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Abstract. In this paper, we present an observer design method for nonlinear
systems based on pseudospectral discretizations and a moving horizon strat-
egy. The observer has a low computational burden, a fast convergence rate
and the ability to handle measurement noise. In addition to ordinary differ-
ential equations, our observer is applicable to nonlinear systems governed by
deferential-algebraic equations (DAE), which are considered very difficult to

deal with by other designs such as Kalman filters. The performance of the pro-
posed observer is demonstrated by several numerical experiments on a time-
varying chaotic nonlinear system with unknown parameters and a nonlinear
circuit with a singularity-induced bifurcation.

1. Introduction and problem formulation. Observer design for nonlinear sys-
tems is one of the most important and difficult problems in control theory and its
applications. Many results have been reported in the literature. Among them, ob-
servers based on a moving horizon have gained considerable attention [15, 10, 16, 18].
These observers are based on an online optimization algorithm that minimizes some
selected measures of the estimation error. In contrast, other design methods are
based on an off-line design of observer gains. Examples of such observers are high
gain observers [4], backstepping observers [13], normal form observers [12, 14] and
Extended-Kalman filters. Relative to the observer gain based approach, a main
advantage of moving horizon observers using on-line optimization is that it is appli-
cable to a wider variety of nonlinear systems. Furthermore, the manpower burden
required to design and implement an on-line optimization-based observer is signif-
icantly reduced when compared to the gain-based methods because much of the
tedious algebra derivations (such as changes of coordinates) required for by the
gain-based observers is circumvented. This advantage is more pronounced for com-
plex and nonlinear systems. Thus, the off-line design costs are significantly reduced
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and the recurring costs are reduced even more substantially as the same observer al-
gorithm is applicable, without much change, to different types of nonlinear systems.
On the other hand, one of the main limitations of the on-line optimization-based
methods is its requirement of real-time solutions to optimal control problems. Given
that solving optimal control problems even in non-real-time is widely considered to
be difficult, on-line optimization-based methods are not altogether popular. In re-
cent years, however, pseudospectral (PS) methods [2, 21, 20, 22] have demonstrated
that real-time solutions to optimal control problems are quite possible [20, 22]. This
enabling new technology and the consistently rapid advance in the affordable high
speed computation equipment facilitate a promising new observer using PS meth-
ods. In this paper, we prove some important results for the PS observer on its
feasibility and convergence; we also demonstrate that the PS observer achieves a
good balance between the computational load and the computational speed.

As a prelude for the problem formulation, consider the following nonlinear system
with sampled output

ẋ = f(x, t) (1)

yi = h(x(ti)) (2)

where the state is x ∈ R
Nx and the output is y ∈ R

Ny . It is assumed that f : R
Nx ×

R → R
Nx and h : R

Nx → R
Ny are continuously differentiable with respect to their

arguments. Let {ti}∞i=0 be the sequence of sampling time satisfying limi→∞ ti = ∞.
Correspondingly, yi is the measurement of the output y(t) at the sampled points
ti. The observer problem is to estimate the state x(t) at the current sampling time
tp based on the measurement {yi}p

i=0 and the system model. The state trajectory
x(t) is assumed to be bounded for all t. Note that (1) does not include a control
input u(t). However, the same method can be easily applied to controlled systems
because u(t) is a known function in the estimation process and thus the controlled
system can be casted into the time-varying form (1).

Although the state x(t) is not measured directly, in many applications we may
have some information about it in addition to y(t). For instance, x(t) may only lie
in a certain known region. Apparently, utilizing this information should help the
design of the observer. For this reason we introduce the constraint

r(x(t)) ≤ 0 (3)

where r : R
Nx → R

Nr is continuously differentiable with respect to x. One essential
purpose of the constraint set, {x | r(x) ≤ 0}, is to capture any a priori known
information. An important consequence of the constraint set is that we can include
nonlinear systems governed by differential-algebraic equations (DAE). Observer de-
sign for DEAs is a challenging problem that cannot be dealt with by most of the
existing results especially gain-based design. However, for the online optimization
based methods, the appearance of the algebraic equations can simply be treated as
constraint sets.

Another advantage of introducing this set is that a system may not be observable
in the whole space, R

Nx , but may be observable over some subset of R
Nx . For



A PSEUDOSPECTRAL OBSERVER FOR NONLINEAR SYSTEMS 591

example, consider the system

ẋ1 = x3x2

ẋ2 = −x3x1 (4)

ẋ3 = 0

y = x1

with given measurement y(t) = sin(t). Obviously, (x2, x3) can be either (cos(t), 1)
or (− cos(t),−1). Therefore, (x2, x3) can not be determined based on measurement
y(t) alone. However, if we know that x3(t) > 0, then the system is observable under
the constraint.

The idea of constraint sets is also a key to handle the noise. It can be used to
model the bounded disturbance/noise and utilize the stochastic information in the
observer. In the later part of this paper we propose an algorithm to reduce the
measurement noise based on the constraint set.

Throughout the paper the following observability condition is assumed.

Assumption 1. There is a constant δ > 0 such that for any T ∈ [δ,∞] and any
two trajectories x1(t), x2(t) of (1) satisfying constraint (3),

∫ T

T−δ

‖h(x1(t)) − h(x2(t))‖2dt = 0

implies x1(t) = x2(t), for all t ∈ [T − δ, T ].

Remark 1. For a linear time-varying system ẋ = A(t)x, y = C(t)x, Assumption
1 always holds if the system is uniformly observable. In the nonlinear cases, if the
system is uniformly observable in the sense of [4], Assumption 1 is automatically
satisfied. This assumption also covers systems which are not uniformly observable
such as (4) and the Duffing system discussed later in the paper.

Let T = tp be the current sampling time. Consider the following optimization
problem:

Problem 1: Determine the function z(t) that minimizes the cost function

J [z(·)] =

∫ T

T−δ

‖h(z(t)) − y(t)‖2dt (5)

subject to the state equation

ż(t) = f(z(t), t) (6)

and the constraint

r(z(t)) ≤ 0 (7)

Based on Assumption 1, Problem 1 has a unique optimal solution z∗(t) = x(t).
Therefore, the current state x(T ) can be obtained by evaluating the solution of
Problem 1 at the current sampling time T , i.e., x(T ) = z∗(T ). Based on this fact,
a moving horizon type of observer can be constructed [15, 16, 10]. That is, at every
sampling point, Problem 1 is solved online; then moving the time window [T − δ, T ]
to the next sampling point and the problem is solved again. The design philosophy
is quite simple; however, a successful implementation of this concept depends on a
key assumption: Problem 1 can be solved online.
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To reduce the computational burden posed by moving horizon observers, a com-
mon method is to solve the online optimization problem recursively. This spreads
the computational burden over time so that each iteration can be completed in real
time. For example, in [15] an observer is constructed by searching a feasible solu-
tion making the cost function strictly decreasing. At every instance, no optimization
needs to be done. Instead, the optimal solution is obtained as time advances to in-
finity. However, in [15] no discussion is given on how to find a feasible solution
satisfying the requirement. Moreover, the continuous measurement is still required
in contrast to our problem setting where only sampled measurements are utilized.
In [16], a Newton’s method is applied to a moving horizon observer, and the esti-
mated states are given by a solution to a sequence of nonlinear algebraic equations.
The observer may fail in the presence of noise since the nonlinear equations may
fail to have a solution. Furthermore, as pointed out in [10], since an optimization
algorithm could magnify an integration error, the requirement of accurate integra-
tion in [16] may worsen the situation. Thus, Kang [10] proposes to constructively
combine numerical integration with optimization to design an observer based on a
moving horizon strategy. The stability of such an observer can be proved under
certain conditions identified in [10].

While the aforementioned methods can be applied to solve Problem 1, it is far
more attractive to solve the problem directly, because if it can be solved, a finite-
time nonlinear observer follows. The focus of this paper is to show that Problem
1 can be efficiently solved by Pseudospectral computational methods and the re-
sulting PS numerical observer demonstrates some nice properties including: 1) The
algorithm can be easily applied to a wide variety of nonlinear systems including
systems governed by deferential-algebraic equations. It does not require specific
system structure. 2) The performance of the observer is guaranteed. Indeed, the
estimation error converges at a very fast rate (normally within several sampling
periods). 3) It can be directly applied to continuous nonlinear systems with mea-
surement noise and sampled output data. 4) The tuning of the observer is relatively
simple.

The rest of the paper is organized as follows: in Section 2 we briefly present a PS
discretization method and some fundamental results regarding the convergence of
the PS methods. The proposed observer algorithm and its properties are discussed
in Section 3 under several subsections. Numerical examples, including a family of
chaotic Duffing systems and a nonlinear circuit governed by DAE, are also provided
in this section. Finally, some concluding remarks are given in Section 4.

2. Discretization and convergence. In this section, we prove some results on
PS methods of solving optimal control problems that are relevant to the design of
an observer. Additional details can be found in [5, 22, 2, 20]. We introduce the
following assumption:

Assumption 2. Assume that the state x(t) belongs to Sobolev space Wm,∞ with
m ≥ 2. More specifically, for any T ∈ [δ,∞), there is a constant C > 0 and an
integer m ≥ 2 such that

m
∑

i=0

∣

∣

∣

∣

∣

∣

∣

∣

d(i)x(t)

dt

∣

∣

∣

∣

∣

∣

∣

∣

L∞(T−δ,T )

≤ C (8)



A PSEUDOSPECTRAL OBSERVER FOR NONLINEAR SYSTEMS 593

where d(i)/dt denotes the i-th order distribution derivative. (A function v′(t) is
called the distributional derivative [1] of a L1 function v(t) if

∫ T

T−δ

v(t)
dφ(t)

dt
dt = −

∫ T

T−δ

v′(t)φ(t)dt

for all smooth functions φ(t) with compact support in [T − δ, T ]. )

Remark 2. Note that, if x(t) is C1 and ẋ(t) has bounded derivative everywhere
except for a finite many points on the closed interval t ∈ [T − δ, T ], then condition
(8) is automatically satisfied. On the other hand, by Sobolev’s Imbedding Theorems
[1], any function x(t) satisfying the aforementioned condition must have continuous
(m−1)-th order classical derivatives on [T −δ, T ]. Therefore, this condition requires
the optimal state x(t) to be at least continuously differentiable. The condition can
be further relaxed to cover the situation where x(t) is only continuous but piecewise
C1; see [11] for details.

2.1. Pseudospectral discretization. We illustrate the ideas for a Legendre pseu-
dospectral method while noting that much of the results apply to other PS methods
as well. Since the Legendre PS method works on the interval [−1, 1], we need to
project the physical time domain [T − δ, T ] in Problem 1 to the computational
domain [−1, 1]. To this end, the following transformation is introduced

τ =
2t − 2T + δ

δ
(9)

Under (9), (6)-(7) are changed to

dẑ(τ)

dτ
=

δ

2
f(ẑ(τ),

τδ − δ + 2T

2
) (10)

r(ẑ(τ)) ≤ 0 (11)

where ẑ(τ) = z( τδ−δ+2T
2 ). The cost function (5) is changed to

J [ẑ(·)] =
δ

2

∫ 1

−1

‖h(ẑ(τ)) − ŷ(τ)‖2dτ

where ŷ(τ) = y( τδ−δ+2T
2 ).

The basic idea of the Legendre PS method is to approximate ẑ(τ) by N -th order
polynomials zN (τ) based on Lagrange interpolation at the Legendre-Gauss-Lobatto
(LGL) quadrature nodes, i.e.

ẑ(τ) ≈ zN (τ) =

N
∑

k=0

zN (τk)φk(τ), (12)

where τk are LGL nodes defined at follows.

τ0 = −1, τN = 1

τk, for k = 1, 2, . . . , N − 1, are the roots of L̇N(τ)

where L̇N(τ) is the derivative of the N -th order Legendre polynomial LN (τ). The
Lagrange interpolating polynomial φk(τ) is defined by

φk(τ) =
1

N(N + 1)LN(τk)

(τ2 − 1)L̇N (τ)

τ − τk

. (13)
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It is known that φk(τj) = 1, if k = j and φk(τj) = 0, if k 6= j. The derivative of the
i-th state ẑi(τ) at the LGL node τk can be approximated by

˙̂zi(τk) ≈ żN
i (τk) =

N
∑

j=0

Dkjz
N
i (τj), i = 1, 2, . . . , Nx (14)

where the (N + 1) × (N + 1) differentiation matrix D is defined by

Dik =



















LN (τi)
LN (τk)

1
τi−τk

, if i 6= k;

−N(N+1)
4 , if i = k = 0;

N(N+1)
4 , if i = k = N ;

0, otherwise

(15)

Now introduce

z̄N
k = zN (τk), k = 0, 1, . . . , N

i.e. z̄N
k is the value of polynomials zN(τ) at LGL nodes τk. Throughout the paper,

we use “bar” to denote the corresponding variable in the discrete space, and the
superscript N to denote the variable depends on the number of nodes N . The
subscript in z̄N

k denotes the nodes τk. It is distinguished from the continuous-time
case where the subscript in zi(t) is used to denote the i-th component of the state.

With these notations, the continuous differential equation can be approximated
by the following nonlinear algebraic equations

N
∑

i=0

z̄N
i Dki −

δ

2
f(z̄N

k ,
τkδ − δ + 2T

2
) = 0, k = 0, . . . , N (16)

This discretization is used in [22, 2, 20] for optimal control problems. However, to
guarantee feasibility of the discretization, the following relaxation proposed in [7, 6]
is used
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

i=0

z̄N
i Dki −

δ

2
f(z̄N

k ,
τkδ − δ + 2T

2
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤ (N − 1)
3

2
−m, k = 0, 1, . . . , N (17)

When N tends to infinity, the difference between conditions (16) and (17) vanishes,
since m, by assumption, is greater than or equal to 2. The reason for this specific
type of relaxation is to guarantee the feasibility and the convergence of PS methods
[7, 6]. As for the constraints, it can be discretized in a similar fashion

r(z̄N
k ) ≤ (N − 1)

3

2
−m · 1, k = 0, 1, . . . , N (18)

where 1 denotes [1, . . . , 1]T .
By the Gauss-Lobatto integration rule, the cost function J(·) can be approxi-

mated by

J [ẑ(·)] ≈ J̄N (z̄N
0 , . . . , z̄N

N ) =
δ

2

N
∑

k=0

‖z̄N
k − ȳk‖2wk

where wk are the LGL weights given by

wk =
2

N(N + 1)

1

[LN(τk)]2
,

and

ȳk = y(
τkδ − δ + 2T

2
), k = 0, 1, . . . , N
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are the output at the shifted LGL points. Hence, the optimization Problem 1 can
be approximated by a nonlinear programming problem with J̄N as the objective
function and (17)—(18) as constraints.

Problem 2: Find z̄N
k ∈ R

Nx , k = 0, 1, . . . , N , that minimize

J̄N =
δ

2

N
∑

k=0

‖z̄N
k − ȳk‖2wk (19)

subject to
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

i=0

z̄N
i Dki −

δ

2
f(z̄N

k ,
τkδ − δ + 2T

2
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤ (N − 1)
3

2
−m, (20)

r(z̄N
k ) ≤ (N − r)

3

2
−m · 1, (21)

for all 0 ≤ k ≤ N .

2.2. Feasibility and convergence. The PS method for solving a continuous dy-
namic optimization problem consists of a specific discretization method that con-
verts Problem 1 to a sequence of nonlinear programming problems, Problem 2.
Then, well established optimization software can be applied to calculate the discrete-
time optimal solution. Despite the simplicity of PS methods, there are some fun-
damental questions to be answered regarding the existence and convergence of a
PS discretization of a continuous-time optimization problem. For instance, is the
discretized optimization problem always feasible? If the discrete optimal solution
is computed, does it converge to the continuous-time solution as N is increased?
The answers to these fundamental questions are provided in this section. Most of
the results in this section are adapted from [6, 7]. Interested readers are referred to
[6, 7] for more inside.

Theorem 2.1. Given any trajectory x(t) satisfying Assumption 2, there exists a
positive integer N1 such that, for any N > N1, the constraints (20)-(21) of Problem
2 has a feasible solution z̄N

k . Furthermore, the feasible solution satisfies

‖x̄k − z̄N
k ‖∞ ≤ L(N − 1)1−m (22)

for all k = 0, . . . , N , where x̄k = x( τkδ−δ+2T
2 ), τk are LGL nodes and L is a

positive constant independent of N .

Proof. Let x̂(τ) denote the trajectory x(t) under transformation (9), i.e.,

x̂(τ) = x(
τδ − δ + 2T

2
)

Based on Assumption 2 and Remark 2, x̂(τ) is continuously differentiable and ˙̂x(τ)
has bounded (m − 1)-th order distribution derivatives. Let p(τ) be the (N − 1)-

th order best approximation polynomial of ˙̂x(τ) in the norm of L∞(−1, 1). The
following estimation has been proved in the literature of spectral methods (see [1])

‖ ˙̂x(τ) − p(τ)‖L∞ ≤ CC1(N − 1)1−m, ∀τ ∈ [−1, 1] (23)

where C =
∑m−1

i=0 ‖ ˙̂x(i)‖L∞(−1,1) and C1 is a constant independent of N . Let us
define

ẑ(τ) =

∫ τ

−1

p(s)ds + x̂(−1)
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From (23),

‖x̂(τ) − ẑ(τ)‖L∞ ≤ 2CC1(N − 1)1−m, ∀τ ∈ [−1, 1] (24)

It follows that both x̂(τk) and z̄N
k are contained in some compact set whose boundary

is independent of N . On this compact set, because f(·) is continuously differentiable,
it must be Lipschitz continuous. In the following, we prove that z̄N

k = ẑ(τk) is a
feasible solution of (20)-(21) satisfying (22).

By definition, ẑ(τ) is a polynomial of degree less than or equal to N . Given any
polynomial of degree less than or equal to N , it is known (see [1]) that its derivative
at the LGL nodes τ0, . . . , τN are exactly equal to the value of the polynomial at the
nodes multiplied by the differential matrix D, which is defined by (14)-(15). Thus

we have
∑N

i=0 z̄N
i Dki = ˙̂z(τk) Therefore,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

i=0

z̄N
i Dki −

δ

2
f(z̄N

k ,
τkδ − δ + 2T

2
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤
∣

∣

∣

∣

∣

∣

˙̂z(τk) − ˙̂x(τk)
∣

∣

∣

∣

∣

∣

∞

+

∣

∣

∣

∣

∣

∣

∣

∣

˙̂x(τk) − δ

2
f(z̄N

k ,
τkδ − δ + 2T

2
)

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤
∣

∣

∣

∣

∣

∣
p(τk) − ˙̂x(τk)

∣

∣

∣

∣

∣

∣

∞

+
δ

2

∣

∣

∣

∣

∣

∣

∣

∣

f(x̂(τk),
τkδ − δ + 2T

2
) − f(ẑ(τk),

τkδ − δ + 2T

2
)

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤ CC1(N − 1)1−m +
δ

2
C2‖x̂(τk) − ẑ(τk)‖∞

≤ (CC1 + δCC1C2)(N − 1)1−m

where C2 is the Lipschitz constant of f(·). Since m ≥ 2, there exists a positive
integer N1 such that, for all N > N1,

(CC1 + δCC1C2)(N − 1)1−m ≤ (N − 1)
3

2
−m

Hence, (20) holds for all N > N1.
As for the constraint (21), because r(·) is continuously differentiable, the following

estimation holds.

‖r(x̂(τ)) − r(ẑ(τ))‖∞ ≤ C3‖x̂(τ) − ẑ(τ)‖∞ ≤ 2CC1C3(N − 1)1−m

where C3 is the Lipschitz constant of r(·) which is independent of N . Hence

r(z̄N
k ) ≤ r(x̂(τk)) + 2CC1C3(N − 1)1−m · 1 ≤ 2CC1C3(N − 1)1−m · 1

From here, constraint (21) holds for all N > N1. Thus, we have constructed a
feasible solution of (20)-(21) of Problem 2. As for (22), it follows directly from
(24).

Theorem 2.1 guarantees that Problem 2 is well-posed with a nonempty feasible
set as long as a sufficient number of nodes is chosen. Therefore, an optimal solution
always exists. More importantly, (22) shows the existence of a feasible discrete
solution around any neighborhood of the continuous trajectory. With this existence
result in hand, we can further explore convergence properties. The convergence
results are derived in a way similar to Polak’s Consistent Approximation [17]. Let
(z̄∗N

0 , . . . , z̄∗N
N ) be an optimal solution to Problem 2, and zN(τ) ∈ R

Nx be the N -th
order interpolating polynomial of (z̄∗N

0 , . . . , z̄∗N
N ), i.e.

zN (τ) =

N
∑

k=0

z̄∗N
k φk(τ) (25)
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where φk(τ) is defined by (13).

Assumption 3. It is assumed that the sequences
{

z̄∗N
0

}

∞

N=N1

converges as N →
∞. Furthermore, there exists a continuous function q(τ) ∈ R

Nx such that żN(t)
converges to q(τ) uniformly on τ ∈ [−1, 1].

Theorem 2.2. Let {z̄∗N
0 , . . . , z̄∗N

N }∞N=N1
be a sequence of discrete optimal solutions

of Problem 2. Assume the sequence satisfies Assumption 3, then the following limits
converge uniformly

lim
N→∞

J̄N (z̄∗N
0 , . . . , z̄∗N

N ) = 0 (26)

lim
N→∞

(z̄∗N
k − x̄k) = 0 (27)

for all 0 ≤ k ≤ N , where x̄k = x( τkδ−δ+2T
2 ) and τk are LGL nodes.

Before the proof of Theorem 2.2, we must introduce the following lemmas.

Lemma 2.3. [3] Let τk, k = 0, 1, . . . , N , be LGL nodes, wk be LGL weights. Sup-

pose φ(τ) is Riemann integrable, then
∫ 1

−1 φ(τ)dτ = limN→∞

∑N
k=0 φ(tk)wk.

Lemma 2.4. Let τk, k = 0, 1, . . . , N , be LGL nodes. Suppose that z(t) is continuous
on [T − δ, T ]. Assume

lim
N→∞

(z̄N
k − z(

τkδ − δ + 2T

2
)) = 0 (28)

uniformly in k, then we have

lim
N→∞

J̄N (z̄N
0 , . . . , z̄N

N ) = J [z(·)] (29)

where J̄N and J are the cost functions defined by (5) and (19), respectively.

Proof. Transfer the time domain from [T −δ, T ] to [−1, 1] and denote τ = 2t−2T+δ
δ

ẑ(τ) = z(
τδ − δ + 2T

2
)

F (ẑ(τ), τ) = ‖h(ẑ(τ)) − y(
τδ − δ + 2T

2
)‖2

From the uniform convergence property of z̄N
k , it is easy to conclude z̄N

k is
bounded for all N ≥ 1 and 0 ≤ k ≤ N . Therefore,

|F (ẑ(τk), τk) − F (z̄N
k , τk)| ≤ K|ẑ(τk) − z̄N

k | (30)

for some K > 0 and for all N ≥ 1, 0 ≤ k ≤ N . Apparently, F (ẑ(τ), τ) is continuous
in τ ; hence it is Riemann integrable. Applying Lemma 2.3, we have

∫ 1

−1

F (ẑ(τ), τ)dτ = lim
N→∞

N
∑

k=0

F (ẑ(τk), τk)wk

Therefore,

∫ 1

−1

F (ẑ(τ), τ)dτ = lim
N→∞

(

N
∑

k=0

F (z̄N
k , τk)wk +

N
∑

k=0

(

F (ẑ(τk), τk) − F (z̄N
k , τk)

)

wk

)
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From the uniform convergence of (28) and the property of wk,
∑N

k=0 wk = 2, we
know that

lim
N→∞

N
∑

k=0

(

F (ẑ(τk), τk) − F (z̄N
k , τk)

)

wk ≤ lim
N→∞

K
N
∑

k=0

(

|ẑ(τk) − z̄N
k |
)

wk = 0

Thus,

∫ 1

−1

F (ẑ(τ), τ)dτ = lim
N→∞

N
∑

k=0

F (z̄N
k , τk)wk

It follows that

lim
N→∞

J̄N (z̄N
0 , . . . , z̄N

N ) =
δ

2
lim

N→∞

N
∑

k=0

F (z̄N
k , τk)wk

=
δ

2

∫ 1

−1

F (ẑ(τ), τ)dτ

=

∫ T

T−δ

‖h(z(t)) − y(t)‖2dt

= J [z(·)]

Proof of Theorem 2.2: Based on Assumption 3, let z∞0 be the limit of
{

z̄∗N
0

}

∞

N=N1

.

Then, define the following functions

η(τ) =

∫ τ

−1

q(τ)dτ + z∞0

In the following we will show that η(τ) satisfies the differential equation (10) and
the constraint (11). By Assumption 3 and the definition of zN (τ), the uniformly
convergence property of żN(τ) implies

lim
N→∞

zN(τ) =

∫ τ

−1

lim
N→∞

żN(τ)dτ + lim
N→∞

zN(−1) = η(τ) (31)

Moreover the convergence is uniformly in τ .
Define

e(τ) = η̇(τ) − δ

2
f(η(τ),

τδ − δ + 2T

2
)

Using contradiction argument, suppose η(τ) is not the solution of the differential
equation (10). Then there is a time instance τ ′ ∈ [−1, 1] so that

e(τ ′) = η̇(τ ′) − δ

2
f(η(τ ′),

τ ′δ − δ + 2T

2
) 6= 0 (32)

Because the nodes τk are getting dense as N tends to infinity [3], there exists a
sequence iN satisfying

0 ≤ iN ≤ N and lim
N→∞

τiN = τ ′

Since zN (τ) and żN(τ) converge uniformly, we have

e(τ ′) = lim
N→∞

e(τiN ) = lim
N→∞

(żN (τiN ) − δ

2
f(zN (τiN ),

τiN δ − δ + 2T

2
))
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Because zN(τ) is the interpolating polynomial and zN(τiN ) satisfies (17), the fol-
lowing equation holds

e(τ ′) = lim
N→∞

(żN (τiN ) − δ

2
f(zN(τiN ),

τiN δ − δ + 2T

2
))

= lim
N→∞

(N − 1)
3

2
−m = 0

It contradicts to (32). Therefore, η(τ) must be a solution of differential equation
(10). The constraint (11) can be proved by the same contradiction argument. Now
define

z∞(t) = η(
2t − 2T + δ

δ
).

It is easy to show z∞(t) is a feasible solution to Problem 1. Moreover, by (31)

lim
N→∞

(z̄∗N
k − z∞(

τkδ − δ + 2T

2
)) = 0 (33)

uniformly for 0 ≤ k ≤ N . In the next, we prove that z∞(t) is indeed the optimal
solution of the continuous Problem 1. According to Theorem 2.1, there exists a
sequence of feasible solutions, z̃N

k , of discrete Problem 2 that uniformly converges
to the trajectory x(t). Now, from Lemma 2.4 and the optimality of x(t) and z̄∗N

k ,
we have

0 ≤ J [z∞(·)] = lim
N→∞

J̄N (z̄∗N
0 , . . . , z̄∗N

N )

≤ lim
N→∞

J̄N (z̃N
0 , . . . , z̃N

N )

= J [x(·)] = 0

Therefore, (26) holds. Above argument shows that z∞(t), a feasible solution to
continuous Problem 1, achieves optimal cost which is 0. Therefore, z∞(t) is an
optimal solution to the continuous Problem 1. Since Problem 1 has an unique
optimal solution x(t), z∞(t) must be identical to the unmeasurable state trajectory
x(t). Hence, (27) follows (33).

3. Pseudospectral observer. In this section, we show how to construct a PS
observer based on a moving horizon strategy. The main observer algorithm is pre-
sented in Section 3.1. The fast convergence property of the purposed observer
algorithm is addressed in Section 3.2. The observer tuning parameters are analyzed
in Section 3.3. The performance of the proposed observer under measurement noise
is presented in Section 3.4. Finally a DAE example is given in Subsection 3.5.
Throughout this section, a family of chaotic Duffing systems is used to illustrate
the key properties.

3.1. Observer algorithm. Let {ti}∞i=0 be the sequence of sampling time with
limi→∞ ti = ∞. Denote yi = y(ti), i.e., yi is the measurement of the output y(t)
at the sample point ti. The observer problem is to estimate the state x(t) at the
current sampling time tp based on the measurement {yi}p

i=0 and the system model.
By the moving horizon strategy, during each sampling period the continuous-time
optimization Problem 1 is solved online by the PS method. Then the estimation
of the current state is given by the optimal solution of the discrete Problem 2. A
pseudospectral observer is formulated as the following algorithm.
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Initialization:

1. Select tuning parameters N , L and initial guess of x(t0), where N > 1 and
L > 1 are positive integers, N represents the number of nodes used in the
pseudospectral discretization and L represents the number of data to be pro-
cessed at each iteration. If the sampling period is ∆T , then the backward
integration length is δ = ∆T · L.

2. Calculate the LGL nodes τk, LGL weights wk, k = 0, 1, . . . , N , and the differ-
ential matrix D.

3. Propagate the initial guess of x(t0) by the differential equation (1) to generate

the guess of the state at the shifted LGL notes (τk+1)(tL−t0)+2t0
2 . Denote

the guess as ẑ−k , 0 ≤ k ≤ N , where the superscript “−” means prediction

or a priori estimation. Set Zinitial = {ẑ−k }N
k=0. Here Zinitial is the starting

point/initial guess for the optimization software. It is different from the initial
guess of x(t0).

4. Collect initial data {y0, y1, . . . , yL−1} and set p = L.

Main algorithm:

1. Collect the new measurement yp.
2. Construct the spline function ys(t) of the data {yp−L, yp−L+1, . . . , yp} such

that ys(ti) = yi for all p − L ≤ i ≤ p. Set ȳk = ys( τkδ−δ+2T
2 ), where

δ = tp − tp−L and k = 0, 1, . . . , N . Here ȳk is the reference signal in the cost
function of Problem 2.

3. Apply nonlinear programming solver to Problem 2 with initial guess as Zinitial

to get the optimal solution {z̄∗N
k }N

k=0. The estimation of the current state x(tp)
is given by z̄∗N

N .
4. Propagate z̄∗N

N to the differential equation (1) to get the prediction of the
state at the next sampling time tp+1. Denote the prediction as x̂−

p+1.

5. Construct the spline function ẑs(t) of the data {z̄∗N
0 , . . . , z̄∗N

N , x̂−

p+1}.
6. Set p = p + 1 and Zinitial = {ẑs( τkδ−δ+2T

2 )}N
i=0.

7. Go to step 1.

Remark 3. For the reason of simplicity, we fix the parameters N and L to
be constants for each iteration. In general, they can be changed at any sampled
instance. For example, in the beginning, L can be chosen as a small integer. As
more and more measurements become available, L can be set to a relatively large
number to incorporate more data.

Remark 4. The pseudospectral discretization of Problem 1 requires the measure-
ment y(t) at shifted LGL nodes, i.e., y( τkδ−δ+2T

2 ). But in practice, the sampling
time does not coincide with the nodes. To overcome this difficulty, spline function
ys(t) is introduced in Step 2 of the main algorithm. If the sampling rate is suf-
ficiently fast, the difference between ys(t) and the true output y(t) is very small.
Therefore, by the convergence results presented in the previous section, the optimal
solution z̄∗N

N is also close to x(tp) if the number of LGL nodes is sufficiently large.

Remark 5. The proposed observer algorithm is a prediction-correction scheme.
After Step 3 of the main algorithm, the current estimation z̄∗N

N is used to generate
a good prediction of the state at the next sampling time tp+1 by some numerical
integration algorithm like a Runge-Kutta method. Then, this prediction is used
to form an initial guess for the optimization solver in the next iteration. The
optimization performed in Step 3 of the main algorithm acts as a correction to the



A PSEUDOSPECTRAL OBSERVER FOR NONLINEAR SYSTEMS 601

prediction provided by numerical integration. This prediction-correction scheme
greatly reduces the running time, because the optimization at step p+1 only needs
to be done locally in a small neighborhood around the initial guess.

Clearly, the main computational burden in the proposed observer algorithm is in
Step 3, where a nonlinear programming needs to be solved. To successfully apply
the algorithm, the optimal solution of Problem 1 needs to be calculated in a time
period much shorter than the sampling period ∆T = tp+1 − tp. The nature of
pseudospectral discretization makes this possible. When PS methods are used to
approximate a smooth function, the convergence is at a spectral rate [1]. It implies
that only a small number of nodes are needed to get accurate approximation. As far
as optimization is concerned, reducing the number of nodes means the number of
decision variables and constraints are also reduced, which in turn decreases the run-
ning time for solving Problem 2 up to a point. There are other possible techniques
to increase the computational speed for PS methods. For example:

• At each iteration, after solving the optimization problem, the covector map-
ping theorem [6, 7] can be used to warm-start the nonlinear programming
solver in the next run. It significantly reduces the computational load for
SQP-based nonlinear programming methods that utilize an active-set strat-
egy.

• Problem 2 does not need to be solved at every iteration. Since the optimal
cost of Problem 1 is always zero, we can use it as an error estimator. If the
cost based on the prediction is very small, we can simply take the prediction
as our estimation. Then, until the cost is larger than some threshold value,
no optimization needs to be performed.

• The running time for solving Problem 2 can be reduced by using faster comput-
ers and/or software intended for real-time applications. It is also possible to
use hardware technology like Application-Specific Integrated Circuits (ASIC)
or Field Programmable Gate Arrays (FPGA) to achieve fast running time.

Although none of these ideas were used in this paper, they are delineated to simply
note that computational speeds far greater than that reported in this section are
quite possible.

To demonstrate the efficiency of the proposed observer algorithm, we present an
observer design for a forced Duffing system. We choose this system because it is a
nonlinear, time-varying, chaotic system with an unknown parameter. Even worse,
the system is not uniformly observable, which renders many gain-based methods
inapplicable.

Example 1.

ẋ1 = x2

ẋ2 = −0.25x2 + x1(1 − x2
1) + θ cos(t) (34)

y = x1 + 0.5x2

where θ is an unknown parameter. In the simulations θ is set to be 0.4. This choice
of parameter makes the performance of the system chaotic. The sampling time is
tp = 0.1p, p = 0, 1, 2, · · · , and the measured output is yp = y(tp). The observer
design for system (34) is difficult, since it is a time-varying chaotic system with
uncertainty [10].

By treating θ as an extra state with the dynamic θ̇ = 0, we apply the proposed
pseudospectral algorithm to construct an observer. In the simulation, we choose
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the initial condition of (34) to be (x1(0), x2(0)) = (2, 1) which is unknown to the
observer. The tuning parameters are set to N = 15, L = 8 and the guess of the
initial condition is (0, 0). All simulations presented in this paper are programmed
in MATLAB on a Pentium 4, 2.4GHz PC with 256MB of RAM. The spline function
in the main algorithm is constructed using cubic spline interpolation provided by
MATLAB. The overall computation is carried out by using DIDO, a software of
optimal control using the Legendre PS method.

The results are demonstrated in Figure 1. Once the initial data (y0, . . . , yL) are
collected, the PS observer provides accurate estimation of both the state and the
unknown parameter. Actually, the estimation errors of x1 and x2 are within 10−4

while the error in θ is less than 10−3. The average running time for each iteration
is about 0.05 second.
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Figure 1. PS observer for a Duffing system with uncertainty.

3.2. Convergence property. In many observer design methods such as the Ex-
tended Kalman Filter, the Unscented Kalman filter, the High-gain observer and
some moving horizon observers, the convergence of the estimation error is asymp-
totic. This means it takes certain period of time for the estimated state to be close
to the true state trajectory and the convergence time depends on the system and
the observer parameters. In the proposed pseudospectral observer algorithm, the
convergence of the estimated state is very fast. As clearly demonstrated in Example
1, in the first step of the iteration at tL−1, the error is already close to zero. It takes
virtually no time for convergence once the algorithm is started. The reason for this
impressive property is very simple. In Problem 1, the unique optimal solution is
the unmeasured state, x(t). Hence, from the convergence property presented in the
previous section, at each iteration, if an optimal solution of Problem 2 is found, it
must lie in an ǫ-neighborhood of x(t).

The fast convergence property of the proposed algorithm is very attractive in
practice, especially in the design of output feedback controllers. It qualifies the
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proposed PS observer as a numerical sensor which can be embedded in the control
system to construct an output feedback controller [8]. In what follows, we use an
example to show that the finite-time convergence property is also important to
guarantee the stability of the observer.

Example 2. Consider a modification to the Duffing system in Example 1. Let θ
be given by

θ =







0.4; t ≤ 10
0.1; 10 < t ≤ 20
0.3; 20 < t

The sampling rate and the tuning parameters are the same as Example 1. In
Figure 2(a,b,c), the estimation error of the state (x1, x2) and the estimated unknown
parameter are plotted. Obviously, the jumps in θ create no difficulty for the PS
observer because of its fast convergence rate. As a comparison, the performance of
an Unscented Kalman Filter [9] (UKF) is also presented in Figure 2 (d,e,f). The
tuning parameters of UKF are chosen such that it converges for a fixed θ (without
jumps). In contrast to the PS observer, the sluggish convergence of the unknown
parameter destroys the convergence of the state estimation.
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Figure 2. Performance of PS observer and UKF for Duffing sys-
tem with jump uncertainty. Figure a, b, and c are results from
a PS observer, with tuning parameter L = 8, N = 15 and initial
guess (0, 0, 0.1). Figure d, e, and f are results from a UKF, with
the same initial guess as the PS observer.
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3.3. Tuning parameters. In the pseudospectral observer, there are three tuning
parameters: 1) the backward integration length L; 2) the number of the discretiza-
tion nodes N ; and 3) the initial guess of the state x(0). In this subsection we briefly
discuss these tuning parameters.

Theoretically speaking, Assumption 1 guarantees that L can be any positive in-
teger. However, in practice we want to set L as large as possible within the limit
of real-time computation, because a larger value of L implies a more accurate es-
timation. However, increasing L results in the increase of the integration length
in the cost function of Problem 1. Correspondingly, a larger number of nodes N
are needed in order to get an accurate discretization of the continuous optimization
Problem 1. Thus the trade off for L is in the computational time versus the ac-
curacy. Compared with other discretization methods, like Euler and Runge-Kutta,
pseudospectral methods normally require much smaller N to achieve the same level
of accuracy when a nonlinear function is approximated. Therefore, for the same
number of nodes, a pseudospectral observer can deal with much longer integration
lengths than other discretization schemes.

Another factor that influences the performance of the observer is the relationship
between the pair, (L, N) and the sampling frequency. In order for the observer to
work for different sampling frequencies, we recommend the following general rule:
the smaller the sampling period, the larger the L can be. So if the sampling period
is decreased by ten times, we can enlarge L by a factor of ten and keep the same
number of discretization nodes N , because the integration length remains the same
in these two situations. In the following example we show how to choose appropriate
tuning parameter L and N according to different sampling frequencies.

Example 3. Consider again the observer design for the uncertain Duffing system
(34). We now choose the sampling period to be 0.01. Accordingly, we choose L to
be 80, ten times the value chosen in Example 1, while keeping the number of nodes
to be the same as before. The observer performance with this choice of parameters
is shown in Figure 3(a,b,c). Also shown in Figure 3(d,e,f) is the performance when
the sampling period is 0.5 and the tuning parameters are set to L = 10 and N = 50.
It is clear that in both situations, the performance of the observer is very good.

The guess of the initial condition for the PS observer is not a key factor. Unlike
the Extended Kalman Filter or other local observer design methods where a bad
choice of the initial guess will lead to an unstable observer, our observer is not sensi-
tive to the initial condition. The attractive region depends only on the convergence
region of the optimization solver. Since many good nonlinear programming meth-
ods are globally convergent under mild assumptions, robustness of the PS observer
is essentially assured.

3.4. Measurement noise. In this section, we assume that the measurement is
corrupted by a noisy signal. This situation is quite common in practice and must
be carefully addressed in order to apply the observer to real systems. In this section,
we first show how well the PS observer works under measurement noise. Then, we
discuss some possible ways to improve the performance.

A first rule to deal with the measurement noise is to increase the integration
length. In other words, we can set a large number for L so that more information is
used by the observer. In addition, we will develop in this section a new method using
the constrained optimization method to further reduce the impact of the noise. In
the following, we use an example to demonstrate the points.
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Figure 3. PS observer for a Duffing system with different sam-
pling frequencies. In figure a, b, and c the sampling period is 0.01
and the tuning parameters are chosen as L = 80, N = 15. In figure
d, e, and f the sampling period is 0.5 and L = 10, N = 50.

Example 4. Consider the Duffing system with noisy measurements:

ẋ1 = x2

ẋ2 = −0.25x2 + x1(1 − x2
1) + 0.4 cos(t) (35)

y = x1 + 0.5x2 + d(t)

where d(t) represents the unknown disturbance. In the simulation we choose d(t)
to be a uniformly distributed random signal in the interval [−1, 1]. The sampling
period is 0.1 and the initial condition is (x1(0), x2(0)) = (1, 2). The parameters of
the observer are chosen as L = 50, N = 50 and the initial guess is (0, 0). Note
that as a result of the measurement noise, L is chosen to be much larger than the
one used in Example 1. The performance of the proposed observer is presented in
Figure 4. It is clear that the estimation errors of the output are less than one half
of the measurement noise.

The noise can be further reduced by utilizing the constrained optimization tech-
nique. In the following, we modify the PS observer algorithm to incorporate distur-
bance information into the numerical observer. Assume the system to be observed
is

ẋ = f(x(t), t)

yi = h(x(ti)) + di
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Figure 4. Performance of a PS observer for a Duffing system with
measurement noise.

where di is a bounded disturbance/noise with a known bound, b, i.e.,

‖di‖ ≤ b

Our modification includes two part. Firstly, the bounded disturbance is modelled
in Problem 1 as a constraint. Specifically, the new definition of Problem 1 is:

Problem 1: Determine the function z(t), that minimizes the cost function

J [z(·)] =

∫ T

T−δ

‖h(z(t)) − y(t)‖2dt (36)

subject to the state equation

ż(t) = f(z(t), t) (37)

and constraint

σ1(yi, b) ≤ h(z(ti)) ≤ σ2(yi, b) (38)

where σ1(·) and σ2(·) represent upper and lower bound of the estimated output.
One apparent choice for σ1(·) and σ2(·) is

σ1(yi, b) = yi − b and σ2(yi, b) = yi + b (39)

It specifies a tube based on the measurement and the bound of the disturbance, in
which the estimated output must lie. Formula (39) is easy to implement; however it
is not necessarily the best choice for the bounding functions σ1(·) and σ2(·). Indeed,
as the estimation window moving along the time horizon and the new measurements
been collected, the bound of the estimated output can be made much tighter. The
idea can be explained in the following plot. At each sampling instance T, after
solving Problem 1, the current estimation of the output and also the prediction
of the output at the next sampling instance can be calculated; see step 3 and 4
of the main algorithm. Denote the predicted output as ypre. Since on the time
interval t ∈ [T − δ, T ], the “clean” output and the estimated output all lie in the
tube bounded by σ1 and σ2, ypre and the “clean” output at T + ∆T should also be
bounded. Based on the past data on the interval [T −δ, T ], the possible region of the
output at the next sampling instance can be determined. Intuitively, this feasible
region based on past date can be gotten by propagating every solution that lies in
the tube on the time interval [T − δ, T ] to the next sampling instance T + ∆T . In
Figure 5, this possible region is demonstrated. When the new output, y(T + ∆T ),
is measured, based on the disturbance bound, we can get another possible region
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Figure 5. Refinement of the constraint set. T is the current time;
∆T is the sampling interval; and δ is the backward integration
length. ypre represents the prediction of the output based on past
data; and y(T + ∆T ) is the measured output at T + ∆T .

for the “clean” output. Apparently, the intersection of these two regions lies the
real output h(x(T + ∆T )); and the bound of this intersected area forms the upper
and lower bounds, σ1(·), σ2(·), at the new sampling instance.

To calculate the feasible region based on the past data, we formulate the follow-
ing optimization problem after step 4 of the main algorithm when the prediction
ypre is available.

Problem 3: Determine the function z(t), that maximizes the cost function

J [z(·)] = ‖h(z(T + ∆T )) − ypre‖2

subject to the state equation

ż(t) = f(z(t), t), t ∈ [T − δ, T + ∆T ]

and constraint

σ1(yi, b) ≤ h(z(ti)) ≤ σ2(yi, b), ∀ti ∈ [T − δ, T ]

The optimal solution of Problem 3 defines the feasible region based on past data.
Actually, at the next sampling instance T + ∆T , the estimation must satisfy

ypre −
√

J∗ ≤ h(z(T + ∆T )) ≤ ypre +
√

J∗ (40)

where J∗ is the optimal value function of Problem 3. From the definition of Problem
3, it is easy to show that the feasible region based on past data, i.e., (40), must
have an intersection with the feasible region based on the new measurement. And
the bounds of the output at t = T + ∆T are given by

σ1 = max{ypre −
√

J∗, y(T + ∆T ) − b}
σ2 = min{ypre +

√
J∗, y(T + ∆T ) + b}.
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The same procedure is repeated as the estimation windows moving forward.
Now applying this new PS observer algorithm, we resolved Example 4 with the

same tuning parameters. The results are shown in the following figure. Compared to
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Figure 6. Performance of a PS observer for a Duffing system with
measurement noise.

Figure 4, the impact of the noise is further reduced. Actually, since the measurement
noise belongs to [−1, 1], Figure 6 shows a reduction of the noise by 90%.

Remark 6. In the modified observer algorithm, at every iteration, two optimiza-
tion problems need to be solved. Solution to Problem 3 provides the bounding
information of the estimated output and Problem 1 gives the estimated states. The
combination of the two problems greatly reduces the estimation error at the price of
more computational burden. However, the running time of each iteration does not
increase too much. For instance, the average running time in Example 4 is about
0.5 second; while the average running time with the modified algorithm is about
0.7 second. The reason is that, the solution to Problem 3 provides a tight bound.
Therefore, the search region for Problem 1 is greatly reduced.

Example 5. Consider the Duffing system with measurement noise,

ẋ1 = x2

ẋ2 = −0.25x2 + x1(1 − x2
1) + θ cos(t)

y = x1 + 0.5x2 + d(t)

and jump unknown parameter

θ =







0.4; t ≤ 15
0.1; 15 < t ≤ 35
0.6; 35 < t

The measurement noise is assumed to be uniformly distributed random signal in
the interval [−0.1, 0.1].

The sampling rate is 0.1 and the tuning parameters are chosen as L = 50,
N = 50. We test the algorithm for 100 runs under randomly selected initial condi-
tion on (x1(0), x2(0)) ∈ [−1, 1]. The average root mean square error of the states
and the average estimation of the unknown parameter are shown in the Figure 7.
Apparently, the estimation for the state and the unknown parameter are quite ac-
curate even with the appearance of the measurement noise and jump uncertainty.
It is interesting to known that for this example, Unscented Kalman Filter fails to
converge even after a carefully tuning of the filter parameters.
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Figure 7. The average root mean square error of the states and
the average estimation of the unknown parameter over 100 random
runs.

3.5. A DAE example. The observer design for nonlinear systems governed by
deferential-algebraic equations is a very challenge problem. Many gain-based ob-
server design methods are not applicable to DAE systems, since they are funda-
mentally based on ODEs. For our PS numerical observer, the algebraic equations
can be modeled by the constraint set. Therefore, the estimation of the unobserved
states is still possible by the proposed online optimization framework. In this sec-
tion, we use a nonlinear circuit example from [19] to demonstrate the validity of the
PS observer for DAE systems.

Example 6. Consider the RLC circuit displayed in Figure 8, where R is a linear
resistor, L is a linear inductor and C is a nonlinear capacitor. The systems is
governed by the DAE:

ẋ1 = x2/L

ẋ2 = −x2R/L − x3 + 1 (41)

0 = −x1 + (x3 − 1)3 − (x3 − 1) + 1

y = x2

where x1 is the charge in the nonlinear capacitor, x2 is the magnetic flux in the
inductor and x3 is the voltage on the capacitor. Due to the nonlinear charge-voltage
character of the capacitor, the circuit has singularity-induced bifurcation [19] which
makes the estimation of the unobservable state very difficult. Nevertheless, from
the simulation results in Figure 9, the PS observer still works for DAE system (41).
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Figure 8. Nonlinear RLC circuit from [19].
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Figure 9. Performance of PS observer for system (41). The sam-
pling period is 0.2 and the tuning parameters are L = 5 and
N = 15. The solid lines are the real continuous states and ‘∗’
denotes the estimated states.

4. Conclusion. A pseudospectral observer is constructed in combination with a
moving horizon strategy. The observer is proved to be convergent for a wide variety
of nonlinear systems. A particularly important property of our proposed method is
the fast convergent rate which makes the observer function as a numerical sensor.
The observer algorithm is tested on a family of chaotic Duffing systems under un-
certainty and measurement noise. The result presented in this paper also helps in
the design of output feedback control for nonlinear control systems.
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