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Abstract. Field observations show that individual aerosol
particles are a complex mixture of a wide variety of species,
re�ecting different sources and physico-chemical transfor-
mations. The impacts of individual aerosol morphology and
mixing characteristics on the Earth system are not yet fully
understood. Here we present a sensitivity study on climate-
relevant aerosols optical properties to various approxima-
tions. Based on aerosol samples collected in various ge-
ographical locations, we have observationally constrained
size, morphology and mixing, and accordingly simulated, us-
ing the discrete dipole approximation model (DDSCAT), op-
tical properties of three aerosols types: (1) bare black carbon
(BC) aggregates, (2) bare mineral dust, and (3) an internal
mixture of a BC aggregate laying on top of a mineral dust
particle, also referred to as polluted dust.

DDSCAT predicts optical properties and their spectral de-
pendence consistently with observations for all the studied
cases. Predicted values of mass absorption, scattering and ex-
tinction coef�cients (MAC, MSC, MEC) for bare BC show a
weak dependence on the BC aggregate size, while the asym-
metry parameter (g) shows the opposite behavior. The sim-
ulated optical properties of bare mineral dust present a large
variability depending on the modeled dust shape, con�rming
the limited range of applicability of spheroids over different
types and size of mineral dust aerosols, in agreement with
previous modeling studies. The polluted dust cases show a
strong decrease in MAC values with the increase in dust par-
ticle size (for the same BC size) and an increase of the single
scattering albedo (SSA). Furthermore, particles with a radius
between 180 and 300 nm are characterized by a decrease in

SSA values compared to bare dust, in agreement with �eld
observations.

This paper demonstrates that observationally constrained
DDSCAT simulations allow one to better understand the
variability of the measured aerosol optical properties in am-
bient air and to de�ne benchmark biases due to different ap-
proximations in aerosol parametrization.

1 Introduction

Black carbon (BC), a distinct type of carbonaceous aerosol
particle, is produced by incomplete combustion of fossil and
biomass fuels. BC is a strong light absorber and therefore can
contribute to atmospheric warming and surface dimming. Es-
timates of direct BC radiative forcing (DRF) are highly un-
certain and range from 0.2 to 1.2 W m� 2 at the top of the
atmosphere (TOA) (Bond et al., 2013). Two main sources
of DRF uncertainty are (1) estimates of BC spatial distribu-
tion and (2) interaction of BC with electromagnetic waves
(EMWs) upon emission and after aging in the atmosphere.
Realistic modeling of BC spatial distribution relies on proper
parametrization of emission, lifetime and vertical distribu-
tion (Samset et al., 2013; Bond et al., 2013), while appropri-
ate modeling of BC interaction with EMWs relies on proper
parametrization of aerosol shape, chemical composition and
state of mixing with other aerosol compounds. Comparison
between predicted spatial concentrations of BC from chemi-
cal transport models and AERONET (Aerosol Robotic Net-
work) measurements shows consistent biases. Speci�cally,
the fraction of aerosol column (extinction) attributable to ab-
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sorption, the aerosol absorption optical depth (AAOD), is
generally underestimated by models compared to values re-
trieved by AERONET (Bond et al., 2013; Koch et al., 2009;
Kim et al., 2008; Klingmüller et al., 2014). The sources of
discrepancy are not well understood. In order to estimate BC
DRF “consistently” with observations, scaling factors on the
order of 2–3 need to be introduced to BC emission estimates
to match observed AAOD values.

In Koch et al. (2009) BC predictions from the AeroCom
model inter-comparison project showed a low model bias
for AAOD, but an overestimation of surface and upper BC
concentrations at lower latitudes. The authors suggest that
most models are underestimating BC absorption and recom-
mend to work on improving estimates of refractive indices,
particle size, and optical effects of BC mixing. Many trans-
port models assume BC to be externally mixed with other
aerosol compounds, while few models assume that BC is ho-
mogeneously internally mixed with other aerosol compounds
(Bond and Bergstrom, 2006; Koch et al., 2009). Differences
in the representation of the aerosol mixing (i.e., BC with
non-absorbing aerosols) lead to different absorption values,
which compared to measurements are too small in the case of
external mixing and too high for the case of homogeneous in-
ternal mixing. Less often an encapsulation of a spherical and
homogeneous absorbing core surrounded by a spherical and
homogeneous non-absorbing host material is adopted (core-
shell con�guration), which gives more realistic magnitudes
of absorption (Jacobson, 2014, 2001).

Despite that, the core-shell con�guration cannot always
represent the absorption variability in the laboratory and �eld
observations (Adachi et al., 2010; Bueno et al., 2011; Bond
et al., 2013; Cappa et al., 2012b, a). The latter might be due
to the miss-representation of the BC particle aggregation and
mixing, as shown by more detailed light scattering model-
ing studies performed by Kahnert (2010b), Scarnato et al.
(2013) and Adachi and Buseck (2013). Recent studies show
that internal mixing of BC with other aerosol materials in the
atmosphere can alter its aggregate shape (Zhang et al., 2008;
Xue et al., 2009; Cross et al., 2010; China et al., 2013), ab-
sorption of solar radiation (Bueno et al., 2011; Cappa et al.,
2012b), and radiative forcing (Adachi et al., 2010; Kahn-
ert et al., 2012). China et al. (2014), furthermore, charac-
terized the predominant mixing and morphology types ob-
served with the electron microscopes from samples collected
in different locations and for different sources (i.e., biomass
burning aerosol and vehicle exhaust) by classifying BC into
four main classes (bare BC, inclusions, thinly coated and em-
bedded BC); similar classes where identi�ed by Scarnato
et al. (2013) for laboratory-generated mixtures of BC and
sodium chloride (an aerosol mixture resembling dirty marine
aerosol).

Several �eld campaigns have been showing the occurrence
of internal mixing of BC with dust aerosols in the accumu-
lation mode (e.g., Clarke et al., 2004; Liu et al., 2008). Dur-
ing transport and aging in the atmosphere, various processes

can result in the formation of multi-component aerosols con-
taining dust, including (i) heterogeneous chemistry, (ii) ad-
sorption of water vapor on dust particle surfaces, (iii) cloud
processing, and (iv) coagulation of dust with other aerosol
or cloud particles (see Usher et al., 2003). On a global scale,
bare dust is estimated to cool Earth's atmosphere. Mineral
dust TOA DRF constitutes, as BC aerosols, one of the ma-
jor uncertainties in climate studies (� 0.6 to 0.4 W m� 2) due
to the lack of knowledge of both dust spatial distribution
and interaction with EMWs. Parametrization of mineral dust
optical properties is also a complex problem, as its opti-
cal properties are a strong function of (i) the relative abun-
dance of various minerals, (ii) how the minerals are mixed
together in an aerosol particle, and (iii) the particle shape.
Those factors depend on dust origins and, therefore, on the
elemental composition of surface soils but also on the dust
lifting production mechanism and dust chemical and phys-
ical transformations (i.e., compositional separation) during
aging and transport in the atmosphere. Many �eld studies
reported changes in composition during dust transport (i.e.,
Prospero et al., 1981; Chester et al., 1972; Hansell Jr. et al.,
2011; Nousiainen, 2009). Observations from the ground and
from aircraft over the Sahara show considerable variation and
uncertainty in the optical properties of mineral dust (Mc-
Connell et al., 2010; Sokolik and Toon, 1999). The large
variability is attributed to the mineral dust particles' vari-
ability in size distributions, chemical composition and mor-
phology. Furthermore, different modeling studies on light
interaction with mineral dust aerosol show (i) the limited
range of applicability, over different types of mineral dust
aerosols, of commonly used shapes such as spheres (adopted
in Mie computations) and spheroids (adopted in T-matrix
computations and in AERONET retrieval) (Merikallio et al.,
2011), (ii) the inability of Mie simulations to accurately re-
produce the magnitude and wavelength peak positions of the
mass absorption/extinction coef�cients common for angu-
larly shaped particles (as shown by Hansell Jr. et al. (2011)
in the infrared region), and (iii) the effect of non-spherical
dust particles on the total RF (radiative forcing) is 55/5 %
(ocean/land) at the TOA and 15 % at the bottom of the atmo-
sphere (BOA) for both land and ocean, while local radiative
heating within a dust plume causes enhancements of 20 % of
RF (Otto et al., 2011).

Internal mixing of mineral dust and BC aggregates has a
strong impact on the optical properties of originally exter-
nally mixed aerosol, on their radiative forcing (Mishra et al.,
2012; Sokolik et al., 2001) and on spatial and temporal distri-
bution of precipitations, for example during the monsoon in
Asia (Lau and Kim, 2006) or the African jet streams (Reale
et al., 2011).

An accurate parametrization of aerosol optical proper-
ties due to variability in morphology and mixing with other
aerosol compounds is crucial for a number of disciplines in-
volving not only radiative forcing analysis (Bond et al., 2013)
and global and regional aerosol modeling (Samset et al.,
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2013; Kahnert, 2010b) but also aerosol–cloud interactions,
visibility and precipitation forecasts (Lau and Kim, 2006)
and, furthermore, remote sensing of atmosphere and ocean
color (Russell and Heintzenburg, 2000; Durkee et al., 2000;
Yoshida et al., 2013).

For example, retrievals of aerosol (and ocean) properties
require the assumption of (1) the scattering phase function,
(2) single scattering albedo (SSA), (3) estimates of ozone
absorption and molecular scattering, and (4) for satellite ap-
plications, estimates of surface re�ectance/albedo. Both or-
bital and ground-based remote sensing techniques use a pre-
selected library of aerosol types in the analysis of radiometric
data. The computations of optical properties for the library
often make use of spherical shape assumptions. The assump-
tions of the mineral dust particles' shape may vary in the
retrieval algorithms. AERONET retrieval assumes mineral
dust particles to be spheroidal (Dubovik et al., 2006), while
MISR (Multi-angle Imaging SpectroRadiometer) retrievals
(version 16+) use spheroidal, grains, plates and spherical
shapes (Kalashnikova et al., 2013). The retrieval algorithms
select an aerosol type based on the best �t to radiance mea-
surements (i.e., Deuze et al., 2001; Hasekamp et al., 2011).

The capability of the satellite and AERONET aerosol
global network to provide spatiotemporal distributions of
both dust and BC at different spatial scales relies on how
well the aerosol library used in the retrieval “�ts” the aerosol
mixture in the atmosphere; therefore, it is dependent on
the accuracy of the retrieval assumptions on dust and BC
optical properties. Therefore, non-sphericity and chemical
anisotropy of the particles are sources of potential inaccu-
racy and biases of data products. These inaccuracies may af-
fect the retrieval of aerosol characteristics, such as refrac-
tive index, size, aerosol optical depth, aerosol absorption op-
tical depth, etc. (e.g., Scarnato et al., 2013, and references
therein).

In this paper we present an “observationally constrained”
sensitivity study of the optical properties of BC aggregates
internally mixed with mineral dust aerosols in the UV–
IR spectral range (computationally intensive). The spectral
range used in this study is of interest for applications in cli-
mate modeling, remote sensing of aerosol and ocean proper-
ties, and visibility forecast. Computations are performed us-
ing the discrete dipole approximation (DDA – DDSCAT7.3)
(Draine and Flatau, 1994), a technique for modeling particles
with complex shape, chains and aggregates with anisotropic
mixing. DDSCAT is based on the direct solution of the
Maxwell equations without reference to the wave equation,
which is usually used in the treatment of light scattering
by simple shapes, such as sphere and spheroids. Synthetic
particle design for the DDSCAT calculations is based upon
single-particle electron microscopy of bare BC, bare dust and
BC dust (internally mixed particles of BC on the surface of a
dust particle collected in the atmosphere from different loca-
tions of the globe).

2 Method

2.1 Description of the synthetic particles

2.1.1 Black carbon aggregates

We generate synthetic BC aggregates by aggregation of
monomers in random walk (Richard and Davis, 2008;
Richard et al., 2011). The synthetic BC aggregates are char-
acterized by a volume equivalent radius (aeff also de�ned as
the radius of a sphere containing all the volume of the par-
ticle) between 82 and 144 nm, a constant monomer diame-
ter of 40 nm and an open-chain-like structure. Such values
have been observationally constrained after processing elec-
tron microscope images of several aerosol samples collected
in �eld campaigns carried out in different geographical lo-
cations – such as California's Sacramento Valley (CARES);
Pico Island, Azores (PICO); Mexico City, Mexico (MILA-
GRO); and Detling, England (ClearfLo) – where internal
mixture of BC and mineral dust have been observed.

The reader should be aware that the morphological charac-
terization of the ambient aerosol is determined by processing
2-D electron microscope images on aerosol particles laying
on a substrate and assuming orientational anisotropy over a
statistically representative sample. Therefore, as aminor sec-
ondary aspect of the paper, we investigated the appropriate-
ness of the standard method adopted in literature to estimate
a morphological descriptor, such as the monomer number of
BC aggregates by performing image processing of 2-D pro-
jections ofsyntheticBC fractal aggregates. Image processing
of synthetic BC fractal aggregates allowed, as well, assur-
ing that the synthetic particles have similar 2-D properties to
those collected in the atmosphere.

In this paper, we describe the BC aggregate morphology
and chain-like structure in terms of (1) fractal dimension,
porosity (Shen et al., 2008; Scarnato et al., 2013) and con-
vexity (as descriptors of the chain topology), (2) aspect ratio,
and (3) roundness.

BC particles can be represented as fractals, where each
particle is described as an aggregate with monomers of the
same size, approximately obeying the following scaling law

Ni D k0.Rg=rm/D f ; (1)

where N is the number of monomers per aggregate with
i D .estimated, true/, Rg is the radius of gyration,rm is the
monomer radius,k0 is the fractal prefactor, here used a value
of k0=1.6 (Liu et al., 2008), andD f is the mass fractal dimen-
sion.

Rg is the root-mean-square distance from the center of
each monomer to the aggregate center of mass. As often it is
dif�cult to measureNtrue from 2-D projections, for particles
with D f < 2, Ntrue is typically estimated as the ratio of the
projected area of the aggregate (Aa) and the mean projected
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Table 1. Characteristics of the modeled aerosol particles. Dust particles have an aspect ratio for all three axes (AR) of 1.75 in all cases
(oblate). The optical properties of dust, BC and mixtures were averaged over 1000 random orientations.

Aerosol Type Legend Target shape in study aeff [nm]

Dust S1, E1 Rectangular prism, Ellipsoid 180
S2, E2 Rectangular prism, Ellipsoid 280
S3, E3 Rectangular prism, Ellipsoid 500
S4, E4 Rectangular prism, Ellipsoid 700
S5, E5 Rectangular prism, Ellipsoid 1000

Black carbon BL1 BC aggregate with 70 monomers 80
BL2 BC aggregate with 100 monomers 100
BL3 BC aggregate with 200 monomers 120
BL4 BC aggregate with 300 monomers 140

Mineral dust and BC BL2S1 Rectangular prism mixed w BC (BL2C S1) 190
BL2S2 Rectangular prism mixed w BC (BL2C S2) 290
BL2S3 Rectangular prism mixed w BC (BL2C S3) 503
BL2S5 Rectangular prism mixed w BC (BL2C S5) 1010

area of a monomer (Ap) in the aggregate (Oh and Sorensen,
1997; Samson et al., 1987).

Ni D Ka.A a=Ap/ � ; (2)

where� is an empirical projected area exponent and has a
typical value of 1.09, whileka has a value of 1.15. The sen-
sitivity of Ni to the values of� andka has been discussed
previously (China et al., 2014).

The aspect ratio (AR) of the fractal aggregate, is de�ned as
the ratio of the major axis (A) to the minor axis (B). Larger
values of the aspect ratio indicate a more elongated particle.

AR D
A
B

(3)

The roundness of a fractal aggregate, is de�ned as the ratio
of the projected area (Aa) of the particle to the area of a circle
with a diameter equal to the maximum length (L max) of the
particle.

RoundnessD
4Aa

�L 2
max

(4)

The chain-like structure has been characterized in terms
of convexity, porosity and fractal dimension (see Eq. 1). The
convexity (C; also known as solidity) is de�ned as the ratio
of the Aa of the particle to the area of the smallest convex
polygon in which the particle is inscribed (convex hull poly-
gon – CHP). The polygon is calculated based on the bound-
ary enclosing the foreground pixels of a binary image using
straight-line segments to each outermost point.

C D
Aa

CHP
(5)

The porosity (P) of the fractal aggregates is de�ned by
Shen et al. (2008) as

P D 1�T .� 2C � 3 � � 1/.� 3C � 1 � � 2/.� 1C � 2 � � 3/U1=2; (6)

where� i D I i =.0:4� 1V1a2
eff) is a dimensionless quantity,I i

with i D .1; 2; 3/ is the moment of inertia tensor,� 1 is the
density andV1 the volume of BC aggregates (see Shen et al.,
2008).

Morphological descriptors of synthetic BC aggregates are
calculated from projected images of 50 random particle ori-
entations.

2.1.2 Mineral dust aerosol

The morphology of suspended mineral dust might take vari-
ous forms, as natural dust is an aggregate of internally mixed
minerals. Different �eld studies show AR median values
ranging between 1.4 and 1.9 (Chou et al., 2006; Clarke et al.,
2004; Reid et al., 2003; Kandler et al., 2006; Dubovik et al.,
2006; Mishra et al., 2012). In this study, we modeled dust
aerosols as spheroids and rectangular prisms with an inter-
mediate aspect ratio (compared to the refereed literature) of
1.75, which has also been found in CARES, PICO, MILA-
GRO and the ClearfLo �eld campaigns (see Table 3).

We summarize the characteristics of the synthetic/modeled
aerosol particles in Table 1. Dust particles with a smaller ra-
dius are representative of particle size distribution of long-
lived distant-transported accumulation-mode airborne dust.
The largest radius is representative of the particle's size near
the dust emission sources.

2.2 Computation of optical properties

We have numerically simulated the optical properties for an
ensemble of bare mineral dust, bare open-chain-like BC ag-
gregates and internal mixtures of BC and mineral dust (see
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Table 2. References of the wavelength-dependent refractive indices and density values used for BC and mineral dust. The Chang and
Charalampopoulos (1990) values at about 550 nm are 1.77–0.63i , which are lower than the value of 1.95–0.79i suggested by Bond and
Bergstrom (2006).

Aerosol compounds Reference refractive indices Density [g cm� 3]

Black carbon Chang and Charalampopoulos (1990) 1.8
Mineral dust Wagner et al. (2012) 2.6

Table 1). Optical properties of the binary mixtures are mod-
eled using a DDA model (DDSCAT.7.3) (see for model de-
tails Draine and Flatau, 1994, 2010). Numerical simulations
have been carried out at the speci�c spectral channels of the
AERONET Cimel radiometer (340, 380, 440, 500, 675, 870,
1020 nm) plus at the 550 nm wavelength for comparison with
literature values. Optical properties have been averaged over
1000 random orientations, reference refractive indices are
listed in Table 2.

The following are the optical properties discussed in this
study.

1. The mass absorption, scattering and extinction coef�-
cients (MAC, MSC and MEC):

MAC D Cabs=mass; (7)

MSCD Cscat=mass; (8)

MEC D Cext=mass; (9)

massD �
4
3

�a 3
eff D

4
3

�.� 1a3
1;eff C � 2a3

2;eff/; (10)

whereCabs, CscatandCext indicate the absorption, scat-
tering and extinction cross sections,� 1;2 is the density
(index 1 indicates BC and index 2 mineral dust). MAC
and MSC are necessary to calculate the effects of mass
concentrations simulated by chemical transport models
on radiative transfer. MAC and SSA (de�ned in Eq. 14)
are relevant to determinate the balance between negative
and positive forcing.

2. The aerosol absorption, extinction, and scattering
Ångström exponent (AAE, EAE, SAE) computed from
the slope of the linear �t passing though MAC, MSC
and MEC curves (in log–log scale). The AAE and EAE
are typically used as indicators of aerosol type and size.

AAE D
� 1 log.MAC/

1 log.�/
(11)

EAE D
� 1 log.MEC/

1 log.�/
(12)

SAED
� 1 log.MSC/

1 log.�/
(13)

3. The SSA is calculated as

SSAD Cscat.�/=C ext.�/; (14)

Table 3.Synthesis of morphological descriptors for BC and mineral
dust aerosol particles sampled in various �eld campaigns.

Projected area
Aerosol type equivalent radius AR rm

[nm] [nm]

Dust 250–810 1.08–1.75
Black carbon 90–140 1.39–1.98 34–49

whereCabs, CscatandCext.�/ are de�ned in Eqs. (7), (8)
and (9).

4. The asymmetry parameter is de�ned as

g D 1=2

�Z

0

cos.� / sin.� /P .� / d�; (15)

whereP .� / is the scattering-phase function and� is the
scattering angle.

SSA andg are the two fundamental parameters neces-
sary to perform calculations of aerosol radiative proper-
ties (e.g., Chylek and Wong, 1995).

3 Results

3.1 BC internally mixed with dust

We have observed BC internally mixing with suspended min-
eral dust (BC particles laying on top of dust particles) in var-
ious �eld campaigns. In Fig. 1, we show a composite of SEM
(scanning electron microscope) images from aerosol samples
collected: (a) in an urban location 10 km north of downtown
Mexico City (MILAGRO, March 2006); (b) 40 km down-
wind of the Sacramento urban area in the forested Sierra
Nevada foothills, California, USA (Zaveri et al., 2012); (c) in
a rural site in Detling, UK (ClearfLo, January–February,
2012); and (d) at Pico Mountain Observatory, Azores Islands
(Portugal) in the North Atlantic Ocean (Honrath et al., 2004;
Dzepina et al., 2015).

The morphological characteristics of the BC and mineral
dust particles are summarized in Table 3. The values reported
for BC are in agreement with Adachi et al. (2007).
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Figure 1. SEM images of internally mixed mineral dust and BC particles observed during various �eld campaigns:(a) Mexico City, Mexico
(Megacity Initiative: Local and Global Research Observations (MILAGRO) 2006);(b) a silicon rich dust particle internally mixed with BC,
Sacramento, California, USA (2012);(c) a complex internal mixture of multiple aerosol components, Detling, UK (Clear Air for London
(ClearfLo), 2012); and(d) a dust particle with plate-like structure (clay mineral) from Pico Mountain Observatory, Pico island, Azores
(Portugal) in the North Atlantic Ocean (2012). Red circles identify BC on the surface of mineral dust particles.

Figure 2. Representation of four BC aggregates (not in scale) with increasing number of monomers (see Table 4). In all cases the monomer
radius is 20 nm.

3.2 Morphological characterization of the
synthetic aggregates

In order to ensure that the shape of the synthetic BC aggre-
gates are representative of ambient air samples, we processed
the 2-D binary images of the synthetic particles at 50 random
orientations. For synthetic aggregates presented in Fig. 2, we
have estimated the averageNestimatedvalues (� standard de-
viation) of 63 (� 8) for BL1, 119 (� 13) for BL2, 179 (� 12)
for BL3 and 326 (� 46) for BL4. Morphological descriptors
for the cases BL1–BL4 are summarized in Table 4. Aggre-
gates have the same monomer size and similar chain struc-
ture but increasing number of monomers.

The accuracy ofNestimatedvalues after image processing
are conditional to two main factors: (1) the number of orien-
tations taken for image processing, and (2) the size of the ag-
gregate. In Fig. 3, we present a comparison of theNestimated
values from the 2-D projected images with the actualNtrue
values used for the generation of the synthetic aggregates.
The Nestimatedvalues approximate wellNtrue values within
the uncertainties.

3.3 Optical properties of bare BC aggregates

The spectral dependence of mass extinction, absorption and
scattering coef�cients (MEC, MAC, MSC) is presented in
Fig. 4 for an ensemble of synthetic open-chain-like aggre-
gates, as described in Table 4 (and with a size parameter
X D 2�a eff=� < 4:5). Large differences are found in opti-

Figure 3. Comparison between the actual monomer (Ntrue) num-
ber of the synthetic BC aggregates versus the estimated monomer
number (Nestimated) after image processing of 2-D projections of 50
random aggregate orientations, the error bars represent the standard
deviation.

cal properties of BC aggregates compared to equivalent vol-
ume spherical particles, biases in the numerical simulations
and relevance for radiative forcing estimates are discussed in
Scarnato et al. (2013) and China et al. (2015).

It is well known that bare/uncoated fresh BC absorbs more
radiation than it scatters (Bond et al., 2013). Therefore, MAC
represents the dominant contributor to the MEC. Bond et al.
(2013) report BC MAC values larger than 5 m2 g� 1. Pre-
dicted values of MEC, MAC and MSC (see Eqs. 7–9) are
shown in Fig. 4 for a composite of BC aggregates with sim-
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Table 4.Morphological characterization of synthetic BC particles.

Case 2rm Ntrue aeff P Convexity D f AR Roundness
[nm] [nm]

BL1 40 70 82 0.86 0.65� 0.05 1.98� 0.09 1.36� 0.17 0.43� 0.08
BL2 40 100 100 0.92 0.66� 0.05 1.95� 0.05 1.46� 0.22 0.38� 0.04
BL3 40 200 126 0.89 0.63� 0.04 2.03� 0.05 1.34� 0.16 0.44� 0.05
BL4 40 300 144 0.90 0.60� 0.06 1.95� 0.07 1.74� 0.36 0.34� 0.07

Figure 4. (a) MEC, (b) MAC, and (c) MSC spectral dependency (in log–log scale) for an ensemble of BC aggregates, as described in
Tables 1–4. All the computed optical values are averaged over 1000 particle orientations. Dark grey lines underline MAC values at 550 nm.
Note that they scale is different in the three plots.

ilar porosity and monomers size but increasing monomer
numbers (see Table 4). MAC values are strongly wavelength
dependent (see also Moosmueller et al., 1998, and Lack and
Langridge, 2013). At 550 nm MAC predicted values, us-
ing a BC density (� ) of 1.8 g cm� 3 (Bond and Bergstrom,
2006), ranging between 5.32 and 5.65 m2 g� 1 and that are
not strongly sensitive to the aggregate size. The latter �nding
is in agreement with the fractal theory by Berry and Percival
(1986), which maintains that the mass absorption coef�cient
should not be a strong function of the size, but rather a strong
function of the refractive index and physical shape (as well
as mixing) (e.g., Fuller et al., 1999; Liu et al., 2008; Scarnato
et al., 2013).

The range of predicted MAC values at 550 nm is in agree-
ment with �eld measurements by Clarke et al. (2004) and
modeled values by Kahnert (2010a) and Kahnert and Dev-
asthale (2011).

However, several studies (e.g., Bond and Bergstrom, 2006;
Adachi et al., 2007; Cross et al., 2010) report larger values.
Reasons might be related to different indices of refraction
or density values; for instance, the values predicted here are
lower than the published values at 550 nm by Scarnato et al.
(2013) because of differences in the adopted refractive in-
dices. At a wavelength of 550 nm, the refractive index by
Chang and Charalampopoulos (1990), adopted in these sim-
ulations, has lower real and imaginary indices than the value
of 1.95–0.79i recommended by Bond and Bergstrom (2006)
(see Table 2), which was adopted in simulations by Scarnato
et al. (2013). In this study, as in Scarnato et al. (2013), we
used a BC� 1 value of 1.8 g cm� 3. If we use a value of� 1
equal to 1.4 g cm� 3 and the Chang and Charalampopoulos

(1990) refractive index, we �nd for the cases BL1–BL4 MAC
values at 550 nm of about 7 m2 g� 1. As a reminder, the OPAC
(Optical Properties of Aerosols and Clouds) code uses a den-
sity value as low as 1 g cm� 3 for BC. MSC and SSA values,
as shown in Fig. 5, are slightly more sensitive to the aggre-
gates size than to the MAC (see also Scarnato et al., 2013, for
the SSA dependence on aggregate compactness). SSA values
are lower than those predicted by Scarnato et al. (2013), due
as well to the differences in the refractive indices used in
the simulations. The SSA magnitude and spectral variation
presented in this study are both in agreement with labora-
tory measurements by Sharma et al. (2013). At 550 nm, SSA
shows little variability in cases BL1–BL4 with an average
value of 0.19� 0.02. Just looking at MAC and MEC, one
could argue that the implementation of optical properties of
bare BC aggregates in chemical transport and radiative trans-
fer models might be greatly facilitated by the fact that some
of the properties of BC aggregates are little sensitive to ag-
gregate size in the UV, Vis and NIR spectra. Such a property
would reduce the need for complex parametrizations of BC
aggregates' optical properties to accurately model the chain
structure, and monomer size of the aggregate (see Liu et al.,
2008, for sensitivity to monomer size). This assumption fails
when looking at the asymmetry parameter (g) spectral depen-
dency for the cases BL1–BL4 in Fig. 5b, whereg presents a
strong sensitivity to the BC aggregate size in the entire spec-
tral range under study. In Fig. 5, DDSCAT predicts the lowest
g values for the BL1 case, intermediate values for the case
BL4 and higher values for cases BL2 and BL3. For wave-
lengths longer than 800 nm the differences ing values be-
tween the cases BL2, BL3 and BL4 are minimized.
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Figure 5. (a) SSA and(b) g spectral dependency for bare BC aggregates (cases BL1–BL4). All the computed optical values are averaged
over 1000 particle orientations.

AAE, EAE and SAE values are wavelength dependent (see
Table 5 and (Scarnato et al., 2013)). In the spectral range
between 340 and 1600 nm, AAE values are consistent with
observations and theoretical results with values of approxi-
mately 1, while in the spectral range between 400 and 675 nm
AAE values approach 1.2 (in agreement with Lack and Lan-
gridge, 2013). The range of values of AAE, EAE and SAE
is also fairly consistent with Sharma et al. (2013). For exam-
ple, we found a SAE average value of 1.79� 0.37, which is
in the range of values reported by Sharma et al. (2013) of
1.61� 0.05 and by Gyawali et al. (2012) of 1.88.

3.4 Optical properties of mineral dust

In all the �eld campaigns presented here, we have found min-
eral dust particles with jagged surfaces and irregular shape
(see Fig. 1). In particular, in Fig. 1a, c, and d dust particles
were found to be silica rich and with a plate-like morphol-
ogy. We found that the DDSCAT-predicted optical properties
have a large variability depending on the modeled dust shape,
despite having the same aspect ratio. In Fig. 6, we present the
residual of theQabs,scat,extD Cabs,scat,ext=�a 2

aeff for an ensem-
ble of spheroids (E1, E2, E3, E4, E5) and rectangular prisms
(S1, S2, S3, S4, S5) with ARD 1.75. The difference in the
Qabs,scat,extis small for cases E1 and S1, and it is larger (up
to about 50 % in theQext,scatat 550 nm) for larger particle
sizes (cases S4 and S5).

The sensitivity ofQabs,scat,extto shape con�rms the lim-
ited range of applicability of spheroids over different types
and sizes of mineral dust aerosols, in agreement with pre-
vious modeling studies (Merikallio et al., 2011; Hansell Jr.
et al., 2011; Otto et al., 2011). Extended studies on the sen-
sitivity to shape of mineral dust particle optical properties
in the UV–NIR range can provide useful constrains on the
envelope of values to be expected during measurements in
ambient air (i.e., Sokolik and Toon, 1999; Hansell Jr. et al.,
2011). From Fig. 6, it is also evident that simpli�cations, in
handling mineral dust particle shape, can generate positive
(and at times negative) biases in retrieved AOD (aerosol op-
tical depth) and opacity, when ellipsoids are adopted in the
retrieval and aerosol at the site resemble more the synthetic

rectangular prisms/modeled particles. The magnitude of the
biases are strictly dependent on the wavelength and size of
the particles. For example, if aerosols at the site resemble
more the rectangular prism than the ellipsoidal shape, large
positive biases (up to 50 %) in retrieved AOD can be ex-
pected at 550 nm for particles with anaeff between 700 and
1000 nm, as mineral dust particles (cases S4 and S5) mod-
eled as rectangular prisms have a higherQext than ellipsoids
(cases E4 and E5). No AOD biases should be expected at
550 nm depending on the two shape assumptions for par-
ticles smaller than 700 nm. Whereas an average AOD bias
of 15� 7 % in the shorter wavelength range (340–500 nm)
and 10� 13 % for longer wavelength range (550–1020 nm)
should be expected.

3.5 Optical properties of BC aggregates
internally mixed

We have modeled binary internal mixtures of BC aggregates
and mineral dust, as visualized in Fig. 7. The BC aggregates
are on the surface of the mineral dust particles. Given the
plate-like structure of Fig. 1a, c and d, we opted to model
mineral dust shape as rectangular prisms. The chosen shape
does not cover the whole range of variability encountered
in ambient air, but it does for our cases (see Fig. 1, it adds a
degree of complexity in the description of mineral dust shape
compared to ellipsoids).

In Fig. 8, we present the MAC, MSC, and MEC spectral
dependency for three different aerosol types: (1) an ensem-
ble of bare mineral dust particles with aspect ratio of 1.75
and increasing size (cases S1–S5), (2) one bare BC aggregate
(case BL2), and (3) internal mixtures of the two types (cases
BL2S1–BL2S5, where BL2 is mixed, respectively, with S1,
S2, S3, and S5).

Bare mineral dust aerosols (see cases S1–S5 in Fig. 8) have
low MAC values compared to bare BC aggregates (i.e., case
BL2 in Fig. 8) in the UV and NIR regions. The MAC val-
ues of bare dust are wavelength dependent with larger val-
ues predicted in the UV–Vis range. Smaller dust particles
have higher MAC. DDSCAT predicts for bare/unpolluted
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Table 5. Summary of optical properties predicted by DDSCAT for bare BC aggregates at 550 nm. AAE and EAE have been calculated in
different wavelength ranges: (a) 340–1000 nm, (b) 400–675 nm and (c) 340–1600 nm (spectral range not shown in Fig. 4). MAC and MEC
values are provided at 550 nm. MSC values have not been included in the table, as they can be calculated by the difference between MEC
and MAC values.

Case AAE EAE SAE MAC(550) MEC(550) SSA(550) g(550)
a (b) (c) a (b) (c) a (b) (c) m2 g� 1 m2 g� 1

BL1 1.26 (1.24) (1.04) 1.36 (1.33) (1.15) 1.49 (1.32) (1.82) 5.60 6.80 0.17 0.42
BL2 1.24 (1.23) (1.11) 1.38 (1.41) (1.26) 1.58 (2.20) (2.32) 5.72 6.93 0.17 0.60
BL3 1.18 (1.21) (1.05) 1.29 (1.32) (1.18) 1.33 (1.73) (1.90) 5.38 6.94 0.22 0.73
BL4 1.18 (1.18) (1.04) 1.27 (1.35) (1.15) 1.60 (1.92) (1.70) 5.53 6.98 0.20 0.76

Figure 6. Differences in percentage between extinction, absorption and scattering ef�ciency for spheroids vs. rectangular prisms.

Figure 7. Visual representation of polluted dust, as an internal mix-
ture of BC and mineral dust. The shape of the particle is repre-
sented by an array of coordinates (small dots or spheres) to which
is associated a dipole moment. Brown dots represent the dust par-
ticle dipoles, while grey, small spheres represent the dipoles of the
BC aggregate. The cases BL2S1, BL2S2, BL2S3, and BL2S5 have
BL2, respectively, on the surface of S1, S2, S3 and S5. Arrows show
that sides of the rectangular prism can vary keeping the aspect ratio
constant to a value of 1.75.

dust at 550 nm a MAC average value of 0.13� 0.03 m2 g� 1

(� standard deviation).
The internally mixed particles (cases BL2S1–BL2S5, also

referred to as polluted dust) have higher MAC values for
smaller particles (BL2 has the highest MAC). As expected,
DDSCAT predicts higher MAC values for polluted dust than
for unpolluted/bare dust, with an average MAC value of
0.26� 0.27 m2 g� 1 at 550 nm.

Furthermore, MSC values of bare mineral dust aerosols
have a strong variability with size and wavelength. DDSCAT
predicts an average MSC value at 550 nm of 2.1� 1.9 m2 g� 1

for dust particles ranging in size from 0.18 to 1� m. When

considering just the accumulation mode, with dust size rang-
ing between 0.5 and 1� m, DDSCAT predicts a smaller
MSC average value of 0.8� 0.2 m2 g� 1. Fine-mode parti-
cles compared to coarse-mode particles have larger MSC val-
ues because smaller particles scatter light more ef�ciently
at visible wavelengths. Hand and Malm (2007), after re-
viewing 60 studies of ground-based observations, report at
550 nm for the �ne-mode dust an average MSC value of
3.3� 0.6 m2 g� 1, while they report in the accumulation mode
smaller MSC values of 0.9� 0.8 m2 g� 1, in agreement with
our study. The MSC of larger dust particles (cases S3, S4,
and S5) does not show a strong spectral dependency, while
the opposite is true for small particles (cases S1 and S2); see
Fig. 8c. It should be noted that the spectral variability of AOD
is used in remote sensing in interpreting aerosol type. For ex-
ample, mineral dust aerosol is assumed to have a “spectrally
�at” AOD, while biomass burning or polluted aerosol usually
exhibit a strong wavelength dependence. The spectral depen-
dencies in Fig. 8a demonstrate that small mineral dust aerosol
particles and polluted dust have also a strong AOD spectral
dependence, those characteristics might be a potential source
of classi�cations of aerosol type, size and amount.

Furthermore, representation of the state of aerosol mix-
ing, whether internal (such cases BL2Si with i D (1, 2, 3,
5)) or external (such as cases BL2 plus Si i D (1, 2, 3, 5))
might affect the overall optical properties of the aerosols
(see Fig. 9). We found that for smaller particles (cases S1,
S2, BL2, BL2S1, and BL2S2) external and internal mixtures
predict similar values ofCabs,scat,extin the entire spectral
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Figure 8. (a) MEC, (b) MAC, and(c) MSC spectral dependency for a BC aggregate (BL2) internally mixed with a mineral dust particle
represented as a rectangular prism (BL2S1–BL2S5; see Fig. 7). MEC, MAC, and MSC are normalizedby total massof the internally mixed
particle (see Table 2). All the computed optical values are averaged over 1000 particle orientations.

Figure 9. (a)Cext, (b) Cabsand(c) Cscatratios of an external vs. internal mixture of BC and mineral dust aerosols.

range, with ratios, respectively, of 1.09� 0.06, 0.96� 0.05
and 1.02� 0.07.

The latter might be due to the combination of (1) small
electromagnetic interactions between the BC aggregate and
the mineral dust particle, due to the small size parameter;
and (2) the small difference in size between BC and min-
eral dust particles (with a mixture=core size ratio smaller
than 2.8). However, we found for larger particles (with larger
size parameters) with larger differences inCext, abs, scatval-
ues, depending on the parametrization of the mixing con�gu-
rations (such as external, cases BL2C S3, BL2C S5, BL2S3,
and internal BL2S3 and BL2S5). For those cases, simu-
lations using external mixture representations give smaller
Cabsvalues compared to internal mixtures (with average ratio
of 0.87� 0.30) for wavelengths shorter than 550 nm, while
larger values (average ratio of 1.35� 0.49) for wavelengths
larger than 550 nm. Furthermore,Cscat values for external
mixtures are smaller than internal mixtures in most of the
spectral range studied (and similarly forCext values) with av-
erage ratios of 0.59� 0.30 and 0.49� 0.27 for wavelengths
shorter and larger than 550 nm. The internal mixture might
lead to largerCscat(and similarly forCext) values because of
larger scattering interactions and electromagnetic coupling
between mineral dust and BC, which might lead to an in-
crease in scattering compared to the external mixtures; simi-
lar results were found in Scarnato et al. (2013).

The SSA spectral signatures of bare BC (BL2), an ensem-
ble of mineral dust (cases S1–S5), and internal mixtures of

the two aerosol components (BL2S1–BL2S5) are shown in
Fig. 10. Bare mineral dusts (cases S1–S5) show a typical de-
crease in the SSA magnitude for wavelengths shorter than
500 nm, with SSA values ranging from 0.85 to 0.96 depend-
ing on the size of the dust particle, with smaller values at-
tributed to larger particles. The range of values predicted by
DDSCAT, in this study, is in agreement with values of 0.7–
0.97 for Sahara dust reported by Ryder et al. (2013), where
the authors attributed variability in measured values to the
presence of a signi�cant number of large particles. Further-
more, analyses of the SSA values of Saharan dust from the
AERONET reported averages of 0.95 at 0.67� m (Dubovik
et al., 2002). SSA values of 0.95–0.99 have been reported
during the Saharan Dust Experiment (SHADE) and the Dust
Out�ow and Deposition to the Ocean (DODO) (Tanre et al.,
2003; McConnell et al., 2010; Johnson et al., 2008). Osborne
et al. (2008) estimated the SSA for pure dust aerosol during
the Dust and Biomass-burning Experiment DABEX, (Hay-
wood et al., 2008) to be consistently high (ranging between
0.98 and 0.99).

For wavelengths shorter than 500 nm, small polluted dust
particles (BL2S1 and BL2S2) show a stronger decrease in
the SSA magnitude compared to unpolluted dust particles
(S1 and S2); perturbation of dust optical properties of the
same order of magnitude was also found in the Aerosol
Characterization Experiment (ACE) �eld campaign (Clarke
et al., 2004). DDSCAT predicts for internally mixed parti-
cles larger than 500 nm (BL2S3–BL2S5) an increase of SSA
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Figure 10.SSA for different particle sizes in the accumulation mode:(a) �ner particles and(b) larger particles.

Figure 11.g for different particle sizes in the accumulation mode:(a) �ner particles and(b) larger particles.

at all wavelengths compared to bare dust particles (S3–S5).
Such a “cut off” in SSA values is due to the fact that sim-
ulations predict for small internally mixed particles (cases
BL2S1 and BL2S2), where dust particles are small in size; a
steep increase in the absorption and no signi�cant variation in
the scattering properties compared to bare mineral dust (S1
and S2). The latter leads to smaller SSA values of internal
mixtures compared to bare mineral dust particles. Further-
more, when mineral dust particles are large (cases S3–S5)
and therefore the BC mass (case BL2) results comparatively
much smaller than the mass of cases S3 and S5) DDSCAT
simulations predict a steep increase in the scattering but less
in the absorption; therefore, the prevailing scattering vs. ab-
sorption for those cases is associated with larger SSA values
compared to bare mineral dust.

In an attempt to synthesize the differences between the
above-discussed optical properties of bare BC and internal
mixtures, we found that with the increase in size of mineral
dust, the absorption increases; however, also the scattering of
the internal mixture (cases BL2S1–BL2S5) increases, lead-
ing to larger SSA values for internal mixtures compared to
bare BC (case BL2) (not shown here, as we provide MAC
normalized by the total mass of the particle, not just BC
mass). The increase in the absorption, despite no embedding

(no “lens effect”; see also Scarnato et al., 2013) is due to ab-
sorption properties of mineral dust.

DDSCAT predicts a wavelength-dependent asymmetry pa-
rameterg (see Fig. 11), BC has higher spectral dependency
than dust, mostly due to the variation in real part of the BC re-
fractive index with wavelength. DDSCAT predicts at 550 nm
higherg values for internally mixed polluted dust than bare
mineral dust; largerg values are predicted when modeling an
external mixture compared to an internal mixture, differences
can amount up to about 37 % (see Table 6).

4 Conclusions

Microscope images of ambient air aerosol samples collected
in various locations of the globe show the occurrence of inter-
nal mixtures of BC aggregates and mineral dust aerosols (see
also Clarke et al., 2004; Haywood et al., 2008). The aerosol
shape/morphology and state of mixing, whether internal or
external, can affect the interaction with EMWs and the over-
all optical properties of the aerosol mixtures, contributing
therefore to uncertainty in (1) DRF estimates, (2) validation
of chemical transport models with remote sensing measure-
ments, (3) visibility forecasts and (4) spatial and temporal
distribution of precipitations and their forecast.
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Table 6. Summary of simulated optical properties for mineral dust and internal mixtures with BC aggregates. AAE and EAE have been
calculated in two different wavelength ranges: (a) 340–1020 nm and (b) 400–675 nm.

Case aeff AAE EAE SEA MAC(550) MEC(550) SSA(550 nm) g(550 nm)
[nm] a (b) a (b) a (b) m2 g� 1 m2 g� 1

S1 180 3.92 (5.68) 2.8 (2.62) 2.75 (2.37) 0.14 3.70 0.96 0.75
S2 284 2.90 (4.16) 0.22 (0.95) 0.25 (1.56) 0.17 5.10 0.96 0.81
S3 500 2.15 (3.70) 0.65 (0.80) 1.17 (0.18) 0.12 0.82 0.85 0.60
S4 700 1.89 (3.13) 0.10 (0.47) 0.69 (1.5) 0.13 1.32 0.90 0.79
S5 1000 1.53 (2.60) 0.18 (0.26) 0.74 (0.60) 0.10 0.70 0.86 0.81
BL2S1 190 1.84 (2.39) 2.20 (2.23) 2.46 (2.19) 0.64 3.97 0.84 0.77
BL2S2 289 2.00 (2.48) 1.08 (0.14) 0.27 (1.63) 0.27 5.00 0.94 0.81
BL2S3 503 2.10 (3.17) 0.19 (0.93) 0.34 (2.68) 0.13 2.19 0.94 0.79
BL2S5 1010 2.68 (4.20) 0.45 (0.97) 0.92 (1.48) 0.09 2.82 0.96 0.88

In this study, we carried out numerical simulations to in-
vestigate the sensitivity of climate-relevant aerosol optical
properties to various approximations on aerosol size, shape
and state of mixing and draw benchmark considerations for
climate studies and remote sensing applications. Based on
aerosol samples collected in Mexico, England, USA (Cal-
ifornia) and Portugal, we have observationally constrained
morphology and mixing and modeled optical properties ac-
cordingly, of three different types of aerosols: (1) bare BC
aggregates, (2) bare mineral dust, and (3) an internal mixture
of BC and dust particles, also referred to as polluted dust.

Optical properties including MAC, MEC, MSC, AAE,
EAE, SSA andg were predicted over the spectral range be-
tween 340 and 1020 nm using DDSCAT, which applies the
discrete dipole approximation (DDA). Speci�c wavelengths
have been selected to match the AERONET nominal chan-
nels.

Key results for bare BC aggregates include (i) a weak
MAC dependency on the aggregate size, but stronger MAC
dependency on the refractive index, in agreement with
Berry and Percival (1986), Liu et al. (2008) and Scarnato
et al. (2013); (ii) a strongg dependency on aggregate size;
(iii) consistency between DDSCAT-predicted and observed
values of AAE, EAE, SAE (e.g., Lack and Langridge, 2013)
and SSA (and its spectral variability) (Sharma et al., 2013).

Key results for bare mineral dust aerosol include (i) a
strong sensitivity of dust optical properties to shape
(DDSCAT predicts at 550 nm an average difference between
spheroids and prisms of about 20 % for MEC and MSC,
while of about 5 % for MAC); (ii) a consistency between
DDSCAT-predicted and observed values of MAC, MSC and
SSA reported by Hand and Malm (2007); and (iii) a typical
decrease in the SSA magnitude for wavelengths shorter than
500 nm (also found to be characteristic of organics and the
aerosol mixtures of sodium chloride and BC; see also Scar-
nato et al., 2013; Russell et al., 2010).

Key results for polluted mineral dust, an internal mix-
ture of BC and mineral dust, include (i) a strong decrease
in MAC values with the increase in dust particle size (case

BL2S1 presents largest values), while the opposite for SSA
values. (ii) A decrease in the SSA magnitude compared to
bare dust for smaller dust particle sizes (cases BL2S1 and
BL2S2) in agreement with Clarke et al. (2004). Furthermore,
(iii) the strong differences in predicted magnitude and spec-
tral dependence ofCabs,scat,extwhen mixing a BC aggregate
(case BL2) externally or internally with large mineral dust
particles (cases S3, S5, BL2S3, and BL2S5).

With this study, we demonstrated the importance of
(i) characterizing and de�ning microphysical properties,
such as morphology/shape and mixing of different aerosol
types collected in ambient air, (ii) estimating optical proper-
ties accordingly to observations, and (iii) de�ning eventual
benchmark errors due to use of approximations in shape and
mixing. More studies are needed to assess the abundance of
polluted dust particles in the atmosphere. In fact, the occur-
rence of such con�guration is currently highly uncertain and
might strongly depend on source and transport regions. Ac-
counting for changes in optical properties, induced by mixing
as well as by the abundance of mixed particles, might be crit-
ical not only for calculating the relevance of such particles on
regional radiative forcing but also to understand biases in re-
mote sensing techniques and to explore the potential of such
techniques in remotely detected mixed particle cases.
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