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ABSTRACT: Algoritluns for solving tlu'ee e1asses of reliability-based optimal design problems 
are presented. The algorithms address design problems for struetural components, series systems, 
and a portfolio of series systems, where the objective and/or constraint functions involve probability 
tenTIs. The proposed approach employs reformulations of the problems, in which probability terms 
are replaced by better-behaving functions. The reformulated problems can be solved by existing 
semi-infinite optimization algoritluns, An important advantage of the approach is that the required 
reliability and optimization ealculations are completely decoupled, thus allowing flexibility in 
the choice of the optimization algorithm and the reliability method. A comprehensive numerical 
example demonstrates applications ofthe proposed algorithms. 

INTRODUCTION 

Uncertainties and optimization are two major considerations in structural design. Uncertainties, 
arising fi'om randomness in struetural materials and applied loads as well as from errors in behavioral 
models, are inevitable and must be properly accounted for in the design of structures to assure 
safety and reliability. Optimization in the design of structures is desirable in order to maximize 
benefits and to make effective use of resources. Thus, optimal design under uncertainty is a topic 
of significant practical interest in structural engineering. Due to the challenges present in both 
probabilistic analysis and optimal design of stmctures, the combined problem poses significant 
difficulties as well as opportunities for research and innovation. 

The typical single-objective optimal design problem involves an objective function that is to 
be minimized (or maximized), and one or more equality or inequality constraints, which define 
the feasible domain of the design variables. Under conditions of uncertainty, probabilistic terms 
may enter the objective, the constraints or both, Furthermore, the probabilistic terms may involve 
various measures, such as statistical moments of structural response or probabilities associated 
with various structural performance events. 

In this paper, we present a summalY of algorithms developcd by the authors for solving single
objective design optimization problems involving failure probabilities (complements of reliability) 
as constraints, in the objective function, or both as constraints and in the objective function. Both 
structural component and series system problems al'e considered. For more detailed background 
on thc development of these algoritluns, including proofs of the various statements, the reader 
should consult Royset et al. (20Ot, 2002, 2003). Other relevant papers are those of Kirjner-Neto 
et al. (1998), Der Kiureghian and Polak (1998) and Polak et al. (2000). A comprehensive review 
of other works in reliability-based optimal design is presentcd in Royset et al. (2002) and will 
not be repeated here. However, it is important to note two distinguishing characteristics of the 
approach presented here relative to reliability-based optimal design algoritluns developed or used 
by other researchers and practitioners: (a) in the proposed approach the computations for reliability 



and optimization are decoupled, thus allowing maximum latitude in the choice of algorithms for 
solving these sub-problems, (b) the developed algorithms have proven convergence properties under 
the stated conditions. 

The paper begins with a brief review ofthe relevant reliability methods followed by the definition 
of three classes of optimal design problems. Each problem is then considered and applicable 
algorithms are described. The paper concludes with a comprehensive example. 

2 STRUCTURAL RELIABILITY 

Let x be an n-dimensional vector of deterministic, real-valued design variables, e.g., member sizes, . 
maintenanee times, extent offuture repair. Following the well-established theory of structural relia
bility (Ditlevsen and Madsen 1996), we express the system reliability of a structural design by means 
ofa set of continuously differentiable limit-state functions Gk,(X, v), k E K {I, 2, ... ,KJ, involv
ing x and an m-dimensional vector v of realizations of random variables V. The event (Gk(X, V) ::::: OJ 
defines the failure of the structure in its k-th mode, a "component" event. The failure of the struc
ture as a "series system" occurs if any of the component events (Gk(X, V) ::::: 0], k E K, occurs. As 
is common in reliability analysis, we use a bijective transformation u = Tx(v) to map v into the 
realizations u of a standard normal random vector U. Such transformations ean be defined under 
weak assumptions. Replacing v by T; I (u) gives the equivalent limit-state functions gk(X, u), k E K, 
defined by gk(X, u) = Gk(X, (u». Since structures usually possess high reliability, any realistic 
design should be safe at the mean point and henee gk(X, 0) > 0 for the problems of interest here. 

The failure probability of the struetural system is defined by 

p(x) r !p(u) du 
lQ(x) 

(1) 

where !p(u) is the m-dimensional standard normal probability density function and Q(x) is the 
failure domain. For a series structural system, Q(X) = UkEK(u E R"'lgk(X, u) OJ. The failure 
probability for the k-th component,Pk(x), is defined as in (1) with the integration domain replaced 
by Qk(X) = {u E Rin Igk(X, u) ::: 0 J. We define the critical component to be the eomponent with the 
largest failure probability. 

In the first-orderreliability method (FORM), an approximation to Pk(X) is obtained by linearizing 
the limit-state function gk(X, u) at the point in the set {u E Rin Igk(X, u) OJ closest to the origin, 
i.e., at 

uZ(X) E argmin (llulllgk(X, u) OJ (2) 
nERJ11 

Such closest points are referred to as design points. The corresponding approximation of the 
component failure probability takes the formpk(x) .~ <1:>( -,BI,k(X», where ,Bl,k(X) = I lur(x)1 I is the 
first-order reliability index and <1>(.) is the standard normal cumulative distribution function. This 
probability expression is exact when gk(X, u) is affine in u, i.e., when gk(X, u) bO,k(X) + bk(X) T U 
for some positive valued function bO,k(X) and vector-valued function bk(X). For a series system 
with affine component limit-state functions, the failure probability is obtained as the probability 
content in a polyhedral domain in the standard normal space. For non-affine component limit-state 
functions, the polyhedral domain defined by linearization of the individual component limit states 
at the respective design points provides a first-order approximation to the series system probability. 

In the second-order reliability method (SORM), an approximation to Pk(X) is obtained by replac
ing the limit-state funetion gk(X, u) by a quadratic approximation in u at the design point Uk(X). The 
expression for the second-order approximation of Pk(X) involves ,B1,k(X) and the principal curva
tures of the surface (Ulgk(X, u) = OJ at the design point. A second-order approximation to the series 
system probability may be obtained by adjusting the distances to the faces of the first-order polyhe
dral approximation from ,B1,k(X) to ,B2,k(X) such that <1>( -,B2,k(X» equals the SORM approximation 
ofpk(x). 

An important requirement in all gradient-based optimization algorithms is the existence of at least 
first-order derivatives of the objective and eonstraint functions with respect to the design variables x. 
In a reliability-based optimal design problem, this translates into the requirement of differentiability 
of the failure probability, or the employed approximations thereof, with respect to the design 
variables. Unfortunately, none of the existing reliability approximation methods (FORM, SORM, 
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response surface, importance sampling, etc.) are guaranteed to produce results that are differentiable 
with respect to x. For example, one can easily show that FORM and SORM approximations of the 
failure probability for the limit-state function g(x, u) = 5 ~ 0.2(Llt x)2 ~ u2 are not differentiable 
at x O. A similar problem exists with probability estimates based on simulation, unless special 
formulations are used (Royset and Polak, 2003). For the more general case of a series system, even 
the exact failure probability can be non-differentiable. For example, the probability offailure ofthe 
series system with the component limit-state functions gl (x, til, U2) = 3 Ut,g2(X, lIl, ti2) = 3 112 

and g3(X, til, U2) = 3 112 - x is not differentiable at x = O. 
The difficulty with differentiability means that optimization problems involving the failure prob

ability in the objective flIDction or the constraints may not be solvable by standard nonlinear 
optimization algorithms (e.g., NLPQL by Schittkowski, 1985; LANCELOT by Conn et al., 1992; 
and NPSOL by Gill et al., 1998). Ironically, most existing literature on reliability-based optimal 
design employs the FORM approximation in conjunction with standard nonlinear optimization 
algorithms. This does not mean that the solutions reported in the literature by use of these methods 
are necessarily wrong, but that the algorithms employed in these applications are not robust for the 
given problem and may fail to reach a solution for other similar problems. In short, standard non
linear optimization algorithms appear not to be suitable for the solution of reliability-based optimal 
design problems. The algorithms presented in this paper circumvent this problem by a reformu
lation that replaces the probability terms with other better-behaving functions. The reformulation 
does not lead to optimization problems that can be solved by standard nonlinear optimization algo
rithms, but the problems can be solved by so-called semi-infinite optimization algorithms. These 
algorithms are well-known in the optimization literature (see, e.g., Polak, 1997). 

3 DEFINITION OF OPTIMIZATION PROBLEMS 

This paper addresses three classes of reliability-based optimal design problems denoted as PI, P2 
and P3. The series system versions ofthese problems are denoted as PI,sys, P2,sys and P3,sys. For P3, 
a version applicable to a "portfolio" of series systems, e.g., a group of bridges, is also formulated 
and denoted as P3,pol" To define these problems, let co(x) be the initial cost of the design, Ck(X), 
k E K, be the cost associated with the failure of component k, and 

(3) 

withjj(x) being continuously differentiable functions describing deterministic constraints. Prob
lems PI, P2 and P3 are defined as follows: 

PI: ~ID, {cO(X)!Pk(X) :::s: h, k K,xEX} (4) 

P2: min { ~~Pk(X)1 x EX} (5) 
XER" 

P3 : mll1 { cQ(x) + ~ Ck(X)Pk(X)! Pk(X) :::s: h, k E K, x EX} (6) 
XER" 

As can be seen, PI minimizes the cost of the design subject to upper-bound constraints on the 
individual component failure probabilities, P2 minimizes the failure probability of the critical 
component, and P3 minimizes the sum of the initial cost and the expected cost of failure of the 
components, assuming the component failure costs are additive, subject to constraints on the indi
vidual component failure probabilities. All three problems are also subject to the deterministic 
constraintsjj(x) 0, j = 1, ... , q. The series system versions of these problems are defined as 

PI,sys: min (CO(X)[P(X) :::s: p, Pk(X) :::s: fik, k K, x EX} 
xERJI 

(7) 

Ps,sys: min {p(x)!x E X} 
.tERn 

(8) 

P3,sys: ~ID, (co(x) + c(x)p(x)[P(x) :::s: p, Pk(X) < h, k E K, x EX} (9) 
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As can be seen, in PI,sys a constraint on the system failure probability is added, whereas in P2,sys 
it is the system probability that is minimized. In P3,sys, the expected failure cost is in terms of the 
system failure, and the system failure probability is included in the constraint set definition. To 
define the portfolio version of P3, let the superscript (I), IE L = {I, ... ,L}, define the I-th series 
structural system ampng a portfolio of L such systems. P3,por is then defined as 

) 

P3,pOl': ~IDJ {t c&(x) + t J(x)p(l) (x) I p(ll(x) ::s p(l), I E L, x EX} (10) 

Here, c~lcx) is the initial cost of the I-th series structural system, and c(ll(x) is the cost associated 
with failure of the I-th series structural system. For the sake of simplicity in the notation, in (10) 
we have dropped the constraints on the individual components of the series systems. They can 
be included without significantly altering the solution algorithm. This problem aims to minimize 
the portfolio cost of the design plus expected cost of system failures, subject to constraints on the 
individual system probabilities. 

All the cost, limit-state and constraint functions are assumed to be continuously differentiable. 
Additionally, we assume that the interval (for m = I), area (for m = 2), volume (for m = 3), etc., in 
which the limit-state function vanishes, have length, area, volume, etc., equal to zero, respectively. 
This is normally satisfied in realistic design problems. The precise mathematical statement of this 
assumption can be found as Assumption I(iii) in Royset et al. (2003). 

4 PROBLEMS PI AND PI,sys 

4.1 Approximating problems 

Let th = - <1>-1 (h). If the FORM approximation is used to solve PI, the constraint Pk(X) ::s h 
can be replaced by fh,k(X) ::: th. This implies 

min {llulll gk(X, u) ::s o} ::: th 
uERm 

(II) 

or, assuming gk(X, u) > 0, equivalently, 

(12) 

At first glance, the expression in (12) does not appear more advantageous than the one in (II). How
ever, the left side of(l2) can be interpreted as a so-called standard min-function, while the left side 
of (11) is a generalized min-function. Standard min-functions have been studied extensively in the 
literature, and there is a variety of efficient and robust algorithms available for solving optimization 
problems involving such functions. In contrast, generalized min-functions are significantly more 
difficult to deal with. Note that standard min-functions are not differentiable everywhere even if 
g,,(x, u) is differentiable. This fact is incorporated into the algorithms in the literature for solv
ing optimization problems with min-functions. Motivated by this finding, we define the standard 
min-functions 

1/ikSk(X) = min {gk(X, u) Illu ll ::s Sk}, 
, UERI1I 

kEK (13) 

where Sk > 0 is a parameter, and introduce the following approximation to PI: 

PI,s : ~IDJ {co(x) l1/ik,sk (x) ::: 0, k E K, x EX} (14) 

Precise statements with proofs regarding the relation between PI and PI,s are given in Kirjner
Neto et al. (1998), Der Kiureghian and Polak (1998), Polak et al. (2000), and Royset et al. (2002). 
In essence, PI and PI,s have identical solutions ifthe limit-state functions gk(X, u), k E K, are affine 
in u and Sk = fik, k E K. Furthermore, PI and PI,s have identical solutions ifthe failure probability 
terms in the former are expressed in terms of their FORM approximations. Ifhigher order probability 
approximations are to be used, adjustments in the parameters Sk, k E K, must be made for non
affine limit-state functions. Specifically, if at the solution x of PI,s the FORM approximation for 



a eomponent k is smaller than the corresponding higher-probability approximation, such that the 
latter violates the probability constraint in (4), then problem PI,s must be resolved using a larger 
value of Sk. Conversely, if the FORM approximation is larger than the higher-order probability 
approximation, then a smaller value of Sk may be used to improve the design. This process of 
parameter adjustment is repeated until all the component probability constraints in (4) are satisfied 
for the desired probability approximation level. A recursive formula for these updates of parameters 
Sk is given below. 

The above parameter-adjustment procedure can also be employed to solve the series system 
problem, Pl,sys. It is well known (Ditlevsen and Madsen, 1996) that the series system probability 
is bounded from below by the probability of the critical component, and from above by the sum of 
the component probabilities. In view of the upper bound, the constraint p(x) .:::: P can be satisfied 
by selecting a sufficiently large value of Sk for each component, and particularly for the critical 
component. 

4.2 Algorithms for PI and PI,sys 

Problem PI,s with fixed parameters s belongs to a well known class of optimization problems 
called semi-infinite (see e.g., Polak, 1997, or Royset et al., 2002) and can be solved by any ofa 
series of well-honed algorithms with guaranteed convergence properties. To obtain approximate 
solutions in the case of non-affine limit-state functions andlor problems involving series systems, 
we repeatedly solve the approximating problem PI,s while adjusting parameters s. This approach 
was originally proposed by Der Kiureghian and Polak (1998) and Polak et al. (2000) for problems 
with component failure probabilities, i.e., P I. In Royset et al. (2001) and (2002), this approach was 
extended to also address PI,sys. The algorithm steps are summarized as follows: 

Data. Provide an initial design Xo and a sequence of strictly increasing integers No, NI, N2, .... 

Step O. Set i = 0 and the parameters (Sk)O = lh, k E K. 
Step 1. Set Xi+ 1 to be the last iterate after Ni iterations of a semi-infinite optimization algorithm 

on the problem Pl,s, with Si = «SJ)i, (S2)1, ... , (Sk)i), and initialization Xi· 
Step 2. Compute appropriate estimates h(Xi+I), k E K, of Pk(Xi+!), k E K. If considering PI,sys, 

also compute an appropriate estimate h(Xi+!) of the system failure probability P(XHl). 
Step 3. Update the components of Si+ I by setting 

<t>-IC ) 
(Sk)i+l (Sk)i<t>-ICt »),kEK (15) 

Pk xHl 

If considering P l,sys, replace the updating rule for the critical component, i.e., component 

k = k such thatpt(xi+d maxkEKPk(Xi+I), by 

( 
<t>-t(h) <t>-I(h») 

(skk~l = (sk)i max ffi-I(- (. »' ffi-I(- (. » 
'" Pk X1+ 1 '" Pk XI+ I 

(16) 

Step 4. Replace i by i + 1 and go to Step 1. 

With the phrase "appropriate estimate" of a failure probability in Step 2, we mean that the failure 
probability estimate should be computed using the same reliability method (e.g., FORM, SORM, 
Monte Carlo Simulation) and with the same level of accuracy as the one used to verify the final 
design. 

5 PROBLEMS P2 AND P2,sys 

5.1 Approximating problems 

In P2, we design the structure by minimizing the probability of failure ofthe most critical compo
nent. This objective can be achieved approximately by maximizing the first-order reliability index 
of the critical component. However, considering the equivalence between (11) and (12), the latter 
objective can be approximately achieved by maximizing 1/Ik,s(X) in (13) for a givens. This is advan
tageous because, as opposed to Pl,k(X), which is a generalized min-function, 1/Ik,s(X) is a standard 

5 



min-function. Adjustments in the parameters s may be used to improve the approximation. Hence, 
we define the following approximation to P2: 

max {min 1/Ik,s(X)} 
XEX kEK (17) 

Note that in P2,s the parameter s is a scalar, whereas in PI,s there are K parameters Sk. One can 
show that P2 and P2,s have identical solutions for any s> 0 when the limit-state functions are 
affine in u. For non-affine limit-state functions, P2 and P2,s have identical solutions if the FORM 
approximation is used, provided s = (31 k(x*) for the critical component at the solution point x*. An 

improved solution relative to a higher ~rder probability estimate may be obtained by solving P2 for 
a range of s values in the neighborhood of (31 k(x*) and taking the best design. However, experience 

shows that such designs tend to be insensitive to s values in this range. Hence, a rough estimate 
of s is usually sufficient. Furthermore, owing to the dominance of the critical failure mode on the 
series system failure probability, a solution of P2,s with s close to (31 k(x*) is a good approximation 

to the solution of P2,sys as well. ' 

5.2 Algorithm for P2 and P2,sys 

Data. 

Step O. 
Step 1. 

Step 2. 

Step 3. 

Step 4. 
Step 5. 

Step 6. 

Provide an initial design xo, an integer N, and a parameter So, with value in the neighbor
hood of the first-order reliability index ofthe critical component for the anticipated optimal 
design. 
Seti=O. 
Set Xi+1 to be the last iterate after N iterations ofa semi-infinite optimization algorithm 
on the problem P2,s with initialization Xi. 
Compute appropriate estimates Pk(XHI), k E K, Ofpk(XHd, k E K. If considering P2,sys, 
also compute the appropriate estimate p(xHI) of p(XH I)' 

Determine ki+1 (the index for the critical component) such that h
i
+

1 
(Xi+l) = maXkEKPk 

(xHI) and compute the corresponding FORM reliability index (31 k. (Xi+I). 
, l+1 

Set Si+1 =(31 k (XHI). 
,1+1 

The best estimate of the optimal design after i + 1 iterations is Xi+ IE arg min)= 1, ... ';+ I h 
1 

(X)) (in case of P2) and Xi+1 E arg minj=I, ... ,HIP(Xj) (in case of P2,sys). 
Replace i by i + 1 and go to Step 1. 

6 PROBLEMS P3, P3,sys AND P3,por 

6.1 Approximating problems 

Problems P3, P3,sys and P3,por, where failure probabilities appear in both the constraint defini
tion and the objective function, are more complicated than the problems discussed earlier. The 
approaches for solving PI and P2 cannot simply be "combined" to create an approach for solving 
P3. In the approximation for P2, we replaced the failure probability by a function that had maxima 
approximately for the same designs as the minima for the failure probability on the given feasible 
set. The actual value of the failure probability was not involved in this approximation. In P3, P3,sys 
and P3,por we need an approximation of the failure probability in order to estimate the objective 
functions. The following reformulation of these problems, which is built on the approach for solving 
PI, is developed in Royset et al. (2002). 

We first construct approximating problems for P3 by replacing the failure probabilities in the 
objective function of P3 with parameters. The parameters are included in an augmented design 
vector and, hence, their values are automatically determined by the optimization procedure. Let 
x = (x, a) be an (n + K)-dimensional augmented design vector, where X is the original n-dimensional 
design vector and a=(al,a2, ... ,aK) is a K-dimensional vector of parameters. We define the 
problem 
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Observe that the objective function in 1'3 is equal to the one in P3 when Pk(X) = ak. Since in 1'3 
we only consider designs x such that Pk(X) = ak and 0 ~ ak ~Pk> k K, the minima of problems 
P3 and 1'3 must be equal. This result is stated and proven formally in Royset e.t at. (2002). It 
is seen from (18) that 1'3 is a minimization problem of a smooth objective ftmction with failure 
probability equality constraints. This is similar to PI, but PI contains inequality constraints. The 
above reformulation removes the failure probability in the objective function. However, the failure 
probability is still part of the constraint set definition. Hence, one more step is needed to arrive at 
an optimization problem that can be solved by semi-infinite optimization algorithms. 

We proceed by constructing an approximating problem with min-function constraints. Let t be 
aK-dimensional vector of positive numbers. This parameter vector is similar in nature to s in PI,s. 
However, as seen below, their numerical values tend to be different. We define the approximating 
problem 

where 

(20) 

Note that {frk,tk (x) is the minimum value ofthe limit-state function inside a ball of radius -<p-I(ak)tk> 
while Vtk,Sk(X) is the minimum value of the limit-statc function inside a ball of radius Sk. Hencc, 

the radius of the ball associated with {frk,tk(X) varies with thc argument X. The problem p3,t can be 
solved by semi-infinite optimization algorithms. 

In the same way that PI and PI,s were related, we find that 1'3 and P3,t are related: If the limit-state 
functions gk(X, u), k E K, are affine in thcir second argument and t = (1, I, ... , I), then x solves 
1'3 if and only if it solves P3,t. The mathematically prccise statement and its proof can be found in 

Royset et at. (2002). In view of the above relations, the original problem P3 is equivalent to P3,t, 

when the limit-state ftmctions are affine. For non-affine limit-state functions, P3,t is a first-order 
approximation to P3 with parameters t, which can be adjustcd to improve the approximation. 

The situation for P3,sys and P3,por is similar to the one for P3. We first define 

1'3, or: min {~c(l)(X)+~c(l)(x)allp(I)(x) al,O al~p(l),lEL'XEX} (21) 
p (x,a)ERfI+L L.., 0 L.., 

1=1 1=1 

Roysct et at. (2002) have shown that the minimum value of P3,por is equal to the minimum value 

OfP3,por. Next, wc define the approximating problem 

where 

(23) 

We are not able to prove equivalence between P3,por and P 3,por,t similar to that between 1'3 and P3,t 

for affine limit-state functions. However, if all the limit-state functions gf)(x, u) are affine in their 

respective second arguments, then {frg>cx) ::::. 0 implies that the critical failure component, say lq, of 

the /-th structurc has failure probability p~lcx) <P( -<p-I(al)tl).I-Ience, when tl = 1,P(k!\x) ~ al. 
~ I 

Due to the close relation between the failure probability of the critical component and the failure 

probability ofthe series system we can adjust t[ such that p(l)(x) ~ at whenever {frg>cx) = O. Hence, 

P3,por,t is a good approximation to P3,por for a suitable selection of 1. 
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In view of the above discussion, we can approximately solve P3,por by solving the semi-infinite 

optimization problem 1>3,por,t. We present algorithms for P3 and P3,por in the next section. Since 
P3,sys is similar to P3,por (set L = I in P3,por and add component failure probability constraints), it 
is straightforward to develop an algorithm for P3,sys based on the ones for P3,por and PI. 

6.2 Algorithms for P3 and P3,por 

To solve P3 and P3,sys, we repeatedly solve the approximating problem 1>3,t as described below. 

Data. 
Step O. 
Step 1. 

Step 2. 

Step 3. 

Provide an initial design Xo and a sequence of strictly increasing integers No, NI, N2, .... 
Set i = 0, ao = CPI,h, ... ,PK), to = (1, 1, ... ,1) and Xo = (xo, ao). 
Set Xi+1 to be the last iterate after Ni iterations of a semi-infinite optimization algorithm 
on the problem 1>3 t with initialization Xi. 
Compute appropri~te estimates h(Xi+ I) of Pk(Xi+ I), k E K. If considering P3,por, compute 
appropriate estimates jJ(l) (Xi+I), l E L, of p(l)(Xi+I), l E L. 
Update the components of ti+ I by setting 

kEK (24) 

If considering P3,por, use the updating rule 

t. - t . <t>-I((a/)i+I) 
(/),+I-(/)' ..... -I(-(I)( ))' 

'¥ p Xi+1 
(25) l EL 

Step 4. Replace i by i + I and go to Step 1. 

7 EXAMPLE APPLICATION 

Consider a highway bridge with reinforced concrete girders of the type shown in Figure I. The 
objective is to find the optimal design for one such girder using the material and load data from 
Lin and Frangopol (1996) and Frangopol et al. (1997). The nine design variables are collected in 
the vector 

(26) 

b 

x x 
) ra )F'(1 nSt 

; ; 

111111111 I 
I I 

h, 
111111111 I I I I I 
111111111 I 'I II I I 
111111111 I I I I I I I 
111111111 I I I I I I I 
111111111 I 

'" I 
I I 

111111111 I I I I I I I 

illtcrval3 

As 

J b
w J 

(a) (b) 

Figure 1. Example reinforced concrete girder: (a) cross section, (b) side view with shear reinforcement. 
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where As is the area of the tension steel reinforcement, b is the width ofthe flange, hJ is the thickness 
of the flange, bw is the width of the web, hv is the height of the web, Au is the area of the shear 
reinforcement (twice the cross-section area of a stirrup), and S!, S2 and S3 are the spacings of shear 
reinforcements in intervals 1, 2 and 3, respectively (Figure 1 b). The random variables describing 
the loading and material properties are 

(27) 

where.l; is the yield strength of the reinforcement, f; is the compressive strength of concrete, P D 

is the dead load excluding the weight of the girder, Mr. is the live load moment, PSI, PS2 and PS3 
are the live load shear forees in intervals I, 2 and 3, respectively, see Figure 1 b, and W is the unit 
weight of concrete. Following Lin and Frangopol (1996), all the random variables are considered 
to be independent and normally distributed with the means and coefficients of variation listed in 
Table 1. The girder length is Lg \8.30 m, and the distance from the bottom fiber to the centroid 
of the tension reinforcement is O! 0.1 m, see Figure 1. 

As in Lin and Frangopol (1996), we assume that the reinforced concrete girder fails ifit exceeds 
its flexure capacity or its shear capacity in one of three sections of the girder (see Figure 1 b). 
Hence, the reliability of the girder is defined by a series structural system with four components. 
The limit-state functions associated with the four failure modes are given in Royset et al. (2002). 

Suppose that the objective is to minimize the material cost of the reinforced eoncrete girder 
subject to a constraint on the system failure probability, i.e., a design problem of the type PI,sys. 
Let Cs = 50 and Cc 1 be the unit costs of steel reinforcement and eon crete per cubic meter, 
respectively. As in Lin and Frangopol (1996), we define the objective function to be 

co(x) 0.75CsLgAs + CsnsAv(hf + hw - O! + 0.5bw ) + CcLg(bhJ + bwhw) (28) 

where ns =Lg(lNh + 1/S2 + 1/S3)/3 is the total number of stirrups. The first term in the above 
expression represents the eost of the bending reinforcement. The factor 0.75 appears due to the 
assumption that the total amount of bending reinforcement is placed only within a length Lg /2 
centered at the middle point of the girder, and the remaining part is reinforeed with 0.5 As. The 
second and third terms in (28) represent the costs of shear reinforcement and concrete, respectively. 
Let the constraint on the system failure probability be p(x) 0.001350. 

This problem is solved by using the algorithm for PI,sys. The results are summarized in Table 2 
as Case 1, where the design vector Xi, the objeetive CO(Xi), and the system failure probability P(Xi) 
are listed. The system failure probability is evaluated using Monte Carlo simulation with a c.o.v. 
ofO.01. 

Now suppose we wish is to minimize the initial cost plus the expected cost of failure of the 
reinforced concrete girder described above. Additionally, we assume a constraint on the system 
failure probability, i.e., a design problem of the type P3,sys. Let the initial cost of the design be 
as in (28) and the cost of failure be c(x) = 500co(x). Also let the constraint on the system failure 
probability be p(x) .::s 0.001350, with no constraints on the component failure probabilities. We 
solve this problem by using the algorithm described in Section 6.2 and the results are listed in Table 2 
as Case 2 are listed. The system failure probability is evaluated using Monte Carlo simulation with 
a c.o.v. ofO.O!. Relative to Case 1, a significant increase in the initial cost of the design is observed 
due to the consideration of the failure cost. On the other hand, the design failure probability is 
almost one order of magnitude smaller. 

Table I. Statistics of normal random variables in girder example. 

Variable Mean c.o.v. 

fy 413.4MPa 0.150 

f: 27.56MPa 0.150 
PD 13.57kN/m 0.200 
lvh 929kNm 0.243 
PSi 138.31 kN 0.243 
PS2 183.39kN 0.243 
PS3 228.51 kN 0.243 
W 22.74kN/m3 0.100 
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Table 2. Results for optimal design of reinforced concrete girder. 

Design variable or function Case I Case 2 Case 3 Case 4 

As 0.00983 m2 0.0116m2 0.0161 m2 0.0144m2 
b 0.418m O.492m 0.686m 0.612m 

hi 0.415 m 0.415 m 0.415m 0.415m 
bw 0.196 m 0.196m 0.197 m 0.196 m 
hw 0.785m 0.785 m 0.785 m 0.785 m 
Au 0.000186m2 0.000227m2 0.000255 m2 0.000255 m2 

Sl 0.508m 0.502m 0.549m 0.550m 
S2 0.224m 0.226m 0.246m 0.247m 
S3 0.140m O.l42m 0.154m 0.155m 
Ca N/A N/A 0.050m 0.050m 
nil N/A N/A N/A 0.105 
nl2 N/A N/A N/A 0.243 
Co (x) 13.664 15.558 20.434 18.678 
c(x)p(x) N/A 1.459 2.514 1.824 
CIII (x) N/A N/A N/A 1.699 
p(x) 0.00131 0.000188 0.000246 0.000195 

Total expected cost 13.664 17.017 22.948 22.201 

Table3. Statistics oflognormal random variables describing corrosion. 

Variable Mean c.o.v. 

A 5 years 0.20 
B 300 years/m 0.20 
V 0.000040 mlyears 0.30 

Now suppose that the girder is subject to corrosion of its longitudinal reinforcement. We adopt 
a corrosion model similar to that used in Frangopol et al. (1997), where the diameter Db(T) of a 
longitudinal reinforcement bar at time T is given by 

D (T) = { DbO - 2v(T - TJ), T > TJ 
b DbO ,T :s TJ 

(29) 

with DbO being the initial diameter, v being the corrosion rate, and TJ being the corrosion initiation 
time. The factor 2 in (29) takes into account that the reinforcement bar is subject to corrosion 
from all sides. We assume TJ = A + Bca , where A is a lognormal random variable with mean 
5 years and c.o.v. equal to 0.20, representing the time it takes to initiate corrosion with a 10 mm 
concrete cover, B is a lognormal random variable with mean 300 years/m and c.o.v. equal to 0.20, 
representing the additional time it takes to initiate corrosion per meter additional concrete cover, 
and Ca is the concrete cover in meters in addition to the 10 mm minimum cover. The additional 
concrete cover Ca is considered a design variable and is included in the design vector x. We assume 
that the corrosion rate v is lognormally distributed with mean 0.000040 mlyears and c.o.v. 0.30. All 
the random variables are assumed to be statistically independent and lognormally distributed with 
the parameters as in Table 3. 

As seen in (29), the area of bending reinforcement is reduced over time. Hence, the reinforced 
concrete girder is now a time-varying structure. Since the area of the bending reinforcement is 
monotonically decreasing over time, the failure probability in a given time period is equal to the 
failure probability at the end of the time period. Based on this assumption and a projected girder 
lifetime of n = 60 years, limit-state functions can be defined corresponding to the four failure 
modes of the girder. Details about this can be found in Royset et al. (2002). We obtain a design 
problem of the form P3,sys where the initial cost now is 
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and the cost of failure is c(x) = SOOco(x). Let the constraint on the system failure probability be 
p(x) :.s 0.0013S0, with no constraints on the component failure probabilities. The deterministic 
constraints defining X are as above except that we also include the two constraints Ca :.s O.OS and 
Ca 2': O. 

We solve this instance of P3,sys by means of the algorithm in Section 6.2 and the result is given 
in Table 2 as Case 3. The system failure probability is evaluated using Montc Carlo simulation with 
C.O.v. 0.01. Note that the constraint associated with maximum concrete cover is active, i.e., the use 
of maximum concrete cover is most cost efficient. Relative to Cases 1 and 2, the total expected 
eost of the design is much higher due to the effeet of deterioration in the strength with time. 

Now suppose it is decided to maintain the strueture in intervals of 20 years, i.e., at 20 and 40 
years after its construction. The time of maintenance can be incorporated as a design variable, but 
in this example we have fixed those times for simplicity. Let ml and m2 be two design variables 
characterizing the maintenance effort at 20 years and 40 years, respectively. Let mi 0 denote 110 

maintenance, and mi = I denote full maintenance, i.e., restoration to the initial state ofthe structure. 
Furthermore, we consider m] as the fraetion of the aging of the structure from initial construction 
(T = 0) to the first maintenance action (T = 20 years), which is restored to its initial condition. Thus, 
40 20m 1 years is the effective age ofthe structure before the second maintenance action at T = 40 
years. Similarly, m2 is the fraction of the aging of the structure from initial construction (T 0) 
to the second maintenance action (T = 40 years), whieh is mitigated by the second maintenance 
effort, i.e., 20 + (40 - 20m 1)( I - m2) years is the effective age of the structure at T = 60 years. We 
add the two variables ml and m2 to the vector of design variables, i.e., 

(31) 

We ensure the safety of the girder by imposing the constraint that the system failure probability 
over the 60 years lifetime be less than 0.0013S. This probability is obtained as the probability of 
the union of the failure events during the intervals 0-20 years, 20-40 years and 40--60 years. For 
the reasons mentioned earlier, the event of failure within each interval is identical to the failure 
event at the end of the interval. The design is subject to the deterministic constraints as above with 
the additional constraints mi :.s 1 and 0 :.s mi, i = 1,2. Let the initial cost of the structure be as in 
(30), the cost of failure be c(x) = SOOco(x), and the cost of maintenance bc 

(32) 

where cy = O.lS represents the cost of complete restoration of the girder aftcr a year's worth of 
corrosion. Note that the factor in front of m2 represents the effective age of the structure at 
40 years. We solve this particular instance of P3,sys by using the algorithm in Section 6.2 and 
the result is listed in Table 2 as Case 4. The system failure probabilities are evaluatcd using Monte 
Carlo simulation with C.o.V. 0.01. 

We observe in Table 2 that the expected total cost of the design is smaller for the case with the 
option of maintenance (Case 4) than for the case without this option (Case 3). Also in the case 
with maintenance, there is a significant decrease in the initial cost, at the expense of a subsequent 
maintenance cost. The optimal solution suggests a larger maintenance effort at 40 year than at 
20 years. It is noted that the solutions in Table 2 were obtained by repeated decoupled optimization 
and reliability analyses, as described in the applicable algorithms. The number of such analyses 
varied between 4 and 2S for the four problems considered. 

8 CONCLUSIONS 

Algorithms are described for solving three classes of optimal structural design problems with func
tions representing the failure probability in the objective function and the constraint set definition. 
The failure probabilities can describe component or serics structural systcm failures. Based on a 
first-order approximation to the failure probability, we have constructed approximating problems 
that ean be solved repeatedly to obtain an approximation to a solution ofthe original design problem. 
By the use of higher-order reliability methods in the iterative scheme, e.g., second-order or Monte 
Carlo simulation, the approximating solution can be made to satisfy failure probability constraints 
for corresponding reliability measures. 
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The algorithms have stronger convergence properties than other algorithms found in the literature. 
Hence, the proposed algorithms are expected to be numerically more efficient and robust than 
algorithms based on heuristics. A significant advantage of the new algorithms is the flexibility in 
the selection of the reliability method. The approximating problems are semi-infinite optimization 
problems that can be solv;ed using algorithms from the literature. 

An extensive numerical example demonstrates that the new algorithms can be used in design 
and maintenance planning and with models involving both time-invariant and time-variant failure 
probabilities. 
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