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USING SHIFTING MASSES TO REJECT AERODYNAMIC
PERTURBATIONS AND TO MAINTAIN A STABLE ATTITUDE IN

VERY LOW EARTH ORBIT

Josep Virgili-Llop∗, Halis C. Polat† and Marcello Romano‡

The aerodynamic forces are the main orbital and attitude perturbations at very low
orbital altitudes (.450 km). To minimize them, it is desirable to design spacecraft
with their center-of-mass (CoM) as close as possible to the spacecraft’s center-of-
pressure (CoP). Design constraints, poorly understood aerodynamics and environ-
ment variability, prevent this CoP and CoM match. The use of internal shifting
masses, actively changing the location of the spacecraft CoM, and thus modu-
lating, in direction and in magnitude, the aerodynamic torques is proposed as a
method to reject these disturbances. First, the equations of motion of a spacecraft
with internal moving parts are revisited. The atmospheric environment and the
aerodynamic properties of a spherically shaped spacecraft are then provided. A
single-axis controller is used to analyze the disturbance rejection capability of the
method with respect to several parameters (shifting mass, shifting range and alti-
tude). This analysis shows that small masses and a limited shifting range suffice if
the nominal CoM is relatively close to the estimated CoP. For the full three rota-
tional degrees-of-freedom analysis, a quaternion feedback controller and a linear-
quadratic regulator are used. Finally, a practical implementation on a 3U CubeSat
using commercial-off-the-shelf components is provided, demonstrating the tech-
nological feasibility of the proposed method.

INTRODUCTION

Operating at lower altitudes can provide several benefits to Earth observation missions.1, 2 By
lowering the operational altitude, the resolution of a given optical instrument, the radiometric per-
formance of the sensor and the geospatial accuracy of the imagery are improved. For radar payloads,
either the antenna size or the transmission power can be decreased. Furthermore, the launcher can
usually deliver more payload at lower altitude orbits or, for a given spacecraft mass, a smaller and
potentially more cost-effective launcher can be used. Although the orbital decay caused by aerody-
namic drag is perceived as the main drawback of these very low altitude orbits, some studies suggest
that the cost-effectiveness of the system can be increased by reducing the operational altitude.3

The presence of strong aerodynamic forces can also be an advantage. As the lifetime is reduced,
there is no need to de-orbit spacecraft at their end-of-life. Space debris also decay at a faster rate,
reducing the collision risk and greatly increasing the required object density to generate a Kessler
syndrome runaway.4 Furthermore, the aerodynamic forces can also be used for attitude and orbit
control.5–10
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Despite the aerodynamic forces potential use, for certain missions it may be desirable to mini-
mize their perturbations. An effective and conceptually simple measure to lower the aerodynamic
forces for a given operational altitude is to reduce the spacecraft’s cross section area exposed to the
incident flow. For this very reason, vehicles operating at very low altitudes tend to be slender.11, 12

To minimize the attitude perturbation it is also desirable to design spacecraft with their center-of-
mass (CoM) as close as possible to the spacecraft’s center-of-pressure (CoP), minimizing the force
lever arm and reducing the disturbance torque. The CoP location is uncertain as spacecraft aero-
dynamics are not well understood13, 14 and due to environment variability.15, 16 Additional practical
design constrains on the location of the CoM make the realization of an overlapping CoP and CoM
impossible in practice.

The orbit range commonly known as Low Earth Orbit (LEO) is usually defined as those orbits
whose mean altitude extends up to 2000 km.17, 18 As the aerodynamic forces are only dominant in
the lower part of the LEO range the term Very Low Earth Orbits (VLEO) is used in this paper to
make clear that the considered orbit range only extends up to ∼450 km in altitude.1, 2

Attitude perturbations can be compensated for by using traditional attitude control actuators. At
very low altitudes the aerodynamic disturbance magnitude can be significant and can present a sec-
ular component. In this paper, the use of a set of internal shifting masses, actively changing the
location of the spacecraft CoM, and thus modulating, in direction and in magnitude, the aerody-
namic torques is proposed as a method to stabilize a spacecraft.

This method is not proposed as a complete substitute to traditional actuators but rather as a com-
plement. When the shifting masses reject the aerodynamic disturbances the use of other actuators is
reduced, potentially delaying their saturation, and potentially saving power and mass.

The use of shifting masses as attitude control actuators has already been proposed in the past
to help detumble spacecraft,19, 20 control the coning motion of a spinning spacecraft,21–23 control
the pitch and yaw of solar-sails24–26 and, in general, to complement traditional attitude control
actuators.27–29

Of particular interest is the work by Chesi30 who proposes the use of aerodynamic drag to gen-
erate attitude control torques modulated in magnitude and direction by actively shifting a set of
internal masses. As the aerodynamic torque is perpendicular to the aerodynamic force (i.e. to the
relative flow vector), the system is under-actuated and it needs to be augmented by other actuators.
Although that particular work, simplifies the dynamic effects of the shifting masses, ignores the
variable nature of the Earth’s atmosphere and assumes that the aerodynamic properties are known
and constant, it shows the conceptual feasibility of using shifting masses to control the aerodynamic
torques. In particular, it shows that by using a set of three shifting masses augmented by reaction
wheels or magnetic torquers and using an adaptive non-linear feedback control law, a spacecraft
can be slowly brought, from any initial attitude and angular velocity, to a desired attitude while
minimizing the use of the reaction wheels or magnetic torquers.

The work presented in this paper builds upon the original concept by Chesi and proposes the
use of shifting masses to reject the aerodynamic disturbances and stabilize the spacecraft’s attitude,
considering the variability and uncertainty of the atmosphere and of the aerodynamic properties.
Furthermore, by exploiting the ability to control the aerodynamic torques, other disturbances, such
as gravity-gradient, residual magnetic dipole, and solar radiation pressure can also be partially com-
pensated helping further reduce the use of traditional actuators to keep the spacecraft stable.

To keep the analysis as general as possible, a spherically shaped spacecraft will be assumed.
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Although it may seem that this is a simplistic case, a spheric shape can already be used to illustrate
the uncertainty on the aerodynamic properties without dwelling into specific shapes.

This paper is organized as follows. First, the equations of motion of a spacecraft with internal
moving parts are revisited.19, 31 The uncertain nature of the aerodynamic disturbance caused by a
variable atmosphere and the uncertain aerodynamics is then presented. A one rotational degree-of-
freedom reduced model with one shifting mass driven by a Proportional-Integral-Derivative con-
troller (PID) is then introduced. The disturbance rejection capability of the system with respect
to several parameters (shifting mass, shifting range and operating altitude) is explored, showing
that small masses and limited shifting ranges suffice if the nominal CoM is relatively close to the
estimated CoP. The yaw rotation axis is used for the reduced model as the primary effects of at-
mospheric co-rotation and wind are on this axis. A full three degrees-of-freedom case with two
shifting masses driven by a quaternion feedback based controller moving along the pitch and yaw
axes and augmented by an ideal actuator in roll is later examined. Finally, a practical implemen-
tation, only using Commercial-Off-The-Shelf (COTS) components, on a 3U CubeSat and using a
Linear Quadratic Regulator (LQR) controller is presented. This demonstrates that it is technically
feasible to implement such a control method in nanosatellites.

MASS AND INERTIA MODEL

The spacecraft hosting the shifting masses (host spacecraft) is assumed to be a homogeneous
density sphere with a discrete fixed point mass. This discrete fixed mass allows to displace the CoM
of the host spacecraft from the sphere’s geometric center. A homogeneous density sphere mass is
MS = ρS4/3πR

3 and its inertia IS = ρs8/15πR
5, with ρS denoting the sphere’s density and R its

radius. The discrete mass MP = κMS can be expressed as a mass fraction κ with respect to the
sphere’s mass Ms. The total mass of the host vehicle is then M0 =MS (1 + κ).

Let the host spacecraft’s CoM define the origin of the spacecraft’s body axes B0 with the fixed
point mass located along the roll axis î as depicted in Figure 1. If the distance between the point
mass and the sphere’s center is denoted by dMP

, the combined inertia of the host vehicle I0 can
be computed using Eq. (1). If dMP

> 0 the CoM will be located in the positive side of î and if
dMP

< 0 then the CoM will be in the negative side of î.

I0 = IS +
MS (1 + κ)

κ

 0 0 0

0 d2
MP

0

0 0 d2
Mp

 (1)

Note that the host spacecraft is symmetric with respect to the roll axis î and thus the definition of
the pitch ĵ and yaw k̂ axes is arbitrary. The goal of the control is then to align the body axes B0

with the orbital frame.

To this host vehicle, whose mass and inertia properties are fixed, known and constant, a set of N
internal shifting masses mn is added, altering the mass, CoM location and inertia of the resulting
combined system. The general arrangement of the system is shown in Figure 1. As the body
reference frame is defined with respect to the CoM of the host spacecraft (excluding the shifting
masses) the combined system’s CoM (including the shifting masses) will not be located at the origin
of the body reference frame B0.
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Figure 1. Schematics of the Spheric Spacecraft, with the Fixed Mass and the Shifting Masses .

DYNAMIC MODEL

The equations of motion for a system of connected rigid bodies will be used in order to take
into account the dynamic effects of the shifting masses. This fundamental equation is given by Eq.
(2).19, 31

τ = Ḣ + S × a (2)

In Eq. (2) τ denotes the external torques applied at the reference point, Ḣ is the time derivative of
the system’s angular momentum, S is the system’s first moment of mass with respect the reference
point and a denotes the inertial acceleration of the reference point. This reference point is considered
to be arbitrary and moving in an arbitrary manner. It is interesting to note that if the acceleration of
the reference point is zero (a = 0) or if the reference point is selected as the system’s CoM (S = 0)
then the usual expression τ = Ḣ is recovered.

Without loss of generality, the host vehicle CoM (origin ofB0) will be used as the reference point.
This assumption is useful, as by definition, the host vehicle mass M0 and inertia I0 are constant in
B0 and as the movement of the shifting masses is known with respect to the host spacecraft.

The N shifting masses have their own reference frames Bn, with their origin in their own CoM
and with arbitrary orientation. The inertia of the shifting masses in Bn will be denoted as IBn

n and
in B0 will be denoted as simply In.

The location of Bn with respect to B0 will be denoted as rn. The ṙn and r̈n terms will denote the
inertial linear velocity and acceleration of the shifting mass in B0 and ω0 the angular velocity of the
B0. The inertial angular velocity of the shifting mass ωn can be computed as in Eq. (3), with ωBn

n

being the relative angular velocity of the shifting mass reference Bn with respect to the host vehicle
reference B0.

ωn = ω0 + ωBn
n (3)

In such a multiple body system, the total angular momentum H is composed of the sum of the host
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vehicle and shifting masses angular momentum as shown in Eq. (4).

H = H0 +
N∑
n=1

Hn (4)

H0 = I0ω0 (5)

Hn = Inωn +mnrn × ṙn (6)

The linear inertial velocity of the shifting mass ṙn can be simply computed using the following
equation, with ṙ′n being the relative velocity of the shifting mass in B0.

ṙn = ṙ′n + ω0 × rn (7)

To use Eq. (2) the angular momentum needs to be differentiated. Deriving Eq. (4) it follows that the
total angular momentum time derivative is the sum of the host vehicle and shifting masses angular
momentum time derivatives.

Ḣ = Ḣ0 +
N∑
n=1

Ḣn (8)

Ḣ0 = I0ω̇0 + ω0 ×H0 (9)

Ḣn = Inω̇n + ωn ×Hn +mnrn × r̈n (10)

ω̇n = ω̇0 + ω̇Bn
n (11)

The inertial acceleration of the shifting masses can be written as follows.

r̈n = ω0 × (ω0 × rn) + ω̇0 × rn + 2ω0 × ṙ′n + r̈′n (12)

Note how ṙ′n and r̈′n are the relative velocities and accelerations of shifting masses and thus can be
measured and known. The first moment of mass is then defined as follows.

S =
N∑
n=1

mnrn (13)

The inertial acceleration of the reference point (origin of B0) can then be written as follows.

a = r̈0 = r̈c − r̈ (14)

The r̈ term denotes the acceleration of the system’s CoM with respect to B0 (the relative movement
of the system’s CoM) and r̈c is the inertial acceleration of the system’s CoM (due to the external
forces F ). This r̈c acceleration can be easily computed using Newton’s second law and r̈ is obtained
by computing the relative CoM acceleration.

r̈c =
F

M +
∑N

n=1mn

(15)

r̈ =

∑N
n=1mnr̈n

M +
∑N

n=1m
(16)
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With the equations above, Eq. (2) can be expanded as in Eq. (17).

I0ω̇0 + ω0 × I0ω0 +
N∑
n=1

Inω̇n +
N∑
n=1

ωn × (Inωn +mnrn × ṙn) +
N∑
n=1

(mnrn × r̈n) + ...

...+
1

M +
∑N

n=1mn

(
N∑
n=1

mnr̈n

)
×

N∑
n=1

mnrn = τ +
F

M +
∑N

n=1mn

×
N∑
n=1

mnrn (17)

The aerodynamic effects on the attitude dynamics of the system are represented by the external
torques τ and forces F . Note that the torques τ are applied at the reference point (the host vehicle
CoM) and not with respect to the system’s CoM. The term in Eq. (17) that contains the external
forces F accommodates this difference.

Point mass simplification

A useful simplification is obtained when it is assumed that the shifting masses are point masses
and do not have inertia In = 0. Under this assumption, the general equations of motion (Eq. (17))
can be simplified as in Eq. (18).

I0ω̇0 + ω0 × I0ω0 +

N∑
n=1

(mnrn × r̈n) +
1

M +
∑N

n=1mn

(
N∑
n=1

mnr̈n

)
×

N∑
n=1

mnrn = ...

... = τ +
F

M +
∑N

n=1mn

×
N∑
n=1

mnrn (18)

For a single point mass and introducing the concept of reduced mass µ as in Eq. (19), the equation
can be further simplified to finally obtain Eq. (20) and thus recover the expression from Edwards.19

µ =
mM

M +m
(19)

I0ω̇0 + ω0 × I0ω0 + µrm × r̈m = τ +
µF

M
× rm (20)

AERODYNAMIC MODELING

The residual atmosphere present at orbital altitudes cause aerodynamic forces. Orbital decay is
the main effect of aerodynamic drag but these aerodynamic forces will also induce aerodynamic
torques and thus perturb the spacecraft’s attitude.

In general, Eqs. (21)-(22) are used to compute aerodynamic forces, with ρ denoting the atmo-
spheric density, V the relative velocity of the spacecraft with respect to the flow, Aref an arbitrary
reference area (usually taken as the cross section), and CD and CL the drag (anti-velocity) and lift
(normal to velocity) coefficients respectively.

D =
1

2
ρV 2ArefCD (21)

L =
1

2
ρV 2ArefCL (22)
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The atmospheric density ρ, the relative velocity with respect to the flow V and the force coefficients
CD andCL need to be estimated before the aerodynamic forces can be computed. Unfortunately, the
atmospheric environment is very variable and poorly predictable15, 16 and spacecraft aerodynamics
are not particularly well understood.13, 14

Realistic atmospheric and spacecraft aerodynamic models will be used to obtain what will be
assumed as the truth values. The controller will then estimate these magnitudes using simplified
aerodynamics and atmospheric models. This arrangement ensures the presence of realistic atmo-
spheric variability and realistic aerodynamic properties, while emulating the uncertainty that the
controller will be subjected to.

Atmospheric Density Model

The NRLMSISE-0032 atmospheric model will be used to estimate the atmospheric density ρ.
This specific atmospheric model offers a good balance between model accuracy and computational
complexity.33

The Earth’s atmosphere not only exhibits vertical density variations but also horizontal variability
(e.g. the day-to-night density changes). Figure 2 shows the variation from the mean density for
a 10:30 Local Time of Ascending Node (LTAN) circular Sun-synchronous orbit at different orbit
altitudes in moderate solar activity.34 Figure 2 exemplifies how variable the density and by extension
the aerodynamic forces and torques are.
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Figure 2. Density Variations During a Circular Sun-Synchronous Orbit at Different
Operational Altitudes.

Wind Model

The atmosphere co-rotates with the Earth35–37 and there is atmospheric time-varying wind.38, 39

These two effects will make the direction and magnitude of the relative flow V differ, in direction
and in magnitude, from the inertial velocity.

The atmospheric wind is also highly variable, spatially and temporally. Figure 3a shows an
example distribution of the wind according to the HWM9340 model at 450 km with moderate solar
activity34 during northern hemisphere summer solstice. As the atmospheric wind has not been as
extensively studied as other atmospheric properties, the existing models are less accurate15 and

7



so the HWM0741 state-of-the-art wind model will be used. It has to be noted that this model only
provides zonal and meridional wind profiles representative of the climatological averages for various
geophysical conditions. Vertical winds, which usually have smaller magnitudes, are not included in
the model.

Figure 3b shows the sideslip angle caused by the atmospheric co-rotation and wind (using the
HWM07 model) assuming that a spacecraft is pointed along the inertial velocity in a 10:30 LTAN
circular Sun-synchronous orbit at different altitudes in moderate solar activity.34

(a)
Argument of latitude [deg]

0 50 100 150 200 250 300 350

Y
a
w

 a
n
g
le

 [
d
e
g
]

-5

-4

-3

-2

-1

0

1

2

3

4
200 km
300 km
400 km

(b)

Figure 3. Wind Pattern and Sideslip Angle.

Gas-Surface Interaction Model

In the orbital environment (>200 km in altitude) the residual atmosphere can no longer be con-
sidered as a continuum but needs to be considered as a rarefied-gas due to its low density.42 For
typical spacecraft sizes, the mean free path of a gas particle is much greater than a representative
spacecraft dimension.2 Consequently, it can be assumed that the interactions between gas particles
(collisions) are very rare, and thus they can be safely ignored. The Gas-Surface Interactions (GSI)
completely dominate the interaction of the spacecraft with the surrounding gas.

There are several GSI models42 and here the Sentman model43 will be used as it is the de facto
standard to compute spacecraft aerodynamic coefficients at low orbital altitudes.13, 44 A comprehen-
sive description of the models used in spacecraft aerodynamics can be found in other references.13, 14

The Sentman model takes into account the thermal velocity distribution of the gas particles and
assumes that all the incident gas particles that collide with a surface are adsorbed to be later diffusely
reemitted. In the LEO range this seems to be true from the limited available orbital data.45, 46 The
particles are reemitted with partial thermal equilibrium with the spacecraft surface. The degree of
thermal equilibrium is denoted by the energy accommodation coefficient σa. In this model, the Cd
and Cl can be written, following Sutton notation,47 as in Eqs. (23) and (24).

CD =

´
CddA

Aref
Cd =

[
P√
π
+ γQZ +

γ

2

vr
v∞

(
γ
√
πZ + P

)]
(23)
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CL =

´
CldA

Aref
Cl =

[
lGZ +

l

2

vr
v∞

(
γ
√
πZ + P

)] dA

Aref
(24)

γ = cos (ϕ) l = sin (ϕ) (25)

G =
1

s2
∞

P =
1

s∞
e−γ

2s2∞ (26)

Q = 1 +G Z = 1 + erf (γs∞) (27)

The ϕ term denotes the angle between the flow and the local normal vector (0 deg when the surface
is normal to the flow and 90 deg when it is parallel), vr the most probable velocity of the reemitted
gas particles, v∞ the relative bulk velocity between the spacecraft and the incident gas particles, and
s is the ratio between v∞ and the thermal velocity of the gas vth (s = v∞

vth
).

According to Koppenwallner48 the vr/v∞ ratio can be written as in Eq. (28) with Rg denoting
the gas constant and Tw the temperature of the surface (wall).

vr
v∞

=

√
1

2

[
1 + σa

(
4RgTw
v2
∞
− 1

)]
(28)

From the limited orbital data available the energy accommodation coefficient is between 0.8 and
1.44 The spacecraft surface temperature will be assumed constant at Tw = 300K.

Note that the drag and lift coefficients are dependent on the atmospheric parameters. As the
atmosphere has temporal and spatial variability the force coefficients will be variable during an
orbit. These changes in the force coefficients are small and can be safely ignored given that the
perturbations included in the environment models (e.g. changes in atmospheric density) are orders
of magnitude larger. Although, the Sentman model can provide the lift coefficient CL it is, in
general, an order of magnitude smaller than the drag coefficient CD and thus it will be neglected in
this analysis.49

Aerodynamic Properties of a Sphere

Due to the sphere symmetry, the drag coefficient is constant regardless of the orientation of the
sphere with respect to the flow. Figure 4 shows the drag coefficient of a sphere (with Aref =
πR2), clearly showing how the drag coefficient changes with altitude, solar activity and energy
accommodation coefficient.

The usual body reference frame with Euler angles roll φ, pitch θ and yaw ψ will be adopted.
When roll, pitch and yaw are zero the body frame is aligned with the orbit frame, which has k̂
pointing nadir, î along the inertial velocity vector and ĵ completing the right hand triad. The relative
flow direction will be defined with its own reference frame where the flow direction will be in the
−îflow axis. The orientation of this flow reference frame will be denoted by a flow pitch θflow and
flow yaw ψflow.

Let ROB denote the rotation matrix from the body to the orbital frame and ROF the rotation
matrix from flow to orbital frame. Therefore, RBF = RTOBROF is the rotation from the flow to the
body reference frame. With these definitions the aerodynamic force in body axes can be written as
in Eq. (29), with D denoting the aerodynamic drag.

Faero = RBF

 −D0
0

 (29)
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Figure 4. Variation of a Sphere Drag Coefficient with Altitude, Solar Activity (a) and
Energy Accommodation Coefficient (b).

The CoP of the sphere is aligned with the direction of the flow îflow and its location along this axis
can be computed using Eq. (30).

dCoP

R
=

´
Cd (ϕ)xdA

πR2CD
=

´ π
0

´ 2π
0 Cd (θsc, φsc) sin

2 φsc cos θscdθscdφsc

πCD
≈ 0.66 (30)

Let dc = κdMP
/ (1 + κ) denote the distance between the center of the sphere and the origin of the

body frame. The location of the spacecraft CoP in body axes can then be written as in Eq. (31).

pCoP =

 −dc

0
0

+RBF

 dCoP

0
0

 (31)

As the relative flow, the CoP and the center of the sphere, are aligned there is no torque with respect
to the center of the sphere. The aerodynamic torque with respect the host vehicle CoM is then only
a function pCoP as shown in Eq. (32). It can then be assumed that torque-wise, the effective CoP is
located at the center of the sphere.

τaero = pCoP × Faero =

 −dc

0
0

× Faero (32)

It is useful to simplify these aerodynamic torque equations when the spacecraft is in close vicinity
of its target attitude φ ≈ 0, θ ≈ 0, ψ ≈ 0. As the atmospheric co-rotation and wind do not cause
the relative flow to have large deviations with respect to the inertial velocities the θflow and ψflow

magnitudes are also small. Under these assumptions, the Euler angles of the spacecraft with respect
to the flow (rotation represented by RBF ) can be approximated using φ′ = −φ, θ′ = θflow − θ and
ψ′ = ψflow − ψ (which will also be small angles) and the aerodynamic forces in body axes can be
subsequently approximated by Eq. (33).

Faero ≈ −D

 cos (θflow − θ) cos (ψflow − ψ)
cos (θflow − θ) sin (ψflow − ψ)
− sin (θflow − θ) cos (ψflow − ψ)

 ≈ D
 −1−ψ′

θ′

 (33)
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A simplified expression for the aerodynamic torque can also be obtained using the same small angle
approximation as shown in Eq. (34).

τaero ≈ D

 0
θ′dc
ψ′dc

 (34)

From Eq. (34) it can be clearly seen that the equilibrium attitude is that attitude where the flow, host
vehicle CoM and the sphere center are aligned (θ′ = ψ′ = 0). When there is a misalignment of this
equilibrium attitude, the aerodynamic torques will provide a restoring torque if the sphere center
is behind the host vehicle CoM dMp > 0, making the spacecraft oscillate around this equilibrium
point (marginally stable). If the host vehicle CoM is leading the center of the sphere dMp < 0 the
system becomes unstable.

It is important to note that by definition the host vehicle CoM is displaced with respect to the
sphere center only along the î direction. In a generic case, the CoM can be displaced in any direction
and then a secular aerodynamic torque will appear when the spacecraft is at the target attitude
(ignoring the variability of the relative flow direction). It is then desirable to have the CoM and
effective CoP (center of the sphere) aligned with the î axis in order to avoid these secular torques.

As it is expected that spacecraft operating in VLEO take this issue into consideration it has been
assumed that the CoM and CoP for the target stable attitude are reasonably aligned. Any resid-
ual misalignment can be corrected by a bias in the position of the shifting masses (resulting in a
reduction of their shifting range and control authority).

Table 1. Numerical Parameters.

Parameter Value

κ 0.1

ρs 500 kgm3

CD 2.2

σCD
0.22 (10 % of the nominal CD = 2.2)

Solar activity indices Moderate activity as in34

REDUCED MODEL WITH ONE ROTATIONAL DEGREE-OF-FREEDOM

It is worth to start the analysis with a reduced model that only considers one rotational degree-
of-freedom. This analysis will provide insight into the rejection capabilities and the shifting mass
requirements with respect to the system parameters. It is also of particular interest to explore how
the operating altitude drive the required shifting mass and range in order to meet pre-specified per-
formance requirements. The yaw ψ rotation has been selected for this one-dimensional analysis as
the co-rotation and predominant wind act on this particular axis. Additionally, a single shifting point
mass will be used and the controller will be based on a reduced dynamic model (i.e. linearized). The
goal of the shifting mass is then to stabilize the spacecraft around ψ = 0 and reject the disturbance
induced by ψflow.
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Under these assumptions, the equation of motion in Eq. (20) can be further simplified as in Eq.
(35). The position, velocity and acceleration of the unique shifting mass with respect to the body
axes is denoted by x, y and their time derivatives by ẋ, ẏ.[

Iz + µ
(
x2 + y2

)]
ψ̈ + µ

[
2
(
xẋ′ + yẏ′

)
ψ̇ + xÿ′ − yẍ′

]
= τz +

µ

M
[Fxy − Fyx] (35)

The aerodynamic disturbances have low frequencies (similar to the orbit frequency) and so it is
expected the shifting masses motion will be also slow (small velocities and accelerations). Addi-
tionally, as the shifting mass m is small compared to the host vehicle mass µ � 0, the dynamic
effects of the shifting mass motion can be safely neglected.

As the shifting range is also small the change on the system’s inertia is also small and thus it
will be considered as constant (using the initial shifting masses position x0 and y0). These assump-
tions further simplify the equations of motion to Eq. (36). It also has to be noted that only the
aerodynamic forces and torques will be considered.[

Iz + µ
(
x2

0 + y2
0

)]
ψ̈ = τz +

µ

M
[Fxy − Fyx] (36)

Using the aerodynamic properties of a sphere and using the small angles approximation, Eq. (37)
can be obtained. [

Iz + µ
(
x2

0 + y2
0

)]
ψ̈ = D

(
ψ′dc +

µ

M

[
−y + ψ′x

])
(37)

It is immediately clear from Eq. (37) that to generate a control torque it is much more effective for
the mass to move perpendicular to the relative flow (in this case y) than parallel to it (along x). So
in order to limit the system complexity, it will be assumed that the shifting mass only moves in y
(perpendicular to the flow if ψ′ is small). Shifting the mass only along one direction reduces the
volume and the complexity of the shifting mass system. It is understood that Eq. (37) has been
simplified for small angles and thus shifting the mass along y will be perpendicular to the flow
direction only for ψ = ψflow = 0. If there is a large misalignment the y shifting mass will start to
loose efficacy.

Another important consideration that it is apparent from Eq. (37) is that the maximum torque
provided by the shifting mass is τmax = ±D m

M+mymax. It is clear that the mass of the shifting
mass and the available shifting range are the two parameters at the designer disposal.

The atmospheric density and the magnitude and direction of the flow are inherently unknown and
thus an estimate of the density (based on the altitude) will be used and the incident flow will be
assumed to match the inertial velocity magnitude and direction. Under these conditions the sys-
tem equations can be written as Eq. (38), which corresponds to the transfer function written in Eq.
(39). This represents a simple second order Single Input Single Output system and a Proportional-
Integral-Derivative (PID) controller can be easily designed and implemented to reject the aerody-
namic disturbances while keeping the spacecraft stable at ψ = 0.[

Iz + µ
(
x2

0 + y2
0

)]
ψ̈ = D

(
−ψ

[ µ
M
x0 + dc

]
− µ

M
y
)

(38)

T (s) =
ψ (s)

y (s)
=

b

I ′s2 + k
(39)

I ′ = Iz + µ
(
x2

0 + y2
0

)
(40)
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k = D
( µ
M
x0 + dc

)
(41)

b = −D µ

M
(42)

To explore the design space and the system response it will be assumed that the PID controller is
tuned so that the closed-loop system has a specific bandwidth and phase margin. In these fixed
controller conditions a Monte Carlo analysis can be performed to extract the required shifting mass
range for a given spacecraft size, aerodynamic properties and environmental conditions. Although
the controller is build upon a linearized model, the numerical simulations use the full dynamic
equations and the high-fidelity environment models. Additionally, the actual drag coefficient used in
the numerical simulation differ from the one used to design the controller (emulating the uncertainty
on the aerodynamic properties). Although the CoP is considered known, given that a spherical shape
is used, the uncertainty on the drag coefficient can also be used to emulate an uncertainty in the CoP
location. Sun-synchronous circular orbits with 10:30 am LTAN have been used.

The Monte Carlo simulations are initialized with ideal stable attitudes ψ0 = 0 and ψ̇ = 0 and
thus emulate steady state conditions. Each Monte Carlo run simulates 4 consecutive orbits and 100
simulations are used to extract the statistics (with error bars denoting the 95% confidence interval).
The values shown in Table (1) are used for the simulations.

Figure 5 shows the maximum shifting range and attitude error (3σ values) for a 10 cm radius
spherical satellite for different mass fractions of the shifting mass m/M and for a CoM leading the
CoP by 3% of the sphere radius. Figure 6 shows how the required shifting range and attitude error
change for different CoM to CoP distances dp and with a fixed shifting mass fraction kept at 3% of
the host vehicle mass M .
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Figure 5. Shifting Range (a) and Attitude Error (b) for Different Mass Fractions.

The system bandwidth in the controllers used to generate Figures 5 and 6 has been kept at four
times the natural frequency of the system 4ωn and the phase margin has been set to 30 deg. This
allows a comparison of the system performance even if the altitude is changed.

For a 10 cm radius case it is quite clear that the proposed method is able to reject the aerodynamic
disturbances and maintain a reasonably stable attitude (even for unstable configurations) with mass
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Figure 6. Shifting Range (a) and Attitude Error (b) for Different CoP to CoM Distances.

fractions and shifting ranges requirements compatible with the spacecraft mass and dimension con-
strains. As expected the required mass fraction and required shifting range decrease as the CoP gets
closer to the CoM. Also, unstable configuration dp < 0 requires higher shifting range than their
stable counterparts.

The attitude error, which is constant in Figure 5 due to the constant bandwidth employed, can be
decreased if the bandwidth of the close-loop system is increased. The required shifting range can be
decreased by decreasing the phase margin. Both measures have practical limits. By decreasing the
phase margin the controller is less robust and increasing the bandwidth increases the gains which
imposes more strict requirements on the sensors and actuators. It is also interesting to note that
the relative shifting range increases slightly with altitude as a relative larger shifting is required to
generate the same acceleration at higher altitudes where there atmosphere is less dense.

The tuning employed in this examples appears to give satisfactory results with the selected pa-
rameters and uncertainties. These examples illustrate the general trends and provide performance
estimates that can be later used as initial guesses.

THREE ROTATIONAL DEGREES-OF-FREEDOM CASE

The previous analysis has been conducted using a reduced model and only considering a single
rotational degree-of-freedom. That analysis is useful as provides generic results and shows the
trends when the different parameters are varied. In this section a simple controller for the three
rotational degree-of-freedom case will be presented.

Shifting mass driver

All the proposed control laws for the shifting masses specify their position and thus a driver that
moves the shifting masses towards that location is required. A driver using a simple PID controller
with the acceleration and shifting mass velocity limited to R/10m/s2 and Rm/s respectively has
been employed.
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Limiting the velocity and acceleration is particularly important when there are abrupt changes
of the shifting masses position or velocity (i.e. during saturation), which could lead to significant
dynamic effects that have been neglected during the controller design.

It has to be noted that although in this analysis the acceleration and velocity limits are tight to the
sphere radius, smaller spacecraft, with proportionally less inertia, are more sensitive to the shifting
masses internal movement and thus smaller limits may be required.

Quaternion feedback with partial feedback linearization

A more general approach that does not rely on linearization uses the well known quaternion
feedback with partial feedback linearization.50, 51 The estimated aerodynamic torque τ̂aero is used
to help with the feedback linearization but the terms related the shifting masses motion are left out
as they are assumed to be negligible. Under this control law the requested torque can be written as
in Eq. (43).

Treq = −kpIqe − kdIωreq + ω0 × Iω0 − τ̂aero (43)

In Eq. (43) qe denotes the vector elements of the error quaternion,50, 51 ωreq denotes the target
angular velocity (for a stable attitude with respect to the orbit frame it only includes a pitch rate that
matches the orbital motion), I the inertia matrix and the kp and kd scalars denote the proportional
and derivative gains respectively.

Some guidance to select the gains can be obtained by considering small angles, a single degree-
of-freedom and that the shifting mass motion dynamics effects are negligible. In that case, the
system reduces to a second order system and thus the proportional kp and derivative gains kd can be
related to the closed-loop natural frequency ωcl and damping ratio ξ as Eq. (44).51

kp = 2ω2
cl kd = 2ξω (44)

The quaternion feedback is particularly suited when large attitude misalignments are present and
thus is will be employed here for a detumbling scenario. If it is assumed that the system is composed
by three shifting masses each moving along the roll î, pitch ĵ and yaw k̂, the aerodynamic torque
provided by the shifting masses can be be written as follows (see Eq. (18)).

τsm =
Faero

M +m1 +m2 +m3
×

 m1r1

m2r2

m3r3

 (45)

With m1, m2 and m3 denoting the shifting masses and r1, r2 and r3 their shifting ranges along î, ĵ
and k̂ respectively.

As the controller has no information about the actual direction and magnitude of the aerodynamic
force, an estimate F̂aero needs to be used in the steering logic. A relative flow matching the inertial
velocity and a mean atmospheric density are used to obtain this estimate.

The shifting masses position to achieve the requested perpendicular torque can be obtained using
Eq. (46). Note that Eq. (46) is equivalent to the expression used to drive the magnetic torquers
(replacing the magnetic field with the aerodynamic force F̂aero and the magnetic moment with the
mr product).  m1r1

m2r2

m3r3

 =
τreq × F̂aero (M +m1 +m2 +m3)

F̂aero · F̂aero

(46)
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It is clear from Eq. (45) that the shifting masses aerodynamic torque is perpendicular to the Faero

and thus other actuators should provide the required torque that is parallel to Faero.

To reduce the complexity of the system only two shifting masses shifting along pitch ĵ or yaw
k̂ will be used (thus r1 = 0) and a single ideal actuator will be acting along the roll î axis. This
configuration has been used to stabilize a 25 cm spacecraft with a random initial attitude and an
initial angular velocity in a random orientation with a magnitude between ±0.5 deg/s (chosen with
a random uniform distribution). Figure 7 shows the mean and the 3σ maximum stabilization time
obtained by a 25 sample Monte Carlo simulation. The control law gains have been set according
to Eq. (44) with a bandwidth of twice the spacecraft natural frequency and ξ = 0.7. The shifting
masses represent 6% of the host vehicle mass (3% each shifting mass) and the CoM leads the CoP
by 3% of the spacecraft radius.

2 2.5 3 3.5 4
Mass fraction of the shifting mass [%M]

0

5

10

15

3
σ

 d
e
tu

m
b
lin

g
 t
im

e
 [
O

rb
it
s
]

Mean

Mean + 3σ + 95% CI

Mean + 3σ

Figure 7. Stabilization Time.

PRACTICAL IMPLEMENTATION ON A 3U CUBESAT

Small spacecraft are more sensitive to aerodynamic disturbances due to their high area to inertia
ratio. A CubeSat operating at low altitude is thus a good first candidate to implement the proposed
aerodynamic disturbance rejection method.

A preliminary design of the “Shift-Mass Sat” 3U CubeSat with three orthogonal shifting masses
is shown in Figure 8. All the components, subsystems and shifting masses, are COTS materials to
ensure their commercial availability.

The three 150 g shifting masses approximately take 75% of the 1U volume and have a 70 mm
useful shifting range. Magnetic torquers augment the shifting masses and complete the actuator set.

This design is then used for a simulation using a LQR control. The CoM position, mass, inertia,
shifting mass and travel range, magnetic dipole moment of the magnetic torquers and aerodynamic
properties are derived from the prototype design. For this particular design, the shifting masses have
a 1.82 mm control authority on the vehicle’s CoM position to modulate the aerodynamic torque
direction and magnitude.

The LQR controller is used for detumbling and to keep the spacecraft stable. A gain schedule
scheme, where less aggressive gains are employed during the detumbling phase. is employed. The
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(a) (b)

Figure 8. Prototype 3U CubeSat Design (a) and Detail of the Three Orthogonal Shifting Masses (b).

initial angular velocity of the CubeSat is chosen as 0.01 rad/s in all axis and the orbit altitude is set
at 300 km. The shifting masses movement and Euler angles of one of this simulation are presented
in Figure 9.
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Figure 9. Euler Angles (a) and Shifting Masses Positions (b).

It is also worth noting that the shifting masses exhibit a bias when the spacecraft is stabilized.
This is because the CubeSat center of mass is not completely centered around the roll axis (as it was
assumed on the previous sections).

CONCLUSION

Using a set of shifting masses is a viable method to reject the aerodynamic disturbances. De-
spite the highly non-linear dynamic of a spacecraft with internal moving parts simple controllers
based on the linearized equations of motion suffice to keep the spacecraft stable with reasonable
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requirements on the attitude determination subsystem and the shifting masses (shifting range and
mass fraction). Achieving stabilization from arbitrary initial attitude and small angular velocities. A
prototype implementation on a 3U CubeSat only using commercial-off-the-shelf components and a
linear-quadratic-regulator controller demonstrates its technological feasibility. Other types of con-
trollers, specially non-linear controllers, could be used to drive the shifting masses increasing the
performance of the system.

REFERENCES
[1] J. Virgili Llop, P. C. Roberts, Z. Hao, L. R. Tomas, and V. Beauplet, “Very Low Earth Orbit mission con-

cepts for Earth Observation. Benefits and challenges.,” Reinventing Space Conference, 18-21 November,
London, UK, Vol. BIS-RS-2014-37, 2014.

[2] J. Virgili Llop, Spacecraft Flight in the Atmosphere. PhD thesis, School of Engineering, Cranfield
University, September 2014.

[3] A. Shao, E. A. Koltz, and J. R. Wertz, “Quantifying the Cost Reduction Potential for Earth Observation
Satellites,” 12th Reinventing Space Conference, 18-20 November 2014, London, UK.

[4] J. Wertz, N. Sarzi-Amade, A. Shao, C. Taylor, and R. Van Allen, “Moderately Elliptical Very Low
Orbits (MEVLOs) as a Long-Term Solution to Orbital Debris,” 26th Annual AIAA/USU Conference on
Small Satellites, Logan, UT, Vol. SSC12-IV-6, 2012.

[5] J. Virgili Llop, P. C. E. Roberts, K. Palmer, S. Hobbs, and J. Kingston, “Descending Sun-Synchronous
Orbits with Aerodynamic Inclination Correction,” Journal of Guidance, Control, and Dynamics,
Vol. 38, No. 5, 2014, pp. 831–842.

[6] J. Virgili, P. C. E. Roberts, and N. C. Hara, “Atmospheric Interface Reentry Point Targeting Using Aero-
dynamic Drag Control,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 3, 2015, pp. 403–
413.

[7] R. Bevilacqua and M. Romano, “Rendezvous Maneuvers of Multiple Spacecraft Using Differential
Drag Under J2 Perturbation,” Journal of Guidance, Control, and Dynamics, Vol. 31, 2014/06/09 2008,
pp. 1595–1607.

[8] R. R. Kumar, D. D. Mazanek, and M. L. Heck, “Simulation and Shuttle Hitchhiker validation of passive
satellite aerostabilization,” Journal of Spacecraft and Rockets, Vol. 32, No. 5, 1995, pp. 806–811.

[9] R. R. Kumar, D. D. Mazanek, and M. L. Heck, “Parametric and classical resonance in passive satellite
aerostabilization,” Journal of Spacecraft and Rockets, Vol. 33, No. 2, 1996, pp. 228–234.

[10] M. L. Psiaki, “Nanosatellite Attitude Stabilization Using Passive Aerodynamics and Active Magnetic
Torquing,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 3, 2004, pp. 347–355.

[11] M. R. Drinkwater, R. Haagmans, D. Muzi, A. Popescu, R. Floberghagen, M. Kern, and M. Fehringer,
“The GOCE Gravity Mission: ESA’s First Core Earth Explorer,” Proceedings of the 3rd International
GOCE User Workshop, 6-8 November, 2006, Frascati, Italy, ESA, 2007, pp. 1–8.

[12] D. S. Bowman and M. J. Lewis, “Minimum Drag Power-Law Shapes for Rarefied Flow,” AIAA Journal,
2002.

[13] K. Moe and M. M. Moe, “Gas-Surface Interactions in Low-Earth Orbit,” 27th International Symposium
on Rarefied Gas Dynamics, 2010, American Institute of Physics, 10-15 July 2010, Pacific Grove, CA,
USA 2010.

[14] D. M. Prieto, B. P. Graziano, and P. C. Roberts, “Spacecraft drag modelling,” Progress in Aerospace
Sciences, Vol. 64, 2014, pp. 56 – 65.

[15] M. F. Larsen and C. G. Fesen, “Accuracy issues of the existing thermospheric wind models: can we rely
on them in seeking solutions to wind-driven problems?,” Annales Geophysicae, Vol. 27, No. 6, 2009,
pp. 2277–2284.

[16] C. Pardini, K. Moe, and L. Anselmo, “Thermospheric density model biases at the 23rd sunspot maxi-
mum,” Planetary and Space Science, Vol. 67, No. 1, 2012, pp. 130 – 146.

[17] W. J. Larson and J. R. Wertz, Space Mission Analysis and Design. Space Technology Library, 3rd:
Microcosm Press, 2005.

[18] P. W. Fortescue and J. P. W. Stark, Spacecraft Systems Engineering, 4th Edition. Wiley and Sons, Inc,
1995.

[19] T. L. Edwards and M. H. Kaplan, “Automatic Spacecraft Detumbling by Internal Mass Motion,” AIAA
Journal, Vol. 12, No. 4, 1974, pp. 496–502.

[20] B. Kunciw and M. Kaplan, “Optimal space station detumbling by internal mass motion,” Automatica,
Vol. 12, No. 5, 1976, pp. 417 – 425.

18



[21] H. Hamidi-Hashemi, “Liapunov analysis of a two dimensional unconstrained particle motion in a rigid
body spinning about the thrust axis,” Circuits and Systems, 1993., Proceedings of the 36th Midwest
Symposium on, Aug 1993, pp. 971–973 vol.2.

[22] D. M. Halsmer and D. L. Mingori, “Nutational stability and passive control of spinning rockets with
internal mass motion,” Journal of Guidance, Control, and Dynamics, Vol. 18, No. 5, 1995, pp. 1197–
1203.

[23] F. L. Janssens and J. C. v. d. Ha, “Stability of Spinning Satellite Under Axial Thrust, Internal Mass
Motion, and Damping,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 4, 2014, pp. 761–
771.

[24] B. Wie, “Solar Sail Attitude Control and Dynamics, Part 1,” Journal of Guidance, Control, and Dynam-
ics, Vol. 27, No. 4, 2004, pp. 526–535.

[25] B. Wie and D. Murphy, “Solar-Sail Attitude Control Design for a Flight Validation Mission,” Journal
of Spacecraft and Rockets, Vol. 44, No. 4, 2007, pp. 809–821.

[26] C. Scholz, D. Romagnoli, B. Dachwald, and S. Theil, “Performance analysis of an attitude control sys-
tem for solar sails using sliding masses,” Advances in Space Research, Vol. 48, No. 11, 2011, pp. 1822
– 1835.

[27] B. M. Atkins and T. A. Henderson, “Under-Actuated Moving Mass Attitude Control for a 3U Cubesat
Mission,” Advances in the Astronautical Sciences, Vol. 143, 2012, pp. 2083 – 2094.

[28] K. Kumar, Attitude Control of Miniature Satellites Using Movable Masses. American Institute of Aero-
nautics and Astronautics, 2010.

[29] Y. T. Ahn, Attitude Dynamics and Control of a Spacecraft Using Shifting Mass Distribution. PhD thesis,
The Pennsylvania State University, 2012.

[30] S. Chesi, Attitude Control of NanoSatellite Using Shifting Masses. PhD thesis, University of California,
Santa Cruz, 2014.

[31] C. Grubin, “Dynamics of a Vehicle Containing Moving Parts,” Journal of Applied Mechanics, Vol. 29,
09 1962, pp. 486–488.

[32] J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, “NRLMSISE-00 empirical model of the atmo-
sphere: Statistical comparisons and scientific issues,” Journal of Geophysical Research: Space Physics,
Vol. 107, No. A12, 2002.

[33] ECSS Secretariat, “ECSS Space Engineering - Space Environment,” Tech. Rep. ECSS-E-ST-10-04C,
ESA, 2008.

[34] ISO 14222, “ISO 14222 Space environment (natural and artificial). Earth upper atmosphere,” Tech. Rep.
ISO 14222:2013, ISO, September 2013.

[35] R. Challinor, “The apparent rotation of the upper atmosphere,” Planetary and Space Science, Vol. 16,
No. 5, 1968, pp. 557–566.

[36] D. G. King-Hele, Satellite Orbits in an Atmosphere: Theory And Application. Blackie Academic and
Professional, 1987.

[37] D. King-Hele, “The upper atmosphere as sensed by satellite orbits,” Planetary and Space Science,
Vol. 40, No. 2–3, 1992, pp. 223 – 233.

[38] D. King-Hele and D. M. Walker, “Upper-atmosphere zonal winds from satellite orbit analysis: An
update,” Planetary and Space Science, Vol. 36, No. 11, 1988, pp. 1085 – 1093.

[39] T. L. Killeen, P. B. Hays, N. W. Spencer, and L. E. Wharton, “Neutral winds in the polar thermosphere
as measured from Dynamics Explorer,” Geophysical Research Letters, Vol. 9, No. 9, 1982, pp. 957–960.

[40] A. E. Hedin, E. L. Fleming, A. H. Manson, F. J. Schmidlin, S. K. Avery, R. R. Clark, S. J. Franke,
G. J. Fraser, T. Tsuda, F. Vial, and R. A. Vincent, “Empirical wind model for the middle and lower
atmosphere.,” Journal of Atmospheric and Terrestrial Physics, Vol. 58, No. 13, 1996, pp. 1421–1447.

[41] D. P. Drob, J. T. Emmert, G. Crowley, J. M. Picone, G. G. Shepherd, W. Skinner, P. Hays, R. J. Niciejew-
ski, M. Larsen, C. Y. She, J. W. Meriwether, G. Hernandez, M. J. Jarvis, D. P. Sipler, C. A. Tepley, M. S.
O’Brien, J. R. Bowman, Q. Wu, Y. Murayama, S. Kawamura, I. M. Reid, and R. A. V. and, “An em-
pirical model of the Earth’s horizontal wind fields: HWM07,” Journal of Geophysical Research: Space
Physics, Vol. 113, No. A12304, 2008.

[42] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford Science Publi-
cations, 1994.

[43] L. Sentman, Free Molecule Flow Theory and Its Application to the Determination of Aerodynamic
Forces. Lockheed Missile and Space Co., 1961.

[44] K. Moe and M. M. Moe, “Gas-surface interactions and satellite drag coefficients,” Planetary and Space
Science, Vol. 53, No. 8, 2005, pp. 793–801.

19



[45] J. C. Gregory and P. N. Peters, “A measurement of the angular distribution of 5 eV atomic oxygen
scattered off a solid surface in Earth orbit,” Proceedings of the 15th international symposium on rarefied
gas dynamics (V. Boffi and C. Cercignani, eds.), Vol. 1, 1987, pp. 644–656.

[46] K. Moe, M. M. Moe, and S. D, “Improved satellite drag coefficient calculations from orbital measure-
ments of energy accommodation,” Journal of Spacecraft and Rockets, Vol. 35, No. 3, 1998, pp. 266–272.

[47] E. K. Sutton, “Normalized Force Coefficients for Satellites with Elongated Shapes,” Journal of Space-
craft and Rockets, Vol. 46, 2013/12/13 2009, pp. 112–116.

[48] G. Koppenwallner, “Energy accommodation coefficient and momentum transfer modeling,” HTG–TN–
08–11, HTG, Katlenburg Lindau, 2009.

[49] E. Doornbos, Thermospheric Density and Wind Determination from Satellite Dynamics. PhD thesis,
Technische Universiteit Delft, 2011.

[50] B. Wie and P. M. Barba, “Quaternion feedback for spacecraft large angle maneuvers,” Journal of Guid-
ance, Control, and Dynamics, Vol. 8, No. 3, 1985, pp. 360–365.

[51] B. Wie, H. Weiss, and A. Arapostathis, “Quarternion feedback regulator for spacecraft eigenaxis rota-
tions,” Journal of Guidance, Control, and Dynamics, Vol. 12, No. 3, 1989, pp. 375–380.

20


	Introduction
	Mass and inertia model
	Dynamic Model
	Point mass simplification

	Aerodynamic Modeling
	Atmospheric Density Model
	Wind Model
	Gas-Surface Interaction Model
	Aerodynamic Properties of a Sphere 

	Reduced model with one rotational degree-of-freedom
	Three rotational degrees-of-freedom case
	Shifting mass driver
	Quaternion feedback with partial feedback linearization

	Practical Implementation on a 3U CubeSat
	Conclusion

