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4.1 Introduction

Numerous papers were published during the last decade on the normal forms of
nonlinear control systems with applications in bifurcation and its control. The
approach is motivated by Poincaré’s theory of normal forms for classical dynam-
ical systems using homogeneous transformations. In this paper, we summarize
a variety of control system normal forms published in the literature so that the
normal forms are derived in a same framework with consistent notations. Before
we get into technical details, the rest of the introduction is a review of existing
results on some related topics.

It is well known that there are several normal forms for a linear control
system. If the system is controllable then the system can be transformed into
controllable or controller normal form. If the system has a linear output map
and is observable then it can be transformed into observable or observer form.
The nonlinear generalization of the linear controller normal forms were exten-
sively studied during 1980’s, for instance, Krener [23], Hunt-Su [11], Jackubczyk-
Respondek [10], and Brocket [3], etc. If a nonlinear control system admits a
controller normal form, it can be transformed into a linear system by a change
of coordinates and feedback. Therefore, the design of a locally stabilizing state
feedback control law is a straightforward task. In such a case, we say the sys-
tem is feedback linearizable. On the other hand, most nonlinear systems do
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not admit a controller normal form under change of coordinates and invertible
state feedback. For systems that are not linearizable, the quadratic approxi-
mate version of controller normal form was introduced and discussed in Krener
[22] and Krener-Karahan-Hubbard-Frezza [24]. It was proved that, for certain
kind of nonlinear systems, there exist a quadratic change of coordinates and
quadratic feedback that transform the system into the linear approximation of
the plant dynamics which is accurate to at least second degree. In this case,
we call the system quadratically equivalent to a linear system or quadratically
feedback linearizable. But most nonlinear systems do not admit such a lin-
ear approximation. Another way of linearizing a nonlinear control system is
dynamic feedback linearization. Some nonlinear systems with more than one
input can be linearized by a dynamic feedback even if they are not linearizable
by a state feedback. However, it was proved that a dynamic feedback cannot
completely linearize a nonlinear system with single input if it is not linearizable
by a state feedback (see Charlet-Lévine-Marino [4]).

Until late 80’s, the problem of normal forms for nonlinear control systems
that are not feedback linearizable was still largely open. On the other hand,
the Poincaré normal form of nonlinear dynamic systems has been a successful
theory with applications in the study of bifurcations and stability. Although the
normal form of Poincaré was not applied to control systems, in Kang [12], the
idea of Poincaré was applied to nonlinear control systems with a single input. A
normal form was derived for the family of linearly controllable systems with a
single input, including systems that are not feedback linearizable. In addition,
it was proved in Kang [12] that a dynamic feedback is able to approximately
linearize a controllable system to an arbitrary degree. Invariants were found
in Kang [12] that uniquely determine the normal form of a control system.
The homogeneous parts of degree d from two systems are equivalent under
homogeneous transformations if and only if they have the same invariants. Part
of the dissertation [12] were published in Kang-Krener [13], Kang [14] and [16].

Starting from early 90’s, the research on normal forms moved in several
related but different directions. One active research direction is to find the
normal forms of systems with uncontrollable linearizations. Several authors
have made contributions to this subject. Quadratic normal forms of systems
with uncontrollable linearization were developed by Kang [15], [17] and [18].
The results were generalized to higher degree terms by Fitch [6], Tall-Respondek
[32], and Tall-Respondek [29] for systems affine in control. In Krener-Kang-
Cheng [26], the normal form and invariants of nonlinear control systems with
a single input, not necessarily affine in control, is achieved through the third
degree. In the following sections, the result is generalized to homogeneous terms
of arbitrary degree. The proof in [26] is constructive, which is different from the
existence proof adopted in most previous published work. The same constructive
proof is adopted in this chapter and generalized to higher degrees. Similar
to Poincaré’s theory, the normal form of a control system is invariant under
homogeneous transformations of the same degree. However, a normal form of
degree k is not unique under transformations of degree less than k. If a normal
form is unique under transformation of arbitrary degree, it is call a canonical
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form. Tall-Respondek [35] solved the problem of canonical form for single-input
and linearly controllable systems.

For multi-input systems, their nonlinear normal forms and invariants were
first studied in Kang [12]. The quadratic normal form and quadratic invariants
were derived in [12] for linearly controllable systems in which the controllability
indices equal each other. Without any assumption on the controllability indices,
Tall-Respondek [33] found a normal form of arbitrary degree for linearly con-
trollable systems with two inputs. The results were further generalized by Tall
[34] for linearly controllable systems with any number of inputs. The normal
form was derived for homogeneous parts of arbitrary degree.

Barbot, Monaco and Normand-Cyrot [2] derived a linear and quadratic nor-
mal form for linearly controllable discrete-time systems. Quadratic and cubic
normal forms were derived by Krener-Li [25] for general discrete-time systems
both linearly controllable and uncontrollable systems. The approaches adopted
in [2] and [25] are different. As a result, the normal forms derived in the two
papers are different for linearly controllable systems.

The application of normal forms and invariants of control systems is another
active research topic. Based on normal forms, bifurcations and its control were
studied by several authors. In Kang [17], [18], and [19], bifurcations and their
classification for both open-loop and closed-loop systems were studied for sys-
tems with a single uncontrollable mode. In Krener-Kang-Cheng [26], control
bifurcation for parameterized state feedback was studied. Hamzi-Kang-Barbot
[8] used normal forms and invariants to characterize the orientation and stability
of periodic trajectories in a Hopf Bifurcation under state feedback. Bifurcations
and their control for discrete-time systems is addressed in [25] and [7].

As an application of canonical form, Respondek-Tall [29] and [30] studied the
symmetry of nonlinear systems. For linearly controllable and analytic systems
that are not feedback linearizable, the group of stationary symmetries contains
at most two elements and the group of non stationary symmetries consist of at
most two 1-parameter families. This surprising result follows from the canonical
form obtained for single-input systems by Tall-Respondek [35]. Respondek [31]
establishes the relationship between flatness and symmetries for two classes of
systems: feedback linearizable systems and systems equivalent to the canonical
contact system for curves. For these two classes of systems the minimal flat
outputs determine local symmetries and vice versa.

4.2 Linearly Controllable Systems

In this section, a control system with a scalar input is defined by the following
equation,

ẋ = f(x, u), (4.1)

where x ∈ IRn is the state variable, and u ∈ IR is the control input. Occasionally,
it is notationally convenient to denote the control input u by xn+1. We assume
that the function f(x, u) is Ck for sufficiently large k. An equilibrium is a pair
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(xe, ue) that satisfies
f(xe, ue) = 0. (4.2)

An equilibrium state xe is one for which there exists an ue so that (xe, ue) is an
equilibrium. Consider the linearization of (4.1) at (xe, ue),

˙δx = Fδx+Gδu,

F = ∂f
∂x(xe, ue), G = ∂f

∂u (xe, ue).
(4.3)

A control system (4.1) is linearly controllable at (xe, ue) if its linearization (4.3)
is controllable. The linear system (4.3) is controllable if

rank
[
G FG F 2G · · · Fn−1G

]
= n.

In this section, the focus is on the normal form of linearly controllable systems.
The normal form of a system with an uncontrollable linearization is addressed
in Section 4.3. By a translation of the (x, u) coordinate system, we can assume
that the equilibrium (xe, ue) is the origin (0, 0).

Following the method of Poincaré, we derive the normal form of (4.1) by
applying homogeneous transformations to the following Taylor expansion of
(4.1)

ẋ = Fx+Gu+
d∑

k=2

f [k](x, u) +O(x, u)d+1. (4.4)

In (4.4), f [k]
i (x, u) is a vector field in IRn whose components are homogeneous

polynomials of degree k in (x, u). For each homogeneous part, we apply homo-
geneous transformations to derive the normal form. For control systems, the
transformation group includes both changes of state coordinates and invertible
state feedbacks. A linear transformation is defined by

z = Tx, v = Kx+ Lu, (4.5)

where T ∈ IRn×n is an invertible matrix, K ∈ IRn is a row vector, and L �= 0 is
a scalar. A transformation of degree k > 1 is defined by

z = x− φ[k](x),
v = u− α[k](x, u)

(4.6)

A transformation of degree k may change the homogeneous term f [d](x, u) in
(4.4) for d ≥ k. However, a transformation (4.6) does not change any term
of degree less than k. Similar to the derivation of Poincaré normal form, we
derive the linear normal form of an equilibrium of a control system using a
linear transformation. Then a quadratic transformation is used to derive the
quadratic normal form. Because the quadratic transformation leaves the linear
part invariant, the derivation of quadratic normal form does not change the
linear normal form. In general, if the normal forms of f [1](x, u), . . . , f [k−1](x, u)
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have been derived, a transformation of degree k is used to derive the normal
form for of f [k] in (4.4), which leaves the normal form of f [l](x, u) invariant for
1 ≤ l ≤ k − 1.

It is well known that by linear transformation (4.6), a linear control system

ẋ = Fx+Gu (4.7)

can be brought to the Brunovsky form

ż = Az +Bv (4.8)

where A and B are of the form

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0




n×n

, B =




0
0
...
0
1




n×1

. (4.9)

The existence of such a linear transformation is proved in many textbooks of
linear control systems.

Consider a linearly controllable system (4.4). We adopt the Brunovsky form
as the linear normal form. There exists a linear transformation that brings (4.4)
to the form

ẋ = Ax+Bu+ f [2](x, u) +O(x, u)3, (4.10)

where (A,B) are defined by (4.9). In the following, we use a quadratic trans-
formation

z = x− φ[2](x),
v = u− α[2](x, u)

(4.11)

to simplify the quadratic nonlinear part of the system. There are two basic
operations, pull up and push down, which are used to achieve this.

Consider a part of the dynamics

ẋi−1 = xi + . . .
ẋi = xi+1 + cxjxk + · · · (4.12)

where 2 ≤ i ≤ n, 1 ≤ j ≤ k ≤ n + 1, recall xn+1 = u. The + · · · indicates
other quadratic and higher degree terms. The other quadratic terms will not be
changed by the operations that we will do. The higher terms may be changed
but we are not interested in them at this time.

If j < k − 1 we can pull up the quadratic term by defining

zi = xi − cxjxk−1

zl = xl if l �= i
(4.13)

Its inverse transform satisfies

xi = zi + czjzk−1 +O(z)3 (4.14)
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Then the dynamics becomes

żi−1 = zi + czjzk−1 + · · ·
żi = zi+1 − czj+1zk−1 + · · · (4.15)

and all the other quadratic terms remain the same. Notice that in each of the
new quadratic terms, the two indices are closer together than the two indices of
the original quadratic term. If j = k − 1 we can pull up the quadratic term by
defining

zi = xi − c
2xjxj

zl = xl if l �= i
(4.16)

then the dynamics becomes

żi−1 = zi + c
2zjzj + · · ·

żi = zi+1 + · · · (4.17)

and all the other quadratic terms remain the same. Notice that the two indices
of the new quadratic term are identical.

Notice also that in either case if i = 1 then we can still pull up and there is
no zi−1 dynamics to be concerned with so a term disappears.

By pulling up all the quadratic terms until the two indices are equal, we
obtain

ẋi = xi+1 +
n+1∑
j=1

εi,j x
2
j + · · · (4.18)

where x denotes the new state coordinate after the pull up process. This form
can be simplified further by the other operation on the dynamics, push down.
Consider a piece of the dynamics,

ẋi = xi+1 + cxjxk + · · ·
ẋi+1 = xi+2 + · · · (4.19)

where 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ k ≤ n. Define

zi+1 = xi+1 + cxjxk

zl = xl if l �= i+ 1 (4.20)

Its inverse transformation satisfies

xi+1 = zi+1 − czjzk +O(z)3 (4.21)

The transformation (4.20) yields

żi = zi+1 + · · ·
żi+1 = zi+2 + czj+1zk + czjzk+1 + · · · (4.22)

and all the other quadratic terms remain unchanged. Notice that if i + 1 = n
then we can absorb any quadratic terms into the control using feedback. The
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terms in (4.19) where 1 ≤ j ≤ k ≤ i + 1 can be pushed down repeatedly and
absorbed in the control.

If the control appears in the derivative of one of the states then we cannot
push that term down any further since the control need not be differentiable.
So, if the term cxjxk appears in the equation for żi with j or k greater than i+1
and we try to repeatedly push it down cxjxk then the control will appear before
we reach the equation for żn. For this reason, we only push down a quadratic
term xjxk with both j and k less than or equal to i+1. As a result, the system
(4.18) is transformed into the following quadratic normal form.

ẋi = xi+1 +
n+1∑

j=i+2

εi,jxjxj +O(x, u)3, for 1 ≤ i ≤ n− 1

ẋn = u+O(x, u)3
(4.23)

where x represents the new state coordinates after the push down process.

Example 1 The following is the quadratic normal form of the general two di-
mensional linearly controllable system.

ẋ1 = x2 + ε1,3u
2 +O(x, u)3

ẋ2 = u +O(x, u)3 (4.24)

Notice there is only one coefficient that cannot be normalized to zero and this is
the invariant of the system under quadratic transformations.

The following is the quadratic normal form of the general three dimensional
linearly controllable system.

ẋ1 = x2 + ε1,3x
2
3 + ε1,4u

2 +O(x, u)3

ẋ2 = x3 + ε2,4u
2 +O(x, u)3

ẋ3 = u +O(x, u)3
(4.25)

Now there are three coefficients that cannot be normalized to zero and these are
the invariants of the system under quadratic transformations.

For the rest of the section, we use pull up and push down to prove the
following theorem on general normal forms.

Theorem 1 Suppose (4.1) is linearly controllable. Suppose the vector field
f(x, u) is Cd+1. Then by change of coordinates and feedback, (4.1) can be
transformed into the following normal form

ż = Az +Bv +
d∑

k=2

f̃ [k](z) +O(z, v)d+1

f̃
[k]
i (z) =

n+1∑
j=i+2

ε
[k−2]
i,j (z̄j)z2

j

(4.26)
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where (A,B) is in Brunovsky form. The coefficient ε[k−2]
i,j (z̄j) is a homogeneous

polynomial of degree k − 2 in the variable z̄j = (z1, z2, · · · , zj). When there are
no terms in the sum then it is zero as in

f̃
[k]
n (z) =

n+1∑
j=n+2

ε
[k−2]
i,j (z̄j)z2

j = 0 (4.27)

Proof. Consider the expansion (4.4). The proof follows by mathematical
induction. We have derived the linear and quadratic normal forms. Suppose
that all homogeneous parts of degree less than m in (4.4) are transformed into
their normal forms, consider the homogeneous part f [m](x) in (4.4). A part of
the dynamics has the form

ẋi−1 = xi +
m−1∑
k=2

f̃
[k]
i−1(x, u) + · · ·

ẋi = xi+1 +
m−1∑
k=2

f̃
[k]
i (x, u) + cxj1xj2 · · ·xjm + · · ·

(4.28)

where 2 ≤ i ≤ n, 1 ≤ j1 ≤ j2 ≤ · · · ≤ jm ≤ n + 1, recall xn+1 = u. The + · · ·
stands for other homogeneous terms of degree m and higher. The other terms
of degree m will not be affected by the operations that we do and we ignore the
higher degree terms. A transformation of degree m does not change the normal
form of degree less than m.

If jm−1 < jm − 1 we can pull up the degree m term by defining

zi = xi − cxj1xj2 · · ·xjm−1xjm−1

zl = xl, for l �= i
(4.29)

then the dynamics becomes

żi−1 = zi +
m−1∑
k=2

f̃
[k]
i−1(z, u) + czj1zj2 · · · zjm−1zjm−1 + · · ·

żi = zi+1 +
m−1∑
k=2

f̃
[k]
i (z, u)− czj1+1zj2 · · · zjm−1zjm−1−

czj1zj2+1 · · · zjm−1zjm−1 − · · · − czj1zj2 · · · zjm−1+1zjm−1 + · · ·
= zi+1 +

m−1∑
k=2

f̃
[k]
i (z, u)− c

m−1∑
k=1

zj1zj2 · · · zjm−1zjm−1

zjk

zjk+1 + · · ·
(4.30)

and all the other degree m terms remain the same. Notice that the two largest
indices of the new degree m terms are closer together than those of the original
degree m term.

If jm−p−1 < jm−p = jm−p+1 = · · · jm−1 = jm − 1 we can pull up the degree
m term by defining

zi = xi − c
p+1xj1xj2 · · ·xjm−p−1x

p+1
jm−1

zl = xl, for l �= i
(4.31)
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then the dynamics becomes

żi−1 = zi +
m−1∑
k=2

f̃
[k]
i−1(z, u) +

c

p+ 1
zj1zj2 · · · zjm−p−1z

p+1
jm−1 + · · ·

żi = zi+1 +
m−1∑
k=2

f̃
[k]
i (z, u) − c

p+ 1

m−p−1∑
k=1

zj1zj2 · · · zjm−p−1z
p+1
jm−1

zjk

zjk+1 + · · ·
(4.32)

and all the other degree m terms remain the same. Notice that the two largest
indices of the new degree m terms are identical.

In any case if i = 1 then we can still pull up and there is no zi−1 dynamics
to be concerned with so a term disappears.

By pulling up all the degree m terms until their two largest indices are
identical, we obtain

ẋi = xi+1 +
m−1∑
k=2

f̃
[k]
i (x, u) +

n+1∑
j=1

ε
[m−2]
i,j (x̄j)x2

j + · · · (4.33)

which is almost the normal form (4.26).
By pushing down we can make εji = 0 for 1 ≤ j ≤ i+ 1. Consider a piece of

the dynamics,

ẋi = xi+1 +
m−1∑
k=2

f̃
[k]
i (x, u) + cxj1xj2 · · ·xjm + · · ·

ẋi+1 = xi+2 +
m−1∑
k=2

f̃
[k]
i+1(x, u) + · · ·

(4.34)

If 1 ≤ j1 ≤ j2 ≤ · · · ≤ jm ≤ n, define

zi+1 = xi+1 + cxj1xj2 · · ·xjm

zl = xl, for l �= i+ 1 (4.35)

yielding

żi = zi+1 +
m−1∑
k=2

f̃
[k]
i (z, u) + · · ·

żi+1 = zi+2 +
m−1∑
k=2

f̃
[k]
i+1(z, u) + c

m∑
k=1

zj1zj2 · · · zjm

zjk

zjk+1 + · · ·
(4.36)

and all the other degree m terms remain unchanged. Notice that if i + 1 = n
then we can absorb the degree m terms into the control using feedback. The
terms in (4.33) where 1 ≤ j1 ≤ j2 ≤ · · · ≤ jm ≤ i+ 1 can be repeatedly pushed
down and absorbed in the control. The result is (4.26). �
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Example 2 The following is the normal form up to the fourth degree for a
general three-dimensional system.

ẋ1 = x2 + ε1,3(x)x2
3 + ε1,4(x, u)u2 +O(x, u)4

ẋ2 = x3 + ε2,4(x, u)u2 +O(x, u)4

ẋ3 = u + O(x, u)4
(4.37)

where εi,j = ε
[0]
i,j + ε

[1]
i,j + ε

[2]
i,j and ε[k]

i,j is a homogeneous polynomial of degree k.

4.3 Linearly Uncontrollable Systems

In this section, we generalize the results of § 4.2 to systems with uncontrollable
linearization. Consider a control system (4.1). Suppose the controllability ma-
trix of its linearization (4.3) has a rank n1 < n. It is well known that by linear
change of state coordinates and linear state feedback, the system can be brought
to the form[

ẋ0

ẋ1

]
=

[
A0 0
0 A1

] [
x0

x1

]
+

[
0
B1

]
u

+
d∑

k=2

[
f

[k]
0 (x0, x1, u)
f

[k]
1 (x0, x1, u)

]
+O(x0, x1, u)d+1

(4.38)

where x0, x1 are n0, n1 dimensional, n0+n1 = n, u ∈ IR, A0 is in block diagonal
Jordan form, A1, B1 are in Brunovsky form and f

[d]
r (x0, x1, u) is a vector field

which is a homogeneous polynomial of degree d in its arguments. The linear
change of coordinates that brings A0 to Jordan form may be complex, in which
case some of the coordinates x0,i are complex. The complex coordinates come
in conjugate pairs. The corresponding f

[k]
0,i are complex valued and come in

conjugate pairs. In some formulae, the control input is treated as a state variable
u = x0,n1+1. A nonlinear vector field f

[k]
r (x0, x1, u), r = 0, 1, has the following

decomposition

f
[k]
r (x0, x1, u) =

∑
|l|=k

f [l]
r (x0;x1, u) (4.39)

where [l] = [l0; l1] is a multi-index and f [l]
r (x0;x1, u) denotes a polynomial vector

field homogeneous of degree l0 in x0 and homogeneous of degree l1 in (x1, u),
|l| = l0 + l1. A homogeneous transformation of degree k has the following form

[
z0
z1

]
=

[
x0

x1

]
−

[
φ

[k]
0 (x0, x1)
φ

[k]
1 (x0, x1)

]

v = u− α[k](x0, x1, u)

(4.40)
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We can expand it as follows

[
z0
z1

]
=

[
x0

x1

]
−

∑
|l|=k

[
φ

[l]
0 (x0;x1)
φ

[l]
1 (x0;x1)

]

v = u−
∑
|l|=k

α[l](x0;x1, u)

(4.41)

where φ[l]
r (x0;x1) denotes a vector field that is homogeneous of degree l0 in x0

and homogeneous of degree l1 in x1. Similarly, α[l](x0;x1, u) is a polynomial
homogeneous of degree l0 in x0 and homogeneous of degree l1 in (x1, u). Under
a transformation (4.41), the degree [l] terms are transformed into

f̃
[l]
0 (z0; z1, v) = f

[l]
0 (z0; z1, v) − ∂φ

[l]
0

∂z0
(z0; z1)A0z0

−∂φ
[l]
0

∂z1
(z0; z1) (A1z1 +B1v1)

+A0φ
[l]
0 (z0; z1)

f̃
[l]
1 (z0; z1, v) = f

[l]
1 (z0; z1, v) − ∂φ

[l]
1

∂z0
(z0; z1)A0z0

−∂φ
[l]
1

∂z1
(z0; z1) (A1z1 +B1v1)

+A1φ
[l]
1 (z0; z1) +B1α

[l](z0; z1, v).

(4.42)

This is still a homogeneous vector of degree [l]. We have proved the following
lemma.

Lemma 1 After the transformation (4.41), the new homogeneous part f̃ [l]
0 is

completely determined by f [l]
0 and φ

[l]
0 (x0;x1). The new homogeneous part f̃ [l]

1

is completely determined by f [l]
1 , φ[l]

1 (x0;x1), and α[l](x0;x1, v).

According to the lemma, each component of the term, f̃ [l]
r , that is homoge-

neous of degree [l] can be considered separately in the derivation of the normal
form. Following Poincaré, (4.42) is called a homological equation. In the deriva-
tion of the normal form, the quadratic transformation is first applied to (4.38)
to derive the normal form of f [2](x0, x1, u). Then, a cubic transformation is
used to derive the normal form of the cubic part. In general, after the normal
form of degree less than k has been found, a homogeneous transformation of
degree k is used to derive the normal form of f [k](x0, x1, u).

Theorem 2 Consider a control system (4.38). There exist homogeneous trans-
formations of the form (4.40) with k = 2, 3, · · · , d that transform the system
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(4.38) into the normal form[
ż0
ż1

]
=

[
A0 0
0 A1

] [
z0
z1

]
+

[
0
B1

]
v

+
d∑

k=2

[
f̃

[k]
0 (z0, z1, v)
f̃

[k]
1 (z0, z1, v)

]
+O(z0, z1, v)d+1

(4.43)

where f̃ [k]
0 , f̃

[k]
1 have the following decomposition

f̃
[k]
0 (z0, z1, v) = f̃

[k;0]
0 (z0) + f̃

[k−1;1]
0 (z0; z1,1) +

k∑
l1=2

f̃
[k−l1;l1]
0 (z0; z1, v)

f̃
[k]
1 (z0, z1, v) =

k∑
l1=2

f̃
[k−l1;l1]
1 (z0; z1, v)

(4.44)
The vector field f̃ [k;0]

0 (z0) is in Poincaré normal form

f̃
[k;0]
0,i (z0) =

∑
|j| = k

j · λ = λi

βi,j z
j
0

(4.45)

where j = (j1, . . . , jn0) is a multi-index of nonnegative integers, |j| = j1 + · · ·+
jn0 , j · λ = j1λ1 + · · · + jn0λn0 and zj

0 = zj1
0,1 · · · zjn0

0,n0
. The other vector fields

are as follows,

f̃
[k−1;1]
0,i (z0; z1,1) = γ

[k−1]
i (z0)z1,1 i = 1, . . . , n0

f̃
[k−l1;l1]
0,i (z0; z1, v) =

n1+1∑
j=1

δ
[k−l1;l1−2]
i,j (z0; z̄1,j)z2

1,j
i = 1, . . . , n0

l1 = 2, . . . , k

f̃
[k−l1;l1]
1,i (z0; z1, v) =

n1+1∑
j=i+2

ε
[k−l1;l1−2]
i,j (z0; z̄1,j)z2

1,j i = 1, . . . , n1

(4.46)
where j is a scalar index, z1,n1+1 = v, z̄1,j = (z1,1, z1,2, · · · , z1,j) and
δ
[k−l1;l1−2]
i,j (z0; z̄1,j), ε

[k−l1;l1−2]
i,j (z0; z̄1,j) are polynomials homogeneous of degree

k − l1 in z0 and homogeneous of degree l1 − 2 in (z1, v).

Proof. Suppose the homogeneous vector fields f [k](x0, x1, u), for all k ≤
d− 1, are already in normal form. Consider the homogeneous term of degree d.
A transformation of degree d does not change the homogeneous parts of degree
less than d. It changes the terms of degree greater or equal to d. Because
of Lemma 1, we can derive the normal form for each homogeneous part f [l]

r

separately.
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Consider f [d;0]
1 (x0;x1, u). Given a part of the system

ẋ1,i = x1,i+1 +
d−1∑
k=2

f̃
[k]
1,i (x0, x1, u) + cx0,j1x0,j2 · · ·x0,jd

+ . . .

ẋ1,i+1 = x0,i+2 +
d−1∑
k=2

f
[k]
1,i+1(x0, x1, u) + . . .

(4.47)

The following push down

z1,i+1 = x1,i+1 + cx0,j1x0,j2 · · ·x0,jd

zs,t = xs,t, if (s, t) �= (1, i+ 1)
(4.48)

brings (4.47) to

ż1,i = z1,i+1 +
d−1∑
k=2

f̃
[k]
1,i (z0, z1, u) + . . .

ż1,i+1 = z1,i+2 + +
d−1∑
k=2

f
[k]
1,i+1(z0, z1, u) +

d

dt
(cx0,j1x0,j2 · · ·x0,jd

) + . . .

(4.49)

Because the lowest homogeneous part of
d

dt
(cx0,j1x0,j2 · · ·x0,jd

) is still a term

of degree [d; 0], it can be further pushed down. When i = n1, the nonlinear
term is absorbed by the feedback. Therefore, all terms of degree [d; 0] can be
canceled by nonlinear transformations.

Consider f [d−1;1]
1 (x0;x1, u). Given a part of the system

ẋ1,i−1 = x1,i +
d−1∑
k=2

f̃
[k]
1,i−1(x0, x1, u) + . . .

ẋ1,i = x1,i+1 +
d−1∑
k=2

f̃
[k]
1,i (x0, x1, u) + cx0,j1x0,j2 · · ·x0,jd−1x1,jd

+ . . .

(4.50)
If jd > 1,we can pull up the degree m term by defining

z1,i = x1,i − cx0,j1x0,j2 · · ·x0,jd−1x1,jd−1

zs,t = xs,t, if (s, t) �= (1, i) (4.51)

The new system has the form

ż1,i−1 = z1,i +
d−1∑
k=2

f̃
[k]
1,i−1(z0, z1, u) + cz1,j1z1,j2 · · · z1,jd−1z1,jd−1 + . . .

ż1,i = z1,i+1 +
d−1∑
k=2

f̃
[k]
1,i (z0, z1, u) − d

dt
(cx0,j1x0,j2 · · ·x0,jd−1)x1,jd−1 + . . .

(4.52)
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In all the new terms of degree [d − 1; 1], the index of the controllable factors
is jd − 1, which is smaller than the original index jd. If i = 1,we can cancel
the degree [d− 1; 1] term without worrying about the equation of ẋi−1. Repeat
the pull up transformation until all the degree [d − 1; 1] terms are brought to
homogeneous terms in the form x0,j1x0,j2 · · ·x0,jd−1x1,1, in which jd = 1. Now,
consider a part of the system

ẋ1,i = x1,i+1 +
d−1∑
k=2

f̃
[k]
2,i (x0, x1, u) + cx0,j1x0,j2 · · ·x0,jd−1x1,1 + . . .

ẋ1,i+1 = x1,i+2 +
d−1∑
k=2

f̃
[k]
2,i+1(x0, x1, u) + . . .

(4.53)
A push down transformation

z1,i+1 = x1,i+1 + cx0,j1x0,j2 · · ·x0,jd−1x1,1

zs,t = xs,t, if (s, t) �= (1, i+ 1)
(4.54)

yields

ż2,i = z1,i+1 +
d−1∑
k=2

f̃
[k]
1,i (z0, z1, u) + . . .

ż2,i+1 = z1,i+2 +
d−1∑
k=2

f̃
[k]
1,i+1(z0, z1, u) +

d

dt
(cx0,j1x0,j2 · · ·x0,jd−1)x1,1

+cx0,j1x0,j2 · · ·x0,jd−1x1,2 + . . .
(4.55)

Repeating the push down process, all degree [d− 1; 1] terms are finally pushed
to the equation for ẋ1,n1 , where they are canceled by the feedback. Therefore,
f

[d−1;1]
1 (x0;x1, u) can be eliminated by homogeneous transformations.

Consider f [l0;l1]
1 (x0;x1, u) with 2 ≤ l1 ≤ d. A part of the dynamics has the

form

ẋ1,i−1 = x1,i +
d−1∑
k=2

f̃
[d]
1,i−1(x0, x1, u) + . . .

ẋ1,i = x1,i+1 +
d−1∑
k=2

f̃
[d]
1,i(x0, x1, u) + c[l0](x0)x1,j1x1,j2 · · ·x1,jl1

+ . . .

(4.56)
The derivation of f̃ [l0;l1]

1 is similar to that in section 4.2. If jl1−1 < jl1 − 1 the
pull up transformation is defined by

z1,i = x1,i − c[l0](x0)x1,j1x1,j2 · · ·x1,jl1−1x1,jl1−1

zs,t = xs,t, if (s, t) �= (1, i)
(4.57)
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then the dynamics becomes

ż1,i−1 = z1,i +
d−1∑
k=2

f̃
[k]
1,i−1(z0, z1, u) + c[l0](z0)z1,j1z1,j2 · · · z1,jl1−1z1,jl1−1 + . . .

ż1,i = z1,i+1 +
d−1∑
k=2

f̃
[k]
1,i (z0, z1, u)

−c[l0](z0)
l1−1∑
k=1

z1,j1z1,j2 · · · z1,jl1−1z1,jl1−1

z1,jk

z1,jk+1

− d

dt
(c[l0](x0))x1,j1x1,j2 · · ·x1,jl1−1x1,jl1−1 + . . .

(4.58)
The lowest terms in the time derivative of c[l0](x0) are still polynomials of x0

with the degree l0. As a result of the pull up, the two largest indices of z1 in the
new terms are jl1−1, jl1 − 1 and jl1−1 +1, jl1 − 1, which are closer together than
those of the original term. If jl1−p−1 < jl1−p = jl1−p+1 = · · · jl1−1 = jl1 − 1, we
define the pull up transformation by

z1,i = x0,i − c[l0](x0)
p+ 1

x1,j1x1,j2 · · ·x1,jl1−p−1x
p+1
1,jl1−1

zs,t = xs,t, for (s, t) �= (1, i)

(4.59)

then the dynamics becomes

ż2,i−1 = z1,i +
d−1∑
k=2

f̃
[k]
1,i−1(z0, z1, u)

+
c[l0](z0)
p+ 1

z1,j1z1,j2 · · · z1,jl1−p−1z
p+1
1,jl1−1 + . . .

ż1,i = z1,i+1 +
d−1∑
k=2

f̃
[k]
1,i (z0, z1, u)

−c
[l0](z0)
p+ 1

l1−p−1∑
k=1

z1,j1z1,j2 · · · z1,jl1−p−1z
p+1
1,jl1−1

z1,jk

z1,jk+1

− d

dt
(c[l0](x0))x1,j1x1,j2 · · ·x1,jl1−p−1z

p+1
1,jl1−1 + . . .

(4.60)

Notice that the two largest indices of variable x1,j in the new degree [l0; l1]
terms are identical. In any case if i = 1 then we can still pull up and there is
no z1,i−1 dynamics to be concerned with so a term disappears. By pulling up
all the degree [l0; l1] terms until their two largest indices of x1,j are identical,
we obtain

ẋ1,i = x1,i+1 +
d−1∑
k=2

f̃
[k]
1,i (x0, x1, u) +

n1+1∑
j=1

ε
[d−2]
i,j (x0, x̄1,j)x2

1,j + . . . (4.61)
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By pushing down we can make ε[d−2]
i,j = 0 for 1 ≤ j ≤ i+ 1. Consider a piece of

the dynamics,

ẋ1,i = x1,i+1 +
d−1∑
k=2

f̃
[k]
1,i (x0, x1, u) + c[l0](x0)x1,j1x1,j2 · · ·x1,jl1

+ . . .

ẋ1,i+1 = x1,i+2 +
d−1∑
k=2

f̃
[k]
1,i+1(x0, x1, u) + . . .

(4.62)
If 1 ≤ j1 ≤ j2 ≤ · · · ≤ jl1 ≤ n1, define

z1,i+1 = x0,i+1 + c[l0](x0)x1,j1x1,j2 · · ·x1,jl1

zs,t = xs,t, for (s, t) �= (1, i+ 1)
(4.63)

yielding

ż1,i = z1,i+1 +
d−1∑
k=2

f̃
[k]
1,i (z0, z1, u) + . . .

ż1,i+1 = z1,i+2 +
d−1∑
k=2

f̃
[k]
1,i+1(z0, z1, u) + c[l0](z0)

l1∑
k=1

z1,j1z1,j2 · · · z1,jl1

z1,jk

z1,jk+1

d

dt
(c[l0](x0))x1,j1x1,j2 · · ·x1,jl1

+ . . .

(4.64)
and all the other degree d terms remain unchanged. Notice that if i + 1 = n1

then we can absorb the degree d terms into the control using feedback. The
terms in (4.61) where 1 ≤ j1 ≤ j2 ≤ · · · ≤ jl1 ≤ i+ 1 can be repeatedly pushed
down and absorbed in the control. The result is the normal form of f̃ [k]

1 (z0, z1)
in (4.46).

Consider f [d;0]
0 (x0). Its homological equation (4.42) is independent of the

feedback. Therefore, the normal form is the same as Poincaré normal form.
Consider f [d−1;1]

0 (x0;x1, u). Given a part of the dynamics

ẋ0,i−1 = λi−1x0,i−1 + δi−1x0,i +
d−1∑
k=2

f̃
[k]
0,i−1(x0, x1, u) + . . .

ẋ0,i = λix0,i + δix0,i+1 +
d−1∑
k=2

f̃
[k]
0,i (x0, x1, u) + c[d−1](x0)x1,j + . . .

(4.65)
where 2 ≤ i ≤ n0, 1 ≤ j ≤ n1 + 1. The coefficients δi−1 and δi equal 0 or 1. If
j > 1 then we can pull up by defining

z0,i = x0,i − c[d−1](x0)x1,j−1

zs,t = xs,t if (s, t) �= (0, i)
(4.66)



Normal Forms of Control Systems 17

so that

ż0,i−1 = λi−1z0,i−1 + δi−1(z0,i + c[d−1](z0)z1,j−1) +
d−1∑
k=2

f̃
[k]
1,i−1(z0, z1, u) + . . .

ż0,i = λiz0,i + δiz0,i+1 +
d−1∑
k=2

f̃
[k]
0,i (z0, z1, u)

+λic
[d−1](z0)z1,j−1 − d

dt
(c[d−1](z0))z1,j−1 + . . .

(4.67)
The new degree [d− 1; 1] terms have last index 1, j − 1 instead of 1, j. We can
continue to pull up until j = 1. The result is the normal form f̃

[d−1;1]
1 in (4.46).

If i = 1, the pull up cancels the [d− 1; 1] term because there is no x0,i−1.
Consider f [l0;l1]

0 (x0;x1, u) with 2 ≤ l1 ≤ d. Given a part of the system

ẋ0,i−1 = λi−1x0,i−1 + δi−1x0,i +
d−1∑
k=2

f̃
[k]
0,i−1(x0, x1, u) + . . .

ẋ1,i = λix0,i + δix0,i+1 +
d−1∑
k=2

f̃
[k]
0,i (x0, x1, u) + c[l0](x0)x1,j1x1,j2 · · ·x1,jl1

+ . . .

(4.68)
where 1 ≤ j1 ≤ j2 ≤ · · · ≤ jl1 ≤ n1 + 1. The coefficients δi−1 and δi equal 0 or
1. If jl1−1 < jl1 − 1, then we can pull up by defining

z0,i = x0,i − c[l0](x0)x1,j1x1,j2 · · ·x1,jl1−1

zs,t = xs,t, if (s, t) �= (0, i)
(4.69)

so that

ż0,i−1 = λi−1z0,i−1 + δi−1(z0,i + c[l0](z0)z1,j1z1,j2 · · · z1,jl1−1)

+
d−1∑
k=2

f̃
[k]
1,i−1(z0, z1, u) + . . .

ż0,i = λiz0,i + δiz0,i+1 +
d−1∑
k=2

f̃
[k]
0,i (z0, z1, u)

+λic
[l0](z0)z1,j1z1,j2 · · · z1,jl1−1 − d

dt
(c[l0](z0))z1,j1z1,j2 · · · z1,jl1−1

−c[l0](z0)
l1−1∑
k=1

z1,j1z1,j2 · · · z1,jl1−1

z1,jk

z1,jk+1 + . . .

(4.70)
In the new [l0; l1] terms, the two largest indices of x0,j are closer than before.
If jl1−p−1 < jl1−p = jl1−p+1 = · · · = jl1−1 = jl1 − 1 for some p ≥ 1, define the
following pull up transformation

z0,i = x0,i − c[l0](x0)
p+ 1

x1,j1 · · ·x1,jl1−p−1x
p+1
1,jl1−1

zs,t = xs,t, if (s, t) �= (0, i)

(4.71)
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Figure 4.1: The configuration of ball and beam system

Then

ż0,i−1 = λi−1z0,i−1 + δi−1(z0,i +
c[l0](z0)
p+ 1

z1,j1 · · · z1,jl1−p−1z
p+1
1,jl1−1)

+
d−1∑
k=2

f̃
[k]
0,i−1(z0, z1, u) + . . .

ż0,i = λiz0,i + δiz0,i+1 +
d−1∑
k=2

f̃
[k]
0,i (z0, z1, u)

+λi
c[l0](z0)
p+ 1

z1,j1 · · · z1,jl1−p−1z
p+1
1,jl1−1

− d

dt
(
c[l0](x0)
p+ 1

)x1,j1 · · ·x1,jl1−p−1x
p+1
1,jl1−1

−c
[l0](z0)
p+ 1

l1−p−1∑
k=1

z1,j1 · · · z1,jl1−p−1z
p+1
1,jl1−1

z1,jk

z1,jk+1 + . . .

(4.72)
In the new [l0; l1] terms, the last two indices of x1,j are equal. We repeat the
pull up process until all [l0; l1] terms have the form c(z0, z̄1,j)z2

1,j. �

4.4 Examples of Normal Form

The derivation of normal forms for specific engineering systems is not necessarily
a complicated process. In the following, we introduce three examples. In each
example, the normal form can be easily derived through simple transformations
of push up and pull down.
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4.4.1 The Normal Form of Ball and Beam

Consider the ball and beam experiment shown in Figure 4.1. The system model
adopted in this section is from [9]. We assume that the beam rotates around
the axis at its center. The ball rolls along the beam. The control input of the
system is τ , the angular acceleration of the beam. The state variables are r, the
distance from the center of the ball to the axis, and θ, the angle of the beam.
Let J be the moment of inertia of the beam. Let m be the mass of the ball. Let
g be the acceleration of gravity. The equations of motion are

0 = r̈ + g sin θ − rθ̇2

τ = (mr2 + J)θ̈ + 2mrṙθ̇ +mgr cos θ
(4.73)

Let
τ = 2mrṙθ̇ +mgr cos θ + (mr2 + J)u (4.74)

This is an invertible feedback under which the system (4.73) is equivalent to

ẋ1 = x2

ẋ2 = −g sinx3 + x1x
2
4

ẋ3 = x4

ẋ4 = u

(4.75)

where x1 = r, x2 = ṙ, x3 = θ, and x4 = θ̇. The origin (x1, x2, x3, x4) =
(0, 0, 0, 0) is an equilibrium point of the system. The linearization of the system
at the origin is

δẋ1 = δx2

δẋ2 = −gδx3

δẋ3 = δx4

δẋ4 = δu

(4.76)

Obviously, the linearization is controllable. So, the model (4.75) of ball and
beam system is linearly controllable at the origin. In the following, we derive
the normal form for the system (4.75). At first, we focus on the nonlinear
term g sinx3. We will handle the term x1x

2
4 later. Instead of dealing with the

homogeneous terms separately, system (4.75) allows us to push down all the
homogeneous terms in g sinx2 simultaneously. The push down transformation
is

z3 = −g sinx3 (4.77)

after which the system becomes

ẋ1 = x2

ẋ2 = z3 + x1x
2
4

ż3 = −gx4 cosx3

ẋ4 = u.

(4.78)

One more step of pushing down by

z4 = −gx4 cosx3 (4.79)
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yields
ẋ1 = x2

ẋ2 = z3 + x1x
2
4

ż3 = z4
ż4 = −gu cosx3 + gx2

4 sinx3.

(4.80)

If −π
2 < x3 <

π
2 we can define an invertible feedback

v = −gu cosx3 + gx2
4 sinx3

and then the system becomes

ẋ1 = x2

ẋ2 = z3 + x1x
2
4

ż3 = z4
ż4 = v.

(4.81)

Now, we have to deal with the term x1x
2
4 in (4.81). From (4.77) and (4.79), the

inverse transformation satisfies

x3 = arcsin(−z3
g

)

x4 = − z4

g cos(arcsin(−z3
g

))

(4.82)

Define z1 = x1, z2 = x2, (4.81) is equivalent to

ż1 = z2

ż2 = z3 +
z1z

2
4

g2 cos2(arcsin(−z3
g

))

ż3 = z4
ż4 = v.

(4.83)

However,

cos2(arcsin(−z3
g

)) = 1 − sin2(arcsin(−z3
g

))

= 1 − z2
3

g2
.

So, the system (4.83) is equivalent to

ż1 = z2

ż2 = z3 +
z1

g2 − z2
3

z2
4

ż3 = z4
ż4 = v.

(4.84)
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This system is in normal form. Its homogeneous parts of any degree can be
found in the following Taylor expansion

ż1 = z2

ż2 = z3 +
∞∑

k=0

1
g2k+2

z1z
2k
3 z2

4

ż3 = z4
ż4 = v.

(4.85)

4.4.2 Engine Compressor

The second example is the Moore-Greitzer three state model of an axial flow
compressor. The model is a typical example of a control system with both
classical and control bifurcations. When the engine compressor is operated
around the equilibrium with the maximum pressure rise, a classical bifurcation
occurs in its uncontrolled dynamics. There is also a control bifurcation in the
control system. On a branch of the bifurcated equilibria, the system exhibits
rotating stall which can cause severe vibrations with rapid and catastrophic
consequences. In the following, a model of engine compressor is introduced.
Then the normal form of the model is derived at the point where rotating stall
occurs.

The Moore-Greitzer model of an engine compressor described in [5] is

dA

dξ
=

3αH
2W

A

(
1 − (

Φ
W

− 1)2 − A2

4W 2

)

dΦ
dξ

=
1
lc

(
−Ψ + Φc(

Φ
W

− 1) − 3HA2

4W 2
(

Φ
W

− 1)
)

dΨ
dξ

=
1

4lcB2

(
Φ − F−1

T (Ψ)
)

(4.86)

where ξ is the scaled time. The compressor and throttle characteristics are

Φc(y) = ψ0 +H(1 +
3
2
y − 1

2
y3)

F−1
T (Ψ) = KT

√
Ψ.

(4.87)

The three states in the system are A, the scaled amplitude of the rotating stall
cell; Φ, the scaled annulus averaged mass flow; Ψ, the scaled annulus averaged
pressure rise. The throttle parameter is KT . When viewed as a dynamical sys-
tem, KT is a parameter and a classical bifurcation occurs at a critical value.
When viewed as a control system, KT is the control input and a control bifur-
cation occurs at the same critical value. The other parameters ψ0, H , B, α,
lc and W are constants. More details on the meaning of the variables and the
parameters are discussed in [5] and [28]. We focus on the following equilibrium
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point for our discussion. It is actually the stall inception point of the compressor
model.

A0 = 0, Φ0 = 2W, Ψ0 = ψ0 + 2H, KT0 =
2W√

ψ0 + 2H
, (4.88)

It is convenient to transfer the equilibrium point to the origin by the following
change of coordinates

Φ = φ+ 2W,
Ψ = ψ + ψ0 + 2H,

KT =
2W√

ψ0 + 2H
+ u

(4.89)

where, u is the new control input. The resulting system under the new coordi-
nates (A, φ, ψ) has the following form

dA

dξ
=

3αH
2W

A

(
1 − (

φ

W
+ 1)2 − (

A

2W
)2

)
,

dφ

dξ
=

1
lc

(
−ψ − ψ0 − 2H + Φc(

φ

W
+ 1) − 3HA2

4W 2
(
φ

W
+ 1)

)
,

dψ

dξ
=

1
4lcB2

(
φ+ 2W − (

2W√
ψ0 + 2H

+ u)
√
ψ + ψ0 + 2H

)
(4.90)

It is equivalent to

dA

dξ
=

3αH
2W

A

(
− φ2

W 2
− 2φ
W

− A2

4W 2

)
,

dφ

dξ
=

1
lc

(−ψ − 3H
2W 2

φ2 − 3H
4W 2

A2 − H

2W 3
φ3 − 3H

4W 3
A2φ),

dψ

dξ
=

1
4lcB2

(
φ+ 2W − 2W√

ψ0 + 2H

√
ψ + ψ0 + 2H +

√
ψ + ψ0 + 2Hu

)
(4.91)

The variables ψ and φ constitute the linearly controllable part. The normal
form of the controllable part can be obtained by pushing down. Let

x0,1 = A, x1,1 = φ, x1,2 =
1
lc

(
−ψ − 3H

2W 2
φ2 − 3H

4W 2
A2 − H

2W 3
φ3 − 3H

4W 3
A2φ

)
.

(4.92)



Normal Forms of Control Systems 23

The resulting system is

dx0,1

dξ
= −3αH

W 2

(
x0,1x1,1 +

1
8W

x3
0,1 +

1
2W

x0,1x
2
1,1

)
dx1,1

dξ
= x1,2

dx1,2

dξ
= a(x0,1, x1,1, x1,2) + b(x0,1, x1,1, x1,2)u

(4.93)

where a(x0,1, x1,1, x1,2) + b(x0,1, x1,1, x1,2)u is defined by

dx1,2

dξ
=

1
lc

(−dψ
dξ

− 3H
W 2

φ
dφ

dξ
− 3H

2W 2
A
dA

dξ

−3
H

2W 3
φ2 dφ

dξ
− 3H

4W 3
(2Aφ

dA

dξ
+A2 dφ

dξ
))

(4.94)

If we define the new control input by

v = a(x0,1, x1,1, x1,2) + b(x0,1, x1,1, x1,2)u (4.95)

then we have

dx0,1

dξ
= −3αH

W 2

(
x0,1x1,1 +

1
8W

x3
0,1 +

1
2W

x0,1x
2
1,1

)
dx1,1

dξ
= x1,2

dx1,2

dξ
= v

(4.96)

In this system, the controllable part is in normal form. The dynamics of x0,1 is
not linearly controllable. However, this equation is already in its normal form.
So, (4.96) is the normal form of the engine compressor model (4.86). Although
the feedback (4.95) is complicated, only the linear and quadratic parts of a and
b are critical to the bifurcations of the system ([19]). Their linear and quadratic
Taylor expansions are

a(x0,1, x1,1, x1,2) = − 1
4l2cB2

x1,1 − W

4l2cB2(ψ0 + 2H)
x1,2

− 3H
16l2cB2W (ψ0 + 2H)

x2
0,1 −

3H
8l2cB2W (ψ0 + 2H)

x2
1,1

− 3H
lcW 2

x1,1x1,2 − W

16B2(ψ0 + 2H)2
x2

1,2

+O(x)3,

b(x0,1, x1,1, x1,2) =
√
ψ0 + 2H
4l2cB2

− 1
8lcB2

√
ψ0 + 2H

x1,2 +O(x)2.

(4.97)
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4.4.3 Controlled Lorenz Equation

It is known that circuit systems can be designed to approximate chaotic behavior
such as the one exhibited by the Lorenz system. In [36] and [27], the following
controlled Lorenz equation is studied,

ẋ = a(y − x)
ẏ = cx− xz − y + u
ż = xy − bz

(4.98)

where a, b, and c are constant numbers. It is shown in [36] and [27] that several
state feedbacks exist under which the closed-loop system exhibit at least three
fundamentally different chaos. In the following, we use a globally invertible
transformation to derive the normal form of (4.98). As a result, the entire
family of control systems with the same normal form has chaotic trajectories
equivalent to those found in [36] and [27].

The transformation is simple

x1 = x
x2 = a(y − x)

x0 = z − 1
2a
x2

v = a(cx− xz − y − ay + ax+ u)

(4.99)

Its inverse transformation is defined as follows

x = x1

y = x1 +
1
a
x2

z = x0 +
1
2a
x2

1

u = (1 − c)x1 + (1 +
1
a
)x2 + x1x0 +

1
2a
x3

1 +
1
a
v

(4.100)

In (4.99), x is the same as x1. The second equation in (4.99) is a push down.

The transformation of x0 is a pull up to cancel the term
1
a
x1x2 in the equation

of ẋ0. Under this transformation, it is easy to check

ẋ0 = −bx0 + (1 − b

2a
)x2

1

ẋ1 = x2

ẋ2 = v

(4.101)

It is in normal form, with only one nonzero invariant, the coefficient of x2
1. If

b �= 0 and 2a, the equilibrium set of the system is a parabola. The system is
linearly controllable at all its equilibrium points except for the origin. So, local
control of such a system is relatively simple. However, its global behavior needs
further study due to the chaotic behavior under certain state feedbacks.
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4.5 Conclusions

In this paper, normal forms of single input control systems are summarized. The
system is nonlinear and the input is non-affine. The family of systems addressed
in this paper is the most general one relative to existing published normal forms
of single input systems based on a similar approach. In addition, examples
of normal forms are shown to illustrate the elementary transformation of push
up and pull down in the derivation of normal forms. Due to page limitation,
applications of the normal forms are not addressed in the paper. However,
interested readers are referred to the related publications in the references for
results on bifurcation control, invariants, symmetries, and practical stabilization
of nonlinear systems based on normal form approach.
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