed in this dissertation are those of the author and do not reflect the official policy or position of
the Department of Defense or the U.S. Government. IRB Protocol Number: N/A

We study a patrol problem where several patrollers move between heterogeneous locations dispersed throughout an
area of interest in order to detect enemy attacks. To formulate an effective patrol policy, the patrollers must take
into account travel time between locations, as well as location-specific parameters, which include patroller
inspection times, enemy attack times, and cost incurred due to an undetected attack. We consider both random
and strategic attackers. A random attacker chooses a location to attack according to a probability distribution,
while a strategic attacker plays a two-person zero-sum game with the patrollers. In some cases, we can compute
the optimal solution using linear programming. This method, however, becomes computationally intractable as the
problem size grows. Therefore, our research focuses on developing efficient heuristics, based on aggregate index
values, fictitious play, and shortest paths. Numerical experiments demonstrate that our heuristics produce excellent
results with computation time orders of magnitude less than what is required to compute the optimal solution.

Optimal patrol, Multi-agent patrol, Semi-Markov decision process, Sequential decision making under uncertainty

Unclassified Unclassified Unclassified UU 113

i



THIS PAGE INTENTIONALLY LEFT BLANK

ii



Approved for public release; distribution is unlimited

OPTIMAL PATROL TO DETECT ATTACKS AT DISPERSED

HETEROGENEOUS LOCATIONS

Richard G. McGrath, Jr.
Commander, United States Navy

B.S., Massachusetts Institute of Technology, 1990
M.S., Stanford University, 1991
M.A., Naval War College, 2006

Submitted in partial ful�llment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL

December 2013

Author: Richard G. McGrath, Jr.

Approved by: Kyle Y. Lin Michael P. Atkinson
Associate Professor of Assistant Professor of
Operations Research Operations Research
Dissertation Supervisor

Timothy H. Chung Craig W. Rasmussen
Assistant Professor of Professor of
Systems Engineering Applied Mathematics

Javier P. Salmeron
Associate Professor of
Operations Research

Approved by: Robert F. Dell
Chair, Department of Operations Research

Approved by: O. Douglas Moses
Vice Provost of Academic A�airs

iii



THIS PAGE INTENTIONALLY LEFT BLANK

iv



ABSTRACT

We study a patrol problem where several patrollers move between heterogeneous locations

dispersed throughout an area of interest in order to detect enemy attacks. To formulate an

e�ective patrol policy, the patrollers must take into account travel time between locations,

as well as location-speci�c parameters, which include patroller inspection times, enemy

attack times, and cost incurred due to an undetected attack. We consider both random

and strategic attackers. A random attacker chooses a location to attack according to a

probability distribution, while a strategic attacker plays a two-person zero-sum game with

the patrollers. In some cases, we can compute the optimal solution using linear program-

ming. This method, however, becomes computationally intractable as the problem size

grows. Therefore, our research focuses on developing e�cient heuristics, based on aggre-

gate index values, �ctitious play, and shortest paths. Numerical experiments demonstrate

that our heuristics produce excellent results with computation time orders of magnitude

less than what is required to compute the optimal solution.
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Executive Summary

Patrol problems are encountered in many real-world situations. Generally speaking, a

patrol is the movement of a guard force through a designated area of interest for the pur-

pose of observation or security. Patrols are often conducted by authorized and specially

trained individuals or groups, and are common in military and law-enforcement settings.

The use of patrols, instead of �xed, continuous surveillance, is often necessary because of

real-world limitations on time and resources. Patrollers must operate with the intent of

maximizing the likelihood of detection of adversaries, in�ltration, or attacks. The objec-

tive in solving patrol problems is to determine the actions or policies that will maximize

this likelihood.

This work is motivated by the need to provide for e�ective security, usually with limited

resources, and often against very sophisticated and capable enemies. Not only does the

solution to a patrol problem need to be mathematically sound, it also needs to be exe-

cutable. Additionally, it is often important to ensure that the solution to a patrol problem

incorporates su�cient randomization, and thus be unpredictable to potential adversaries.

In this dissertation, we consider a problem where multiple locations dispersed throughout

an area of interest are subject to attack. An attack is considered to be any activity that the

patroller wants to interdict or prevent, such as planting or detonating an explosive device,

stealing a valuable asset, or breaching a perimeter. We consider two attacker behaviors:

random and strategic. A random attacker chooses a location to attack according to

a probability distribution, while a strategic attacker plays a two-person zero-sum game

with the patroller.

The patrol models in the literature focus on the case where attacks may occur at any

place within the entire patrol area. In some scenarios, however, attacks may occur only at

speci�c locations within an area of interest. Motivated by these observations, we model

travel times between locations and the inspection time at each location explicitly, which

complements the works in the literature that typically divide a large patrol area into

contiguous, equal-size subareas. To the best of our knowledge, this dissertation is the �rst

to study patrols among dispersed heterogeneous attack locations.

We study three cases. First, we consider the case of a single patroller against random at-

tackers. We determine the optimal solution by modeling the state space of the system as a

xv



network and solve a minimum cost-to-time ratio cycle problem using linear programming.

The linear program, however, quickly becomes computationally intractable for problems

of moderate size, which in our experiments include problems with more than �ve patrol

locations assigned to a single patroller. By using an argument involving a fair charge

for a patrol visit, we develop an index for each patrol location as a function of the time

since the last inspection. We develop and test two heuristic methods based on an aggre-

gate index: the index heuristic time (IHT) method and the index heuristic epoch (IHE)

method. With the IHT method, the patroller considers all paths and partial paths that

can be completed during a predetermined look-ahead time window to �nd the path with

the smallest aggregate index per unit time, and then moves to inspect the �rst location

in that path. The IHE method works in a similar fashion. In this method, however, a

patroller looks ahead over paths that consist of a speci�ed number of patrol locations,

regardless of the total time those paths will take, and visits the �rst location in the path

with the smallest aggregate index per unit time. To the best of our knowledge, this dis-

sertation is the �rst to utilize an aggregate index in a continuous-time problem. These

two heuristics produce favorable results in our numerical experiments.

Second, we study the case of a single patroller against strategic attackers. By modifying

the linear program in the previous case, we determine the optimal policy that minimizes

the largest expected cost per attack among all locations. This solution is usually a ran-

domized policy, where a patroller selects the next location to visit based on a probability

distribution. Because the linear program quickly becomes computationally intractable

for problems of moderate size, we develop a heuristic that treats each patrol pattern as

a pure strategy and allows the patroller to develop a randomized strategy from several

pure strategies. We study two methods to generate patrol patterns: the shortest-path

(SP) and �ctitious-play (FP) methods. The SP method uses a combinatorial selection of

patrol patterns based on the shortest Hamiltonian cycle in order to minimize travel times

between locations. The FP method is an iterative method that generates patrol patterns

based on �ctitious play; however, it uses considerably more computation time than the

SP method. The SP method produces very favorable results in numerical experiments for

several graph structures and sizes.

Finally, we study the case of multiple patrollers against strategic attackers, where several

patrollers work together to patrol an area of interest. We present a heuristic method for

the patrol team to develop a mixed strategy by choosing among several pure strategies.

xvi



We determine pure strategies using two methods: one based on set partitions and the other

based on the shortest Hamiltonian cycle. In the set-partition method, the patrol team

divides the patrol locations among the individual patrollers, with each patroller then in-

dependently patrolling an assigned subset of locations. We present a policy-improvement

algorithm that generates e�ective set partitions based on the heterogeneous properties of

each location. In the shortest Hamiltonian cycle method, each patroller uses the same

patrol pattern at evenly spaced time intervals. We see favorable results in numerical ex-

periments for several graph structures and patroller combinations, where a lower bound

based on a linear program is used as a benchmark, since the optimal solution is not

available in general.

In summary, this work provides e�cient methods to determine e�ective and executable

patrol policies that minimize costs incurred due to undetected attacks. These methods

have been tested on several problem sizes and structures with very favorable results, and

can be directly applied to many types of military and non-military patrol problems.
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CHAPTER 1:

Introduction

1.1 Background and Motivation

Patrol problems are encountered in many real-world situations. Generally speaking, a

patrol is the movement of a guard force through a designated area of interest (AOI) for

the purpose of observation or security. Patrols are often conducted by authorized and

specially trained individuals or groups, and are common in military and law-enforcement

settings. The use of patrols, instead of �xed, continuous surveillance, is often necessary

because of real-world limitations on time and resources. Patrollers must operate with the

intent of maximizing the likelihood of detection of adversaries, in�ltration, or attacks.

The objective in solving patrol problems is to determine the actions or policies that will

maximize this likelihood. In most patrol problems, consideration must be made for the

time required for a patroller to travel between speci�c locations within an AOI, and the

time required to conduct an inspection in order to detect illicit activities at a particular

location.

There are several military and non-military applications of patrol problems. Military

applications include the routing of an unmanned aerial vehicle (UAV) on a surveillance

mission or the conduct of ground patrols to interdict the placement of improvised explo-

sive devices (IEDs). Non-military applications include the movement of security guards

through museums or art galleries; police forces patrolling streets in a city; security o�cials

protecting airport terminals; and conductors checking passenger tickets on trains in order

to detect fare evaders.

This work is motivated by the need to provide for e�ective security, usually with limited

resources, and often against very sophisticated and capable enemies. Not only does the

solution to a patrol problem need to be mathematically sound, it also needs to be exe-

cutable. Additionally, it is often important to ensure that the solution to a patrol problem

incorporates su�cient randomization, and thus be unpredictable to potential adversaries.

This work attempts to address these issues.

1



1.2 Scope of Dissertation

In this dissertation, we consider a problem where multiple locations within an AOI are

subject to attack. A patroller (defender) is assigned to the area in order to detect attacks

before they can be completed. An attack is considered to be any activity that the patroller

wants to interdict or prevent, such as planting or detonating an explosive device, stealing

a valuable asset, or breaching a perimeter. The patroller moves between locations and

conducts inspections at those locations in order to detect any illicit activity. A speci�ed

travel time is required for movements between locations. It then takes the patroller an

additional speci�ed amount of time to inspect a new location after he arrives. At the

end of the time required to complete an inspection, the patroller can move to any other

location in the area.

We explicitly model the patrol problem on a graph, where potential attack locations are

represented by vertices. We consider the inclusion of inspection times at each vertex and

travel times for the patroller to move along edges between vertices in the graph. We

consider this problem in continuous time and structure the patrol model on a complete

graph, where the edge length represents the travel time between each pair of vertices.

The time at which an attacker arrives at a location to conduct an attack is random,

and occurs according to a Poisson process. When an attacker arrives at a location he

begins an attack immediately. The time required to complete an attack is random, with

a probability distribution that is known to the attacker and the patroller. The patroller

detects any ongoing attacks at a location at the end of his inspection. We consider an

attacker to be detected if both the patroller and attacker occupy the same location at the

end of the patroller's inspection. The amount of time it takes to complete an attack, as

well as the amount of damage that an undetected attack will cause, is speci�c to each

location.

The patroller's objective is to determine a path of locations to visit and inspect that will

minimize the long-run cost incurred due to undetected attacks. For instances where the

cost of an attack is the same at all locations, this objective is equivalent to maximizing

the probability of detecting an attack.

We consider three patrol models that are closely related:

1. A single patroller against random attackers : In the random-attacker case, an at-

2



tacker will choose a location to attack according to a probability distribution that is

known to the patroller. This situation may occur when there is intelligence available

regarding potential enemy attack locations. It may be possible from this intelligence

to assign a likelihood of attack to speci�c locations.

2. A single patroller against strategic attackers : In the strategic-attacker case, an at-

tacker will actively choose a location to attack in order to in�ict the maximum

expected damage. Conversely, the patroller seeks to conduct his patrol so as to

sustain the least expected damage. This situation may occur with a more capable

or better-resourced enemy, who can analyze the expected damage among several

attack locations.

3. Multiple patrollers against strategic attackers : In this case, we extend the idea of a

single patroller against strategic attackers by considering how a team of more than

one patroller can e�ectively work together to minimize the expected damage from

a strategic attacker.

In all of these cases, we assume that the attacker cannot observe the real-time location of

the patroller. In other words, once an attacker initiates an attack, he will carry on with

the attack until either completing the attack or getting detected. An attacker cannot

time his attack, nor can he abandon an attack, based on real-time information about the

patroller's location.

1.3 Literature Review
A patrol problem can be considered more generally as a type of search problem. Many

types of search and patrol problems have been studied in diverse literatures. Early work

on search theory focused on two general categories: one-sided search and search games.

One-sided search refers to the assumption that a target does not respond to, or is even

necessarily aware of, the searcher's actions. In this type of problem, the objective is often

to maximize the probability of detection before a deadline, or to minimize the expected

time or cost of a search (Benkoski et al. 1991).

The two-sided search problem, more commonly referred to as a search game, involves a

searcher and a target who knows that he is being pursued. These type of search problems

are generally formulated as game-theoretic problems. The information that the target has

concerning the searcher will vary anywhere from complete information on the searcher's

strategy to a complete lack of information (Benkoski et al. 1991). In these scenarios, a

3



searcher and target can be working in competition, whereby the target wishes to evade

detection. Alternatively, a searcher and a target can be working in cooperation, such as a

search and rescue scenario, where the objective for both is to minimize the time (or cost)

of the search. In this dissertation, we examine the competition category of problems.

Patrol problems are a speci�c type of search problem. In a patrol problem, a searcher

utilizes a patrol strategy to cover an area where an attacker or target may or may not

be present (Alpern and Gal 2002). There are several types of game-theoretic patrol

problems that relate to our work. An accumulation game is a type of patrol problem

where a patroller visits several locations to collect materials hidden by an attacker. If the

patroller �nds a certain amount of the materials, he wins; otherwise, he loses (Alpern and

Fokkink 2008, Kikuta and Ruckle 2002). An in�ltration game is a type of patrol problem

where an intruder attempts to penetrate an area without being intercepted by a patroller

(Alpern 1992, Auger 1991, Garnaev et al. 1997, Ruckle 1983, Washburn and Wood 1995).

An inspection game is a type of patrol problem where the patroller attempts to interdict

an attacker during an attack (Avenhaus 2004, Zoroa et al. 2009). The in�ltration and

inspection game categories are most similar to the models that we examine.

There are several examples in search-game literature where the search area is modeled as

a graph or network. Kikuta and Ruckle (1994) study initial point searches on weighted

trees. Kikuta (1995) studies search games with traveling costs on a tree. Alpern (2010)

examines search games on trees with asymmetric travel times. Basilico et al. (2009)

present a deterministic patrolling strategy on a graph.

The works most closely related to this dissertation are those by Alpern et al. (2011) and

Lin et al. (2013). Alpern et al. (2011) examine optimized random patrols where a facility

to be patrolled is modeled on a graph with interconnected vertices representing individual

locations within the facility. This work focuses on the case of strategic attackers, where

an attacker actively chooses a location to attack, and assumes that the time to complete

an attack is deterministic and is the same for all locations. Lin et al. (2013) examine

a patrol problem on a graph with both random and strategic attackers. They use an

exact linear program to compute an optimal solution. Since this method quickly becomes

computationally intractable as a problem size increases, they introduce index heuristics

based on Gittins et al. (2011) to determine a patrol policy. They use an aggregate index,

where index values are accumulated as a patroller looks ahead into the future, to produce
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e�ective patrol policies in a game-theoretic setting. Both of these works use discrete-time

models, require the same inspection time at all locations, and prescribe an adjacency

structure for their graphs�which puts constraints on how a patroller can move between

locations.

In addition to the case of a single patroller, there has been much recent work on multi-

agent patrol problems (Paruchuri et al. 2006, Paruchuri et al. 2007, Portugal and Rocha

2011). In the multi-agent case, a team of more than one patroller is assigned to a sin-

gle patrol problem. The individual patrollers on the team may work cooperatively or

independently to achieve a common goal. One popular method that has been studied

in the multi-agent case is the use of patrol paths based on the traveling salesman prob-

lem (TSP), where patrollers follow the shortest Hamiltonian cycle in a graph in order to

visit every location while minimizing the time between patrol visits to any one location

(Chevaleyre 2004, Machado et al. 2003, Sak et al. 2008). Another method for multi-agent

patrol on a graph involves partitioning, where vertices are put into subsets with each

agent then patrolling his assigned subset of vertices using a TSP or closely related patrol

path (Almeida et al. 2004, Elor and Bruckstein 2009). In this dissertation, we consider

both the shortest-path and set-partition patrol methods in order to determine the best

patrol policy in a game-theoretic setting.

1.4 Applications
The methods presented in this dissertation can be applied to several types of patrol

problems, including how to determine the best movement of military units and assets

to defend multiple locations when there is uncertainly regarding potential enemy attacks.

One speci�c application in this area concerns the routing of a UAV conducting surveillance

on several locations. UAVs are often well suited to a surveillance mission due to their

ability to remain in an area for a long period of time. Like other assets, UAVs are often

limited in availability and therefore must usually be used to monitor multiple locations.

In this situation, a policy must be determined for how long a UAV remains at a location

conducting surveillance before it moves to another location. An objective in this type

of surveillance problem is to have the UAV in place at a location at the same time an

enemy or attacker is present. If an attacker cannot observe the UAV surveillance, but

instead will arrive at a speci�c location with some known or estimated likelihood, then

the objective in routing the UAV is to maximize the likelihood of co-location. This type
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of application is representative of the random-attacker problem that we examine in this

dissertation.

Another example of a military application is a ground patrol conducted to interdict the

placement of IEDs at speci�c locations within an AOI. Not only is it important to be able

to detect the presence of IEDs once they are in place, but it is often tactically important

to interdict the active placement of these devices in order to identify who is placing the

IED. Therefore, an objective of the patroller in this scenario is to be at the same location

as an attacker while he is emplacing the IED. Conversely, an attacker will choose his

attack location such that he can avoid detection and incur the maximum expected cost

or damage. When determining the maximum expected cost, an attacker must not only

consider the actual cost or damage that will be incurred due to a successful attack, but

also how likely the attack is to be successful. This type of application is representative of

the strategic-attacker problem.

One non-military application for this type of patrol problem is the assignment of con-

ductors to trains or other transportation systems, such as commuter ferries, in order to

detect fare evaders (Avenhaus 2004, Tambe 2012). In such cases, a passenger is required

to purchase a ticket for transport, but not all tickets are collected or checked prior to

boarding a conveyance due to limited manpower and resources. Instead, a select number

of conductors board certain trains randomly to check tickets. If we consider a fare evader

to be an attacker for the purposes of our problem, an attack will be successful if he is

able to ride a train without a ticket and complete his travel without being checked by

a conductor. If a conductor is acting as the patroller, the time for him to conduct his

inspection for tickets on a particular train car is analogous to the inspection time required

at a location in our problem. Similarly, the time it takes for a conductor to move between

train cars in order to begin another inspection for tickets is analogous to the travel time

between locations.

Some additional examples of patrol problems that would bene�t from the methods we

present include the movement of security guards through museums or art galleries; police

forces patrolling streets in a city; and security o�cials patrolling terminals in an airport.
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1.5 Contributions

In this dissertation, we extend the work of Alpern et al. (2011) and Lin et al. (2013) by

modeling travel times required for patrollers to move between locations that are subject

to attack and inspection times at these locations. We examine the problem in continuous

time for both random and strategic attackers and develop heuristics for determining opti-

mal or near-optimal solutions. We develop heuristics for these problems because the meth-

ods used to determine an optimal solution quickly become computationally intractable as

the size of the problem grows.

The patrol models in the literature focus on the case where attacks may occur at any

place within the entire patrol area. In some scenarios, however, attacks may occur only

at speci�c locations within an AOI. Motivated by these observations, in this dissertation

we model the inspection time at each location and the travel time between locations

explicitly, which complements the works in the literature that typically divide a large

patrol area into contiguous, equal-size subareas. Speci�cally, to the best of our knowledge,

this dissertation is the �rst to utilize an aggregate index per unit time in a continuous-time

problem and the �rst under the condition of dispersed heterogeneous attack locations to

develop, implement, and extensively test several exact and heuristic solution methods

that produce e�ective patrol policies in both a random and game-theoretic setting.

In the case of a single patroller against random attackers, we present a linear program

to determine the optimal patrol policy. This linear program is constructed as a mini-

mum cost-to-time ratio cycle problem on a directed graph. We also present two heuristic

methods based on the graph structure that utilize aggregate index values to determine a

heuristic patrol policy.

In the case of a single patroller against strategic attackers, we present a linear program to

determine the optimal patrol policy. This linear program is a modi�cation of the minimum

cost-to-time ratio cycle linear program used for a random attacker that minimizes the

largest expected cost among all locations and provides a direct mapping to a mixed

strategy. We also present two heuristic methods for this case. The �rst is a combinatorial

method based on the shortest Hamiltonian cycle in the graph. The second is an iterative

method based on �ctitious play. We also present a linear program that provides a lower

bound to the optimal solution, which helps evaluate our heuristic policy when the optimal

solution is not available.
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In the case of multiple patrollers against strategic attackers, we focus on developing heuris-

tics because an optimal solution can be determined in only a few special cases. We present

two methods for the patrollers to develop e�ective strategies. The �rst is based on set

partitions, where locations are divided into subsets with each individual patroller exe-

cuting his best patrol strategy on an assigned subset of locations, independent of the

other patrollers. We present a one-step policy-improvement algorithm for use with the

set-partition method that is based on the expected cost per attack in order to reassign

vertices among the several patrollers. The second method is based on the shortest Hamil-

tonian cycle in the graph, where each patroller follows the same patrol pattern at evenly

timed intervals. We incorporate both of these methods for the patrol team to develop an

e�ective mixed strategy in a game-theoretic setting.

1.6 Organization
The remainder of this dissertation is organized as follows. Chapter 2 presents the case

of a single patroller against random attackers. Chapter 3 presents the case of a single

patroller against strategic attackers. Chapter 4 presents the case of multiple patrollers

against strategic attackers. In Chapter 5, we present our conclusions and suggest areas

for future research. The Appendix contains mathematical background and details on

numerical experiments.
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CHAPTER 2:

Single Patroller Against Random Attackers

In this chapter, we consider the case of a single patroller against random attackers. In this

patrol problem, the patroller's objective is to determine a patrol policy that minimizes the

long-run average cost due to undetected attacks. Section 2.1 introduces a patrol model

on a graph, where an attacker chooses to attack a speci�c location based on a probability

distribution that is known to the patroller. In Section 2.2, we present a linear program

that determines the optimal solution to the patrol problem. Since the linear program

quickly becomes computationally intractable as the size of the problem grows, we also

present two heuristic methods for determining a solution in Section 2.3. We conduct

extensive numerical experiments for several scenarios and present the results in Section

2.4. We make recommendations on how to best utilize the heuristic methods based on

the experimental results.

2.1 Patrol Model
We consider a problem where multiple heterogeneous locations dispersed throughout an

area of interest (AOI) are subject to attack. A patroller (defender) is assigned to patrol

the area and inspect locations in order to detect attacks before they can be completed.

An attack is considered to be any type of activity that the patroller wants to interdict

and prevent, such as planting an explosive device, stealing a valuable asset, or breaching

a perimeter. The patroller moves between locations and conducts inspections at those

locations in order to detect illicit activity. We consider an attacker to be detected and his

attack defeated if both the patroller and attacker occupy the same location at the end of

an inspection.

We model this problem as a graph with n vertices, where each vertex represents a location

that is subject to attack. We de�ne a set of vertices N = {1, . . . , n} to represent potential
attack locations. Figure 2.1 shows an example of a graph with �ve vertices. A random

attacker will choose to attack vertex i with probability pi ≥ 0, for i ∈ N , and
∑n

i=1 pi = 1.

The time required for an attacker to complete an attack at vertex i is a random variable,

which follows a distribution function Fi(·), for i ∈ N , that is known to the attacker and

the patroller.
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The patroller detects any ongoing attacks at a vertex at the end of an inspection. We

assume that there are no false negatives; that is, the attacker will successfully detect all

ongoing attacks at a vertex at the end of his inspection. An attack is considered to be

unsuccessful if it is detected by the patroller. An attack is successful if it is completed

before it is detected.

Figure 2.1: Example patrol graph with n = 5.

We assume that an attacker arrives at a location in the AOI to commence an attack

according to a Poisson process with rate Λ. The Poisson process has stationary and

independent increments, which implies that attacks are equally likely to occur at any

time and that prior attacks do not help the patroller predict future attacks. Attackers

arrive at a speci�c vertex i to begin an attack at a rate of λi = piΛ, for i ∈ N . These

attacker arrivals at speci�c vertices constitute independent Poisson processes.

In most situations, the attacker arrival rate Λ is very small. In the formulation of our

problem, the value of Λ is inconsequential because we ignore interruptions from attacks.

In other words, several attackers can operate simultaneously on the graph, or even at

the same vertex, with each acting independently. By minimizing the long-run cost rate,

we also minimize the average cost from each attack with Λ acting as a scaling constant.

Thus, the optimal solution does not depend on the value of Λ.

It takes a speci�ed amount of time to travel between vertices and conduct inspections.
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These times are �xed in our problem. The time required for a patroller to travel between

vertices is denoted by an n × n distance matrix D = [dij], for i, j ∈ N , where dij ≥ 0

for all pairs of vertices i 6= j and dii = 0. The time required for a patroller to complete

an inspection at a vertex is denoted by (v1, . . . , vn). From these values, we construct an

n× n transit time matrix denoted by T = [tij], where tij = dij + vj, to indicate the time

required for a patroller to travel from vertex i to vertex j and complete an inspection at

vertex j. The damage in�icted due to an undetected attack at a vertex is denoted by

(c1, . . . , cn). An attack in�icts no damage if it is detected before it is completed.

The patroller travels between vertices in the graph and conducts inspections in order to

detect attacks. A patrol policy consists of a sequence of vertices that the patroller will

visit and inspect. We seek to determine the optimal patrol policy that minimizes the

long-run cost rate incurred due to undetected attacks.

Fundamentally, the patroller is making a series of sequential decisions under uncertainty

in order to determine a patrol policy. Decisions are made at decision epochs, which occur

at a speci�c point in time (in this case at the end of an inspection). At each decision

epoch, the patroller observes the state of the system as the amount of time elapsed since

he last completed an inspection at each vertex. Based on this information, he chooses an

action. The choice of action is which vertex to visit next. The action incurs a cost and

causes the system to transition to a new state at a subsequent point in time. The cost

incurred is the expected cost due to attacks that will be completed during the time it takes

for the patroller to travel to and inspect the next vertex. At the end of the inspection

time at the chosen vertex, the system will transition to a new state. At this point, the

patroller reaches another decision epoch and the process repeats.

In our problem, we wish to determine the optimal choice of action for the patroller at each

decision epoch. The essential elements of this sequential decision model are (Puterman

1994)

1. A set of system states.

2. A set of available actions.

3. A set of state-dependent and action-dependent costs.

4. A set of state-dependent and action-dependent transition times and transition prob-

abilities.
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We incorporate all of these elements into a sequential decision model in order to determine

the optimal patrol policy.

2.2 Optimal Policy

In order to �nd the optimal solution to our patrol problem, we must determine a patrol

policy that minimizes the long-run cost rate. To do so, we de�ne a state space Ω that

consists of all feasible states of the system. The state of the system at any given time can

be delineated by

s = (s1, s2, ..., sn),

where si denotes the time elapsed since the patroller last completed an inspection at

vertex i, for i ∈ N . Based on the assumption that a patroller detects all ongoing attacks

at a vertex at the end of an inspection, the state of a vertex returns to 0 immediately

upon completion of an inspection. Since we consider this problem in continuous time,

the state of a vertex can assume any non-negative value. We write the state space of the

system as

Ω = {(s1, ..., sn) : si ≥ 0,∀ i ∈ N}.

At the end of each inspection, the patroller reaches a decision epoch and will decide to stay

at his current vertex to conduct an additional inspection or proceed to another vertex.

The action space can be de�ned as

A = {j : j ∈ N}.

A deterministic, stationary patrol policy can be speci�ed by a map π from the state space

to the action space:

π : Ω→ A.

This patrol policy is deterministic because, for any state of the system, a speci�c action

is prescribed with certainty. It is stationary, or time-homogeneous, because the decision

rules associated with a particular patrol policy do not change over time. For any given

state of the system, the future of the process is independent of its past. The resulting

state depends only on the action chosen by the patroller. If the patroller just inspected

vertex k and next wants to inspect vertex j, that action will take time dkj + vj; and the
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system that started in state s will transition to state

s̃ = (s̃1, s̃2, ..., s̃n), s̃j = 0; s̃i = si + dkj + vj,∀ i 6= j .

In order to identify the vertex where a patroller has just �nished an inspection and is

currently located at a decision epoch, we de�ne

ω(s) = argmin
i
si,

since the state of the vertex where an inspection has just been completed will be 0 and

the state of all other vertices will be greater than 0.

In our model, the times between decision epochs and state transitions are deterministic.

They depend on previous system states and actions only through the current state of the

system. We de�ne

τ(s, j) = dω(s),j + vj,

as the time between decision epochs and the time between state transitions, if the patroller

decides to visit vertex j when the system is in state s. At a decision epoch, the patroller

will decide his action based only on the current state of the system. For these reasons,

our model falls in the category of a semi-Markov decision process (SMDP).

The cost function for this SMDP can be calculated based on the distribution of time

required to complete an attack Fi(·) and the cost ci incurred due to a successful attack

at vertex i. To illustrate how expected costs are incurred, suppose that the patroller has

just �nished an inspection at vertex k and the current state of the system is s, where

ω(s) = k. The patroller can then elect to travel to another vertex or remain at vertex k

and conduct an additional inspection. There will be an expected cost incurred for each

vertex in the graph based on the cost of a successful attack and the number of attacks

expected to be completed at that vertex during the transition time between state s and

state s̃.

To determine the expected number of attacks that are completed at a particular vertex in

a time interval, recall from Section 2.1 that the arrival of attackers at a vertex constitutes

a Poisson process. Consider an attacker arriving to a vertex at time y after the last

inspection was completed, and suppose that the patroller completes his next inspection
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at that vertex at time s. The attacker will complete his attack if the attack time is no

greater than s − y. Using Poisson sampling (see Proposition 5.3 in Ross (2010)), the

number of successful attacks at vertex i will follow a Poisson distribution with expected

value

λi

∫ s

0

P (Xi ≤ s− y) dy = λi

∫ s

0

P (Xi ≤ t) dt, (2.1)

where Xi denotes the time required to complete an attack at vertex i, for i ∈ N .

If we know the expected number of attacks that will be completed at vertex i in a time

interval, then we can determine the expected cost incurred at vertex i by multiplying (2.1)

by ci. Thus, the expected cost incurred at vertex i when the system is in state s and the

patroller elects to transit to vertex j is

Ci(s, j) = ciλi

(∫ si+τ(s,j)

0

P (Xi ≤ t) dt−
∫ si

0

P (Xi ≤ t) dt

)
. (2.2)

The cost at each vertex can be summed across all n vertices in the graph in order to

determine the total expected cost when the system starts in state s and the patroller

transits to vertex j. The overall cost function for this SMDP is

C(s, j) =
n∑
i=1

Ci(s, j). (2.3)

As currently de�ned, the state space has an in�nite number of states; however, in order to

be able to compute the optimal policy, we need a �nite state space. To do so, we assume

that there is an upper limit on the attack time distribution at each vertex. Speci�cally,

let Bi denote the maximum time required to complete an attack at vertex i. For the case

where si = S ≥ Bi, (2.2) becomes

Ci(s, j) = ciλi

(∫ S+τ(s,j)

S

P (Xi ≤ t) dt

)
= ciλi(S + τ(s, j)− S) = ciλiτ(s, j),

which remains a constant function over time for any state si ≥ Bi. Therefore, once the

state of a vertex has reached the bounded attack time, any additional expected cost will

accrue at a constant rate. The bounded attack times allow us to restrict the state of a
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vertex so that si ≤ Bi, and the state space becomes

Ω = {(s1, ..., sn) : 0 ≤ si ≤ Bi,∀ i ∈ N}.

We consider cases where the attack times at all vertices are bounded for the remainder

of this dissertation. Thus, if the patroller has just inspected vertex k and next wants to

inspect vertex j, the resulting state at the end of the inspection at vertex j is

s̃ = (s̃1, s̃2, ..., s̃n), s̃j = 0; s̃i = min{si + dkj + vj, Bi}, ∀ i 6= j . (2.4)

Using (2.4), we de�ne a transition function to identify the resulting state if the patroller

decides to visit vertex j when the system is in state s:

φ(s, j) = s̃.

The objective of the patrol problem it to determine a policy for the patroller that mini-

mizes the long-run cost. Recall that the action space in this SMDP is �nite because the

number of vertices is �nite. Therefore, by Theorem 11.3.2 in Puterman (1994), there exists

a deterministic, stationary optimal policy. Thus, we only need to consider deterministic,

stationary policies in our problem. We de�ne

ψπ(s) = φ(s, π(s))

as the resulting state if the patroller applies policy π when in state s. We can de�ne this

function because the state transitions are deterministic. From an initial state s0, policy

π will produce an inde�nite sequence of states, {ψκπ(s0), κ = 0, 1, 2, . . . }. This sequence

must eventually visit some state for a second time since the state space if �nite; and since

the state transitions are deterministic under the same policy π, this sequence will then

continue to repeat inde�nitely. The sequence of vertices that correspond to this repeating

cycle of states will constitute a patrol pattern.

We de�ne Vi as the long-run expected cost rate at vertex i. If we apply the deterministic,

stationary policy π to any initial state s0, then the long-run expected cost rate at vertex
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i is

Vi(π, s0) = lim
ξ→∞

∑ξ
κ=0Ci(ψ

κ
π(s0), π(ψκπ(s0))∑ξ

κ=0 τ(ψκπ(s0), π(ψκπ(s0))
. (2.5)

We seek to determine the minimum long-run cost rate across all vertices, which will give

the optimal solution

COPT(s0) = min
π∈Π

n∑
i=1

Vi(π, s0), (2.6)

where Π is the set of all feasible deterministic, stationary patrol policies. Dividing (2.6)

by Λ will give the minimum average cost incurred for each attack.

We note that Vi(π, s0) depends on π and s0. However, in a connected graph, the optimal

cost rate COPT(s0) does not depend on s0. Since determining the optimal patrol policy is

equivalent to �nding the optimal patrol pattern, we can develop a policy π in a connected

graph that will produce any feasible patrol pattern from any starting state s0. Therefore,

when we determine COPT in (2.6), it will be the same for all initial states since we minimize

across all feasible patrol policies π ∈ Π. For the reminder of this dissertation we can drop

the notational dependence of COPT on s0.

2.2.1 Linear Program Formulation

One method to solve this SMDP is to construct another graph that uses the state space

of the system modeled as a network. To do so, we rede�ne the problem on a directed

graph, G(N ,A). Each node k ∈ N will represent one state of the system, and each arc

(k, l) ∈ A will represent a feasible transition between states. This network will be of order

|N | = |Ω| and size |A| = |Ω|n. Each arc is assigned a transit time tkl as determined by

the vertex-pair speci�c distance and inspection times, where tkl = τ(k, ω(l)); and cost ckl

as determined by the cost function (2.3), where ckl = C(k, ω(l)).

The objective is to �nd the directed cycle in the network with the smallest ratio of total

cost to total transit time. This is a su�cient solution to the problem because any directed

cycle in this network will constitute a valid patrol policy, regardless of the length of the

cycle. This is an example of a minimum cost-to-time ratio cycle problem, also known as

the tramp steamer problem, which is described in Section 5.7 of Ahuja et al. (1993).

To solve this problem, we formulate the following linear program, which we refer to as
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the random-attacker linear program (RALP):

min
x

∑
(k,l)∈A

cklxkl (2.7a)

subject to
∑

l|(k,l)∈A

xkl −
∑

l|(l,k)∈A

xlk = 0, ∀ k ∈ N (2.7b)

∑
(k,l)∈A

tklxkl = 1, (2.7c)

xkl ≥ 0, ∀ (k, l) ∈ A . (2.7d)

The variable xkl represents the long-run rate at which the patroller uses arc (k, l). The

objective function value in (2.7a) represents the long-run cost rate. The total rate at

which the system enters state k must be equal to the total rate that the system exits

state k, which is ensured by the network balance of �ow constraint in (2.7b). For a single

patroller, the rate that he uses arc (k, l) times the amount of time required to transit

from node k to node l, indicates the fraction of time that he will spend on arc (k, l). The

fractions of time must sum to 1, which is ensured by the total rate constraint in (2.7c).

Finally, the long-run rate at which the patroller uses arc (k, l) cannot be negative, which

is ensured by the non-negativity constraint in (2.7d).

The states on the optimal cycle directly correspond to vertices on the graph, which can

be determined by the function ω(s). Thus, this linear program will produce a speci�c

patrol pattern consisting of a repeating sequence of vertices for the patroller to visit and

inspect. This patrol pattern represents the optimal solution to the patrol problem.

The number of decision variables in this linear program is |Ω|n. The size of the constraint
matrix is on the order of |Ω|. The value of |Ω| grows as a function of the number of

vertices in the graph, the attack time distributions, and the transit times.

2.2.2 Size of State Space

To understand the size of the state space, consider the case where the maximum attack

time at all vertices is B, the travel time between all vertices is d, and the inspection time

at all vertices is v. De�ne Z as

Z =

⌈
B

d+ v

⌉
.

17



The number of states in the system for a graph with n vertices and Z ≥ n is given by

|Ω| =
n−1∑
i=0

(
n

1

)(
n− 1

i

)(
Z − 1

n− 1− i

)
(n− 1− i)!,

since for each state of the system there will be exactly one vertex in state 0, as indicated

by the �rst term; i of the remaining n − 1 vertices at the bounded attack time state

B, as indicated by the second term; and each of the remaining n − 1 − i vertices in a

distinctive state between d + v and (d + v)(Z − 1), as indicated by the third and fourth

terms. Some examples of state space size are shown in Table 2.1. The number of states

grows exponentially with the number of vertices, and grows even larger when combined

with higher bounded attack times and shorter transit times.

Table 2.1: Examples of state space size.

n B d v Z |Ω|
5 9.8 1.0 0.2 9 16,965
7 11.5 1.2 0.3 8 > 260,000
8 15.5 0.9 0.6 11 > 20 million
12 18.3 0.8 0.8 12 > 40 billion

Although we can compute the optimal patrol policy using linear programming, this

method quickly becomes computationally intractable as the number of vertices increases

and the ratio of the bound of the attack times to transit times increases. Hence, there is

a need to develop e�cient heuristics.

2.3 Heuristic Policies
In this section, we consider solutions based on index heuristic methods (Gittins et al.

2011). To begin, consider a special case of our problem when vi = 1 and di,j = 0, for

i, j ∈ N . This special case coincides with the model presented in Lin et al. (2013). By

adding a Lagrange multiplier w > 0, Lin et al. (2013) show that the optimization problem

can be broken into n separate problems, each concerning a single vertex. The Lagrange

multiplier w can be interpreted as a service charge incurred for each patrol visit to a

vertex. The objective is to decide how frequently to summon a patroller at each vertex in

order to minimize the long-run cost rate due to undetected attacks and service charges.

For a given state of the system, the solution to this problem can be used to determine an
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index value for each vertex in the graph. We can develop a heuristic policy where, based

only on the current state of the system, the patroller can choose to travel to and inspect

the vertex that has the highest index value. We next explain how to extend this method

to our patrol model.

2.3.1 Single Vertex Problem

We consider the problem at a single vertex where each visit from the patroller incurs

a service charge w > 0. For a given value of w, our objective is to determine a policy

that minimizes the total long-run cost rate due to undetected attacks and service charges.

Generally speaking, a policy is a mapping from a state to an action. For the single vertex

problem, the state of the system s ≥ 0 is the amount of time since the patroller last

completed an inspection at the vertex. The action space for the patroller simpli�es to a

binary decision: Inspect the vertex at time s or continue to wait.

Although the state space is in�nite, the action space is �nite for every s ∈ Ω. Therefore,

we only need to consider deterministic, stationary policies (Puterman 1994). In addition,

since each inspection brings the state of the vertex back to 0, any deterministic, stationary

policy reduces to the following format: Inspect the vertex once every s time units.

Recall from (2.1) that the number of successful attacks in the time interval [0, s) between

patroller inspections follows a Poisson distribution with expected value

λ

∫ s

0

P (X ≤ t) dt .

Since each successful attack costs c, and a patrol visit costs w, the average long-run cost

given a policy that inspects the vertex every s time units is

f(s) =
cλ
∫ s

0
P (X ≤ t) dt+w

s
, s > 0.

For a given value of w, we �nd s in order to minimize f(s). To minimize f(s), we take

the �rst derivative of f(s), which gives

f ′(s) =
cλ

s
P (X ≤ s)− cλ

s2

∫ s

0

P (X ≤ t) dt−w
s2
,
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and set f ′(s) = 0 to obtain

0 = cλsP (X ≤ s)− cλ
∫ s

0

P (X ≤ t) dt−w.

We solve this equation for w as a new function of s:

W (s) = cλ

(
sP (X ≤ s)−

∫ s

0

P (X ≤ t) dt

)
, (2.8)

where W (s) indicates the corresponding service charge such that it is optimal for the

vertex to summon patrol visits once every s time units.

Since attack times at each vertex are bounded by a constant B, for cases where s ≥ B we

note that

W (s) = cλ

(
s−

∫ s

0

P (X ≤ t) dt

)
= cλ

∫ s

0

P (X > t) dt

= cλ

∫ B

0

P (X > t) dt = cλE[X], (2.9)

which remains the same for all s ≥ B.

2.3.2 Index Heuristic Time Method

Since W (s) represents the per-visit cost for the optimal policy that visits a vertex in state

s, we can de�ne an index value for vertex i based on (2.8) as

Wi(s) = ciλi

(
sP (Xi ≤ s)−

∫ s

0

P (Xi ≤ t) dt

)
,

if the last inspection at vertex i was completed s time units ago.

A straightforward heuristic method for the patroller at a decision epoch is to compute the

index values based on the current state of each vertex and choose to visit the vertex that

has the highest index value. This method will produce a feasible patrol pattern; however,

it does not account for di�erent travel times between vertices. To solve this problem,

we develop methods for the patroller to look further ahead and compute aggregate index

values before choosing which vertex to visit next. When computing an aggregate index

in our continuous-time model, we consider the amount of time that di�erent actions will
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take. To do so, we select a �xed look-ahead time window δ and consider all feasible

paths and partial paths beginning from the patroller's current vertex ω(s) that can be

completed during time δ. We call this the index heuristic time (IHT) method. A value

for δ is selected based on the structure of the graph and is discussed at the end of this

section.

To illustrate the IHT method, we select a look-ahead window δ and examine an arbitrary

patrol sequence over the next δ time units. For the time window [0, δ], let Si(t), t ∈ [0, δ]

denote the state of vertex i at time t. By de�nition, Si(0) = si and Si(t) increases over

time at slope 1 until the patroller next completes an inspection at vertex i, when its value

returns to 0. The aggregate index values accumulated at vertex i over the time window

[0, δ] can be written as ∫ δ

0

Wi(Si(t)) dt, ∀ i ∈ N.

For a given patrol sequence, the total index value for all n vertices over the time window

[0, δ] is
n∑
i=1

∫ δ

0

Wi(Si(t)) dt .

To determine a patrol pattern using the IHT method, we select a starting state of the

system s0 and enumerate all possible paths over the next δ time units. We compute the

total aggregate index value for each of these paths using (2.3.2), and choose the path with

the highest aggregate index value per unit time. The �rst vertex along that path becomes

the vertex that the patroller inspects next. We repeat this process using the new state

of the system as the starting state, and continue to repeat the process to form a path of

vertices. Recall that since the state space is �nite, this sequence must eventually visit

some state for a second time. The process terminates when a state repeats and a cycle

has been found. The vertices corresponding to the states of the system on this cycle is

the patrol pattern that results from using the IHT method.

In order to select a value for δ in the IHT method, we determine the average transit time

r between all vertices in the graph as

r =

∑n
i=1

∑n
j=1(dij + vj)

n2
. (2.10)
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We then choose a look-ahead time window in terms of multiples of r. For example, if we

choose δ = 3r as a look-ahead window, then we are choosing an amount of time that on

average will allow the patroller to visit any sequence of three vertices from his current

vertex. We can choose a multiple of r more generally, such as n/2, which will on average

allow the patroller to look ahead over about half the vertices in the graph from his current

location. We make recommendations on how to select speci�c values for δ based on our

numerical experiments. These recommendations are presented in Section 2.4.3.

Although we can choose any state from which to start the IHT method, for consistency

in our numerical experiments we identify the vertex that has the maximum value of W (s)

when s ≥ B, as de�ned in (2.9). We choose as s0 the state of the system where this vertex

has just completed an inspection and the state of all other vertices is at the bounded attack

time. In other words, we determine

k = argmax
i∈N
{ciλiE[Xi]},

and select as s0 the state where sk = 0 and sj = Bj, for j ∈ N, j 6= k.

2.3.3 Index Heuristic Epoch Method

Instead of looking ahead for a �xed time period, as in the IHT method, we consider

another heuristic which looks ahead for a �xed number of decision epochs. We call this

the index heuristic epoch (IHE) method. To compute an aggregate index using the IHE

method, we select a number of decision epochs η for the patroller to look ahead. The

number η can be any positive integer value. For example, if we choose η = 3 as a look-

ahead window, the patroller considers all paths of three vertices from his current vertex,

since a decision epoch in our model occurs at the end of each inspection. As with the

IHE method, we choose the path with the highest aggregate index value per unit time,

and the �rst vertex along that path is the vertex that the patroller inspects next. We

can also choose the look-ahead window more generally, such as η =
⌈
n
2

⌉
, which allows the

patroller to look ahead over at least half the vertices in the graph.

We choose a starting state s0 for the IHE method using the same criteria as we did for the

IHT method. We enumerate all feasible paths from s0 that consist of exactly η decision

epochs and then proceed in the same manner as the IHT method described in Section

2.3.2 to determine a path of vertices based on the highest aggregate index value per unit
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time, until a patrol pattern has been obtained.

2.4 Numerical Experiments

To test the IHT and IHE methods, we conduct several numerical experiments. We com-

pare the results obtained from these heuristic methods with the optimal solution. We also

report the computation time required. Based on these results, we make conclusions on

the e�cacy of the heuristic methods, as well as make recommendations for the selection

of look-ahead parameters to be used in both the IHT and IHE methods.

As inputs for the problem, we use a probability vector (p1, . . . , pn) indicating the likelihood

of an attacker to choose to attack a speci�c vertex; an attack time distribution parameter

matrix; a vector (c1, . . . , cn) of the cost incurred due to a successful attack at each vertex;

a distance matrix D of the time it takes for a patroller to travel between each pair of

vertices; a vector (v1, . . . , vn) of the time required for a patroller to conduct an inspection

at each vertex; and an overall attacker arrival rate Λ. Recall from Section 2.1 that the

optimal solution does not depend on the value of Λ; therefore, without loss of generality,

we set the overall attacker arrival rate to be Λ = 1 in our numerical experiments. We

also set the cost incurred from a successful attack to ci = 1, for i ∈ N , which allows the

results to be interpreted as the long-run proportion of attackers that will evade detection.

We consider three general cases of patrol problems. In the �rst case, which we use as

a baseline, the patroller spends about half of the time traveling and half of the time

inspecting vertices. For this case, we choose average travel times that are comparable to

average inspection times. In the second case, we choose average inspection times that

are twice as long as average travel times. In other words, each vertex takes more time to

inspect, but the vertices are closer together. In the third case, we choose average travel

times that are twice as long as average inspection times. In other words, each vertex takes

less time to inspect, but the vertices are farther apart.

All computations are done on a 64-bit Windows 7 desktop computer (Intel Core i7 860@2.8

GHz; 8.0 GB RAM). All linear programs that determine an optimal solution or a lower

bound are implemented using GAMS 23.8.2 and are solved with CPLEX. MATLAB

R2009b is used to implement and solve all heuristics.
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2.4.1 Generation of Problem Instances

We conduct our numerical experiments on a graph with n = 5 vertices, which is a problem

size that allows for the computation of the optimal solution. We choose parameters

in order to generate and test cases where the optimal detection probability is in the

neighborhood of 0.5. This is the case where the development of a good patrol policy can

be most helpful.

To generate a random graph of n patrol locations for our experiments, let (Xi, Yi) denote

the Cartesian coordinate of vertex i, for i ∈ N , and draw Xi and Yi from independent

uniform distributions over [0, 1]. Letting dij denote the travel distance between vertices i

and j, we compute

di,j =
√

(Xi −Xj)2 + (Yi − Yj)2, ∀ i, j ∈ N.

The expected value of di,j is E[dij] = 0.5215 and the variance of di,j is Var(dij) = 0.0615.

Details of how these values are determined are contained in the Appendix.

Based on this average distance and variance, we generate an inspection time at each vertex

by drawing from a uniform distribution over [0.3857, 0.6573]. This distribution gives an

expected inspection time of E[vi] = 0.5215, which is comparable to the average travel time

between vertices. The variance of the inspection times is 0.00615, which is approximately

1/10 of the variance of the vertex distance values. We choose these parameters in order

to prevent very small inspection times at vertices, which could lead to excessively large

state spaces and prevent the computation of an optimal solution.

For the attack time at each vertex, we use a triangular distribution. A triangular distri-

bution requires three parameters: lower limit (minimum) a, upper limit (maximum) b and

mode c, where a < b and a ≤ c ≤ b. Additional details about triangular distributions are

contained in the Appendix. We generate values for (a, b, c) independently from a uniform

distribution over [1.043, 4.172]. This distribution gives a minimum attack time that is

comparable to the average travel time between any two vertices plus the inspection time

at the second vertex, which in this case is 0.5215 × 2 = 1.043. The expected value of

this distribution is comparable to the time required for a patroller to travel and complete

inspections over approximately half of the vertices in the graph, which for the case of

n = 5 is 1.043 × 5/2 = 2.6075. From this minimum and expected value, we determine a
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maximum attack time for use in our experiments as 2×2.6075−1.043 = 4.172. More gen-

erally, we can generate attack time distribution parameters from a uniform distribution

on [1.043, 1.043(n− 1)] for problems with any number of vertices n > 2.

For the likelihood of an attacker to choose a vertex to attack, we create a probability vector

(p1, . . . , pn). We spread 0.5 of the total attack probability equally across all n vertices

and then randomly assign the remaining 0.5 probability. This ensures that the minimum

probability of attack at any vertex is 0.5/n, which will encourage a patrol policy that visits

many or all of the vertices rather than completely excluding one or several vertices simply

due to a low probability of attack. To create this vector, we generate n uniform random

variables ui on U[0, 1] and then normalize them so that pi = (0.5/n) + (0.5ui/
∑n

j=1 uj),

for i ∈ N . In our experiments with n = 5, this ensures that each vertex has at least a 0.1

probability of selection for attack and no more than a 0.6 probability.

2.4.2 Baseline Problems

For our baseline problem, we consider the case where a patroller spends about half of

the time traveling and half of the time inspecting vertices. We randomly generate 1,000

problem scenarios and determine the optimal solution using the RALP from Section 2.2

and a solution using the heuristic methods from Section 2.3. The RALP on average uses

5,920 decision variables and 7,105 constraints for a problem size with 1,184 states. The

optimal solution takes on average 20.68 seconds to compute. We compare the solution

obtained from the heuristic method to the optimal solution. For the look-ahead depth

parameter δ used in the IHT method, we chose an initial value of δ = (n/2)r, with

r de�ned in (2.10) as the average transit time between vertex pairs in each problem

instance. For n = 5, this starting value is δ = 2.5r. We also test additional parameter

values by increasing and decreasing the look-ahead depth in 0.5r increments.

As the IHT method looks further ahead, the computation time increases due to the

higher number of paths that must be considered. Performance does not always improve

when using deeper looks, and in many cases it may be worse. Two di�erent look-ahead

parameter values, 2.5r and 3r in the IHT method for example, may return the same

patrol pattern or two distinct patrol patterns with di�erent long-run cost rates. If the

same problem is solved using multiple look-ahead parameters, we select the best solution

that is obtained.
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We consider single look-ahead parameter values and also consider sets of multiple look-

ahead values in our numerical experiments. For the sets of multiple look-ahead values,

we run the selected heuristic method for each individual value and then choose the patrol

policy that yields the minimum cost, regardless of which speci�c look-ahead parameter

produced that policy. This method tends to improve overall performance, but with a

proportional increase in computation time based on the number and size of the look-

ahead parameter values.

Results for the IHT method are shown in Table 2.2. When using a single look-ahead depth

parameter, the best performance, as determined by the smallest excess over optimum for

the mean and 90th percentile of problem instances, is obtained with a look-ahead time

value of δ = 2.5r. For the hybrid method of using up to three look-ahead parameters

and then choosing the best patrol pattern, the best performance using similar criteria is

obtained with a look-ahead depth set of {2r, 2.5r, 3r}.

Table 2.2: Performance of the IHT method on a complete graph with n = 5 vertices for 1,000
randomly generated problem scenarios with average inspection times comparable to average
travel times, using the best solution that was obtained in each problem scenario for the indicated
look-ahead depth parameter sets. Mean, 50th, 75th and 90th percentile performance is indicated
as the percentage excess over the optimal solution.

IHT look-ahead depth Percent over optimum Time
(δ) Mean 50th 75th 90th (sec)
2r 3.31 0.38 4.13 8.65 2.19

2.5r 1.22 0.00 1.60 3.60 2.47
3r 1.36 0.00 1.34 5.51 3.64

3.5r 1.88 0.00 2.03 6.52 6.75
4r 3.26 1.24 5.61 7.96 18.22

{2r, 3r} 0.55 0.00 0.23 1.56 5.83
{2.5r, 3r} 0.62 0.00 0.49 2.15 6.11
{2r, 2.5r, 3r} 0.49 0.00 0.20 1.38 8.30
{2.5r, 3r, 3.5r} 0.49 0.00 0.23 1.39 12.86
{3r, 4r} 1.11 0.00 1.07 4.26 21.86
{2r, 3r, 4r} 0.54 0.00 0.23 1.56 24.05

We repeat the same experiments using the IHE method. For the look-ahead depth pa-

rameter η used in the IHE method, we chose an initial value of η = dn
2
e. For n = 5

this starting value is η = 3. This indicates that, at each decision epoch, the patroller

will consider all possible paths consisting of three decision epochs. We test additional
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IHE depth parameter values by increasing and decreasing the look-ahead depth in η = 1

increments.

The IHE method is like the IHT method in that, as it looks further ahead, computation

time increases due to the higher number of paths that must be considered. Similarly,

the performance does not always improve when using deeper looks. For this reason,

we test the IHE method using single look-ahead parameters and also using the hybrid

method of comparing the results from multiple look-ahead parameters and selecting the

best solution. Results are shown in Table 2.3. When using a single look-ahead depth

parameter, the best performance, as determined by the smallest excess over optimum

for the mean and 90th percentile of problem instances, is obtained with a decision epoch

look-ahead value of η = 4. For the hybrid method of running the IHE method with several

look-ahead parameters and then choosing the best patrol pattern, the best performance, as

determined by a comparison of the excess over optimum and computation time required,

is obtained using look-ahead depth sets of {2, 3, 4} and {3, 4, 5}.

Table 2.3: Performance of the IHE method on a complete graph with n = 5 vertices for 1,000
randomly generated problem scenarios with average inspection times comparable to average
travel times, using the best solution that was obtained in each problem scenario for the indicated
look-ahead depth parameter sets. Mean, 50th, 75th and 90th percentile performance is indicated
as the percentage excess over the optimal solution.

IHE look-ahead depth Percent over optimum Time
(η) Mean 50th 75th 90th (sec)
2 12.72 11.25 18.48 23.33 3.22
3 3.09 0.67 5.33 7.60 2.76
4 1.62 0.24 2.41 5.61 3.78
5 2.81 1.14 3.90 7.98 11.25
{2, 3} 2.87 0.28 4.32 7.36 5.98
{3, 4} 1.04 0.00 0.95 4.32 6.54
{2, 3, 4} 0.97 0.00 0.92 3.85 9.76
{4, 5} 1.30 0.00 1.49 4.36 15.03
{3, 4, 5} 0.89 0.00 0.63 3.68 17.79
{2, 3, 4, 5} 0.89 0.00 0.63 3.68 21.01

Performance of the IHT and IHE methods in the baseline case with a single look-ahead

parameter is presented graphically in Figure 2.2. This �gure shows a comparison of

performance versus computation time required for di�erent heuristic methods and look-

ahead parameters. Although both methods perform well in the experiments, we tend to
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see better performance using the IHT method in the single look-ahead parameter cases.

Figure 2.2: IHT and IHE 90th percentile performance with average travel times comparable to
average inspection times.
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In an e�ort to obtain the best possible results, we also use a hybrid set of look-ahead

depth parameters that combine both the IHT and IHE methods. We selected various

combinations of parameters to test based on the results from the individual IHT and

IHE experiments. Results are shown in Table 2.4. Very good performance is obtained

with a hybrid IHT look-ahead set of {2r, 2.5r, 3r} and the performance improves when

incrementally adding IHE look-ahead parameters.

Table 2.4: Performance of combined IHT and IHE methods on a complete graph with n = 5 ver-
tices for 1,000 randomly generated problem scenarios with average inspection times comparable
to average travel times, using the best solution that was obtained in each problem scenario for the
indicated look-ahead depth parameter sets. Mean, 50th, 75th and 90th percentile performance
is indicated as the percentage excess over the optimal solution.

IHT(δ) and IHE(η) Percent over optimum Time
look-ahead depth set Mean 50th 75th 90th (sec)
{IHT(2.5r), IHE(3)} 0.88 0.00 0.95 3.45 5.18
{IHT(2.5r), IHE(4)} 0.61 0.00 0.49 2.12 6.19
{IHT(2r, 2.5r, 3r)} 0.49 0.00 0.20 1.38 8.30
{IHE(2, 3, 4)} 0.97 0.00 0.92 3.85 9.67

{IHT(2.5r, 3r), IHE(3, 4)} 0.42 0.00 0.15 1.30 12.65
{IHT(2r, 2.5r, 3r), IHE(2, 3, 4)} 0.30 0.00 0.00 0.92 17.89

Performance of the combined IHT and IHE methods in the baseline case for di�erent

look-ahead depth parameters is presented graphically in Figure 2.3. This �gure shows a

comparison of performance versus computation time required for di�erent hybrid combi-

nations of heuristic methods and look-ahead parameters. Both methods again perform

well in the experiments, but we tend to see better performance using the IHT method in

the hybrid set look-ahead cases, similar to the results from the single look-ahead param-

eter cases.
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Figure 2.3: IHT and IHE hybrid 90th percentile performance with average travel times compa-
rable to average inspection times.
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2.4.3 Recommendations Based on Numerical Experiments

We see very favorable results using the IHT and IHE methods with many combinations

of look-ahead parameters. In general, we have found that looking ahead over about half

of the graph structure provides a good balance of performance versus computation time

required. We recommend choosing look-ahead depth parameter values as a function of n,

which represents the number of vertices that are assigned to a patroller.

Based on the experimental results, we recommend starting with the IHT method and

using a look-ahead depth parameter value of δ = (n/2) × r, where r represents the

average transit time in the graph. We then recommend adding additional looks using

the hybrid method and selecting the best solution that is obtained. The total number of

look-ahead depth parameters to use depends on the desired accuracy of a solution and

computation time to be expended. Speci�cally, we recommend six prioritized look-ahead

parameter values, each with a corresponding heuristic method, as presented in Table 2.5.

In a problem with n = 5, for example, after executing the heuristic method using

IHT(2.5r) we would next use IHT(3r) and then continue in a similar manner until com-

pleting the desired number of looks. The IHE method is introduced at the fourth iteration

of the heuristic method in order to complement the results obtained from using the IHT

method.

Table 2.5: Prioritized heuristic methods and look-ahead depth parameters.

Heuristic method and
look-ahead depth parameter

1 IHT
(
n
2
r
)

2 IHT
(

(n+1)
2
r
)

3 IHT
(

(n−1)
2
r
)

4 IHE
(
dn

2
e
)

5 IHE
(
dn

2
e+ 1

)
6 IHE

(
dn

2
e − 1

)

We test the prioritized look-ahead depth parameter set method using the baseline problem

case. Results are presented in Table 2.6. The results indicate a steady improvement in

performance, along with a corresponding increase in computation time required, as the

number of looks increases. We observe that the heuristic method will return the optimal
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solution in at least half of the problem instances when using a single look-ahead parameter

IHT(2.5r). The heuristic method will return a solution that is within 0.01 percent of

optimal in at least 75 percent of the problem instances when using the fourth look-ahead

set {IHT(2r, 2.5r, 3r), IHE(3)}. Finally, we observe that the heuristic method will return a

solution that is within 1 percent of optimal in at least 90 percent of the problem instances

when using the �fth look-ahead set, {IHT(2r, 2.5r, 3r), IHE(3,4)}.

Table 2.6: Performance of the IHT and IHE methods on a complete graph with n = 5 vertices
for 1,000 randomly generated problem scenarios with average inspection times comparable to
average travel times, using the best solution that was obtained in each problem scenario for the
indicated look-ahead depth parameter sets. Mean, 50th, 75th and 90th percentile performance
is indicated as the percentage excess over the optimal solution when using prioritized hybrid
look-ahead depth sets as indicated. Mean time to compute the optimal solution is 20.68 seconds.

Heuristic Percent over optimum Time
set Mean 50th 75th 90th (sec)
1 1.22 0.00 1.60 3.60 2.47
2 0.62 0.00 0.49 2.15 6.11
3 0.49 0.00 0.20 1.38 8.30
4 0.37 0.00 0.01 1.29 10.96
5 0.30 0.00 0.00 0.92 14.67
6 0.30 0.00 0.00 0.92 17.89

These results are also presented graphically in Figure 2.4 to show the rate of improvement

of the prioritized hybrid look-ahead depth sets as computation time increases. We observe

the best rate of improvement in performance as a function of computation time required

through the third look-ahead depth set {IHT(2r, 2.5r, 3r)}. In Section 2.4.4, we test these

recommendations further using several additional problem cases.
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Figure 2.4: Combined IHT and IHE 90th percentile hybrid performance with average travel times
comparable to average inspection times, using prioritized heuristic methods and look-ahead depth
parameter sets.
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2.4.4 Sensitivity Analysis

In addition to the baseline problems, we consider the case where a patroller needs to

spend more time conducting inspections than he does traveling between vertices and the

case where the patroller needs to spend more time traveling between vertices than he does

conducting inspections. The problem cases considered in the numerical experiments are

summarized in Table 2.7.

Table 2.7: Summary of numerical experiments for random attackers

Parameter Case I Case II Case III Case IV Case V
Travel time 1× 1× 1× 2× 2×

Inspection time 1× 2× 2× 1× 1×
Attack time 1× 1.5× 1× 1.5× 1×

Mean travel time 0.5125 0.5125 0.5125 1.0430 1.0430
Mean inspection time 0.5125 1.0430 1.0430 0.5125 0.5125
Mean transit time 1.0430 1.5645 1.5645 1.5645 1.5645

Mean bounded attack time 3.2537 4.8805 3.2537 4.8805 3.2537
Mean number of states, |Ω| 1,184 633 102 3,938 318

Mean number of decision variables 5,920 3,165 510 19,690 1,590
Mean number of constraints 7,105 3,799 613 23,674 1,909
Mean optimal long-run cost 0.3921 0.4200 0.5679 0.4617 0.5198

Mean optimal computation time (sec) 20.68 4.99 0.11 574.85 2.11

For the case where the average inspection times are longer than average travel times, we

double the inspection times in the problem scenarios and run the experiment using both

the linear programming and heuristic methods. We conduct these experiments with the

original attack time distributions and also adjust the attack distributions as a separate

case to maintain an overall probability of detection rate of approximately 0.5. We do this

by increasing the attack time distribution parameters at each vertex by a factor of 1.5.

The rest of the problem scenario parameters remain the same.

For the case where the average travel times are longer than average inspection times, we

double the travel times in the problem scenarios and the run the experiment using both

the linear programming and heuristic methods. We use the same original and adjusted

attack distributions at each vertex that were used in the cases of increased inspection

times as described above. The rest of the problem scenario parameters remain the same.

Case I, the baseline case, had the lowest long-run cost on average. Case III generated
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the smallest number of states and had the highest long-run cost on average. Case IV

generated the largest number of states on average.

Results for problem cases II through V using the prioritized look-ahead parameter sets

from Section 2.4.3 are presented in Table 2.8. In each of these problem cases, very favorable

results were obtained using the recommended method of incrementally increasing the

heuristic method and look-ahead parameter sets. We note that the heuristic performed

slightly better in problem cases involving shorter travel times. The average computation

time required in each case increases signi�cantly as the average size of the state space

grows. We particularly note this for problem Case IV, which had an average state space

approximately three times larger that the baseline case, but required computation times

that were approximately 25 times greater.

In general, the heuristic returns a solution within 0.01 percent of optimal in at least half

of the problem instances using a single look-ahead parameter, IHT(2.5r). The heuristic

returns a solution within 0.01 percent of optimal in at least 75 percent of the problem

instances using the third look-ahead set, {IHT(2r, 2.5r, 3r)}. Finally, we observe that

the heuristic returns a solution within 1 percent of optimal in at least 90 percent of the

problem instances using the sixth look-ahead set, {IHT(2r, 2.5r, 3r), IHE(2, 3, 4)}. We

also note in certain problem cases that this method may require more computation time

than what is required to determine an optimal solution using the RALP.
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Table 2.8: Performance of IHT and IHE methods for problem cases as indicated in Table 2.7,
using prioritized look-ahead depth parameter sets. Performance is indicated as the percentage
excess over the optimal solution.

Case Time (sec) Heuristic Percent over optimum Time (sec)
Optimal set Mean 50th 75th 90th Heuristic
solution solution

I 20.68 See Table 2.6
II 4.99 1 0.69 0.00 0.81 2.25 0.84

2 0.35 0.00 0.13 1.47 1.95
3 0.29 0.00 0.00 1.10 2.66
4 0.26 0.00 0.00 0.84 3.45
5 0.15 0.00 0.00 0.52 4.91
6 0.14 0.00 0.00 0.36 5.68

III 0.11 1 0.99 0.00 0.94 2.99 0.09
2 0.70 0.00 0.64 2.38 0.75
3 0.41 0.00 0.01 1.31 0.81
4 0.41 0.00 0.01 1.31 0.87
5 0.35 0.00 0.00 1.12 1.08
6 0.18 0.00 0.00 0.35 1.12

IV 574.85 1 2.03 0.01 2.48 6.90 51.12
2 0.61 0.00 0.50 2.09 164.94
3 0.41 0.00 0.01 1.21 203.11
4 0.41 0.00 0.01 1.21 267.43
5 0.39 0.00 0.00 0.82 320.75
6 0.39 0.00 0.00 0.82 403.52

V 2.11 1 2.44 0.00 2.02 7.15 0.49
2 1.06 0.00 0.67 3.97 1.96
3 0.53 0.00 0.02 1.12 2.21
4 0.44 0.00 0.00 0.96 2.43
5 0.41 0.00 0.00 0.86 2.97
6 0.41 0.00 0.00 0.86 3.18
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CHAPTER 3:

Single Patroller Against Strategic Attackers

In this chapter, we consider the case of a single patroller against strategic attackers.

Section 3.1 introduces a patrol model on a graph, where an attacker will actively choose

a location to attack in order to incur the highest cost. In Section 3.2, we present a linear

program that determines the optimal solution to the patrol problem. Since the linear

program quickly becomes computationally intractable as the size of the problem grows,

we also present heuristic methods for determining a solution in Section 3.3. In Section 3.4,

we present a method to compute a lower bound for the optimal solution, which allows us

to evaluate the heuristic methods when the optimal solution is unavailable. We conduct

extensive numerical experiments for several scenarios and present the results in Section

3.5. We make recommendations on how to best utilize the heuristic methods based on

the experimental results.

3.1 Patrol Model

We consider a patrol model similar to the random-attacker model presented in Section 2.1,

except that in this case, an attacker will actively choose which vertex to attack in order

to incur the highest expected cost. In other words, the attacker and the patroller play a

simultaneous-move two-person zero-sum game where the attacker is trying to maximize

the cost incurred due to a successful attack and the patroller is trying to minimize it.

The patroller chooses how to patrol the graph while the attacker chooses which vertex

to attack. Except for trivial cases, the optimal strategy for either player in a two-person

zero-sum game is often a mixed strategy, which is a probability distribution on the set of

a player's pure strategies (Owen 1995).

To formulate this problem, we modify the model that was used for the random-attacker

case in Chapter 2. Recall from (2.5) that for a given patrol policy π, Vi(π) is the long-run

cost rate at vertex i. While the attacker is trying to maximize the expected cost incurred

by choice of vertex to attack, the patroller is simultaneously trying to minimize it by

choice of patrol policy. The patroller's objective function in this two-person zero-sum
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game against a strategic attacker is

min
π∈ΠR

max
i∈N

Vi(π)

λi
,

where ΠR is the set of randomized patrol policies.

3.2 Optimal Policy
It is possible to determine the optimal solution to this problem by formulating and solving

a linear program. Recall the linear program from Section 2.2.1 that was used to �nd the

optimal solution for the case of random attackers, where the objective function represented

the overall long-run cost rate. In the case of strategic attackers, the objective is to

minimize the largest expected cost per attack across each individual vertex, rather than

the overall long-run cost rate for the entire graph.

To solve this problem, we again use the directed graph of the state space G(N ,A), where

each node k ∈ N represents one state of the system and each arc (k, l) ∈ A represents a

feasible transition between states. Each arc is assigned a transit time tkl as determined

by the vertex-pair speci�c distance and inspection times, where tkl = τ(k, ω(l)). Each arc

is also assigned cost data that represents the expected cost incurred at each vertex when

the system transitions from state k to state l. We write c
(i)
kl as the expected cost incurred

at vertex i for the state pair (k, l), as determined by (2.2), for i ∈ N .

If xkl represents the long-run fraction of time that arc (k, l) is utilized during the patrol

pattern, the long-run cost rate at vertex i is∑
(k,l)∈A

c
(i)
kl xkl.

Dividing this total by the arrival rate of attackers at vertex i, we can de�ne the zero-sum

game between the patroller and strategic attacker as

min
x

max
i∈N

∑
(k,l)∈A

c
(i)
kl xkl
λi

.

Note that c
(i)
kl xkl scales proportionately with λi, so the long-run average cost at vertex i

does not depend on the value of λi. Hence for the rest of this section, we let λi = 1, for
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all i ∈ N .

To determine the optimal solution for the strategic-attacker problem, we modify the linear

program in Section 2.2.1 to minimize the largest long-run average cost per attack among

all vertices, which we refer to as the strategic-attacker linear program (SALP):

min
x
zOPT (3.1a)

subject to
∑

(k,l)∈A

c
(i)
kl xkl ≤ zOPT, ∀ i ∈ N (3.1b)

∑
l|(k,l)∈A

xkl −
∑

l|(l,k)∈A

xlk = 0, ∀ k ∈ N (3.1c)

∑
(k,l)∈A

tklxkl = 1, (3.1d)

xkl ≥ 0, ∀ (k, l) ∈ A. (3.1e)

In the optimal solution, the positive values of xkl indicate the arcs that belong to the cycle

with the lowest total cost per unit time. The states on these cycles directly correspond

to vertices on the graph, which can be determined by the function ω(s). Therefore, an

optimal mixed strategy patrol policy can be determined. For each state of the system,

the patrol policy speci�es the probability that the patroller will choose to move to each

vertex. We map the solution from the linear program to a patrol policy using

pkl =
xkl∑

l|(k,l)∈A xkl
, for

∑
l|(k,l)∈A

xkl > 0,

where pkl is the probability that the patroller will choose to next go to vertex ω(l) when

the system is in state k.

As the problem size grows, it quickly becomes computationally intractable to use this

method. Therefore, there is a need for e�cient heuristic policies.

3.3 Heuristic Policies
In this section, we consider heuristics to determine a strategy for the patroller. This

method introduces a di�erent kind of randomized strategy, by letting the patroller choose

a patrol pattern from a predetermined set and repeat the patrol pattern inde�nitely.
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For the patrol problems we consider, there are an in�nite number of feasible patrol pat-

terns. As it would be impossible to consider an in�nite number of patrol patterns, we

propose a heuristic method to de�ne a �nite set of patrol patterns from which the pa-

troller can select a mixed strategy. If it were possible to consider every feasible patrol

pattern, then this method would �nd the optimal solution. Similarly, if we consider a

�nite subset of all the feasible patrol patterns, such that all patrol patterns that are part

of the optimal solution are elements of that subset, then this method would also �nd the

optimal solution.

We develop strategy reduction techniques that allow us to consider a comprehensive, but

reasonable, number of patrol patterns for use in this heuristic method. To do so, we create

a �nite set S of feasible patrol patterns, ideally with elements that are identical or very

similar to the patrol patterns that are part of the optimal solution. In the best case, S

would contain all patrol patterns that are part of the optimal solution.

Once we determine a �nite set of patrol patterns, S = {ξ1, ξ2, . . . , ξm}, we formulate a

di�erent two-person zero-sum game between the attacker and the patroller in a standard

matrix form. In this game matrix, row i corresponds to the attacker choosing to attack

vertex i and column j corresponds to the patroller choosing patrol pattern ξj, for i ∈ N
and j = 1, . . . m. A linear program can then be formulated to solve this two-person zero-

sum matrix game (Washburn 2003). The solution to this game will provide a mixed

strategy for both the attacker and the patroller, and the value of the game will be the

expected cost due an undetected attack.

3.3.1 Patrol Cost Determination

For any feasible patrol pattern, we can determine the expected cost incurred at each

vertex due to an undetected, and therefore successful, attack. We denote the expected

cost at vertex j by ρj. These expected costs are used to populate the game matrix used

in the heuristic method. There are three cases to consider when computing the expected

cost at a vertex, which are based on the structure of the patrol pattern.

Case one occurs if the patrol pattern never visits vertex j. In this case, the expected cost

for an attack on vertex j is cj, due to the fact that if the attacker chooses to attack vertex

j then the attack will always succeed. Thus,

ρj = cj.
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Case two occurs if the patroller visits vertex j exactly once during a patrol pattern of

total time length τ . Recall from Section 2.2 that we can compute the expected number

of successful attacks at vertex j when vertex j is inspected once every τ time units as

λj

∫ τ

0

Fj(τ − t) dt = λj

∫ τ

0

Fj(s) ds .

Divide this by the expected number of attackers that will arrive at vertex j during time

interval τ , which is λjτ , to determine the probability of a successful attack:

λj
∫ τ

0
Fj(s) ds

λjτ
=

∫ τ
0
Fj(s) ds

τ
.

The expected cost at vertex j will therefore be the cost of a successful attack cj times the

probability of a successful attack:

ρj =
cj
∫ τ

0
Fj(s) ds

τ
.

Case three occurs if the patroller visits vertex j two or more times during the patrol

pattern. In this case, we break the patrol pattern into intervals based on each time the

patroller returns to the vertex. If a patroller visits the vertex m ≥ 2 times during a patrol

pattern of total time length τ , we de�ne t1 as the time interval between the m-th (�nal)

visit and the �rst visit to the vertex. The second interval t2 is the time between the �rst

and second visit. The last interval tm is the time between visit m − 1 and visit m. We

compute the expected number of successful attacks at the vertex during each interval and

divide that sum by the time to complete a full patrol cycle τ . Thus, the probability of

a successful attack at vertex j, with m ≥ 2 visits to vertex j, during a patrol pattern of

total length τ = t1 + t2 + · · ·+ tm is

λj
∫ t1

0
Fj(s) ds+ · · ·+ λj

∫ tm
0
Fj(s) ds

λjτ
=

∫ t1
0
Fj(s) ds+ · · ·+

∫ tm
0
Fj(s) ds

τ
,

and the expected cost is

ρj =
cj

(∫ t1
0
Fj(s) ds+ · · ·+

∫ tm
0
Fj(s) ds

)
τ

.
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3.3.2 Selection of Patrol Patterns

We consider two groups of patrol patterns to include in S. The �rst group is a combina-

torial selection of patrol patterns based on the shortest Hamiltonian cycle in the graph.

The second group is determined through an iterative method based on �ctitious play.

Patrol Patterns Based on Shortest Path

Consider a case where the patroller chooses to use a single patrol pattern, or in other

words, he uses a pure strategy. He would likely choose a pattern that visited each vertex

at least once, since if he were to never visit a vertex, then an attack at that vertex would

always be successful and would incur the full cost. Furthermore, he would likely try to

minimize the time between inspections at each vertex.

To minimize the time between inspections at each vertex while visiting each vertex at

least once during the patrol pattern, the patroller will follow a shortest Hamiltonian cycle

in the graph. This patrol pattern is designated as the �rst element in the set S and we

refer to it as the shortest-path patrol pattern. Finding the shortest-path patrol pattern is

an example of solving a traveling salesman problem, as described in Section 16.5 of Ahuja

et al. (1993), in which the vertices represent locations that are subject to attack and the

weight on each edge is the time required to travel between those locations and complete

an inspection at the arrival location.

From Section 3.3.1, the expected cost at vertex j using a shortest-path patrol pattern

with total transit time τ is

ρj =
cj
∫ τ

0
Fj(s) ds

τ
, ∀ j ∈ N.

If a patroller were to use this patrol pattern as a pure strategy against strategic attackers,

then the long-run cost of this policy is

V = max
j∈N

ρj,

since an attacker will employ his own pure strategy of always choosing to attack the vertex

that incurs the highest cost.

Since we want to consider the option of a mixed strategy for the patroller, we must add

additional patrol patterns to S. We start by considering subsets of the shortest-path
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patrol pattern. Speci�cally, we consider n additional patrol patterns, which consist of the

cycle where one vertex is skipped in the shortest-path patrol pattern and the patroller

proceeds to the next vertex in the sequence. These are good patrol patterns to consider

because they are consistent with the reasoning of using the shortest-path patrol pattern

to minimize time spent on traveling, but they can also account for the heterogeneous

qualities of potential attack locations. Due to di�erences among vertices in attack time

distributions Fi(·) or cost incurred due to a successful attack ci, a patroller may want to

use a mixed strategy that periodically skips a visit to one or more vertices in order to

occasionally direct more resources toward other vertices.

As an example, if the shortest-path patrol pattern in a graph with n = 5 vertices is

{1− 2− 3− 4− 5−}, then the �rst subset of patrol patterns is

{2− 3− 4− 5−,
1− 3− 4− 5−,
1− 2− 4− 5−,
1− 2− 3− 5−,
1− 2− 3− 4−}.

For similar reasons, we also consider all paths of length n − 2, where two vertices are

removed from the shortest-path patrol pattern. In our example, there will be
(

5
3

)
= 10 of

these patterns to consider:

{3− 4− 5−, 2− 4− 5−,
2− 3− 5−, 2− 3− 4−,
1− 4− 5−, 1− 3− 5−,
1− 3− 4−, 1− 2− 5−,
1− 2− 4−, 1− 2− 3−}.

We continue this process by removing vertices until all subsets of the shortest-path patrol

pattern that consist of only one vertex have been considered. For paths of length greater

than three, the sequence of vertices can be reordered as required, so that the patroller

will be utilizing the shortest Hamiltonian cycle within a particular subgraph of vertices.

The total number of patrol patterns considered when using this method is 2n − 1. We

refer to this set of patterns as the shortest-path (SP) patrol patterns.
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In addition to the shortest-path patrol pattern and its subsets, we consider patrol patterns

where the patroller chooses one vertex to visit twice during his patrol while visiting each

remaining vertex only once. Ideally, we would choose the time for a revisit to a vertex in

the patrol pattern such that the time between inspections is as close to even as possible.

To determine these patterns, we continue to use the shortest-path patrol pattern as a

baseline and insert a revisit to each vertex at all possible points in the pattern, such

that the patroller does not complete a revisit to a vertex immediately after completing

an inspection at that vertex. Using this method, we will consider an additional n(n− 2)

patrol patterns. We refer to this set of patrol patterns as the shortest-path with one

revisit (SPR1) patrol patterns.

To continue the example from above, for a graph with n = 5 vertices and shortest-path

patrol pattern {1−2−3−4−5−}, the SPR1 set would consist of the following additional

15 patrol patterns

{1− 2− 1− 3− 4− 5−,
1− 2− 3− 1− 4− 5−,
1− 2− 3− 4− 1− 5−,
1− 2− 3− 2− 4− 5−,
1− 2− 3− 4− 2− 5−,
1− 2− 3− 4− 5− 2−,
1− 3− 2− 3− 4− 5−,
1− 2− 3− 4− 3− 5−,
1− 2− 3− 4− 5− 3−,
1− 4− 2− 3− 4− 5−,
1− 2− 4− 3− 4− 5−,
1− 2− 3− 4− 5− 4−,
1− 5− 2− 3− 4− 5−,
1− 2− 5− 3− 4− 5−,
1− 2− 3− 5− 4− 5−}.

Similarly, we can continue this method of generating additional patrol patterns based on

the shortest-path patrol pattern by allowing multiple revisits to a vertex. We consider

the case of the shortest path with two revisits (SPR2) by starting with the SPR1 patrol

patterns and, for each of these patrol patterns, conducting an additional visit to each

vertex. We consider paths that revisit all combinations of two vertices, including two
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revisits to the same vertex, such that there are no immediate revisits to any vertex.

The number of patrol patterns that are generated for a particular number of revisits is

based on the number of vertices n in the graph. For the case of two revisits in the SPR2

method, there are an additional n(n − 2)((n − 1)(n − 1) + (n − 3)) patrol patterns to

consider, which for a problem with n = 5 vertices is an additional 270 patrol patterns.

The SPR3 method follows a similar process by conducting revisits to all combinations of

three vertices such that there are no immediate revisits to any vertex. The length of the

patrol patterns and the size of the sets that are generated in each of these methods are

summarized in Table 3.1.

Table 3.1: Shortest path patrol pattern sets

Path generation method Length Number of patterns
Shortest path (SP) ≤ n 2n − 1

Shortest path with one revisit (SPR1) n+ 1 n2 − 2n
Shortest path with two revisits (SPR2) n+ 2 n4 − 3n3 + 4n
Shortest path with three revisits (SPR3) n+ 3 n6 − 3n5 − 5n4 + 19n3 − 20n

A summary of representative patrol pattern sizes for the type of problems that we consider

is presented in Table 3.2. As revisits are increased to four and beyond, there are very

large increases in the number of patrol patterns without much further improvement in

performance.

Table 3.2: Example numbers of shortest-path patrol patterns

Path n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12
SP 31 63 127 255 511 1,023 2,047 4,095

SPR1 15 24 35 48 63 80 99 120
SPR2 270 672 1,400 2,592 4,410 7,040 10,692 15,600
SPR3 5,400 20,832 61,600 152,928 335,160 668,800 1,240,272 2,168,400

Patrol Patterns Based on Fictitious Play

We consider an additional group of patrol patterns that are generated using �ctitious

play as described by Robinson (1951). She shows that an iterative method can be used

to generate mixed strategies in a two-person zero-sum game that will converge to the

optimal solution. In this iterative method of play, each player arbitrarily chooses a pure
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strategy in the �rst round. In subsequent rounds, each player chooses a pure strategy

that will produce the best expected value against the mixture of strategies used by the

other player in all the previous rounds.

We compute the attacker's mixed strategy (p1, . . . , pn) based on the mixture of strategies

used by the patroller in the previous rounds. Based on that probability vector, we can use

the IHT and IHE heuristic methods from the random-attacker case presented in Chapter

2 to generate a new patrol pattern for the patroller. The following algorithm is adapted

from Lin et al. (2013):

1. In round 1, each player picks a strategy.

(a) Denote by ξ(d) the patrol pattern used by the patroller in round d. Choose ξ(1)

to be the shortest-path patrol pattern.

(b) Let the attacker pick the vertex j that has the highest cost in the shortest-path

patrol to attack. Use ri, for i ∈ N , to keep track of the number of times vertex

i is picked by the attacker. Initialize rj = 1 and ri = 0, for i ∈ N, i 6= j.

2. Repeat the following steps for the predetermined number of rounds, ν. In round

d ≥ 2,

(a) Set pi = ri/
∑n

k=1 rk, which represents the attacker's mixed strategy based on

his attack history from rounds 1 to d − 1. Use the random-attacker heuristic

method to generate a patrol pattern ξ(d).

(b) Find the best vertex for the attacker to attack by assuming the patroller uses

patrol pattern ξ(j), j = 1, . . . , (m − 1), each with probability 1/(m − 1). If

attacking vertex i yields the highest expected cost, set ri ← ri + 1.

Thus, we can generate two groups of patrol patterns for use in the strategic-attacker

heuristic method: the shortest-path patrol and its associated derived patrol patterns, and

a set of patrol patterns determined by an iterative method using �ctitious play. The

heuristic method in the case of �ctitious play will have two parameters, the set L of look-

ahead depth parameters to be used with the IHT and IHE methods, and the number of

iterations of �ctitious play, ν.

For a graph with n vertices, we generate 2n − 1 + n(n − 2) patrol patterns in the �rst

group when using the SP and SPR1 patrol pattern sets. In the second group we generate

up to |L| × ν patrol patterns. The actual number of patrol patterns considered in the

problem is often much smaller than [2n +n2− 2n− 1] + [|L|× ν], since many of the patrol
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patterns generated during the �ctitious-play algorithm will be identical or will produce

identical performance.

3.4 Lower Bound

When the optimal solution cannot be determined due to the size of a problem, it is

valuable to have a way to evaluate a heuristic solution. For this purpose, we provide

a method to compute a lower bound for the optimal solution in the strategic-attacker

problem. This is a modi�cation of the discrete-time method presented in Lin et al. (2013)

for our continuous-time problem.

To determine a lower bound for the optimal solution, we formulate a linear program.

We de�ne yir as the rate at which an inspection is completed at vertex i, with the last

inspection at that vertex having been completed exactly r time units ago.

For example, consider a patrol pattern of total length τ = 17 where inspections are

completed at vertex 1 at times 2− 5− 7− 10− 14− 17. The times between inspections

are 2 − 3 − 2 − 3 − 4 − 3. The inspection rates at vertex 1 using this patrol pattern are

y12 = 2/17, y13 = 3/17, and y14 = 1/17. It follows that there is a total inspection rate

constraint for any vertex i that is inspected during a patrol pattern:

∞∑
r=1

yirr = 1.

If a vertex is not visited at all during a patrol pattern, then the total inspection rate at

that vertex will be 0. Therefore, in order to create a total-rate constraint for all vertices

and all patrol policies, we use

∞∑
r=1

yirr ≤ 1, ∀ i ∈ N. (3.2)

Since we consider this problem in continuous time, we must modify the de�nition of the

inspection rate in order to use it as a variable in a linear program. Recall that the attack

time at vertex i is bounded by Bi. We divide the time interval [0, Bi] at vertex i into m

equal length subintervals. We then de�ne an inspection rate yiq, for q = 1, . . . , (m−1), as

the rate at which vertex i is inspected with the previous inspection having been completed
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at time in
[

(q−1)Bi

m
, qBi

m

)
, and yim as the rate at which vertex i is inspected with the previous

inspection having been completed at least (m−1
m

)Bi time units ago.

Again consider the example of a patrol pattern of total length τ = 17 where inspections

are completed at vertex 1 at times 2− 5− 7− 10− 14− 17. Suppose that B1 = 9.6 and

we choose m = 8. Table 3.3 indicates the number of inspections that are completed in

each time interval.

Table 3.3: Example case of time-interval inspections.

q Interval Inspections
1 [0, 1.2) 0
2 [1.2, 2.4) 2
3 [2.4, 3.6) 3
4 [3.6, 4.8) 1
5 [4.8, 6.0) 0
6 [6.0, 7.2) 0
7 [7.2, 8.4) 0
8 [8.4, ∞) 0

Thus, the inspection rates yiq at vertex i = 1 for this patrol pattern are y12 = 2/17, y13 =

3/17, y14 = 1/17, and y11 = y15 = y16 = y17 = y18 = 0.

Since the inspection times are broken into m discrete time intervals, the identity in (3.2)

becomes
m∑
q=1

yiq
(q − 1)Bi

m
≤ 1, ∀ i ∈ N.

We now focus on a single vertex in order to quantify the long-run cost at that vertex.

De�ne Ri(t) as the expected cost that can be avoided for completing an inspection at

vertex i if the previous inspection was completed t time units ago. This is equivalent to

the expected number of ongoing attacks at vertex i at time t multiplied by ci, so

Ri(t) = ciλi

∫ t

0

P (Xi > s) ds .

We also de�ne

Riq = Ri

(
qBi

m

)
, q = 1, . . . ,m,
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as the cost that can be avoided at vertex i for completing an inspection at time q(Bi/m).

Although we do not know the exact value of the expected cost at vertex i, we do know

that (
ci −

1

λi

m∑
q=1

yiqRiq

)
≤ [expected cost at vertex i] ≤

(
ci −

1

λi

m∑
q=1

yiqRi(q−1)

)
.

Therefore, the expected cost incurred at vertex i will be at least

ci −
1

λi

m∑
q=1

yiqRiq, ∀ i ∈ N, (3.3)

because the expression in (3.3) will take credit for avoiding cost in the entire interval[
0, qBi

m

)
at the constant value represented by Ri(

qBi

m
) times the inspection rate yiq. Thus,

the value in (3.3) represents a lower bound for the expected cost for each attack at vertex

i.

To formulate a linear program to determine a lower bound for the optimal solution, we

also incorporate constraints that account for graph structure. De�ne xij as the rate at

which a patroller travels from vertex i to vertex j and conducts an inspection at vertex

j, for i, j ∈ N . Recall that tij represents the time required for a patroller to travel from

vertex i to vertex j and conduct an inspection at vertex j. On a graph with a single

patroller, the following total-rate constraint applies:∑
i,j∈N

xijtij = 1. (3.4)

Since the total rate of arrivals to a vertex must equal the total rate of departures from a

vertex, we also observe that ∑
j∈N

xij =
∑
j∈N

xji, ∀ i ∈ N.

The variables xij and yiq are connected through the equation

m∑
q=1

yiq =
∑
j∈N

xij, ∀ i ∈ N,
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since both sides represent the long-run inspection rate at vertex i.

We now formulate a linear program to determine the lower bound for the optimal solution

in the single patroller against strategic attackers problem, which we refer to as the lower

bound linear program (LBLP):

min
x,y

zLB (3.5a)

subject to ci −
1

λi

m∑
q=1

yiqRiq ≤ zLB, ∀ i ∈ N, (3.5b)

m∑
q=1

yiq
(q − 1)Bi

m
≤ 1, ∀ i ∈ N, (3.5c)∑

j∈N

xij −
∑
j∈N

xji = 0, ∀ i ∈ N, (3.5d)

m∑
q=1

yiq −
∑
j∈N

xji = 0, ∀ i ∈ N, (3.5e)∑
i,j∈N

xijtij = 1, (3.5f)

xij ≥ 0, ∀ i, j ∈ N, (3.5g)

yiq ≥ 0, ∀ i ∈ N ; q = 1, . . . ,m. (3.5h)

The decision variables in this problem are xij, the rate that the patroller transits from

vertex i to vertex j; and yiq, the rate that an inspection is completed at vertex i with the

time since the last inspection falling in
[

(q−1)Bi

m
, qBi

m

)
.

In this linear program, we seek to minimize the maximum expected cost for each attack

across all n vertices, which is ensured by constraint (3.5b). We observe the total inspection

rate constraints at each vertex with (3.5c). We also observe the network balance of �ow

and total arrival and inspection rate equality constraints in (3.5d) and (3.5e). Finally,

we observe the total transit rate constraint on a single patroller in (3.5f), and the non-

negativity constraint on patroller transit rates and inspection rates in (3.5g) and (3.5h).

While the preceding linear program will produce a valid lower bound, it can be quite

loose. We add additional constraints to the linear program in order to tighten the lower

bound by limiting the rate of reinspections at a vertex and by considering the transit time

that is required between vertices.
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To account for the action of a patroller electing to stay at a vertex to conduct an additional

inspection, de�ne

ai =

⌈
vi

(Bi/m)

⌉
, ∀ i ∈ N,

as the number of subintervals needed for the patroller to inspect vertex i again without

leaving vertex i; and require that

ai∑
q=1

yiq ≥ xii, ∀ i ∈ N, (3.6)

which ensures the total rate of inspections at vertex i in the time interval it takes to

conduct an inspection is at least equal to the rate of reinspections at vertex i.

We also add constraints to the linear program to account for the patroller's transit rate

from vertex i to j and back to vertex i, denoted by uiji, for i 6= j, as follows:

uiji ≤ xij, ∀ i, j ∈ N ; i 6= j, (3.7a)

uiji ≤ xji, ∀ i, j ∈ N ; i 6= j, (3.7b)

xij −
∑
k 6=i

xjk ≤ uiji, ∀ i, j ∈ N ; i 6= j. (3.7c)

Since the rate that a patroller transits from vertex i to j must be at least equal to the rate

that the patroller transits from vertex i to j and back to vertex i, we include constraint

(3.7a). The same reasoning applies to constraint (3.7b). We also observe in (3.7c) that

the rate the patroller transits from vertex i to j and back to vertex i must be at least

equal to the rate that he transits from vertex i to j, minus the rate he transits from vertex

j to any vertex other than i.

It also holds that the inspection rate at vertex i must be at least equal to the rate that the

patroller transits from vertex i to j and back to vertex i. To incorporate this constraint,

de�ne

giji =

⌈
tij + tji
(Bi/m)

⌉
, ∀ i, j ∈ N ; i 6= j,

and require that
giji∑
q=1

yiq ≥ xii + uiji, ∀ i, j ∈ N ; i 6= j, (3.8)
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where xii is the rate that the patroller remains at vertex i to conduct an additional

inspection and uiji is the rate that the patroller transits from vertex i to j and back to

vertex i.

We can continue this same idea to account for paths that visit at least two vertices prior to

returning to vertex i and de�ne wijki as the rate at which the patroller transits from vertex

i to vertex j to vertex k and returns immediately to vertex i. Based on the patroller's

transit rate from vertex i to j to k and back to vertex i, for i 6= j, k, we add the following

additional constraints to the linear program:

wijki ≤ xij, ∀ i, j, k ∈ N ; i 6= j, k, (3.9a)

wijki ≤ xjk, ∀ i, j, k ∈ N ; i 6= j, k, (3.9b)

wijki ≤ xki, ∀ i, j, k ∈ N ; i 6= j, k, (3.9c)

xij −
∑
l 6=k

xjl −
∑
l 6=i

xkl ≤ wijki, ∀ i, j, k ∈ N ; i 6= j, k. (3.9d)

Since the rate that a patroller transits from vertex i to j must be at least equal to the

rate that the patroller transits from vertex i to j to k and back to vertex i, we include

constraint (3.9a). The same reasoning applies to constraints (3.9c) and (3.9d). We also

observe in (3.9d) that the rate the patroller transits from vertex i to j to k and back to

vertex i must be at least equal to the rate that he transits from vertex i to j, minus the

rate he transits from vertex j to any vertex other than k and the rate he transits from

vertex k to any vertex other than i.

It also holds that the inspection rate at vertex i must be at least equal to the rate that

the patroller transits from vertex i to j to k and back to vertex i. To incorporate this

constraint, de�ne

hijki =

⌈
tij + tjk + tki

(Bi/m)

⌉
, ∀ i, j, k ∈ N ; i 6= j, k,

and require that

hijki∑
q=1

yiq ≥ xii + uiji + wijki, ∀ i, j, k ∈ N ; i 6= j, k, (3.10)

where xii is the rate that the patroller remains at vertex i to conduct an additional
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inspection; uiji is the rate that the patroller transits from vertex i to j and back to vertex

i; and wijki is the rate that the patroller transits from vertex i to j to k and then back to

vertex i.

We add constraints (3.6), (3.7a), (3.7b), (3.7c), (3.8), (3.9a), (3.9b), (3.9c), (3.9d), and

(3.10) to the LBLP, which considerably tightens the lower bound. We could continue

this same idea to account for paths that visit three or more vertices before returning

to a starting vertex; however, for the size of the graphs that we consider, that would

involve many more variables with negligible gains in performance. The number of decision

variables in this linear program is n2 + mn. The number of constraints is 5n3 + 5n2 +

(m− 10)n + 1. For a problem with n = 5 and m = 100, there are 525 decision variables

and 1,201 constraints. In our numerical experiments, it takes on average 0.61 second to

compute a lower bound for a problem of this size.

3.5 Numerical Experiments

To test the shortest-path and �ctitious-play (FP) heuristic methods, we conduct several

numerical experiments. We compare the results obtained from using the heuristic methods

to the optimal solution. We also report the computation time required. Additionally, we

compute a lower bound for the optimal solution using the linear program described in

Section 3.4. Based on these results, we make conclusions on the e�cacy of the heuristics,

as well as make recommendations for the best use of the shortest-path and �ctitious-play

methods.

We test the same �ve problem cases for strategic attackers that we did for random at-

tackers in Chapter 2. In each case, we use the same 1,000 problem scenarios that were

randomly generated for the random-attacker experiments. The attack probability vector

is omitted for the strategic-attacker problems, but all other data remain the same. We

conduct our baseline experiments on a graph with n = 5 vertices.

In our experimental results, the optimal solution that is obtained from using the SALP is

indicated by zOPT. The lower bound that is obtained from using the LBLP is indicated

by zLB. Solutions obtained from using a heuristic method are indicated by zH, where H

indicates the heuristic method that was used.
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3.5.1 Baseline Problems

For our baseline problem, we consider the case where a patroller spends about half of the

time traveling and half of the time inspecting vertices. We determine the optimal solution

using the SALP from Section 3.2 and a solution using the heuristic methods from Section

3.3. The SALP on average uses 5,920 decision variables and 7,110 constraints for a problem

size with 1,184 states. The optimal solution takes on average 20.68 seconds to compute.

We compare the solution obtained from the heuristic method to the optimal solution. We

also determine a lower bound for the optimal solution using the LBLP in Section 3.4, and

compare that result to the optimal solution.

Using 1,000 problem instances, we test the shortest-path method with the SP, SPR1,

SPR2, and SPR3 patrol pattern sets. We also test the FP method with 10, 20, 30, and

50 iterations. Results of the baseline experiments are presented in Table 3.4. Excellent

performance is observed with both the shortest-path SPR2 and SPR3 methods and the FP

method with 50 iterations. Each of these methods returns a solution within 1.11 percent

of the optimal solution in at least 90 percent of the problem instances. The shortest-path

method uses considerably less computation time than the FP method in all cases. A

tight lower bound for the optimal solution was also obtained, with an average di�erence

between the lower bound and the optimal solution of 1.20 percent.

Table 3.4: Performance of the shortest-path and �ctitious-play heuristic methods on a complete
graph with n = 5 vertices, based on 1,000 randomly generated problem instances with average
inspection times that are comparable to average travel times. Mean, 50th, 75th and 90th per-
centile performance is indicated as the percentage excess over the optimal solution. The lower
bound is reported as (zLB − zOPT)/zOPT in percentage.

Heuristic method Percent over optimum Time
Mean 50th 75th 90th (sec)

Shortest-path (SP) 1.95 1.18 2.53 4.45 < 0.01
SP with one revisit (SPR1) 0.72 0.39 0.93 1.82 0.04
SP with two revisits (SPR2) 0.39 0.12 0.47 1.11 0.52
SP with three revisits (SPR3) 0.28 0.05 0.28 0.80 6.15

Fictitious play (ν = 10) 3.76 3.11 5.23 8.18 85.51
Fictitious play (ν = 20) 1.85 1.39 2.42 4.13 167.56
Fictitious play (ν = 30) 0.79 0.45 0.90 2.11 255.45
Fictitious play (ν = 50) 0.32 0.22 0.43 0.73 425.45

Lower bound −1.20 −0.29 −1.17 −3.35 0.61
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We also test combinations of the two-person zero-sum game matrices that are produced

from each heuristic method. When the game matrices are combined, the resulting perfor-

mance can be no worse than what is obtained with each of the individual methods since

additional patrol patterns are being considered. The mean and 90th percentile perfor-

mance results are presented in Table 3.5. We see an improvement in performance when

the methods are combined, but it is generally not signi�cant enough to justify the addi-

tional computation time required by the FP method. It requires at least 20 iterations of

FP combined with the SPR2 set and at least 30 iterations of FP combined with the SPR1

set to improve upon the performance obtained from using the SPR3 patrol pattern set

alone.

Table 3.5: Mean and (90th percentile) performance of the shortest-path and �ctitious-play heuris-
tic methods on a complete graph with n = 5 vertices, based on 1,000 randomly generated problem
instances with average inspection times that are comparable to average travel times, reported as
the percentage excess over the optimal solution.

Percent over optimum Time
FP/SP � SP SPR1 SPR2 SPR3 (sec)
� � 1.95 (4.45) 0.72 (1.82) 0.39 (1.11) 0.28 (0.80)

FP 10 3.76 (8.18) 1.70 (3.98) 0.57 (1.75) 0.32 (1.04) 0.23 (0.72) 85.51
FP 20 1.85 (4.13) 0.99 (2.43) 0.36 (1.16) 0.19 (0.66) 0.16 (0.42) 167.56
FP 30 0.79 (2.11) 0.50 (1.40) 0.24 (0.69) 0.13 (0.43) 0.10 (0.27) 255.45
FP 50 0.32 (0.73) 0.26 (0.67) 0.13 (0.43) 0.11 (0.28) 0.08 (0.17) 425.45

Time (sec) < 0.01 0.04 0.52 6.15

3.5.2 Recommendations Based on Numerical Experiments

We see very favorable results with the SP method. In at least 90 percent of the problem

instances, we observe results within 1.11 percent of the optimal solution when using

the SPR2 method and within 0.80 percent of the optimal solution when using the SPR3

method. For problems with n = 5, the SPR2 method required 0.52 second on average and

the SPR3 method required 6.15 seconds on average to return a solution. The advantage

to the SP method is that it provides excellent results for very little computation time.

We can generate additional e�ective patrol patterns for consideration in determining a

randomized patrol policy, and further re�ne the overall solution, by considering the pat-

terns obtained from multiple iterations of FP. The solution improves as the number of

iterations of FP increases, but comes at a cost of signi�cantly increased computation
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time. In at least 90 percent of problem instances, we see solutions within 2.11 percent of

optimal when using 30 iterations of FP and within 0.73 percent of optimal when using 50

iterations of FP. These problem instances required on average 4.25 minutes and 7 minutes,

respectively, to return a solution.

Based on the experimental results, we recommend using the SPR2 method for the strategic-

attacker problem. The use of the FP method is not recommend in most situations due to

the high amount of computation time required.

3.5.3 Performance on Smaller and Larger Graphs

In addition to problems with n = 5, we test the heuristic methods on smaller and larger

size graphs. For graphs with n = 3, 4, and 5, we compare the performance of the SPR2

heuristic to the optimal solution. Results are presented in Table 3.6.

Table 3.6: Performance of the SPR2 shortest-path heuristic on a complete graph, based on 1,000
randomly generated problem instances with average inspection times comparable to average
travel times. Mean, 50th, 75th and 90th percentile performance is indicated as the percent-
age over the optimum solution. The mean lower bound is reported as (zLB − zOPT)/zOPT in
percentage.

Vertices Percent over optimum Time (sec) Lower
(n) Mean 50th 75th 90th zSPR2 zOPT bound
3 0.00 0.00 0.00 0.00 0.03 < 0.01 0.00
4 0.10 0.00 0.04 0.17 0.08 0.23 −0.04
5 0.39 0.12 0.47 1.11 0.52 20.68 −1.27

We note that the SPR2 heuristic method works extremely well for graphs smaller than

n = 5, returning a solution that is within 0.17 percent of optimal in 90 percent of the

problem instances with computation times of less than 0.1 second. For graphs with n =

6, 7, 8, and 9, we compare the performance of the heuristic to the lower bound. Results

are presented in Table 3.7. We use the lower bound for a comparison because, in our

experiments, it is not practical to compute the optimal solution for graphs with n > 5

due to computer memory limitations.

We note that the SPR2 shortest-path heuristic method returns results that are within 10

percent of the lower bound in 90 percent of the problem instances for n = 6, and within 16

percent of the lower bound in 90 percent of problem instances for n = 9. These solutions

take on average 0.58 second and 7.98 seconds, respectively, to compute.
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Table 3.7: Performance of the SPR2 shortest-path heuristic on a complete graph, based on
1,000 randomly generated problem scenarios with average inspection times that are comparable
to average travel times. Mean, 50th, 75th and 90th percentile performance is indicated as the
percentage excess above the lower bound, reported as (zSPR2 − zLB)/zLB in percentage.

Vertices Percent over lower bound Time
(n) Mean 50th 75th 90th (sec)
3 0.00 0.00 0.00 0.00 0.03
4 0.14 0.03 0.08 0.22 0.08
5 1.66 0.75 1.57 3.15 0.52
6 3.58 2.03 4.63 9.71 0.58
7 4.93 3.03 5.75 11.98 1.35
8 5.84 4.54 8.64 12.47 3.34
9 7.56 5.67 10.49 15.93 7.98

3.5.4 Performance on Additional Graph Structures

In addition to problems on a complete graph, we test the SPR2 heuristic method on

several additional graph structures. Speci�cally, we consider line graphs, circle graphs,

and random trees. We use the procedures from Section 2.4.1 to generate 1,000 random

problem instances for problem cases with n = 4, 5, 6, and 7 vertices.

To construct a line graph, we randomly assign n− 1 edges between n vertices, such that

the degree of each vertex is at least one but no more than two. To construct a circle graph,

we randomly assign n edges between n vertices, such that the degree of each vertex is

exactly two. To construct a random tree, we randomly assign n − 1 edges between n

vertices, such that the degree of each vertex is at least one and there is at least one vertex

of degree greater than two, which excludes line graphs from the random tree category.

We still allow a patroller to travel between any two vertices in order to determine a patrol

policy. For these additional graph structures, a patroller may have to travel through one

or more interim vertices (without conducting inspections at those vertices) in order to

arrive at the destination vertex.

We consider cases where average travel times are comparable to average inspection times.

To do this, we scale the travel times between each pair of vertices based on the graph

structure. Speci�cally for any particular graph, we determine the average number of edges

between each pair of vertices and divide the travel times by that average value. This
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produces average total travel times between each pair of vertices that are comparable to

average inspection times. We construct a distance matrix D using these scaled travel

times. The distance dij is the total travel time along the shortest path in the graph

between each pair of vertices i and j, for i, j ∈ N .

Results for these additional graph structures with n = 4, 5, 6, and 7 are presented in

Table 3.8. For graphs with n ≤ 5, we compare the performance of the heuristic to the

optimal solution as well as to the lower bound. For graphs with n ≥ 6, we compare the

heuristic to the lower bound, since an optimal solution cannot be determined for problems

of this size.

Table 3.8: Mean performance of the SPR2 heuristic method on additional graph structures,
based on 1,000 randomly generated problem scenarios for average inspection times that are
comparable to average travel times. Performance is indicated as the mean percentage over
optimum for problems where an optimal solution can be determined using the SALP, and the
mean percentage over lower bound for all problems.

Graph Vertices Performance (%) Time (sec)
(n) zSPR2/zOPT zSPR2/zLB zSPR2 zOPT

Complete 4 0.10 0.12 0.08 0.23
Complete 5 0.39 1.66 0.52 20.68
Complete 6 � 3.58 0.58 �
Complete 7 � 4.93 1.35 �

Line 4 0.08 0.10 0.09 0.28
Line 5 0.26 0.90 0.46 35.84
Line 6 � 8.11 0.53 �
Line 7 � 11.12 1.31 �
Circle 4 0.12 0.15 0.08 0.29
Circle 5 0.50 1.18 0.50 22.25
Circle 6 � 2.32 0.54 �
Circle 7 � 3.73 1.29 �

Random tree 4 0.05 0.14 0.09 0.23
Random tree 5 0.15 0.84 0.52 28.62
Random tree 6 � 4.79 0.55 �
Random tree 7 � 5.99 1.35 �

These results indicate that the shortest-path heuristic method can be used very e�ectively

for the strategic-attacker problem on several di�erent graph structures and sizes. For

problems with n = 5, where an optimal solution can be determined, the SPR2 method

returns a solution on average that is within 0.50 percent of optimal. These solutions
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take approximately 0.5 second to compute, which is 40 times less than the time required

to compute the optimal solution. For problems with n = 7, where an optimal solution

cannot be determined, the heuristic produces on average a result within 3.73 percent of

the lower bound on a circle graph, and within 11.12 percent of the lower bound on a line

graph. These solutions take less than 1.5 seconds to compute.

3.5.5 Sensitivity Analysis

In addition to the baseline problems, we consider the case where a patroller needs to

spend more time conducting inspections than he does traveling between vertices; and the

case where the patroller needs to spend more time traveling between vertices than he does

conducting inspections. The �ve speci�c cases we consider in the numerical experiments

are summarized in Table 3.9. Case III generated the smallest number of states and had

the highest long-run cost on average. It also generated the tightest lower bound for the

optimal solution. Case IV generated the largest number of states and had the lowest long-

run cost on average. It also generated the loosest lower bound for the optimal solution.

Table 3.9: Summary of numerical experiments for strategic attackers. The mean lower bound is
reported as (zLB − zOPT)/zOPT in percentage.

Parameter Case I Case II Case III Case IV Case V
Travel time 1× 1× 1× 2× 2×

Inspection time 1× 2× 2× 1× 1×
Attack time 1× 1.5× 1× 1.5× 1×

Mean number of states, |Ω| 1,184 633 102 3,938 318
Mean number of decision variables 5,920 3,165 510 19,690 1,590

Mean number of constraints 7,110 3,804 613 23,679 1,914
Mean optimal long-run cost 0.4892 0.5085 0.6589 0.4761 0.6224

Mean optimal computation time (sec) 20.68 4.99 0.11 574.85 2.11
Lower bound −1.20 −0.20 −0.03 −4.81 −0.88

The mean performance results for problem cases II through V using both the SP and

FP methods are presented in Table 3.10. The 90th percentile performance results are

presented in Table 3.11. In each of the problem cases, very favorable results are obtained

using the SP heuristic method. In at least 90 percent of the problem instances, the SPR2

method returns a solution within 1.51 percent of optimal. These solutions take 0.52 second

to compute on average.
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Table 3.10: Mean performance of the shortest-path and �ctitious-play methods, based on 1,000
randomly generated problem scenarios for each case. Performance is indicated as the percentage
excess over the optimal solution. Shortest-path computation time is indicated for the SPR2
heuristic.

Case Percent over optimum Time
(Mean) (sec)

FP/SP � SP SPR2 SPR3
II � � 1.26 0.21 0.14 0.52

FP 10 3.32 1.23 0.18 0.12 29.71
FP 20 1.20 0.67 0.13 0.10 59.52
FP 30 0.60 0.44 0.10 0.07 89.92
FP 50 0.30 0.27 0.08 0.04 151.99

III � � 0.41 0.22 0.17 0.50
FP 10 1.66 0.39 0.19 0.15 2.25
FP 20 0.74 0.27 0.16 0.12 4.75
FP 30 0.50 0.15 0.10 0.07 7.38
FP 50 0.37 0.15 0.09 0.05 12.79

IV � � 2.65 0.50 0.34 0.50
FP 10 4.49 2.15 0.34 0.26 717.60
FP 20 2.19 1.42 0.26 0.19 1,337.60
FP 30 1.08 0.80 0.12 0.09 1,977.97

V � � 0.90 0.53 0.44 0.47
FP 10 2.96 0.74 0.45 0.38 14.30
FP 20 1.37 0.51 0.31 0.26 29.78
FP 30 0.83 0.60 0.22 0.17 47.16
FP 50 0.51 0.17 0.16 0.11 78.87
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Table 3.11: 90th percentile performance of the shortest-path and �ctitious-play methods, based
on 1,000 randomly generated problem scenarios for each case. Performance is indicated as the
percentage excess over the optimal solution. Shortest-path computation time is indicated for the
SPR2 heuristic.

Case Percent over optimum Time
(90th percentile) (sec)

FP/SP � SP SPR2 SPR3
II � � 3.21 0.69 0.49 0.52

FP 10 5.95 2.94 0.66 0.42 29.71
FP 20 2.47 1.64 0.49 0.33 59.52
FP 30 1.35 1.05 0.37 0.24 89.92
FP 50 0.79 0.47 0.23 0.16 151.99

III � � 1.06 0.60 0.53 0.50
FP 10 3.08 1.04 0.45 0.39 2.25
FP 20 1.47 0.78 0.39 0.32 4.75
FP 30 1.12 0.69 0.30 0.24 7.38
FP 50 0.77 0.36 0.28 0.19 12.79

IV � � 5.44 1.51 1.06 0.50
FP 10 8.63 4.58 0.87 0.76 717.60
FP 20 4.72 3.84 0.82 0.68 1,337.60
FP 30 2.78 2.18 0.27 0.21 1,977.97

V � � 1.90 1.26 1.16 0.47
FP 10 5.79 1.77 1.02 0.85 14.30
FP 20 3.07 1.30 0.73 0.61 29.78
FP 30 1.94 1.27 0.60 0.49 47.16
FP 50 1.32 0.42 0.34 0.24 78.87
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CHAPTER 4:

Multiple Patrollers Against Strategic Attackers

In this chapter, we consider the case of multiple patrollers against strategic attackers,

where an attacker will actively choose a location to attack in order to incur the highest

expected cost. In Section 4.1, we introduce a patrol model where k patrollers are assigned

to patrol a graph consisting of n vertices, with k ≤ n. In Section 4.2, we present a

heuristic method for determining a patrol policy based on two types of pure strategies.

We present a strategy for the patrollers based on set partitions, where the patrol team

divides the vertices among the individual patrollers with each patroller then executing his

best strategy for patrolling the assigned subset of vertices. We also present a strategy for

the patrollers based on the shortest Hamiltonian cycle in the graph, where each patroller

follows the same shortest Hamiltonian cycle at evenly spaced time intervals. In Section

4.3, we present a method to compute a lower bound for the optimal solution. We conduct

numerical experiments for several scenarios and present the results in Section 4.4.

4.1 Patrol Model
We introduce a patrol model where k patrollers are assigned to patrol a graph consisting

of n vertices, with k ≤ n. This problem can arise when an area of interest (AOI) is too

large for a single patroller to cover e�ectively, either due to the total number of potential

attack locations or long travel times between locations. It can also be applicable if the

expected cost per attack in a problem is determined to be too large for a single patroller,

perhaps due to large costs for successful attacks or short attack time distributions at one

or more locations, and the assignment of additional patrollers to the problem is an option.

In our model, the attacker and patrollers play a simultaneous-move two-person zero-sum

game where the attacker is trying to maximize the cost incurred due to a successful attack

and the patrollers are trying to minimize it. The patrollers decide how to patrol the graph

while the attacker chooses which vertex to attack.

The state space of this problem is in�nite, since the time between inspections at a vertex

can take on any non-negative value when there are multiple patrollers. Therefore, it is

possible to determine the optimal patrol policy in only a few special cases. The objective

in solving this patrol problem is to provide a feasible patrol policy for the team of patrollers
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in order to keep the expected cost per attack as low as possible, which requires the use of

e�cient heuristics.

4.2 Heuristic Policy

In this section, we consider a heuristic method to determine a strategy for the multiple

patrollers. Since for most problem instances it is impractical or impossible to consider

every feasible state of the system in order to determine an optimal strategy using linear

programming, as was done in Chapter 3, we instead consider a �nite set of pure strategies

from which the patrollers can choose. If the pure strategies in the set are e�ective and

diverse, then we expect that the optimal mixed strategy from using only those pure

strategies would produce a strong heuristic policy. The spirit of this method is the same

as the heuristic in Section 3.3, where we discuss the case of single patroller against strategic

attackers.

In the following sections, we consider two types of pure strategies. The �rst type is based

on set partitions. The second type is based on the shortest-path patrol pattern that

was introduced in Chapter 3. In the set-partition method, we partition the vertices into

subsets with each patroller then executing the best patrol policy for his assigned subset

of vertices, independent of the other patrollers. In the shortest-path patrol method, each

patroller follows the same patrol cycle at evenly timed intervals so as to minimize the

time between inspections at each vertex. Each of these methods will produce one or more

pure strategies for the patrollers.

For each pure strategy, we compute the expected cost per attack at each of the vertices.

Given a set of pure strategies, Θ = {θ1, θ2, . . . , θm}, where each strategy has an expected

cost per attack at each vertex, a two-person zero-sum game can be formulated between

the attacker and the patrollers in a standard matrix form. In this game matrix, row i

corresponds to the attacker choosing to attack vertex i and column j corresponds to the

patrollers choosing to use strategy θj, for i ∈ N and j = 1, . . . m. A linear program can

then be formulated to solve this two-person zero-sum matrix game (Washburn 2003). The

solution to this game provides a mixed strategy for the attacker, which is a probability

distribution on the vertices to attack; and a mixed strategy for the patrollers, which is a

probability distribution on the set of pure strategies.
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4.2.1 Pure Strategy Based on Set Partitions

One natural way for a patrol team to patrol a large graph is to divide the graph into

subsets and assign each patroller to a subset of vertices. This can be done by dividing the

n vertices of the graph into k mutually exclusive and exhaustive non-empty subsets. Each

of the k patrollers is then assigned one of these subsets and executes his best individual

patrol strategy against strategic attackers for that subset of vertices, independent of the

other patrollers.

In order to assign the vertices among the k patrollers we create a set partition. A partition

of a set N is a collection of non-empty blocks so that each element of N belongs to exactly

one block (Bóna 2011). If the use of one speci�c partition is considered to be a pure

strategy, we can develop a mixed strategy for the patrollers by allowing them to choose

among several vertex set partitions.

In general, we desire that vertices within a block be close to each other in terms of distance.

This reduces travel time for the individual patrollers, which can have bene�cial results as

previously seen in the random-attacker problem cases with shorter travel times in Chapter

2 and when using the shortest-path patrol methods against a strategic attacker in Chapter

3. We propose the following procedure as one method to create vertex set partitions in

order to achieve this goal.

Determining Set Partitions

One way to determine set partitions is to consider every combination of assigning n distinct

vertices to one of k patrollers, such that each patroller is assigned at least one vertex. The

number of partitions of a set N , where |N | = n, into k non-empty blocks is denoted by

the Stirling numbers of the second kind. These values are expressed as S(n, k). A formula

for computing Stirling numbers of the second kind is (Bóna 2011)

S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n.

Consider as an example the combinations of vertices and patrollers that we use for the

numerical experiments in this chapter. If we were to consider all the ways of assigning

25 distinct vertices among 5 patrollers, such that each patroller is assigned at least one

vertex, then that number of partitions would exceed 2.4 quintillion. For 20 vertices and

4 patrollers the number of partitions is over 45 billion. For 15 vertices and 3 patrollers
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the number of partitions is over 2.3 million. For the case of 10 vertices assigned to

2 patrollers, S(10, 2) = 511, which is a more manageable yet still formidable number.

Since it is impossible or impractical to consider all possible set partitions in most problem

instances, we determine an e�ective way to create a comprehensive subset of the complete

set of vertex partitions from which the patrollers can develop an e�ective mixed strategy.

We determine a set of several vertex partitions using a two-step process. First, we desig-

nate a set of k seed vertices that will anchor each vertex cluster. From these initial seeds,

we grow the vertex clusters by adding each of the additional n − k vertices to a cluster

until all n vertices have been assigned to exactly one cluster.

In step one, we determine seed vertices. There are several methods for determining seed

vertices. We could randomly select k vertices as seeds, but this would not necessarily be

an e�cient method. Alternatively, we could exhaustively consider all
(
n
k

)
combinations of

k vertices, which would also be ine�cient due to the amount of computational resources

required to create and evaluate vertex clusters based on all of these seed combinations.

We propose a greedy method to select seed vertices based on average distance as follows:

For each vertex i, make i the �rst element in a set of seeds S. Then add the furthest

vertex in terms of average travel distance from the current elements of S. Repeat until

k seeds have been included in S. This method will produce n sets of seed vertices, with

each vertex being an element of at least one set. Proceed as follows for each vertex i ∈ N ,

1. S = {i}: Each vertex i ∈ N will be the anchor vertex for one set of seed vertices.

2. l← argmaxj /∈S
{∑

i∈S dij/|S|
}
: Find the furthest vertex l in terms of average travel

distance from the current vertices in the set of seeds.

3. S ← {l} ∪ S: Add vertex l to the set of seeds.

4. If |S| = k, stop and return S; otherwise go to (2). Continue until the set of seeds

has k elements.

In step two, we grow vertex clusters. There are several methods for growing clusters from

the seed vertices. We could randomly assign the n − k remaining vertices to the seed

vertices, but again this would not necessarily be an e�cient method. Alternatively, we

could consider all S(n − k, k) combinations of assigning the n − k remaining vertices to

the seed vertices, such that each cluster consists of at least two vertices. However, like the

exhaustive enumeration of seed vertex combinations, this method would also be ine�cient
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due to the amount of computational resources required.

We propose a method for growing the vertex clusters based on average travel distance

between vertices as follows: From among the remaining unassigned vertices, select the one

that is closest to any cluster in terms of average travel distance to the vertices currently

in each cluster, and assign that vertex to its closest cluster. Continue this process until

all vertices have been assigned to a cluster. Proceed as follows for a set of seed vertices

S, with |S| = k,

1. Relabel the k seeds to be vertices 1, 2, . . . , k. Let πi = {i}, for i = 1, 2, . . . , k, and

T = {k + 1, . . . , n}. Assign each seed vertex to a distinct cluster and identify the

remaining unassigned vertices.

2. Compute

Di,j =

∑
q∈πi dj,q

|πi|
, i = 1, . . . , k; j ∈ T,

3. Find i∗ and j∗ such that Di∗j∗ = mini minj Dij. Update πi∗ ← {j∗} ∪ Si∗ and

T ← T\{j∗}. Add vertex j∗ to its closest cluster πi∗ in terms of average travel

distance.

4. If T = ∅, stop and return θ = {π1, . . . , πk}; otherwise go to (2). Continue until

each vertex has been assigned to exactly one cluster. This algorithm will return k

non-empty clusters of vertices.

Iterative Method for Improving Set Partitions

The methods described above use the travel distance between vertices when determin-

ing set partitions. Shortening the time spent on moving between vertices will generally

produce favorable results, as seen in the shortest-path patrol method used for a single

patroller against strategic attackers in Chapter 3. However, there are additional factors

that can be considered when assigning vertices to patrollers. In addition to its location

relative to other vertices in the graph, each vertex i ∈ N has an inspection time, an attack

time distribution, and a cost incurred due to an undetected attack. These parameters can

help determine both the di�culty and the value of an attack against a particular vertex,

and will factor into the expected cost at each vertex for any patrol policy.

For example, a vertex with a higher cost would be more attractive to an attacker for

obvious reasons. Similarly a vertex with a high inspection time would be attractive to an

attacker, since he would have a better chance of completing an attack before a patroller
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can complete an inspection. Conversely, a vertex with a higher expected attack time

would be less attractive to an attacker, due to the higher likelihood of an attack being

detected. We present a method to improve the initial set of vertex partitions that was

created using distances by also considering the expected cost incurred at each vertex due

to an undetected attack. This method provides a way to balance the workload among the

individual patrollers.

We propose a one-step policy-improvement procedure to create additional set partitions

as follows. For each partition in the initial set of vertex partitions, determine the expected

cost at each vertex using the methods from Chapter 3 for a single patroller against strategic

attackers. Then, reassign the vertices by removing one vertex from the highest cost cluster

and adding one vertex to the lowest cost cluster in order to form a new partition. To do

this, we identify the vertex outside of the lowest cost cluster that is closest in terms of

average travel distance to the vertices currently in the lowest cost cluster. That vertex is

reassigned to the lowest cost cluster. If that vertex came from the highest cost cluster,

the process terminates and returns the newly created partition. If the vertex was not

removed from the highest cost cluster, then the cluster that lost that vertex must gain

a replacement vertex. In this case, the process repeats with the cluster that just lost

a vertex taking the closest vertex from any of the remaining clusters that have not yet

gained an additional vertex. The process continues until the highest cost cluster has lost

a vertex. Since there are k clusters in every partition, this process will always terminate

in a maximum of k iterations.

An example of the improvement iteration procedure is shown in Figures 4.1, 4.2, and 4.3.

Figure 4.1 shows an initial set partition with the expected costs for each cluster. Figure 4.2

shows the new partition that is created after one iteration of the improvement algorithm.

In this case, vertices {5} and {8} need to be reassigned in order for the lowest cost

partition to gain one vertex and the highest cost partition to lose one vertex. Expected

costs are then determined for each cluster in this new partition. Figure 4.3 shows a �nal

iteration of the improvement algorithm. In this case, vertex {5} is reassigned in order

for the lowest cost partition to gain one vertex and the highest cost partition to lose one

vertex. If the iteration method is repeated for the partition in Figure 4.3, the partition in

Figure 4.2 is recreated, and the improvement iteration method terminates since all new

partitions based on the initial set partition presented in Figure 4.1 have been determined.

68



Figure 4.1: Example of a vertex set partition for n = 10 and k = 3. Cluster π3 = {7, 8, 9, 10}
has the highest expected cost and will lose a vertex during an improvement iteration. Cluster
π1 = {1, 2, 4} has the lowest expected cost and will gain a vertex during an improvement iteration.

Figure 4.2: Iterated vertex set partition for n = 10 and k = 3. Cluster π1 gained vertex 5 from
cluster π2, and cluster π2 gained vertex 8 from cluster π3 to complete the iteration. Now cluster
π1 = {1, 2, 4, 5} has the highest expected cost and will lose a vertex in the next iteration. Cluster
π2 = {3, 6, 8} has the lowest expected cost and will gain a vertex in the next iteration.
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Figure 4.3: Additional iterated vertex set partition for n = 10 and k = 3. Cluster π2 gained
vertex 5 from cluster π1 to complete the iteration.

For an initial set partition, we can apply the following algorithm to produce a new parti-

tion,

1. Relabel the vertex subsets so that π1 is the least vulnerable (lowest cost) subset,

and πk the most vulnerable (highest cost) subset. Let S ′ = {1, . . . , n}\π1, which

represents the set of locations that are available for reassignment. Let j ← 1, which

indicates the subset that needs an additional location.

2. Find location l ∈ S ′, which is closest to πj in terms of its average distance to all

locations in πj. Let m← {i : l ∈ πi}; that is, πm is the subset that contains location

l.

3. Reassign location l to subset j. That is, let πj ← πj ∪ {l}, and πm ← πm\{l}.
4. If m = k, then stop; otherwise, let j ← m, and S ′ ← S ′\{πm ∪ {l}}, and go to (2).

We repeat this procedure for each partition in the initial set of partitions, as well for any

new partitions that are formed during the process. The process terminates when there

are no new partitions to consider. This algorithm will always terminate since there are

a �nite number of possible vertex partitions. All partitions created using this procedure

become pure strategies for the patrol team in the two-person zero-sum game between the

attacker and patrollers as described in Section 4.2.
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4.2.2 Pure Strategy Based on Shortest Path

We also consider a strategy based on the shortest-path patrol pattern. We do this because

some vertex layouts do not allow for e�cient solutions to be found using the set-partition

method. One example of this is a circular layout of vertices. This situation is commonly

encountered when a team of patrollers is assigned to patrol several locations along a

perimeter.

An example of a circular vertex layout with 8 vertices and 2 patrollers is presented in

Figure 4.4, with an arbitrary set partition, π1 = {1, 2, 3, 4} and π2 = {5, 6, 7, 8}, depicted.
If a circular layout of vertices was divided into clusters, each patroller would be spending

a large amount of time traveling between the end vertices in a cluster for any strategy. In

this case, it may be more e�cient for each patroller to follow a path along the perimeter

that visits every vertex, rather than be individually assigned to exclusively patrol a vertex

cluster.

Figure 4.4: Circular vertex layout example for n = 8 and k = 2.

We determine the shortest-path patrol pattern by �nding the shortest Hamiltonian cycle

in the graph in terms of total travel distance, and calculate the total transit time τ that

is required for a single patroller to complete this cycle. All k patrollers then follow this

same patrol pattern, such that they are equally spaced and the time between patrollers

at each vertex is τ/k. Recall from Section 3.3.1 that the expected cost at vertex j using

this patrol pattern is

ρj =
cjk
∫ τ/k

0
Fj(s) ds

τ
, ∀ j ∈ N.
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4.3 Lower Bound

To determine a lower bound for the optimal solution in the multiple-patroller problem, we

modify the linear program that was used to compute a lower bound for the single patroller

against strategic attackers problem in Section 3.4. Since we allow for multiple patrollers

on a graph, we note that it is feasible for an inspection at a vertex to be completed at any

time following the last inspection, including time intervals that are less than the single

patroller inspection time at a vertex.

Recall the total-rate constraint on a graph with a single patroller from (3.4),∑
i,j∈N

xijtij = 1.

We modify this constraint to account for the total rate that k patrollers can transit

through the graph as, ∑
i,j∈N

xijtij = k, (4.1)

and replace (3.4) with (4.1) in the linear program from Section 3.4 for use in the multiple-

patroller problem.

4.4 Numerical Experiments

To test the set-partition and shortest-path strategies, we conduct several numerical exper-

iments on a graph with n vertices and k patrollers, where k ≤ n. We compare the results

obtained from using the heuristic method to the lower bound. We also report the compu-

tation time required. Based on these results, we make conclusions on the e�cacy of the

heuristic method, as well as make recommendations for the best use of the set-partition

and shortest-path strategies.

We test the same �ve problem cases for multiple patrollers as we did for a single patroller

against strategic attackers in Chapter 3. We create problem scenarios using the procedures

in Section 2.4.1, and generate a �eld of 25 vertices for use in each scenario. From this

�eld, we randomly select the desired number of vertices for use in each problem instance.

We examine cases of 10 vertices and 2 patrollers; 15 vertices and 3 patrollers; 20 vertices

and 4 patrollers; and 25 vertices and 5 patrollers.
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4.4.1 Baseline Problems

For the baseline problem, we consider the case where the patrollers spend about half of

the time traveling and half of the time inspecting vertices. We determine a solution using

the heuristic method from Section 4.2. We also determine a lower bound for the optimal

solution using the linear program in Section 4.3 and compare that result to the heuristic

solution.

For 1,000 problem instances, we test both the set-partition with one-step policy-improvement

strategy from Section 4.2.1 and the shortest-path patrol strategy from Section 4.2.2. For

the one-step policy-improvement procedure, we also note the level of improvement that

was made by comparing the size and performance of the initial set of vertex partitions

with the expanded set of partitions. Results are presented in Table 4.1. The greatest

amount of improvement was observed on larger graphs with higher numbers of patrollers.

Table 4.1: Set-partition one-step policy-improvement results on a complete graph, based on
1,000 randomly generated problem scenarios with average inspection times that are comparable
to average travel times. Results are reported as the percentage excess over the lower bound for
the initial partition set determined from the seed and cluster method, and the expanded partition
set obtained from the policy-improvement method.

Number of Number of Percent Time Percent Time
vertices patrollers over zLB (sec) over zLB (sec)

(n) (k) (Initial set) (Expanded set)
10 2 4.83 4.20 2.82 13.67
15 3 6.97 21.34 3.32 70.71
20 4 9.57 48.84 4.16 129.79
25 5 11.40 68.00 4.64 266.86

Very good performance is observed when using the multiple-patroller heuristic method.

The results of the baseline experiments are presented in Table 4.2. For the case of 2

patrollers covering 10 vertices, the average result was within 2.82 percent of the lower

bound; and for the case of 5 patrollers covering 25 vertices, the average result was within

4.64 percent of the lower bound. Computation time increased signi�cantly as the number

of vertices increased. We also note the mean number of pure strategies that were selected

by the patrollers for use in the mixed strategy, and the percentage of problems in which

the shortest-path strategy was selected in some capacity by the patrollers. The shortest-

path strategy was selected in 51.6 percent of the problems for 10 vertices and 2 patrollers,
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and in 40.4 percent of the problems with 25 vertices and 5 patrollers.

Table 4.2: Mean performance of the set-partition and shortest-path methods on a complete
graph, based on 1,000 randomly generated problem scenarios with average inspection times that
are comparable to average travel times, reported as the percentage excess above the lower bound.
The mean number of strategies utilized by the patrollers, as well as the percentage of problems
that use the shortest-path strategy, are also reported.

Number of Number of Mean Problems Overall Percent Percent Time
vertices patrollers number of using use of over zLB over zLB (sec)

(n) (k) strategies SP (%) SP (%) (no SP) (with SP)
10 2 2.79 51.6 9.37 2.99 2.82 10.80
15 3 5.17 48.0 3.68 3.38 3.34 61.44
20 4 6.46 47.2 3.20 4.27 4.16 129.79
25 5 8.84 40.4 1.30 4.67 4.64 266.86

Based on the experimental results, we recommend using both the set-partition with one-

step policy-improvement and the shortest-path methods in order to generate a set of pure

strategies from which the patrollers can develop a mixed strategy. Exclusive use of the

set-partition with one-step policy-improvement method is also very e�ective, and can be

considered for use without signi�cant loss in performance in many problem instances.

4.4.2 Performance on Additional Graph Structures

In addition to problems on a complete graph, we test the multiple-patroller heuristic

method on several additional graph structures. Speci�cally, we consider line graphs, circle

graphs, and random trees. We use the procedures from Sections 3.5.4 and 4.4 to generate

1,000 random problem instances for problem cases with n vertices and k patrollers. Results

are presented in Table 4.3.

For problems with 15 vertices and 3 patrollers, the multi-patroller heuristic produces on

average a result within 9.83 percent of the lower bound for a circle graph and within

15.81 percent of the lower bound for a random tree. The shortest-path method was used

the most for a circle graph (82.7 percent of the problems) and the least for a line graph

(32.2 percent of the problems). The most di�erent strategies were used for a random tree

and the fewest were used for a line graph. These results indicate that the multi-patroller

heuristic method can be used e�ectively on several graph structures as well as sizes.
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Table 4.3: Mean performance of the set-partition and shortest-path methods on additional graph
structures, based on 1,000 randomly generated problem scenarios for average inspection times
that are comparable to average travel times. The mean number of strategies utilized by the
patrollers, as well as the percentage of problems that use the shortest-path strategy, are also
reported.

Graph Number of Number of Mean Problems Overall Percent Time
structure vertices patrollers number of using use of over zLB (sec)

(n) (k) strategies SP (%) SP (%)
Complete 10 2 2.79 51.6 9.37 2.82 10.80
Complete 15 3 5.17 48.0 3.68 3.34 61.44

Line 10 2 1.85 42.5 7.08 10.09 8.16
Line 15 3 2.93 32.2 2.57 14.88 39.06
Circle 10 2 2.94 74.1 17.55 7.10 8.24
Circle 15 3 5.12 82.7 12.60 9.83 30.27

Random tree 10 2 2.83 29.4 2.98 9.90 13.10
Random tree 15 3 5.80 32.8 2.01 15.81 98.88

4.4.3 Sensitivity Analysis

In addition to the baseline case, where average travel times are comparable to average

inspection times, we consider the case where the patrollers need to spend more time

conducting inspections than they do traveling between vertices, and the case where the

patrollers need to spend more time traveling between vertices than they do conducting

inspections. The �ve speci�c cases we consider in the numerical experiments are the same

as the problem cases that were used in Chapters 2 and 3 and are summarized in Table

4.4.

Table 4.4: Numerical experiment cases for multiple patrollers against strategic attackers.

Parameter Case I Case II Case III Case IV Case V
Travel time 1× 1× 1× 2× 2×

Inspection time 1× 2× 2× 1× 1×
Attack time 1× 1.5× 1× 1.5× 1×

The mean performance results using the heuristic method in problem cases II through V

are presented in Table 4.5. In problem case III, the mean performance was within 0.51

percent of the lower bound in all scenarios. In problem case IV, the mean performance
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ranged from within 6.66 percent of the lower bound for the problem of 10 vertices and 2

patrollers, to within 18.11 percent of the lower bound for the problem of 25 vertices and 5

patrollers. These results are similar to the performance observed versus the lower bound

in the single patroller versus strategic attackers problem (see Table 3.9).

Table 4.5: Performance of the multi-patroller heuristic mixed strategy based on the combined
set-partition and shortest-path strategies. The median number of strategies, |Θ|, considered
in both the initial and expanded strategy sets is indicated. Performance is indicated as the
percentage excess over the lower bound for the initial and expanded strategy sets.

Case Number of Number of Initial Percent Time Expanded Percent Time
vertices patrollers partition over zLB (sec) partition over zLB (sec)

(n) (k) set |Θ| set |Θ|
II 10 2 2 3.43 4.04 5 1.53 14.32

15 3 4 4.65 20.09 17 1.53 71.48
20 4 6 5.76 45.58 25 1.76 139.22
25 5 9 6.49 62.50 44 1.79 275.26

III 10 2 2 1.34 3.73 5 0.41 13.48
15 3 4 1.91 18.47 17 0.43 67.43
20 4 6 2.38 41.54 25 0.50 137.84
25 5 9 2.65 58.57 44 0.51 274.91

IV 10 2 2 9.05 3.94 5 6.66 13.54
15 3 4 14.59 20.60 17 9.35 69.66
20 4 5 24.48 47.87 22 13.93 123.78
25 5 8 33.82 71.47 38 18.11 239.09

V 10 2 2 2.55 3.88 5 1.56 13.39
15 3 4 3.57 19.32 17 1.90 71.89
20 4 6 4.90 43.39 25 2.43 137.92
25 5 9 5.93 60.29 44 2.76 282.86
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CHAPTER 5:

Conclusions and Future Work

5.1 Conclusions
In this dissertation, we examine methods to determine e�ective patrol policies against

both random and strategic attackers. We consider three cases: a single patroller against

random attackers, a single patroller against strategic attackers, and multiple patrollers

against strategic attackers.

In the case of a single patroller against random attackers, we determine the optimal

solution by modeling the state space of the system as a network and solve a minimum

cost-to-time ratio cycle problem using linear programming. The solution represents a

patrol policy, which is a repeating pattern of locations for a patroller to visit and inspect

that minimizes the long-run cost incurred due to undetected attacks. Although the linear

program returns the optimal solution, it quickly becomes computationally intractable for

problems of moderate size. We therefore develop and test two aggregate-index heuristic

methods, the index heuristic time (IHT) method and the index heuristic epoch (IHE)

method. Both of these methods consider the structure of the graph, to include travel and

inspection time requirements. The IHT method utilizes a predetermined look-ahead time

window for the patroller to decide his next action by considering all possible paths and

partial paths that can be completed during the time window when starting from his current

vertex. For each of these paths, aggregate index values per unit time are computed and

the patroller chooses his action based on those index values. He then repeats the process

from the next vertex using the same look-ahead time window. This process continues until

a patrol pattern is determined. The IHE method works in a similar fashion. However,

in this method, a patroller looks ahead a predetermined number of decision epochs, and

determines his action by considering all possible paths from the current vertex that consist

of the speci�ed number of decision epochs, regardless of the total time those paths will

take. We see very favorable results using these methods in numerical experiments. In our

baseline experiments, a solution within 1 percent of optimal was returned in at least 90

percent of the problem instances.

In the case of a single patroller against strategic attackers, we determine the optimal
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solution by modeling the state space of the system as a network and solve a linear program

to minimize the largest expected cost per attack among all vertices. The solution consists

of a patrol policy, which is a randomized strategy for the patroller that minimizes the long-

run expected cost due to an undetected attack. Although the linear program returns the

optimal solution, it quickly becomes computationally intractable for problems of moderate

size. We therefore develop two heuristic methods, the shortest-path (SP) and �ctitious-

play (FP) methods. The SP method uses a combinatorial selection of patrol patterns

based on the shortest Hamiltonian cycle in the graph. The FP method is an iterative

method based on �ctitious play. We also present a linear program that determines a

lower bound for the optimal solution, so that we can evaluate our heuristics when the

optimal solution is not available. We see very favorable results using both methods in

numerical experiments; however, the FP method uses considerably more computation

time than the SP method. In our baseline experiments, a solution within 1.2 percent of

optimal was returned in at least 90 percent of the problem instances.

Finally, we examine the case of multiple patrollers against strategic attackers, where

several patrollers work together to patrol an AOI. In this case, a patrol policy is determined

for the entire team and individual patrol policies are then determined for each patroller.

The optimal solution can only be determined in a few special cases; therefore, we develop

a linear program that determines a lower bound for the optimal solution. We present a

heuristic method for the patrollers to develop a mixed strategy by choosing among several

pure strategies. We present two methods for the patrollers to determine pure strategies:

a method based on vertex set partitions and a method based on the shortest Hamiltonian

cycle in the graph. In the set-partition method, the patrol team divides the vertices

among the individual patrollers with each patroller then individually executing his best

strategy for patrolling the assigned subset of vertices. We present a one-step policy-

improvement algorithm that generates e�ective set partitions based on the heterogeneous

properties of each location. In the shortest Hamiltonian cycle method, each patroller

uses the same patrol pattern at evenly spaced time intervals. We see favorable results

in numerical experiments for several graph structures and patroller combinations when

comparing the solution from the heuristic method to the lower bound. For the case of 2

patrollers covering 10 locations, the average result was within 2.82 percent of the lower

bound; and for the case of 5 patrollers covering 25 locations, the average result was within

4.64 percent of the lower bound. Computation time increased signi�cantly as the number
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of locations increased.

5.2 Future Work
This work provides several areas for continued research. Some of these include a problem

formulation which considers the possibility that the patroller may overlook an attacker at

the end of an inspection. In other words, the patroller may have less than a 100 percent

detection rate of attackers, which may considerably alter the optimal patrol policy. We

can also consider the idea of using variable, instead of �xed, inspections times at each

location. In this case, a patroller decides how much time to spend inspecting a vertex

in order to detect ongoing attacks. For the case of multiple patrollers, the patrollers

may consider coordinated e�orts beyond the independent vertex set partitions and timed

shortest-path patrol strategies.

5.2.1 Inspection with Overlook

We present our problem with the assumption of perfect detection. In other words, there

are no false negatives and the patroller will successfully detect all ongoing attacks at a

vertex at the end of his inspection. In many practical situations, there may be some

probability that a patroller will overlook the presence of an attacker at the end of an

inspection. In this case, our model may require signi�cant reformulation to account for

this possibility of overlook.

5.2.2 Variable Inspection Times

We can consider situations where the inspection time at a location is not deterministic, but

varies according to a probability distribution. This may be applicable if inspection times

can vary due to conditions a patroller may encounter during any particular inspection,

and this variable e�ect can be modeled by a distribution. For any continuous distribution

of inspection times, we can still formulate our continuous-time model as a semi-Markov

decision process, which allows for times between decision epochs to vary according to a

probability distribution. If the inspection time at each vertex is exponentially distributed,

and thus exhibits the memoryless property, then the system can be modeled more generally

as a continuous-time Markov decision process.

A further extension of variable inspection times could involve the patroller choosing how

much time he will spend conducting an inspection at a location. A longer inspection

time might increase the probability that the patroller will discover an ongoing attack at a
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vertex, but a longer inspection time at one vertex will cause the expected cost to increase

at the vertices that are not being inspected. This must be considered when determining

a patrol policy. In this case, a patroller must not only decide what vertex to visit and

inspect next, but must also decide when to end his current inspection in order to move to

the next vertex. The optimal choice of follow-on vertex may change based on the amount

of time that has passed during the current inspection, which could generate some very

complex problem formulations and patrol patterns.

5.2.3 Multiple Coordinated Patrollers

For the multiple-patroller case, our solution consists of a mixed strategy that creates

vertex set partitions with each patroller executing his best individual patrol policy or

uses a shortest-path patrol pattern with �xed timing. Once the vertices are partitioned

and assigned, there is no further coordination among the individual patrollers beyond

the continued randomization of the pure strategies. A logical extension of our work is to

consider the case where the multiple patrollers coordinate their e�orts, perhaps by having

multiple patrollers assigned to patrol one or more high-value or high-resource locations to

decrease the time between inspections at those locations.
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APPENDIX A:

Attack Time Distributions

In this appendix we present the expected value, variance, cumulative distribution function

(CDF), and tail distribution functions for common attack time distributions.

A.1 Deterministic Attack Time
Suppose the attack time at a vertex is deterministic with value a. The expected value

and variance are

E[X] = a,

Var(X) = 0.

The CDF is

F (t) = P (X < t) =

0, t < a;

1, t ≥ a,

and ∫ k

0

F (t)dt =

0, k < a;

k − a, k ≥ a.

The tail distribution function is

F̄ (t) = P (X > t) =

1, t < a;

0, t ≥ a,

and ∫ k

0

F̄ (t)dt =

k, k < a;

a, k ≥ a.

A.2 Uniform Distribution Attack Time
Suppose the attack time at a vertex follows a uniform distribution with parameters (a, b),

with a being the minimum value and b the maximum value. The expected value and

variance are

E[X] =
a+ b

2
,
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Var(X) =
(b− a)2

12
.

The CDF is

F (t) = P (X < t) =


0, t < a;

t−a
b−a , a ≤ t < b;

1, t ≥ b,

and ∫ k

0

F (t)dt =


0, k < a;

(k−a)2

2(b−a)
, a ≤ k < b;

k − a+b
2
, k ≥ b.

The tail distribution function is

F̄ (t) = P (X > t) =


1, t < a;

b−t
b−a , a ≤ t < b;

0, t ≥ b,

and ∫ k

0

F̄ (t)dt =


k, k < a;

a+ (k−a)(2b−k−a)
2(b−a)

, a ≤ k < b;

a+b
2
, k ≥ b.

A.3 Triangular Distribution Attack Time

Suppose the attack time at a vertex follows a triangular distribution with parameters

(a, b, c), with a being the minimum value, b the maximum value, and c the mode. The

expected value and variance are

E[X] =
a+ b+ c

3
,

Var(X) =
a2 + b2 + c2 − ab− ac− bc

18
.
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The CDF is

F (t) = P (X < t) =



0, t < a;

(t−a)2

(b−a)(c−a)
, a ≤ t < c;

1− (b−t)2
(b−a)(b−c) , c ≤ t < b;

1, t ≥ b,

and

∫ k

0

F (t)dt =



0, k < a;

(k−a)3

3(b−a)(c−a)
, a ≤ k < c;

k − a+b+c
3

+ (b−k)3

3(b−a)(b−c) , c ≤ k < b;

k − a+b+c
3

, k ≥ b.

The tail distribution function is

F̄ (t) = P (X > t) =



1, t < a;

1− (t−a)2

(b−a)(c−a)
, a ≤ t < c;

(b−t)2
(b−a)(b−c) , c ≤ t < b;

0, t ≥ b,

and

∫ k

0

F̄ (t)dt =



k, k < a;

k − (k−a)3

3(b−a)(c−a)
, a ≤ k < c;

a+b+c
3
− (b−k)3

3(b−a)(b−c) , c ≤ k < b;

a+b+c
3

, k ≥ b.
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APPENDIX B:

Generation of Problem Instances

To generate a random graph of locations for our experiments, let (Xi, Yi) denote the

Cartesian coordinate of vertex i, for i ∈ N , and draw Xi and Yi from independent uniform

distributions over [0, 1]. Letting dij denote the travel distance between vertices i and j,

we compute

di,j =
√

(Xi −Xj)2 + (Yi − Yj)2, ∀i, j ∈ N.

We determine the expected value for di,j by computing the expected values of the quan-

tities (Xi − Xj)
2 and (Yi − Yj)2. Since the random variables are independent, these two

quantities will have the same expected value and we only need to compute E[(Xi −Xj)
2]

as follows,

E[(Xi −Xj)
2] = E[X2

i − 2XiXj +X2
j ]

= E[X2
i ]− 2E[XiXj] + E[X2

j ],

which due to independence can be expressed as

= E[X2
i ]− 2E[Xi]E[Xj] + E[X2

j ].

In this case, E[Xi] = 1
2

= E[Xj] and E[X2
i ] = 1

3
= E[X2

j ]. Therefore,

E[(Xi −Xj)
2] =

1

3
− 2
(1

2

)(1

2

)
+

1

3
=

1

6
= E[(Yi − Yj)2],

and

E[d2
ij] =

1

6
+

1

6
=

1

3
.

Although we cannot determine E[dij] in closed form, we know that when Var(dij) 6= 0,

E[dij] <
√
E[d2

ij] =
1√
3
≈ 0.57735.

We conduct a simulation to determine a value for E[dij] by generating 1,000,000 inde-

pendent sets of four random variables distributed over U[0, 1]. Using these values, we

determine the mean and variance of dij to be E[dij] = 0.5215 and Var(dij) = 0.0615.
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Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California
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