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ABSTRACT

A novel technique for imaging minority car diffusion in semiconductor nanostructures
has been applied todtcharacterization of GaN and Zma@nowires and nanobelts. Near
field scanning optical microscopy (NSOM) merformed within a scanning electron
microscope (SEM) to image rceer recombination with a sypial resolution exceeding the
diffraction limit. The electron beam provila high resolution, highly controlled source
of carrier generation at a pdi Diffusion lengths can bextracted directly from the

resulting distribution of the recombination luminescence.

A Nanonics Multi View 2000 provides a igue open architecture to allow the
electron beam to be incident on a fixed paintthe nanowire with independent motion of
a collecting fiber to map the luminescendistribution. Probetips are cantilevered
optical fiber tips with diameters from 100 to 500 nm. Simultaneous NSOM, AFM and
SEM imaging provides topographic, opticalission, and carrier transport information.

This characterization technique hasebh used to measure minority carrier
diffusion lengths in GaN nanowires, ZnO nam@s, and ZnO nanobelts, with diffusion
lengths extracted from carrier recombinatpofiles. Evidence of waveguiding in some
nanowires and nanobelts was also observHtk first measure of ZnO nanowires using
this technique resulted in a measuuitfusion length of approximately 150 nm for
nanowires grown by the hydrothermal med and approximately 640 nm for those
grown by physical vapor deposition. Additiémasults comparing diffusion lengths in n-
type, p-type and unintentionally dop&daN nanowires, ZnO nanowires, and ZnO
nanobelts are presented. While measuring tifiestbn lengths of these structures, it was
also observed that diffusion length measuremamere sometimes impacted by combined

effects associated with surface topography@stctal waveguiding and interference.
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l. INTRODUCTION

A. SCOPE OF THE THESIS

The primary objective of this thesis to present the results of novel
measurements of the minority carrier dilon length in three types of semiconductor
nanostructures: gallium nitride nanowireginc oxide nanow&s, and zinc oxide
nanobelts. This is accomplished via néatd optical scanning to map the spatial
distribution of recombination luminescenc&hile researching the diffusion lengths of
these structures, the author also obskrdeat many of these devices exhibited
waveguiding, and that diffusion length measuents were sometimes impacted by the
topographic features of the nanostructurdhus, analysis of these behaviors are

secondary objectives of this thesis.

B. BACKGROUND - THE IMPORTA NCE OF SMALL SEMICONDUCTOR
DEVICES

Semiconductor devices have enhanced the lives of people worldwide. Computers,
televisions, telephones, the Intet, cellular phones, radiosplar cells, as well as many
other applications and devicestheir modern form would not exist without them. They

form the foundation of theethnology of modern society.

By decreasing the size dhe components that comprise modern electronics,
semiconductor materials have fueled theidaadvance of technadly. In 1946, the first
general-purpose computer in the Unit&lates was completed. Called ENIAC,
Electronic Numerator Integrator Analyzemd Computer, it performed addition or
subtraction calculations with 19000 large wvacutubes, resulting in a computer that
filled an entire room and weighed over 30 tons [1]. To reduce the size, power
consumption, and heat of computers swsh ENIAC, scientistsdbegan researching
semiconductor materials in an effort to ¢eea solid state device to replace vacuum
tubes. The year following ENIAC’s completiamsearchers at Bell Labs created the first
semiconductor transistor [2], and, since théne size of the transtior has continually

1



decreased. Over the past forty years, transsiterhas decreased at a rate that allows the
number of transistors contained on any sngdmputer chip tadouble every 24 months
[3]. Today, the size of modern silicon bdseansistors is measured in the tens of
nanometers with some modern processmontaining bilbns of deviceg4], allowing
engineers to design computers that calcutatiéons of floating point operations per
second [5]. Intel estimates that its futymecessors will contaitransistors with gate
lengths of 10 nm or less [4].

Smaller, more powerful computers are not, however, the only benefit of continued
research into semiconductor nanostructurés.understand why, consider Figure 1. As
material dimensions approach the nanosca@®) nm or less, the characteristics of
specific properties will differ with those of the bulk material [6]. For example, the
thermal conductivity of bulk materials is hightran that of nanostructures [6]. The
bandgap of a semiconductor also becomesdapendent below a certain threshold. The
unigue properties of nanoscale materials aregyreft interest to many scientists and
engineers. A thorough understanding of thesgracteristics may allow them to develop
technologies with enhanced performance effidiency and allowuse of nanostructures

in completely new areas of application.

Figure 1. Schematic of Effect of PhysicalZ& on the Properties of Any Material
(from [6])
2



Solar power is one area where this enhanced performance and efficiency may be
achieved. For example, researchers at Rensselaer Polytechnic Institute have developed
an antireflective coating for solar panels fraanostructures. Using this coating in their
experiments, they have reduced the amourdumilight reflected off silicon solar cells
from 32.6 percent to 3.79 percent at wawngths from 400 nm to 1600 nm, thereby
increasing the amount of sunlight collecad improving the overall efficiency of the
system [7]. Although it is not yet clear this technique can be translated into a
commercial product, the implication of their tkas clear: researcnto nanostructures
may one day result in significantly more ei@int solar cells capable of producing energy

at the same cost as traditional methods.

Other applications of semiconductor namoestures include more powerful and
longer lasting lithium ion batteries [8], increasenergy storage in capacitors [8], and
nanoscale lasers [9]. Nanoscale lasers ba@otential to produce highly localized and
monochromatic, single wavelemgtight [10]. Since theyan be easily coupled with
other nanoscale structures, such as quantusnaaven small biological specimens, they
will most likely become critical componenbf new nanophotonics [10]. Zinc oxide
(ZnO) nanowires are particularly interestisgjce they have been observed to transition
to laser oscillation at roonmtemperature [10]. As search into semiconductor
nanostructures continues, the list ofgrdtal applications will antinue to grow.

C. DEFENSE RELEVANCE

The defense organizations of the UditStates are continually striving for
smaller, more efficient, and more cafmbdefense technologg to enhance the
effectiveness and suwability of American personnednd weapon systems. Consider,
for instance, the modern soldier. Averagddiers carry ovelt40 pounds of equipment
while on patrol or in combat [11]. Sometbfs weight consists of electronic systems and
the batteries needed to pewthem [12]. Developinghew technologies based on
nanoscale structures that redubes burden without sacrifing capability is critical to
deploying more mobile, efficient, and effective soldiers.



Laser action in nanowires also has importgfense applications that range from
new battlefield medical technologies to infation processing. Other potential defense
applications of nanotechnology are seeminghdless. Smaller electronic and power
systems not only benefit soldiers, but may akssult in lighter, more capable warships,
planes, and tanks that are cheaper ta,nfael, and maintain. Nanoscale sensors
potentially offer improved response times, sensitivity, and, because of their small size,
can be unobtrusively placed almost anywehdl2]. As research continues and
knowledge of nanostructures increases, maeful defense applications of this new

technology will undoubtedly arise.

Thus, systems based on nanostructurese hhe potential to reduce the size,
weight, and cost of current military techagies while simultaneously increasing their
performance, resulting in a more capable and mobile force. A fundamental
understanding of nanostructures will alstwal the development and deployment of a
variety of new defense and homeland séguapplications that range from power
generation to new weapon systems. Therefowestment and continued research in this

area is critical to America’'surrent and future security.
D. IMPORTANCE OF THE MINORITY CARRIER DIFFUSION LENGTH

An understanding of a nanostructure’s propsrts required before scientists and
engineers can begin developing new apphecat and technologies based upon it. For
instance, the so called “minority carrier d=g,” such as light emitting diodes (LEDs) or
bipolar transistors, dependpon the behavior of injectedinority carriers, so an
understanding of the minority carrier diffusiomdgh is critical to their operation. As the
dimensions of a material decrease, theasm@fplays an increasiygimportant role and
other defects, such as dopants and dislmest may behave differently than in bulk

material.

A detailed discussion of the minority camidiffusion length is provided in the
next chapter, but its importance is inifaemphasized here. The minority carrier
diffusion length is the characteristic @nrte for the decay of an excess carrier
population. There are two typ®f mobile charge carrieins semiconductors: negatively
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charged electrons and positively charged holes. Depending on the properties of the
semiconductor, there will be more holes treeactrons (p-type) omore electrons than
holes (n-type). The distance a minority card#fuses after its creation until it decays by
recombining with a majority carrier, or via a defect site, is the minority carrier diffusion
length. For distances less than the diffusemgth, excess charge dars are present and
moving, creating useful current. That currean then, for instance, be used to store
energy or process information. For distangesater than this tgth, those carriers are

not present, so there 130 current and, therefore, no way to store energy, process
information, or do other useful work. @&hminority carrier diffusion length is often

considered a fundamental measure of material quality.

E. GALLIUM NITRIDE NANO WIRES AND ZINC OXIDE
NANOSTRUCTURES

The potential applications of galliumitmde (GaN) nanowire have generated
much interest. Bulk wurtzite GaN & semiconductor with a wide band-gap of 3.505
electron volts (eV) at roontemperature, making it useful for many optoelectronic
applications, such as LEDs edpe of producing light ira range of wavelengths from
yellow to ultraviolet [13]. Blue LEDs, in particular, are important components of high-
density optical memory [13]. Furthermorehds also been shown that it is possible to
construct a continuous wave blue laser base&GaN [13]. Thus, #hoptical properties
of GaN nanowires suggest wide potential agpions that include.EDs, laser diodes,
sensors, and other nanophotonic devices [14].

Like GaN, ZnO is also awide band-gap material {E= 3.37 eV at room
temperature) with potential optoelectrompplications [15]. Both ZnO nanobelts and
nanowires have demonstrated lasing prige [15]. Also, ZnO nanowire arrays
demonstrate field emission behavior, promisipotential applications such as field
emitters in flat panel displays [15]. Researchers at EMPA, the Swiss Federal
Laboratories for Materials Science and Tmaogy, have recenthgrown sea urchin

shaped nanostructures whose spines isbrif ZnO nanowires [16]. These ZnO



structures are important for they could incedhe efficiency of photovoltaic devices,

which may eventually bring down the cost of solar power.

Many of the applications gt described are minority cé&er devices. Thus, an
understanding of the minority carrier diffion length, and a means for direct
measurement of this length in ZnO and GaN nanostructures, is critical to developing
these applications. The remainder of thissth is, therefore, devoted to developing a
basic understanding of the minority carrier aiiion length, describing the near field
optical scanning technique used to measirin ZnO and GaN nanostructures, and

summarizing and analyzing the results.



II.  MINORITY CARRIER DIFFUSION LENGTH

A. SEMICONDUCTOR BASICS

The importance of minority carrier diffion cannot be understood without an
understanding of basic semiconductor thea®emiconductors contain ranges of energy
levels, called energy bands, of which twa thalence and conduction bands, are critical
to semiconductor applications. At the lsvenergy state of an intrinsic semiconductor
(i.,e. T = 0 K), all energy levels at or beldhe valence band caih electrons, but all
energy levels at or above the conduction baedvaid of electrons [17]. When energy is
then applied to the semicondag electrons from the valee band will gain enough
energy to enter the conductidrand if the applied energy greater than the energy
difference between the valence and conductiands, the band gap [17]. When an
electron leaves the valence band tdeerthe conduction band, the energy state it
occupied in the valence band is now empty [1Tfis empty energy state is called a hole,

and, since an electron is negativeladed, a hole is positively charged.

Figure 2. Energy Band Diagram of a Generic Semiconductor (from [18])



B. MINORITY CARRIER DIFFUSION

If no external forces are present, such as an electric field, diffusion is the
mechanism responsible for both electrmovement in the conduction band and hole
movement in the valence band. Thermaition will cause a non-equilibrium population
of holes or electrons within a semiconthrcto diffuse until they are uniformly
distributed throughout the seroiductor’'s volume [17]. Tdlustrate, consider exciting
only a small portion of semiconductor. tlie excitation energy is greater than the
material’s band gap, electrons from thdemae band will enter the conduction band,
leaving holes in the valencerzh The greatest concentrationedéctrons and holes is at
the point of excitation. Therefore, diffosi, seeking a uniform distribution, will cause
both the conduction band electrons and vaehand holes to move away from the

excitation source.

In equilibrium, most semiconductor dees do not have aequal number of
electrons and holes. They aleped, meaning that they haveextess of elemdns or an
excess of holes. This excess could be uniitteal, caused by defects or irregularities in
their growth process, or, as is often the cagentio