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Abstract: This paper explores the potential for applying newly available numerical methods in
optimal control to solve motion planning problems created by the search for targets with motion
uncertainty characterized by constant but unknown parameters. These recent developments
enable the e�cient computation of numerical solutions for search problems with multiple
searchers, nonlinear dynamics, and a broad class of objectives. We demonstrate the e�cacy
of these methods through implementing a multi-agent optimal search problem. We then derive
an expansion of the optimal search modeling framework which facilitates the consideration of
multi-agent searching problems with more general strategic objectives and utilize this expanded
framework to implement an example combat defense scenario.
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1. INTRODUCTION

An area of interest in robotics and autonomous vehicle
research is the development of optimal or sub-optimal
motion planning given uncertainty. In such situations,
autonomous agents are faced with the task of optimizing
their behavior under a given performance criterion while
taking into consideration environmental or infrastructural
features which may have an amount of uncertainty. This
problem can arise in many situations, including search and
rescue operations, robotic guidance, missile defense, and
combat situations.

In this paper we will visit the question of modeling and
numerically implementing motion planning problems cre-
ated by the task of optimally searching for a target, given
uncertainty in target motion. We will focus on the case
where target motion is characterized by a set of uncer-
tain parameters. We demonstrate that this gives rise to
a class of optimal control problems where the constant
but unknown parameter values are incorporated in the
cost function. Recently, algorithms for obtaining numerical
solutions to this class of problems have been developed{in
[Foraker (2011)], [Chung et al. (2011)], and [Phelps et al.
(2012)]. Due to these new developments we are able to
use more e�cient numerical methods, such as pseudospec-
tral computational optimal control methods [Gong et al.
(2006)], than have been previously implemented. We are
furthermore able to exibly incorporate a larger class of
objectives, state and control constraints, and nonlinear
? This work is supported by US O�ce of Naval Research under
Grant N0001412WX21229.

searcher and target dynamics. This has created a new
potential which can be utilized to address a greater variety
of problems.

In the �rst part of this paper, we describe a framework
for modeling basic search problems, derived in [Koopman
(1956)], which was originally developed as part of the
antisubmarine warfare e�orts of WWII and has been
widely utilized in industrial and tactical applications since
[Chudnovsky and Chudnovsky (1988)]. We elaborate on
the mathematical problem this model creates and the
new numerical methods now available for solving this
problem. We then utilize these methods to implement a
high-dimensional search problem with multiple searchers,
nonlinear searcher dynamics, and control constraints.

In the second part of the paper, we consider a more `real-
istic' motion planning problem, where the act of searching
for targets is done in the service of a strategic objective
of protecting assets from the targets. This is a goal which
can arise in many applications similar to but distinct from
search; for instance, during an oil spill a valuable at-risk
ecosystem may need to be prioritized during clean up. In
these situations, optimization of a basic search objective
may be valuable, however this approach would be indirect{
it would not necessarily provide an optimization of the
primary goal. Direct optimization of the primary strate-
gic goal requires the modeling of additional directions of
heterogeneous inuences, which is not a feature of current
search models. We build a framework for modeling this
additional direction of target inuence and demonstrate
that the new numerical methods established described in
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the �rst section can be applied to these scenarios as well.
We then use these methods to numerically implement this
framework on an example tactical simulation.

2. A BASELINE SCENARIO: THE OPTIMAL
SEARCH PROBLEM

A basic design for motion planning when searching for
uncertain targets is provided by the optimal search prob-
lem, developed in the 1940's. The optimal search problem
considers the question of how to optimize the probability of
detection of a non-evasive target with uncertain features,
given detection equipment capabilities and some limita-
tions on searcher trajectories. The problem has been stud-
ied extensively in the �elds of applied mathematics and
operations research; a review is given by [Stone (1989)].

In order to construct a performance criterion for the opti-
mal search problem, the probability of target detection
must be modeled. In [Koopman (1956)] an exponential
probability of detection model is derived which has since
become ubiquitous in optimal search literature. The ex-
ponential detection model follows from the assumption
that the instantaneous rate of detectionof a target can
be e�ectively modeled. Given the position of a searcher at
x(t) and a target at y(t), this instantaneous rate of detec-
tion is a function r (x(t); y(t); t) such that the probability
of detection in a su�ciently small interval [ t; t + � t] is
independent from previous time intervals and given by the
quantity r (x(t); y(t); t)� t. The rate function r (x(t); y(t); t)
is chosen to model the qualities of sensor equipment such
as acoustic and sonar sensors, which have rapid enough
sweep rates to be modeled as continuous processes.

Fig. 1. Example detection rate function: Poisson Scan
Model

Proceeding with these assumptions, an explicit formula for
the probability of target detection is derived. If we denote
the probability of non-detectionwith the function p(t), the
independence of the time intervals creates the following
di�erence equation:

P(t + � t) = P(t) [1 � r (x(t); y(t); t)� t] :
As � t ! 0 this has the exponential solution:

P(t) = e�
Rt

0
r (x ( � ) ;y ( � ) ;� )d� :

A variety of probabilities for multiple searchers and targets
can be derived using similar methods. These include the
probability of detecting all targets and the worst-case
scenario probability of detecting none of the targets. In
general, this can be expressed as:

P(t) = G
� Z t

0
r (x(� ); y(� ); � )d�

�
:

This probability function is further conditioned on the
uncertain target motion, which can be modeled in a variety

of ways, including as a di�usion process with stochastic
parameters, [Hellman (1972)], and Markovian motion,
[Ohsumi (1991)]. In this paper, we focus exclusively on
the model of conditionally deterministic motion, which
assumes that the motion of the targets is given entirely
by a function of time and a parameter ! . This parameter
is an element of a bounded parameter space 
� Rn and
has a known probability density function p : 
 ! R.

Incorporating conditionally deterministic target motion
y(tj! ) = h(t; ! ) leads to a probability quantity which is it-
self a random variable, i.e.P(t; ! ). A natural performance
measure is to minimize the expectation of this random
variable over a time interval [0; T]. This gives rise to the
class of cost functions:

J =
Z



G

 Z T

0
r (x(t); u(t); y(t; ! ); ! )dt

!

p(! )d!

in which the existence of uncertain parameters in the
problem has presented itself through a (potentially high
dimensional) integration over a parameter space.

2.1 Computational Framework

The optimal search problem as formulated above is an
instance of the following class of optimal control problems:

Problem P: Given probability density function p : 
 !
R, determine the control u : [0; T] ! U 2 Rn u that
minimizes the cost:

J =

Z




h
F (x(T ); ! ) + G

� Z T

0

r (x(t ); u(t ); t; ! )dt

��
p(! )d!

subject to the searcher dynamics: _x(t) = f (x(t); u(t))
with initial condition x(0) = x0 and control constraint
g(u(t)) � 0, 8t 2 [0; T].

This is a nonstandard optimal control problem due to
the integration over parameter space. Numerical methods
for this problem focus on creating an approximation of
parameter space in coordination with approximations of
state and control spaces. In [Phelps et al. (2012)] it was
shown that, under minimal assumptions on compactness
and continuity, a suitable approximation of parameter
space may consist of a set of nodes,f ! M

i gM
i =1 2 
,

along with a set of weights, f aM
i gM

i =1 2 R such that
the approximation of integration over parameter space is
convergent; that is, such that for any continuous function
h : 
 ! R, the following convergence holds:

Z



h(! )d! = lim

M !1

MX

i =1

h(! M
i )aM

i

This discretization of parameter space leads to the follow-
ing approximate problem:

Problem P M : Given probability density function p : 
 !
R, determine the control u : [0; T] ! U 2 Rn u that
minimizes the cost:

J M =

MX

i =1

aM
i

�
F (x(T ); ! M

i )+

G

� Z T

0

r (x(t ); u(t ); t; ! M
i )dt

� �
p(! M

i )

subject to: _x(t) = f (x(t); u(t)) with initial condition
x(0) = x0 and control constraint g(u(t)) � 0, 8t 2 [0; T].
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The approximate problem is a standard control prob-
lem, which can be addressed with a variety of estab-
lished methods. To implement the scenarios in this pa-
per, we utilize the method of direct collocation, as de-
scribed in [Gong et al. (2006)]. This method creates a
large �nite-dimensional nonlinear programming problem
(NLP), which can be solved using a variety of available
software packages. For the numerical solutions in this
paper we use the commercial solver SNOPT, which runs
on the SQP algorithm detailed in [Gill et al. (2005)]

2.2 An Optimal Search Problem with Multiple Searchers

As a numerical example, we consider an instance of the
classic channel search problem, created by [Koopman
(1946)], and studied by [Washburn (1982)] and [ Chung
et al. (2011)]. In this scenario,K = 4 searchers are tasked
with surveying a channel of water of dimension [0; 55] �
[0; 15] (the units for these values will remain unspeci�ed).
A target is oating down the surface of the channel from
right to left in a straight line with a constant known
velocity va = :25. Though there are four searchers and
a single target, the channel of water is signi�cantly larger
than the sensor ranges of the searchers, which increases
the di�culty of the search. The target's location in time is
conditional on its unknown starting position, ! = [ ! 1; ! 2],
and is given by the function:

y(t; ! ) =
�

y1
y2

�
=

�
! 1 � va t

! 2

�
:

The searchers are constrained to the two-dimensional
surface of the water. Their objective is to minimize the
probability of not detecting the target in the given time
interval [0; 100]. Each defender's state,xk , is modeled as a
Dubin's vehicle, with dynamics given by:

_xk =

 
_xk; 1
_xk; 2
_xk; 3

!

=

 
v sinxk; 3
v cosxk; 3

uk

!

= f k (xk ; uk ); k = 1 ; : : : ; 4

and initial conditions xk (0) = xk; 0 = ( 0; 3k; 0)T . The
searchers' velocities are set asv = 1 and the searchers'
turning rates, uk , are constrained byjuk j � :5. Parameter
space 
 is the entire rectangular region of the channel,
[0; 55]� [0; 15], with a uniform probability density function.

A rate of detection model is provided by the Poisson Scan
Model, descriptions of which can be found in [Kim (2009)]
or [Foraker (2011)]. The Poisson Scan Model designates
that the rate of detection is given by:

r k (xk (t); y(t; ! ); t) = � �
�

F � akxk (t) � y(t; ! )k2

�

�

where � is the cumulative normal distribution. The values
of � , F , a, and � are equipment speci�c constants which
are set in this scenario to:F = 0 ; a = 1 ; � = 2 ; � = 2 :5.

Applying the same methods as those used to derive the
exponential detection probability for one searcher, the
worst-case scenario probability, conditioned on! , of none
of the searchers detecting the target can be derived as:

P(t; ! ) = e�
Rt

0

P K

k =1
r k (x k ( � ) ;y ( �;! )) d� :

Optimizing the expectation of this probability over domain
of ! creates the following optimal control problem, in the
form of problem P:

Channel Search Problem: Determine the control u :
[0; T] ! R4 that minimizes the expectation

J =
Z




�
e�

RT

0

P K

k =1
r k (x k ( � ) ;y ( �;! )) d�

�
p(! )d!

subject to the searcher dynamics _xk (t) = f k (xk ; uk ); k =
1; : : : ; K , with initial conditions xk (0) = xk; 0, control
constraint juk (t)j � 0:5, 8t 2 [0; T], and the following
values:

K T 
 p(! ) xk; 0

4 100 [0; 15] � [0; 55] 1
15 � 1

55 (0; 3k; 0)T

Fig. 2. Snapshots of numerical solution to `Channel Search
Problem' in Sec. 2.2. Colors represent the log prob-
ability density value of an undetected target at a
point at time t, i.e. the evolution over time of the
probability density of target location given parameter
value compounded with the probability of target non-
detection for given parameter value . `Low' = 4:14 �
10� 6, `High' = 2 :9317� 10� 4.

An illustration of a numerical solution to this problem is
demonstrated in Figure [2]. This solution was computed
using 200 time discretization nodes and 25 nodes for each
parameter dimension. The quadrature scheme in the time
domain is Euler's method and the scheme in the parameter
dimensions is Legendre pseudospectral. To examine the ef-
fectiveness of the optimal control solution, we compare its
�nal search probability with the probabilities generated by
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feasible trajectories created with heuristic methods. These
trajectories are illustrated in Figure [3]. The �rst com-

Fig. 3. Searching trajectories. Image (a) illustrates optimal
control solutions, image (b) straight line patrols, and
image (c) looping patrols.

parison trajectory is created by launching the searchers
on horizontal search paths with constant velocities. When
the searchers reach the end of parameter space in the
x1 direction, they reverse their direction while maintain-
ing curvature constraints and continue back towards the
left. The second comparison is a looping patrol pattern
created by the parameterized curvex1 = 15 sin(s(t)),
x2 = 3 cos(3s(t)). The parameterization by s(t) maintains
the constant searcher velocityv = 1 through satisfying the
equation:

ds

dt

r �
dx1

ds

� 2
+

�
dx2

ds

� 2
= 1 :

Each patrol curve is furthermore translated to align with

Fig. 4. Comparison of the performance of the optimal
control solution vs heuristic methods.

the initial positions of each searcher. The �nal comparison,
meant to establish a base for poor-performing methods, is
a sample of random walks created by sampling random
headings from a uniform distribution over [� �

2 ; �
2 ]. Perfor-

mance results for these trajectories and the optimal control
solution are compared in Figure [4]. A major issue in the
numerical implementation of search problems has been
the length of the computation time. Direct comparison of
run times to previously published times is not possible in
detail, due to computing platform di�erences and a paucity
of published times. In [Chung et al. (2011)] computation
times are referred to in terms of days; in [Foraker (2011)],
algorithm times for single searchers searching over a two-
dimensional parameter space range from 5; 000 seconds
to 20; 000 seconds. The ability to now implement more
e�cient methods (pseudospectral direct collocation with
encoded sparsity and linearity) has reduced these times
by an order of magnitude. Representative times are given
in the table below, as computed on a 2.3 GHz Intel Core
i5 Macbook:

Time Nodes Parameter Nodes Run Time (seconds)
75 10� 10 85:17
150 15� 15 131:27
200 25� 25 672:70

3. EXPANDING THE OPTIMAL SEARCH
FRAMEWORK

The exponential detection model provides us with a perfor-
mance criterion which can be used as the objective func-
tion in the evaluation of basic optimal search problems.
The objective in these problems accounts for one direction
of inuence{i.e. it accounts for the emission by a searcher
of search e�ort. In order to evaluate a strategic objective
of protecting a high-valued asset, heterogeneous inuences
need to be modeled between multiple agents in a scenario.

To construct a framework for such objectives, we will begin
by adopting a more general terminology. Rather than
detection, we will use the more general term `attrition'.
Attrition is meant in the following sense:

attrition: the action or process of gradually reducing
the strength or e�ectiveness of someone or something
through sustained attack or pressure

With this terminology, for example, the rate of detection
function described in the previous section would be inter-
preted as the rate of attrition of an attacker's probability
of remaining undetected. This is an action directedagainst
the attacker by the defender.

The concept of attrition is applicable to many relevant
strategic gauges. Among other options, it can be used to
describe reductions in:

� unmapped information � equipment e�ectiveness
� survival probabilities � the number of agents

We now imagine such a rate of attrition function directed
against a target by a searcher and acting as a force of
gradual reduction on a quantity Q(t). This quantity could
be the target's weapon's e�ectiveness for instance. As a
reference, we will say that this is an action directed by
a searcher at position x(t) against a target at position
y(t) and that the rate of attrition is given by the function
r d(x(t); y(t)). This rate of attrition can be a proportional
attrition rate, satisfying:

_Q(t) = � Q(t)r d(x(t); y(t))
or an absolute rate of attrition, satisfying

_Q(t) = � r d(x(t); y(t)) :
In both cases, we get solutions of the form:

Q(t) = F
� Z t

0
r d(x(� ); y(� ))d�

�
:

We compose this with a second direction of inuence,
that of the target on a third agent, a high-valued asset,
when the target acts as a force of reduction of the asset's
quantity P(t). As an element of e�ective design, it is
assumed that the quantity Q(t) which the searcher is
diligently working to reduce is a quantity which has
bearing on the target's e�ectiveness at reducingP(t). That
is, if we assume that a target has a baseline rate of attrition
against the asset, given by the function r a(y(t); x0(t))
(where x0(t) is the trajectory of the asset) , then this
baseline rate is then ameliorated by the quantityQ(t). This
amelioration yields an e�ective rate of �r a(Q(t); y(t); x0(t)).
The quantity P(t) is thus reduced by the equation:

_P(t) = � �r a(Q(t); y(t); x0(t))
if the attrition is absolute, or:

_P(t) = � P(t)�r a(Q(t); y(t); x0(t))
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if it is proportional.

In both cases, a closed form solution is possible due to the
hierarchical nature of these relations (a searcher inuences
a target which in turn inuences an asset) which creates
a decoupled system of di�erential equations. Solutions are
of the form

P (t) = G

� Z t

0

�r a

�
F

� Z �

0

r d (x(s); y(s)) ds

�
; y(t ); x0 (t )

�
d�

�
:

The existence of this closed form solution enables the
application of the methods developed for problemP. The
following problem will demonstrate how these methods can
be utilized to model a multi-agent tactical scenario.

3.1 The `Kamikaze Shooting Problem'

We consider the scenario where a swarm ofL attackers
is headed towards a moving high-valued unit (HVU). The
trajectory of the HVU is predetermined and given by the
function x0(t) 2 RN x . Attacker trajectories are modeled as
conditionally deterministic motion with trajectories given
by yl (t; ! ), for parameters ! 2 
 with probability density
function p : 
 ! R The positions for all L attackers are
given by the vector y = [ y1; : : : ; yN y ]T 2 RN y :

K defenders are dispatched to neutralize the attackers
before they destroy the HVU. The objective is to min-
imize the probability of destruction of the HVU over
the time interval [0 ; T]. Each defender's state, xk , is
governed by dynamics: _xk = f k (x; u); xk (0) = xk; 0.
These quantities are referenced with the vectorsx =
[x1; : : : ; xN x ]T 2 RN x , u = [ u1; : : : ; uN u ]T 2 RN u , and
f (x; u) = [ f 1(x; u); : : : ; f N x (x; u)] 2 RN x .

The following situation is referred to as a `kamikaze'
scenario, because we will for now assume a single-minded
focus of respective agents. The attackers have as their sole
mission the destruction of the HVU, with no �repower to
spare on other agents. They focus all their �re on the HVU,
hoping to evade the defenders long enough to succeed in its
destruction. The defenders focus their �re on the attackers
with the goal of protecting the HVU. The HVU relies on
the protection of the others and is unable to �re on the
attackers itself.

We will assume that the �ring rates of the agents are
rapid and as such can be modeled as continuous quanti-
ties. Firing rates are interpreted such that if r (t) is the
instantaneous rate of �re directed against an agent at
time t, then the probability of an agent's destruction in
a su�ciently small time interval [ t; t + � t] is given by the
quantity r (t)� t. Let r d;k (xk (t); yl (t; ! )) represent the rate
of �re of the k-th defender against the l-th attacker for
a parameter value ! 2 
. The probability that the l-th
attacker survives at time t + � t conditional on ! is then
given by

Ql (t + � t; ! ) = Ql (t; ! )
KY

k=1

(1 � r d;k (xk (t); yl (t; ! ))� t)

which becomes:

Ql (t + � t; ! ) =

Ql (t; ! )

 

1 �
KX

l =1

r d;k (xk (t); yl (t; ! ))� t)

!

+ O
�
(� t)2�

:

As � t ! 0 we �nd:

_Ql (t; ! ) = � Ql (t; ! )
KX

k=1

r d;k (xk (� ); yl (�; ! ))

which yields the expression:

Ql (t; ! ) = e�
Rt

0

P K

k =1
r d;k (x k ( � ) ;y l ( �;! )) d� :

We now let r a;l (yl (t; ! ); x0(t)) be the rate of �re of the l-th
attacker, if it has survived, against HVU. The probability
of destruction of the HVU in a small time interval [ t; t +
� t] is determined by the rate of possible �re against it
compounded with the probability that the attackers have
survived to emit that �repower. Thus the probability that
the HVU survives at time t + � t is given by:

P (t + � t; ! ) = P (t; ! )

LY

l =1

(1 � Q l (t; ! )r a;l (yl (t; ! ); x0 (t ))� t ):

After similar manipulations to those above this yields:

P(t; ! ) = e�
Rt

0
(
P L

l =1
Q l ( �;! ) r a;l (y l ( �;! ) ;x 0 ( � ))) d�

Optimizing the expectation of this probability over 

creates a nonstandard optimal control problem of the same
form as that of problem P:

The Kamikaze Shooting Problem: Given probability
density function p : 
 ! R and conditionally deterministic
attacker trajectories y(t; ! ), determine the control u :
[0; T] ! U 2 Rn u that minimizes the expectation

J =
Z



(1 � P(T; ! )) p(! )d!

where

P(T; ! ) = e�
RT

0
(
P L

l =1
Q l ( �;! ) r a;l (y l ( �;! ) ;x 0 ( � ))) d�

and
Ql (�; ! ) = e�

R�

0

P K

k =1
r d;k (x k (s) ;y l (s;! )) ds :

subject to the dynamics _x(t) = f (x(t); u(t)) with initial
condition x(0) = x0 and control constraint g(u(t)) �
0, 8t 2 [0; T].

3.2 Numerical Implmentation

We implement a kamikaze shooting problem with similar
physical features to the search problem of Section [2.2].
An attacker is oating down the surface of a channel
of dimension [� 20; 10] � [0; 20] from right to left in a
straight line with a constant known velocity va = :25. The
attacker's location in time is conditional on its unknown
starting position, ! = [ ! 1; ! 2] with probability density
function given by joint normalized beta distributions with
parameters � = � = 3 and the parameter space [0; 10] �
[0; 20]. There is one defender, moving as a Dubin's vehicle,
with velocity set as v = 1 and turning rate, u, constrained
by juj � :5. The defender's initial state is [� 10; 15; 0]. The
�ring rates of the defender and the attacker are modeled
using the Poisson Scan Model, with identical calibration
constants, given by: F = 20; a = 1 ; � = 2 ; � = 10: The
objective is optimized over the time interval [0; 75].

An illustration of a numerical solution to this problem is
demonstrated in Figure [5]. This solution was computed
using 150 time discretization nodes and 25 nodes for each
parameter dimension. The quadrature scheme in the time
domain is Euler's method and the scheme in the pa-
rameter dimensions is Legendre pseudospectral. The �nal
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Fig. 5. Snapshots of numerical solution to `Kamikaze Shooting Problem' in Section 3.2. The magenta icon indicates the
position of the HVU and the green icon is defender. Colors represent the log probability density value of a surviving
attacker at a point at time t. `Low' = 4 :14� 10� 6, `High' = 2 :9317� 10� 4.

probability of HVU destruction in this implementation is
9:32%. This low percentage is achieved despite the fact
that the probability of destroying the attacker in this case
is only 7:69%. To gauge the e�cacy of this trajectory,
this result can be contrasted with the performance of a
trajectory generated with the same numerical methods but
using the objective of merely maximizing the probability of
destruction of the attacker{this example serves as a good
basis of comparison because it is equivalent in form to the
optimal search problem of Section [2]. In this case, the
probability of destroying the attacker can be increased,
to 15:31%. However, due to the dispersed attention, the
resulting probability of HVU destruction comes out to
79:65%.

4. CONCLUSIONS

Though solutions to search problems have historically been
limited to simple cases, the development of more e�cient
numerical methods has now made complex problems ap-
proachable. Due to these developments we are able to
use more e�cient numerical methods, such as pseudospec-
tral collocation, than have been previously implemented.
We are furthermore able to exibly incorporate compli-
cated objectives, state and control constraints, and non-
linear searcher and target dynamics. We have exhibited
the e�ectiveness of this by example{through implement-
ing nonlinear multi-agent search problems and presenting
their tractability and functionality. These problems are
implemented in seconds, rather than hours or days, and
demonstrate a potential for these methods to be applied
to realtime situations.
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