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ABSTRACT 

The objective of this thesis is to determine whether friction stir welding (FSW) is a 

feasible welding process for steels in an underwater environment.  Specific benefits 

would be underwater weld repairs on steel alloy piping systems and/or structures, and 

crack repairs on control surfaces of submarines without the need for strict environment 

controls or in the submarine’s case, for drydocking. 

 A single tool made of polycrystalline cubic boron nitride (PCBN) with a 

Tungsten-Rhenium binder was used to conduct a series of bead-on-plate FSW traverses, 

approximately 64 inches (1.6 m) in total length, on 0.25 inch (6.4 mm) thick plates of a 

hardenable alloy steel. The first series of traverses involved various revolutions per 

minute (RPM) and inches per minute (IPM) combinations on a dry plate. A second series 

was conducted while a plate was immersed in water in order to assess the potential for 

inducing hydrogen assisted cracking (HAC) during FSW of susceptible alloys. All 

traverses were visually defect-free. The FSW nuggets (stir zone) exhibited refined 

microstructures and increased hardness relative to the base plate. 

Based on preliminary findings, FSW of hardenable alloy steel is a feasible process 

and should be further researched and refined. 



 vi

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 

II. BACKGROUND ..........................................................................................................3 

III. EXPERIMENTAL PROCEDURE.............................................................................5 
A.  MATERIAL PROCESSING ..........................................................................5 
B. CHEMICAL TESTING ..................................................................................6 
C. MICROSTRUCTURE ANALYSIS ...............................................................7 

1. Specimen Preparation .........................................................................7 
2.  Optical Microscope Imaging...............................................................7 
3.  SEM Imaging........................................................................................7 

D. MECHANICAL TESTING ............................................................................8 
1.  Microhardness......................................................................................8 
2.  Tensile Strength ...................................................................................8 

a. Specimen Preparation...............................................................8 
b. Specimen Testing ......................................................................9 

IV. RESULTS AND DISCUSSION ................................................................................11 
A. VISUAL/INITIAL INSPECTION................................................................11 
B. CHEMICAL ANALYSIS..............................................................................11 

1.  BM Composition ................................................................................11 
2.  Hydrogen Content..............................................................................12 

C. OPTICAL MICROSCOPY...........................................................................13 
D. SEM MICROSCOPY ....................................................................................18 
E. MECHANICAL PROPERTIES...................................................................23 

1. Microhardness....................................................................................23 
2.  Tensile Strength .................................................................................25 

V. CONCLUSIONS ........................................................................................................27 
A. SUMMARY OF THIS WORK.....................................................................27 
B. FUTURE RESEARCH..................................................................................27 

APPENDIX A – ADDITIONAL FIGURES ........................................................................29 

APPENDIX B – LUVAK INC. REPORT............................................................................33 

LIST OF REFERENCES......................................................................................................35 

INITIAL DISTRIBUTION LIST .........................................................................................37 
 



 viii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 ix

LIST OF FIGURES 

Figure 1. FSW/P Nomenclature.  After [3] .......................................................................2 
Figure 2. FSP at 400 RPM and 2 IPM (51 mm/min) while underwater............................5 
Figure 3. PCBN tool before and after FSP beads on 4142 steel plate...............................6 
Figure 4. Depiction of the grid pattern used for microhardness testing.  Gray curved 

line represents SZ general shape........................................................................8 
Figure 5. Mini-tensile specimen dimensions (mm). After [13].........................................8 
Figure 6. Post-FSP beads on dry and wet plates showing visually defect-free welds.  

Rectangular marked areas show cut specimen locations for microscopy 
analysis.............................................................................................................11 

Figure 7. Low magnification optical microscopy montages of evaluated FSP beads 
with higher magnification image of 200-4 (wet) tunneling defect.  The 
advancing side is on the right side of the montages and the direction of 
tool travel is into the page................................................................................14 

Figure 8. Optical microscopy showing non-homogenous BM between 400-2 dry and 
wet specimens. .................................................................................................15 

Figure 9. Optical microscopy showing 400-2 (dry) and 400-2 (wet) TMAZs.  The 
advancing side is on the right side of the montages and the direction of 
tool travel is into the page................................................................................15 

Figure 10. Optical microscopy showing 400-2 (dry) and 400-2 (wet) SZ.  Of note, the 
higher number of micro-voids in the wet specimen was due to the BM 
having more (and larger) micro-voids than BM in the dry specimen..............16 

Figure 11. Optical micrographs showing different RPM (wet) FSP bead TMAZs.  
The advancing side is on the right side of the montages and the direction 
of tool travel is into the page............................................................................17 

Figure 12. Optical micrographs showing the microstructures observed in different 
RPM (wet) FSP bead SZs. Lower magnification micrographs are shown 
on the left and higher magnification micrographs on the right........................17 

Figure 13. SEM viewing locations represented with yellow dots.  The advancing side 
is shown with FSP travel into the page............................................................18 

Figure 14. SEM micrographs of TMAZ-Inner and Outer locations for 400-2 wet and 
dry FSP beads.  From left to right scale bars read 10 μm, 1 μm, and 100 
nm. ...................................................................................................................19 

Figure 15. SEM micrographs of SZ locations for 400-2 wet and dry FSP beads.  From 
left to right scale bars read 10 μm, 1 μm, and 100 nm.....................................20 

Figure 16. SEM micrographs of TMAZ-Inner and Outer locations for 400-2 and 200-
4 wet FSP beads.  From left to right scale bars read 10 μm, 1 μm, and 100 
nm. ...................................................................................................................21 

Figure 17. SEM micrographs of SZ locations for 400-2 and 200-4 wet FSP beads.  
From left to right scale bars read 10 μm, 1 μm, and 100 nm. ..........................22 

Figure 18. SEM micrographs of each location for 400-2 wet FSP bead.  From top to 
bottom scale bars read 10 μm, 1 μm, and 100 nm. ..........................................22 



 x

Figure 19. Vickers microhardness plots.  Vertical scale HV from 300 (visible) to 
1000.  Horizontal scale distance from 0.0 (center) to +/- 20.0 mm.  
Montage overlays are to scale..........................................................................24 

Figure 20. Engineering stress vs. Strain for 400-2 (dry) in blue and BM in red...............26 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xi

LIST OF TABLES 

Table 1. FSP Parameters. .................................................................................................6 
Table 2. BM Chemical Composition. ............................................................................12 
Table 3. Hydrogen Concentration..................................................................................12 
 



 xii

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii

LIST OF ACRONYMS AND ABBREVIATIONS 

BM – Base Material 

CNC – Computer Numerical Controlled 

EDM – Electrical Discharge Machining 

FSP – Friction Stir Processing 

FSW – Friction Stir Welding 

FSW/P – Friction Stir Welding and/or Processing 

HAC – Hydrogen Assisted Cracking 

HAZ – Heat Affected Zone 

IPM – Inches per Minute 

NPS – Naval Postgraduate School 

PCBN – Polycrystalline Cubic Boron Nitride 

RPM – Rotations per Minute 

SEM – Scanning Electron Microscope 

SZ – Stir Zone 

TMAZ – Thermo-Mechanically Affected Zone 

USN – United States Navy 



 xiv

THIS PAGE INTENTIONALLY LEFT BLANK 



 xv

ACKNOWLEDGMENTS 

First I would like to thank Commander Jonathon J. VanSlyke, without whom this 

thesis would never have even been an idea.  His mentorship and understanding has 

allowed me to grow as a person throughout my time at NPS. 

A special thank you goes to the team at MegaStir Technologies, specifically Jon 

Babb and Russell Steel.  That you came in on your day off to perform the work is truly 

appreciated!  To Dr. Murray W. Mahoney, thank you for your coordination and 

assistance with my MegaStir visit, as well as for your insightful thoughts on the Friction 

Stir process. 

Throughout this research there was an extensive amount of time spent polishing 

samples, using the optical microscope, and using the Ziess NEON40 SEM. A big “Thank 

you” goes to Garth ‘Will’ Young and Dr. Sarath Menon for mentoring me on these 

processes and their patience when I needed extra time to get it right.  

Another big “Thank you” goes to Sharon Torres and Dr. Bassem El-Dasher, both 

at Lawrence Livermore National Laboratory (LLNL), for their time and assistance in 

performing microhardness testing. To Dr. Joe Farmer, thank you for making it possible to 

perform testing at LLNL and for the many references you provided me. 

To my material science instructors at NPS, Lieutenant Colonel Randall ‘Ty’ 

Pollak, Dr. Terry McNelley, and Dr. Sarath Menon, thank you for providing me the basis 

and the interest in material science necessary for starting and completing this thesis.  

To my thesis advisor Dr. Terry McNelley, thank you for the opportunity of your 

mentorship. Your enthusiasm, support, and direction were instrumental throughout my 

time at the NPS and in particular for driving me to complete my thesis.  

And last, but not least, I would like to thank my family for understanding the time 

involved with completing thesis. Thank you for setting up our new household without me 

even being there! 



 xvi

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1

I. INTRODUCTION  

Many high-strength steels are strengthened by martensitic transformation and 

such steels are potentially very susceptible to Hydrogen Assisted Cracking (HAC) [1]. 

Therefore, they require extensive preparations prior to, during, and after welding.  These 

preparations include, but are not limited to: preheating, humidity/moisture control, filler 

electrode controls (testing, baking and storage), and post-heating.  To weld these steels 

underwater is difficult and requires enclosures and special welding techniques that 

increase the time and costs involved for the weld [2].   

 Several Los Angeles class submarines have been found to have fatigue cracks in 

their control surfaces and have had their repairs conducted while in drydock.  Even while 

in drydock, maintaining a dry welding environment has been difficult due to trapped 

moisture inside of the control surface being repaired.  Every day of delay while in 

drydock costs the Navy, and therefore the taxpayers, tens - if not hundreds of thousands 

of dollars. 

 Friction stir welding (FSW) and the allied technique of friction stir processing 

(FSP) are solid state processes used in joining or processing, respectively. Applications 

include joining of aluminum structural components in the Littoral Combat Ship (LCS) 

and processing of the nickel aluminum bronze used in U.S. Navy propellers.  In friction 

stir welding, a cylindrical, rotating tool with a shoulder and projecting pin is pressed into 

the surface along the abutting edges of the materials to be welded.  Through frictional and 

adiabatic heating the material is softened enough for the tool pin to plunge into the 

material until the shoulder contacts the surface. The tool then transverses along the line 

contact to produce a weld by the localized severe plastic deformation in the resulting stir 

zone.  Figure 1 illustrates the basic nomenclature used in FSW/P.  To date, some detailed 

studies on the effects of friction stir welding of hardenable alloy steels have been carried 

out, but none for welding of them while in water. 
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Figure 1.   FSW/P Nomenclature.  After [3] 

Though invented in 1991 by TWI of Cambridge, U.K., FSW/P of steels has 

predominantly been accomplished over the last decade due to limitations in material 

selection for the welding/processing tool itself.  As more advanced techniques of 

materials processing/fabrication are developed, made commercially viable, and more 

robust tools are designed, FSW/P of steels becomes more economically feasible.  Even 

so, due to the many well-established welding processes for steels added to the relative 

ease of welding steels compared to non-ferrous alloys, FSW/P of steels most likely will 

not supplant traditional methods for typical applications.  However, when one considers 

specific applications or more restrictive welding environments, there may be areas where 

FSW/P of steels will be the best choice. 

 Hydrogen solubility will be reduced relative to processes involving temperatures 

above the melting point because FSW/P does not involve melting.  Furthermore, the 

production of hydrogen through decomposition of the water molecule is not expected 

during FSW/P.  It is this combination of FSW properties that could lead to FSW of 

hardenable alloy steels underwater to not only produce defect-free welds, but also to be 

cost effective. 
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II. BACKGROUND 

Studies involving FSW/P of steels have been steadily increasing over the last 

decade, as advances in tool materials and design are made.  FSW/P experiments ranging 

from ultralow carbon through ultrahigh carbon steels [4, 5] have demonstrated defect-free 

welds.  FSW/P of specialized steels such as DP980 (advanced high-strength steel) [6] and 

SKD61 tool steel [7] have also produced defect-free welds. 

The resultant microstructures of FSW/P steels are highly dependent upon the 

chemical composition of the base material as well as on the FSW/P tool parameters such 

as RPM, IPM, and Z-axis (normal) force.  Parameters ranging from 1000 RPM/15 mm/s 

(35 IPM) [8] to 100 RPM/25 mm/min (1 IPM) [9] have produced defect-free welds.  

While Z-axis force parameters have not been consistently reported, they range from 5 kN 

(1124 lbf) [8] to 40 kN (9000 lbf) [10].  These values demonstrate that each specific type 

of steel will have its own set of parameters that will yield defect-free welds.  As such, 

detailed studies will be required to determine these "operating windows" such that as 

long as the processing parameters are maintained within the "operating window", it can 

be expected that a defect-free weld will be produced. 

In most cases of FSW/P of steels, a martensitic microstructure was developed in 

the SZ and to a lesser extent, in the TMAZ of the weld/processed beads.  For these cases, 

the temperature in the SZ exceeded A1 (complete austenite formation temperature) during 

processing and subsequently experienced rapid cooling, and therefore, formed martensite.  

In one study [11], martensite-free welds were produced by controlling FSW parameters 

and preventing the SZ temperature from exceeding A1.  These studies show that post-

weld metallurgical properties can be controlled through adjusting FSW/P parameters and 

can therefore be modified to suit a wide range of applications and eliminate the need for 

pre or post-weld heat treatments. 

To date, no studies have evaluated FSW/P of steels underwater.  This unique 

environment poses particular restrictions to the conventional welder using fusion 

techniques and can be very costly or impractical.  U.S. Navy shipyards typically do not 
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have qualified welders to perform any underwater welding, and there are no industry 

standards to weld HY-80/100 underwater [12].  HY-80/100 are alloy steels involving heat 

treatment to produce tempered martensitic microstructures.  These materials are therefore 

susceptible to HAC and the possibility of using FSW/P to avoid HAC in these hardenable 

alloy steels formed the basis of this research.  FSW/P of this type of hardenable alloy 

steel could provide for substantial savings by preventing the need for drydocking a 

submarine.  As such, this study was initiated as a preliminary study to examine the 

feasibility of successful underwater FSW/P of steels.  A hardenable alloy steel was 

obtained and a comparative study of dry vs. underwater FSW/P was carried out to 

understand the influence of several RPM/IPM combinations on the resulting 

microstructures and mechanical properties. 
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III. EXPERIMENTAL PROCEDURE 

A.  MATERIAL PROCESSING 

A steel plate 0.25 in (6.4 mm) in thickness was acquired from the Naval Surface 

Warfare Center – Carderock Division.  This plate was approximately 30 in (750 mm) in 

length and 15 in (380 mm) wide.  Post-welding analysis for general chemistry revealed 

that its composition was closest to AISI 4142 steel. This material was cut to yield two 

separate plates, one to perform dry FSP beads and one to perform wet (underwater) FSP 

beads.  The FSP was conducted at MegaStir Technologies in Provo, UT.  The underwater 

plate was held under water by use of a two inch high sealed acrylic box over half of the 

plate at a time.  Cooling was supplied to the water box via copper tubing that was 

supplied with refrigerated water.  Water temperatures were monitored in the water box 

and ranged from the starting ambient temperature of 21°C to a high of 70°C.  Several 

RPM/IPM combinations were examined.  The FSP bead lengths were approximately 

eight inches (20 cm) each, for a total of 64 inches (1.6 m) of tool use.  Each plate had one 

FSP bead that had to be discounted due to either insufficient or excessive Z-axis force 

that caused irregular beads.  The RPM/IPM combinations for these defective beads were 

used again with a more refined Z-axis force and produced visually defect-free beads.  

Figure 2 shows in-process photos of FSP underwater.  Table 1 shows the RPM/IPM 

combinations with other pertinent data for each FSP bead. 

 
Figure 2.   FSP at 400 RPM and 2 IPM (51 mm/min) while underwater. 
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Table 1.   FSP Parameters. 

 
 

The tool material was polycrystalline cubic boron nitride (PCBN) embedded in a 

tungsten-rhenium (W-Re) binder.  The material is termed Q-70.  The tool was used on a 

FSW/P machine in load-control operation.  Figure 3 shows the PCBN tool prior to and 

after six FSP beads (approximately 48 inches (1.2 m)) were completed. 

 
Figure 3.   PCBN tool before and after FSP beads on 4142 steel plate. 

B. CHEMICAL TESTING 

Luvak Inc. performed chemical testing on the BM to determine its composition, 

as well as hydrogen content from BM, FSP (dry) and FSP (wet) material.  The 400-2 

RPM/IPM combination was evaluated for FSP hydrogen content.  This selection was 

based on its RPM/IPM combination giving the maximum heat input and therefore would 

be most susceptible for hydrogen absorption. 
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Carbon and Sulfur content were determined using combustion infrared detection 

following ASTM E 1019-08.  Hydrogen content was determined through vacuum hot 

extraction according to ASTM E 146-83.  All other components were analyzed by direct 

current plasma emission spectroscopy according to ASTM E 1097-07. 

C. MICROSTRUCTURE ANALYSIS 

1. Specimen Preparation 

A Charmilles Andrew EF630 CNC Wire EDM system using a 0.30 mm diameter 

cutting wire was used to cut transverse sections across the FSP beads for analysis.  These 

cross-sectional metallographic specimens were cold-mounted using an epoxy resin and 

prepared using standard processes.  The final polish was performed with a water-based 

0.05 μm Al2O3 suspension on a Buehler ECOMET 3 Variable Speed Grinder/Polisher.  

The prepared surfaces were then etched with a 5% Nital (5% HNO3 – 95% Methanol) 

etchant. 

It was noted during polishing that the steel plate was not homogeneous in that 

several specimens exhibited pitting in the BM, while others did not.  This was confirmed 

later with optical microscopy. 

2.  Optical Microscope Imaging 

An optical microscope was used to examine the specimens under various 

magnifications.  Several locations were viewed such as BM, TMAZ (advancing side), 

and SZ.  Low-magnification montages were developed to show the entire width of the 

SZ, left and right TMAZ, as well as BM on either side.  Images were post-processed with 

Adobe Photoshop CS4 in grayscale mode, auto contrast, and auto tone. 

3.  SEM Imaging 

A Ziess NEON40 SEM was used with field emission electron source operating at 

20 keV to examine the specimens under various magnifications.  Several locations were 

viewed, and the results are later depicted in Chapter IV. 
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D. MECHANICAL TESTING 

1.  Microhardness 

The specimens were removed from their cold molds and repolished to remove 

scratches from handling during the mold removal.  A CSM Instruments MicroCombi 

Tester with Indentation software was used to micro-indent each specimen to establish a 

Vickers hardness profile in a grid pattern, as depicted in Figure 4. 

 
Figure 4.   Depiction of the grid pattern used for microhardness testing.  Gray curved line 

represents SZ general shape. 

A test load of 10 N with a 15 sec pause was used with a loading and unloading 

rate of 20 N/min. 

2.  Tensile Strength 

a. Specimen Preparation 

Mini-tensile test specimens were cut such that the tensile axis was 

centered longitudinally along the FSP beads using the Charmilles Andrew EF630 CNC 

Wire EDM system. The shape and dimensions of these specimens are shown in Figure 5.  

The thickness of each specimen varied from 1.0 mm to 1.5 mm due to slight variations in 

EDM cutting losses as well as polishing. 

 
Figure 5.   Mini-tensile specimen dimensions (mm). After [13] 
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b. Specimen Testing 

Test specimens were sliced to provide two mini-tensile tests for each of 

several RPM/IPM configurations with the intent on taking the average value between the 

two tensile tests; there was insufficient FSP material to allow more test specimens.  

While polishing test specimens, it was noted that there was a crack almost through the 

gauge width for the 300-4 (wet) and partially through 200-4 (wet) specimens.  It was not 

known whether these cracks were present from the time of FSP, or if they developed 

during EDM cutting or during polishing. 

All tensile tests were performed using an initial strain rate of 2.1 x 10-3/s.  

Of all the tensile tests, only two were completed satisfactorily due to slip of the machine 

grips on the specimens.  Only results from the two completed tensile tests (400-2 (dry) 

and BM) will be discussed later. 
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IV. RESULTS AND DISCUSSION 

A. VISUAL/INITIAL INSPECTION 

With the exception of two FSP bead runs, the beads were visually defect-free.  

The 200-4 (dry) initial run began too hot and ended too cool due to varying the Z-axis 

force loading.  Once a satisfactory load was established, the 200-4 (dry) run was redone 

and resulted in a visually defect-free bead.  The first 300-4 (wet) run produced an 

excessive amount of flashing (excessive Z-axis force) and was redone with a lower Z-

axis force and produced a visually defect-free bead.  The plates are shown in Figure 6. 

 
Figure 6.   Post-FSP beads on dry and wet plates showing visually defect-free welds.  

Rectangular marked areas show cut specimen locations for microscopy analysis. 

B. CHEMICAL ANALYSIS 

1.  BM Composition 

The chemical composition data of the as-received material are shown in Table 2.  

A comparison of these data with data in the Metals Handbook Vol. 9 [14] revealed that 

this composition corresponds to AISI 4142 steel. 
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Table 2.   BM Chemical Composition. 

 

2.  Hydrogen Content 

High strength steels’ susceptibility to HAC, coupled with current limitations and 

costly procedures in current fusion welding processes for them, are what make FSW/P 

such a promising technology.  If FSW/P of high strength steels has any chance of 

becoming a viable and economical, it must first demonstrate that hydrogen levels of 

FSW/P beads are within acceptable limits. This is critical especially for the experiments 

on underwater welding. 

MILSPEC maximum hydrogen values in deposited weld metal range from 2.0 to 

5.5 ml H2/100 g metal [15].  The low value of 2.0 was selected to become the maximum 

permissible hydrogen content in order to be considered a successful FSW/P bead. 

Hydrogen content was determined for the BM, 400-2 wet and dry FSP beads.  

Luvak Inc. reported the results in ppm and where converted to ml/100 g using 1 ml 

H2/100 g metal = 0.89 wt-ppm hydrogen in steel [16].  The results are shown in Table 3. 

Table 3.   Hydrogen Concentration. 

Specimen: Hydrogen Concentration
Base Metal 0.45 ml/100 g
400‐2 (dry) 0.67 ml/100 g
400‐2 (wet) 1.24 ml/100 g  
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A marginal increase in hydrogen was measured for the 400-2 (dry) FSP bead and 

double that amount measured for the wet bead.  However, even this higher value is well 

below the most conservative limit of 2.0 ml H2/100 g metal and therefore showed that 

hydrogen levels were acceptable for the FSP beads.  These hydrogen levels were obtained 

with no shielding gases of any kind, nor with any other hydrogen absorption prevention 

techniques used.  Several studies on FSW/P of steels have used an inert shielding gas to 

minimize tool oxidation [3, 5, 7, 8, 10, 11, 17] and this would also serve to further 

minimize hydrogen absorption. 

C. OPTICAL MICROSCOPY 

Tunneling defects were observed in the 300 RPM (dry) and 200 RPM (wet and 

dry) specimens.  As the focus of this study is on underwater FSW/P, only the 200 RPM 

(wet) defect was examined under high magnification. 

In order to have comparative results and focus on underwater conditions, each 

RPM/IPM (wet) FSP bead was closely evaluated.  The 400-2 RPM/IPM wet and dry FSP 

beads were compared with each other to evaluate the effect of water on FSW/P as both 

produced defect-free beads. 

Figure 7 shows low magnification montages for each evaluated FSP bead as well 

as a higher magnification image of the tunneling defect shown in the 200-4 RPM/IPM 

bead. 
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Figure 7.   Low magnification optical microscopy montages of evaluated FSP beads with 

higher magnification image of 200-4 (wet) tunneling defect.  The advancing side 
is on the right side of the montages and the direction of tool travel is into the page. 

As shown in Figure 8, as RPM decreased the volume of the SZ decreased.  This 

was expected as heat input decreases with decreasing RPM and/or with increasing IPM.  

The notable difference between 400-2 wet and dry beads are the more prominent “flow-

bands” in the dry specimen.  The shape of the PCBN tool itself can be also discerned 

from the 400-2 dry specimen. 

The 200-4 FSP bead exhibited a tunneling defect on the advancing side, 

suggesting that 4 IPM was too fast for 200 RPM with this material.  These conditions 

apparently define the lower limit in heat input for this material and tool combination. 

During preparation of the specimens, it was noted that the BM was not 

homogenous; this was confirmed through optical microscopy and can be seen in Figure 8.  

The 400-2 (dry) specimen showed large voids on the order of 10 μm across, whereas in 

the 400-2 (wet) specimen, the large voids were on the order of 20 – 30 μm.  Both showed 

a similar amount of impurity inclusions, as well as a banded rolled-grain microstructure 

from the plate hot-rolling process.  The BM consisted of equiaxed grains of ferrite 

dispersed with pearlite.  The ferrite/pearlite content appeared rather non-uniform in 

different areas of the same plate, as illustrated in Figure 8.  
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Figure 8.   Optical microscopy showing non-homogenous BM between 400-2 dry and 

wet specimens.   

When observed at higher magnification, it was noted that the TMAZ was much 

broader in the 400-2 (dry) compared with 400-2 (wet).  This is shown in Figure 9. 

 

 
Figure 9.   Optical microscopy showing 400-2 (dry) and 400-2 (wet) TMAZs.  The 

advancing side is on the right side of the montages and the direction of tool travel 
is into the page. 
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The martensitic microstructures in the SZ under both dry and wet conditions 

suggest that the samples were fully austenitized during the FSP runs and rapidly 

quenched. The micrographs in Figure 10 suggest that the martensitic structures are much 

finer under the wet conditions. This suggests that (a) the temperature achieved during the 

dry condition was higher than that during the wet conditions leading to finer austenite 

grain size in the latter samples and/or (b) the quenching rate subsequent to FSP was 

higher under the wet condition. This is in agreement with the observations of higher 

temperatures during dry FSP runs.  

 
Figure 10.   Optical microscopy showing 400-2 (dry) and 400-2 (wet) SZ.  Of note, the 

higher number of micro-voids in the wet specimen was due to the BM having 
more (and larger) micro-voids than BM in the dry specimen.   

As the RPM for the wet specimens was lowered, the TMAZ displayed more 

“flow-bands” and can be seen in Figure 11. 
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Figure 11.   Optical micrographs showing different RPM (wet) FSP bead TMAZs.  The 

advancing side is on the right side of the montages and the direction of tool travel 
is into the page. 

The center of the SZ was observed for each wet RPM/IPM FSP bead and is 

shown in Figure 12.   

 
Figure 12.   Optical micrographs showing the microstructures observed in different RPM 

(wet) FSP bead SZs. Lower magnification micrographs are shown on the left and 
higher magnification micrographs on the right.  
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At lower magnifications (Figure 10, left), there was a noticeably different 

microstructure for each bead. At 400 RPM, the martensitic microstructure was 

homogenous, but as the RPM decreased, there were bands of martensite mixed with 

ferritic or carbide bands.  The 200 RPM sample showed the most banding and also 

showed a swirl pattern.  As shown in the higher magnification micrographs (Figure 10, 

right), all of these FSP RPM conditions led to austenitization and subsequent martensitic 

transformation.  It appeared that the martensitic units were more fine as the RPM was 

decreased (and thus lower heat input), which suggested that the temperatures achieved 

were lower.  In addition, the 200-4 specimen exhibited a tunneling defect and would not 

be considered an acceptable weld. 

D. SEM MICROSCOPY  

Several locations were observed under the Zeiss NEON40 SEM and these are 

depicted on Figure 13. 

 
Figure 13.   SEM viewing locations represented with yellow dots.  The advancing side is 

shown with FSP travel into the page. 

Dry and wet 400-2 FSP beads were examined to document differences in 

microstructure attributable to underwater FSP.  At higher magnifications, there seemed to 

be little difference in microstructure between the two specimens.  The notable difference 

between the two was seen at lower magnifications with the dry specimen showing more 

prominent “flow-bands” and showing the outline of the tool tip. 

Figure 14 compares SEM images for 400-2 (wet and dry) FSP beads for TMAZ-

Inner and Outer locations.  Both conditions showed similar microstructures for each 

location.  At the TMAZ-Outer location, a primarily pearlitic microstructure with  
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randomly oriented and dispersed ferrite grains was observed.  This microstructure was 

similar to the BM except that some of the lamellar pearlite was distorted in the TMAZ-

Outer location. 

Observed in TMAZ-Inner locations for both conditions was what appeared to be 

the start of a martensitic microstructure interspersed with pearlite.  Few, if any, ferrite 

grains were observed over several SEM micrographs. 

 
Figure 14.   SEM micrographs of TMAZ-Inner and Outer locations for 400-2 wet and dry 

FSP beads.  From left to right scale bars read 10 μm, 1 μm, and 100 nm. 
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SEM micrographs taken at the center of the SZ showed essentially the same 

microstructure in both dry and wet FSP conditions.  This microstructure was clearly 

martensitic and homogenous and is shown in Figure 15. 

 
Figure 15.   SEM micrographs of SZ locations for 400-2 wet and dry FSP beads.  From 

left to right scale bars read 10 μm, 1 μm, and 100 nm. 

That the SEM micrographs showed very similar microstructures between wet and 

dry 400-2 FSP beads demonstrated that while the tool temperatures were distinctly 

different, the resulting microstructural constituents were essentially the same as expected.   

Next observed was a comparison between 400-2 and 200-4 (both wet) FSP beads.  

Figure 16 compares SEM images for TMAZ-Inner and Outer locations.  Both conditions 

showed similar microstructures for the TMAZ-Outer location; primarily pearlitic with 

randomly oriented and dispersed ferrite grains.  At the TMAZ-Inner location, SEM 

micrographs revealed that the 200-4 FSP bead had many voids.  Other than the voids, the 

microstructures for both 400-2 and 200-4 FSP beads were similar in that distorted pearlite 

was interspersed with martensite. These observations suggest that there was incomplete 

austenitization in these TMAZ regions due to the lower temperatures achieved in such 

regions during FSP. 
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Figure 16.   SEM micrographs of TMAZ-Inner and Outer locations for 400-2 and 200-4 

wet FSP beads.  From left to right scale bars read 10 μm, 1 μm, and 100 nm. 

SEM micrographs taken at the center of the SZ of both 400-2 and 200-4 FSP 

beads showed essentially the same microstructure.  This microstructure was clearly 

martensitic and homogenous and is shown in Figure 17. 
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Figure 17.   SEM micrographs of SZ locations for 400-2 and 200-4 wet FSP beads.  From 

left to right scale bars read 10 μm, 1 μm, and 100 nm. 

Figure 18 was compiled to give a more complete view of the transformation 

process that was observed starting with the BM through the SZ.  These micrographs were 

taken of the 400-2 (wet) FSP bead and show the most promising RPM/IPM combination 

for underwater FSW/P of 4142 steel. 

 
Figure 18.   SEM micrographs of each location for 400-2 wet FSP bead.  From top to 

bottom scale bars read 10 μm, 1 μm, and 100 nm. 
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E. MECHANICAL PROPERTIES 

Mechanical properties of the FSP samples were evaluated by determining the 

microhardness variations in various samples across the SZ at various depths from the 

sample surfaces in the transverse sections of the metallographically prepared samples. 

Preliminary tensile tests were also carried out. The results from these studies are 

discussed below. 

1. Microhardness 

Vickers microhardness values of the BM ranged from 143 HV to 242 HV.  

Clearly, this variation was due to the defective and inhomogeneous structure (inclusions, 

porosities, pearlite content variations) of the alloy plate studied here.  Of note, the lower 

values for microhardness were obtained on the 400-2 (wet) FSP bead specimen that 

contained the highest amounts of voids and inclusions of all the specimens.  For 

comparative analysis, the microhardness test data was compared between the 400-2 wet 

and dry FSP beads and then between the 400-2 and 200-4 (wet) FSP beads.  The resultant 

plots are presented as Figure 19.  The corresponding low magnification micrographs are 

also included in this figure. 
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Figure 19.   Vickers microhardness plots.  Vertical scale HV from 300 (visible) to 1000.  

Horizontal scale distance from 0.0 (center) to +/- 20.0 mm.  Montage overlays are 
to scale. 

The apparent difference of approximately 200 HV between 400-2 dry and wet 

FSP bead average microhardness is somewhat offset due to the wet specimen having 

started with an average microhardness of 100 HV less in the BM.  That there still is an 

average microhardness of 100 HV higher for the dry FSP bead could be due to the poorer 

quality BM that the wet FSP bead started with.  Both beads produced martensitic 

microstructures, but it is unclear as to why the dry FSP bead would have a higher 

microhardness than the wet FSP bead.  This is contrary to the expectation that with an 

underwater FSP bead the cooling rate would be greater, and therefore better able to 



 25

produce finer martensite.  The other possibility is that the dry FSP bead reached a much 

higher peak temperature, and as a result, would have a high cooling rate after being fully 

austenitized.  However, both optical and SEM micrographs showed a fully martensitic 

microstructure in the SZ. Variations in carbon content of the as-received plate was the 

most likely reason for such large variations in the martensitic hardness observed in 

different samples. 

The 200-4 Bottom row of microhardness data points produced an unexpectedly 

high HV value that was approximately 200 HV higher than the other rows and the 

average value for 400-2.  Once the low-magnification montage of the 200-4 FSP bead 

was overlaid onto the microhardness plot, it was clear that the higher values corresponded 

to concentrated (as shown by brighter white on the montage) areas of martensite. 

The increase in microhardness coupled with optical and SEM micrographs left no 

doubt that martensite was formed during each configuration tested.  Thus all the 

microstructural observations and microhardness measurements consistently indicated that 

temperature increases during FSP was sufficient to fully austenitize the steel and that the 

subsequent cooling rate was sufficient to induce the martensitic transformations in the 

alloy. 

2.  Tensile Strength 

 Tensile testing resulted in just two complete sets of good data due to the tensile 

test specimens slipping in the gripped regions during the tests.  These two sets were for 

the BM and the 400-2 (dry) FSP bead.  The material hardness coupled with small size 

made testing difficult, if not impossible with the equipment that was available at the time.  

The resulting plots are shown in Figure 20.  The BM exhibited a typical steel stress-strain 

curve associated with a ferrite-pearlite microstructure, while the FSP bead showed a 

brittle, yet strong, material typical of martensitic microstructure.  Given that the use of 

the material in structures would ordinarily mean that operating conditions would fall 

below the yield point of the base material, the FSP bead material would not fail prior to 

the BM. 
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Figure 20.   Engineering stress vs. Strain for 400-2 (dry) in blue and BM in red. 
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V. CONCLUSIONS 

A. SUMMARY OF THIS WORK  

In this work, preliminary studies on the feasibility of underwater FSP of a 

hardenable alloy steel were carried out.  

1.   To our knowledge, this forms the first underwater FSP study and in particular 

on a hardenable alloy steel. The feasibility of underwater FSW/FSP of hardenable alloy 

steel has thus been demonstrated. 

2.  Hydrogen concentration in FSP bead material for both dry and underwater 

conditions was well within acceptable levels for high strength steel welds. 

3.  A martensitic microstructure was formed in the SZ for the RPM/IPM 

combinations tested.  A correspondingly high microhardness was observed in the SZ 

along with a significantly higher tensile strength. 

4.   Defect-free FSP beads were accomplished for three configurations:  400-2 

(dry), 400-2 (wet), and 300-4 (wet). 

These conclusions support the promising future for underwater FSW of 

hardenable alloy steels.  Further research is needed to establish alloy-specific operating 

parameter “windows” and to further evaluate mechanical properties of the FSW/P 

material. 

B. FUTURE RESEARCH 

1.  The logical next step to support Navy-specific use of underwater FSW of 

hardenable alloy steel would be to perform a similar experiment on HY-80 or HY-100 

plate.  To more accurately reflect real-world conditions, it is recommended that the water 

used for the wet conditions be seawater or simulated seawater or a 3.55 NaCl solution.  

The increased salinity could affect the cooling rate and therefore the microstructure.  The 

beads should be longer than eight inches (20 cm) or there should be more than one bead 

for each condition.  This would support more FSP bead material for mechanical testing,  
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specifically tensile strength testing.  The tabs on the tensile specimen should be longer to 

account for grip size on the tensile testing machine to minimize the possibility for 

slipping. 

2.  The use of a shielding gas should be evaluated for both tool longevity 

consideration as well as further minimizing hydrogen absorption.  Another potential 

benefit of using a shielding gas underwater would be that cooling rates immediately 

following the FSW/P would be lower and therefore provide a means for controlling the 

microstructure formation. 

3.  Higher RPM configurations should be evaluated to determine the resulting Z-

axis force needed to produce the FSW/P beads.  A lower force is desired so that the 

portable machine will have less force to account for in its design. 
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APPENDIX A – ADDITIONAL FIGURES  

 These figures are included to provide higher resolution pictures for clarification.   

 
Optical micrograph showing the tunnel defect in the 200-4 (wet) FSP bead. 
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Microhardness plot for 400-2 (dry) FSP bead 

 

 
Microhardness plot for 400-2 (wet) FSP bead 
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Microhardness plot for 200-4 (wet) FSP bead 
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APPENDIX B – LUVAK INC. REPORT 
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