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ABSTRACT 

Controlling the ratio of exploration and exploitation in agent learning in dynamic 

environments is a continuing challenge in applying agent-learning techniques. 

Methods to control this ratio in a manner that mimics human behavior are 

required for use in the representation of human behavior in simulations, where 

the goal is to constrain agent-learning mechanisms in a manner similar to that 

observed in human cognition. 

The Cultural Geography (CG) model, under development in TRAC 

Monterey, is an agent-based social simulation. It simulates a wide variety of 

situations and scenarios so that a dynamic ratio between exploration and 

exploitation makes the decisions more sensible. As part of an attempt to improve 

the model, this thesis investigates enhancements to the exploration-exploitation 

balance by using different techniques. The work includes design of experiments 

with a range of factors in multiple environments and statistical analysis related to 

these experiments. As a main finding from this research, for small environments 

and for short runs techniques based on subjective utility give better results, while 

for long runs techniques based on time obtain higher utilities than other 

techniques. In more complex and bigger environments, a combined technique 

performed better in long runs. 
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I. INTRODUCTION  

Balancing the ratio of exploration and exploitation is an important problem 

in reinforcement learning. The agent must develop a strategy for successfully 

interacting with its environment. The agent can choose to explore its environment 

and try new actions in search of better ones to be adopted in the future, or exploit 

already tested actions and further reinforce successful ones. A strategy of pure 

exploration or pure exploitation will not typically yield best results (Sutton & Barto, 

1998). 

In agent learning, agents must find a balance between exploration and 

exploitation to obtain the best value. This ratio can be related to the estimated life 

span of the agent. To increase performance in the short term, an agent’s action 

selection can become greedier, while to increase performance in the long term its 

action selection policy can become more exploratory. The development of 

techniques to adjust dynamically the ratio between exploration and exploitation 

has the potential to expand the application of reinforcement learning as an action 

selection mechanism. 

A. GOALS OF STUDY 

In this thesis, three new approaches are examined to investigate the 

exploration and exploitation problem in reinforcement learning from different 

perspectives. In each approach, the aim is to make an agent’s action selection 

dynamic to produce more sensible results. Focusing on the correlation between 

the simulation’s scenario lengths, sizes of environments, and expected utility of 

agent produces a relationship that helps the user design the simulation based on 

his needs. Experiments are conducted to answer the research questions 

identified below. 
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B. RESEARCH QUESTIONS 

The two questions this research will address are: 

• What techniques can be used to control the level of exploration and 
exploitation within cognitive agents? 

• How do changes in individual agent behaviors affect the macro-
level results of a test-bed simulation scenario within the Cultural 
Geography (CG) model? 

C. BENEFITS OF STUDY 

This research demonstrates the application of three novel approaches to 

controlling the level of exploration and exploitation in reinforcement learning. 

These approaches support TRAC Monterey in the development of an appropriate 

methodology in the CG model for developing more realistic behaviors. 

In the CG model, agents select their actions from a small set of predefined 

action choices. At this point, the level of exploration and exploitation is defined 

manually to make the agent greedy or explorative (Alt et al., 2009). Although this 

implementation is working, because the ratio is static it is not known if the given 

ratio best fits the model. In the CG model, there are different situations and 

scenarios so that a dynamic ratio makes the decisions more realistic. 

“Understanding the behavioral response of the civilian population in irregular 

warfare operations presents a major challenge area to the joint modeling and 

simulation community where there is a clear need for the development of models, 

methods, and tools to address civilian behavior response" (Alt et al., 2009). As 

part of an attempt to improve the model, this research seeks to enhance the 

exploration and exploitation balance by using different techniques. The research 

examines and compares techniques to address the research questions stated 

above and to define the effects of different techniques in the CG model. Finally, 

the work examines ways to make the ratio dynamic in different conditions in 

simulation and analyzes identified techniques. 
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The scope of this study is not limited to the CG model. The focus of this 

thesis is to treat one of the main reinforcement learning problems by using 

different techniques and to generalize it into other situations. Techniques were 

evaluated in three different environments: the two armed bandit example, the grid 

world example and the Cultural Geography model. Future work will apply these 

algorithms to more complex environments, with the intended application 

representing human behavior within modeling and simulation. 
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II. BACKGROUND 

A. CULTURAL GEOGRAPHY MODEL 

In this era, operations in stability, security, transition, and reconstruction 

(SSTR) require a cultural understanding of the population in which they are 

conducted. Knowing military capabilities of an enemy is not enough anymore. 

Eliminating the enemy in irregular warfare is based on understanding the civilian 

population and cultural terrain. In the modeling and simulation community, 

cognitive social simulations identify this complex problem as human behavior 

modeling.    

Cognitive social simulation provides a framework for complex dynamic 

social systems. Cognitive social simulations combine the use of cognitive 

architectures with agent-based simulation methods. They are distinguished by 

the level of sophistication of the agent’s cognitive processes and the existence of 

a formal structure for the agent’s cognitive processes that is based on what is 

known regarding human information processing. The use of agent-based models 

and cognitive social simulations in the examination of issues related to Irregular 

Warfare, such as resource allocation, infrastructure improvement, and the impact 

of information operations, have not been extensively explored (Alt et al., 2009). 

One example of cognitive social simulation is the Cultural Geography 

model, under development by the U.S. Army Training and Doctrine Command 

(TRADOC) Analysis Center, Monterey (TRAC-Monterey). The Cultural 

Geography (CG) model is a government-owned, open-source agent-based 

model designed to address the behavioral response of civilian populations in 

conflict environments. The CG model is a multi-agent simulation (MAS) designed 

to represent social behaviors of a population. Agents within the CG model select 

their action according to a constant number, which defines the ratio between 

exploration and exploitation. To enhance the functionality of agent action  
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selection and to obtain more realistic results with better utilities, this constant is 

changed to a dynamic parameter that depends on time and utility employing 

different techniques. 

B. REINFORCEMENT LEARNING 

Reinforcement learning provides a mechanism to facilitate agent action 

selection across multiple domains. The basic elements of reinforcement learning 

are a policy, a reward function, a value function, and an optional model of the 

environment. These elements allow the agent to map situations to actions based 

on feedback from the environment. Model-free methods, such as Q-learning, 

provide robust methods across environments. In this research, time based, utility 

based, and a combination of both reinforcement learning methods are used 

(Russell & Norvig, 2003).  

The method used relies on the calculation of a point utility value for each 

percept received. Because a single action will generally affect more than one 

point utility value, it is important to aggregate utility in order to capture the effects 

of an action on point utility values received over time. The traditional aggregation 

method is to form the exponential moving average of the point utility values. Let 

pi be the percept sequence and ti be the sequence of times at which the percepts 

arrive. Let si be the corresponding sequence of states. Then the corresponding 

sequence of point utility values is ui=u(si,pi). Given the choice of exponential base 

λ, where 0<λ<1, the exponential moving average of the sequence starting at time 

t is 

( ) ( )it t
i i

i
q t u t tλ −= Θ −∑                                 

(0.1)
 

where Θ  is the unit step function, which is zero when its argument is negative 

and one otherwise to prevent the calculation of negative utility.  

Expected future aggregate utility of that action in a particular situation 

must be an important factor in any decision to select it. The average of the 
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aggregate utility received when the action was selected in the past is used to 

estimate the expected future aggregate utility of an action. Let ka  be the action 

selected in situation kσ  at time kt . Then the aggregate utility actually received 

after this action is given by kq(t ) . Let t(σ,a)  be the set of all times at which 

action a was taken in situation σ . Then the estimator of the expected future 

aggregate utility of action a  in situation σ  will be, 

σ
σ∈

= ∑


( )

( )
( , )

| ( , ) |t t a

q t
Q a

t a                                             
(0.2)

 

where | t(σ,a) |  is the number of elements in the set t(σ,a) . Q  is an estimator of 

the Q  function typically defined in reinforcement learning in the special case that 

the set of situations is identical to the set of individual states (Papadopoulos, 

2010). 

C. TECHNIQUES FOR DETERMINING EXPLORATION AND 
EXPLOITATION RATIO 

In this study, three methods for controlling the balance between 

exploration and exploitation are examined. The proposed techniques are 

demonstrated in conjunction with the Boltzmann distribution, but could easily 

apply to other Softmax techniques, such as the epsilon greedy method (Sutton & 

Barto, 1998). The Boltzmann technique assigns probabilities to all actions 

corresponding to their expected values, based on the value of the temperature 

parameter, Ʈ. A high Ʈ leads to exploratory behavior, while a low Ʈ leads to 

greedy (exploitative) behavior. If the probability is higher, it means its expected 

value is higher, and it is most likely to be taken. The probability is measured by 

following formula: 
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i

j

U

i U

j

eP
e

τ

τ

=

∑
                                          

(0.3)
 

The exploration-exploitation problem in using this function becomes one of 

dynamically setting the temperature parameter in a manner that allows the agent 

to learn something about the environment, while eventually taking advantage of 

this information.  

1. Time Based Search then Converge 

Inspired by the search-then-converge class of algorithms, this method 

requires that the modeler have knowledge regarding the environment in order to 

specify the half-life of the temperature parameter. The general form of the 

algorithm is shown below: 

 
1

Initial
new

Exploit

t
t

ττ =
+

, (0.4) 

where t is the current simulation time and tExploit is the specified transition point 

from exploration to exploitation, equivalent to the half-life of the initial 

temperature. Figure 1 illustrates the shape of the decay function, with initial 

temperature of 1.0 and tExploit values of 30 and 60. 
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Figure 1.   Decay function of temperature versus tExploit 

The shape of the curve is controlled by the single parameter, but this still locks in 

the agent’s behavior once the agent passes into the region that begins 

exploitation. A second approach based on aggregate utility is discussed below. 

2. Aggregate Utility Driven Exploration 

The second method also requires the user to know something about the 

environment in which the agent will operate. In this case rather than an arbitrary 

transition time from exploratory to greedy behavior, the user is required to know 

something about the reward structure of the environment. Keeping the same 

general form as the time based algorithm, this approach requires a user-specified 

acceptable utility. The general form of the algorithm is shown below: 

 ( )
1

Initial
new

aggregate

acceptable

u t
u

τ
τ =

+
 (0.5) 

where the user divides the aggregate utility at simulation time t by the specified 

acceptable level of utility (Alt, J., personal communication, August 25, 2011). In 

dynamic environments where the aggregate utility varies over time, this algorithm 
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results in greedy behavior when an acceptable level of behavior is reached, but 

provides the agent the opportunity to shift back into exploratory mode should the 

aggregate utility drop below the threshold, due to discounting or other effects 

from the environment. Sample behavior is shown at Figure 2 for notional 

aggregate utilities, with initial temperature of 1.0 and acceptable utility set at 3.0. 

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

temperature

utility

 

Figure 2.   Sample agent behavior with utility and temperature over time 

3. Combination of Time and Utility Based Technique with 
Happiness Function 

Both techniques described above adjust the temperature based on 

different parameters. While the Time Based Search then Converge Technique 

focuses on the difference in the simulation time, the Aggregate Utility Technique 

prefers to focus on the utility of the agent. To obtain more sensible results, a new 

technique is needed. This technique is used for the first time in this thesis for 

environments mentioned in Chapter III. While calculating the temperature for new 

technique, a new function is added in order to adjust agent’s behavior based on 

previously taken rewards. In this situation, the new formula is defined by 
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combination of three different formulas. Each formula is given some weighted 

effect on the total. After defining optimum acceptableu  and tExploit, effective 

percentages can be examined.  

 1 2 3* * *new TimeBased UtilityBased HappinessBasedw w wτ τ τ τ= + +  (0.6) 

In the above formula 1
n

i
i

w =∑ . Happiness based temperature is calculated as: 

 ( )

1
HappinessBased ShortTermHappiness LongTermHappinesse
τ

−
=

 (0.7) 

In the HappinessBasedτ formula, Short-term Happiness equals the point 

utility of the agent. To calculate Long-Term Memory, previous utilities of the 

agent are normalized and then utilities are weighted based on a new lambda 

discount factor. The capacity of an agent’s memory is defined by a parameter 

called T. Based on this parameter, an agent will check “T” number of previous 

utilities and based on their occurring order they will be weighted. 
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III. METHODOLOGY 

This research examines three approaches for dynamically controlling the 

ratio between exploration and exploitation. All techniques are illustrated in 

conjunction with the use of a Boltzmann action selection policy (Sutton & Barto, 

1998). 

The first approach is based on time and the second one is based on 

aggregate utility. The last approach will be combination of both techniques and 

another function called the “happiness” function. Algorithm performance is 

explored in a 2 armed bandit example, a grid world example, and the CG model. 

Based on each method, we design experiments, varying certain 

parameters that affect temperature parameter in reinforcement learning. After 

experiments are done, each parameter and methods that affect reinforcement 

learning are analyzed, all three techniques are compared with each other, and 

findings with respect to the research questions stated above are presented. 

A. IMPLEMENTATION OF TECHNIQUES 

All the techniques are implemented with Python code. For different 

scenarios, they are tested and the results are shown in Chapter IV, Analysis. The 

Python code for each technique is given Appendix A. 

B. TEST BED ENVIRONMENTS 

1. Two-Armed Bandit 

Bandit problems have been used in agent learning to determine the 

balance between exploration and exploitation. Exploration of the search space is 

important to figure out the regions of the environment and exploitation is 

necessary to put the knowledge gained from exploration to use (Macready & 

Wolpert, 1998). In 2 armed bandit experiment, two arms have different jackpot 
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probabilities. In this case, they are 0.1 and 0.9. However, the agent does not 

know which the good (0.9) arm is. An agent receives a utility of 1.0 at every 

jackpot. The aim of this experiment is to figure out the relationship between the 

best-expected utilities of agent and different scenario lengths for each technique.   

2. Grid World 

In the grid world environment, agents are allowed to explore an NxN grid 

in which the agent can occupy any one of the intersections. In every round, the 

agent can move up, down, left or right. At some of the intersections are rewards 

of unknown and varying values. The agents must find a way to maximize their 

rewards by devising a strategy of exploring for better rewards and exploiting the 

best solution currently known.  

3. Cultural Geography Model 

The CG model is a multi-agent simulation representing social behaviors of 

a population (Alt et al., 2009). Agents within the CG model select their actions 

according to a constant number, which is explained in Chapter II. To enhance the 

functionality of agents in selecting their actions and to obtain more sensible 

results with better utilities, this constant is changed to a dynamic parameter that 

depends on time and utility, applying different techniques. 

C. GENERAL CONSTRAINTS OF EACH TECHNIQUE 

1. Time Based Search then Converge Technique  

This technique decreases temperature over simulation time. Its rate of 

decrease is defined by tExploit. If tExploit is small, the temperature immediately 

converges and decrement steps of temperature are large. When tExploit is high, 

decrement steps of temperature are small and temperature changes slowly. 

Because of that, finding a threshold tExploit for each scenario length becomes the 

main problem for this technique. Selecting  tExploit  that is too low makes agent 

explorative so that the agent cannot obtain good results based on prior 
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successes. On the other hand, selecting  tExploit that is too high does not give 

enough time for the agent to obtain the benefits from exploration. 

2. Aggregate Utility Driven Exploration  

This technique decreases the temperature based on the current utility of 

the agent. In this case rather than an arbitrary transition time from exploratory to 

greedy behavior, the user is required to know something about the reward 

structure of the environment.  Agent stays in the same temperature until it finds 

reward. Therefore, the agent initially does not change its temperature and goes 

on explorative behavior until it finds reward. There are two constrains for these 

technique: for short scenario lengths, the agent does not have enough time to 

change its behavior to exploit obtained knowledge from the environment, for long 

scenario lengths waiting for reward to change behavior more exploitive is costing 

more simulation time. 

3. Combination of Time and Utility Based Technique with 
Happiness Function 

This technique is formulated to eliminate the weakness of first two 

techniques and adjust the behavior of the agent with a function based on the 

exponential of the difference between short-term and long-term memory of the 

agent. At the beginning of the simulation, the agent becomes explorative and the 

agent adjusts its behavior in three ways, through simulation time, reward, and the 

effect of the reward on agent happiness, which is described in Chapter II formula 

0.7. 

D. EXPERIMENTS 

1. Time Based Search then Converge 

Parameter of interest to the modeler is the tExploit parameter, functionally 

equivalent to the half-life of the initial temperature. In order to better understand 

the relationship between tExploit and scenario length an experiment to 

systematically vary these two parameters was constructed and executed for the 
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grid world environment with 1000 repetitions per parameter set (design point) 

and for the 2 armed bandit with 10000 repetitions per parameter set (design 

point). Twenty-six replications of three different scenario lengths are used to 

explore algorithm performance in CG model. For this technique, exploit start time 

is examined at every 10 steps starting from 1 to 750. 

2. Aggregate Utility Driven Exploration 

For this technique, the parameter of interest to the modeler is uacceptable, 

the threshold that the agent’s aggregate utility must achieve prior to the agent’s 

behavior becoming greedy. An experiment similar to Time Based Technique 

described above was conducted with this algorithm in the grid world environment 

with 1000 repetitions and in the 2 armed bandit environment with 10000 

repetitions of the experiment design examining scenario length and uacceptable. For 

this technique, 26 replications of three different scenario lengths were used to 

explore algorithm performance in the CG model and the exploit utility value was 

changed at every 0.1 points starting from 0.1 to 4.0.  

3. Combination of Time and Utility Based Technique with 
Happiness Function 

For this technique, temperature is calculated based on three parameters 

for each action. The first parameter is the temperature obtained from the first 

technique for that specific action, and the second parameter is the temperature 

obtained from second technique. The third parameter is used to adjust 

temperature based on the “happiness” of the agent. This technique was tested 

with an experiment conducted in all three environments. For 2 armed bandit and 

grid world examples, 2, 10 and 50 environment sizes are used and 1000 

replication is done. For all techniques, uacceptable’s range is [0.1, 0.5, 1, 1.5, 2, and 

2.5]; tExploit’s range is [1, 100, 200, 300, and 400]. Long-term capacity (T) is 

limited to 50 and discount factor (lam2) is taken 0.5. For CG model, experiment is 

repeated for 30 replications for each three different scenario sizes [180,360,540] 

with 20 agents. 
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IV. ANALYSIS 

A. STATISTICAL ANALYSIS 

In order to evaluate the performance of algorithms in each environment, 

three performance measures are used. These measures are regret per trial (rpt), 

frequency of optimum pulls (FOP), and total utility. The difference between the 

best possible expected reward of chosen action and expected reward playing the 

optimal arm is defined as total expected regret and formulated as:  

 
*

1
( )

T

T
t

R T tµ µ
=

= −∑  (0.8) 

* max i kµ µ∈= is the expected return of the best action and µ  is the 

expected reward from playing the optimal arm. In the formula, T shows trials for 

that playing action. Regret per trials will show how far the algorithm’s 

performance will be from the optimal as the number of trials increase. For the 

grid world environment, the best aggregate reward will be achieved when the 

agent selects shortest path, - -g s g sl x x y y= +  between its initial position 

and goal position. Total regret will be calculated as: 
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The frequency of optimal moves have been evaluated with the decrement in the 

distance between agent’s current position and goal, 1tl l +> .This means it will 

count the moves that takes the agent closer the goal.  

1. Time Based Search then Converge 

Figure 3 shows the expected utility of the agent over tExploit for a variety of 

scenario lengths and various exploitation start times for the grid world example 

and Figure 6 shows for the 2 armed bandit example. tExploit varies by simulation 
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length, with a point of diminishing returns and degradation in performance 

associated with mismatches between scenario length and tExploit. Figure 4 and 

Figure 7 show the expected utility as a function of scenario length and  tExploit as a 

contour plot for the grid world and 2 armed bandit experiments, respectively. In 

the grid world example, a tExploit of ~100 time units suffices to provide good 

performance for most scenario lengths. Figure 8 shows results for CG Model with 

three different scenario lengths. 

 

Expected Utility vs. Exploit Start Time

E
xp

ec
te

d 
U

til
ity

0.5

1

1.5

2

-100 0 100 200 300 400 500 6

Exploit Start Time

Scenario Length

Range 500

Range 600

Range 700

Range 1000

Range1200

 

Figure 3.   Expected utility as a function of tExploit for 5 scenario lengths for the 
Grid World (GW) example. 
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Figure 4.   Contour plot of expected utility as a function of scenario length and 
tExploit for the GW example. 

Fitting a statistical model to the results indicates a significant linear 

relationship between scenario length and expected utility, as would be expected. 

A non-linear relationship is observed between tExploit and expected utility. Efforts 

to normalize the residuals were unsuccessful and time constraints resulted in 

fitting separate models for each scenario length. As an example, the model for 

expected utility with a scenario length of 500 for the grid world example is shown 

in Figure 5 fitted with a fourth order polynomial, resulting in an Rsquare of 0.97 

(Exploit Utility = 1.6646852 - 0.0043167*Exploit Time + 0.0000285*(Exploit Time-

250.01)^2 + 3.5401e-8*(Exploit Time-250.01)^3 - 4.015e-10*(Exploit Time-

250.01)^4). 
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Figure 5.   Bivariate fit of expected utility by tExploit for the GW example.  
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Figure 6.   Expected utility as a function of tExploit for 5 scenario lengths for the 2 
armed bandit example. 
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Figure 7.   Contour plot of expected utility as a function of scenario length and 
tExploit for the 2 armed bandit example. 

As an example, the model for expected utility with a scenario length of 540 

for CG model fitted with a fifth order polynomial, resulting in an Rsquare of 

0.9278 (Expected Utility = -0.717858 + (0.0002154)*Exploit Start Time + 

(1.1264e-6)*(Exploit Start Time-375.013)^2 – (6.8857e-9)*(Exploit Start Time-

375.013)^3 – (1.773e-11)*(Exploit Start Time-375.013)^4 +(7.068e-14)*(Exploit 

Start Time-375.013)^5) (Ozcan et al., 2010). 
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Expected Utility- Action_1 vs. Exploit Start Time
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Figure 8.    Expected utility as a function of  tExploit for 3 scenario lengths for the 
CG model. 

2. Aggregate Utility-Driven Exploration Results 

Figure 9 shows the expected utility as a function of uacceptable for each of 

the scenario lengths for the grid world example, Figure 11 shows for the 2 armed 

bandit example and Figure 13 shows with three scenario lengths for the CG 

model. Note that as scenario length goes up, the breakpoint for uacceptable goes up 

as well for the grid world example. 
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Expected Utility vs. Exploit Utility In Different Ranges
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Figure 9.   Expected utility as a function of uacceptable for 9 scenario lengths for 
GW example. 

Figure 10 and Figure 12 illustrate the expected utility as a function of the 

scenario length and uacceptable for both environments.  
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Figure 10.   Contour plot of expected utility as a function of scenario length and 
uacceptable for  GW example. 
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Similar non-linear results were observed in fitting a regression model to 

the grid world example results for this technique. The scenario length had very 

little impact on the algorithms performance in this case, Rsquare=0.26 in a 

bivariate fit, while uacceptable had a larger impact, Rsquare=0.70, but accounted for 

less of the variance in the response than the same term in the time based 

algorithm.  
Expected Utility vs. Exploit Utility

E
xp

ec
te

d 
U

til
ity

0

10

20

30

40

50

60

70

-0.5 0 0.5 1 1.5 2 2.5 3

Exploit Utility

Scenario Length

Range 100

Range 200

Range 300

Range 400

Range 500

Range 600

Range 700

Range 800

Range 900

Range 1000

 
Figure 11.   Expected utility as a function of uacceptable for 9 scenario lengths for 

the 2 armed bandit example. 
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Figure 12.   Contour plot of expected utility as a function of scenario length and 

uacceptable for the 2 armed bandit example. 
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Although uacceptable accounted for less of the variance in the response, with 

Rsquare = 0.85 fitted with a fifth order polynomial, than the same term in the time 

based algorithm, the agent obtained better utilities for each scenario lengths for 

CG model (Ozcan et al., 2010).  
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Figure 13.   Expected utility as a function of  uacceptable  for 3 scenario lengths for 
the CG model. 

3. Combination of Time and Utility Based Technique with 
Happiness Function 

To clarify the effects of different environment sizes on the expected utility, 

experiments are designed with 1000 replication in three different sizes of world 

(2, 10, and 50) for both grid world and armed bandit examples. 

Differences in the action selection sequence in both examples made 

agents behave differently. Changing the size of the world in GW example gives 

conspicuously different results than the armed bandit example in which agent 

has limited action selection sequence. Figure 14 and Figure 15 shows the utility 

change in time for both environments. It is clearly seen that both size of the world 

and action selection sequence have effects on expected utility of the agent. An 

agent prefers high tExploit and uacceptable in order to obtain high utility. For uacceptable 
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highest value (2.5) is giving highest utility and for tExploit agent is selecting high 

value depending on the scenario length (between 200 and 400). For the CG 

model, an agent follows a similar action selection sequence so that the agent is 

obtaining similar values in time (Figure 16). 

 

Figure 14.   Mean utility as a function of Combination Technique for three 
different sizes of environment in GW example. 

 

Figure 15.   Mean utility as a function of Combination Technique for three 
different arm numbers in Armed Bandit example. 
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Figure 16.   Mean utility as a function of Combination Technique for three 

different scenario lengths in the CG Model. 

B. COMPARISON OF ALL TECHNIQUES WITH VARYING SIZES OF 
ENVIRONMENT USING TOTAL REGRET, FREQUENCY OF OPTIMAL 
PULLS 

1. Frequency of Optimal Pulls 

In the grid world example for small environments, an agent can take 

benefit of feedback after finding rewards by adjusting its current utility. For this 

reason for small environments, Aggregate Utility Driven Exploration Technique 

gives better results. Figure 17 and Figure 18 shows the comparison of all 

techniques for 2x2 and 10x10 GW examples. On the other hand, when 

environment gets bigger agents have difficulty in finding a reward. In this case, 

for longer runs the Combination of Time and Utility Based Technique with 

Happiness Function gives better results. On the Figure 19, it is seen that after 

500 trials the FOP difference between Combination Technique and the others 

increases. 
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Figure 17.   Comparison of mean FOP in three different techniques  

for 2x2 GW example. 

 

 
Figure 18.   Comparison of mean FOP in three different techniques  

for 10x10 GW example. 
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Figure 19.   Comparison of mean FOP in three different techniques  

for 50x50 GW example. 

In the armed bandit example, although for small environments all 

techniques give similar results when the environment gets bigger, a conspicuous 

difference occurs. In the Time Based Search then Converge Technique, an agent 

becomes greedy gradually in time so that it explores more area than the other 

techniques. Because it is a stochastic environment and there is uncertainty while 

finding the best arm, an agent needs more trials and more exploration in 

environment. A more explored area gives more frequency of optimal pulls. 

Initially the Combination Technique and Aggregate Utility Technique give better 

results in a short time, but for long trials Time Based Search then Converge 

Technique give better results (Figure 20, Figure 21 and Figure 22). For 50 armed 

bandit examples, this difference is higher because in Time Based Search then 

Converge Technique, when size of the environment increases, the agent has 

difficulty to find optimal path. Exploratory behavior in this technique is initially a 

“con,” but becomes a “pro” in longer trials. 
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Figure 20.   Comparison of mean FOP in three different techniques for two armed 
bandit example. 

 

 

Figure 21.   Comparison of mean FOP in three different techniques for 10 armed 
bandit example. 
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Figure 22.   Comparison of mean FOP in three different techniques for 50 armed 
bandit example. 

2. Total Regret 

Both the Aggregate Utility Driven Exploration Technique and Combination 

of Time- and Utility Based Technique with Happiness Function become greedy 

based on the reward obtained by agent, so that as soon as the agent finds a 

reward, it becomes greedy and quits explorative behaviors for some time. 

Sometimes lack of enough exploration because of this greedy behavior 

concludes with the inability to find shorter paths. For the Time Based Search then 

Converge Technique greedy behavior takes some time. During this period, an 

agent is exploring more areas, finding shorter paths, and decreasing its regret. 

As a result, for both GW and Armed Bandit examples, the Time Based Search 

then Converge Technique results in less regret than the other two techniques. 

For all design points, standard error takes a maximum 0.0074 and minimum 

0.0014. As seen from the armed bandit example results (Figure 25 and Figure 

26), the Aggregate Utility Technique and Combination Technique reaches less 

regret than the Time Based Technique in a short time but when the simulation 

time gets longer, the Time Based Technique reaches less regret than the other 

techniques. For the grid world environment, although all techniques give similar 
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results for small grid sizes, the Time Based Technique gives better results for 

large environments. (Figure 23 and Figure 24) 

 

Figure 23.   Comparison of mean RPT in three different techniques for 2x2 GW 
example. 

 

 

Figure 24.   Comparison of mean RPT in three different techniques for 10x10 GW 
example. 
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Figure 25.   Comparison of mean RPT in three different techniques for 2 armed 
bandit example. 

 

 

Figure 26.   Comparison of mean RPT in three different techniques for 10 armed 
bandit example. 
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C. RESULTS 

After designing experiments on the different scenarios, we saw some 

factors affect reinforcement learning directly as described below with details. 

Based on these factors, we focused on how to obtain the best results from each 

technique.  

Factors that affect reinforcement learning: 

Size of environment; has a negative correlation with expected utility. 

When you increase the size of the environment, the agent has difficulty in finding 

the goal and as a result, it obtains less utility. On the other hand, for the grid 

world example, it has negative correlation with total regret. When you increase 

the size of the environment, an agent finds more paths to reach to the goal so 

that it gets less regret. For the armed bandit example, when you increase the 

arm number, it needs more time to define the best arm. It needs more trials to 

figure it out so that increases in size of the environment causes more regret. 

Scenario Length; has a positive correlation with expected utility. 

Increases in scenario length give the agent more time to learn the environment 

and obtain rewards. Scenario length also affects both exploit time and exploit 

utility, which defines how fast an agent will change its current behavior to an 

exploitive behavior. 

Exploit Time (tExploit) and Exploit Utility (uacceptable); have a negative 

correlation with expected utility and positive correlation with scenario length. 

In the armed bandit example, an agent needs explorer behavior to define 

the best arm. For long scenario length, an agent prefers high tExploit or uacceptable, 

which helps in decide more accurately to find the goal (Table 1). Increases in the 

number of the arms causes an agent to spend more time to find the best arm and 

because of that, total regret gets high. For each technique, selecting high tExploit 

or uacceptable gives less regret and high frequency of optimal pulls. 
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Table 1. Optimal parameters for each technique for Armed Bandit Example 

 

 

Figure 27.   Comparison of each technique based on Min. Total Regret for Armed 
Bandit Example. 

In Figure 27, the mean regret of 1000 pulls for the design points that give 

lowest regret for different arm numbers are shown for each technique. Table 2 

shows significant differences among distributions of these design points within 

and between techniques. Because of that, although the mean of regret values for 

Technique 
Name 

Arm 
Number 

Min Total 
Regret 

Stderr Regret 
Per Trials 

Exploit 
Utility 

Exploit 
Time 

timeBased 2 0,013537843 0,001477239 0 400 
timeBased 10 0,056390152 0,002016928 0 400 
timeBased 50 0,092192327 0,00166312 0 100 
utilityBased 2 0,022855089 0,002242073 2,5 0 
utilityBased 10 0,104292438 0,003685443 2,5 0 
utilityBased 50 0,110441027 0,002937607 2,5 0 
Combination 2 0,019592381 0,002059859 2,5 300 
Combination 10 0,09548164 0,003538952 2,5 400 
Combination 50 0,094612496 0,002490541 2,5 200 
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each technique does not look significantly different, the distributions of regret 

values for each technique are statistically significant. 

Table 2. Armed Bandit Significance Table between and within techniques. 

 

As seen in Table 2, distributions of regret values between and within 

techniques are statistically significant for the Armed Bandit example. Detailed 

statistical analysis for Table 2 is shown in Appendix B. 

In the GW example, the goal is always on a fixed location, which means it 

is a deterministic environment, so that as soon as agent finds the goal it prefers 

behaving greedily by preferring small tExploit and uacceptable.  As seen from Table 

2, an agent gets the optimal value based on regret by selecting small tExploit and 

uacceptable. Figure 28 show that increasing in size of the environment gives more 

opportunity for the agent to select a shorter path. Because of that, more area 

gives less regret.  

 

 

 

 

 

  Armed Bandit Significance Table 
Within 
Techniques 2 v 10 arms 2 v 50 arms 10 v 50 arms 
Time Based Prob > |t|=  <.0001 Prob > |t|=  <.0001 Prob > |t|=  <.0001 
Utility Based Prob > |t|=  <.0001 Prob > |t|=  <.0001 Prob > |t|=  <.0001 
Combination Prob > |t|=  <.0001 Prob > |t|=  <.0001 Prob > |t|=  <.0001 
Between 
Techniques 

Time Based v 
Utility Based 

Time Based v  
Combination 

Utility Based v 
Combination 

2 arms Prob > |t|=  <.0001 Prob > |t|=  <.0001 Prob > |t|=  <.0001 
10 arms Prob > |t|=  <.0001 Prob > |t|=  <.0001 Prob > |t|=  <.0001 
50 arms Prob > |t|=  <.0001 Prob > |t|=  <.0001 Prob > |t|=  <.0001 
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Table 3. Optimal parameters for each technique for GW Example 

 

 

Figure 28.   Comparison of each technique based on Min. Total Regret for GW 
Example.  

In Figure 28, the mean regret of 1000 trials for the design points that give 

lowest regret for different sizes of environments are shown for each technique. 

Table 4 shows significant difference between distributions of these design points 

within and between techniques. As also seen from the armed bandit example, for 

 

 

Technique 
Name 

Size of Grid 
(Square) 

Min Total 
Regret 

Stderr Regret 
Per Trials 

Exploit 
Utility 

Exploit 
Time 

timeBased 2 0,202891667 0,00543679 0 1 
timeBased 10 0,090860241 0,001775314 0 1 
timeBased 50 0,025073008 0,000629757 0 1 
utilityBased 2 0,205398667 0,005039127 0,1 0 
utilityBased 10 0,097729241 0,001642007 0,1 0 
utilityBased 50 0,025284008 0,000643045 0,1 0 
combination 2 0,215030667 0,004807874 0,1 1 
combination 10 0,099976241 0,001705538 0,1 1 
combination 50 0,025297008 0,000649327 0,1 200 
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this environment although the mean of regret values for each technique does not 

appear to be significantly different, the distributions of regret values for each 

technique are statistically significant. 

Table 4. GW Significance Table between and within techniques. 

  Grid World Significance Table 
Within 
Techniques 2x2 v 10x10  2x2 v 50x50  10x10 v 50x50 
Time Based Prob > |t|=  <.0001 Prob > |t|=  <.0001 Prob > |t|=  <.0001 
Utility Based Prob > |t|=  <.0001 Prob > |t|=  <.0001 Prob > |t|=  <.0001 
Combination Prob > |t|=  <.0001 Prob > |t|=  <.0001 Prob > |t|=  <.0001 
Between 
Techniques 

Time Based v 
Utility Based 

Time Based v 
Combination 

Utility Based v 
Combination 

2x2  Prob > |t|=  <.0001 Prob > |t|=  <.0001 Prob > |t|=  <.0001 
10x10  Prob > |t|=  <.0001 Prob > |t|=  <.0001 Prob > |t|=  <.0001 
50x50 Prob > |t|=  <.0001 Prob > |t|=  <.0001 Prob > |t|=  <.0001 

 

As seen from Table 4, all differences between and within techniques are 

statistically significant for the GW example. Detailed statistical analysis for Table 

4 is shown in Appendix C. 

Experiments were repeated for the CG model with 20 agents. The Time 

Based Technique fit the model with Rsquare=0.88 (Appendix D) and Figure 29 

shows that to obtain high expected utility, an agent should prefer high tExploit and 

long scenario lengths. 
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Figure 29.   Contour Plot for Time Based Technique in the CG Model 

Utility Based Technique fitted the model with Rsquare = 0.9483. Figure 30 

shows that high exploit utility (uacceptable) and long scenario lengths give better 

expected utilities. 

 

 

Figure 30.   Contour Plot for Utility Based Technique in the CG Model 
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Table 5. Results of Combination Technique for CG Model. 
Exploit 
Time 

Exploit 
Utility 

Scenario 
Length Expected Utility 

1 0.1 180 0.800363955 0.878911 0.910064 
100 0.5 180 0.800363955 0.878911 0.910064 
200 1 180 0.800363955 0.878911 0.910064 
300 1.5 180 0.800363955 0.878911 0.910064 
400 2 180 0.800363955 0.878911 0.910064 

1 2.5 180 0.800363955 0.878911 0.910064 
100 0.1 180 0.800363955 0.878911 0.910064 
200 0.5 180 0.800363955 0.878911 0.910064 
300 1 180 0.800363955 0.878911 0.910064 
400 1.5 180 0.800363955 0.878911 0.910064 

 

For Combination Technique, results were not satisfactory. While changing 

scenario length causes different expected utilities, changing tExploit and uacceptable 

does not cause any differences (Table 5). After some research has done about 

this problem, the cause might be determined to be the reward policy of the CG 

model. Some more research is needed to solve the problem. 

Results showed that for small environments while Combination and 

Aggregate Utility Techniques give better results for small trials, in long runs, the 

Time Based Search then Converge Technique gives better results. In more 

complicated and bigger environments, the Combination Technique performed 

better in long runs (Table 3). 
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V. CONCLUSION AND FUTURE WORK 

A. SUMMARY AND CONCLUSION 

In this thesis, three new approaches were examined to investigate the 

exploration and exploitation problem in reinforcement learning from different 

perspectives. In each approach, it was hoped that more realistic results would be 

achieved by making an agent’s action selection dynamic. By focusing on the 

correlation between the simulation’s scenario lengths, sizes of environments, and 

expected utility of agent, a relationship that helps the user design the simulation 

based on his needs may be formulated. Experiments were conducted to answer 

the research questions. 

Chapter I explained that the goal of this research was to find answers to 

the following questions and to recommend improvements obtainable by using 

new techniques: 

• What techniques can be used to control the level of exploration and 
exploitation within cognitive agents? 

• How do changes in individual agent behaviors affect the macro-
level results of a test-bed simulation scenario within the Cultural 
Geography (CG) model? 

In Chapter II, after explaining Reinforcement Learning and Boltzmann 

Action Selection, each technique was described in detail. Following Chapter II, 

experiments were designed and conducted in three different environments. Each 

environment has a different specialty from the others. The Armed Bandit example 

is the simplest non-stationary one. In this environment, an agent tries to learn 

with limited action selection sequence. The Grid World example is also non-

stationary example with more action selection sequence. To test the techniques 

in a stationary environment, the Cultural Geography Model is used. 

The aim of the first part of these experiments was to define which factors 

are important for agent learning experiment. After these experiments were 
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conducted, factors--the size of environment, scenario length, exploit time, and 

exploit utility-- were found to be significantly important for each technique. 

Results showed that size of the environment has a negative relationship with 

obtained utility. A bigger environment decreases utility because agents have 

difficulty in finding the goal and rewards.  

Exploit Time (tExploit), which defines how fast agent will be greedy, has a 

positive relationship with scenario length. For small scenario lengths, selecting 

small exploit time gives better results and for high scenario lengths, selecting 

high exploit time gives better results. It is similar with Exploit Utility (uacceptable). 

Increases in scenario length need more uacceptable in order to obtain more utility. 

By constructing a contour plot of MOE over for  tExploit, uacceptable and scenario 

length, we saw combinations for tExploit, uacceptable and a scenario length that 

contributes to the best and the worst expected utility. 

As a main finding from this research for small environments and for short 

runs while Combination and Aggregate Utility Techniques give better results, for 

long runs the Time Based Search then Converge Technique is obtaining higher 

utilities from other two techniques. In more complex and bigger environments, 

Combination Technique performed better in long runs.  

By figuring out all relationships that affect the dynamic temperature, for 

any simulation scenario we can select a suitable technique that gives best utility 

for that scenario and adjust an agent’s behavior by manipulating factors that 

affect that technique. This will speed up agent’s learning and adaptation to new 

environments. 

B. FUTURE WORK 

This research applied three novel approaches to controlling the level of 

exploration and exploitation in reinforcement learning. These early results are 

promising as simple approaches requiring minimal knowledge of the environment 

to ascertain their initial setting. Future work will apply these algorithms to more 
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complex environments, with the intended application of representing human 

behavior within modeling and simulation. 

Instead of using Softmax algorithm for action selection, another algorithm 

can be used for action selection, for example, ε-greedy algorithm. Comparison of 

these techniques can give better understanding in reinforcement learning. 

For the Combination Technique, we used constant weights for three 

factors that affect the Combination Technique’s temperature (0.6). By making 

these weights dynamic, an agent’s decision strategy completely changes. By 

focusing on these weights, better results and better learning strategy can be 

obtained. We used fixed memory capacity (T) and fixed discount factor (lam2) for 

the agent. The effect of memory capacity on learning and discount factor can be 

examined for future work. 

Although the algorithm for Combination Technique works for different 

environments, implementation of this technique in the CG model did not give 

satisfactory results. More research is needed on implementing this technique. 
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APPENDIX A: PYTHON CODE OF EACH TECHNIQUE 

def tempAgUtSched( utility,initialTemp, exploitUt): 

temp = initialTemp 

newTemp = temp/(1+(utility/exploitUt)) 

return  newTemp 

def tempSched( now, initialTemp, exploitTime): 

temp = initialTemp 

newTemp = temp/(1+(now/exploitTime)) 

return newTemp 

def tempCombo(utility,temperature,now,longHappinessL): 

temp = temperature 

T=50  # Long Term Memory Capacity 

LongHappiness = 0.0 

nwt=0.0# Normalized happiness 

shortHappiness = utility 

wtHappines = 0.0# Normalized weighted happiness 

i = 0 

lam2=0.5 

nwtL =[] 

longHappinessL.append(utility) 
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 longHappinessLCopy = longHappinessL[:] 

longHappinessLCopy.reverse() 

if len(longHappinessLCopy) <T : 

for u in xrange(len(longHappinessLCopy)): 

i += 1 

if max(longHappinessLCopy)== 0: 

nwt = 0.0 

nwtL.append(nwt) 

else : 

nwt=(1-((max(longHappinessLCopy)-

longHappinessLCopy[u])/(max(longHappinessLCopy)-

min(longHappinessLCopy))) 

nwtL.append(nwt) 

wtHappines= nwtL[u]*pow(lam2,i) 

LongHappiness+=wtHappines 

if u == T: 

break 

else: 

for u in xrange(T): 

i += 1 

if max(longHappinessLCopy)== 0: 

nwt = 0.0 

nwtL.append(nwt) 
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else : 

nwt=(1-((max(longHappinessLCopy)-

longHappinessLCopy[u])/(max(longHappinessLCopy)-

min(longHappinessLCopy))) 

nwtL.append(nwt) 

wtHappines= nwtL[u]*pow(lam2,i) 

LongHappiness+=wtHappines 

if u == T: 

break 

newTemp = math.exp(shortHappiness-LongHappiness) 

return newTemp 
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APPENDIX B: ANALYSIS OF ARMED BANDIT SIGNIFICANCE 
WITHIN AND BETWEEN TECHNIQUES 

Difference: Time Based Technique (10 Arm )-Time Based Technique (2 Arm ) 
          
Time Based Technique (10 Arm ) 0.09836  t-Ratio 49.05326 
Time Based Technique (2 Arm ) 0.02064  DF 999 
Mean Difference 0.07772  Prob > |t| <.0001* 
Std Error 0.00158  Prob > t <.0001* 
Upper 95% 0.08082  Prob < t 1.0000 
Lower 95% 0.07461    
N 1000    
Correlation 0.91624   

 
 

Difference: Time Based Technique (50 Arm )-Time Based Technique (2 Arm ) 
          
Time Based Technique ( 50 Arm ) 0.17651  t-Ratio 54.54308 
Time Based Technique (2 Arm ) 0.02064  DF 999 
Mean Difference 0.15587  Prob > |t| <.0001* 
Std Error 0.00286  Prob > t <.0001* 
Upper 95% 0.16147  Prob < t 1.0000 
Lower 95% 0.15026    
N 1000    
Correlation 0.77986    
 
Difference: Time Based Technique (50 Arm )-Time Based Technique (10 Arm ) 
          
Time Based Technique ( 50 Arm ) 0.17651  t-Ratio 54.76853 
Time Based Technique (10 Arm ) 0.09836  DF 999 
Mean Difference 0.07815  Prob > |t| <.0001* 
Std Error 0.00143  Prob > t <.0001* 
Upper 95% 0.08095  Prob < t 1.0000 
Lower 95% 0.07535    
N 1000    
Correlation 0.95466   

 
 

Difference: Utility Based Technique (10 Arm)-Utility Based Technique (2 Arm) 
          
Utility Based Technique (10 Arm) 0.11637  t-Ratio 130.4074 
Utility Based Technique (2 Arm) 0.02632  DF 999 
Mean Difference 0.09006  Prob > |t| <.0001* 
Std Error 0.00069  Prob > t <.0001* 
Upper 95% 0.09141  Prob < t 1.0000 
Lower 95% 0.0887    
N 1000    
Correlation 0.97627   

 
 

Difference: Utility Based Technique (50 Arm)-Utility Based Technique (2 Arm) 
          
Utility Based Technique (50 Arm) 0.13373  t-Ratio 79.87449 
Utility Based Technique (2 Arm) 0.02632  DF 999 
Mean Difference 0.10741  Prob > |t| <.0001* 
Std Error 0.00134  Prob > t <.0001* 
Upper 95% 0.11005  Prob < t 1.0000 
Lower 95% 0.10477    
N 1000    
Correlation 0.91171    
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Difference: Utility Based Technique (50 Arm)-Utility Based Technique (10 Arm) 
          
Utility Based Technique (50 Arm) 0.13373  t-Ratio 25.1512 
Utility Based Technique (10 Arm) 0.11637  DF 999 
Mean Difference 0.01735  Prob > |t| <.0001* 
Std Error 0.00069  Prob > t <.0001* 
Upper 95% 0.01871  Prob < t 1.0000 
Lower 95% 0.016    
N 1000    
Correlation 0.97602   

 
 

Difference: Combination Technique (10 Arm)-Combination Technique (2 Arm) 
          
Combination Technique (10 Arm) 0.11007  t-Ratio 109.2454 
Combination Technique (2 Arm) 0.02351  DF 999 
Mean Difference 0.08656  Prob > |t| <.0001* 
Std Error 0.00079  Prob > t <.0001* 
Upper 95% 0.08812  Prob < t 1.0000 
Lower 95% 0.08501    
N 1000    
Correlation 0.97047   

 
 

Difference: Combination Technique (50 Arm)-Combination Technique (2 Arm) 
          
Combination Technique (50 Arm) 0.12808  t-Ratio 61.10998 
Combination Technique (2 Arm) 0.02351  DF 999 
Mean Difference 0.10457  Prob > |t| <.0001* 
Std Error 0.00171  Prob > t <.0001* 
Upper 95% 0.10793  Prob < t 1.0000 
Lower 95% 0.10121    
N 1000    
Correlation 0.87494    
 
Difference: Combination Technique (50 Arm)-Combination Technique (10 Arm) 
         
Combination Technique (50 Arm) 0.12808  t-Ratio 18.34808 
Combination Technique (10 Arm) 0.11007  DF 999 
Mean Difference 0.01801  Prob > |t| <.0001* 
Std Error 0.00098  Prob > t <.0001* 
Upper 95% 0.01994  Prob < t 1.0000 
Lower 95% 0.01608    
N 1000    
Correlation 0.95895    
 
Difference: Utility Based Technique (2 Arm)-Time Based Technique (2 Arm) 
          
Utility Based Technique (2 Arm) 0.02632  t-Ratio 31.0962 
Time Based Technique (2 Arm ) 0.02064  DF 999 
Mean Difference 0.00568  Prob > |t| <.0001* 
Std Error 0.00018  Prob > t <.0001* 
Upper 95% 0.00604  Prob < t 1.0000 
Lower 95% 0.00532    
N 1000    
Correlation 0.96498   
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Difference: Combination Technique (2 Arm)-Time Based Technique (2 Arm) 
          
Combination Technique (2 Arm) 0.02351  t-Ratio 18.29886 
Time Based Technique (2 Arm ) 0.02064  DF 999 
Mean Difference 0.00287  Prob > |t| <.0001* 
Std Error 0.00016  Prob > t <.0001* 
Upper 95% 0.00317  Prob < t 1.0000 
Lower 95% 0.00256    
N 1000    
Correlation 0.97502   

 
 

 
Difference: Combination Technique (2 Arm)-Utility Based Technique (2 arm) 

 
 
 
 
 
 
 

Difference: Utility Based Technique (10 Arm)-Time Based Technique (10 Arm) 
          
Utility Based Technique (10 Arm) 0.11637  t-Ratio 14.63503 
Time Based Technique (10 Arm ) 0.09836  DF 999 
Mean Difference 0.01802  Prob > |t| <.0001* 
Std Error 0.00123  Prob > t <.0001* 
Upper 95% 0.02043  Prob < t 1.0000 
Lower 95% 0.0156    
N 1000    
Correlation 0.87508    
 
Difference: Combination Technique (10 Arm)-Time Based Technique (10 Arm) 
          
Combination Technique (10 Arm) 0.11007  t-Ratio 10.6337 
Time Based Technique (10 Arm ) 0.09836  DF 999 
Mean Difference 0.01171  Prob > |t| <.0001* 
Std Error 0.0011  Prob > t <.0001* 
Upper 95% 0.01387  Prob < t 1.0000 
Lower 95% 0.00955    
N 1000    
Correlation 0.90478    
 
Difference: Combination Technique (10 Arm)-Utility Based Technique (10 Arm) 
          
Combination Technique (10 Arm) 0.11007  t-Ratio -43.3295 
Utility Based Technique (10 Arm) 0.11637  DF 999 
Mean Difference -0.0063  Prob > |t| <.0001* 
Std Error 0.00015  Prob > t 1.0000 
Upper 95% -0.006  Prob < t <.0001* 
Lower 95% -0.0066    
N 1000    
Correlation 0.99712    

 

          
Combination Technique (2 Arm) 0.02351  t-Ratio -105.683 
Utility Based Technique (2 arm) 0.02632  DF 999 
Mean Difference -0.0028  Prob > |t| <.0001* 
Std Error 2.66e-5  Prob > t 1.0000 
Upper 95% -0.0028  Prob < t <.0001* 
Lower 95% -0.0029    
N 1000    
Correlation 0.9991    
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Difference: Utility Based Technique (50 Arm)-Time Based Technique (50 Arm) 
          
Utility Based Technique (50 Arm) 0.13373  t-Ratio -20.1586 
Time Based Technique ( 50 Arm ) 0.17651  DF 999 
Mean Difference -0.0428  Prob > |t| <.0001* 
Std Error 0.00212  Prob > t 1.0000 
Upper 95% -0.0386  Prob < t <.0001* 
Lower 95% -0.0469    
N 1000    
Correlation 0.80951   

 
 

Difference: Combination Technique (50 Arm)-Time Based Technique (50 Arm) 
          
Combination Technique (50 Arm) 0.12808  t-Ratio -27.9878 
Time Based Technique ( 50 Arm ) 0.17651  DF 999 
Mean Difference -0.0484  Prob > |t| <.0001* 
Std Error 0.00173  Prob > t 1.0000 
Upper 95% -0.045  Prob < t <.0001* 
Lower 95% -0.0518    
N 1000    
Correlation 0.88122    
 
Difference: Combination Technique (50 Arm)-Utility Based Technique (50 Arm) 
          
Combination Technique (50 Arm) 0.12808  t-Ratio -11.9582 
Utility Based Technique (50 Arm) 0.13373  DF 999 
Mean Difference -0.0056  Prob > |t| <.0001* 
Std Error 0.00047  Prob > t 1.0000 
Upper 95% -0.0047  Prob < t <.0001* 
Lower 95% -0.0066    
N 1000    
Correlation 
 
 

0.98725 
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APPENDIX C: ANALYSIS OF GRID WORLD SIGNIFICANCE 
WITHIN AND BETWEEN TECHNIQUES 

Difference: Time Based Technique (10x10)-Time Based Technique (2x2) 
          
Time Based Technique (10x10) 0.09367  t-Ratio -352.082 
Time Based Technique (2x2) 0.20733  DF 999 
Mean Difference -0.1137  Prob > |t| <.0001* 
Std Error 0.00032  Prob > t 1.0000 
Upper 95% -0.113  Prob < t <.0001* 
Lower 95% -0.1143    
N 1000    
Correlation 0.81967   

 
 

Difference: Time Based Technique (50x50)-Time Based Technique (2x2) 
          
Time Based Technique (50x50) 0.02517  t-Ratio -458.065 
Time Based Technique (2x2 ) 0.20733  DF 999 
Mean Difference -0.1822  Prob > |t| <.0001* 
Std Error 0.0004  Prob > t 1.0000 
Upper 95% -0.1814  Prob < t <.0001* 
Lower 95% -0.1829    
N 1000    
Correlation 0.64556    
 
Difference: Time Based Technique (50x50)-Time Based Technique (10x10) 
          
Time Based Technique (50x50) 0.02517  t-Ratio -705.459 
Time Based Technique (10x10) 0.09367  DF 999 
Mean Difference -0.0685  Prob > |t| <.0001* 
Std Error 0.0001  Prob > t 1.0000 
Upper 95% -0.0683  Prob < t <.0001* 
Lower 95% -0.0687    
N 1000    
Correlation 0.94057    
Difference: Utiltiy Based Technique (10x10)-Utiltiy Based Technique (2x2) 
          
Utiltiy Based Technique (10x10) 0.09883  t-Ratio -309.302 
Utiltiy Based Technique (2x2) 0.20638  DF 999 
Mean Difference -0.1075  Prob > |t| <.0001* 
Std Error 0.00035  Prob > t 1.0000 
Upper 95% -0.1069  Prob < t <.0001* 
Lower 95% -0.1082    
N 1000    
Correlation 0.85888   

 
 

Difference: Utiltiy Based Technique (50x50)-Utiltiy Based Technique (2x2) 
          
Utiltiy Based Technique (50x50) 0.02528  t-Ratio -472.196 
Utiltiy Based Technique (2x2) 0.20638  DF 999 
Mean Difference -0.1811  Prob > |t| <.0001* 
Std Error 0.00038  Prob > t 1.0000 
Upper 95% -0.1803  Prob < t <.0001* 
Lower 95% -0.1818    
N 1000    
Correlation 0.81702    
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Difference: Utiltiy Based Technique (50x50)-Utiltiy Based Technique (10x10) 
          
Utiltiy Based Technique (50x50) 0.02528  t-Ratio -1722.53 
Utiltiy Based Technique (10x10) 0.09883  DF 999 
Mean Difference -0.0735  Prob > |t| <.0001* 
Std Error 4.27e-5  Prob > t 1.0000 
Upper 95% -0.0735  Prob < t <.0001* 
Lower 95% -0.0736    
N 1000    
Correlation 0.76009   

 
 

Difference: Combination Technique (10x10)-Combination Technique (2x2) 
          
Combination Technique (10x10) 0.10076  t-Ratio -334.85 
Combination Technique (2x2) 0.21475  DF 999 
Mean Difference -0.114  Prob > |t| <.0001* 
Std Error 0.00034  Prob > t 1.0000 
Upper 95% -0.1133  Prob < t <.0001* 
Lower 95% -0.1147    
N 1000    
Correlation 0.8887    
 
Difference: Combination Technique (50x50)-Combination Technique (2x2) 
          
Combination Technique (50x50) 0.02532  t-Ratio -513.649 
Combination Technique (2x2) 0.21475  DF 999 
Mean Difference -0.1894  Prob > |t| <.0001* 
Std Error 0.00037  Prob > t 1.0000 
Upper 95% -0.1887  Prob < t <.0001* 
Lower 95% -0.1902    
N 1000    
Correlation 0.74878    
 
Difference: Combination Technique (50x50)-Combination Technique (10x10) 
          
Combination Technique (50x50) 0.02532  t-Ratio -2340.91 
Combination Technique (10x10) 0.10076  DF 999 
Mean Difference -0.0754  Prob > |t| <.0001* 
Std Error 3.22e-5  Prob > t 1.0000 
Upper 95% -0.0754  Prob < t <.0001* 
Lower 95% -0.0755    
N 1000    
Correlation 0.93608    
 
Difference: Utiltiy Based Technique (2x2)-Time Based Technique (2x2 ) 
          
Utiltiy Based Technique (2x2) 0.20638  t-Ratio -12.7132 
Time Based Technique (2x2 ) 0.20733  DF 999 
Mean Difference -0.0009  Prob > |t| <.0001* 
Std Error 7.47e-5  Prob > t 1.0000 
Upper 95% -0.0008  Prob < t <.0001* 
Lower 95% -0.0011    
N 1000    
Correlation 0.98258    
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Difference: Combination Technique (2x2)-Time Based Technique (2x2 ) 
          
Combination Technique (2x2) 0.21475  t-Ratio 74.95618 
Time Based Technique (2x2 ) 0.20733  DF 999 
Mean Difference 0.00742  Prob > |t| <.0001* 
Std Error 0.0001  Prob > t <.0001* 
Upper 95% 0.00761  Prob < t 1.0000 
Lower 95% 0.00722    
N 1000    
Correlation 0.96988    
 
Difference: Combination Technique (2x2)-Utiltiy Based Technique (2x2) 
          
Combination Technique (2x2) 0.21475  t-Ratio 270.6862 
Utiltiy Based Technique (2x2) 0.20638  DF 999 
Mean Difference 0.00837  Prob > |t| <.0001* 
Std Error 0.00003  Prob > t <.0001* 
Upper 95% 0.00843  Prob < t 1.0000 
Lower 95% 0.00831    
N 1000    
Correlation 0.99742    
 
Difference: Utiltiy Based Technique (10x10)-Time Based Technique (10x10 ) 
          
Utiltiy Based Technique (10x10) 0.09883  t-Ratio 87.59321 
Time Based Technique (10x10 ) 0.09367  DF 999 
Mean Difference 0.00516  Prob > |t| <.0001* 
Std Error 5.89e-5  Prob > t <.0001* 
Upper 95% 0.00527  Prob < t 1.0000 
Lower 95% 0.00504    
N 1000    
Correlation 0.96484    
 
Difference: Combination Technique (10x10)-Time Based Technique (10x10 ) 
 
          
Combination Technique (10x10) 0.10076  t-Ratio 101.0077 
Time Based Technique (10x10 ) 0.09367  DF 999 
Mean Difference 0.00709  Prob > |t| <.0001* 
Std Error 0.00007  Prob > t <.0001* 
Upper 95% 0.00722  Prob < t 1.0000 
Lower 95% 0.00695    
N 1000    
Correlation 0.92948    
 
Difference: Combination Technique (10x10)-Utiltiy Based Technique (10x10) 
          
Combination Technique (10x10) 0.10076  t-Ratio 167.5739 
Utiltiy Based Technique (10x10) 0.09883  DF 999 
Mean Difference 0.00193  Prob > |t| <.0001* 
Std Error 1.15e-5  Prob > t <.0001* 
Upper 95% 0.00195  Prob < t 1.0000 
Lower 95% 0.0019    
N 1000    
Correlation 0.99244    
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Difference: Utiltiy Based Technique (50x50)-Time Based Technique (50x50 ) 
          
Utiltiy Based Technique (50x50) 0.02528  t-Ratio 44.57402 
Time Based Technique (50x50 ) 0.02517  DF 999 
Mean Difference 0.00011  Prob > |t| <.0001* 
Std Error 2.47e-6  Prob > t <.0001* 
Upper 95% 0.00012  Prob < t 1.0000 
Lower 95% 0.00011    
N 1000    
Correlation 0.44899    
 
Difference: Combination Technique (50x50)-Time Based Technique (50x50 ) 
          
Combination Technique (50x50) 0.02532  t-Ratio 66.97713 
Time Based Technique (50x50 ) 0.02517  DF 999 
Mean Difference 0.00014  Prob > |t| <.0001* 
Std Error 2.15e-6  Prob > t <.0001* 
Upper 95% 0.00015  Prob < t 1.0000 
Lower 95% 0.00014    
N 1000    
Correlation 0.85866    
 
Difference: Combination Technique (50x50)-Utiltiy Based Technique (50x50) 
 
          
Combination Technique (50x50) 0.02532  t-Ratio 59.49743 
Utiltiy Based Technique (50x50) 0.02528  DF 999 
Mean Difference 3.41e-5  Prob > |t| <.0001* 
Std Error 5.73e-7  Prob > t <.0001* 
Upper 95% 3.52e-5  Prob < t 1.0000 
Lower 95% 3.29e-5    
N 1000    
Correlation 0.80695    
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APPENDIX D: TIME BASED TECHNIQUE ANALYSIS FOR THE CG 
MODEL 
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APPENDIX E: UTILITY BASED TECHNIQUE ANALYSIS FOR THE 
CG MODEL 
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