
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2016-09

Cloud fingerprinting: using clock skews to
determine co-location of virtual machines

Wasek, Christopher J.
Monterey, California: Naval Postgraduate School

https://hdl.handle.net/10945/50503

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS
CLOUD FINGERPRINTING: USING CLOCK SKEWS TO
DETERMINE CO-LOCATION OF VIRTUAL MACHINES

by

Christopher J. Wasek

September 2016

Thesis Co-Advisors: Geoffrey G. Xie
Mathias Kolsch

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
September 2016

3. REPORT TYPE AND DATES COVERED
Master’s Thesis 3/19/2015 - 9/17/2016

4. TITLE AND SUBTITLE

CLOUD FINGERPRINTING: USING CLOCK SKEWS TO DETERMINE CO-
LOCATION OF VIRTUAL MACHINES

5. FUNDING NUMBERS

6. AUTHOR(S)

Christopher J. Wasek

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Cloud computing has quickly revolutionized computing practices of organizations, to include the Department of Defense.
However, security concerns over co-location attacks have arisen from the consolidation inherent in virtualization and from
physical hardware hosting virtual machines for multiple businesses and organizations. Current cloud security methods, such as
Amazon’s Virtual Private Cloud, have evolved defenses against most of the well-known fingerprinting and mapping methods in order
to prevent malicious users from determining virtual machine co-location on the same hardware. Our solution to co-locating virtual
machines unhindered was to derive their clock skews, or the temporal deviation of the system clock over time. Capturing normal TCP
traffic to analyze timestamps from a virtual machine in the cloud, our results were inconclusive in demonstrating that co-located
virtual machines will have similar clock skews due to large, inconsistent packet delays. Our research demonstrates a potential
vulnerability in cloud defenses so that cloud users and providers can take appropriate steps to prevent malicious co-location attacks.

14. SUBJECT TERMS

cloud, TCP timestamps, clock skews, side-channel attacks, virtual machines, VM co-location, finger-
printing

15. NUMBER OF
PAGES 85

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

CLOUD FINGERPRINTING: USING CLOCK SKEWS TO DETERMINE
CO-LOCATION OF VIRTUAL MACHINES

Christopher J. Wasek
Lieutenant Commander, United States Navy

B.S., U.S. Naval Academy, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2016

Approved by: Geoffrey G. Xie
Thesis Co-Advisor

Mathias Kolsch
Thesis Co-Advisor

Peter Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Cloud computing has quickly revolutionized computing practices of organizations, to in-
clude the Department of Defense. However, security concerns over co-location attacks
have arisen from the consolidation inherent in virtualization and from physical hardware
hosting virtual machines for multiple businesses and organizations. Current cloud
security methods, such as Amazon’s Virtual Private Cloud, have evolved defenses
against most of the well-known fingerprinting and mapping methods in order to prevent
malicious users from determining virtual machine co-location on the same hardware. Our
solution to co-locating virtual machines unhindered was to derive their clock skews, or
the temporal deviation of the system clock over time. Capturing normal TCP traffic to
analyze timestamps from a virtual machine in the cloud, our results were inconclusive in
demonstrating that co-located virtual machines will have similar clock skews due to large,
inconsistent packet delays. Our research demonstrates a potential vulnerability in cloud
defenses so that cloud users and providers can take appropriate steps to prevent malicious
co-location attacks.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Proliferation of Cloud Computing 1
1.2 Problem Statement. 1
1.3 Research Questions . 3
1.4 Thesis Organization . 4

2 Background 5
2.1 Cloud Architecture . 5
2.2 Cloud Security . 9
2.3 Co-Location Attacks and Detection 11
2.4 Device Fingerprinting with Clock Skews 14

3 Methodology and Analysis 19
3.1 Single-Server Experiment . 19
3.2 Searching for Better Regression Methods 29
3.3 Type I Hypervisor Experiment 36
3.4 Timestamp Simulation . 39
3.5 Optimizing Wave Rider . 44

4 Public Cloud Experiments 51
4.1 Validation of Cloud Testing Methods 51
4.2 Analysis of Known Co-Located Instances. 53

5 Conclusion 59

List of References 63

Initial Distribution List 67

vii

THIS PAGE INTENTIONALLY LEFT BLANK

viii

List of Figures

Figure 1.1 Public Cloud Spending Forecast 2

Figure 2.1 Simple Cloud ToR Topology Model 6

Figure 2.2 Logical Cloud Stack Architecture 7

Figure 2.3 Basic Hypervisor Architecture 8

Figure 3.1 Network Configuration for Initial Experiments 20

Figure 3.2 OLS Estimator with Pcap–Configuration No. 5 24

Figure 3.3 OLS Estimator–Configuration No. 8 27

Figure 3.4 OLS Estimator–Configuration No. 5 28

Figure 3.5 OLS Estimator with Bias–Configuration No. 5 29

Figure 3.6 Theil-Sen Estimator–Configuration No. 5 31

Figure 3.7 RANSAC Estimator/0.01 Residual Threshold–Configuration No. 5 32

Figure 3.8 RANSACEstimator/0.0002Residual Threshold–ConfigurationNo. 5 33

Figure 3.9 Moving Average Estimator–Configuration No. 5 34

Figure 3.10 Wave Rider Estimator–Configuration No. 5 36

Figure 3.11 Type I Hypervisor Results . 38

Figure 3.12 Simulated Timestamps–Trace Delay 43

Figure 3.13 Simulated Timestamps–Wave Rider with Miminum Offsets . . . 47

Figure 3.14 Simulated Timestamps–Wave Rider with Minimum Delays 48

Figure 3.15 Simulated Timestamps–WaveRiderMinimumwithDelayValueBias 49

Figure 4.1 AWS Methodology Verification 54

ix

Figure 4.2 Public Cloud Test–Positive Result 57

Figure 4.3 Public Cloud Test–Negative Result 58

x

List of Tables

Table 2.1 Summary of Co-location Detection Methods 14

Table 2.2 Clock Skew Variables . 16

Table 3.1 Initial Test Configurations . 22

Table 3.2 Packet Periodicity . 25

Table 3.3 The Effect of Collection Size on Skew Estimation 26

Table 3.4 OLS Statistical Metrics . 28

Table 3.5 Theil-Sen Statistical Metrics . 30

Table 3.6 Multiple Server Skew Estimate Results 39

Table 3.7 Skew Estimate Errors–Trace Delay 42

Table 3.8 Skew Estimate Errors–Modified Wave Rider 46

Table 4.1 Skew Estimate Errors–Single Cloud virtual machine (VM) 53

Table 4.2 Skew Estimate Errors–Public Cloud Environment 56

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

ACL Access Control List

AWS Amazon Web Services

DOD Department of Defense

DNS Domain Name Service

EC2 Elastic Cloud Computing

EoR End of Row

GCE Google Compute Engine

IaaS Infrastructure-as-a-Service

ICMP Internet Control Message Protocol

IP Internet Protocol

IT Information Technology

NPS Naval Postgraduate School

NTP Network Time Protocol

OS operating system

OLS Ordinary Least Squares

PaaS Platform-as-a-Service

RANSAC Random Sample Consensus

RTT round trip time

SaaS Software-as-a-Service

TCP Transmission Control Protocol

xiii

ToR Top of Rack

TSecr Timestamp Echo Reply

TSopt Timestamps option

TSval Timestamp Value

VM virtual machine

VPC Virtual Private Cloud

VPN Virtual Private Network

Win7 Windows 7

Win10 Windows 10

xiv

Acknowledgments

The last year has been a roller coaster ride as I began the journey that has culminated in
this thesis. Throughout this journey, I have received immense support from my family,
friends, and NPS professors. Professor Xie, your knowledge and enthusiam for networking
is what steered me towards this topic in the beginning and helped get me through the
detailed understanding and simulation of TCP timestamps and network behavior. Professor
Kolsch, without your guidance my understanding of regression modeling, the AWS cloud,
and (life-saving) automated deployment of instances would not have been anywhere near
the level necessary for this study. You both have been instrumental in my work progression
and for that I cannot thank you enough.

My father, Dr. James Wasek, you provided advice and many last minute critiques as I worked
to make deadlines. You have always been an inspiration to me and I would not be who I
am today without you.

And finally my wife, Sascha, and my children, Zoe and Liam, it is for you that I have
accomplished this feat. You all have sacrificed greatly over the last 18 months while giving
me your full support, providing an ear to vent to, and being my rock to lean on. I thank you
and love you all from the bottom of my heart!

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Introduction

Use of the cloud has quickly become the way of the future in computing by organizations,
to include the Department of Defense (DOD). Whether it is through Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS), or Software-as-a-Service (SaaS), utilization
of a third-party business such as Microsoft Azure, Google Compute Engine (GCE), and
Amazon Elastic Cloud Computing (EC2), allows organizations to eliminate the purchase,
maintenance, and administration of their own server infrastructures and save on Information
Technology (IT) expenses. However, because the cloud infrastructure is located off-site from
an organization and the cloud is available to anyone who pays for its services, cloud security
has become a primary concern for its many users.

1.1 Proliferation of Cloud Computing
As computers continue to merge into every aspect of our life, the sheer quantity of data
and applications has grown at an exponential rate. In response, cloud computing has
quickly become the de facto method for both managing and processing this data [1]. The
high demand for cloud services has caused many companies to offer easy solutions at cheap
prices while still gaining significant profits. In fact, current forecasts show continual growth
in this market over the next ten years [2]. For example, in the last quarter of 2015 alone,
Columbus [2] reports Amazon Web Services (AWS) “generated $7.88B in revenue, up
69� over last year” while overall consumer spending for IaaS services in 2016 is anticipated
to reach $38B and $173B in 2026. The projected annual spending costs for public cloud
IaaS, PaaS, and SaaS from now until 2026 are illustrated in Figure 1.1. Cloud computing
offers many advantages and is easy to use; the demand for it will only increase.

1.2 Problem Statement
Co-location attacks pose great risks to all legitimate users of the cloud, especially organi-
zations like the DOD that could potentially store sensitive files and data on cloud servers.
An emergent threat with the increased use of cloud computing, a co-location attack is

1

Figure 1.1: Ten Year Forecast of Consumer Spending on Public Cloud Ser-
vices. Source: [2].

conducted by a malicious user setting a cloud-based virtual machine (VM) to attack other
VMs residing on the same physical server. Typically, this attack is designed to either deny
service to that server or extract privileged information, such as Personally Identifiable In-
formation and cryptographic keys [3]. Since cloud providers open their services to all users
who are willing to pay, it is impossible to know who is sharing a server with whom. For
cloud users, co-location attacks are unpredictable and an attack is detectable usually only
after it has been conducted. Some cloud providers will allow the reservation and dedication
of specific physical servers, AWS calls them Dedicated Instances for example [4], which
reserves a physical server for a single user to launch all VMs onto. This helps with both VM
computing performance (i.e., load-balancing and inter-VM communications) and security,
eliminating the threat of a co-location attack. However, the large increase in fees associated
with dedicated instances is often too costly for many organizations and therefore viewed as
unnecessary.

2

In an effort to combat the threat of co-location attacks, both cloud providers and users
have deployed various security methods to prevent malicious users from determining VM
co-location through known fingerprinting and network mapping techniques. For example,
to prevent tracerouting most users do not allow their VMs to reply to Internet Control
Message Protocol (ICMP) echo requests. However, there are fingerprinting methods that
are unobtrusive and appear as legitimate network traffic that can slip past today’s cloud
security models [3], [5], [6], [7].

Prior research conducted in [8] has shown that physical computing devices can be remotely
fingerprinted by their clock skews, or the rate at which the device clock drifts compared
to real time, derived from timestamps in Transmission Control Protocol (TCP) and ICMP
packets. Our study focuses on the problem of determining if VMs share the clock skew
fingerprint from their host server. Our assumption is that since the VM relies on the physical
and virtual clocks of the host server, all VMs on a single server will exhibit similar clock
skews and thereby provide evidence of co-location. We plan to utilize TCP timestamps
only under the consideration that this protocol is less likely to be blocked or restricted than
ICMP in a real-world cloud environment.

1.3 Research Questions
A number of studies have been conducted into the problem of determining co-location of
an adversary VM with a target VM in cloud environments. While previous studies have
allowed cloud providers to adapt methods and policies to help prevent successful use of
these exposed methods, detection techniques continue to evolve in order to circumvent or
exploit current cloud security constraints and practices. Our contribution to cloud VM
co-location research is in analyzing the clock skews of cloud VMs. Specifically, we ask:

• Can the estimation of clock skews obtained from TCP timestamps help to accurately
determine co-location of VMs in the cloud?

To the best of our knowledge, this technique has not yet been researched. Through our study
of VM clock skews, we look to answer the following additional research questions:

• How many timestamps should be collected in order to reliably estimate the clock
skew?

3

• What estimator method is most reliable at determining clock skews?
• Does the volume of network traffic influence our ability to measure a VM’s clock
skew?

1.4 Thesis Organization
The organization of this thesis is as follows: Chapter 1 introduced the problem of emergent
co-location attacks within a cloud environment. We posted our central research questions
and outline the thesis paper. Chapter 2 begins by discussing the fundamentals of cloud
architecture and security with particular emphasis on AWS. We then describe the intent and
methodology of co-location attacks. Lastly, we discuss previous work researching method-
ologies of determining VM co-location in the cloud to include clock skew fingerprinting.
Chapter 3 investigates the implementation of clock skew modeling within a controlled lab
environment. We extend our analysis into a controlled multi-server environment to validate
our primary research assumption. We also compare our estimators in a simulation with a
known skew under different network traffic scenarios. Chapter 4 details our methodology of
testing for VM co-location in the AWS GovCloud environment and explains the analysis of
our testing results. Lastly, in Chapter 5 we present our conclusions and highlight potential
avenues for future work.

4

CHAPTER 2:
Background

In this chapter, we begin by providing a high-level overview of a typical cloud architecture.
We then discuss security practices in the cloud while providing some additional insight on
the AWS Virtual Private Cloud (VPC) concept. The idea of co-location attacks will then be
introduced as well as previously researched methods of co-location detection. Lastly, we
detail the methodology and previous work of clock skew fingerprinting.

2.1 Cloud Architecture
To most, “the cloud” is complex, abstract, and intangible. It exists, but more as an idea
than a thing, even as it allows users to have the flexibility to do whatever is necessary to
complete their task, such as building a simple data storage system or an entire virtualized
network. However, while complex and abstract in some ways, the cloud is still a physical
construct. In this section, we describe the basic cloud architecture design by first looking at
simple models for both the physical and logical topologies necessary to make it work. Next,
we discuss the role of hypervisors, the software that manages VMs on a physical server, in
a virtual environment. Last, we briefly discuss the capabilities and benefits of virtualized
computing.

2.1.1 Topology
Topology for the cloud can be referenced two ways: the physical topology of the servers
and networking gear and the logical topology as viewed from a cloud user. Physically, the
cloud is simply a data center, a large cluster of servers networked together, whose singular
purpose is to provide scalable VMs on demand [9]. In this regard, the topology is fairly
simple. Starting from the bottom up, a VM is hosted by a hypervisor which resides on
a physical server. This server is one of many servers within a rack, which is connected
to an edge switch. The edge switch routes traffic from the server through any number of
aggregate switches (used for hierarchical routing/switching relationships) before reaching
the gateway router. It is typically classified as either a Top of Rack (ToR) switch or End
of Row (EoR) switch, with the difference between the two defined as how the server racks

5

are assigned to the switch [7]. If each switch has its own individual rack, then the switch
is considered to be a ToR switch. A switch that connects servers from multiple racks is
considered to be an EoR switch. A general concept of the ToR topology in illustrated in
Figure 2.1. In practice, physical network connections are typically redundant in order to
maintain service availability and load balancing performance [9]. For example, while an
edge switch connects to one aggregate switch for primary routing, it may also be connected
to a second aggregate switch in order to shift routing paths if the primary aggregate switch
fails or becomes too congested with other traffic.

This depicts a simple ToR topology model found in data center architectures. Each stack of four
servers represents a single server rack with all servers in each rack connected to its own ToR, or
edge, switch. The two ToR switches then connect to an aggregate switch, which in turn connects to
a gateway border router.

Figure 2.1: Simple Cloud ToR Topology Model

From a logical standpoint, the topology of the cloud is entirely dependent on the cloud con-
struct that a user desires and implements, namely whether it is an IaaS, PaaS, or SaaSmodel.
An IaaS model provides the user with vendor support only for the hardware/infrastructure
necessary to run his cloud environment and store data such as the physical servers, switches,
and routers. The user in this case has the freedom to build his cloud environment as he sees
fit. This includes building a virtual network hiding behind a Virtual Private Network (VPN)
gateway (an entrypoint to a network through an encrypted routing tunnel from an authen-
ticated host) with configured virtual switching and routing [10]. For the PaaS model, the
cloud vendor provides not just the infrastructure but also the underlying software required to

6

run intended programs and applications. In this case, users do not see a network topology
at all but rather a virtual server or database with a pre-installed operating system (OS)
and other software programs and have the ability to inject executable source code, such as
Java or Ruby [11]. Lastly, if a user selects the SaaS model, the cloud vendor supplies and
supports everything for the user with the exception of some application configuration and
non-privileged user administration. This is similar to hosting a website, where the cloud
topology as viewed by the user is simply a single program or application [12]. Figure 2.2
illustrates a simple breakdown of the three cloud service models.

Figure 2.2: Logical Cloud Stack Architecture. Source: [12].

2.1.2 Hypervisors
To run a VM requires the use of a controlling system that works as a middle-man between
the VM and the physical machine, known as a hypervisor. Hypervisors are sorted into two
separate groups, Type I and Type II. A Type I hypervisor is a software environment that

7

does not require support from an OS and can thus run on the bare metal hardware, such as
ESXi and Xen [13]. These hypervisors are typically seen in data centers and server farms
where users normally only need to interact with the hosted VMs or the hypervisor itself
to manage the hosted VMs. On the other hand, a Type II hypervisor, such VirtualBox or
VMWare, requires the support of a native OS [14]. These hypervisors are typically seen on
laptops and workstations where a native OS already resides and the VM is used for specific
purposes instead of the primary source of computing. Figure 2.3 shows a simple illustration
highlighting the difference in the architecture between Type I and Type II environments.

Figure 2.3: Basic Architecture of Type I and Type II Hypervisors. Source:
[15].

2.1.3 Virtualized Computing
Virtualized computing is the mimicking of hardware computation through the interaction
of a VM, which is a software emulation of a given OS, such as Linux Ubuntu or Windows
7 (Win7), and hardware devices, such as memory and clocks. AWS refers to their configured
VMsas instances, which can be built fromagiven template or from scratch and then launched
as a virtual server [16]. These VMs can do just about anything that a physical machine can
do, such as run applications and browse the Internet. They can even be used for sandboxing,
or isolating, malicious programs and scripts in order to investigate them while protecting
the physical machine hosting the VM. However, since VMs have no physical parts, they
must utilize the same hardware as the hosting machine and other co-located VMs. This

8

includes items such as main memory, hard disk, and clocks [14], which provide excellent
avenues to covertly extract information from a co-located VM.

2.2 Cloud Security
The cloud has many benefits over traditional computing, such as lower costs and better
agility. We define agility as the ability to immediately scale up or down the size of cloud
services, such as the number of VMs launched, or even shifting between cloud service
models, such as moving from SaaS to IaaS. However, the cloud also introduces a number of
security risks since physical servers are sharedwith other unknown, and ultimately untrusted,
users [5]. With the cloud provider suppling the software, hardware, and infrastructure to
run the necessary cloud services, the data itself is stored and accessed at a remote location
(for example, AWS [16] defines these consolidated data centers as Availability Zones). In
this respect, the cloud user does not have full control over the physical and logical security
of their data, nor the objects that support their virtual computing. Software patches for the
physical server’s OS and/or hypervisor, maintained by the cloud provider, may not be up
to date and data could be easily stolen and/or illegally sold, regardless of the cloud model
selected [17]. Thus, hypervisor and VM security is a primary concern for cloud users. In
this section, we discuss both the traditional security practices implemented by public cloud
(using AWS as an example) and AWS’s implementation of the Virtual Private Cloud (VPC).

2.2.1 Component Security
Every IT professional is trained on a multitude of methods on how to best secure their
systems and software. These methods include software patching, security groups, network
hardening, and physical security of rooms and devices. Thesemethods are not just for private
systems and networks, but also for cloud security since the cloud is, in its most fundamental
form, a data center [18]. For example, the hypervisors must be patched routinely in order to
eliminate discovered vulnerabilities that can be exploited by malicious users. Additionally,
cloud administrators must create security groups that prevent non-privileged users from
configuring and accessing the cloud hardware. However, while all cloud providers should
be securing their systems in this manner, cloud security must also take additional measures
into consideration, such as the access of VMs by their rightful owners.

9

In 2010, Durbano et al. [18] conducted a study on how to reliably secure a cloud environ-
ment, listing 20 security configuration recommendations. One of the case studies conducted
on AWS found six of these recommendations were already implemented within its standard
security model. In general, AWS implements multiple layers of authentication when inter-
acting with VM instances, utilizes bastion hosts for user interaction, and wipes all data from
the physical servers when users no longer require access to it.

2.2.2 Virtual Private Cloud
Amazon altered the face of cloud security by introducing the Virtual Private Cloud. By
design, the VPC is not intended to strictly be a security feature of AWS, but rather a method
to create a virtual network directly tied to a registered user’s account [4]. In essence,
this provides cloud users the capability to build and scale VM instances to easily mimic a
physical network while logically isolating it, through separate subnets and MAC address
space, from both the physical server network and other virtual networks in the same Region
and Availability Zone. The massive size of the AWS infrastructure allows the separation
of cloud services into 11 publicly accessible Regions that are independent of each other,
allowing for high levels of stability and fault tolerance. Each AWSRegion contains multiple
Availability Zones that are independent of each other but allow logical VPC connections
between them [16]. This enables more advanced networking techniques and options than
the standard cloud model, such as giving users the opportunity to assign multiple public
Internet Protocol (IP) addresses to a single instance and assigning persistent static private
IP addresses for VMs that are repeatedly stopped and started.

Nevertheless, the VPC included some significant security features that were not previously
available in the standard cloud model [4]. First, the VPC automatically generates a network-
basedAccess Control List (ACL), allowing users to determinewhat general traffic and data is
allowed to enter and leave their virtual network. Secondly, users have the capability to filter
network traffic both to and from each instance in the VPC, creating a multitude of unique
ACLs tailored to the specific use or function of the instance. In addition, security groups
can be dynamically modified while instances are in use, instead of being forced to shut down
and/or reboot instances. Lastly, users have the option of utilizing single-tenant hardware,
or Dedicated Instances, where all instances belonging to a single VPC are initialized on
physically isolated servers. While the security features provided by the VPC are only as

10

effective as the knowledge and effort of the cloud user, the fact that implementation of the
VPC has become mandatory for Amazon users [4] ultimately makes the AWS cloud more
secure.

2.3 Co-Location Attacks and Detection
In this section, we discuss the rising trend of malicious cloud attacks known as co-location
attacks. We begin by introducing the concept of the attack and why it is dangerous to cloud
users. Next, we provide an overview of the basic implementation of the attack. Lastly, we
discuss previous research conducted on confirming the presence of two co-located VMs,
differentiating between detection methods feasible prior to the implementation of Amazon’s
VPC and those still viable after.

2.3.1 Co-Location Attacks
While public clouds inherited all of the “traditional” vulnerabilities, such as viruses, worms,
and denial of service attacks originating from a source external of the cloud server, a new
vulnerability emerged. By launching a VM instance on the same physical cloud server as a
second instance, an adversary can now implement a co-location attack by either launching a
denial of service attack originating from the same physical server or a side-channel attack.
While each physical server runs a hypervisor application to create and control instance
VMs, a denial of service attack can be conducted through a malicious VM exploiting
vulnerabilities in the hypervisor, allowing the VM to overwork the computing constraints
of the server and prevent any other instance located on that same server from functioning.

The side-channel attack is an extension of the traditional covert channel attack [3], which
is using an open, unintended communications method to transmit data and information
[19]. A simple example is an adversary planting a Trojan to access protected File A and
transfer the data bit-by-bit through a coordinated effort with the adversary by locking (0
bit) and unlocking (1 bit) access to unprotected File B at set time intervals. As defined by
Ristenpart et al. [3], the side-channel attack is the extraction of information across co-located
VMs through the shared resources of the physical server. Examples of information that
could be extracted are images, sensitive documents, password hashes, and cryptographic
keys. Previous studies on this topic have identified multiple methods to collect the desired

11

information. Ristenpart et al. [3] successfully demonstrated cross-VM information leakage
by measuring computational loads on shared caches. Zhang et al. [11] preformed a Flush-
Reload-based attack to count the number of items in a target’s online shopping cart. Masti et
al. [20] showed how this attack could be completed by measuring the temperature of the
server’s processors.

Co-location attacks pose great risks to all legitimate users of the cloud, especially organi-
zations like the DOD that could potentially store sensitive files and data on cloud servers.
Since cloud providers open their services to all users who are willing to pay, it is impossible
to know who is sharing a server with whom. Co-location attacks are unpredictable and
detection of an attack is usually known only after it has been conducted. This is because the
data is passed via a patterned usage of hardware resources which is hard to detect early in
the transmission process. Decreasing the likelihood of a successful attack requires complex
patching and hardening of the physical server, hypervisor, and VM OS configurations [21].
While a cloud provider will allow the reservation and dedication of specific servers to help
with both computing performance and security (AWS [16] calls them Dedicated Instances,
for example) the large increase in cost is often too expensive for many DOD organizations.
Instead, VM placement in today’s cloud is based on algorithms with a number of factors
such as VM instance type, time launched, number of servers in the cloud data center, and
number of VMs in use [22].

2.3.2 Co-Location Methodology
A co-location attack has three primary phases. First, an adversary must have specific
knowledge of the target VM. This knowledge includes but is not limited to the cloud
provider, data center location, and IP address. Next, the adversary must launch one or more
VM instances in the same data center as the target instances and determine if any one of
its instances is co-located with one of the target VMs. If co-location is confirmed, then
the attack can be implemented in the last phase; however, if an adversary can be prevented
from accurately determining instance co-location, then the attack cannot be implemented
effectively. In order to best combat this threat, it is best to counter its early attack phases.
For this study, it is assumed that the adversary has done sufficient research in the first phase
to begin attempting to co-locate its VM instances with the target.

12

2.3.3 Related Work
Using AWS as a point of reference, research on VM co-location detection falls into two
primary time periods. We define these periods as Pre-VPC and Post-VPC, noting the
dividing line as the point at which Amazon implemented the VPC as standard practice.

Pre-VPC
Previous work on co-location detection, as summarized in Table 2.1, has exposed a number
of ways to easily exploit common network protocols and tools. Ristenpart et al. [3], the first
to study the exploitation of the cloud with respect to co-location attacks, showed how it was
possible to simply utilize packet response times and Domain Name Service (DNS) queries
to determine the internal IP addresses of a cloud infrastructure and subsequently map it.
Co-location determination then became a quick analysis of this data. Bates et al. [5] showed
how an adversary can determine co-location by utilizing an active traffic analysis technique
called watermarking, or the injection of a unique network flow signature, to fingerprint
a target. This watermarking technique was conducted by controlling a target instance’s
network traffic through controlled packet delay to give it a uniquely identifiable pattern. If
the target instance displays the same delay pattern as one of the adversary instances, then
co-location has been identified. Herzberg et al. [6] determined that an adversary could
deanonymize a target instance’s private IP address and measure the hop-count of packet
routing.

Post-VPC
Cloud providers have acted on the focused research of cloud security exploits and effectively
countered the ability to utilize most of the pre-VPC detection techniques. For example, trace
routes can no longer accurately determine the number of hops a packet travels inside the
cloud infrastructure, private IP addresses are now dynamically allocated instead of statically
assigned, and use of the VPC by Amazon EC2 has hidden private IP addresses from other
cloud users as well as providing the means to allocate multiple private IP addresses for
one VM. However, these security methods are not foolproof. Within the last year, Xu et
al. [7] demonstrated that even with the introduction of the VPC, co-location of instances can
still be determined by implementing latency-based network probing. Also, Varadarajan et
al. [22] showed how an adversary can increase the probability of co-location in multiple

13

cloud providers based on the time of day to launch instances, how long to delay launching
instances after the target instance was launched, and the number of instances to launch.
Taking past actions into account, it is safe to assume that these methods will soon cease to
work for potential attackers. This now gives rise to an important question: As the cloud
security teams quickly adapt and improve the defense of the cloud infrastructure, can an
adversary still accurately determine co-location without raising any alarms?

Table 2.1: Summary of Co-location Detection Methods
Attack Cloud Watermarking Topology Latent Network Clock Skews
Method Cartography Mapping Probing
Researcher Ristenpart [3] Bates [5] Herzberg [6] Xu [7] Kohno [8]
Year 2009 2012 2013 2015 2005
Resources Routing Bandwidth, Routing Routing, System clock
Attacked packet release shared memory
Tools Used nmap, hping, PHP scripts Hardware Tracerouting, CAIDA,

whois interrupts, memory TCP/ICMP
whois, locking sender requests
tracerouting and receiver,

HTTPerf
Protocols TCP TCP, UDP SMTP, TCP, HTTP, TCP TCP, ICMP,
Exploited UDP, ICMP NTP
Counters - Dynamically - Dedicated path - Block internal - More -Minimize

assign Private IPs from VM to cloud VM dynamic VM clock skew
physical host communication placement

- Obscure - VM - Utilize firewall - Randomize
Traceroute info. underprovisioning to limit internal domain name

communication generation
- Disable/obscure - Randomize - Obscure
ping requests outbound packet traceroute

scheduling paths
Still Valid No No No Yes ???

2.4 Device Fingerprinting with Clock Skews
Clock skew is defined as the temporal deviation of a clock in a one-second period in reference
to a control clock. In 2005, Kohno et al. [8] demonstrated that a physical computing device
could be remotely fingerprinted using its clock skew. Those results confirmed the common
belief that computing devices have unique clock skews, even among devices with seemingly
identical hardware and software buildouts. Through the use of the simple network protocols
TCP and ICMP, a technique was created utilizing packet timestamps to calculate a device’s
clock skew with respect to a given control device. Kohno et al. applied this technique to a

14

controlled setting of five VMs in order to evaluate the differences between a real network
and a virtualized network. Chen et al. [23] extended this work to fingerprint remote VMs
in an effort to thwart a malware’s ability to detect remote VMs. In 2015, Sheridan [14]
derived VM clock skews from TCP timestamps to study the behavior of virtual OSs. To
the best of our knowledge, no one has applied the clock skew fingerprinting technique
to determine VM co-location in the cloud. We also extend the work of Kohno et al. by
improving the method of estimating a clock skew, determining the number of timestamps
required to provide a sufficient estimate, and studying the effect different network models
have on clock skew estimation.

2.4.1 TCP Timestamps
The TCP was designed to be a reliable data transmission protocol, ensuring that clients
received all intended data packets from the sender. In order to help optimize the efficiency
of the protocol over paths with large bandwidths and very high data throughput speeds, the
Timestamps option (TSopt) extension was added to the TCP packet header [24]. Increasing
the overall packet size by an additional ten bytes, the TSopt provides two separate time-
stamps: the Timestamp Value (TSval), or timestamp at which a TCP packet is sent, and the
Timestamp Echo Reply (TSecr), or the echo of the last TSval received.

Each timestamp is denoted as a four-byte integer that represents the number of clock ticks
passed, most typically since system bootup [24]. The clock ticks reference a virtual clock
that is proportional to the actual system clock of the device. The number of clock ticks per
second passed in real time, or clock frequency, is predefined by the OS of the system and
ranges from 1-1000 Hz. For example, the TCP clock frequency in Windows machines is 10
Hz while Linux machines can be 100 or 250 Hz [23].

In order to enable TSopt, both communicating parties (client and server) must agree to apply
it during the initial TCP handshake with the client including the TSopt in the initial SYN
packet [24]. If the option is disabled by just one party, then no timestamps are included in
the TCP options header. While some OSs enable TSopt by default to help improve TCP
efficiency, such as Linux, other OSs, such as Windows, disable the option by default [25].
Kohno et al. [8] demonstrates some methods that can “trick” machines into enabling the
TSopt even if it is disabled by one party. For our study, we assume that an attacker has

15

implemented some forced TSopt enablement method or the TSopt is not disabled as part of
the target’s configuration, thus all hardware devices and VMs have the TSopt enabled.

2.4.2 Estimating Clock Skew
The estimation of clock skews from a remote vantage point requires the transformation of
TCP timestamps (T), measured in units of clock ticks, to relative clock offset values (y),
measured in units of seconds, and then fit to a linear regression model. This is done through
a series of calculations introduced by Kohno et al. [8] and expanded on by Sheridan [14].
It is important to note that we define this process as an estimation vice a calculation since
the true clock skew is generally not known and various network delays introduce enough
variance in the clock offset values to prohibit a true calculation by this method. For this
reason, the linear regression of the transformed data points provides an estimate of the
general clock skew trend. Table 2.2 lists the components required to estimate a clock skew
as well as their definitions.

Table 2.2: Clock Skew Variables
Variable Definition Unit of Measure
T TCP Timestamp of target VM ticks
t Timestamp when the host system received TCP packet seconds
f Frequency of target VM’s virtual clock Hz
x Elapsed host system time from first packet received seconds
v Elapsed number of target VM clock ticks since first packet sent ticks
w VM timestamps adjusted to account for OS frequency seconds
y VM clock offset with respect to elapsed host time seconds

After capturing a number of n packets from a specific source, we define the set of TCP
timestamps as T = {T1,T2,T3, ...,Tn} and the set of packet receipt timestamps as t =

{t1, t2, t3, ..., tn}. Since T is measured in units of clock ticks, we must transform these values
into units of seconds in order to properly compare them to t. We do this by determining the
frequency of the target VM’s virtual clock as shown in Equation (2.1). With the frequency
of the target’s virtual clock pre-defined by its OS, we cannot assume to know what the OS or
frequency is and must derive it by taking the ratio of elapsed clock ticks from the first to last
packet received to the total elapsed time of packet collection. Due to the number of delays
that may influence packets in transit, we round the calculated value to the closest frequency
known to be common. For example, calculated frequencies of 247.3 Hz or 261.1 Hz would

16

round to 250 Hz. The newly rounded frequency value is then used to transform each
individual TCP timestamp. We can also determine the granularity of the TCP timestamp
directly from the frequency measurement of the target’s virtual clock. For example, a TCP
timestamp from an OS with a virtual clock of 250 Hz would have a precision granularity of

1
250 seconds. It is important to note that the timestamp recorded when a packet is received
is generally detailed to the microsecond. This difference in granularity between the two
sets of timestamps ultimately induces a truncation error in these equations and graphically
displays as a band of data points instead of a line, as seen later in Figure 3.3.

Virtual Clock Frequency

f =
TLast − T1
tLast − t1

(2.1)

In order to normalize our data to make our graphical results easier to understand, we define
i as the i-th packet received and use Equation (2.2) to show a relative timelapse, in seconds,
from the first packet received. Similarly, Equation (2.3) shows the relative timelapse, in
clock ticks, from the first TSval sent. We use Equation (2.4) to correct the normalized vi
into units of seconds. Equation (2.5) determines the specific clock offset in relation to the
host system time. A linear regression model, defined in Equation (2.6), is then fit to the
offset values with ŷi as the predicted clock offset value, b as the y-intercept, and the slope
a reflecting the estimated clock skew.

Normalized Host Time

xi = ti − t1 (2.2)

Normalized Target Time

vi = Ti − T1 (2.3)

17

Adjusted Target Time

wi =
vi
f

(2.4)

Clock Offset

yi = wi − xi (2.5)

Linear Regression Model

ŷi = axi + b (2.6)

18

CHAPTER 3:
Methodology and Analysis

In this chapter, we look to derive our methodology for conducting live experiments in the
AWS GovCloud, which will be described in Chapter 4. We begin by introducing a simple
two-node network on which we conduct our initial analysis of test configurations, system
clock versus TSval behaviors, and the Ordinary Least Squares (OLS) estimator. Next, we
introduce four other estimators and analyze their performance. We then extend our findings
into a controlled server-cluster in order to determine the validity of our test configurations
in a setting more representative of a cloud environment. Lastly, we analyze our estimator
methods in a simulator against a known clock skew to determine how they perform under
various network traffic models and optimize the Wave Rider Estimator to account for an
active-collection approach.

3.1 Single-Server Experiment
This section introduces our initial methods to understanding clock skew estimation and
how to best collect and analyze TCP timestamps. We begin by discussing the configuration
of a simple single-server test network and various testing configurations regarding target
and data collection platforms and the number of packets collected in a trial run. Next, we
discuss the differences and influences that TCP TSvals have on skew estimation over simple
OS system call timestamps. Lastly, we discuss the results from our analysis of testing
configurations, as well as OLS as a clock skew estimator.

3.1.1 Setup and Configuration
Our investigation starts by creating a controlled testing environment in order to simulate
the basic functionality of a cloud architecture, demonstrate the basic implementation of
TCP timestamp collection, and analyze the clock skew estimation technique described in
Section 2.4.2. With Linux Ubuntu 14.04 LTS OS as a base image, we built multiple VMs
on two laptop computers: an Apple MacBook Pro (Intel Core i7 CPU @ 2.50 GHz, 16
GB RAM) and a Dell Inspiron 15 Windows 10 (Win10) laptop (Intel Core i3 CPU @
1.90 GHz, 8 GB RAM). The hypervisor chosen to host the VMs was Oracle VirtualBox

19

v5.0.20, primarily due to the benefit of integrating Vagrant, an automated VM building
tool, to launch instances on both laptops as well as in the AWS cloud for future live tests.
A bridged network connection to the Naval Postgraduate School (NPS) local intranet was
configured for all VMs to both induce typical network latency affects on TCP traffic as well
as better simulate normal cloud routing behavior. Figure 3.1 shows the physical network
configuration for all of our initial experiments. For simplicity, we use the term Data
Collector for any VM or native OS defined as the base reference on which to compare
another VM’s clock drift and we call any VM whose skew we are estimating a Target.
In addition, all VMs and native laptop OSs had Python v3.5.1 (a programming language)
installed in order to run a TCP traffic-generating script. While many OSs today disable
the TCP TSopt by default, we assume that the attacker can execute some method to force
the target to enable this option during the TCP three-way handshake, such as the technique
implemented by Kohno et al. [8]. Since timestamps can only be sent when both parties have
TSopt enabled, we configured all VMs and host machines with this feature enabled [24].

Figure 3.1: Network Configuration for Initial Experiments

In order to conduct our experiments, we wrote a Python script to generate TCP traffic
between Target and Data Collector VMs, parse TCP packet capture files, estimate clock
skews, and conduct statistical analysis on the skew estimation method. To generate our
traffic, we wrote simple cooperative client-server scripts where the server, executed from
the Target VM, would periodically generate packets and send them to the Data Collector
(client), executed from a separate laptop on either the native OS or a hosted VM, upon
establishing a connection. Early versions of this script had the server execute a system call
to its OS to collect the current timestamp and wrap it in a TCP packet to the client.

20

We learned early on that a one-second delay between system timestamp calls was necessary
in order to accommodate unanticipated networking delays that would result in two packets
arriving almost simultaneously. Without this delay, Python would attempt to read the
timestamps in these two packets as a single value and generate an error, resulting in a failed
test run. The intent behind using the system timestamp calls was to simulate the TCP
timestamps that would normally be generated by TSopt-enabled traffic until a method was
created to correctly parse the timestamp values from the TCP packets. We also tested delay
intervals of 0.25, 0.5, and 2.0 seconds, respectively. We found the intervals of 0.25, 0.5, and
1.0 seconds prevented almost all of the collision issues, though some did occur on occasion.
The rate of collisions generally decreased as the delay time increased. We observed no
collisions in our tests with the 2.0 seconds time delay; however, we decided to use the 1.0
second delay due to the low frequency of collisions, the overall packet collection time being
lower, the collection time in seconds being roughly equal to the number of packet samples
collected, and an anticipatory method of an attacker intentionally limiting the rate of VM
probing in order to evade detection. The implementation of packet capturing and a parsing
script rendered system timestamp calls obsolete, but the 1.0 second packet delay was left
in the script in order to keep the total collection time easily estimated and maintain the
assumption that the adversary is trying to evade detection.

Various configuration combinations of VMs and native laptop OSs playing the roles of Data
Collector and Target, as well as the number of packets collected, were tested in order to
determine an optimal number of timestamps to collect, as well as to observe any notice-
able differences, if any, in the collected timestamp patterns. The various configurations
tested are listed in Table 3.1. In order to automate clock skew estimation and analysis, we
wrote a Python script that would read in the captured timestamp values and generate both a
graphical representation of the data and the skew estimator, as well as a statistical analysis
of each clock skew estimator. Metrics recorded by the script for each estimator consisted
of estimated skew, Coefficient of Correlation (Equation 3.1), Coefficient of Determination
(Equation 3.2), Mean Absolute Deviation (Equation 3.3), and Sum of Squares for Error
(Equation 3.4) [26].

21

Table 3.1: Initial Test Configurations
Configuration Data Collector Target No. of Samples Used Real

No. Platform Platform Collected TCP TSval
1 Windows Mac - Ubuntu 10 No
2 Windows Mac - Ubuntu 150 No
3 Windows Mac - Ubuntu 300 No
4 Windows Mac - Ubuntu 500 No
5 Windows Mac - Ubuntu 600 Yes
6 Windows Mac - Ubuntu 1000 No
7 Mac Windows - Ubuntu 300 No
8 Mac Windows - Ubuntu 600 Yes
9 Mac Windows - Ubuntu 1000 No

Coefficient of Correlation

r =
sxy

sxsy
(3.1)

Coefficient of Determination

R2 =
s2

xy

s2
xs2
y

(3.2)

Mean Absolute Deviation

M AD =
∑n

i=1 |yi − ŷi |
n

(3.3)

Sum of Squares for Error

SSE =
n∑

i=1
(yi − ŷi)2 (3.4)

22

3.1.2 Effect of TCP Timestamp Value Resolution

While the initial skew models were conducted by processing timestamps generated by
system calls by the traffic generation scripts on both the Data Collector and Target, we
knew our experimentation in the AWS cloud would require the collection of actual TCP
timestamps in order to hold validity in a real-world setting. Running Wireshark on the Data
Collector, a program commonly used to collect network traffic and conduct packet analysis,
we were able to successfully collect the TCP packets sent from the Target. We extracted
the TCP TSvals from each packet’s header as well as the system timestamps marking the
arrival of each data packet at the Data Collector. These values were then analyzed with the
same Python script as the system-called timestamps.

The resultant output, shown in Figure 3.2, depicts the captured data points as both individual
dots and as a line. While the top plot shows the expected band of data points (with a few
visually identified outliers), the lower graph illustrates a periodicity or wave-like pattern of
the plot values as the line travels up and down following a general linear downward slope.
Taking the first 20 packets of the packet capture file, we processed each timestamp pair
individually, noting the overall data trend and tabulated the output. The results of these
calculations are shown in Table 3.2 with the first seven values in the last column showing the
periodicity trend. The second clock offset value (y) starts at 0.002707 and then progresses
with smaller values, reaching -0.000900 before jumping back up to 0.001900. This pattern
is repeated in all 20 packets collected, Figure 3.2 shows the pattern throughout the 600
collected packets.

It is important to note the number type used for the two timestamps. The system timestamp
is represented by a double-precision floating decimal and accurate to the microsecond, or
10−6, whereas the TCP TSval is a 32-bit integer that represents the number of clock ticks
of a device’s virtual clock [24]. By using Equation (2.1), we find that this particular VM’s
clock ticks (f) are accurate to 1/250 of a second, or four milliseconds. In other words, by
comparing a less granular form of measurement to a higher granularity form, truncation
errors are induced in the VM offset value by transforming TSvals from units of ticks to
seconds, leading to the graphical periodicity.

We argue that the differences in granularity between the two timestamp values should not
negatively impact our estimate of clock skews. Since the determination of the clock skew

23

This figure depicts two plots of the same data points. The top plot displays the data points as dots,
the bottom plot as a line. Both plots estimate the clock skew with the OLS estimator. The x-axis
in both plots represents the elapsed time of the TCP packet collection as referenced by the Data
Collector. The y-axis represents the clock offset y of the Target with respect to the Data Collector.
The slope of the estimator model ŷ is the clock skew.

Figure 3.2: Pcap Initial Test–Configuration No. 5

from the clock offset values is an estimate and not a calculation, the general sloping trend
of the data points is sufficient to generate a reliable clock skew value. While it would be
ideal that the data points represent a line of data instead of a band, as this would drastically
help in the visual identification of outlier data points and skew estimation, a tightly grouped
band of data points generated by a relatively small periodicity range (i.e., the difference of
values between the band’s upper and lower threshold limits) should be just as helpful.

3.1.3 Results
We began our analysis of the initial round of tests by focusing on the number of timestamps
that would provide us with sufficient information to accurately estimate clock skews. The
reasoning behind this was to discover a collection size that would generate fairly consistent
results while not incurring excessively long test periods. With the Python server script
written to send a TCP packet every second, a collection size equates to the number of seconds

24

Table 3.2: Packet Periodicity
Timestamp TSval f x v ∆v w y

1463519524.060397 40853 250.6766064 1.001293 251 251 1.004 0.002707
1463519525.061631 41103 250.1835056 2.002527 501 250 2.004 0.001473
1463519526.062796 41353 250.0258012 3.003692 751 250 3.004 0.000308
1463519527.064004 41603 249.9438202 4.004900 1001 250 4.004 -0.000900
1463519528.065204 41854 250.0948754 5.006100 1252 251 5.008 0.001900
1463519529.066423 42104 250.0282919 6.007319 1502 250 6.008 0.000681
1463519530.067636 42354 249.9810895 7.008532 1752 250 7.008 -0.000532
1463519531.068857 42605 250.0702229 8.009753 2003 251 8.012 0.002247
1463519532.070123 42855 250.0271838 9.011019 2253 250 9.012 0.000981
1463519533.071344 43105 249.9940031 10.012240 2503 250 10.012 -0.000240
1463519534.072525 43356 250.0585625 11.013421 2754 251 11.016 0.002579
1463519535.073701 43606 250.0291304 12.014597 3004 250 12.016 0.001403
1463519536.074888 43856 250.0042262 13.015784 3254 250 13.016 0.000216
1463519537.076173 44107 250.0522567 14.017069 3505 251 14.020 0.002931
1463519538.077328 44357 250.0296276 15.018224 3755 250 15.020 0.001776
1463519539.078542 44607 250.0087367 16.019438 4005 250 16.020 0.000562
1463519540.079705 44857 249.9911860 17.020601 4255 250 17.020 -0.000601
1463519541.080875 45108 250.0309348 18.021771 4506 251 18.024 0.002229
1463519542.082124 45358 250.0128788 19.023020 4756 250 19.024 0.000980

Note: The column of frequency values is not a fixed value as in Equation (2.1) but relative
to each packet. It was calculated to show how the virtual clock frequency is fairly constant
and that any two packets can be used to determine the fixed value. Also, the ∆v column is
used as a reference to demonstrate the truncation error as time in decimal form is truncated
to an integer value. Lastly, the first packet was removed from the table as it is the baseline
reference for the other 19 packets, thereby having a value of 0 for each non-timestamp
column.

the test lasts. For example, a test run collecting 100 packets will take approximately 100
seconds to complete. With the configuration of the Windows laptop as the Data Collector
and theUbuntuVMhosted on theMacBook as the Target, multiple trial runswere conducted
on collection sizes of 10, 150, 300, 500, 600, and 1000 packets. We observed that collecting
fewer than 300 packets resulted in clock skew estimations with a larger standard deviation,
as compared to collection sizes greater than 300 packets, within each set of trial runs. The
standard deviation values generally decreased as the collection size increased. As shown in
Table 3.3, for collection sizes above 500 packets the skew standard deviation of each test
set did not decrease with the increase in sample size. We decided that further testing would

25

use a collection size of 600 TCP packets as this would provide us both consistent results
and an even ten minutes to collect packets on each VM.

Table 3.3: The Effect of Collection Size on Skew Estimation
Collection Size 10 150 300 500 600 1000
Trial Run 1 4.48E-05 -1.15E-06 -1.27E-07 1.61E-07 1.45E-07 2.66E-07
Trial Run 2 -1.01E-05 4.88E-07 1.22E-06 5.03E-07 1.59E-07 1.67E-07
Trial Run 3 -3.03E-05 -5.96E-07 3.71E-07 4.99E-07 1.95E-07 9.34E-08

Std. Deviation 3.89E-05 8.33E-07 6.81E-07 1.96E-07 2.58E-08 8.66E-08

We then looked at various OS configurations for the Target and Data Collector roles to
determine if there would be any significant difference in the results. Using a sample size of
600 packets, we conducted multiple trial runs in each Target/Data Collector configuration.
We noted the data points were more periodic and in a more defined band when the Mac
laptop was acting as the Data Collector and the Windows laptop hosted the Target, as
depicted in Figure 3.3 with Configuration No. 8. All generated graphs are configured with
the x-axis representing time ti, in units of seconds, as referenced by the Data Collector. The
y-axis represents the Target’s clock offset value yi, in units of seconds, in respect to the Data
Collector. The data points form a visual band with a noticeable sloping trend. It is the slope
of the linear regression model fit to these data points that estimates the Target’s clock skew.

In addition, the skew estimates for Configuration Nos. 7-9 were generally larger when
compared to the estimates of Configuration Nos. 4-6, as illustrated in Figure 3.4. However,
while the graphical representations of the clock offset values are vastly different, the overall
behavior of the skew estimator did not change between the various OS configurations in that
the estimations generated were visually verified as following the sloping trend of the data.
We thus concluded the differences in these results could be attributed to the computing
behavior of the OSs themselves in how they handle both VMs and time keeping. Since
graphical output between OS configurations can be vastly different, the Data Collector’s OS
must remain constant for all trial runs in a test set in order for the resulting skew estimation
to have any value since clock offset values are relative to the Data Collector itself.

Lastly, we analyzed the regression model for estimating the clock skews. Following Sheri-
dan’s approach [14] of estimating clock skews with a Simple Linear Regression model,
we derived an estimate by leveraging the linear modeling class methods within Python’s

26

This figure depicts the skew estimation results using the OLS estimator. The test was conducted
with Configuration No. 8.

Figure 3.3: OLS Estimator–Configuration No. 8: Mac/Windows-
Ubuntu/600 Samples

Scikit-Learn v0.17.1 module in our clock skew analysis script. The Simple Linear Regres-
sion model, also known as OLS, is the most common and simplest approach to determining
a linear regression fit and it provided us a baseline on which to compare alternate skew
estimators. This regression model is generated by fitting a line through the data points such
that the sum of squared residuals, or the total distance between the predicted and observed
data points, is as small as possible [27].

3.1.4 Discussion
Overall, our observations revealed the OLS model to not be reliable as an estimator. The
values for the coefficients of correlation r (Equation 3.1) and determination R2 (Equa-
tion 3.2) recorded by our statistical analysis routine revealed an overall weak fit of the OLS
regression model to the data points. With a maximum value of 1.0 signifying the variance in
the dependent variable as completely explained by the independent variable and a perfect fit
of the data points to a regression line, a “good fit” is generally considered to have coefficient
values closer to 1 than 0 [26]. However, the coefficients of correlation and determination

27

Figure 3.4: OLS Estimator–Configuration No. 5: Windows/Mac-
Ubuntu/600 Samples

for the OLS model were generally found to support a weak fit to the data. A test set of
four trial runs returned an average r-value of 0.4097 and an average R2-value of 0.1834, as
shown in Table 3.4. These low coefficient values imply that clock skew is not the driving
factor for the patterns exhibited in the data, but rather some additional factors (most likely
random network delays) are a larger influence than we initially anticipated.

Table 3.4: OLS Statistical Metrics
Trial No. Skew r R2

1 3.54E-05 0.4922 0.2422
2 3.67E-05 0.5613 0.3150
3 2.96E-05 0.2424 0.0588
4 6.66E-05 0.3430 0.1177

Average 4.21E-05 0.4097 0.1834

Additionally, the regression model was found to be highly influenced by outlier data, which
are caused by random delays experienced by a TCP packet in transit. The most common
example is a queuing delay built up at routers and switches during high traffic periods.
The delay values fluctuate as general packet sizes and flow volume constantly increase and
decrease. Another example is random processing delay from the host machine sending the
packet. VMs work through the management of a hypervisor, which is an application on the

28

host OS and must share processing resources with other applications. This in turn could
force a packet to wait longer than normal to be sent from the machine, adding extra time
to the overall trip. We found that while increasing the number of timestamps collected
helped to average out outlier data points and normalize variance, a large enough outlier or a
concentration of outliers will still affect the skew estimation, as shown in Figure 3.5. This
in turn could potentially provide a false positive or false negative outcome when comparing
two clock skew estimates. With this in mind, we determined that more robust methods of
linear regression were needed in order to provide a more reliable clock skew estimate.

Figure 3.5: A Skew Estimate with OLS that is Biased Toward an Outlier
Concentration–Configuration No. 5

3.2 Searching for Better Regression Methods
Our results from the OLS model drove us to consider additional linear regression methods
for estimating the clock skew. In particular, we wanted to look at more robust regression
methods, or methods that are not as influenced by outlier data points. We first evaluated
two established robust regression methods, the Theil-Sen and Random Sample Consensus
(RANSAC) linear regression methods [27]. We also looked at a method that would be
resistant to outliers and extreme data variance by smoothing, or averaging, the data points
using a moving average [26]. Our last method analyzed is one we created that fits only the
data points with minimum delay times and is not influenced by outlier data, called the Wave

29

Rider model. We evaluate each method on the same physical network as the OLS method
and analyze the test results to determine what method returns the most consistent, reliable
skew estimation.

3.2.1 Theil-Sen
The first alternate estimator tested was the Theil-Sen Regression. It is considered a more
robust method of determining a linear regression line over OLS due to the algorithm’s
design of taking the median of all slopes s as determined from a sample of two-pair data
points (i.e., (y j − yi)/(x j − xi)) from the collected data set [28]. In essence, it is supposed
to be more resistant to outlier data points and becomes useful in multivariate data analysis.
Theil-Sen Regression is also designed to not make any assumptions about the statistical
distribution of the data, adding to its robustness against outliers [27]. We derived the Theil-
Sen Regression skew estimate by using Python’s scikit-learn 0.17.1 module in our Python
skew analysis script.

The Theil-Sen estimator showed overall improvement on estimating skews over the OLS
estimator. In general, the estimator performed with more resilience against outlier data
points, successfully demonstrating its robustness. As depicted in Table 3.5, applying the
Theil-Sen estimator to the same data points analyzed in Table 3.4 resulted in slightly
improved r and R2 values, 0.4133 and 0.1967 respectively, over the OLS estimator.

Table 3.5: Theil-Sen Statistical Metrics
Trial No. Skew r R2

1 2.74E-05 0.3807 0.1449
2 4.48E-05 0.6843 0.4683
3 3.35E-05 0.2737 0.0749
4 6.11E-05 0.3143 0.0988

Average 4.17E-05 0.4133 0.1967

There was one large disadvantage to this estimator, however. Due to the nature of the
estimator’s algorithm design, the selection of the median slope from a random subset of
slopes causes the estimated skew to rarely repeat when recalculated. Essentially, this
greatly decreases the reliability of the model as an estimated skew could be generated that
is completely wrong. Figure 3.6 illustrates such an example as the OLS estimator generates
a skew that trends positive with the data points while the Theil-Sen estimator generates a

30

skew that is grossly negative. In the end, while this estimator showed general promise, the
lack of repeatable estimates led us to look for a better estimator.

Figure 3.6: Theil-Sen Estimator–Configuration No. 5: Windows/Mac-
Ubuntu/600 Samples

3.2.2 RANSAC
RANSAC Regression is another robust method of fitting a linear regression. The basic
algorithm samples a defined number of data points and fits a linear model to them. The
rest of the data points are then classified as either inliers or outliers as determined by being
within a customizable parameter called residual threshold, or the maximum “vertical”
distance allowable between the actual data point and the predicted data point [27]. The
number of inliers is recorded and the steps are repeated either a defined number of times
or when the number of inliers reaches another predefined threshold. A regression line is
returned that fits a new model to the set consisting of the maximum number of inlier data
points [29]. It is the ability to factor out and ignore the outlier data that defines this method
as robust. We derived the RANSAC skew estimate by using Python’s scikit-learn 0.17.1
module in our Python skew analysis script using the default algorithm settings with the
exception of the residual threshold value.

Results from the RANSAC estimator showed better performance than both the OLS and
Theil-Sen estimators. The r and R2 values were overall higher, generally ranging from 0.3

31

to 0.5 with some values as high as 0.77. Unfortunately, these results hinged on the residual
threshold value of the RANSAC algorithm. Figure 3.7 illustrates the RANSAC estimator
with a residual threshold value of 0.01. Since the variance of the clock offset values is small,
all 600 data points are considered to be inliers as determined by the algorithm. The end
result of this estimation is a skew estimate that equals the OLS model. We argue that this
particular model is in error as we can visually define a number of data points as potential
outliers.

Note: The green RANSAC regression overlays and hides the red OLS regression.

Figure 3.7: RANSAC Estimator/0.01 Residual Threshold–Configuration
No. 5: Windows/Mac-Ubuntu/600 Samples

Taking into account the range of clock offset values, we reestimate the skew by adjusting the
residual threshold value to 0.0002. The results of this estimation, as shown in Figure 3.8,
are noticeably different. Besides a different skew estimation value, we see a number of
data points identified as outliers, annotated as red plot points, as well as the regression line
shifted up into the grouping of inlier data points. While this method shows great promise as
an accurate and reliable estimator, we argue that the deliberate manipulation of the residual
threshold value to ensure the inclusion of all inliers and the exclusion of all outliers is an
inconvenient flaw. Without knowing exactly how the clock offset values will range, the
residual threshold value will have to be continually adjusted in order to get the most reliable

32

estimation. The time necessary to do this on a large scale, such as in a cloud environment
(i.e., 30 - 50 VMs), makes RANSAC a highly inefficient estimator and leads us to search
for a more efficient method.

Figure 3.8: RANSAC Estimator/0.0002 Residual Threshold–Configuration
No. 5: Windows/MAc-Ubuntu/600 Samples

3.2.3 Moving Average
Using the concept of moving averages, which were designed for time series data such as
quarterly or multi-year trends, we created new data points from averaging a sliding window
of a determined number of consecutive data points [26]. For example, a sliding window of
three data points on data set A creates the first moving average point by averaging A1, A2,
and A3, the second point is created by averaging A2, A3, and A4, and so on. The advantage of
this method is the ability to “smooth” the data, reducing any potential variance and influence
by outliers in the data in order to provide a robust regression with higher correlation values.
Our algorithm generates a new data set based on moving averages and then derives a skew
estimate with the Simple Linear Regression module in Python’s scikit-learn. We initially
tested sliding window sizes of 3, 5, and 7 data points to determine what window size worked
best. Finding little difference from OLS in the initial results, we increased the window size
to 50 data points.

Our results gathered for the Moving Average estimator showed skew estimates that were

33

relatively close in value to those generated by the OLS estimator. This was not surprising
as the data points were averaged from the original data set and the final skew estimation
derived with the OLS estimator. Unlike OLS, however, the Moving Average estimator has
much stronger statistical support on the smoothed data with r and R2 values averaging 0.98;
Figure 3.9 illustrates why this is so. As the lower graph depicts the data points as a black
line, the three- and 50-point Moving Average data sets (red and blue lines, respectively)
show a definitive smoothing of the data variance, with the variances decreasing as the
window size increases. Averaging the data points ultimately eliminates most of the outliers,
producing a more reliable estimate.

Figure 3.9: Moving Average Estimator–Configuration No. 5: Windows/Mac-
Ubuntu/600 Samples

Regarding sizes, larger is better. However, since the number of data points lost to averaging
with this method is equal to one less of the window size (i.e., a total of 49 data points are
lost with a window size of 50), too large of a window could degrade the performance of the
estimator as there are too few data points to analyze. We chose to focus our tests specifically
on the 50 data point window size since our data set consisted of 600 packets. This gave
us 551 data points in the moving average subset, which Section 3.1 showed is enough data
points to derive consistent, reliable skew estimates.

Overall, the Moving Average estimator showed promise. However, while most of the

34

outliers are averaged out with this method, a relatively large outlier or a large concentration
of outliers at either end of the data set would have a strong influence on the skew estimation.
This drove us to look for a method that was more resilient against any outlier.

3.2.4 Wave Rider
The Wave Rider estimator is a technique we created after investigating the behavior of
plotted TSval offsets. As mentioned in Section 3.1, the natural periodicity of the offset
values due to the granularity difference between the TSvals and system clocks generates an
established band of data points that follows a general trend (i.e., the clock skew). We noticed
that each band created a natural upper threshold boundary since all true outliers were always
well below the band of data points. Analyzing our timestamp transformation equationsmore
closely, we realized that the upper-bound data points represented minimal delay values, or
points whose offset value more closely represented true clock drift. Outliers, on the other
hand, are caused by unusually large network delays. We theorized that by picking at least
two points with minimum delay values would provide an estimated skew value that would
better resemble the true clock skew and would never be influenced by outliers.

With this in mind, we created an algorithm that recursively selects points that are “higher”
than the data points before and after it, returning a dataset typically between two and ten
points. A skew estimate is then derived using the Simple Linear Regression module in
Python’s scikit-learn library, leaving a regression line that rides on top of the band of data
points. This is graphically shown only as long as the distance from the first point in the new
dataset to the last point.

Our initial results with Wave Rider were very promising. As shown in Figure 3.10, our
estimator successfully followed the slope of the data points and was not influenced by any
of the “true” outlier data points, colored red as defined by RANSAC. In this figure, we
argue that RANSAC incorrectly identified data points within the upper-bound region as
outliers since those points represent packets with minimum delay values, an error derived
from RANSAC’s residual threshold parameter. As such, it is these two factors which cause
Wave Rider to outperform the other four estimators. The ability to ignore outlier data points
makes this estimator the most robust and allows it to operate on any traffic environment,
regardless of amount of variation in the data points. Additionally, being able to derive a

35

skew estimate that more closely reflects a device’s true skew should ultimately allow for
a more accurate comparison between two VMs. Statistically, the r and R2 values were
generally the greatest compared to the other four estimators.

Figure 3.10: Wave Rider Estimator–Configuration No. 5: Windows/Mac-
Ubuntu/600 Samples

3.3 Type I Hypervisor Experiment
While the initial single-server experiments were productive for testing the Python scripts
and analyzing the various clock skew estimators, we needed a test network that could
more realistically simulate a public cloud environment. Using a multi-server environment
provided us with a way to see skew estimates from two VMs that were co-located and two
that were on separate physical servers. Utilizing a Type I hypervisor cluster that is more
closely representative of the typical VM data center, we were ultimately able to test our
initial assumption that two co-located VMs would have similar skew estimates.

3.3.1 Setup and Configuration
We set up our multi-server experimentation utilizing a VMWare ESXi server cluster at
NPS. With the same Linux Ubuntu OS image as in the single-server experiments previously
discussed, we built three Target VMs on two Dell PowerEdge R610 servers (8 x Intel(R)

36

Xeon(R) CPU E5620 @ 2.40 GHz, 100 GB RAM). This setup created one known pair of
co-located VMs on one server and the third VM hosted by a separate server.

We configured the Dell laptop from the single-server experiments as our Data Collector
node in order to provide a constant frame of reference in which to compare clock drift for
each Target VM. As with the earlier experiments, the same Python scripts to generate TCP
traffic were executed with the server script loaded on each of the three VMs and the client
script run on the Data Collector. We executed the packet capture program TCPDump on the
Data Collector during each test run in order to capture all of the TCP packets generated for
parsing and skew analysis.

Our experiments were conducted through two separate tests, collecting timestamps from the
two co-located VMs and then collecting timestamps from two VMs separately hosted. The
reason for separate tests was to better isolate and study the results of the skew estimations
for each test scenario. Each test consisted of ten trial runs, with 600 packets collected for
each trial run. This sample size was chosen for the same reasons explained in the previous
section. Each trial run collected the packets from each VM sequentially (i.e., collecting
600 packets from the one VM and then collecting 600 packets from the second). This is
was done in order to minimize the influence of possible queuing and processing delays
from the Data Collector conducting multiple TCP conversations and running parallel client
programs.

3.3.2 Results
Our results for the two test sets were very promising. Ultimately, wewere able to support our
primary hypothesis that co-located VMs have similar skews. Figure 3.11 depicts the results
from the first of ten trial runs for each of the two tests using the Wave Rider estimation
model. The top two graphs in the figure depict the skew estimates from the two VMs
co-located on the same physical server. While the skews are not an exact match, the relative
error (Error =

��� SkewVM1−SkewVM2
SkewVM1

���) between the two show the estimates are close in value
(VM #2 has a relative error value of less than 5 percent with respect to VM #1). The
difference between the two skew estimates can be explained through the linear regression
model estimation and random network delays. The bottom two graphs depict the skew
estimates for the second test, VMs that are not co-located. The skew estimates for the two

37

VMs are drastically different from each other (VM #2 has a relative error value of more
than 280 percent with respect to VM #1). This result was replicated throughout every trial
run in the two test scenarios. Since most data centers and cloud providers, to include AWS,
deploy their VMs on Type I hypervisors, we can assume with some degree of confidence
that our primary hypothesis holds validity in a real-world cloud architecture.

Figure 3.11: Results of the Time Skews Conducted on ESXi Type I Hypervi-
sor for Both Co-Located (top row) and Non-Co-Located VM Trials(bottom
row)

The results from each trial run for the two tests is listed in Table 3.6. Relative Error for each
pair of VMs is calculated. The skew estimates for each VM individually over the ten trial
runs identified an additional trend in the data. Specifically, the skew estimates for each VM
were consistent throughout each test as each trial run estimate remained within 10 percent
of the first trial run’s value. The importance of this observation is the support it provides
for one of our opening assumptions about using linear regression models to estimate clock
skews: clock skew is constant over time. Extrapolating this trend, we argue that it does not
matter when samples are collected from a VM. Any ten-minute window of packet capturing
should return a skew estimate that is similar to any other ten-minute window. Ultimately,
this insight will help determine the eventual TCP packet capture procedure in the AWS
cloud.

38

Table 3.6: Multiple Server Skew Estimate Results
Test No. 1 (Co-located VMs) Test No. 2 (VMs Not Co-located)

Trial No. VM #1 VM #2 Relative Error VM #1 VM #2 Relative Error
1 -1.45E-05 -1.39E-05 0.043 -4.88E-05 -1.28E-05 281.0
2 -1.45E-05 -1.41E-05 0.028 -4.80E-05 -1.26E-05 281.0
3 -1.38E-05 -1.31E-05 0.053 -4.87E-05 -1.33E-05 266.0
4 -1.28E-05 -1.38E-05 0.073 -4.88E-05 -1.30E-05 275.0
5 -1.43E-05 -1.43E-05 0.000 -4.88E-05 -1.31E-05 273.0
6 -1.35E-05 -1.37E-05 0.015 -4.85E-05 -1.30E-05 273.0
7 -1.37E-05 -1.38E-05 0.007 -4.85E-05 -1.34E-05 262.0
8 -1.41E-05 -1.37E-05 0.029 -4.86E-05 -1.30E-05 274.0
9 -1.44E-05 -1.43E-05 0.007 -4.90E-05 -1.31E-05 274.0
10 -1.46E-05 -1.39E-05 0.014 -4.89E-05 -1.29E-05 279.0

3.4 Timestamp Simulation
In this section, we conduct a two-fold investigation. Shifting our collection method from
a cooperative passive-collection process (having the Target periodically generate and send
TCP packets to the Data Collector upon establishing a connection), we executed a Python
script to simulate timestamp values using an uncooperative active-collection approach
(requiring the Data Collector to periodically request a packet from the Target) that more
closely reflects how amalicious cloud user would test for co-location in a cloud environment.
We first analyzed the effect that various network traffic models had on the analysis of a
known clock skew value, primarily determining the skew estimates degree of error from
the true clock skew value. Secondly, we wanted to determine if our skew estimators
behaved similarly in each traffic model or if some models outperformed the others in a
given traffic scenario. We use four different delay models in our simulation scenarios.
The first scenario generates packets with a constant delay value; however, since delays are
never truly constant, this model serves strictly as a baseline to which the other models
are compared to. The second scenario generates packets with normally-distributed delay
values and the third scenario generates packets with exponentially-distributed delay values.
Both of these models are used to establish performance envelopes for the skew estimators.
However, as An et al. [30] described in his study of a self-similar network traffic model,
real network traffic tends to follow heavy-tail patterns and act in a self-similar manner. In
order to more accurately simulate this behavior, our fourth scenario utilizes delay values
taken from live Internet traces into the AWS cloud.

39

3.4.1 Setup and Configuration

We executed our investigation within the Python 3.5 environment. Drawing from our
understanding of TSval and typical packet routing behavior, we were able to generate
600 timestamps representing TSvals encoded in the TCP packet’s TSopt header sent from
the Target and another 600 timestamps reflecting the time the Data Collector received a
packet from the Target. The simulated Target timestamps included an arbitrarily assigned
constant drift value of 1.23E-05 seconds. We made a few assumptions regarding network
characteristics in order to simplify our calculations and isolate the impact on the skew
estimation by traffic delays shaped by our four models. Our assumptions were as follows:

• A uniform packet size of 10 Kb and a data transmission rate of 1 Mbps given for
both Target and Data Collector, which provided a constant transmission delay of 0.01
seconds.

• OS processing delays for both Target and Data Collector are negligible and overtaken
by larger network delays.

• Symmetrical travel times for ICMP packet round-trip delay values.
• No packets were dropped or re-sent.

With the queuing delay representing the delay variable in each model, we chose a value
of 0.01 seconds for the constant delay scenario. To standardize the results, 0.01 seconds
was also the mean delay value for both the randomly generated normal and exponential
distributions. To act as a baseline comparison, we conducted one simulation trial with
the constant delay scenario since results would not change with subsequent test runs. We
conducted ten trial runs on both the normal and exponential models.

For the trace file scenario, we launched three instances into the AWSGovCloud (t2.micro: 1
virtual CPU burstable to 3.3 GHz, 1 GBMemory) and sent 600 ping requests to each VM’s
assigned Public IP address from our MacBook Pro laptop hosted on the NPS network. Each
ping was sent after a one-second delay from the previous ping in order to simulate our packet
collection method. This procedure was executed continuously for 10 hours to each VM
instance in order to capture the fluctuating traffic volume levels experienced throughout
a typical day, providing us with 30 different trace files of round trip times (RTTs). We
derived queuing delay values by dividing each RTT value in half, then inserting them into
our Python script as the delay component in the Target timestamp.

40

3.4.2 Results
Estimating the clock skew with all five estimation methods, the Constant Delay scenario
generated skew estimates that were not as close to the true skew value as we anticipated.
In order to better determine how close the skew estimates truly are, we calculated an
error value for each estimator in relation to the true skew value of 1.23E-05 seconds
(Error =

��� SkewTrue−SkewEstimate

SkewTrue

���). Of the five estimators, the Moving Average estimator
outperformed all other models (Error = 0.12) while Wave Rider had an error almost four
times greater than Moving Average (Error = 0.45). The results from the Normalized
Delay scenario showed similar results to the Constant Delay scenario. The skew estimates
remained lower than anticipated with theMoving Average estimator generating a mean error
value of 0.12 over 10 trials while Wave Rider’s mean error value increased to 0.84. The
Exponential Delay scenario generated larger skew error values over all five estimators with
Moving Average still outperforming the other models.

Our final scenario, inserting delay values from a trace file, generated the best overall
performance from our estimators, with the exception of Wave Rider. The best performer in
this scenario was RANSAC, as it had both the lowest mean error value and smallest standard
deviation between trial run results. Both theMovingAverage andOLS estimators performed
well with mean error values below 0.10. Wave Rider was inconsistent as estimated skews
varied between positive and negative values while having the largest standard deviation of
skew estimates. Table 3.7 displays the results for all 30 trial runs from the cloud trace files.

Graphical results of the four scenarios showed a picture vastly different from results in
previous sections. Illustrated in Figure 3.12, we found the data points plotted not as a band
but more akin to a step function as clock offset values remain constant for a period of time
before increasing in value. In addition, outlier data points were found above the inliers,
as opposed to below them. This graphical behavior is most likely due to the change in
packet collections. Previous tests used a cooperative passive-collection method between
the Target and Data Collector such that once a TCP connection was established, the Target
would send packets to the Data Collector in one-second intervals without any prompting.
In this case, all delay values influenced the Data Collector timestamps, with large delays
driving the clock offset value lower and minimum delays creating the upper bound limit.
While this method was helpful in the establishment of our estimation methods, it is not a
true representation of how packets would truly be collected. With the uncooperative active-

41

collection method in these simulations, the Data Collector continuously requested a packet
from the Target in one-second intervals, ultimately changing the location of the outliers
from below the inliers to above them since network delay effects influenced both the Target
timestamps and Data Collector timestamps. This behavior also explains the unreliability
of Wave Rider, which is derived from the concept of riding the upper bound limit of data
points. Selecting data points with clock offset values higher than then the points before
and after, Wave Rider generated a regression line from selected outlier data points, which
resulted in skew estimates that were generally not close to the true skew value.

Table 3.7: Skew Estimate Errors for Trace Delay Scenario
OLS Theil-Sen RANSAC Moving Average Wave Rider

Trial No. Skew Error Skew Error Skew Error Skew Error Skew Error
1 1.33E-05 0.08 1.50E-05 0.22 1.16E-05 0.06 1.28E-05 0.04 1.04E-03 83.55
2 1.30E-05 0.06 1.21E-05 0.02 1.06E-05 0.14 1.32E-05 0.07 3.19E-05 1.59
3 1.01E-05 0.18 1.03E-05 0.16 1.18E-05 0.04 1.00E-05 0.19 1.14E-04 8.27
4 1.32E-05 0.07 1.25E-05 0.02 1.20E-05 0.02 1.32E-05 0.07 1.11E-04 8.02
5 1.31E-05 0.07 8.39E-06 0.32 1.14E-05 0.07 1.29E-05 0.05 2.86E-05 1.33
6 1.18E-05 0.04 1.10E-05 0.11 1.35E-05 0.10 1.16E-05 0.06 -1.67E-05 2.36
7 1.04E-05 0.15 9.09E-06 0.26 1.13E-05 0.08 1.10E-05 0.11 -9.47E-05 8.70
8 1.22E-05 0.01 1.28E-05 0.04 1.21E-05 0.02 1.17E-05 0.05 -6.32E-05 6.14
9 1.08E-05 0.12 7.14E-06 0.42 1.07E-05 0.13 1.07E-05 0.13 -2.76E-05 3.24
10 1.17E-05 0.05 8.45E-06 0.31 1.09E-05 0.11 1.15E-05 0.07 1.15E-05 0.07
11 1.28E-05 0.04 7.38E-06 0.40 1.38E-05 0.12 1.16E-05 0.06 -1.81E-04 15.72
12 1.25E-05 0.02 1.04E-05 0.15 1.29E-05 0.05 1.19E-05 0.03 1.66E-05 0.35
13 1.18E-05 0.04 5.67E-06 0.54 1.36E-05 0.11 1.17E-05 0.05 -1.55E-04 13.60
14 1.16E-05 0.06 8.86E-06 0.28 1.17E-05 0.05 1.18E-05 0.04 7.37E-05 4.99
15 1.05E-05 0.15 2.53E-05 1.06 1.11E-05 0.10 1.05E-05 0.15 6.01E-05 3.89
16 1.30E-05 0.06 1.52E-05 0.24 1.32E-05 0.07 1.32E-05 0.07 -4.56E-05 4.71
17 1.73E-05 0.41 1.98E-05 0.61 1.54E-05 0.25 1.76E-05 0.43 -4.48E-06 1.36
18 8.20E-06 0.33 1.32E-05 0.07 1.26E-05 0.02 9.98E-06 0.19 -3.13E-04 26.45
19 1.14E-05 0.07 9.45E-06 0.23 1.12E-05 0.09 1.10E-05 0.11 1.12E-05 0.09
20 9.66E-06 0.21 1.17E-05 0.05 1.07E-05 0.13 9.53E-06 0.23 7.20E-06 0.41
21 5.13E-06 0.58 9.60E-06 0.22 7.29E-06 0.41 3.89E-06 0.68 -1.78E-05 2.45
22 1.28E-05 0.04 6.85E-06 0.44 1.49E-05 0.21 1.16E-06 0.91 -4.04E-05 4.28
23 1.23E-05 0.00 6.17E-06 0.50 1.35E-05 0.10 1.24E-05 0.01 -9.61E-05 8.81
24 1.40E-05 0.14 1.68E-05 0.37 1.42E-05 0.15 1.38E-05 0.12 -1.78E-05 2.45
25 1.06E-05 0.14 1.36E-05 0.11 1.06E-05 0.14 8.90E-06 0.28 -2.06E-05 2.67
26 1.48E-05 0.20 1.08E-05 0.12 1.38E-05 0.12 1.46E-05 0.19 -3.62E-05 3.94
27 8.01E-06 0.35 1.15E-05 0.07 1.16E-05 0.06 1.07E-05 0.13 1.16E-16 1.00
28 1.36E-05 0.11 8.51E-06 0.31 1.36E-05 0.11 1.35E-05 0.10 5.79E-05 3.71
29 4.04E-06 0.67 9.29E-06 0.24 1.31E-05 0.07 8.91E-07 0.93 -1.12E-03 92.06
30 1.36E-05 0.11 1.19E-05 0.03 1.39E-05 0.13 1.34E-05 0.09 -1.63E-04 14.25

Std. Dev. 2.67E-06 0.16 4.15E-06 0.22 1.65E-06 0.08 3.53E-06 0.24 2.97E-04 21.68
Mean 1.16E-05 0.15 1.13E-05 0.26 1.23E-05 0.11 1.10E-05 0.19 -2.83E-05 11.02

This table provides skew estimation error values for each estimator as compared to the known skew value of
1.23E-05 seconds for all 30 trial runs.

42

Figure 3.12: Simulated Timestamps–Trace Delay

3.4.3 Discussion
Overall, we discovered that the volume of traffic, in particular the network delay values,
does have an impact on the accuracy of the clock skew estimation. The more congested the
network, the higher the estimated skew variance and the larger the degree of error. However,
since normal and exponential distributions are not strong representations of actual network
traffic behavior, the trace scenario results carry much more weight. With the traces of
real packet transmissions, the delay values are directly impacted by actual network traffic
conditions. The constant delay scenario showed very little variation from skew estimates,
with errors driven directly by the truncation of clock time units from microseconds to clock
ticks. In contrast, the delay values inserted from the trace files affected some skew estimates
to have much larger error values than our baselined measurements from the constant delay
scenario. For example, the OLS and RANSAC estimators had a baseline error value of
0.19 but had error rates with the trace scenario as high as 0.67 and 0.41, respectively. It is
important to note that real world routing decisions are generally impacted by load balancing.
Most routers havemultiple connections and will route traffic along the shortest path, altering
a routing path if there is congestion or a disconnected link. While this is common practice
within the publicly routed Internet, routing inside a non-public architecture may not have
the same routing considerations. It is possible that routing redundancies are not available
which could allow packet queues to build up, or queue release could be psuedo-randomized

43

in an effort to prevent network mapping. Ultimately, while the real Internet routes packets
to ensure that there is very little effect from traffic congestion, non-public networks could
impact the effects of perceived network congestion.

Regarding the estimators, RANSAC and OLS were ultimately the top performers with
Wave Rider as the worst. While RANSAC emerged as the top performer in our trace delay
scenario, which best represents real traffic of our four models, OLS was not far behind. Out
of 30 trials, RANSAC only had three error values that were over 0.15 (Trial Nos. 17, 21,
and 22). In other words, RANSAC generated a reasonably accurate skew estimate 90% of
the time. Of note, there was a general lack of consistency across all estimators for each trial
run. For example, Trial No. 21 had error values of 0.58, 0.22, 0.41, 0.68, and 2.45 for the
five estimators. Overall, RANSAC and OLS generally had similar error values throughout
the 30 trials. Unfortunately, RANSAC still has the drawback of requiring fine tuning the
Residual Threshold parameter, potentially causing the skew analysis process to be both long
and tedious. In that regard, OLS becomes a strong estimator as it is both consistent and
easy to calculate.

We argue though that Wave Rider should not be discarded as a valid estimator. While
it underperformed, as compared to our previous testing, the concept behind Wave Rider
is still correct. The simulated testing illuminated a flaw in the algorithm such that the
selection of data points by clock offset value only works if they are truly inliers. With an
active-collection approach developed, we believe Wave Rider can fit a linear model to a
few points with minimum delay values and generate a skew estimation that more closely
reflects the true skew of the sampled device while being completely immune to outlier data,
outperforming the other estimators in cloud testing.

3.5 Optimizing Wave Rider
This section describes the process of adjusting Wave Rider to better account for the active-
collection approach simulated in the previous section. We begin by discussing the changes
to the estimator algorithm. We then detail the results of the simulation tests and discuss its
benefits as a valid clock skew estimator.

44

3.5.1 Setup and Configuration
Adjusting for the more realistic active-collection approach, the Wave Rider Estimator was
modified in two ways. The first modification has the algorithm account for minimum clock
offset values instead of the previously used maximum values. Since the passive-collection
approach could not determine packet delay values, Wave Rider estimated the clock skew
based off data points with higher relative clock offset values than those before and after it
with the belief that these data points reflected the packets with minimum network delay.
With the higher clock offset values becoming outliers, the switch to minimum values should
produce reliable estimates. The second modification accounts for the delays experienced by
each packet and fits a regression line to a set number of data points with the smallest delay
values. We conducted tests with the number of minimum-delay data points n belonging
to the set n = {2, 3, 5, 10, 15, 20, 25, 50}. We kept the numbers relatively small since the
methodology behind Wave Rider is to only use a small subset of the collected data points
that form a natural upper bound for the rest of the data points. We ran 30 tests with the
same trace file delay scenario described in Section 3.4 for each Wave Rider configuration
(a total of nine different configurations).

3.5.2 Results
The two modifications of the Wave Rider Estimator addressing the active-collection ap-
proach demonstrated overall improved performance. The resultant skew estimations and
relative error (with respect to the known clock skew value of 1.23E-06 seconds) for each
trial run are shown in Table 3.8 along with the calculated standard deviation of the skew
estimates to determine consistency and the average skew estimation. The first modification,
identifying minimal clock offset values as regression data points, illustrated the estimator’s
characteristic of ignoring the influence of outlier data. As illustrated in Figure 3.13, Wave
Rider generated close skew estimates and outperformed or performed as well as the other
estimators for the majority of the trials. However, the average skew estimate over 30 trials
was still not as close to the true skew value than the other four models tested in the previous
section.

45

Table 3.8: Skew Estimate Errors for Modified Wave Rider Estimator
Minimum Offsets Min Delay - 2 Min Delay - 3 Min Delay - 5 Min Delay - 10 Min Delay - 15 Min Delay - 20 Min Delay - 25 Min Delay - 50

Trial No. Skew Error Skew Error Skew Error Skew Error Skew Error Skew Error Skew Error Skew Error Skew Error
1 8.97E-06 0.27 1.18E-05 0.04 1.14E-05 0.07 8.75E-06 0.29 9.07E-06 0.26 9.19E-06 0.25 8.95E-06 0.27 1.07E-05 0.13 1.15E-05 0.07
2 1.32E-05 0.07 1.22E-05 0.01 1.24E-05 0.01 1.25E-05 0.02 5.47E-06 0.56 7.18E-06 0.42 7.85E-06 0.36 9.11E-06 0.26 1.11E-05 0.10
3 7.71E-06 0.37 9.46E-06 0.23 7.95E-06 0.35 9.83E-06 0.20 9.99E-06 0.19 1.07E-05 0.13 1.07E-05 0.13 1.10E-05 0.11 1.17E-05 0.05
4 2.29E-05 0.86 1.52E-05 0.24 1.59E-05 0.29 1.33E-05 0.08 1.03E-05 0.16 8.83E-06 0.28 1.09E-05 0.11 1.21E-05 0.02 1.25E-05 0.02
5 7.00E-06 0.43 4.23E-17 1.00 1.30E-05 0.06 9.47E-06 0.23 6.58E-06 0.47 9.28E-06 0.25 1.00E-05 0.19 9.63E-06 0.22 9.99E-06 0.19
6 8.32E-06 0.32 1.33E-05 0.08 1.84E-05 0.50 1.33E-05 0.08 1.27E-05 0.03 1.28E-05 0.04 1.25E-05 0.02 1.19E-05 0.03 1.23E-05 0.00
7 9.93E-06 0.19 0.00E+00 1.00 7.19E-05 4.85 1.23E-05 0.00 1.06E-05 0.14 1.02E-05 0.17 1.03E-05 0.16 1.00E-05 0.19 1.01E-05 0.18
8 1.44E-05 0.17 0.00E+00 1.00 0.00E+00 1.00 1.26E-05 0.02 1.16E-05 0.06 1.43E-05 0.16 1.28E-05 0.04 1.31E-05 0.07 1.31E-05 0.07
9 1.13E-05 0.08 8.64E-06 0.30 8.90E-06 0.28 8.20E-06 0.33 8.24E-06 0.33 8.44E-06 0.31 8.37E-06 0.32 8.33E-06 0.32 8.47E-06 0.31
10 1.47E-05 0.20 9.09E-06 0.26 8.05E-06 0.35 7.63E-06 0.38 6.70E-06 0.46 8.89E-06 0.28 9.07E-06 0.26 8.80E-06 0.28 9.52E-06 0.23
11 8.85E-06 0.28 0.00E+00 1.00 1.09E-05 0.11 1.27E-05 0.03 1.29E-05 0.05 1.20E-05 0.02 1.23E-05 0.00 1.20E-05 0.02 1.24E-05 0.01
12 1.70E-05 0.38 0.00E+00 1.00 0.00E+00 1.00 9.38E-06 0.24 1.22E-05 0.01 1.29E-05 0.05 1.21E-05 0.02 1.17E-05 0.05 1.10E-05 0.11
13 1.06E-05 0.14 9.96E-17 1.00 1.09E-05 0.11 1.24E-05 0.01 1.23E-05 0.00 1.11E-05 0.10 1.24E-05 0.01 1.15E-05 0.07 1.14E-05 0.07
14 7.52E-06 0.39 1.27E-05 0.03 9.45E-06 0.23 8.56E-06 0.30 8.98E-06 0.27 9.52E-06 0.23 9.53E-06 0.23 9.53E-06 0.23 1.03E-05 0.16
15 4.66E-17 1.00 1.56E-05 0.27 1.45E-05 0.18 1.71E-05 0.39 1.59E-05 0.29 1.39E-05 0.13 1.41E-05 0.15 1.27E-05 0.03 1.22E-05 0.01
16 0.00E+00 1.00 1.06E-05 0.14 1.01E-05 0.18 1.04E-05 0.15 9.54E-06 0.22 9.61E-06 0.22 1.14E-05 0.07 1.06E-05 0.14 9.89E-06 0.20
17 1.29E-05 0.05 9.11E-17 1.00 9.03E-17 1.00 7.09E-17 1.00 6.64E-17 1.00 7.14E-06 0.42 1.03E-05 0.16 1.00E-05 0.19 1.06E-05 0.14
18 2.13E-05 0.73 0.00E+00 1.00 0.00E+00 1.00 1.19E-16 1.00 1.08E-05 0.12 1.41E-05 0.15 1.25E-05 0.02 1.27E-05 0.03 1.14E-05 0.07
19 1.40E-05 0.14 2.67E-05 1.17 1.78E-05 0.45 1.89E-05 0.54 1.15E-05 0.07 9.90E-06 0.20 8.76E-06 0.29 9.25E-06 0.25 1.06E-05 0.14
20 1.20E-05 0.02 0.00E+00 1.00 0.00E+00 1.00 6.34E-06 0.48 8.09E-06 0.34 8.13E-06 0.34 8.26E-06 0.33 8.87E-06 0.28 9.24E-06 0.25
21 1.08E-05 0.12 0.00E+00 1.00 0.00E+00 1.00 3.35E-05 1.72 1.17E-05 0.05 9.18E-06 0.25 6.44E-06 0.48 5.59E-06 0.55 8.14E-06 0.34
22 1.19E-05 0.03 5.04E-17 1.00 1.17E-05 0.05 1.25E-05 0.02 1.38E-05 0.12 1.26E-05 0.02 1.33E-05 0.08 1.20E-05 0.02 1.27E-05 0.03
23 1.08E-05 0.12 0.00E+00 1.00 2.77E-05 1.25 1.66E-05 0.35 1.51E-05 0.23 1.47E-05 0.20 1.28E-05 0.04 1.35E-05 0.10 1.25E-05 0.02
24 0.00E+00 1.00 9.35E-06 0.24 9.95E-06 0.19 1.53E-05 0.24 1.55E-05 0.26 1.50E-05 0.22 1.49E-05 0.21 1.49E-05 0.21 1.49E-05 0.21
25 0.00E+00 1.00 1.82E-04 13.80 1.82E-04 13.80 8.36E-05 5.80 1.55E-05 0.26 1.23E-05 0.00 1.14E-05 0.07 8.91E-06 0.28 9.51E-06 0.23
26 1.08E-05 0.12 0.00E+00 1.00 0.00E+00 1.00 0.00E+00 1.00 0.00E+00 1.00 1.79E-05 0.46 1.89E-05 0.54 1.87E-05 0.52 1.62E-05 0.32
27 1.18E-05 0.04 0.00E+00 1.00 0.00E+00 1.00 0.00E+00 1.00 1.47E-05 0.20 1.48E-05 0.20 1.61E-05 0.31 1.45E-05 0.18 1.43E-05 0.16
28 9.49E-06 0.23 0.00E+00 1.00 6.37E-17 1.00 3.77E-17 1.00 6.08E-17 1.00 6.47E-17 1.00 6.40E-17 1.00 6.50E-17 1.00 5.88E-17 1.00
29 1.37E-05 0.11 0.00E+00 1.00 0.00E+00 1.00 1.36E-05 0.11 1.21E-05 0.02 1.15E-05 0.07 1.24E-05 0.01 1.30E-05 0.06 1.29E-05 0.05
30 8.47E-06 0.31 1.49E-05 0.21 1.46E-05 0.19 1.49E-05 0.21 1.51E-05 0.23 1.57E-05 0.28 1.47E-05 0.20 1.41E-05 0.15 1.47E-05 0.20

Std. Dev. 5.48E-06 0.32 3.30E-05 2.43 3.41E-05 2.55 1.50E-05 1.07 4.45E-06 0.28 3.45E-06 0.19 3.39E-06 0.21 3.25E-06 0.20 2.84E-06 0.19
Mean 1.03E-05 0.34 1.17E-05 1.10 1.63E-05 1.12 1.31E-05 0.57 1.02E-05 0.28 1.11E-05 0.23 1.11E-05 0.20 1.10E-05 0.20 1.12E-05 0.16

This table provides skew estimation error values for each estimator as compared to the known skew value of 1.23E-05 seconds for all 30
trial runs. The numbers associated with the Min Delay columns represent the total data points selected to fit a regression line. Thus,
“Min Delay - 5” used five data points correlating to the five smallest delay values.

46

Figure 3.13: Simulated Timestamps–Trace Delay–Wave Rider with
Miminum Clock Offset Values

The second modification made to the Wave Rider algorithm, selecting a number of n data
points whose network delay values are the lowest, showed greater improvement than the first
modification. The average skew values over all 30 trials for each iteration of n lowest-delay
data points were consistently closer than the minimal clock offset adjustment. Figure 3.14
illustrates the estimation of the clock skew with n = 5 data points associated with the five
lowest network delay values, once again ignoring the influence of outlier data points. A
notable trend, as evidenced in Table 3.8, showed the average estimated clock skew initially
got closer to the true value as the number of data points increased from 2 to 5 before
decreasing in performance as the data points increased further. This was caused by a large
concentration of data points in a specific area, driving the estimation to be biased. This
performance is illustrated in Figure 3.15, where a concentration of data points in the first
half of the graph influences the skew estimation further from the true value.

3.5.3 Discussion
Overall, the modifications to Wave Rider resulted in a solid performing estimator. Of the
two adjustments, a skew estimate derived from the five data points associated with the
five lowest network delay values performed the best. The model will never be influenced
by outlier data points as data points with minimum delay values more closely reflect true

47

Figure 3.14: Simulated Timestamps–Trace Delay–Wave Rider with Mini-
mum Delay Values

clock drift values and will always be found as an inlier. In addition, generating a linear
regression from five data points helps to minimize the bias of concentrated minimal delay
values. When past performance with live data collections is taken into consideration, we
have shown that Wave Rider outperforms the other four estimators.

48

Figure 3.15: Simulated Timestamps–Trace Delay–Wave Rider with Mini-
mum Delay Value Bias

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

CHAPTER 4:
Public Cloud Experiments

In this chapter, we look to test our hypothesis in a public cloud environment. We begin by
validating our testing methodology in the AWS GovCloud, ensuring that our determined
minimum number of packets collected provides our estimators with enough data to return
consistent results in a live setting and verifying the effectiveness of our estimators. We then
deploy known co-located VMs and randomly located VMs to determine if the AWS cloud
is susceptible to our co-location detection technique.

4.1 Validation of Cloud Testing Methods
Through our testing in Chapter 3, we developed a methodology with which to generate
network traffic from a remote VM and estimate its clock skew. We discovered that collecting
600 TCP packets (approximately 10 minutes with one-second intervals between packet
queries) was sufficient to properly estimate clock skew. In addition, we determined the
skew estimator Wave Rider was the best performer of our five estimators after correcting
for an active-collection approach to obtain TCP timestamps. In this section, we verify our
testing parameters in a public cloud environment, validate the performance of Wave Rider,
and investigate the behavior of clock skew estimates for a single public cloud VM over a
period of time.

4.1.1 Setup and Configuration
After writing a Vagrant script to remotely launch VMs within the AWS cloud, we launched
a single instance (m3.medium: 1 Virtual CPU, 3.75 GB Memory, 4 GB SSD storage,
Amazon Linux OS) in the GovCloud Region. With the Data Collector from our controlled
lab experiments, we ran Tshark (Wireshark’s command line interface) and connected to the
AWS instance with our traffic-generating script. We proceeded to collect 600 packets from
the VM which were saved to a packet capture file, repeating this process until obtaining
30 packet capture files. Each capture file was then parsed, writing all Target (T) and Data
Collector (t) timestamps as well as the RTTs for each of the 600 client-server interactions
to a separate text file for skew estimation and analysis.

51

4.1.2 Results
Using our five estimation models on each trial run, we found results consistent with our
previous experiments in Chapter 3. As shown in Table 4.1, Wave Rider generated the most
consistent skew estimates of the five estimators. This observation was based off the relative
error values for each trial run where Error =

��� SkewMean−SkewTrial
SkewMean

��� since the true clock
skew value is unknown. The average error value and the standard deviation among the 30
samples for Wave Rider was 0.60 and 0.57 respectively, less then half the values for the
OLS, RANSAC, and Moving Average estimators. The Theil-Sen estimator was the second
lowest with an average error value and standard deviation of 0.76 and 0.75 respectively.
Of note, while the other estimators generated both positive and negative skew estimates
across the 30 samples, Wave Rider consistently generated negative skew estimates, with the
exception of one trial run (Trial No. 19).

Visually, we observed that the behavior ofWave Rider had reverted back to our observations
noted in Section 3.3, where the estimator “rode the waves” and delineated an upper bound
limit while ignoring outlier data points instead of generating a lower bound limit noted in
the simulated timestamp experiments within Section 3.5. An example of this is illustrated
in Figure 4.1, where Wave Rider follows the general slope of the upper-boundary data
points, correlated with minimal delay values. While the timestamp collection method is
derived from the same active approach as in the timestamp simulations, the difference in the
estimation behavior is attributed to the timestamp value t, which is referenced to the time
of packet arrival at the Data Collector instead of packet departure from the Data Collector.
These results were consistent through all 30 trials.

4.1.3 Discussion
Overall, the results of theWaveRider Estimator through all 30 trials supports our finding that
600 packets provides the estimator with sufficient data to generate consistent results. While
there was some variance from one trial run to another, Wave Rider’s estimates were usually
between 5-10 µs of the sample mean, a small margin compared to the other estimators.
Wave Rider outperformed all other estimators because it was able to ignore the influence of
data points driven by sporadic network delays. By generating a skew estimation from the
five data points correlated to the five lowest delay values, Wave Rider strengthened both our
argument that the upper-boundary data points most closely represent the true clock skew of

52

Table 4.1: Skew Estimate Errors for a Single Cloud VM
OLS Theil-Sen RANSAC Moving Average Wave Rider

Trial No. Skew Error Skew Error Skew Error Skew Error Skew Error
1 -2.01E-05 0.02 -7.91E-07 0.97 -1.02E-05 0.17 -2.32E-05 0.05 -6.18E-06 0.61
2 -4.92E-05 1.50 -2.52E-05 0.02 -3.95E-05 2.22 -6.02E-05 1.47 -3.77E-05 1.37
3 -2.13E-05 0.08 -4.02E-05 0.57 -2.86E-05 1.33 -2.17E-05 0.11 -2.68E-05 0.69
4 -9.17E-06 0.53 -1.24E-05 0.52 -4.85E-06 0.60 -1.89E-05 0.22 -3.57E-05 1.25
5 7.43E-06 1.38 -1.37E-05 0.47 -5.98E-06 0.51 1.06E-05 1.43 -2.51E-05 0.58
6 -1.54E-05 0.22 -8.29E-06 0.68 -1.43E-05 0.17 -7.20E-06 0.70 -1.74E-05 0.10
7 -2.52E-05 0.28 -1.16E-05 0.55 -2.01E-05 0.64 -2.73E-05 0.12 -1.79E-05 0.13
8 -9.48E-05 3.83 -4.45E-05 0.73 -3.51E-05 1.86 -1.02E-04 3.18 -3.14E-05 0.98
9 -1.84E-04 8.37 -1.08E-04 3.21 -7.53E-05 5.14 -2.15E-04 7.82 -1.45E-05 0.09
10 1.64E-05 1.83 -1.16E-05 0.55 -6.61E-06 0.46 1.50E-05 1.62 -9.83E-06 0.38
11 6.37E-05 4.24 -8.10E-06 0.68 4.74E-07 1.04 5.81E-05 3.38 -1.52E-05 0.04
12 -6.45E-05 2.28 -2.68E-05 0.04 -3.81E-05 2.10 -8.63E-05 2.54 -2.59E-05 0.63
13 1.18E-05 1.60 -7.77E-06 0.70 -9.85E-07 0.92 2.97E-05 2.22 -4.01E-06 0.75
14 5.97E-06 1.30 -2.54E-05 0.01 -2.22E-05 0.81 1.63E-05 1.67 -1.40E-05 0.12
15 1.25E-05 1.64 -3.15E-05 0.23 -1.62E-05 0.32 1.35E-05 1.55 -1.59E-05 0.00
16 -7.25E-05 2.69 -4.55E-05 0.77 -3.33E-05 1.71 -8.17E-05 2.35 -2.04E-05 0.28
17 -4.60E-05 1.34 -6.69E-05 1.61 -2.18E-05 0.78 -6.36E-05 1.61 -1.18E-05 0.26
18 -3.02E-05 0.54 -4.20E-06 0.84 8.07E-06 1.66 -4.16E-05 0.71 -1.37E-05 0.14
19 -3.65E-05 0.86 -5.44E-05 1.12 -1.27E-05 0.03 -1.91E-05 0.22 2.43E-05 2.53
20 -3.40E-05 0.73 -4.11E-05 0.60 1.74E-06 1.14 -3.80E-05 0.56 -1.00E-05 0.37
21 -6.16E-06 0.69 -2.76E-05 0.08 2.60E-05 3.12 -1.46E-05 0.40 -3.40E-05 1.14
22 1.19E-06 1.06 -1.85E-05 0.28 -2.14E-05 0.74 -3.11E-07 0.99 -7.47E-06 0.53
23 -3.61E-06 0.82 -5.14E-06 0.80 -8.67E-06 0.29 -7.83E-06 0.68 -1.20E-05 0.24
24 7.95E-06 1.40 -1.15E-05 0.55 -2.82E-06 0.77 9.68E-06 1.40 -8.31E-08 0.99
25 -1.37E-05 0.30 -1.16E-05 0.55 -1.42E-05 0.16 -2.30E-05 0.06 -1.10E-06 0.93
26 -5.70E-05 1.90 -3.05E-05 0.19 -2.69E-05 1.19 -5.51E-05 1.26 -1.19E-05 0.25
27 -4.14E-05 1.11 -4.52E-05 0.76 -3.46E-05 1.82 -3.99E-05 0.64 -4.16E-05 1.62
28 -5.83E-07 0.97 -2.09E-05 0.19 -2.79E-06 0.77 -1.07E-05 0.56 -2.07E-05 0.30
29 1.32E-04 7.72 5.31E-05 3.07 1.15E-04 10.37 1.03E-04 5.22 -1.58E-05 0.01
30 -2.29E-05 0.17 -6.44E-05 1.51 -2.22E-05 0.81 -3.02E-05 0.24 -2.75E-06 0.83

Std. Dev. 5.20E-05 1.99 2.77E-05 0.75 3.03E-05 1.98 5.52E-05 1.68 1.33E-05 0.57
Mean -1.96E-05 1.71 -2.57E-05 0.76 -1.23E-05 1.46 -2.44E-05 1.50 -1.59E-05 0.60

This table provides skew estimation error values for each estimator as compared to that estimator’s mean skew
value for all 30 trial runs in order to evaluate a measure of consistency for each estimator.

the VM and our argument that it is the estimator best suited to compare the skews of two
VMs.

4.2 Analysis of Known Co-Located Instances
With a detailed testing methodology derived from previous experiments and a reliable skew
estimation model in Wave Rider, we begin our final tests in a live cloud environment. In

53

Figure 4.1: AWS Methodology Verification

this section, we first describe our environment configuration in the AWS cloud. We then
discuss our results and determine if our VM co-location technique is applicable within the
AWS cloud.

4.2.1 Cloud Configuration
Before we could begin launching EC2 instances into the cloud, we had to determine a way
in which we could guarantee the co-location of two VMs with all other instances randomly
placed on separate servers. Amazon’s Dedicated Host service allowed us to leverage this
capability for our test. A Dedicated Host is a physical server in an AWS Region that is
reserved for the use of a single user, no other cloud user can launch an instance on this
device [16]. Once allocated, the Dedicated Host is assigned a unique Host ID that is used to
launch an instance to that specific server. Our test was conducted in the Northern California
(US-West-1) Region instead of the GovCloud Region since Dedicated Hosts are not yet
available there.

We began our test by launching two m3.medium instances onto shared servers, referred to
as Hunter 2 and Hunter 3, prior to allocating a Dedicated Host. This ensured that neither
VM would be co-located with the Target. We use the term Hunter to identify all adversary
VMs that attempt to co-locate with the Target. Once the two Hunters and the Dedicated

54

Host were initialized, we launched two m3.medium instances (the Target and Hunter 1) onto
the Dedicated Host. With the Apple MacBook Pro laptop as the Data Collector, we ran
Tshark on the Data Collector and collected 600 packets from each instance in series with all
packets saved to a packet capture file. This test sequence was continuously repeated until
10 trial runs were successfully completed.

4.2.2 Results
The skew estimation results for each trial is summarized in Table 4.2. A relative error value
(Error =

��� SkewTarget−SkewHunter

SkewTarget

���) was also calculated for each Hunter over all 10 trial runs.
The mean and standard deviation for skew and relative error over all trial runs were then
calculated for each VM. Trial Nos. 7-9 showed strong support for the co-location of Target
and Hunter 1 while Hunter 2 and Hunter 3 were both suggested to be on separate servers
from the Target based solely on the relative error values. The results from Trial No. 7
are illustrated in Figure 4.2. It should be noted that not all trial runs analyzed a full 600
collection packets for each VM. This was due to some packets either getting lost, sporadicly
retransmitted packets, and duplicated acknowledgments. To correctly analyze the packet
capture files, we filtered out only known “good” packets, discarding five packets per VM on
average. Since the number of packets remained well above 500, we determined the adjusted
sample size was still sufficient to generate reliable skew estimates, as supported from our
findings in Section 3.1.

In contrast, generated results from Trial Nos. 2 and 10 suggested that Hunter 2 and Hunter 3
were both co-located with the Target based on the relative errors, as depicted in Figure 4.3.
In both cases, the relative error value for Hunter 1 was more than twice the value of Hunter
2 or Hunter 3. In the other trials, the relative error value from Hunter 1 did not strongly
support co-location with the Target as the value was either close or above the error values
for Hunter 2 and Hunter 3.

When the mean skew estimates and error values for all three Hunter VMs are compared to
the Target, Hunter 1 lacked support to claim co-location. This was mostly due to the effect
of the skew estimate of Trial No. 6 which generated an error value of 45.58. When that skew
estimate is removed and the nine remaining estimates and errors are averaged, the resultant
values dropped down -6.80E-06 and 0.44 respectively. While closer to our expectations,

55

Table 4.2: Skew Estimate Errors Determining Co-Location in a Public Cloud
Target Hunter 1 Hunter 2 Hunter 3

Trial No. Skew Skew Error Skew Error Skew Error
1 2.08E-05 -1.00E-06 1.05 -8.89E-06 1.43 -7.13E-06 1.34
2 -1.40E-05 -8.33E-06 0.41 -1.16E-05 0.17 -1.38E-05 0.01
3 -1.32E-05 -9.75E-06 0.26 -9.39E-06 0.29 -7.33E-06 0.44
4 -1.39E-05 -4.70E-06 0.66 -8.40E-06 0.40 -7.74E-06 0.44
5 -5.40E-06 -2.33E-06 0.57 -7.58E-06 0.40 -9.21E-06 0.71
6 -4.15E-06 1.85E-04 45.58 -3.10E-06 0.25 -1.14E-05 1.75
7 -7.73E-06 -7.33E-06 0.05 2.36E-07 1.03 -1.38E-05 0.79
8 -1.39E-05 -1.65E-05 0.19 -6.12E-06 0.56 -5.61E-06 0.60
9 -5.07E-06 -5.24E-06 0.03 -9.33E-06 0.84 6.59E-07 1.13
10 -3.37E-06 -6.01E-06 0.78 -4.56E-06 0.35 -2.23E-06 0.34

Std. Dev. 1.04E-05 6.08E-05 14.28 3.53E-06 0.40 4.65E-06 0.52
Mean -5.99E-06 1.24E-05 4.96 -6.87E-06 0.57 -7.76E-06 0.75

This table provides skew estimation error values for each Hunter as compared to the Target’s skew
value for all 10 trial runs.

the values were very close to Hunter 2.

4.2.3 Discussion
Overall, this test failed to support our hypothesis that clock skew estimation was a reliable
method to detect co-location of VMs in the AWS environment. Hunter 1 failed to generate
consistent skew estimates that were similar to the Target but dissimilar from both Hunter
2 and Hunter 3. Our earlier testing in Section 3.3 clearly demonstrated the difference in
estimate values between co-located and separated VMs. Therefore, we believe the result of
both Hunter 2 and Hunter 3 generating similar skew values to both the Target and Hunter
1, despite residing on separate servers, can be explained in one of two ways: First, Wave
Rider was not sufficiently able to filter out all delay bias in the timestamp transformation.
The scale of network delay was three orders of µs greater than the clock skew. This caused
an overshadow affect when parsing and transforming the timestamps for analysis. This
effect was not seen with the NPS lab testing since routing between the VMs and the Data
Collector was through on-premises switches, which resulted with vastly smaller delay times
(< 1 ms vice 25 ms) and provided clear and consistent results. The testing in the AWS

56

Figure 4.2: Public Cloud Test–Positive Result

cloud occurred over far greater distances, which resulted in much higher delay times and
far less consistent results. Also, much of the previous work associated with cloud-mapping
and VM co-location in Section 2.3.3 occurred within the AWS cloud, exploiting tools that
relied on delay times and routing paths. In an effort to combat these techniques, it is
likely that AWS purposely adjusted the release of packets to randomize delay values or
even exploited their own architecture redundancies by randomizing the route path from the
ToR/EoR switch to the gateway router, which resulted in higher delay values and inconsistent
test results. Secondly, there might be some form of adjustment associated with AWS VMs
timekeeping. This would obfuscate the clock skew estimation enough that there is no
reliable way to determine whether two VMs are actually co-located, ultimately preventing
successful application of this detection technique from the onset.

57

Figure 4.3: Public Cloud Test–Negative Result

58

CHAPTER 5:
Conclusion

In summary, we were able to learn a great deal about TCP timestamps, clock skews, VMs,
and cloud security. Regarding the detection of VM co-location specifically, we were able
to determine that a collection of at least 500 TCP timestamps will generate a reliable skew
estimate (Section 3.1) from nearby Data Collectors (but not distant ones). We learned that
while unmitigated network traffic congestion does impact the estimation of a VM’s clock
skew, in reality this should not largely influence skew estimations as mechanisms within
TCP and redundancies in routing paths try to minimize delay effects (Section 3.4). Our
largest contribution to the research of co-location detection, we created the Wave Rider
Estimator, a new method for estimating clock skews. It fit a linear regression to the five
points that correspond to the five smallest one-way latency values between the VM and the
Data Collector to combat influence from sporadic network delays (Section 3.5). Lastly, we
determined that the AWS public cloud is not susceptible to VM co-location detection via
clock skew comparison with our tested methods when probing from outside the AWS cloud
(Section 4.2). However, we believe that the negative results of this testing was most likely
due to large, inconsistent network delays. We recommend any future work on this topic
should look at configuring the Data Collector as a VM within the cloud, where routing
delays should be greatly minimized which should result in more consistent and conclusive
results.

In addition, due to time, personnel, and contractual constraints, we highly encourage others
to extend our research to answer questions we could not. A short list includes:

• Do different hypervisors influence a VM’s clock skew?
• What cloud providers are susceptible to VM co-location determination via clock skew
estimation?

• What is the optimum number of data points Wave Rider needs?
• Can one-way packet delay times be accurately collected in order to improve the
reliability of Wave Rider?

• Does the location of VM probing affect clock skew estimation results?

59

Our primary hypothesis was validated on the performance of a single Type I hypervisor
(VMWare ESXi) as we wanted to test a product similar to Amazon’s Xen-based hypervisor
and we had no other hypervisor readily available. There are many other Type I hypervisors
available, both open and closed source, that may be used by other cloud providers or
business data centers which may or may not be susceptible to co-location detection via
clock skew estimation. Additionally, our live cloud experiments focused solely on AWS due
to contractual limitations. However, Google and Microsoft are also popular public cloud
providers with configurations and architectures that may behave differently than AWS.
While our primary research question was answered in the negative, it would be beneficial
to learn if other public cloud providers are as resistant to this co-location technique as AWS
is since the concept was proven to work in the NPS data center. In addition, launching
a Data Collector into the cloud would reduce the network delays of collected packets and
might provide more consistent results. Finally, we leave the fine tuning of Wave Rider, our
biggest research contribution, to further work. Our final iteration of the estimator derived
the “optimal” number of points from a single test scenario. While five data points appeared
to work, both statistically and visually, we believe that more rigorous testing is required to
determine a parameter value that optimizes the performance of Wave Rider. Also, the RTT
values referenced by Wave Rider to determine the data points by which to generate a skew
estimate from assumes symmetric delay times in each direction of travel. In the real world,
however, a round trip is rarely symmetric and it is not uncommon to have a short delay in
one direction and a long delay in the other. This behavior can very easily produce incorrect
data points for skew estimation which could negatively influence the performance of Wave
Rider. Determining how to identify and ignore the affects of delay values would ultimately
strengthen Wave Rider.

The estimation of clock skews from TCP timestamps is a simple process; however, this
technique can be countered by several methods. First, there are plenty of researched
methods [8] to actively suppress, or minimize, a device’s clock skew, such as routinely
synchronizing with a Network Time Protocol (NTP) server. Secondly, users can disable
the TCP TSopt on installed web browsers to prevent timestamps from getting encoded
in each packet header. In addition, users can pay for Dedicated Hosts/servers in a cloud
environment, to prevent any non-organizational user from launching VMs alongside theirs.
Lastly, time could be adjusted at hypervisors, which could be encoded to purposely alter the

60

clock skew of each hosted VM in order to obfuscate estimation results and generate false
positives, or with routing decisions by randomizing the release of packets from switches
and routers or the routing path itself.

In conclusion, while our testing within the AWS cloud environment rejected our hypothesis
that clock skew comparison could determine VM co-location, we strongly argue that this
result is due solely to the effects of large, inconsistent network delay values. Our testing on
an NPS data center with consistent delay values supports the effectiveness of this technique
and that it needs to be defended against. Arguably, the largest threat to the DOD is the
insider threat. By having direct information to a specific VM, the insider can act directly, or
indirectly by providing information to a third party, and begin deployingHunterVMs in order
conduct a co-location attack. Understanding whether the cloud provider and hypervisor can
prevent co-location determination through clock skew comparison will ultimately lead to a
better cyber-security strategy.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

List of References

[1] A. L. Timmons, P. Fomin, and J. S. Wasek, “Modeling cloud storage: A proposed
solution to optimize planning for and managing storage as a service,” Journal of
Information and Computing Science, vol. 11, no. 1, pp. 70–80, 2016.

[2] L. Columbus. (2016). Roundup of cloud computing forecasts and market estimates,
2016. [Online]. Available: http://www.forbes.com/sites/louiscolumbus/2016/03/13/
roundup-of-cloud-computing-forecasts-and-market-estimates-2016/#1a32d5c474b0

[3] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud:
Exploring information leakage in third-party compute clouds,” in Proceedings of the
16th ACM Conference on Computer and Communications Security. ACM, 2009, pp.
199–212.

[4] Amazon Virtual Private Cloud: User guide. (2016). Amazon Web Services. [On-
line]. Available: http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-
ug.pdf

[5] A. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar, and K. Butler, “Detecting co-
residency with active traffic analysis techniques,” in Proceedings of the 2012 ACM
Workshop on Cloud Computing Security Workshop. ACM, 2012, pp. 1–12.

[6] A. Herzberg, H. Shulman, J. Ullrich, and E. Weippl, “Cloudoscopy: Services discov-
ery and topology mapping,” in Proceedings of the 2013 ACM Workshop on Cloud
Computing Security Workshop. ACM, 2013, pp. 113–122.

[7] Z. Xu, H. Wang, and Z. Wu, “A measurement study on co-residence threat inside
the cloud,” in 24th USENIX Security Symposium (USENIX Security 15), 2015, pp.
929–944.

[8] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device fingerprinting,”
Dependable and Secure Computing, IEEE Transactions on, vol. 2, no. 2, pp. 93–
108, 2005.

[9] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data cen-
ters in the wild,” in Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement. ACM, 2010, pp. 267–280.

[10] L. Wang, A. Nappa, J. Caballero, T. Ristenpart, and A. Akella, “WhoWas: A plat-
form for measuring web deployments on IaaS clouds,” in Proceedings of the 2014
Conference on Internet Measurement Conference. ACM, 2014, pp. 101–114.

63

http://www.forbes.com/sites/louiscolumbus/2016/03/13/roundup-of-cloud-computing-forecasts-and-market-estimates-2016/#1a32d5c474b0
http://www.forbes.com/sites/louiscolumbus/2016/03/13/roundup-of-cloud-computing-forecasts-and-market-estimates-2016/#1a32d5c474b0
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-ug.pdf
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-ug.pdf

[11] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant side-channel at-
tacks in PaaS clouds,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014, pp. 990–1003.

[12] M. J. Kavis, Architecting the Cloud: Design Decisions for Cloud Computing Service
Models (SaaS, PaaS, and IaaS), 1st ed. Hoboken, NJ: John Wiley and Sons, Inc.,
2014.

[13] D. Perez-Botero, J. Szefer, and R. B. Lee, “Characterizing hypervisor vulnerabilities
in cloud computing servers,” in Proceedings of the 2013 International Workshop on
Security in Cloud Computing. ACM, 2013, pp. 3–10.

[14] K. K. Sheridan-Barbian, “A survey of real-time operating systems and virtualization
solutions for space systems,” DTIC Document, Tech. Rep., 2015.

[15] Free virtualization software & hypervisors. (2015, Dec. 13). [Online]. Available:
http://webtechmag.com/free-virtualization-software-hypervisors/

[16] Amazon Elastic Compute Cloud: User guide for linux instances. (2016). Amazon
Web Services. [Online]. Available: http://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/ec2-ug.pdf

[17] C. Onwubiko, “Security issues to cloud computing,” in Cloud Computing. Springer,
2010, pp. 271–288.

[18] J. P. Durbano, D. Rustvold, G. Saylor, and J. Studarus, “Securing the cloud,” in
Cloud Computing. Springer, 2010, pp. 289–302.

[19] C. Pfleeger and S. Pfleeger, Analyzing Computer Security: A
Threat/Vulnerability/Countermeasure Approach, 2nd ed. Upper Saddle River,
NJ: Prentice Hall, 2012.

[20] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, and S. Capkun, “Ther-
mal covert channels on multi-core platforms,” in 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 865–880.

[21] S.-J. Moon, V. Sekar, and M. K. Reiter, “Nomad: Mitigating arbitrary cloud side
channels via provider-assisted migration,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015, pp. 1595–
1606.

[22] V. Varadarajan, Y. Zhang, T. Ristenpart, and M. Swift, “A placement vulnerability
study in multi-tenant public clouds,” in 24th USENIX Security Symposium (USENIX
Security 15), 2015, pp. 913–928.

64

http://webtechmag.com/free-virtualization-software-hypervisors/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-ug.pdf
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-ug.pdf

[23] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards an under-
standing of anti-virtualization and anti-debugging behavior in modern malware,”
in 2008 IEEE International Conference on Dependable Systems and Networks With
FTCS and DCC (DSN). IEEE, 2008, pp. 177–186.

[24] D. Borman, R. Scheffenegger, and V. Jacobson, “TCP extensions for high perfor-
mance,” 2014.

[25] Enabling tcp timestamp linux and windows. (2013, Feb. 27). [Online]. Available:
http://ithitman.blogspot.com/2013/02/enabling-tcp-timestamp-linux-and-windows.
html

[26] G. Keller, Statistics For Management and Economics, 9th ed. Mason, OH: South-
Western Cengage Learning, 2012.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[28] J. W. Osborne, Best Practices in Quantitative Methods. Sage, 2008.

[29] A. Hast, J. Nysjö, and A. Marchetti, “Optimal RANSAC-Towards a repeatable algo-
rithm for finding the optimal set,” 2013.

[30] X. An, L. Qu et al., “A study based on self-similar network traffic model,” in 2015
Sixth International Conference on Intelligent Systems Design and Engineering Ap-
plications (ISDEA). IEEE, 2015, pp. 73–76.

65

http://ithitman.blogspot.com/2013/02/enabling-tcp-timestamp-linux-and-windows.html
http://ithitman.blogspot.com/2013/02/enabling-tcp-timestamp-linux-and-windows.html

THIS PAGE INTENTIONALLY LEFT BLANK

66

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

67

	Introduction
	Proliferation of Cloud Computing
	Problem Statement
	Research Questions
	Thesis Organization

	Background
	Cloud Architecture
	Cloud Security
	Co-Location Attacks and Detection
	Device Fingerprinting with Clock Skews

	Methodology and Analysis
	Single-Server Experiment
	Searching for Better Regression Methods
	Type I Hypervisor Experiment
	Timestamp Simulation
	Optimizing Wave Rider

	Public Cloud Experiments
	Validation of Cloud Testing Methods
	Analysis of Known Co-Located Instances

	Conclusion
	List of References
	Initial Distribution List

