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Abstract-This paper presents a language for giving black-box specifications in the early stages of software 
design. The underlying computational model combines message passing with temporal events in a precisely 
defined way. The features of the language, especially those important for large scale design are presented 
by means of examples. 

Black-box specifications Abstractions Specification language Computer aided software engineering 
Distributed systems Real-time systems 

I. INTRODUCTION 

Spec is a formal language for writing black-box specifications for software systems and their 
subsystems. Black-box specifi~tions are essential for realizing the benefits of abstractions in 
the software development process [3]. The critical early stages of software development are 
dominated by the tasks of building conceptual models of the proposed software and defining 
its interfaces. The Spec language can be used in the initial requirements analysis for recording 
conceptual models of the problem domain, in the functional specification stage for defining 
the external interfaces of the proposed system, in the architectural design stage for defining 
the internal interfaces of the proposed system, and in the implementation stage for recording 
concrete invariants and other design information. The use of formal specifications at these 
stages can control the conceptual complexity of very large systems by factoring out independent 
aspects of the system into locally understandable units, and providing the precision needed 
for computer-aided verification and validation processes. Problems in software maintenance 
have also been linked to lack of specification and design information [30]. The Spec language 
has been designed primarily for supporting software development and evolution on a large 
scale. The language includes facilities suitable for specifying parallel, distributed, and real-time 
systems. 

A black-box approach has the advantage of emphasizing behavior while suppressing internal 
mechanisms for the systems at any given level of detail. This contrasts with the popular functional 
decomposition approach to requirements analysis and functional specification, in which high level 
processes are explained by breaking them into combinations of lower level processes, often using 
data flow diagrams. Functional decomposition is effective for describing the behavior of systems 
on a moderate scale, but for very large systems it fails to provide a conceptually manageable picture 
of the system as a whole, because the behavior of the subsystems is described directly only at the 
lowest levels of the decomposition, which can be many levels removed from the global view and 
may contain thousands of subsystems. For very large systems it is useful to restrict functional 
decomposition to the design of the software architecture, and to take a black-box approach to 
specifying user-level functions of the system. 

A formal specification language such as Spec is needed for effectively defining the desired 
behavior of a proposed system at a simple abstract level, because English and other informal 
notations are too imprecise. Precision is important because in a large project many people 
have to agree on the interpretation of the specifications to produce a correct implementation. 
Written specifications are attractive as a communications medium in very large projects because 
the effort of writing a formal specification is independent of the number of people reading 
it, whereas communications overhead tends to increase with the size of the project in more 
informal techniques. Formal notation is important because it enables mechanical processing, 
opening the way to higher levels of computer-aided design than are currently used in software 
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development [6). Programming languages such as Ada are formal, but are not well suited 
for writing black-box specifications because they have been designed for describing the 
algorithms and data structures, realizing a module rather than the behavior a module presents 
at its interface. 

There has been much previous work on providing programming language support for 
abstractions [l 1, 14, 19, 26, 29). Previous work on formal specifications has focused mostly on 
the problem of proving the correctness of programs [13, 16, 21, 33, 35]. Spec is intended primarily 
for supporting the use of abstractions in the design of software systems. Surveys of related 
work can be found in [IO, 31]. Spec has evolved from an earlier specification language [2] and 
a rapid prototyping language for the design of large real-time systems [27), guided by extensive 
classroom experience in using formal specifications in multi-person projects [3]. The most 
important advances over the earlier language are the integration of time into the underlying 
model, the development of an inheritance mechanism [4], and the separation of granularity 
and control state considerations from the event-level interfaces of a module. The Spec language 
is suitable for specifying parallel, distributed, or time sensitive systems as well as conventional 
systems. 

Spec differs from algebraic specification languages such as Larch [17, 18] because it is based on 
models rather than theories. While it is possible to write Spec axioms in the conditional equation 
form commonly used in algebraic approaches, the use of models and axioms of other forms can 
often lead to simpler specifications. The restricted form of Larch is helpful for supporting 
automated tools for program verification, while the expressiveness of Spec is useful in developing 
large scale designs. Larch is based on the premise that interfaces involving state changes are 
inherently dependent on the implementation language. Larch provides general purpose facilities for 
defining immutable data types along with a framework for adding an implementation-language 
dependent layer for defining state changes and concrete interfaces. Spec is based on the premise 
that interfaces with state changes, exceptions, concurrent interactions, and time dependencies can 
all be specified independently of implementation language, and that the definition of a language 
dependent concrete interface is a matter of packaging rather than semantics. This reflects the 
difference between the prescriptive nature of specifications used as a design tool and the descriptive 
nature of specifications used primarily to prove properties about systems. 

Model based approaches such as VDM [9) have a few similarities to Spec. However, Spec has 
been designed to handle systems with a wide range of features, e.g. concurrency and time dependent 
constraints, while VDM is primarily intended for specifying sequential systems [10]. A model based 
approach for specifying distributed systems based on Petri nets is described in [23, 24]. 

The GIST language is based on a global state model approach that describes behavior 
independently of interfaces [22], and is intended for use in the early stages of requirements analysis 
where properties of the entire application are being determined without assigning boundaries or 
allocating functions to either the proposed software system or its environment. GIST treats system 
behavior as a sequence of global system states. Localization of information, treatment of 
distributed systems, and treatment of real-time constraints are explicit design goals of Spec. Spec 
is object-oriented, in the sense that it avoids global states and defines behavior interms of events 
at system boundaries. While Spec and GIST can be used for similar purposes, they emphasize 
different stages of the process. GIST focuses on the earliest problem formulation stages, while Spec 
focuses on the formulation and refinement of the proposed system. 

Spec does not emphasize clear box descriptions, although interconnections between modules can 
be specified. The notation is most effective at the architectural design stage when coupled with 
graphical support for describing module interconnections [27, 32]. 

Spec is based on the event model of computation, and uses predicate logic for the precise 
definition of the desired behavior of modules. The most important ideas of this language are 
modules, messages, events, atomic transactions, and defined concepts. Events can be used 
for defining timing constraints, while localized states and atomic transactions are important 
for specifying distributed or concurrent systems. Spec supports reuse of abstractions via 
inheritance and generic modules. Spec also has features important for specifying large conven­
tional systems, such as import/export controls for defined concepts, and view and inheritance 
mechanisms. 
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2. SPECIFYING SOFTWARE JN TERMS OF EVENTS 

The Spec language provides a means for specifying the behavior of three different types of 
modules: functions, state machines, and abstract data types. These types of modules span the basic 
building blocks of software systems. Special types of messages can also be used to model generators 
or iterators [25, 28]. The properties of these kinds of modules and message are described below, 
with examples of each. 

2.1. Functions 

Functions are modules without internal memory. From a black-box viewpoint this means 
the response of a function module to a stimulus cannot be influenced by earlier stimuli. If a 
function module has been completely specified, then there is exactly one legal response to each 
stimulus, and the module computes a single-valued function in the mathematical sense. The 
response of a function module need not be completely determined by the most recently received 
stimulus. Incompletely specified modules admit non-deterministic behavior unless designer explic­
itly constrains them to be deterministic. Function modules are emphasized in functional program­
ming [l ], but they can be implemented in any programming language via appropriate coding 
conventions. 

An example of a completely specified function is shown below. 

FUNCTION nexLtoken 

MESSAGE(s: string) ' 
REPLY(next rest: string) 

- -Extracts the next non-blank substring from the front of s. 
- -Any leading spaces are discarded. 

WHERE no_spaces(next), delimiter(rest), 
SOME(b: string: :alLspaces(b) & s = b II next II rest), 
next="" < = > alLspaces(s) 

CONCEPT space: char WHERE space = ' ' 

CONCEPT alLspaces(s: string) 
V ALUE(b: boolean) 
WHERE b< = >ALL(c: char SUCH THAT c IN s::c=space) 

CONCEPT no_spaces(s: string) 
VALUE(b: boolean) 
WHERE b < = > ALL(c: char SUCH THAT c IN s :: c· =space) 

CONCEPT delimiter(s: string) 
VALUE(b: boolean) 
WHERE b < = > (s =""I s[l] =space) 

END 

This function performs a simple lexical scanning function, with two outputs, the next token, 
and the rest of the string. Spec CONCEPTS have been used to simplify the definition and 
to factor out independent concerns. Introducing an explicitly defined concept modularizes 
the specification. This helps simplify the postcondition and supports stepwise refinement and 
localization of information. The definition of the concept can be delayed or left as an informal 
comment when the concept is identified and used to express a compound precondition or 
postcondition. Since the example has been written to be self-contained, it is not typical 
of specifications for large systems. If we were specifying a fragment of a large system, 
definitions of standard reusable concepts such as space, a//_spaces, and no_spaces would 
be imported or inherited from a specification library, and would not be re-invented at each use. 
Such a library should contain a generalized version of the delimiter concept, defined in terms 
of a generic parameter representing a set of delimiter characters, rather than the specific constant 
space. 
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Messages are distinguished from concepts to provide a clear and mechanically recognizable 
distinction between the required parts of a proposed system and definitions that are needed 
for explanation, specification, verification, and assessment of test results, but which need not 
correspond to parts of the implementation of the proposed system. 

The Spec language gains its expressive power from logical quantifiers such as SOME ("there 
exists") and ALL ("for all"). The punctuation mark"::" separates the range declarations for the 
bound variables of a quantifier from the statement forming the body of the quantifier. A range 
declaration specifies the types of the bound variables and can include an optional subtype 
restriction introduced by the keywords "SUCH THAT". In many practical applications, such 
as in the example given above, quantifiers range over finite sets. In these special cases, the 
quantifiers can be directly implemented using loops that are guaranteed to terminate. The Spec 
language also includes unbounded quantifiers. This facility can support brief descriptions of the 
requirements for a module which can be very useful for proving properties of the module. However 
there can be no general automatic procedure for mapping specifications containing unbounded 
quantifiers into programs that are guaranteed to both terminate and correctly evaluate the 
quantifier in all cases. 

Spec quantifiers are general operators on sets of values defined by range declarations. Spec 
allows users to define additional quantifiers, and provides a set of pre-defined generalized 
quantifiers including SUM, PRODUCT, MAXIMUM, MINIMUM, NUMBER, UNION, and 
INTERSECTION in addition to the usual logical quantifiers SOME and ALL. This facility can 
be used to represent the requirements for a software system using standard mathematical constructs 
such as limits, integrals, and infinite series. Spec allows variables ranging over types and functions, 
and includes second order quantifiers, which can be useful for defining general properties of generic 
modules. 

In general the response of a module to a message can be defined with several cases introduced 
by WHEN clauses. Each WHEN clause expresses a precondition, i.e. a predicate describing 
the conditions under which the associated response must be triggered by an incoming message 
with a given name and condition. The preconditions in each WHEN statement are stated 
independently, so that the order of the WHEN statements does not matter. Different cases are 
usually distinguished by qualitatively different kinds of responses, such as normal outputs vs 
exceptions, or messages sent to different destinations under different conditions. 

Messages without any WHEN clauses have a single case whose precondition is always true. If 
the precondition for more than one case is satisfied, all of the associated responses must be sent 
and the constraints of all the associated postconditions must be met simultaneously. Overlapping 
preconditions are not recommended because they can lead to inconsistencies. 

OTHER WISE is an abbreviation for the case where none of the other WHEN statements apply. 
In the Spec language each series of when statements must be terminated by an OTHERWISE, 
to make sure all cases are covered. If a case is to be left undefined, the designer must say so 
explicitly. In Spec, there are two explicit representations for "undefined". The first, "?", indicates 
the design has not been finished, and can be read as "to be determined". The other representation, 
"!", indicates that a case is deliberately left undefined, and can be read as "this case should 
never arise". Designs containing ''!''s are dangerous because they may lead to brittle systems. 
Such designs usually are justified on grounds of efficiency, and involve tradeoffs that need careful 
review. 

A REPLY describes the message sent back in response to a stimulus. The reply is sent to the 
module originating the message that arrived in the stimulus, which is identified by the implicit origin 
attribute of the message. If REPLY is followed by EXCEPTION then the condition of the reply 
message is exception, representing an exceptional event, and otherwise the condition of the reply 
message is normal, representing a normal response. EXCEPTION can also appear after MESSAGE 
in the specification of an exception handler, indicating that the stimulus must be an exception 
condition. Thus responses to exception conditions are specified in the same way as responses to 
normal messages. 

An outgoing message such as a REPLY can have a WHERE clause, which describes a 
postcondition that must be satisfied by the outgoing message. The WHERE keyword is followed 
by a statement in predicate logic describing the relation between the contents of the message that 
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was received and the contents of the reply message. This predicate states how to recognize a correct 
result, but it does not specify how to compute the required output. 

Whenever a message arrives which matches a MESSAGE declaration in the specification of 
the module and satisfies the precondition (WHEN) of one of the cases, then a response must be 
sent which matches the REPLY header and satisfies the associated postconditions (WHERE). 
A message matches a declaration if the message has the specified name, condition, and number 
of data values, and if each data value belongs to the specified data type. A message satisfies a 
predicate if the predicate is true in the state where the formal arguments of the visible message 
declarations are bound to the actual data values in the message. Only the incoming message is 
visible in a precondition, while the incoming message and all associated outgoing messages are 
visible in a postcondition. 

To summarize, the basic building blocks for black-box specifications are precondition/ 
postcondition pairs expressed in predicate logic, which provide a means for recognizing the 
required responses of a module. These preconditions and postconditions provide exactly the 
information needed for formal verification or automatic classification of test results. Message 
names, exception names, and the guarded response structure are included to help separate 
logically distinct concerns, thus helping designers and analysts find the parts of a formal 
specification addressing any given question concerning the intended behavior of the proposed 
system. This structure, together with intermediate definitions represented as Spec CONCEPTs 
allows analysts to keep individual formal assertions brief, which is necessary for effective human 
comprehension. , 

2.2. Machines 

A machine is a module with an internal state, which means the responses of a machine can 
depend on previous stimuli. Systems providing long term memory, such as databases, are classified 
as abstract machines in the Spec language. An example of a machine is shown below. 

MACHINE ticket-system 
INHERIT time_unit 
ST A TE( outstanding: set{ ticket-id}) 
INVARIANT true 
INITIALLY outstanding = { ) 

MESSAGE ticket(violator: person, ticket-id: integer) 
SEND check_on_payment(violator: person, tickeLid: integer) TO ticket-system 

WHERE (30 days)< =DELAY< (31 days) 
TRANSITION outstanding = *outstanding U {ticket-id} 

MESSAGE payment(violator: person, ticket-id: integer) 
TRANSITION outstanding= *outstanding - {ticket-id} 

MESSAGE check_on_payment(violator: person, ticket-id: integer) 
WHEN ticket-id IN outstanding 

SEND letter(s: string) TO violator WHERE warning(s) 
SEND check_on_payment(violator: person, ticket-id: integer) TO ticket-system 

WHERE (30 days)< =DELAY< (31 days) 
OTHERWISE- - do nothing 

CONCEPT warning(s: string) V ALUE(b: boolean) 
- -True ifs is a letter requesting immediate payment of the fine. 

END 

This example shows a simplified system for keeping track of payments of fines for traffic violations. 
The state of the machine consists of the set of tickets that have been issued and not yet paid. 
The example illustrates the treatment of message delays in Spec and the description of activities 
with time-out conditions. 

The DELAY keyword denotes the length of the time interval between the instant a module 
accepts a stimulus message and the instant an associated response message is accepted by its 
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destination. The stimulus message and the response are identified by the context in which the 
DELAY expression appears. The time it takes to prepare a message is not distinguished from the 
time it takes to transmit the message from one module to another or time spent in a queue waiting 
for the destination module to accept the message-the DELAY includes all of these. The DELAY 
can be used to define arbitrary timing constraints, including upper or lower bounds, or both as 
in the example. If no explicit constraints on the DELAY are given, then the response must arrive 
after some finite but unbounded delay. 

Spec DELAYs represent time-valued expressions, which are used to express declarative 
constraints on the real-time behavior of a system. The DELAY expression in Spec differs 
substantially from the DELAY statement in Ada, which is an imperative executable statement. Ada 
DELAY statements can be used to realize lower bounds on time delays, and can be used to realize 
upper bounds only in some very restricted contexts. 

A time-out is represented as a message sent from the machine to itself with a specified delay. 
While this message is in transit, the machine is free to respond to other requests. When the time-out 
message, check_on_payment in the example, is received, the machine must check whether the 
expected responses to the original request have arrived. If they have, then the time-out message 
is ignored, and otherwise the actions associated with the time-out conditions are carried out. The 
time-out processing is specified as a separate event rather than as part of the response to the original 
stimulus because it depends on a future state, and the machine should be free to respond to other 
stimuli while it is waiting for the time-out. Similar structures occur in specifying robust distributed 
systems such as communications protocols. 

The example also illustrates the use of dimensioned quantities such as "(30 days)" and the use 
of an INHERIT clause to refer to concepts defined in another module. The example refers to a 
module called "time_ unit", which defines time units such as "days". Formally a time unit is a 
constant of type "duration", which is defined to be a subtype of real (every duration is a real 
number, but not every real number is a duration). The module "time_unit" is part of the 
specification library defined in [7]. 

The behavior of a machine is described in terms of a conceptual model of its state, rather than 
directly in terms of the messages that arrive in the past, because such descriptions are usually 
shorter and easier to understand. The components of the conceptual model of the state are declared 
after the keyword ST A TE, and restrictions on the set of meaningful states are given after the 
keyword INVARIANT. Restrictions on the initial state are given after the keyword INITIALLY. 
The restrictions after INVARIANT must be satisfied in all reachable states, while the restrictions 
after INITIALLY must be satisfied only in the first state. 

State changes are described by predicates after the keyword TRANSITION. In such statements, 
plain variables refer to their values in the new state (just after the arrival of the stimulus), while 
variables prefixed with a • refer to their values in the previous state (just before the arrival of the 
stimulus). In the event model which forms the basis for Spec state changes occur at events where 
the triggering stimuli arrive and take effect instantaneously. Formally "*" is a temporal operator. 
The temporal logic underlying Spec includes other temporal operators as well [7], but these are not 
needed for most conventional applications. 

The transitions in the example are specified using equations. Equations can describe a 
transition either forwards or backwards in time, whichever is simpler. The •x notation can only 
be used in the INVARIANT, the TRANSITIONS, and in WHERE clauses describing the 
output in terms of the new state. Spec follows the convention that •x = ! in the initial state 
for all variables x, which means that the predecessor of the initial state is undefined. The Spec 
language also follows the convention that components of the state of a machine or the model 
of an abstract data type do not change unless the component is explicitly mentioned in a 
TRANSITION clause. 

A TRANSITION predicate provides a declarative description of the required relation between 
the initial state and the final state which can be used to recognize acceptable state changes after 
the fact. A TRANSITION predicate differs substantially from an assignment statement, which is 
an imperative executable statement that can be used to realize a state transition. The subset of 
TRANSITION predicates which have the form of equations defining the final state in terms of the 
initial state, including those shown in the example, can be transformed into assignment statements 
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directly. However, it is also legal to write TRANSITION predicates which define the initial state 
in terms of the final state, or which implicitly define a constraint on the state change that can be 
used to decide whether a transition is correct if the initial state and the final state are both given, 
but may not provide any means for deriving one of these states from the other. In such cases there 
may not be any simple uniform procedure for constructing the final state from the initial state and 
the TRANSITION predicate other than an exhaustive enumerate-and-test loop. Currently the 
construction of an efficient implementation in these cases depends on the knowledge and skill of 
a software engineer, although such transformations may be eventually carried out by knowledge­
based software systems. 

The SEND statement is used instead of REPLY to describe messages sent to destinations other 
than the origin of the incoming message. A SEND statement means that a message satisfying the 
description must be sent to the given destination. SEND statements are useful for describing 
distributed systems with a pipeline structure. A MESSAGE can have only one REPLY, but it can 
have any number of SENDs. In the example, the first case of the check_on_payment message has 
multiple responses, one that sends a letter and another that sets up a new time-out condition. 
If there is more than one SEND, the message transmissions can be performed concurrently or 
one at a time in any order, without waiting for any responses. Message transmission is assumed 
to be asynchronous in Spec. Synchronization is specified by including explicit acknowledge 
messages when it is part of the system requirements. 

2.3. Types ,. 
A type module defines an abstract data type. A realization of an abstract data type consists of 

a value set and a set 0f primitive operations involving the value set. The elements of the value set 
are known as the instances of the type. In the event model, a type module manages the value set 
of an abstract data type, creating all of the values of the type and performing all of the primitive 
operations on those values. Each message accepted by the type module corresponds to one of the 
operations of the abstract data type. The messages of a type module usually have names, since 
abstract data types usually provide more than one operation. 

A module is mutable if the response of the module to at least one message it accepts can depend 
on messages that arrived before the most recent incoming message. A module is immutable if the 
response of the module to every possible message is completely determined by the most recent 
message it has received. Mutable modules behave as if they had internal states or memory, while 
immutable modules behave like mathematical functions. A module is immutable if and only if it 
is not mutable. Functions are immutable and machines are mutable modules. A type can be either 
mutable or immutable. 

The distinction between mutable and immutable modules is important for supporting 
optimization and software evolution. For example transformations that eliminate common 
subexpressions are valid only for functions, since an operation on a mutable module could return 
a different result each time it is invoked, even if all of the input values are the same. Similarly 
knowledge of which operations can cause state transitions and which operations can be affected 
by which components of the state can help to assess the impact ofa proposed evolutionary change, 
especially if the change influences the meaning or form of a data structure representing state 
information. 

An example of a specification for an immutable abstract data type is shown below. 

TYPE date 
INHERIT equality{ date} 

MODEL(day month year: nat) 
INVARIANT ALL(d: date:: 1 < = d.day < = 31 & 1 < = d.month < = 12 & 

0 < = d.year < = 99) 

MESSAGE create(d m y: nat) 
WHEN l< =d< =31 & l< =m< =12&0< =d.year< =99 

REPLY(d: date) WHERE di.day= d, di.month= m, di.year= y 
OTHER WISE REPLY EXCEPTION illegal_ date 
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MESSAGE "<"(di d2: date) REPLY(b: boolean) 
WHERE b < = > 0 < (d2.year-dl.year) MOD 100 < 50 

\di.year= d2.year & di.month< d2.month 
\di.year= d2.year & di.month= d2.month & di.day< d2.day 

- -note 12/31/99 < 01/0l/OO 
- - < is a total ordering on any time interval less than 50 years long 
- -but it is not transitive on longer intervals 

MESSAGE"< ="(di di: date) REPLY(b:boolean) 
WHERE b< =>di <d2ldl =d2 

END 

The example shows a type for representing calendar dates. This data type corresponds to 
the short form of dates commonly used in business, which have only two digits for the year. 
Such dates represent relative rather than absolute points in time, with a cycle long enough 
relative to human experience to make references unambiguous in most practical contexts. 
The abstract type has been defined so that it is free from "overflow" conditions and will be 
usable indefinitely. The interesting part is the definition of the "<" ordering, which is defined 
in a relative fashion, depending only on the two dates to be compared and not on any 
assumptions about the relation of dates to absolute time. While this relation is not a global ordering 
on the entire data type, it provides a consistent and natural local total ordering on any subinterval 
short enough not to "wrap around" (i.e. less than 50 years). The example is a simplification of 
a realistic application since it does not account for the fact that different months can have different 
lengths. 

Abstract data types are usually specified via conceptual models in the Spec language. The 
conceptual models are used to visualize and describe the value set of the type, to specify the 
behavior of the operations, and to provide a mental picture of the type for the programmers who 
use the operations of the type. The conceptual model is chosen for clarity, and is often different 
from the data structure used in the implementation. In case the data type must be re-implemented 
to improve performance, the data structure used in the implementation will change, but the 
conceptual model will not. 

An abstract data type can have many different realizations, all of which must provide operations 
with the specified behavior. The conceptual model provides one possible concrete realization for 
the type. Spec definitions of abstract data types with non-empty conceptual models are constructive 
in this sense. It must be possible to find a function which maps the sequence of operations used 
to construct an arbitrary instance of the type into the corresponding conceptual model to check 
whether the implementation satisfies the specification. For types that are specified in terms of a 
unique conceptual model for each instance, a simplified function can be used for this purpose which 
maps the concrete data structure into the conceptual model directly, without considering the 
sequence of operations that were used to construct the instance. 

Each instance of the type can he represented as a tuple containing the data components declared 
after the MODEL keyword. The restrictions on the components of the model are described in the 
INVARIANT, which selects a subset of the tuple data type defined by the MODEL to serve as 
the conceptual representation. The JNVARIANT is a predicate that must be true for all meaningful 
conceptual representations. 

The invariant on the conceptual representation should be adjusted to make the descriptions of 
the operations as simple as possible. The invariant on the conceptual representation does not 
involve the implementation data structure and does not restrict the designer's choice of implemen­
tations. The invariants on the implementation data structures will often be much more complicated 
than the conceptual invariants, because implementation invariants often determine efficiency. Most 
books on data structures are really about the art of choosing implementation invariants that enable 
efficient algorithms. 

lnside the module defining an abstract data type, predicates describing the effects of the 
operations can be written in terms of the conceptual representation. Inside the module defining an 
abstract type instances of the type can be described as if they were tuples containing the components 
specified in the MODEL. Instances of the type are denoted by expressions containing Spec 
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variables. Such variables must be declared in input and output messages, conceptual models, 
generic parameters, or quantifiers. The notation x.y can be used to refer to the y component of 
the abstract data value x. The specifications of other modules may describe the values of abstract 
types only in terms of the MESSAGEs it provides and the CONCEPTs it EXPORTs. This 
restriction helps to enforce the locality of information principle characteristic of object-oriented 
design and programming. Spec also supports the concept of object refinement via a multiple 
inheritance mechanism, as discussed in Section 3.3. 

One difference between Spec and many object-oriented programming languages is that a Spec 
type module defines the behavior of a type manager rather than the behavior of a typical instance. 
This avoids special treatment for object creation and eliminates the need for concepts such as "self" 
and meta-classes, which we have found to be a source of confusion for many programmers. Cases 
where it is natural to send a message to an instance, such as messages from an aircraft control 
system to an individual airplane, are handled by a convention similar to Simula 67: if x is an 
instance of type t then 

SEND operation(a1, ••• , a.)TO x 

is treated as an abbreviation for 

SEND operation(x, a,, . .. , a.)TO t. 

It is sometimes convenient to express complicated conditions as lists of independent constraints. 
The predicates after INV ARL\NT, WHEN, and WHERE can be lists of expressions separated by 
commas. A list of statements is true if and only if all of the statements in the list are true 
individually, so that in this context a comma means the same thing as&. The comma has a lower 
precedence than all of the other operators, so that it can be used to separate statements at the top 
level without need for parentheses. 

An example of a definition for a mutable type is shown below. 

TYPE employee 
INHERIT mutable (employee) 

- -Inherit definition of the concept "new". 

MODEL(name: string, salary: money) 
INVARIANT ALL(e: employee:: e IN •employee=> e.name = •e.name) 

- -The name of an employee cannot change. 

MESSAGE hire(name: string, salary: money) 
REPL Y(e: employee) 
TRANSITION new(e), e.name =name, e.salary =salary 
- -The predicate new(e) means e is newly created. 

MESSAGE raise(e: employee, r: money) 
TRANSITION e.salary = •e.salary + r 

MESSAGE name(e: employee) 
REPLY(s: string) WHERE s = e.name 

MESSAGE salary(e: employee) 
REPL Y(m: money) WHERE m = e.salary 

MESSAGE fire(e: employee) 
TRANSITION not(e IN employee) 
- -The employee is removed from the type, and ceases to exist. 

CONCEPT money: type 
WHERE subtype(money, nat) 

END 

This example specifies a data type representing the employees of an organization. The identity of 
an employee remains the same, even though other properties of the employee, such as the salary, 
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may change. To illustrate invariants that restrict the range of legal state transitions, we have 
specified that the name of an employee cannot be changed, although that is not entirely realistic. 
The reader is invited to formulate an explicit invariant restricting salaries to be non-decreasing, 
which is an implicit property of the definition shown. The hire operation illustrates the specification 
of the creation of a new instance of a mutable data type, while the fire operation illustrates the 
specification of the destruction of an existing instance of a mutable data type. 

In mutable types the instances of the type have internal states, and operations are provided for 
changing the internal states of the instances. TRANSITION clauses are allowed in types as well 
as machines. A type is mutable if and only if it has a non-trivial TRANSITION clause (i.e. a 
TRANSITION that implies *c = x for some instance x). Mutating operations, such as hire.fire, 
and raise in the example above, are described using TRANSITION clauses. 

Object identity is an important issue for mutable types because all of the program variables 
bound to the same mutable object will be affected if a state changing operation is applied to the 
object. A new object is guaranteed to be distinct from all objects defined in the previous state. The 
concepts new and id are not part of the Spec language, but they are provided by a predefined generic 
module mutable whose instances can be inherited by any mutable type. A definition of this module 
is shown below. 

DEFINITION mutable{ t: type) 
CONCEPT new(x: t) VALUE(b: boolean) 

WHERE b <=>x IN t &-(x IN *t), 
- -An object is new if it belongs to the type in the current state 
- -and it did not belong to the type in the previous state. 

ALL( a c: t : : new( a) & c IN •t =>id( a)- = id(c)) 
- -A new object is distinct from any object existing in the previous state. 

CONCEPT id(x: t) V ALUE(n: nat) 
WHERE ALL(y z: t:: id(y) = id(z) = > y = z), 

ALL(y: t:: *y IN *t = > id(y) = id(•y)) 
- -Every object has a permanent unique identifier. 

END 

This is an example of a DEFINITION module, which defines only concepts. Such modules do not 
directly correspond to any components of a software system, and are used to group together 
concepts that are shared by many different parts of the system. The definitions in such a module 
can be included as a group via an INHERIT clause, as was done in the specification of the type 
employee, or they can be selectively included one at a time via IMPORT clauses. DEFINITION 
modules are also useful for recording the results of a conceptual modeling effort during 
requirements analysis in a form that can be used directly in the later functional specification and 
architectural design stages. 

Spec provides facilities for specifying mutable types because they are used for efficiency 
reasons in internal interfaces of many systems. We recommend avoiding mutable types in user 
interfaces. 

2.4. Generators 

A generator is a message that generates a sequence of values one at a time. Generators are 
sometimes also called "iterators" or "streams". An example of a specification for a generator is 
shown below. 

FUNCTION Vendors 
IMPORT price FROM ic 
IMPORT sells FROM vendor 

MESSAGE(component: ic) 
GENERATE(s: sequence{vendor}) 
WHERE ALL(v: vendor:: v IN s < => sells(v, component)), 

increasing_ price(s) 

f 
! 
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CONCEPT increasing_price(s: sequence(nat}) 
VALUE(b: boolean) 
WHERE b < = > ALL(i j: nat 

SUCH THAT 1 <=i<j<=length(s)::price(s[i])<=price(s[j])) 
END 
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This example shows a module that generates a sequence of suppliers for a specified integrated 
circuit, with the cheapest sources first. Such a module is a useful component for a decision support 
system for the managers of a computer manufacturing plant. The example also illustrates the use 
of IMPORT clauses for including concepts defined in other modules. Definitions of the types ic 
and vendor are not shown. The concept "increasing_ price" has been defined explicitly to make the 
example self-contained. In a production context, this concept would be specified as an instance of 
the generic concept "sorted", which is part of the pre-defined generic type "sequence" in the 
specification library [7]. 

The GENERATE keyword means the same thing as a REPLY except that the result is a sequence 
whose elements are delivered one at a time rather than all at once. This means that the elements 
will be generated one at a time, and processed incrementally, rather than being generated all at 
once and returned in a single data structure containing all of the elements, as would be the case 
for a REPLY of type sequence. In a program a generator is often used to control a data driven 
loop. Generators can also be used in specifications of other modules, for example to define the range 
of a quantified variable. Generators are interpreted as sequence-valued functions when they appear 
in specifications. , 

Any message with a GENERATE is a generator, so that generators can be defined as operations 
of an abstract data type or a machine. Such operations support sequential scanning of the elements 
of an abstract collection without exposing the data structure used to implement the collection. 

3. FEATURES FOR SPECIFYING LARGE SYSTEMS 

The Spec language contains several features that are needed mostly for specifying large systems. 
Some of these features include generic modules, defined concepts, and an inheritance mechanism. 
An example illustrating the development of a complete system using Spec and a more detailed 
description of the language can be found in [7]. 

3. 1. Generic modules 

A parametrized module specifies a family of modules rather than an individual module. Generic 
modules are important for achieving re-use of specifications and designs because they can be 
adapted to a wider variety of applications than their more specific instances. A parametrized 
module looks like an ordinary module definition except that there can be parameters after the 
module name, with an optional WHERE clause restricting the values of the parameters. The 
DEFINITION module mutable{t} given in the previous section is an example of a parametrized 
module. Such a definition defines one module for each legal set of values for the parameters of 
the module. The parameters can range over data values, functions, or types. Spec allows generic 
modules to have a variable number of parameters, and provides a means to define restrictions on 
legal values for the parameters. 

3.2. Concepts 

Concepts are used for explaining and testing the behavior of modules, and should be reflected 
in reference manuals and test oracles. A CONCEPT in the Spec language defines a constant symbol, 
predicate symbol, or function symbol that can be used in constructing the logical assertions defining 
the behavior of modules. Concepts without formal arguments are interpreted as constants. A 
constant can be either a symbolic name for a data value or a symbolic name for a data type. 
Concepts with formal arguments are interpreted as predicate symbols if they have one VALUE 
and its type is boolean, and as function symbols otherwise. 

Every concept is attached to some module, and is local to that module unless it is exported or 
inherited. Only concepts can be exported. If a concept is exported, then it can be explicitly imported 
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by other modules and used in their definitions. The export/import mechanism is used to record 
logical dependencies between modules, so that mechanical aid can be provided for tracing the 
impact of a proposed change to a definition. 

A facility for introducing named concepts with explicit definitions and interfaces is important 
for organizing and simplifying descriptions of complex software systems. It is not a good idea to 
express a complicated constraint as a single very long expression in predicate logic, just as it is not 
a good idea to implement a large system as a single monolithic module: the result is too difficult 
for people to understand. Concepts have the same purpose in a specification language that 
subprograms do in a programming language, namely to provide a mechanism for separating 
independent concerns. 

Concepts can also be used to mix formal and informal specifications, by a formal definition of 
a precondition, postcondition, invariant, or transition in terms of some concepts, and then 
providing informal definitions for the concepts. The formal definitions of the concepts can be filled 
in later, when the design has stabilized, or can be left out entirely if the details are not critical. The 
ability to mix formal and informal specifications in a disciplined manner can be important in 
practical projects with tight schedules. 

Concepts represent the properties of the software that are needed to explain or describe the 
intended behavior of the software system. Concepts are delivered to the customer in the manuals 
explaining how the system is supposed to operate, where they may be explained less formally than 
in the functional specifications and architectural design. Concepts do not normally represent 
components of the code to be delivered, although it may be useful to implement them for testing 
purposes. 

A function should be defined as a FUNCTION module in Spec if it is part of the model of the 
software system, and it should be defined as a concept that is part of a module if the function is 
needed to specify the behavior of the module, but is not part of the model of the system at the 
current level of description. If a function is needed to specify the behavior of a module at a high 
level of the architectural design, and is also one of the components used to realize that module 
at a lower level, then it should be defined as a concept attached to the module at the higher level 
and exported. At the lower level it should be specified as a FUNCTION module, which imports 
the concept from the higher level module and has a trivial definition in terms of the imported 
concept. 

3.3. Views and inheritance 

The Spec language has an inheritance mechanism which can be used for specifying constraints 
common to the interfaces of many modules and for view integration. Specifying constraints 
common to many interfaces is essential for achieving interface consistency in very large systems. 
The interface of a system to each class of users can be a separate view of the system, perhaps 
specified by different designers. A total picture of the system is formed by expanding the definition 
of a module that inherits all of the individual views. Inheritance also provides a means for recording 
the boundaries between refinement steps in the design, and can be used to keep track of the 
distinction between the aspects of the system visible to the users and those visible only to the 
implementors. The inheritance mechanism and the rules for combining different versions of 
messages and concepts inherited from multiple parents are described in more detail in (4]. 

4. THE EVENT MODEL 

The Spec language uses the event model to define the black-box behavior of software modules. 
The event model has been influenced by the actor model (20, 34]. The main differences from the 
actor model are the treatment of time and temporal events, and the treatment of multi-event 
transactions [2]. In the actor model, the behavior of a module is defined in terms of stimulus­
response pairs, without atomic transactions involving longer chains of events, and all responses are 
assumed to be triggered by the arrival of messages rather than by points in local absolute time. 
In the event model, computations are described in terms of modules, messages and events. A 
module is a black box that interacts with other modules only by sending and receiving messages. 
A message is a data packet that is sent from one module to another. An event occurs when a 
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message is received by a module at a particular instant of time. The event model is described 
informally below. A more formal definition can be found in [8]. 

Modules can be used to model external systems such as users and peripheral hardware 
devices, as well as software components. Modules are active black boxes, which have no 
visible internal structure. The behavior of a module is specified by describing its interface. The 
interface of a module consists of the set of stimuli it recognizes and the associated responses. 
A stimulus is an event, and the response is the set of events directly triggered by the stimulus. 
The events in the response consist of the arrivals of the messages sent out by the module because 
of the stimulus. 

Messages can be used to model user commands and system responses. Messages represent 
abstract interactions that can be realized in a wide variety of ways, including procedure call, return 
from a procedure, Ada rendezvous, coroutine invocation, external 1/0, assignments to non-local 
variables, hardware interrupts, and exceptions. A message has a condition, a name, and a sequence 
of zero or more data values. The condition has the value normal for messages representing normal 
interactions, and the value exception for messages representing abnormal interactions such as 
exceptions. The name of a message identifies the service requested by a normal message or the 
exception condition announced by an exception message. The data values represent either inputs 
or results, and may be present for any kind of message. The triggering event is an implicit attribute 
of each message, used for identifying the destination for reply messages. Message transmission 
is assumed to be reliable, which means every message that is sent eventually arrives at its 
destination. 

Each module has its own tocal clock and can send messages to itself at times determined by its 
local clock. The arrival of such a message is called a temporal event. The sending of the message 
corresponds to an alarm which enables the temporal event at a specified point in local time. The 
scheduling delay between the alarm and the corresponding temporal event can be constrained via 
a Spec DELAY expression. Temporal events allow modules to initiate actions as well as to respond 
to external stimuli. Temporal events are often periodic, and their phases may be defined relative 
to the time of day or the date. 

Events at the same module happen one at a time, in a well-defined order. This order can be 
observed as a computation proceeds, and corresponds to the ordering of the local times at which 
those events occur. Events at different places need not have a well-defined order because the local 
clocks of different modules are not guaranteed to be synchronized with each other. The clock 
associated with a module measures local physical time, and in distributed systems simultaneous 
readings from the clocks of different modules have significantly different readings if the modules 
are at physical locations in different time zones. Thus time readings must be transformed to a 
standard frame of reference if they are to be used to determine orderings between physically 
separated events. Spec is based on a Newtonian model of time, since relativistic effects are negligibly 
small for current practical applications. However, practical measurements of message delays must 
account for clock synchronization errors if the source and destination of the message are at different 
locations, since such clocks can be synchronized only by sending messages with non-zero delays 
that are not completely predictable. 

Orderings between events are not subject to clock synchronization errors if they are derivable 
from discrete sequences of the following types of steps: 

(I) Two events at the same module are ordered by their local times. 
(2) The event which triggered the sending of a message comes before the event in which that 

same message is received. 

The response of a module to a message is influenced only by the sequence and arrival times of 
the messages received by the module since it was created. This means there is no action at a distance: 
all interactions must involve explicit message transmissions. This restriction is a formalization of 
the requirement that each module must correspond to a coherent abstraction. 

The event model and the Spec language admit nondeterminism due to partially specified 
communication delays or partially specified responses. Complete specifications admit only deter­
ministic behavior. In Spec it is possible to specify that a response must be deterministic (repeatable) 
without completely specifying the other properties of the response. 



I 
126 V ALDIS BERZINS 

Each module has the potential of acting independently, so that there is natural concurrency in 
a system consisting of many modules. Since events happen instantaneously and the response of a 
module is not sensitive to anything but the sequence of events at the module, the event model 
implies concurrent interactions with a module cannot interfere with each other at the level of 
individual events. Atomic transactions can be used to specify constraints on the order in which a 
module can accept events. Atomic transactions can be used to specify synchronization constraints 
involving chains of events in distributed systems. Atomic transactions must be used with care, 
because they can interact with each other or with timing constraints to produce unsatisfiable 
specifications. Deadlocks are familiar examples of such situations. Examples of atomic transactions 
defined in Spec can be found in [7]. 

Modules can be used to model concurrent and distributed systems, as well as systems 
consisting of a single sequential process. The event model helps to expose the parallelism 
inherent in a problem, since a stimulus can have a set of unordered responses occurring at different 
locations. 

5. CONCLUSIONS 

Spec is a specification language with a broad range of applications. The language is primarily 
intended for representing black box interface specifications in the early stages of design and in the 
maintenance phase. The language has a precise semantics and a simple underlying model. We have 
found the language to be sufficiently powerful for specifying many kinds of software systems, and 
sufficiently flexible to allow software designers to express their thoughts without forcing them into 
a restrictive framework. The language has been used by computer science students to develop 
moderately large programs using team projects and thesis work [12, 15]. The application of the 
language to the analysis, specification, design, construction, and evolution of an airline reservation 
system is described in [7]. We have found that black-box specifications are natural for complex 
systems and that they help the analyst in creating order out of chaos. The inheritance features were 
very useful for recording the refinement structure that lead to the current version for the system 
interface. 

Students have learned the language using materials similar to those for introducing a new 
programming language [5], and with a comparable amount of effort. With some practice it is 
possible to produce short and clear specifications for even relatively complex software components. 
The language does force relatively complete analysis of the intended behavior ofa system, and tends 
to expose incomplete understanding via long and complicated predicates. Such predicates are 
indications that the analysis is not yet complete, and that factoring and concept formation steps 
remain to be done. We have found effort for clarifying a specification to be well spent. After 
factoring and transforming specifications until they appear as collections of simple and independent 
constraints, we have found that implementations can be created quickly and with few errors, even 
for sizable pieces of code. 

The Spec language is sufficiently formal to support mechanical processing. Some tools for 
computer-aided design of software that are currently under investigation are syntax-directed 
editors, consistency checkers, design completion tools, test case generators, and prototype 
generators. A substantial subset of the language is executable in principle and work on the 
implementation of such a subset is in progress. However, the full language includes very powerful 
constructs which provide practical ease of expression at the expense of allowing the specification 
of some functions that are not algorithmically computable. The best that can be done is to provide 
partially correct implementations for the entire language which may fail to terminate in some cases 
where the specification is actually well defined. 
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