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ABSTRACT 

Stochastic (probabilistic) forecasting techniques give forecasters a means to transmit 

information about certainty and a range of forecast possibilities to operational decision 

makers.  Previous studies have shown value in probabilistic forecasting through series of 

independent hypothetical events, or through comparative period forecasts.  This thesis 

demonstrates the value of stochastic forecasting through a series of operational events, in 

the context of a Strike Warfare campaign in the Weather Impact Assessment Tool 

(WIAT), a campaign simulator. 

Simulated ensemble members and probability files were created to study six 

weather parameters and their impacts on various Strike Warfare missions.  Tests were run 

comparing deterministic and stochastic forecasts, incorporating varying levels of forecast 

error and sampled probability thresholds.  Metrics within and external to WIAT were 

employed to analyze the results of the forecasting strategies.  Constraints in WIAT’s 

structure and campaign modeling yielded results that suggest, but do not definitively 

prove, enhanced campaign performance as a result of incorporating probabilistic 

forecasting.  Programming adjustments to WIAT are recommended in order to provide a 

higher-quality test bed for future studies of both deterministic and stochastic forecasting 

techniques. 
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I. INTRODUCTION  

The 2008 Commander’s Guidance from Commander, Naval Meteorology and 

Oceanography Command (CNMOC) indicates that increased budget and research 

resources will be devoted to the continued development of probabilistic forecasting 

techniques and products.  Deterministic forecasts provide single values without indication 

of uncertainty or reliability, while probabilistic forecasts can help improve decision 

making and combat capability by indicating ranges of possibilities (Eckel 2008).  Prior 

research demonstrates the advantages of stochastic forecasting in the context of a series 

of repeated, independent decisions (Thompson 1952, Eckel 2008).  The focus of this 

study is to demonstrate the net benefits of stochastic forecast-based decision making in a 

complex, multi-step weather impacts simulator of Operation IRAQI FREEDOM (OIF), 

the Weather Impact Assessment Tool (WIAT).   

 The main objectives are to: 1) demonstrate improvement to simulated campaign 

operations by utilizing probabilistic forecasting, and 2) investigate the existence of 

optimal decision probability thresholds for weather parameters in the simulated 

campaign.  The main benefit of this study will be the application of stochastic forecasting 

to operational risk management (ORM) in the context of complex operational decision 

making in a simulated strike warfare campaign.  It will also provide an example of how 

probabilistic forecasting can be incorporated into a variety of similar warfare types 

beyond strike warfare. 

This thesis is organized into five chapters.  In Chapter II, we discuss the rationale 

for developing stochastic forecasts.  Chapter III describes the WIAT program. Chapter IV 

presents the methodology for running WIAT in deterministic and stochastic modes to 

meet the above objectives.  Chapter V shows output metrics and compares the results of 

campaigns run under deterministic and stochastic frameworks. Conclusions and 

recommendations are presented in Chapter VI. 
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 3

II. BACKGROUND 

A. SCOPE 

This chapter will discuss ensemble forecasting and how operational risk 

management relates to forecasting.  An explanation of the sources of error in numerical 

weather prediction (NWP), deterministic and stochastic prediction methods, and 

characteristics of ensemble prediction systems (EPS) is fundamental to understanding the 

benefit of including forecast uncertainty information in the decision process.  Proper 

application of ensemble forecasts requires an assessment of costs, risks, and rewards 

associated with employing certain units or executing missions.   

B. ATMOSPHERIC PREDICTION 

1. Uncertainty 

Lorenz (1963) found that small adjustments to the initial state of a dynamical 

system led to considerably different results as time progressed.  Based on this 

experimentation, he suggested that error in describing the current state of the atmosphere 

is the major contributor to difficulties in predictability.  This analysis of the atmospheric 

state is also known as the atmosphere’s initial conditions (ICs), a description of the 

values associated with the state of the atmosphere at a given point in time.  However, the 

analysis ICs will never be precisely the same as the actual atmospheric ICs.  Error in 

determining analysis ICs can result from imperfect measurements, from the sparse and 

uneven distribution of atmospheric observations, and from assumptions and 

approximations used in assimilating the observations.  Limited model resolution also 

adversely affects data assimilation, and in turn, the ICs (Kalnay 2004).   

The earth’s atmosphere is a dynamical system, and accordingly should be 

predictable provided that its current state and the rules for its evolution can be completely 

deduced.  After determining the ICs for the atmosphere, operational models employ a set 

of equations that approximate relationships among various atmospheric parameters.    

However, there are several pathways for error to be introduced into the model.  The 

differential equations that govern the development of atmospheric motion over time do 
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not completely describe all motion within the atmosphere. Difficulties in modeling both 

upper and lower boundaries of the atmosphere, approximations made in the numerical 

solution techniques, various simplifications of small-scale processes, and finite computer 

precision all contribute error, so that numerical models cannot exactly project future 

states of the atmosphere (Eckel 2008). 

Because both the analysis and the model are flawed, error introduced by the 

analysis is magnified by forecast error, and the difference between the actual state and the 

model state grows with increasing lead time.  Even the finest model resolution available 

will not prevent the compounding of small errors over time, and the corresponding 

divergence of modeled weather from true weather.     

As a result of the increasing divergence of true weather and modeled weather, 

prediction capability diminishes with increasing lead time.  The limit of predictability for 

a specific type of forecast (a given atmospheric variable) occurs at the lead time where 

the mean squared error of the model forecast equals the mean squared error of a forecast 

of the climatological mean (Eckel 2008).  Beyond this lead time, the operator receives 

better forecast information from climatology than a model forecast. 

2. Deterministic and Stochastic Prediction Methods 

The method most commonly employed for atmospheric weather prediction is the 

deterministic method, characterized by a single-value forecast or descriptive solution.  

The great strides made in both computing power and model refinement over the last few 

decades have extended predictability, but even so, short- and medium-term forecast 

errors are occasionally large due to one or more of the sources of error discussed 

previously.  One example of such a scenario was the over-forecasted Thanksgiving Storm 

of 2001.  The 24-hour forecast from the Fifth-Generation National Center for 

Atmospheric Research / Penn State University Mesoscale Model (MM5) for 22 

November 2001 (Figure 1) depicted an operational forecast for gale force winds in the 

Puget Sound and Straits of Juan de Fuca (Eckel 2008).  Observations of that period, 

however, indicated calm weather.  Later analysis of the model, shown in Figure 2, 

indicated that the operational forecast had depicted a plausible but low-probability event, 

given multiple re-runs of the model; in other words, the model had forecast a possible 
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event, but the forecasters had no indication of the low likelihood of this forecast.  

Ultimately, deterministic forecasts greatly limit the weather forecaster’s ability to convey 

valuable information about uncertainty and multiple possible events.  This leads to 

weather forecast products of both numeric and graphical types that convey a false sense 

of confidence to the user, which negatively affects the quality of decision making by 

operational users.  

 

 

Figure 1.   MM5 Operational 24-hour Forecast, depicting a gale force wind event in the 
Puget Sound and Straits of Juan de Fuca.  Valid 1800Z, 22 November 2001. 

From (Eckel, 2008). 
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Figure 2.   MM5 Verification Analysis for 1800Z, 22 November 2001, depicting a 
weaker low-pressure area than forecast, with no gale force winds.  From (Eckel, 

2008). 

Stochastic forecasting, on the other hand, provides a suite of solutions that 

objectively convey potential outcomes and forecast uncertainty.  Such information allows 

the user to grasp the range of weather conditions (evolved from the present state) that 

may impact his operations.  If the user has constraints in operations that would be broken 

by one or several potential outcomes, a stochastic approach permits a better decision-

making process by providing a more complete set of information.  Instead of focusing 

solely on limiting the forecast error, stochastic forecasting attempts to model the flow-

dependent error growth, and then depict the uncertainty in a given forecast (Eckel 2008). 
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C. ENSEMBLE FORECASTING 

1. Description 

While there is no standard means of deriving an ensemble forecast, the most 

general method involves repeatedly adding small perturbations to both analysis and 

model to produce multiple unique forecast solutions.  Zhu et al. (2001) state that the 

operational ensemble forecasts produced by multiple prediction centers around the world 

use “models…integrated a number of times, started from slightly perturbed initial 

conditions, in addition to generating the traditional ‘control’ forecast that starts from the 

best available atmospheric analysis.” This incorporation of slightly perturbed initial 

conditions (ICs) simulates the analysis error inherent in portraying the atmosphere. Each 

different IC may then be funneled into a slightly different version of the given NWP 

model, as a means of accounting for model error.  Systems that use only one version of 

the model (an unperturbed model) effectively neglect the model as a source of error and 

uncertainty in the ensemble.  Taken all together, the ensemble members are used to 

represent a spectrum of potential future states of the atmosphere.  This spectrum provides 

estimates of forecast uncertainty and probabilities for specific events.  Each member 

should have an equal chance of being the true outcome; incorporating more ensemble 

members (model runs) gives the ensemble user a better chance of at least one member 

being close to the truth.  

One of the meteorological prediction centers responsible for producing ensemble 

forecasts is the Fleet Numerical Meteorology and Oceanography Center (FNMOC), in 

Monterey, California.  FNMOC produces a number of ensemble products based on the 

Navy Operational Global Atmospheric Prediction System (NOGAPS) model, an example 

of which is shown in Figure 3.  The ensemble products, instead of displaying contours of 

atmospheric parameters such as pressure, winds, and temperature, as shown in the MM5 

graphics previously, display contours of probabilities of exceeding a given 

meteorological threshold. In the case of Figure 3, the contours are of the likelihood of 

exceeding 6.25 mm precipitation in the twelve-hour period ending at  

0000Z 13 September 2008. 
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Figure 3.   FNMOC EFS Graphic displaying 96-hour Ensemble Forecast sea level 
pressure (contours) and probabilities of precipitation exceeding 6.25 mm over 

the period from 1200Z 12 September 2008 to 0000Z 13 September 2008.  From 
FNMOC Web site. 

Both deterministic and stochastic techniques employ atmospheric observations, 

analyses, modeling, and forecasts, in the effort to describe the atmosphere.  Stochastic 

forecasts, however, portray information as probabilities or as probability density 

functions (PDFs).  Ensemble forecasting pursues the production of a “sharp, calibrated 

forecast probability density function (PDF) of possible future states of the atmosphere 

from which the true state is consistently a random sample” (Eckel 2008).   

The evolution of the atmosphere is fundamentally a deterministic process.  In 

principle, there is an exact set of characteristics that describe the atmosphere at any given 

time, and a set of rules that comprehensively governs the evolution of the atmosphere 

towards one specific state at a given future time.  In practice, this analysis and evolution 

cannot be known exactly, but we can construct a system that will provide a good sense of 
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the likely analyses and changes over time.  A likely state of the atmosphere could be 

represented as a point in a PDF that includes all possible states of the atmosphere at that 

time (a true analysis PDF).  A possible future state of the atmosphere could also be 

represented as a point on a PDF that includes all potential future states (a true forecast 

PDF.)  Hence, the ensemble forecast process pursues the production of an analysis PDF 

that closely depicts the true analysis PDF, and a forecast PDF that approximates the true 

forecast PDF.  Neither the analysis PDF nor the forecast PDF are absolute, as they are 

dependent on the forecast system used to derive them; for example, if more observations 

are incorporated into the forecast system, the shape of the analysis and forecast PDFs will 

change.  In other words, the ensemble forecast process attempts to approximate a 

hypothetical distribution of weather states from which the truth is always a random 

sample. 

2. Calibration and Ensemble Size 

Several problems are inherent to the ensemble’s forecast PDF.  In an ideal 

ensemble, the slightly perturbed analyses and models incorporate all sources of 

uncertainty; in reality, ensembles can only include the primary sources of uncertainty, 

and only to a limited degree.  Such limitations lead to forecast PDFs, which differ 

significantly from the true forecast PDFs, and thus forecast probabilities (interpreted as 

forecast frequencies of occurrence) do not agree with observed frequencies of occurrence.  

These forecast PDFs are said to be uncalibrated or poorly calibrated ensemble forecasts.  

A calibrated forecast has been adjusted so that the estimated probability of an event 

matches the rate of occurrence of the event, i.e., the forecast PDF is adjusted so that it 

approaches the true forecast PDF. For example, an ensemble initiated with a given 

meteorological state returns a 40% probability of an event occurring at some point in the 

future.  We should expect that if the same meteorological situation occurs 100 times in 

nature, the forecast event would occur 40 times.  If instead, the event occurred 30 times, 

it becomes apparent that the method used in forecasting the event overestimates the 

probability of occurrence.  Even if we cannot find and correct the cause of the 

overestimate, we can calibrate by adjusting the 40% forecast to 30%.    
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Typically, narrower PDFs indicate confidence in a smaller range of potential 

outcomes, while wider forecast PDFs indicate more uncertainty in the forecast.  For 

example, a forecaster is interested in predicting 500-hectopascal (hPa) geopotential 

heights for a given location.  Provided that a good analysis is made, the forecaster can 

expect to see a fairly narrow range of potential outcomes for a 12-hour forecast, a 

relatively short lead time.  With increasing lead times, however, there is greater 

opportunity for analysis errors and model errors to interact and compound each other; for 

a 48-hour forecast of 500-hPa geopotential heights, the forecaster would expect to see a 

larger range of values as potential solutions.  This reflects the increased uncertainty with 

increasing lead time, and accordingly wider PDFs.    

Finally, an ideal ensemble would incorporate an infinite number of members that 

could “fill out” the forecast PDF.  With an infinite number of members, all potential 

forecast states would be represented, and a complete distribution could be constructed.  

Instead, EPSs sample the forecast PDF a finite number of times.  Incomplete sampling of 

the forecast PDF introduces an additional source of error, in that the EPS will not 

accurately depict the range of values in a multi-dimensional PDF (pockets of values may 

be over- or under-represented.)  In order to achieve forecast PDFs that approximate the 

true forecast PDFs, most EPSs incorporate 20–30 model runs to ensure a skilled forecast, 

with upwards of 50 runs if the system is particularly designed to capture low probability 

events found at the tails of the forecast PDF. (Eckel 2008). 

D. COST-LOSS AND VALUE ANALYSIS 

Brier (1944) was among the first to suggest using probabilities of given classes of 

weather events in creating a forecast instead of simply forecasting one particular class of 

event.  Brier used an example of a movie producer’s concern with stratus cover during a 

photographic shoot as a means to introduce a cost-loss scenario.  In his example, the 

producer can complete his work if the skies are clear after 1:00 PM, and the most likely 

forecast time for cloud dissipation is 11:30 AM, with some possibility that this forecast 

may be wrong by several hours.  The producer is then interested in the probability, P, of 

this cloud dissipation before 1:00 PM.  The cost to the producer to hire help, set up 

equipment, etc. is the stake (S) put up to achieve a gain (G) realized by completing the 
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work that day.  If this decision were repeated over multiple trials (“in the long run”), the 

producer could expect to accumulate a net benefit if P > S/G.  This means that the 

producer should only risk the cost associated with setting up the shooting event when the 

probability of clear skies exceeds the ratio of the stake to the prospective gain from 

holding the event.   

In Brier’s example, the stake is $50,000 and the gain is $100,000.  The probability 

assigned to the chance of clear skies is 0.8.  If ten trials were held, and the forecast 

probability was calibrated (outcomes matched the probabilities), then the producer would 

see a total stake expenditure of $500,000 (10 trials multiplied by the $50,000 stake per 

trial) and a gain of $800,000 (eight trials where the sky was clear multiplied by the 

$100,000 gain per successful trial), for a net benefit of $300,000.  However, if the 

probability assigned to the chance of clear skies is calibrated at 0.4, the producer could 

expect to see a negative return over the series of decisions (for ten trials, -$100,000.)  

Both of these scenarios assume that the producer will put forward the stake in every trial.  

However, if the producer understands that the chance of clear skies is less than the stake-

gain ratio (in this case, 0.5), then he will decide not to expend setup money for any of the 

trials, and accept a net benefit of 0 rather than the net loss of $100,000.  The stake-gain 

ratio becomes the producer’s break-even point and consequently the decision threshold 

for conducting the shoot.  This sort of threshold is integral to the campaign decision-

making process both in this study’s use of WIAT and in real-world scenarios, as it can be 

utilized to evaluate the net benefit of conducting an operation within a campaign, as well 

as finding the threshold where benefit is optimized over a longer time frame. 

Thompson (1950) used a hypothetical case study to demonstrate the ability to 

minimize monetary costs taken for protective measures by using a cost-loss comparison 

with the probability of a given meteorological event.  His posited construction company 

was responsible for pouring concrete in Los Angeles over the October 1949–March 1950 

period.  He assigned a cost of $400 to protect concrete from a precipitation event, while 

the loss associated with not protecting the concrete (given the occurrence of 0.15 inch of  
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rain within 36 hours of the time the concrete was poured) of $5000.  He conducted a 

comparison of the resulting expenditures according to six different strategies that could 

have been undertaken by the company:  

(1) receiving no forecast at all,  

(2) receiving no forecast but taking protective measures daily,  

(3) employing protective measures only when climatological expectancy 
exceeded the cost-loss ratio (equal to 0.08),  

(4) using persistence (employing protective measures on all days following a 
day with measurable precipitation),  

(5) using a categorical forecast based on whether the probability of the rain 
event was greater or less than 50%,  

(6) or using a forecast based on whether or not the probability of the rain 
event exceeded the cost-loss ratio (Thompson 1950).   

The last of these options was found to yield the lowest total expenditure, a full 33% less 

than the categorical forecast. 

The case studies presented by Thompson and Brier effectively illustrate two 

different means of using probabilities to improve outcomes for the user.  Brier’s movie 

producer is working in a cost-gain framework, where the object is to maximize benefit (in 

this case, return on investment in the form of completed photographic shoots.)  

Thompson’s construction company is operating in a cost-loss framework, where the 

object is to minimize loss (payment to provide protective measures in case of 

thunderstorms.)  Both case studies, however, demonstrate the balancing act required in 

accepting an appropriate amount of risk as compared to the user’s specific risk tolerance, 

as a means to optimize long-term performance.  

While Brier speculated on a specific either/or scenario used to protect the budget 

of a movie producer, Thompson expanded the list of options available to a decision 

maker.  Comparing consequences from following various sources of forecast information, 

the tailored forecast information based on the company’s cost-loss ratio would have 

yielded the lowest expenditure for the company.  Thompson interpreted these results to  

 



 13

show that probability estimates had advantages, and that deterministic forecasts contained 

an “inherent danger” due to the fact that “the user is not provided with, or does not make 

use of a measure of the reliability of the prediction.” 

Zhu et al. (2002) evaluated the economic value derived from the use of a 14-

member ensemble of the Medium Range Forecast (MRF) T62 model (referring to global 

spectral model that resolves 62 zonal wave numbers), as compared to a single T62 run 

and a single T126 run.  A forecast has economic value if the user does better using the 

forecast than using a climatological forecast; the writers’ experiment was designed to 

determine which of the deterministic and stochastic forecasts would most out-perform the 

climatological forecast.  While the authors did not specify a specific real-world cost-loss 

decision, reducing the cumulative cost of protective measures characterized the 

discussion, much as it did in Thompson’s and Brier’s work.   

 Zhu et al. found that for prediction of 500-hPa heights over Northern Hemisphere 

extratropics, all users were better off with the ensemble forecasts after 120 hours, with 

the vast majority better off with ensemble forecasts after 72 hours.  The authors found 

that for cost-loss ratios outside of a band from 0.2 to 0.5, the ensemble forecasts provided 

better information than either of the control forecasts.  They also demonstrated that the 

range of cost-loss ratios for which forecasts demonstrated value was substantially wider 

with the use of ensemble forecasts.  Since the ensemble of 14 T62 runs represented 

roughly the same computational cost as the higher-resolution T126 single run, the 

findings suggest that for certain situations, ensemble runs of a lower-resolution model 

can be more cost-effective than a higher-resolution model run.   

 The authors state that ensemble-based distributions can exceed the performance of 

the single control run partly due to the nonlinear filtering that takes place when forming 

the ensemble mean, but more due to its ability to reflect time and space (flow-dependent) 

variations in forecast uncertainty (Zhu et al. 2002).  The deterministic forecasts had more 

economic value than the ensemble at lead times shorter than 72 hours; the increased 

resolution enabled better characterization of the analysis state and the evolution of the 

system over short time scales.  However, the deterministic forecasts cannot reveal the 

effects of non-linear error growth, as stochastic forecasts can, and hence deterministic  
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forecasts become less reliable with increased lead time.  Additionally, the ensemble 

forecasts could portray degrees of uncertainty to users; this capability is lacking in 

deterministic forecast guidance. 

 Zhu et al. also reinforce the idea, previously discussed by Thompson (1952), that 

the probabilistic forecast is more useful in that it allows users to establish their own 

decision criterion (i.e., a cost-loss ratio.) Instead of being provided with a deterministic 

forecast that suggests an “either/or” decision, the forecast user can now compare a 

probability of occurrence with their own specific risk tolerance; savvy users will compare 

the probabilistic forecast with their own cost-loss estimations to make decisions that will 

provide value over the long term (Zhu et al. 2002). 

 Zhu et al.’s and Thompson’s findings have particular applicability to Department 

of Defense (DoD) weather forecasters, who advise decision makers involved in 

conducting operations, training, and managing resources.  The ability of the forecaster to 

accurately predict the most likely evolution of weather parameters and to communicate a 

qualitative level of uncertainty is necessary, but not sufficient, for optimal decision 

making. The decision maker needs to know about less-likely but high-risk weather 

events; he or she needs to be able to “calculate the odds.”  In many arenas, and often in 

the armed forces, decision makers expect weather forecasters to give them “go/no-go” 

recommendations; this leads the forecaster to combine the weather prediction with their 

own guess about the commander’s risk tolerance, and to do it implicitly rather than 

explicitly.  In an attempt to clarify the concept of what makes a “good” forecast, Murphy 

(1993) describes three aspects of forecast evaluation: consistency, quality, and value.  

Consistency (“type 1 goodness”) refers to how well the forecast reflects the forecaster’s 

best judgment, quality (“type 2 goodness”) refers to how well forecast conditions 

correspond to observed conditions at or around the forecast valid time, and value (“type 3 

goodness”) is determined by whether the forecast yields some degree of increased benefit 

to the forecast consumer (Murphy 1993).  Under Murphy’s construct, many DoD 

forecasters are expected to make an ex-ante determination of the decision maker’s 

optimum threshold, often at the expense of consistency.  Probabilistic forecasts offer the 

forecaster an opportunity to better meet the goal of consistency, while also permitting 
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optimization of value.  With full information, including quantitative uncertainty 

estimates, decision makers can optimize decisions in a cost-loss scenario as long as the 

cost of protective measures and unprotected loss can be defined.  For more complex 

situations, value must be derived differently. 

 Eckel et al. (2008) used two operational scenarios to demonstrate the benefit of 

employing stochastic forecasts in conducting operational risk management (ORM).  

Previous work detailed above focused exclusively on protection measures,  

referred to as “defensive ORM.”  Eckel et al. extended the application of ORM to 

offensive operations, illustrating advantages from employing ensemble forecasting for 

gains rather than just for resource protection. 

 The authors used an evacuation simulation, an example of defensive ORM, to 

show that over an extended time frame, decisions based on stochastic forecasts will result 

in fewer cumulative dollars spent for purposes of asset protection.  In this case, the 

stochastic operator yielded a 30% savings rate over the use of deterministic forecasts.  In 

the offensive ORM scenario, stochastic forecasting in for destruction of enemy air 

defense (DEAD) missions provided a superior operational decision twice as often as the 

deterministic solution.  The stochastic forecasts yielded mission completion 10% faster 

than their deterministic forecast counterparts.  Eckel et al. demonstrated that stochastic 

forecasts can improve both efficiency and war-fighter effectiveness, in both offensive and 

defensive ORM scenarios.  Net economic value is not defined in the DEAD simulation; 

the quantified benefit to campaign planners is the earlier destruction of enemy 

emplacements. 

E. DIRECTION OF THIS STUDY 

 This thesis will follow in the direction suggested by Eckel et al. and Zhu et al. by 

applying stochastic forecasting to operational decision-making, but extending the context 

to the more complex campaign scenario in WIAT.  It builds upon the work done by Eckel 

previously, which compared outcomes for a series of independent events.  The use of 

WIAT places the ensemble forecasts in the context of a dynamic environment where each 

forecast has direct impact on mission planning, the execution of the mission, and hence 

the necessity of related follow-on missions.  Simulation of more complex scenarios, 
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where use of information from the ensemble forecasting system shows benefit, should 

help demonstrate to decision makers that information about uncertainty, rather than being 

a nuisance, has operational value.   
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III. THE WEATHER IMPACT ASSESSMENT TOOL (WIAT) 

A. WIAT AND SIMULATIONS 

War games have increasingly become a staple of military planning worldwide 

over the last two centuries; the American Navy’s history of such study extends over a 

century, beginning with the 1880s and the early years of the Naval War College.  

Because battles in air, on land, and at sea are so expensive (in terms of money and human 

life) and relatively unique in comparison to each other, operational planners have long 

sought means to try out their strategies prior to employing them in actual battle.  In the 

computer era, simulations have become an increasingly large aspect of not only 

operational planning, but platform and weapon design as well.  Simulations permit many 

iterations of tests and adjustments using computer hardware and software that are 

considerably less costly than the consequences of a poorly planned fighter acquisition or 

a faulty asset allocation.   

WIAT is a “stochastic simulation toolset used for assessing the impacts of 

METOC forecasts and METOC phenomena on strike operations” (SPA 2007a).  WIAT 

was developed to help the Oceanographer of the Navy quantitatively link improvement 

and/or degradation of forecast quality to improvement and/or degradation of warfighter 

metrics.  The program was designed specifically to support analysis of a Strike Warfare 

(STW) campaign scenario; however, the program’s designers noted that its methods 

could be applied to Naval Special Warfare (NSW) and Anti-Submarine Warfare (ASW) 

missions.   

WIAT is programmed using the General Campaign Analysis Model—Core Tool 

Suite (GCAM-CTS), which is a “set of object-oriented model development tools that 

allow the military analyst to quickly and easily create stochastic simulations” (SPA 

2007a).  Many prior simulation programs focused on one aspect of campaign planning; 

GCAM-CTS was developed to incorporate system analysis (i.e., performance of a given 

weapons platform), engagement analysis (actual combat between given military units), 

and mission analysis (success of the assigned mission) as part of evaluating campaign 

strengths, weaknesses, and overall effectiveness.  The tool suite is able to incorporate 
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data from a variety of sources and to provide measures of effectiveness (MOEs) that are 

commonly understood across the various armed forces.  GCAM-CTS facilitates 

repeatability so users can test the sensitivity of various mission and campaign elements to 

small changes in conditions; WIAT provides an interface that allows the user to run this 

sort of analysis without any sophisticated programming background. (SPA 2007a)  

B. THE CONSTRUCT OF THE WIAT CAMPAIGN 

The program simulates a strike warfare (STW) campaign in an operating area 

covering Syria, Jordan, northern Saudi Arabia, Iraq, Kuwait, and western Iran.  The Navy 

task force in WIAT is composed of a carrier air wing (CAW), which includes both 

manned aircraft and unmanned aerial vehicles (UAVs), based onboard an aircraft carrier 

(CVN) operating in the eastern Mediterranean Sea.  The wing is tasked with conducting 

close air support (CAS) operations in support of “ground forces in transit and during 

engagements,” as well as strike (STK) and kill box interdiction (KI) missions with targets 

exclusively within the borders of Iraq (SPA 2007a).  The CAS mission details aircraft to 

cover friendly “Blue” ground units (brigade-level task forces consisting of armor and/or 

mechanized infantry units) as they make a simulated move from the northern and 

southern borders of Iraq towards Baghdad.  STK missions have specific assigned targets, 

such as mobile ballistic missile launchers or troop elements, while KI missions assign 

aircraft an area inside Iraq to search for a target, and engage it if one is found.  Every 

mission is conducted by two carrier-based aircraft of the same type (i.e., manned and 

unmanned aircraft do not operate as a mixed sortie.)   

Opposing “Red” forces are Iraqi Republican Guard (IRG) divisions, infrastructure 

elements (i.e., Headquarters units), and mobile land-based ballistic missile launchers.  

Because the campaign scenario is STW-focused, ground operations are highly simplified; 

Blue ground forces have a fixed route and engage Red ground forces en route to 

Baghdad, while Red IRG units attempt to protect Headquarters elements, patrol their 

immediate areas, and engage Blue forces. 

Intelligence, Surveillance, and Reconnaissance (ISR) is provided for Blue forces 

by both unmanned and manned aircraft, as well as Field Air Commands (FACs) 

embedded with ground units.  These units provide targeting information for CAS and 
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Strike missions, as well as battle damage assessments (BDA) for previously conducted 

missions.  The UAVs in particular conduct the BDA mission on randomized routes over 

the area of responsibility (AOR). 

C. WEATHER CONDITIONS IN WIAT 

Weather conditions in WIAT are modeled in a 0.5° x 0.5° grid, with a varying time 

resolution (minimum of two hours.) Six weather parameters are included: cloud coverage 

(upper-level, mid-level, and lower-level) measured in octas, precipitation in 

millimeters/hour, visibility in meters, and wind speed in meters/second.  Weather is read 

from a Microsoft Excel workbook file, with one worksheet for each time increment of the 

simulation.  Each worksheet has eighteen grids representing a map of the geographic 

domain: the first set of six grids holds the true weather values for the six weather 

parameters; the second and third sets of grids are designed for execution and planning 

forecast values, which can be input by the user or generated by WIAT.  Each map is a 

20x34 grid, with each cell representing one half-degree square, from 20.508N, 34.474E 

in the southwest to 30.008N, 49.974E in the northeast. (SPA 2007a). 

Data provided to WIAT can come from a variety of sources, but extensive 

instructions are provided with WIAT if the user would like to obtain data from the Air 

Force Environmental Scenario Generator (ESG).  A default weather file is included with 

program installation, covering the period January 1–7, 1993.   

D. THE OPERATIONAL DECISION-MAKING PROCESS 

The program models the planning process for hours to days prior to mission 

execution, and incorporates weather conditions into operational decision making and 

impacts through the course of the campaign.  Initial flight plan generation starts with the 

Joint Prioritized Integrated Target List (JPITL) and information from ISR and FACs to 

produce a Daily Target List and an Air Tasking Order (ATO).  This list is used to 

prioritize sorties and allocate resources (manned and unmanned aircraft) to the various 

mission types.  Once the simulation reaches a point 24 hours before a given mission is 

scheduled, the planning forecast is checked.  If the forecast values exceed the mission 

thresholds, then the mission is cancelled and replaced; if the forecast is below the 
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threshold, the mission remains on the task list.  Another check is made against the 

execution forecast six hours prior to mission departure, and if the forecast values are still 

below mission threshold values.  WIAT’s inputs for campaign planning can be seen in 

Figure 4, the method by which planning and execution forecasts is shown in Figure 5, 

and a sample individual mission with weather impacts is shown in Figure 6 (SPA 2007a).   

 
Figure 4.   Depiction of Strike Planning Process in WIAT – Flight Plan Generation and 

Modification (SPA 2007a) 

 
Figure 5.   METOC Forecast Integration into Strike Warfare Planning Cycle in WIAT 

(SPA 2007a) 
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Figure 6.   Sample mission progression.  After "WIAT Introductory Briefing," 11 June 

2007. 

E. MISSION EXECUTION 

Once the mission departs, the forecaster’s involvement is over; however, the 

weather will impact the remainder of the operation.  Aircraft transit directly to the target 

or get routed around bad weather.  Re-routing will result in less time on station and 

potentially fewer shots at the target. 

Various degradation factors based on weather impact the ability of red and blue 

forces to detect and engage each other, while random number draws determine the 

outcome of each of those events.  Turns are simulated in five-minute intervals.  Once the 

blue force has destroyed the red force, or failed to engage within the permitted time on 

station, it returns to the carrier to recycle for another mission.  If the aircraft is shot down, 

it is removed from the simulation. An example of a strike mission and the factors that 

impact a mission’s success is shown in Figure 7. 
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Example Operation
Strike aircraft takes off from CVN enroute to strike a Red mobile 
land-based ballistic missile.  Route planning is updated every five 
minutes based on the weather at flight level on the route.

Strike aircraft arrives at the Red target’s location.  The above series of random number draws, degradation 
values, probability of detection, and probability of kill determine the outcome.  If neither combatant is killed, 
and Blue has sufficient fuel and weapons to try again, the interaction repeats on the next turn until fuel and 
weapons are exhausted or one of the two combatants is killed.
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Figure 7.   Example of Operational Interaction between Blue and Red Forces. 

F. OPTIONS AND FEATURES IN WIAT 

WIAT allows the user to choose from among several different methods of 

simulating forecast error; in this thesis, we use Gaussian errors for weather prediction.  

WIAT also allows customization of platform/weapon/sensor parameters, environmental 

degradation factors, METOC thresholds, mission thresholds, and simulation parameters. 

WIAT uses METOC threshold parameters of Maximum Yellow and Maximum 

Green to specify the points at which conditions and forecasts move from one color to 

another in the red/yellow/green stoplight paradigm; red indicates meteorological 

conditions that would prevent safe operations, yellow indicates borderline conditions, and 

green indicates safe conditions.  These thresholds are used in calculation of METOC 

performance metrics, as well as in the determination of sensor and weapon performance 

degradation. 
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Mission threshold parameters provide a go/no-go value for the simulated decision 

maker, and are used determine when changes are made in mission planning in terms of 

prioritization and/or resource allocation. 

 Platform, weapon, and sensor parameters allow the user to tailor characteristics of 

each to mimic realistic capabilities for both Blue and Red forces (i.e., transit and loiter 

speeds of an F/A-18, number of weapons an aircraft can carry, probability of kill of a 

given weapon, probability of detection of a given sensor, etc.)   

Environmental degradation factors determine the impact that weather conditions 

above the specified METOC thresholds will have on the effectiveness of a weapon or a 

detection capability.  They work as fractional multipliers of sensor and weapon 

performance, for both friendly and opposing forces.  The weather thresholds that affect 

various sensors and weapons are shown in Table 1.  For example, if visibility, low cloud 

cover, or mid cloud cover are over their METOC thresholds, blue force UAV sensors will 

have probability of detection (Pd) multiplied by the environmental degradation factor (a 

number between 0 and 1). Weapons will suffer reduced probability of kill (Pk) when 

METOC thresholds are exceeded.  Adverse conditions can also lead to increased flight 

time en route from the CVN to the target, or inability to conduct a battle damage 

assessment (BDA) once the engagement between Blue and Red forces has concluded. 

 

Weather Parameters and Degradations 

LCD MCD HCD Wind Speed Visibility Precipitation
BLUE UAV Sensors x x x

Fighter Sensors x x x
Ground Sensors x x
Strike Weapons (Dumb/GPS-guided bombs) x
CAS/KI Weapons (Laser-guided bombs) x x

RED Air Defense Sensors x x
Ground Sensors x x  

Table 1.   Weather parameters that affect Blue and Red platforms and sensors when 
actual weather is over METOC thresholds. 

Simulation parameters include features such as the number of simulations to run 

in a block, and the intervals at which weather is displayed in the WIAT graphical user 
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interface (GUI). One simulation parameter of particular interest to the METOC user is the 

ability to set a given rate at which mission cancellation recommendations are accepted for 

both planning and execution forecasts.  This feature simulates the level of confidence the 

decision maker holds in the forecasts provided by METOC personnel. (SPA 2007c) 

G. WIAT OUTPUT 

As the simulation is run to the conclusion of the campaign period, WIAT collects 

various MOEs and provides metrics files that detail the performance of Blue forces in 

prosecuting the campaign.  Three primary categories of metrics are compiled for the user: 

METOC performance metrics, METOC impact metrics, and operational impact metrics.  

METOC performance metrics (also referred to by the creators as “METOC metrics”) 

compare forecast and observed conditions.  Examples are forecast accuracy (FAC), false 

alarm rate (FAR), and weather event probability of detection (POD, which should not be 

confused with sensor Pd.) 

METOC impact metrics measure the effect that weather forecasts have during 

mission planning.  For example, KI and Strike missions are either changed or not 

changed based on forecasts.  The true weather at mission execution time is compared to 

the forecasts for that mission to determine whether the forecast-recommended change 

was correct or not, or if no change was recommended, whether that input was correct or 

not.  If a forecast indicates adverse weather that results in a mission change, and that 

forecast is verified by the true weather at that later time period, the mission is considered 

“saved.”   In contrast, a forecast indicating acceptable weather leading to no mission 

change, but with adverse weather conditions occurring during the mission, would be 

considered a mission that “could have been saved.”  Adverse conditions in only one of 

the six weather parameters would activate a mission change recommendation, and 

separate metrics are generated to indicate which of the missions were changed due to 

adverse conditions for each weather parameter.  These metrics are generated for all 

execution and planning forecasts. (SPA 2007b) 

It is important to note that in some METOC impact metrics, the CAS mission is 

removed from consideration or absorbed into other mission categories.  CAS is 

determined to be the most important mission of the three, in that it involves escort and 



 25

support of ground forces in a simulation of a ground campaign in Iraq.  This 

determination yields the philosophy that if CAS is required by ground forces, aircraft will 

always be sortied to support that mission.  Therefore, while there will be other metrics 

associated with the CAS mission, METOC impacts metrics are effectively eliminated, 

since forecasters cannot recommend against the mission being flown. 

Operational impact metrics focus on the impacts that the actual weather has on the 

conduct of the campaign.  For example, the number of times that adverse conditions led 

to extended flight times for aircraft to reach a given target is reported as an operational 

impact metric.  This impact can also cause decreased time over the target due to increased 

flight time en route, inability to determine a firing solution, or inability to conduct a 

BDA.  Metrics are also collected to determine Pk.   

H. LIMITATIONS TO WIAT 

There are a series of considerations and limitations to the simulated operational 

decision maker and the campaign that are relevant to understanding how WIAT runs and 

the metrics it generates.  The parameter values themselves have some restrictions.  When 

the user chooses the Gaussian distribution error, WIAT takes the actual weather value at 

each point and sets it as the mean of the distribution from which forecasts will be 

produced.  The sigma value and a randomly generated number provide the error for that 

given grid point, which is then applied to the actual value to generate the forecast weather 

value.  However, forecast values can fall outside the realm of reality (i.e., cloud cover 

less than 0 or greater than 8 octas.)  In these cases, WIAT re-assigns the value as the 

boundary value; a returned forecast of 9 octas would be re-assigned as 8 octas.  

Additionally, the Gaussian distribution for the cloud cover parameters is discretized—no 

fractional values are permitted for forecast values (i.e., 1½ octas of cloud cover.)  

However, fractional values are permitted for wind speed, visibility, and precipitation. 

Several aspects of the parameter values also either limit analysis or result in 

simulation conditions that are less than realistic.  Wind speed is treated as one value for 

the surface, for the (unspecified) altitude en route and over target or the kill box.   
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Visibility in the ESG database is a function of precipitation and relative humidity. 

However, dust and aerosols are taken into account in the setting of METOC thresholds.  

This mismatch is not transparent to the user. 

 There are several situations in WIAT that do not incorporate realistic campaign 

planning concerns.  First, only the weather at the target is considered when determining 

whether or not a mission will remain on the ATO and take off as scheduled.  The weather 

en route does impact the length of flight for the aircraft, but cannot cause mission 

cancellation or the loss of the aircraft; the operational decision maker has no means of 

factoring an increased flight time into a go/no-go decision.  Further, weather conditions at 

the CVN are not incorporated; in an actual campaign, weather at the launching platform 

would be an absolutely critical consideration.   

Second, while there is a tiered mission assignment process that fills CAS, Strike, 

and then KI missions, all missions within those subsets are weighted exactly the same in 

terms of importance.  In reality, the war-fighter commonly makes decisions between 

whether to attack a more important target in adverse weather or a less important target in 

good weather.  This construct is never a possibility in WIAT – adverse weather over a 

given target will simply cause that particular target to be reassigned to the bottom of the 

JPITL. 

 Aircraft also continue to loiter over the target if they cannot sense it, or if they 

sense and engage the target but do not kill it.  There is no mechanism for a mission to 

change its target during flight; inability to sense the target will force loiter time until the 

target can be detected, which leads to situations where the Red forces will have multiple 

opportunities to detect and engage the Blue forces.   

A major shortfall of WIAT is that it does not compute metrics for daily results.  

Therefore, there is no method to determine whether or not the campaign is effectively 

completed more quickly, or whether or not a given day’s events or weather had a 

proportionately large impact on metrics for the campaign.  

I. WIAT IN THIS THESIS 

WIAT simulates campaign events that in the real world are subject to random 

processes, such as whether or not a sensor will detect a target, and whether or not, once it 
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is fired, a weapon will kill a target.  Because WIAT uses random draws to simulate the 

stochastic nature of these and similar events, two simulations with identical user inputs 

will not have identical outcomes or identical output metrics.  To ensure the metrics 

produced are representative results of the input conditions, each simulation is run 30 

times, and each metric is averaged over the 30 runs.   

This study focuses on the comparison between deterministic and stochastic 

forecasting, with changes in various metrics (instead of ROI) serving as an indication of 

value.  Changes were made to a subset of parameters to reflect each of the deterministic 

and stochastic scenarios, which will be detailed further in the Methodology chapter.  To 

avoid confusion, this thesis will use the term WIAT* when referring to the author’s 

application of the program, while WIAT will refer to the program in its original context. 
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IV. METHODOLOGY 

A. WEATHER DURING THE STUDY PERIOD 

This study focuses on the six weather parameters previously discussed for 1–7 

January 1993, shown in Figures 8–14.  The period in question opens with a high-pressure 

ridge over northern Iran and Turkey, with a relatively weak area of surface low pressure 

over the eastern Mediterranean Sea.  Over the next 24–48 hours, a small surface trough 

moves southeast along the border between Iraq and Saudi Arabia to the Arabian Gulf.  

The trough continues east over the Zagros Mountains of Iran, and orographic lifting aids 

in generating light precipitation over southeastern Iraq and southwestern Iran.  The 

pressure gradient, which weakens with the passage of the low-pressure area on 4–5 

January, gradually re-strengthens over 6–7 January as the upper level ridge becomes 

more pronounced.  A surface low also develops over the eastern Mediterranean towards 

the close of the study period.  Visibility is generally poor in northern Iraq throughout the 

period, with periods of impacts to southern and central Iraq during 3-4 January and again 

on 6-7 January.  Precipitation was a fairly constant feature in the eastern Mediterranean, 

in the vicinity of the aircraft carrier’s launch area, for the duration of the period with the 

exception of 5 January.  In Iraq, precipitation was extremely sparse and sporadic; the 

mountains in northern Iraq and the vicinity of Baghdad saw the heaviest precipitation 

rates, just under 2 mm/hr, associated with the development of the surface low on 7 

January.  Wind speeds were greatest when the surface ridge-trough pairing was well 

established and a strong gradient existed between the two features.   
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Figure 8.   NCEP/NCAR Re-analysis of Sea Level Pressure, 1 January 1993, with 
noted features of interest. 

 

Figure 9.   NCEP/NCAR Re-analysis of Sea Level Pressure, 2 January 1993, with 
noted features of interest. 
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Figure 10.   NCEP/NCAR Re-analysis of Sea Level Pressure, 3 January 1993, with 

noted features of interest. 

 
Figure 11.   NCEP/NCAR Re-analysis of Sea Level Pressure, 4 January 1993, with 

noted features of interest. 
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Figure 12.   NCEP/NCAR Re-analysis of Sea Level Pressure, 5 January 1993, with 
noted features of interest. 

 

Figure 13.   NCEP/NCAR Re-analysis of Sea Level Pressure, 6 January 1993, with 
noted features of interest. 
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Figure 14.   NCEP/NCAR Re-analysis of Sea Level Pressure, 7 January 1993, with 
noted features of interest. 

B. MODIFICATIONS FOR STOCHASTIC WIAT* 

In order to isolate the impacts of deterministic and stochastic forecasts, inputs 

were generally maintained at default WIAT levels.  For the deterministic forecasts, the 

only items that differed from default settings were the rates at which the operational 

decision maker accepts the METOC recommendations (default levels were 80% for the 

execution forecast recommendation and 50% for the planning forecast; for this thesis, 

100% levels were employed.)  The user input settings for WIAT used in the deterministic 

scenarios are detailed in Appendix B.  In our study, mission thresholds of 6 octas cloud 

cover for all three cloud levels, 11 meters per second wind speed, 9700 meters visibility, 

and 10 millimeters per hour of precipitation were used in generating the probabilistic 

forecasts.  Decision flow remains the same in WIAT*. 

Two very significant changes are made in the inputs for WIAT that enable 

WIAT* to simulate decisions based on stochastic weather forecasts and probability 

decision thresholds.  First, the weather prediction method shifts from using a Gaussian 

prediction method to a hand-entered forecast.  Instead of applying errors to current 



 34

weather to generate forecast values in WIAT itself, the forecasts with appropriate errors 

are generated in the Ensemble Generation macro; these forecasts are then used to produce 

the probability file that serves as the weather file for WIAT. Second, the meaning of the 

KI and Strike mission thresholds are changed from being strictly weather parameters (i.e., 

6 octas of cloud cover or 11 m/s wind speed) to probability thresholds.  The operational 

decision maker in WIAT is making the go/no-go decision based on a comparison of the 

likelihood of the weather at a given location exceeding a METOC threshold with a 

probabilistic mission threshold.  Table 2 shows the probability thresholds, with their 

equivalent scaled inputs for WIAT*, that were tested by running 30 simulations for each 

probability threshold. 

 

Probability Thresholds and Corresponding WIAT Mission Threshold Inputs 

 
Table 2.   Probability thresholds and their corresponding scaled values for input into 

WIAT* simulations. 

METOC performance metrics will no longer be useful because WIAT* would 

attempt to verify each forecast individually.  Probabilistic forecast verification must be  
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against distributions of verifying observations, not individual observations.  Alternative 

metrics, in the form of reliability diagrams, are generated to evaluate the stochastic 

forecasts; these are presented in Chapter V. 

C. SIMULATED ENSEMBLE AND STOCHASTIC FORECASTS 

1. Determination of Appropriate Sigma Values 

In generating the simulated ensemble forecasts and probability files for WIAT,* 

we needed to select a set of sigma values.  Because our purpose was comparison with 

WIAT using deterministic forecasts, we needed to choose the same sets of values for both 

WIAT and WIAT* simulations.  Further, we needed to ensure that our sets of sigma 

values were physically and operationally reasonable.  In the deterministic forecasts, 

sigma represents the standard deviation of forecast error.  In the ensemble forecasts, 

sigma represents the spread of the ensemble, a measure of forecast uncertainty. 

In WIAT, the sizes of 1-sigma variations for each of the meteorological 

parameters are hard-wired (i.e., they cannot be changed with user inputs).  For example, 

1.0 sigma in WIAT is equivalent to 1 octa of cloud cover and 1.75 meters per second of 

wind speed.  The size of standard forecast errors when using the Gaussian error method 

was therefore controlled by setting a value for sigma.  This value is one of the user 

inputs; however, there is only one sigma value allowed, so the sizes of standard error for 

cloud cover and wind speed cannot be changed independently.  Table 3 shows 

meteorological values for each sigma value employed. 

 

 
Table 3.   Meteorological meanings for sigma values used based on WIAT 

assignment of values for 1.0 sigma.  



 36

Research that would establish appropriate sigma ranges to use was relatively thin, 

particularly for precipitation and visibility.  We found Sittel’s cloud cover verification 

studies of the Diagnostic Cloud Forecast (DCF) useful, however.  CDF forecasts cloud 

cover over the continental United States from a “statistical relation based on recent 

performance of [a] mesoscale model” (Sittel, slide 3).  Sittel finds that root mean square 

error (RMSE) values averaged 47% from forecast hours 6 to 48 during June 2009, with 

little deviation from that average, and no trend line suggesting better forecasting with 

decreased lead time.  Sittel also describes a "20–20 Index," a number between 0 and 1, 

which for values near 1, indicates a large number of situations where the difference 

between forecast and observation is less than 20%. The index for June 2009 indicates that 

there is fewer than 20% difference between forecast/observed pairs 88% of the time, 

again remaining the same with no appreciable trend from hours 6 to 48. 

 Morone and Pond (1994) studied the verification for the Rapid Update Cycle 

(RUC) and their analysis is instructive for establishing appropriate sigma values for wind 

speed.  The RUC model is singular among National Center for Environmental Prediction 

(NCEP) models in that it is used to provide information on imminent weather conditions; 

it provides analysis and forecasts out to 12 hours every three hours (Morone and Pond 

1994).  The verification study found that RMSE for model surface winds, as compared to 

rawinsonde observations, was between 3 and 4 m/s at the analysis, 3-hour, and 12-hour 

forecast times. 

 Based on these studies, as well as limited ability to vary sigma values within 

WIAT and WIAT*, we chose sigma values of 0.5 and 1.0 for execution forecasts and 1.0 

and 2.5 for planning forecasts.  The larger sigma value at the planning timeframe 

incorporates the common notion that the forecaster will generate better forecasts for the 

execution forecast time frame than for the planning forecast.   

2. Generation of Ensemble Files 

 We created a macro to generate ensemble files to be used by WIAT* in lieu of the 

deterministic forecast used by WIAT.  A macro is a tool within Microsoft Excel that 

allows direct coding (in the Visual Basic for Excel programming language) of desired 

functions and references, instead of using standard Excel functions from drop-down 
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menus and cell references respectively.  Direct coding allows Excel to run a series of 

computations without requiring continued input from the user. 

 The macro reads actual weather data from the input file and creates forecast data 

from it using input sigma values.  Input sigma values for the low and high uncertainty 

cases were used to generate the execution and planning forecast values for 30 ensemble 

members.  Corrections were applied to forecasts for values outside forecast boundaries, 

as described in Chapter II;  a separate set of ensemble members that did not use the 

“wall” represented by the maximum values for wind speed, visibility, and precipitation 

was also generated but not run through simulations in WIAT*.  Graphs in the Results 

Chapter demonstrate that the forecast distributions were similar, thus eliminating the need 

to conduct the simulations in WIAT*.  The macro also creates a probability file based on 

how many of the 30 ensemble members exceed parameter thresholds equivalent to the 

METOC thresholds at each location and forecast lead time.  The probabilities in this file 

are then used as forecasts for WIAT*.    

 Several alternative means of generating ensemble members were investigated. We 

tested an ensemble generation method that included applying random errors to the true 

weather file, in effect treating the ESG values as observed values, and our new values as 

the true values. We then used the new truth values, applying random errors a second time 

to generate each ensemble member. Ultimately, we decided against this process, because 

we wanted the errors of our ensemble members to mimic as closely as possible the errors 

of the deterministic forecasts produced within WIAT.  We also initially modeled a beta 

distribution for the wind speed, visibility, and precipitation errors, which would have 

more closely matched the typical distribution of these values.  However, we also 

eventually eliminated the use of the beta distribution to more closely parallel WIAT’s 

forecasting process. 

3. Distribution of Weather Values 

Weather input for WIAT* in stochastic simulations, as discussed in Chapter IV, 

consists of scaled probability values for both planning and execution forecasts.  Because 

the forecasts are stochastic, METOC performance and METOC impact metrics are 

irrelevant for analysis.  As a check on the quality of our code, after generating the 30 
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ensemble members, we compared the distribution of forecast values to the distribution of 

actual forecast values.  Then, we also used reliability diagrams to evaluate how well the 

forecast probabilities compared with observed rates of occurrence for exceeding the 

METOC thresholds. 

Figures 15–18 show binned distributions of actual weather values and average 

counts of forecast values for the two forecast periods, in both low and high uncertainty 

scenarios.  As is expected, the distribution of execution forecasts is generally closer than 

the planning forecasts to the actual weather.  Both forecast distributions demonstrate a 

smoothing of peaks, as compared to the distribution of actual values, and the smoothing 

increases as more error is introduced.  Figures 15 and 16 show that low cloud cover has 

peak values at the boundary values of 0 and 8 octas, with a smaller peak at 4 octas.  

Higher levels of uncertainty at increasing lead times yield higher accumulations at non-

peak values. 

 

 
Figure 15.   Number of Actual Values, Average Number of Ensemble Forecast Values 

for LCD: Low Uncertainty Scenario. 
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Figure 16.   Number of Actual Values, Average Number of Ensemble Forecast Values 

for LCD: High Uncertainty Scenario. 

 
 

 
Figure 17.   Number of Actual Values, Average Number of Ensemble Forecast Values 

for Wind Speed: Low Uncertainty Scenario. 
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Figure 18.   Number of Actual Values, Average Number of Ensemble Forecast Values 

for Wind Speed: High Uncertainty Scenario. 

Figures 17–18 show similar diagrams for wind speed.  In these cases, peak values 

occur at 3-4 m/s, and more spreading of the distribution occurs as more forecast 

uncertainty is introduced.  Peaks in execution and planning forecasts also occur at the 

boundary value of zero.  Because WIAT adjusts returned forecast values that are lower 

than 0 m/s to a value of 0 m/s, the ensemble generation program used in this study 

follows the same procedure.  As is expected, however, diminishing uncertainty means 

fewer values returned less than zero, and hence lower accumulation of values at the 

boundary value. 

An additional consideration was taken in creating the scaled probability file that 

serves as the base weather file for stochastic runs in WIAT*.  WIAT will accept 

fractional octa values for actual weather values, but will not do so for forecast values: it 

instead truncates the value to an integer.  For example, if the actual weather value for a 

grid location is 6.2 octas, and applying the Gaussian-distributed error yields a forecast 

value of 6.8 octas, WIAT will truncate the 6.8 octas value to 6 octas, artificially re-

distributing the value below the actual weather value.  Further, WIAT interprets mission 

threshold values as the maximum permissible value.  In this manner, all forecast values  
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between 6 and 6.99… octas would be returned to a value of 6 octas, and forecast values 

intended to be over the threshold would be interpreted as equal to the threshold, and 

would not result in a mission change. 

To remedy this, an additional adjustment to forecast values from the probability 

file for each scenario was performed that effectively rounds the forecast value up to the 

next integer.  The distributions of values after this adjustment are shown in Figures 19–

20.  Actual values were not adjusted, but the chart demonstrates how filtering true values 

in the same manner would yield a different distribution.  Concentrations of 0 and 1 would 

vary significantly between actual and forecast files, but because the values of concern are 

those from 6 to 8 octas, this variation is acceptable.  As it stands, forecast distributions 

above the threshold value parallel the actual values very closely post-adjustment. 

 

 
Figure 19.   Number of Actual Values, Average Number of Ensemble Forecast Values 

for LCD: Low Uncertainty Scenario, after adjustment to counter WIAT cloud 
cover value truncation. 
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Figure 20.   Number of Actual Values, Average Number of Ensemble Forecast Values 

for LCD: High Uncertainty Scenario, after adjustment to counter WIAT cloud 
cover value truncation. 
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V. COMPARISON OF RESULTS FROM WIAT AND WIAT* 

A. DETERMINISTIC WIAT RESULTS 

1. METOC Impact Metrics 

The simulation blocks for the low and high error scenarios yielded METOC 

impact metrics that show benefit from higher accuracy.  Two examples of the METOC 

impact metrics are shown in Table 4.  As either planning or execution sigma values 

increase, the number of missions incorrectly changed and incorrectly not changed 

increases.  We would expect that higher degrees of forecast error would lead forecasters 

to unnecessarily change the mission when no change was required (also known as a 

“false alarm”) or allow the mission to proceed when it should have been changed (also 

known as a “miss”).  

 

Selected METOC Impact Metrics from Deterministic Scenarios 

 

Table 4.   Average number of missions incorrectly changed and incorrectly not 
changed for low and high error scenarios in WIAT. 

2. Operational Impact Metrics 

The operational impact metrics shown in Table 5 do not show as clear a trend as 

is evident in the METOC impact metrics.  While STK and KI/CAS kills per 100 missions 

increase when forecasts incorporate less error, as should be expected, the difference 

between the two is only on the order of 1–2%.  This difference is statistically significant 

at a 95% confidence interval for STK kills per 100 missions (based on one-tailed t-tests.)  

However, the difference in KI/CAS kills per 100 missions is not statistically significant at 

that confidence interval. 
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Selected Operational Metrics from Deterministic Scenarios 

 
Table 5.   Strike and KI/CAS Kills per 100 missions for low and high error scenarios 

in WIAT.  

Most operational metrics did not demonstrate identifiable trends for analysis.  For 

many of the operational impact metrics, the forecast weather does not actually have a 

direct impact on the fields used to generate the metrics; often, the actual weather is what 

causes an impact to Blue forces trying to complete missions.  For example, the weapons 

probability of kill metric is calculated directly from the number of targets killed and the 

number of weapons deployed against those targets.  The number of weapons deployed is 

derived from whether or not the Blue forces have detected and then destroyed the target, 

both of which are influenced by actual weather and not a forecast.  Assuming that the 

degradation factor due to weather influences affects Blue and Red to the same degree, 

even metrics such as the number of Blue manned aircraft shot down cannot be attributed 

to good or bad forecasts, but instead to the actual weather and the capabilities given to 

Blue and Red by the user. 

B. STOCHASTIC WIAT* RESULTS 

1. Reliability Diagrams and Calibration 

One of the constant concerns for the operational forecaster is determining whether 

or not the forecasts issued are good portrayals of the environment.  For stochastic 

forecasts, the forecaster is concerned with reliability and resolution.  In order to have 

stochastic forecasts that are considered reliable, the forecast probability of a given event 

should equal the observed relative frequency of the event.  Resolution refers to how well 

the probabilistic forecast distinguishes between events and non-events. 
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Reliability diagrams compare forecast probability with observed relative 

frequency.  For the stochastic scenarios in WIAT*, a macro was generated that counted 

the number of times a given probability of exceeding the mission threshold was issued for 

execution and planning forecasts, and compared it to the count of occasions for 

corresponding valid times and locations where the actual weather exceeded the mission 

threshold.  We would expect a perfectly reliable forecast to follow the straight line shown 

in the following charts.  The introduction of random forecast error, as well as some of the 

constraints applied in the formulation of the ensemble members, will yield forecasts that 

are less than perfectly reliable. 

Figures 21–22 show examples of reliability diagrams for the low and high 

uncertainty scenarios; remaining diagrams can be found in Appendix D.  Both 

demonstrate a series of forecast-observed rate pairs that reflect an over-statement of the 

likelihood of unlikely events, and an under-statement of the likelihood of likely events.  

For example, Figure 21 depicts that when forecasts indicate a 30% or lower likelihood of 

exceeding the mission threshold, the corresponding actual weather value never exceeds 

the threshold; meanwhile, for forecast probabilities 66.67% and higher, we see that the 

threshold is exceeded in every case.  Very small numbers of forecast occurrences away 

from the extreme probabilities of 0% and 100% accentuate the divergence of the 

ensemble from forecasts with perfect reliability.  Error bars show two standard deviations 

above and below the observed rate of occurrence.   
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Figure 21.   Reliability Diagram with Error Bars for LCD Execution Forecast, Low 

Uncertainty Scenario. 
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Figure 22.   Reliability Diagram with Error Bars for Wind Speed Execution Forecast, 

Low Uncertainty Scenario. 
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As seen in Figures 21–22, our ensemble generation technique did not produce 

reliable probability forecasts.  We made a few attempts to change aspects of the ensemble 

generation macro that we thought might be responsible for the ensembles poor 

calibration, but were unable to improve the ensemble’s reliability.  In order to correct the 

forecast probabilities of exceedance, we employed a calibration process as discussed in 

Chapter II.  We replaced the likelihood derived from the set of 30 ensemble members 

with the environmental rate of occurrence associated with that probability.  WIAT* runs 

for each threshold level used for the uncalibrated forecast were conducted for the 

calibrated forecasts as well. 

2. Operational Impact Metrics 

As in the deterministic WIAT runs, stochastic WIAT* metrics are relevant for 

analysis; unfortunately, there are few operational metrics that show definitive differences 

among the various threshold levels, and many other metrics are difficult to explain.  

Tables 6–9 show several operational metrics from WIAT* runs at each of the eight 

mission threshold levels, for low and high uncertainty, and for uncalibrated and calibrated 

probability forecasts.  Additional operational impact metrics are tabulated in Appendix F. 

Comparing the metrics for the various mission thresholds used, we cannot identify 

an optimum decision threshold.   Further, while it seems reasonable that using a higher 

threshold (i.e., being willing to fly missions even when there is a very high chance of 

mission degradation or failure due to weather), could explain the lower number of strike 

kills per 100 missions, the opposite trend is observed in the KI/CAS kills per 100 

missions. 

Comparisons between the low and high uncertainty scenarios generally show 

better strike kill rates, fewer missions impacted, and fewer mission impacts at threshold 

levels of 87.5%, 75%, and 62.5%, but worse rates for the lowest three thresholds.  

KI/CAS kills per 100 missions demonstrates the opposite trend in this comparison as 

well. 
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Operational Impact Metrics for Stochastic Low Uncertainty Scenario (Uncalibrated) 

Metric 100.0% 87.5% 75.0% 62.5% 50.0% 37.5% 25.0% 12.5%
Strike Kills per 100 Missions 65.55 63.23 63.11 63.35 64.08 65.66 68.42 68.14
KI / CAS Kills per 100 Missions 28.04 25.35 25.65 25.33 25.71 24.77 24.05 22.80
Missions Impacted 165.10 155.07 154.30 151.50 148.73 142.20 127.50 120.20
Total Mission Impacts 205.40 179.17 177.57 176.37 171.10 167.57 152.80 144.37

Threshold

 
Table 6.   Operational impact metrics for WIAT* runs.  Metrics are for the low 

uncertainty scenario, uncalibrated probability forecasts. 

  Operational Impact Metrics for Stochastic High Uncertainty Scenario (Uncalibrated) 

Metric 100.0% 87.5% 75.0% 62.5% 50.0% 37.5% 25.0% 12.5%
Strike Kills per 100 Missions 65.55 62.12 61.73 62.94 64.45 67.07 68.80 69.28
KI / CAS Kills per 100 Missions 28.04 27.66 26.92 25.39 25.62 25.03 23.54 21.61
Missions Impacted 165.10 158.67 156.87 152.97 147.63 131.90 120.33 109.13
Total Mission Impacts 205.40 190.20 183.93 178.50 172.20 156.60 144.70 129.27

Threshold

 

Table 7.   Operational impact metrics for WIAT* runs.  Metrics are for the high 
uncertainty scenario, uncalibrated probability forecasts. 

Operational Impact Metrics for Stochastic Low Uncertainty Scenario (Calibrated) 
 

Metric 100.0% 87.5% 75.0% 62.5% 50.0% 37.5% 25.0% 12.5%
Strike Kills per 100 Missions 65.55 63.16 63.40 63.52 64.18 65.20 66.34 67.04
KI / CAS Kills per 100 Missions 28.04 26.49 26.59 26.69 25.27 24.51 25.43 24.39
Missions Impacted 165.10 155.67 154.40 152.50 148.43 143.40 138.50 130.63
Total Mission Impacts 205.40 178.40 176.37 177.10 171.90 166.03 160.37 151.90

Threshold

 

Table 8.   Operational impact metrics for WIAT* runs.  Metrics are for the low 
uncertainty scenario, calibrated probability forecasts. 
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Operational Impact Metrics for Stochastic High Uncertainty Scenario (Calibrated) 

 

Metric 100.0% 87.5% 75.0% 62.5% 50.0% 37.5% 25.0% 12.5%
Strike Kills per 100 Missions 65.55 62.99 63.14 63.42 64.14 65.61 66.99 68.32
KI / CAS Kills per 100 Missions 28.04 26.09 25.88 25.27 25.97 25.03 24.77 24.25
Missions Impacted 165.10 156.07 152.63 149.93 147.93 142.07 134.13 126.77
Total Mission Impacts 205.40 182.13 177.23 176.23 172.13 166.87 155.90 151.07

Threshold

 

Table 9.   Operational impact metrics for WIAT* runs.  Metrics are for the high 
uncertainty scenario, calibrated probability forecasts. 

Comparing metrics for simulations that used calibrated forecasts to the metrics for 

simulations that used uncalibrated forecasts, none of the metrics, the number of kills per 

100 missions, missions impacted, or total mission impacts, showed a clear benefit to use 

of our calibration technique.  No region of optimum mission threshold appeared with 

calibration. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

Results across the spectrum of stochastic WIAT* runs may show improved 

metrics for stochastic decision-making and weather support.  For example, the number of 

strike kills per 100 missions for the high error deterministic WIAT runs was 61.62 (Table 

5) while the strike kills per 100 missions for the high uncertainty stochastic WIAT* runs 

ranges from 65.55 to 69.28 (Tables 7 and 9).  This is an increase of approximately 4-6% 

over the range of thresholds tested. While this percentage may not be a dramatic 

improvement, each additional success per 100 missions can bring earlier air 

dominance/supremacy, shorter campaign lengths, fewer expenses incurred for operation 

of both man and machinery, and reduced chances of friendly forces being shot down.  

Our somewhat mixed results do not allow us to definitively conclude that stochastic 

forecasting provides benefit to the simulated operational decision maker in this campaign 

scenario, but we cannot rule it out, either.  Several primary issues in WIAT prevent us 

from forming more certain conclusions: the construct of the program itself, aspects of the 

simulation, and a lack of full transparency as to how metrics are accumulated.  However, 

the limited improvement we did see suggests that further study should be pursued, by 

implementing different strategies for testing purposes. 

WIAT was designed primarily to allow users to test the impacts of varying 

degrees of deterministic forecast quality in the context of a campaign.  Restrictions and 

adjustments of data in some parts of the program make perfect sense in light of this 

design aim; however, several features—with the requirement for cloud cover to be in 

integer octa values the prime example—make adapting the program for stochastic 

purposes extremely difficult.  The choice to truncate forecast values, while not 

performing the same function on actual values, adds processing steps to the effort.  

Finally, hard-coding of certain sigma values and maximum parameter values into WIAT 

limits the range of scenarios where WIAT would be useful. 
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While it would be unrealistic to expect the programmers of WIAT to have 

generated a simulator on par with video games such as the Harpoon series, there are 

multiple instances of modeling in WIAT that are less than realistic.  In order to parallel 

the experience, most afloat METOC division officers have to deal with, it seems 

reasonable to expect that weather conditions at the CVN, and not just the target location, 

should be used in determining whether a mission will go as scheduled.  Weather en route 

to the target is also a complexity that the decision maker cannot integrate into the 

planning cycle.  There is no capability to prioritize missions by importance, and hence the 

uniform weighting by decision makers of how to allocate their resources (i.e., to target 

the less important Red force under good weather, or the more important Red force under 

bad weather) and the different-valued outcomes of these missions are not factors in 

WIAT’s JPITL and metrics.  Finally, while metrics are broken down by execution and 

planning forecast time frame, the success of missions is not broken down by day.  There 

is no way to tell in WIAT whether or not the majority of Red force kills, for example, 

were achieved in Days 1 through 3 of the campaign, or evenly spread out over the seven 

days.  This would be a useful statistic, given the fact that there are more missions over the 

seven-day campaign than there are opportunities to fly them, and that the user is unable to 

realize a shorter campaign with more accurate forecasts (or even perfect detection and 

weapons employment.)  Further, some metrics seem to only capture impacts of the 

weather itself, rather than the forecaster’s contribution to the decision maker. 

Because WIAT employs GCAM-CTS as part of its package, the programming 

behind the simulation is often a bit obscured.  Were it not for the willingness of one of 

the original programmers to donate considerable time and effort, much would have 

remained misunderstood.  Some elements of WIAT’s programming are more accessible, 

but if the user wants to understand the underlying how’s and why’s of WIAT 

architecture, it requires extensive study of programming in Visual Basic for Applications 

(VBA) in Microsoft Excel.  The fact that VBA does not appear to be widely used in the 

scientific community also limits the avenues for information technology (IT) support. 

This particular weather period may not have been a good choice for testing the 

benefits of stochastic forecasting.  As discussed in Chapter IV, weather conditions during 
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this period were fairly mild; three of the six parameters studied were effectively non-

factors.  While cloud cover was present for most of the time frame at the low- and mid-

levels, the most challenging conditions for a strike campaign would have revolved around 

the consistently poor weather in the vicinity of the CVN, which of course was not 

considered in launch decisions.  A more challenging weather scenario, with extensive 

thunderstorms and heavy rain or with shamal wind conditions may have exercised the 

possibilities more thoroughly. 

B. RECOMMENDATIONS 

This thesis prompts several recommendations for future study.  WIAT could 

provide an excellent means for further study with several changes to structure and output.  

First, WIAT should be adapted to incorporate stochastic forecasting with its own set of 

inputs and metrics.  Reliability diagrams would be an appropriate METOC performance 

metric for use with the stochastic forecast method.  Adaptation would also eliminate the 

need for scaling probability values, as well as permitting finer sampling of probability 

thresholds in search of optimal values.  Incorporating more realistic penalties and 

complicated degradation schema would also enhance the suitability of the campaign 

simulation.  While the user ultimately can search out the scenario of choice, inclusion of 

more challenging weather data files might prove more useful to the user than the current 

set.  Users should also have the capability to choose “simpler” forecast simulations that 

may only consider one weather parameter, run a shorter campaign length, or study only 

one mission type.  Lastly, allowing users to stipulate different sigma values for different 

weather parameters would enhance the realism of the error distribution.  Training on the 

program, which has been offered by SPA in the past, provides an extremely valuable 

introduction to the program. 

Future study should also attempt to find realistic ways to simulate the generation 

of ensemble data.  Perturbing the actual parameter values to generate the true weather 

PDF discussed in Chapter II was pursued earlier in the process of this thesis, but 

ultimately was removed because this constituted adding a source of error where WIAT 

had no comparable error introduction.  Results from those forecasts did not yield more 
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reliable forecasts than those described in this thesis, but a more correct ensemble 

generation process should incorporate the notion that observed weather itself contains 

error.  The computing power that would be required to support these sorts of 

investigations mandates the use of a more flexible programming language; while 

Microsoft Excel and its version of VBA have proven themselves useful in many contexts, 

a program such as MATrix LABoratory (MATLAB) would likely prove far easier to use 

and more capable. 

The most exciting research may lie in adapting simulations in WIAT’s image to 

other warfare areas.  The large search areas characteristic of ASW, and the relatively 

micro-scale concerns typical of NSW, would each be suitable and of interest for weather 

impacts simulations.  Further, either of these warfare areas would expand stochastic 

forecasting studies to oceanographic applications and campaigns; expanding work in 

stochastic forecasting to oceanographic applications can only serve to enhance the 

Navy’s capabilities in the years ahead. 
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APPENDIX A: STUDY PERIOD WEATHER 

A. SEA LEVEL PRESSURE CHARTS, 1–7 JANUARY 1993 

This section shows NCEP/NCAR re-analyses of sea level pressure for the Middle 

East region in general, and specifically the operating area in the campaign scenario in 

WIAT. 

 

 
Figure 23.   Sea Level Pressure, 1 January 1993. 
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Figure 24.   Sea Level Pressure, 2 January 1993. 

 

 
Figure 25.   Sea Level Pressure, 3 January 1993. 
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Figure 26.   Sea Level Pressure, 4 January 1993. 

 
Figure 27.   Sea Level Pressure, 5 January 1993. 
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Figure 28.   Sea Level Pressure, 6 January 1993. 

 
Figure 29.   Sea Level Pressure, 7 January 1993. 
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B. 850-HPA GEOPOTENTIAL HEIGHTS, 1–7 JANUARY 1993 

This section shows NCEP/NCAR re-analyses of geopotential heights for 850-hPa 

pressure levels for the Middle East region in general, and specifically the operating area 

in the campaign scenario in WIAT. 

 
Figure 30.   850 hPa Geopotential Heights, 1 January 1993. 
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Figure 31.   850 hPa Geopotential Heights, 2 January 1993. 

 
Figure 32.   850 hPa Geopotential Heights, 3 January 1993. 
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Figure 33.   850 hPa Geopotential Heights, 4 January 1993. 

 
 

Figure 34.   850 hPa Geopotential Heights, 5 January 1993. 
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Figure 35.   850 hPa Geopotential Heights, 6 January 1993. 

 
Figure 36.   850 hPa Geopotential Heights, 7 January 1993. 
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C. 500-HPA GEOPOTENTIAL HEIGHTS, 1–7 JANUARY 1993 

This section shows NCEP/NCAR re-analyses of geopotential heights for 500-hPa 

pressure levels for the Middle East region in general, and specifically the operating area 

in the campaign scenario in WIAT. 

 

Figure 37.   500 hPa Geopotential Heights, 1 January 1993. 
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Figure 38.   500 hPa Geopotential Heights, 2 January 1993. 

 

 
Figure 39.   500 hPa Geopotential Heights, 3 January 1993. 
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Figure 40.   500 hPa Geopotential Heights, 4 January 1993. 

 
Figure 41.   500 hPa Geopotential Heights, 5 January 1993. 
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Figure 42.   500 hPa Geopotential Heights, 6 January 1993. 

 
Figure 43.   500 hPa Geopotential Heights, 7 January 1993. 
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D. SURFACE PRECIPITATION RATE, 1–7 JANUARY 1993 

This section shows NCEP/NCAR re-analyses of surface precipitation rate for the 

Middle East region in general, and specifically the operating area in the campaign 

scenario in WIAT. 

 

 
Figure 44.   Surface Precipitation Rate, 1 January 1993. 
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Figure 45.   Surface Precipitation Rate, 2 January 1993. 

 
Figure 46.   Surface Precipitation Rate, 3 January 1993. 
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Figure 47.   Surface Precipitation Rate, 4 January 1993. 

 
Figure 48.   Surface Precipitation Rate, 5 January 1993. 
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Figure 49.   Surface Precipitation Rate, 6 January 1993. 

 
Figure 50.   Surface Precipitation Rate, 7 January 1993. 
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E. SURFACE RELATIVE HUMIDITY, 1–7 JANUARY 1993 

This section shows NCEP/NCAR re-analyses of surface relative humidity, the 

primary factor in determining visibility, for the Middle East region in general, and 

specifically the operating area in the campaign scenario in WIAT. 

 

 
Figure 51.   Surface Relative Humidity, 1 January 1993. 
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Figure 52.   Surface Relative Humidity, 2 January 1993. 

 
Figure 53.   Surface Relative Humidity, 3 January 1993. 



 73

 
Figure 54.   Surface Relative Humidity, 4 January 1993. 

 
Figure 55.   Surface Relative Humidity, 5 January 1993. 
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Figure 56.   Surface Relative Humidity, 6 January 1993. 

 
Figure 57.   Surface Relative Humidity, 7 January 1993. 
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APPENDIX B: LIST OF DEFAULT WIAT SETTINGS IN 
DETERMINISTIC SCENARIOS 

This appendix lists the default settings set to use WIAT in a deterministic 

forecasting scenario. 

 

Weather Prediction Method      1 
 0 – Perfect Knowledge 
 1 – Gaussian Weather Prediction 
 2 – Time Shifted Weather Prediction 
 3 – Location Shifted Weather Prediction 
 4 – Percent Accuracy Weather Prediction 
 5 – Hand Entered Forecast Prediction 
 
Weather Prediction Parameters 
 Short Term Parameters 
  Sigma for Short Term Forecast   0.5 / 0.75 / 1.0  
  Short Term Forecast Time Shift   Not applicable 
  Short Term Vertical Shift    Not applicable 
  Short Term Horizontal Shift    Not applicable 
  Short Term Green Percent Accuracy   Not applicable 
  Short Term Yellow Percent Accuracy  Not applicable 
  Short Term Red Percent Accuracy   Not applicable 
 Long Term Parameters  

Sigma for Long Term Forecast   1.0 / 1.5 / 2.0 / 2.5 
  Long Term Forecast Time Shift   Not applicable 
  Long Term Vertical Shift    Not applicable 
  Long Term Horizontal Shift    Not applicable 
  Long Term Green Percent Accuracy   Not applicable 
  Long Term Yellow Percent Accuracy  Not applicable 
  Long Term Red Percent Accuracy   Not applicable 
 
Blue Sensor Environmental Degradation 
 Blue Ground Sensor Environmental Degradation Vector 
  Green Visibility / Green Precipitation  1.0 
  Yellow Visibility / Green Precipitation  0.9 
  Yellow Visibility / Yellow Precipitation  0.8 
  Red Visibility / Green Precipitation   0.7 
  Red Visibility / Yellow Precipitation   0.6 
  Red Visibility / Red Precipitation   0.5 
 Blue UAV Sensor Environmental Degradation Vector 
  Green Visibility / Green Precipitation  1.0 
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  Yellow Visibility / Green Precipitation  0.9 
  Yellow Visibility / Yellow Precipitation  0.8 
  Red Visibility / Green Precipitation   0.7 
  Red Visibility / Yellow Precipitation   0.6 
  Red Visibility / Red Precipitation   0.5 
 Blue Fighter Sensor Environmental Degradation Vector 
  Green Visibility / Green Precipitation  1.0 
  Yellow Visibility / Green Precipitation  0.9 
  Yellow Visibility / Yellow Precipitation  0.8 
  Red Visibility / Green Precipitation   0.7 
  Red Visibility / Yellow Precipitation   0.6 
  Red Visibility / Red Precipitation   0.5 
 
Blue Weapon Environmental Degradation 
 Type 1 Weapon Pk Environmental Degradation Vector 
  Green/Green      1.0 
  Yellow/Green      0.9 
  Yellow/Yellow     0.8 
  Red/Green      0.7 
  Red/Yellow      0.6 
  Red/Red      0.5 
  

Type 2 Weapon Pk Environmental Degradation Vector 
  Green       1.0 
  Yellow       0.75  
  Red       0.5 

 
Type 3 Weapon Pk Environmental Degradation Vector 

Green/Green      1.0 
  Yellow/Green      0.9 
  Yellow/Yellow     0.8 
  Red/Green      0.7 
  Red/Yellow      0.6 
  Red/Red      0.5 
 
Red Environmental Degradation 
 Red Air Defense Sensor Environmental Degradation Vector 
  Green/Green      1.0 
  Yellow/Green      0.9 
  Yellow/Yellow     0.8 
  Red/Green      0.7 
  Red/Yellow      0.6 
  Red/Red      0.5 
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Red Ground Sensor Environmental Degradation Vector 
  Green/Green      1.0 
  Yellow/Green      0.9 
  Yellow/Yellow     0.8 
  Red/Green      0.7 
  Red/Yellow      0.6 
  Red/Red      0.5 
Blue Weapon Parameters 
 Type 1 Weapon Max Range (nautical miles)   15 
 Type 2 Weapon Max Range     15 
 Type 3 Weapon Max Range     15 
 Type 1 Weapon Max Pk per missile    0.75 
 Type 2 Weapon Max Pk per missile    0.75 

Type 3 Weapon Max Pk per missile    0.75 
 Type 1 Weapon Single AC Load    2 

Type 2 Weapon Single AC Load    2 
Type 3 Weapon Single AC Load    2 
Blue Fighter Loiter Speed (knots)    350 
Blue Fighter Transit Speed     480 
Blue Fighter Max Time on Station (hours)   4 
Blue UAV Flight Speed     120 
Blue Ground SOA      10 
Blue Ground SOA In Contact     5 
Blue Fighter Sensor Pd     0.9 
Blue UAV Sensor Pd      0.9 
Blue Ground Detection Pd     0.9 

 
Threat Parameters 
 Threat Parameters for Ground Forces 

Total Major Red Ground Forces   5 
  Red Ground SOA     7 
  Red Ground SOA In Contact    0 
  Red Ground Max Pd     0.7 
  Mobile Threat Target Speed    8 
 
 Threat Parameters for Air Defense 

Red Air Defense Weapon Pk    0.05 
  Red Air Defense Max Sensor Range   15 
  Red Air Defense Max Pd    0.7 
 
General Inputs 
 Number of Simulations     30 
 Short Term METOC Acceptance Rate   1 
 Long Term METOC Acceptance Rate   1 
 Weather Display Update Interval    6 hours 
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Weather Threshold Values 
 Max Green LCD      3 

Max Green MCD      3 
Max Green HCD      3 
Max Green Wind Speed (m/s)    9 
Min Green Visibility Value (m)    18,300 
Max Green Precipitation Value (mm/hr)   8 
Max Yellow LCD      6 
Max Yellow MCD      6 
Max Yellow HCD      6 
Max Yellow Wind Speed (m/s)    11 
Min Yellow Visibility Value (m)    9,700 
Max Yellow Precipitation Value (mm/hr)   10 

 
Impact Thresholds 
 Mission Length Impact Threshold    1.25 
 Maximum Extra Transit Time (hours)    1 
 Sensor Environmental Degradation Threshold Factor  0.5 
 BDA Environmental Degradation Threshold Factor  0.5 
 
Strike Mission Weather Thresholds 
 Short Term (Execution) 
  Max Strike LCD Short Term    6 
  Max Strike MCD Short Term    6 
  Max Strike HCD Short Term    6 
  Max Strike Wind Speed Short Term (m/s)  11 
  Min Strike Visibility Short Term (m)   9,700 
  Max Strike Precipitation Short Term (mm/hr)  10 

Long Term (Planning) 
  Max Strike LCD Long Term    6 
  Max Strike MCD Long Term    6 
  Max Strike HCD Long Term    6 
  Max Strike Wind Speed Long Term (m/s)  11 
  Min Strike Visibility Long Term (m)   9,700 
  Max Strike Precipitation Long Term (mm/hr)  10 
 
Kill Box Interdiction (KI) Mission Weather Thresholds 
 Short Term (Execution) 
  Max KI LCD Short Term    6 
  Max KI MCD Short Term    6 
  Max KI HCD Short Term    6 
  Max KI Wind Speed Short Term (m/s)  11 
  Min KI Visibility Short Term (m)   9,700 
  Max KI Precipitation Short Term (mm/hr)  10 
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Long Term (Planning) 
  Max KI LCD Long Term    6 
  Max KI MCD Long Term    6 
  Max KI HCD Long Term    6 
  Max KI Wind Speed Long Term (m/s)  11 
  Min KI Visibility Long Term (m)   9,700 
  Max KI Precipitation Long Term (mm/hr)  10 
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APPENDIX C: LIST OF CHANGED SETTINGS FOR WIAT* 
STOCHASTIC SCENARIOS 

This appendix lists the settings in WIAT that are adjusted in order to set the 

scenario for WIAT*.  It also lists the scaled parameter values that are employed as the 

probabilistic mission thresholds in WIAT*. 

 

Weather Prediction Method      5 
 0 – Perfect Knowledge 
 1 – Gaussian Weather Prediction 
 2 – Time Shifted Weather Prediction 
 3 – Location Shifted Weather Prediction 
 4 – Percent Accuracy Weather Prediction 
 5 – Hand Entered Forecast Prediction 
 
Weather Prediction Parameters 
 Short Term Parameters 
  Sigma for Short Term Forecast   Not applicable 
   
 Long Term Parameters  

Sigma for Long Term Forecast   Not applicable 
   
Strike Mission Weather Thresholds 
 Short Term (Execution) 
  Max Strike LCD Short Term    As Shown in Chart 
  Max Strike MCD Short Term     “ 
  Max Strike HCD Short Term     “ 
  Max Strike Wind Speed Short Term (m/s)   “ 
  Min Strike Visibility Short Term (m)    “ 
  Max Strike Precipitation Short Term (mm/hr)  “ 

Long Term (Planning) 
  Max Strike LCD Long Term    As Shown in Chart 
  Max Strike MCD Long Term     “ 
  Max Strike HCD Long Term     “ 
  Max Strike Wind Speed Long Term (m/s)   “ 
  Min Strike Visibility Long Term (m)    “ 
  Max Strike Precipitation Long Term (mm/hr)  “ 
 
Kill Box Interdiction (KI) Mission Weather Thresholds 
 Short Term (Execution) 
  Max KI LCD Short Term    As Shown in Chart 
  Max KI MCD Short Term     “ 
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  Max KI HCD Short Term     “  
  Max KI Wind Speed Short Term (m/s)   “ 
  Min KI Visibility Short Term (m)    “ 
  Max KI Precipitation Short Term (mm/hr)   “ 

 
 
Long Term (Planning) 

  Max KI LCD Long Term    As Shown in Chart 
  Max KI MCD Long Term     “ 
  Max KI HCD Long Term     “ 
  Max KI Wind Speed Long Term (m/s)   “ 
  Min KI Visibility Long Term (m)    “ 
  Max KI Precipitation Long Term (mm/hr)   “ 
 

 
Probability Thresholds and Corresponding WIAT Mission Threshold Inputs 

 
Table 10.   Probability thresholds and their corresponding scaled values for input into 

WIAT* simulations.  Also Table 2. 
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APPENDIX D: DISTRIBUTION OF WEATHER VALUES 

This appendix shows figures representing distribution of actual values, as well as 

average execution and planning forecast values for the 30 ensemble members for each of 

the low and high uncertainty scenarios.  Additional figures are used to demonstrate the 

effects of binning by using a rounding function designed to counter WIAT’s truncation of 

forecast cloud cover values. 
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Figure 58.   Number of Actual Values and Average Number of Ensemble Forecast 

Values for LCD: Low Uncertainty Scenario.  Values represent the distribution 
prior to applying the fix for WIAT’s truncation of forecast values.  Also Figure 

15. 
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Number of Actual Values, Average Number of Ensemble Forecast Values for LCD: 
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Figure 59.   Number of Actual Values and Average Number of Ensemble Forecast 

Values for LCD: Low Uncertainty Scenario.  Values represent the distribution 
after applying the fix for WIAT’s truncation of forecast values. 

 

Number of Actual Values, Average Number of Ensemble Forecast Values for MCD:
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Figure 60.   Number of Actual Values and Average Number of Ensemble Forecast 

Values for MCD: Low Uncertainty Scenario.  Values represent the distribution 
prior to applying the fix for WIAT’s truncation of forecast values. 
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Number of Actual, Average Number of Ensemble Forecast Values for MCD: 
Low Uncertainty Scenario
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Figure 61.   Number of Actual Values and Average Number of Ensemble Forecast 

Values for MCD: Low Uncertainty Scenario.  Values represent the distribution 
after applying the fix for WIAT’s truncation of forecast values. 
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Number of Actual Values, Average Number of Ensemble Forecast Values for W
ind Speed:

Low Uncertainty Scenario
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Figure 62.   Number of Actual Values and Average Number of Ensemble Forecast 

Values for Wind Speed: Low Uncertainty Scenario.  Also Figure 17. 
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Figure 63.   Number of Actual Values and Average Number of Ensemble Forecast 

Values for Visibility: Low Uncertainty Scenario.  
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Number of Actual Values, Average Number of Ensemble Forecast Values for LCD:
High Uncertainty Scenario
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Figure 64.   Number of Actual Values and Average Number of Ensemble Forecast 

Values for LCD: High Uncertainty Scenario.  Values represent the distribution 
prior to applying the fix for WIAT’s truncation of forecast values.  Also Figure 

16. 
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Figure 65.   Number of Actual Values and Average Number of Ensemble Forecast 

Values for LCD: High Uncertainty Scenario.  Values represent the distribution 
after applying the fix for WIAT’s truncation of forecast values. 
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Number of Actual Values, Average Number of Ensemble Forecast Values for MCD: 
High Uncertainty Scenario
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Figure 66.   Number of Actual Values and Average Number of Ensemble Forecast 

Values for MCD: High Uncertainty Scenario.  Values represent the distribution 
prior to applying the fix for WIAT’s truncation of forecast values. 
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Figure 67.   Number of Actual Values and Average Number of Ensemble Forecast 

Values for MCD: High Uncertainty Scenario.  Values represent the distribution 
after applying the fix for WIAT’s truncation of forecast values. 
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Figure 68.   Number of Actual Values and Average Number of Ensemble Forecast 

Values for Wind Speed: High Uncertainty Scenario.  Also Figure 18.  
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Figure 69.   Number of Actual Values and Average Number of Ensemble Forecast 

Values for Visibility: High Uncertainty Scenario. 
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APPENDIX E: RELIABILITY DIAGRAMS 

This appendix shows reliability diagrams for low- and mid-level cloud cover, 

wind speed, and visibility for each of the low and high uncertainty scenarios. 
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LCD Execution Forecast ‐ Probability of Exceeding Threshold: Low
 Uncertainty Scenario

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 .00%

3.33%

6.67%

10.00%

13.33%

16.67%

20.00%

23.33%

26.67%

30.00%

33.33%

36.67%

40.00%

43.33%

46.67%

50.00%

53.33%

56.67%

60.00%

63.33%

66.67%

70.00%

73.33%

76.67%

80.00%

83.33%

86.67%

90.00%

93.33%

96.67%

100.00%

Percentage of Ensem
ble M

em
bers Exceeding Threshold

Relative 
Frequency of
 Occurrence

14216179
96

66
58

50
38

39
31

38
30

32
34

26
24

14
31

28
27

36
29

42
32

28
29

46
51

63
78

135
3414

 
Figure 70.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 

for LCD Execution Forecast, Low Uncertainty Scenario.  Also Figure 21. 
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Figure 71.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 

for LCD Planning Forecast, Low Uncertainty Scenario. 
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M
CD Execution Forecast ‐ Probability of Exceeding Threshold: Low Uncertainty Scenario
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Figure 72.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 
for MCD Execution Forecast, Low Uncertainty Scenario. 
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Figure 73.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 

for MCD Planning Forecast, Low Uncertainty Scenario. 
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W
ind Speed Execution Forecast ‐ Probability of Exceeding Threshold: Low

 Uncertainty Scenario
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Figure 74.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 

for Wind Speed Execution Forecast, Low Uncertainty Scenario.  Also Figure 
22. 
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Figure 75.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 

for Wind Speed Planning Forecast, Low Uncertainty Scenario. 
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Visibility Execution Forecast ‐ Probability of Exceeding Threshold: Low
 Uncertainty Scenario
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Figure 76.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 

for Visibility Execution Forecast, Low Uncertainty Scenario. 
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Figure 77.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 

for Visibility Planning Forecast, Low Uncertainty Scenario. 
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LCD Execution Forecast ‐ Probability of Exceeding Threshold: High Uncertainty Scenario
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Figure 78.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 

for LCD Execution Forecast, High Uncertainty Scenario. 
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Figure 79.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 

for LCD Planning Forecast, High Uncertainty Scenario. 
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M
CD Execution Forecast ‐ Probability of Exceeding Threshold: High Uncertainty Scenario
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Figure 80.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 

for MCD Execution Forecast, High Uncertainty Scenario. 
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Figure 81.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 

for MCD Planning Forecast, High Uncertainty Scenario. 
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Figure 82.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 

for Wind Speed Execution Forecast, High Uncertainty Scenario. 
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Figure 83.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 

for Wind Speed Planning Forecast, High Uncertainty Scenario. 
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Visibility Execution Forecast ‐ Probability of Exceeding Threshold: High Uncertainty Scenario
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Figure 84.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 

for Visibility Execution Forecast, High Uncertainty Scenario. 
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Figure 85.   Probability of Exceeding Threshold vs. Relative Frequency of Occurrence 

for Visibility Planning Forecast, High Uncertainty Scenario. 
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APPENDIX F: OPERATIONAL IMPACT METRICS FOR WIAT* 

This appendix shows average operational impact metrics for each probability 

threshold in the low and high uncertainty scenarios. 
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Table 11.   Operational Impact Metrics for Uncalibrated Low and High Uncertainty 

Scenarios. 
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Table 12.   Operational Impact Metrics for Calibrated Low and High Uncertainty 

Scenarios. 
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