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We study a single server queuing model with multiple classes and impatient customers. The goal is to
determine a service policy to maximize the long-run reward rate earned from serving customers net of

holding costs and penalties respectively due to customers waiting for and leaving before receiving service. We first
show that it is without loss of generality to study a pure-reward model. Since standard methods can usually only
compute the optimal policy for problems with up to three customer classes, our focus is to develop a suite of
heuristic approaches, with a preference for operationally simple policies with good reward characteristics. One
such heuristic is the Råà rule—a priority policy that ranks all customer classes based on the product of reward R,
service rate å, and abandonment rate à. We show that the Råà rule is asymptotically optimal as customer
abandonment rates approach zero and often performs well in cases where the simpler Rå rule performs poorly.
The paper also develops an approximate policy improvement method that uses simulation and interpolation to
estimate the bias function for use in a dynamic programming recursion. For systems with two or three customer
classes, our numerical study indicates that the best of our simple priority policies is near optimal in most cases;
when it is not, the approximate policy improvement method invariably tightens up the gap substantially. For
systems with five customer classes, our heuristics typically achieve within 4% of an upper bound for the optimal
value, which is computed via a linear program that relies on a relaxation of the original system. The computational
requirement of the approximate policy improvement method grows rapidly when the number of customer classes
or the traffic intensity increases.

Keywords : multiclass queue; customer abandonment; Markov decision process; index policy; approximate policy
improvement

History : Accepted by Winfried Grassmann, Area Editor for Computational Probability and Analysis; received
April 2014; revised December 2014, May 2015, June 2015, July 2015; accepted August 2015. Published online
March 8, 2016.

1. Introduction
This paper considers a setting in which a single server
must preemptively serve impatient customers across
k customer classes. Different classes of customers
arrive according to independent Poisson processes,
with the arrival rate being ãi for class i customers,
1 i k. The service time for a class i customer follows
an exponential distribution with rate åi. However,
each class i customer will only remain available for
service for a random time that follows an exponential
distribution with rate ài, after which the customer
will abandon the system, whether the customer is
still waiting in the queue or is already in service. If
a class i customer is served to completion, then a
reward Ri is earned, but if he abandons the system
before service completion, then a penalty Di is incurred.

In addition, each class i customer in the system incurs
a linear holding cost at rate ci per time unit. We seek to
determine a service policy that maximizes the long-run
reward rate earned net of penalties and holding costs
incurred.
Our model has real-world applications. For secu-

rity surveillance, a customer in a class corresponds
to a suspect in a particular area, with service being
the screening of suspects by a security resource. The
penalties Di represent the expected damage incurred
when suspects leave the area and evade screening, and
it is most natural to set Ri = ci = 0. For call centers,
the class of a customer indicates a particular service
need, and the server corresponds to an agent. The
rewards Ri represent the revenue received by serving a
customer, and ci and Di respectively model the loss of
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goodwill incurred because of customers waiting and
hang up. Customer abandonments are a key feature in
both applications.
The first step of our analysis is to show that the

three parameters in the reward structure—namely Ri,
Di, and ci—can be consolidated into a single parameter
through proper transformation. As it turns out, it is
without loss of generality to consider a reward structure
with only one of these three parameters while setting
the other two equal to zero. In this paper, we choose
the pure reward model (with Di = ci = 0 for all i).
Although it is possible to formulate our model as a
Markov Decision Process (MDP) and use standard
methods of dynamic programming (DP) to compute
the optimal policy by truncating the state space, the
computation is usually only practical for problems
with up to three customer classes. Hence, the paper
focuses on developing strongly performing heuristic
policies, with a preference for operationally simple
policies with strong reward characteristics.
Our first approach is to develop a suite of simple

priority policies, which are effective across much of
the problem’s parameter space. Such policies serve
customers according to a strict priority ordering among
the customer classes. In the case where the system is
overloaded, it has been shown in the literature that
the Rå rule—a priority policy that ranks all customer
classes based on the product of reward R and ser-
vice rate å—performs well since it maximizes the
instantaneous reward rate (Atar et al. 2010, Ayesta
et al. 2011, Verloop 2014, Larrañaga et al. 2014). To
complement the Rå rule in the light-traffic case, we
study the Råà rule, which ranks all customer classes
based on the product of R, å, and the abandonment
rate à. This ranking was proposed in Glazebrook et al.
(2004, §2) for batch problems, and our paper extends
its application to systems with customer arrivals. We
prove that the Råà rule is asymptotically optimal as
customer abandonment rates approach zero in light
traffic systems. Finally, we apply a pairwise-swapping
(PaS) mechanism to both the Rå rule and the Råà rule
to search for an improved priority policy.

Our second approach—after having produced a set
of simple priority policies—is to develop an effective
approximate policy improvement (API) method. For
a given policy, the API method uses simulation to
estimate bias values for a set of carefully chosen states
and then uses these values to interpolate the bias
function for all states. This approximate bias function
allows us to run policy improvement to obtain a new
policy. Our numerical results indicate that, in most
cases, the best priority policy is nearly optimal in
systems with two or three customer classes; in the cases
where it is not, the API method invariably tightens
up the gap substantially. In one instance, the API
method improves our best priority policy—which is

4.26% suboptimal—in yielding a policy that is only
0.04% suboptimal. In some applications such as security
surveillance, even a small difference in reward rate
performance can be of practical importance.

To evaluate our heuristic approaches for systems with
more than three customer classes, where obtaining the
optimal policy is computationally too intensive, we also
develop a novel upper bound for the maximal long-run
reward rate using linear programming methods. The
linear program relies on a relaxation of the original
system, and its tightness degrades as the number of
customer classes increases. In our numerical study with
five customer classes, our best heuristic is typically
within 4% of the upper bound for the maximal long-run
reward rate.
Our model has been studied in Glazebrook et al.

(2004), which develops a heuristic policy via a two-
stage process. The first stage analyzes a policy that
allocates a fixed-service effort to each class at all time
and computes the optimal allocation, and the second
stage performs an exact policy improvement (PI). The
parametric optimization involved at the first stage can
pose computational challenges, especially when the
number of customer classes increases, and was only
implemented for cases with two customer classes in
Glazebrook et al. (2004). Numerical tests show that
our API method performs considerably better for a
wide range of parameters. Down et al. (2011) studied a
special case of our model with two customer classes
and å1 =å2. They proved that the priority policy that
serves a class 1 customer whenever possible is optimal
if R1 �R2 and à1 � à2.

There are some recent works on control of queueing
systems with impatient customers. An approach based
on approximating Brownian control problems in heavy
traffic has been explored by Harrison and Zeevi (2004),
Ata and Tongarlak (2013), and Kim and Ward (2013).
The latter article considers general arrival, service, and
abandonment processes. Recent studies of controlled
stochastic systems with customer abandonments have
featured a range of application domains. Garnett et al.
(2002), Jouini et al. (2010), and Bassamboo et al. (2005)
consider call center applications. Abandonments have
been used in military applications to model targets
that move out of range of defensive forces. See, for
example, Gaver et al. (2006), Lin et al. (2009), and
Glazebrook and Punton (2008). In patient triage applica-
tions, abandonments have been used to model medical
emergency patients in danger of dying while awaiting
treatment. See, for example, Argon et al. (2008) and Li
and Glazebrook (2010).
There are also some recent works on approximate

approaches to DP seeking to overcome computational
intractability. See, for example, Powell (2011, §1.2). Con-
tributions that deploy value function approximations
within a PI approach include those of Krishnan (1987),
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Glazebrook et al. (2004), and Li and Glazebrook (2010),
whereas API methods which utilize simulation are
discussed in Powell (2011, §10.5) and Bertsekas (2012,
Chap. 6 and 7). Our API approach can be viewed as
a refined approximate dynamic programming (ADP)
implementation with two distinctive features: (1) a suite
of strongly performing priority policies to initialize
the API algorithm and (2) a simulation/interpolation
methodology to fit the bias surface by estimating biases
both at states that are frequently visited and also at a
carefully chosen set of widely spread states.

The rest of the paper proceeds as follows. Section 2
first shows that it is without loss of generality to con-
sider a pure reward model; then it formulates the
problem as an MDP and describes how, in principle,
to compute the optimal policy. Section 3 presents the
service policies based on class prioritization, including
the Råà rule, the Rå rule, and a potentially improved
priority policy achieved by pairwise swapping. Sec-
tion 4 describes the API method. Section 5 presents a
linear program to compute an upper bound for the
maximal long-run reward rate to evaluate our heuristics
where the optimal policy is not available. Section 6
offers a numerical study, and §7 concludes the paper.

2. Model and MDP Formulation
Recall that our model has three reward parameters. For
a class i customer, there is a reward Ri for service com-
pletion, a penalty Di for customer abandonment, and a
linear holding cost rate ci per time unit, for 1 i k. If
we write N è

i1à for the number of class i customers in
the system and Åè

i , Çè
i for, respectively, the rate of class

i service completions and abandonments under policy
è in steady state, then the optimal long-run system
reward rate net of holding costs and abandonment
penalties can be written as

max
è

kX

i=1

4RiÅ
è
i ÉDiÇ

è
i É ciE6N

è
i1à750 (1)

However, the guaranteed stability of the system implies
that for all choices of class i and policy è , we have that

ãi = Åè
i +Çè

i 1 (2)

and
Çè
i = àiE6N

è
i1 à70 (3)

Using (2) and (3), we can rewrite (1) in three different
ways:

max
è

kX

i=1

✓✓
Ri +Di +

ci
ài

◆
Åè
i É

✓
Di +

ci
ài

◆
ãi

◆
(4)

=max
è

kX

i=1

✓
Riãi É

✓
Ri +Di +

ci
ài

◆
Çè
i

◆
(5)

=max
è

kX

i=1

4Riãi É 44Ri +Di5ài + ci5E6N
è
i1 à750 (6)

Equation (4) transforms the original model into an
equivalent pure-reward model with Ri +Di + ci/ài
earned upon every class i service completion. Similarly,
Equation (5) shows an equivalent model with only
penalties upon customer abandonment, whereas Equa-
tion (6) shows an equivalent model with only linear
holding costs. Without loss of generality, we shall focus
on the pure-reward model (Di = ci = 0 for all i) for the
remainder of the paper.

Denote the system state by n= 4n11 0 0 0 1nk5, with ni

the number of class i customers present in the system.
We further write n4t5 for the system state at time t.
Further details of the model are as follows:
1. Decision epochs occur at time zero and at all

transitions of the system state.
2. At each decision epoch, the server must decide

which waiting customer to serve next across all cus-
tomer classes. The set of admissible actions for state n
is given by

A4n5= 8a2 na � 111 a k90

We use ei for the system state in which only a single
customer of class i is present in the system.
3. In state n 6= 0 under admissible action a 2A4n5, the

effective transition rate is Â4n1a5=åa +
Pk

i=14ãi +niài50
Transitions to states n+ ei1nÉ ea, and nÉ ej1 j 6= a,
respectively, occur with probabilities ãi8Â4n1a59É1,
4åa+naàa58Â4n1a59É1, and njàj8Â4n1a59É10 The effective
transition rate in the empty state 0 is Â405=Pk

i=1 ãi with
a transition from 0 to state ei occurring with probability
ãi8Â4059É1. When a transition from n to nÉ ea occurs
at a class a service completion, a reward Ra is earned.
4. A service policy is a rule for choosing admissible

actions using the history of the process (past states and
actions) only. An admissible, deterministic, stationary, and
Markov policy is determined by a function è2 �k !
811 0 0 0 1k9 satisfying è4n5 2A4n51 8n0 The theory of
MDPs (see, for example, Puterman 1994, Chap. 8)
implies that to determine the optimal policy, it is
sufficient to consider only policies in this class.
5. The goal of analysis is to determine a policy that

maximizes the long-run reward rate earned or that
will come close to doing so.

A standard approach to determine the Ö-optimal poli-
cies is through the application of DP to a version of the
above system with finite state space ⇥k

i=180111 0 0 0 1Ni9.
In this truncated version, new class i customers are
blocked from entering the system when Ni are already
present. The Ni must be chosen large enough to ensure
that this system approximates the original model well
enough for the purpose at hand. With a finite state
space, it becomes possible to convert the problem to
one in discrete time through the process of uniformiza-
tion. We write „=Pk

i=14ãi+åi+Niài5, a uniform upper
bound on the rate of state transitions in the finite state
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system. By the addition of fictitious transitions from
a state to itself, we develop a uniformized system
that makes transitions at a uniform rate „0 We write
V è4n1 t5 and V 4n1 t5 for the expected reward earned
under the application of policy è and an optimal pol-
icy, respectively, over t transitions of the uniformized
process, beginning at time zero in system state n0 Stan-
dard theory enables us to write V è4n1 t5= 4gè/„5t+
óè4n5+o415 and V 4n1 t5= 4g/„5t+ó4n5+o415 as t!à,
where gè and g are the long-run reward rates or gains
earned, and óè and ó are the bias functions under
application of è and an optimal policy, respectively.
Bias functions yield an estimate of the transient effect
on rewards of the starting state n and will be further
discussed in §4. Bellman’s equation for the finite state
system can now be written as

g

„
+ó4n5=max

a

⇢
Raåa

„
+

X

n02S
p4n0 ó n1a5ó4n05

�
1 (7)

where the p4n0 ó n1a5 are transition probabilities under
the uniformization. It is now possible to compute the
optimal gain and associated optimal policy for the
finite state approximation by a recursive scheme such
as DP value iteration or by linear programming; further
details may be found in Puterman (1994, Chap. 8).
However, since the state space grows exponentially
in k, in practice, the computations quickly become
intractable for k� 4. Hence, the focus of our paper is
to develop near-optimal heuristic policies that require
much less computation.

3. Service Policies Based on Class
Prioritization

A policy that is easy to implement is for the server to
prioritize all customer classes in an ordered list and
always serve a customer highest on the list among
all customers present in the system. In the case of
an overloaded system, there are almost always many
customers present in the system. It is therefore intuitive
that the server should pay little attention to the possibil-
ity of idling and focus on continuously maximizing the
instantaneous reward rate. To do so, the server simply
needs to always serve a customer having the maximal
Rå value among all customers present in the system—
hence the Rå rule. As seen in Equations (4) and (6),
the Rå rule in our pure-reward model is equivalent to
the cå/à rule in the linear-holding-cost only model.
The strong performance of this rule in heavy traffic is
affirmed in the work of Atar et al. (2010), Ayesta et al.
(2011), Verloop (2014), and Larrañaga et al. (2014).
Away from heavy traffic, lost reward opportuni-

ties due to an empty system become a much more
important concern. Motivated by this observation, §3.1
introduces the Råà rule and establishes its asymptotic
optimality. Section 3.2 compares the Råà and the Rå

rules. Section 3.3 presents a mechanism to explore local
improvements on a given priority policy.

3.1. The Råà Rule
If a system is not overloaded with customers, then it
becomes important to take into account the lost reward
opportunities when the system becomes empty because
of customer abandonment. For example, consider a
two-class system, with R1å1 =R2å2 and à1 < à2. If there
is one customer present from each class, then intuition
suggests that the server should first serve the class 2
customer since there is a better chance that the class 1
customer will still be available later on. Consequently,
a class’s priority should go up as its abandonment
rate à increases. We call the rule in which the server
always serves a customer having the maximal Råà
value among all customers present in the system the
Råà rule. As seen in Equations (4) and (6), the Råà
rule in our pure-reward model is equivalent to the cå
rule in the linear-holding-cost only model. Whereas
the cå rule is optimal in queueing systems with no
customer abandonment (see, for example, Gittins et al.
2011, §5.2), it is not optimal in systems with customer
abandonment (Down et al. 2011).
The main result of this section is to show that the

Råà rule is asymptotically optimal as à ! 0. First,
write Rè4à5 for the reward rate achieved by policy è,
and RRåà4à5 for the reward rate achieved by the Råà
rule. To describe the limiting regime, we suppose that
the abandonment rate of each customer class is the
multiple of some underlying rate à, such that ài = àçi,
where çi > 0, 1 i k.

Theorem 1. If
Pk

i=14ãi/åi5< 1, then

max
è

Rè4à5ÉRRåà4à5O4à250

The proof of Theorem 1 is given in full in Appendix A
in the online supplement (available as supplemental
material at http://dx.doi.org/10.1287/ijoc.2015.0675),
but we summarize the key elements here to facilitate
the subsequent discussion. The main idea of the proof
is to bound Rè4à5 below for priority policies and above
for general nonidling policies. If we write W è

i for
the waiting time (time to achieve completed service)
of a class i job in steady state under è for the no
abandonment case (à = 0), then for a priority policy ö ,
we show that under the conditions of the result,

Rö4à5�
kX

i=1

ãiRi É à
kX

i=1

ãiRiçiE6W
ö
i 7+O4à251 (8)

whereas for all nonidling policies è, we have that

Rè4à5
kX

i=1

ãiRi É à
kX

i=1

ãiRiçiE6W
è
i 7+O4à250 (9)
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It must follow that

max
è

Rè4à5ÉRRåà4à5

 à

⇢ kX

i=1

ãiRiçiE6W
Råà
i 7Émin

è

kX

i=1

ãiRiçiE6W
è
i 7

�

+O4à251 (10)

where the maximum and minimum in (10) are over all
policies è. By Little’s law, the minimization in (10) is
of a holding cost rate objective for the system without
abandonments. A classical queueing control result (the
cå rule) implies that this minimum is achieved by the
Råà rule. Theorem 1 easily follows.
In heavy traffic, the Rå rule appropriately greedily

chooses processing actions to maximize the instanta-
neous reward rate achieved. In the regime of Theorem 1,
the focus is on choices of policy è that minimize
reward rate loss from the system through abandon-
ments. From the preceding proof, this loss rate is given
by àhè +O4à25, where

hè =
kX

i=1

ãiRiçiE6W
è
i 70

The strong performance of the Råà rule resides in
its minimization of the dominant O4à5 component
of this loss rate—a consequence of the optimality of
the cå rule for linear holding costs in the absence of
abandonments.
Close inspection of the proof of Theorem 1 in the

online supplement will reveal that we make little
use of the stochastic structure of the system’s service
mechanism. The Råà rule emerges as a priority policy
which minimizes a holding cost-type objective for
the no abandonment system 4à = 05. It is therefore
unsurprising that the result can be generalized to more
complex service situations, provided that a priority
policy continues to optimize an appropriate holding
cost. An important model class to which a natural
extension of Theorem 1 applies are Klimov Networks (see
Klimov 1974 and 1978), in which each customer service
has a sequence of phases, with movement between
phases and toward service completion determined by
customer class-specific Markovian routing matrices.
This class inter alia provides an extension of Theorem 1
to a model in which service requirements are indepen-
dent, have finite second moment, and are identically
distributed within each class. Further details can be
found in Appendix B in the online supplement.

All of the extensions to Theorem 1 mentioned above
concern single-server systems. If we move to a mul-
tiserver version of our system with abandonments,
with m servers working in parallel, then the required
stability condition becomes ê=Pk

i=14ãi/åi5<m and
the Råà rule now allocates preemptive service to the

m customers present in the system whose associated
Råà are maximal. The proof of a suitable version of
Theorem 1 for this system goes through up to (10).
However, it is no longer true that the Råà rule achieves
the minimum in (10), though it does come close to
doing so. To give a theoretical result for this system
we need the quantity

B4m5= ê4Råç5max

✓
1
å

◆

max
I4m> 151

where I is an indicator and the maxima in the expres-
sion are taken over the customer classes. The following
result makes use of Theorem 3 in Glazebrook and
Niño-Mora (2001), which shows that B4m5 bounds
above the quantity multiplying à on the right-hand
side of (10) when there are m servers. It generalizes
Theorem 1 to multiserver systems.

Proposition 1. When there are m servers andPk
i=14ãi/åi5<m, we have that

max
è

Rè4à5ÉRRåà4à5 àB4m5+O4à250

3.2. Comparing the Råà and Rå Rules
It follows from calculations in the proof of Theorem 1
that when

Pk
i=14ãi/åi5< 1, we have Rè4à5!Pk

i=1 ãiRi,
as à ! 0, for all priority policies (and hence both
the Råà and Rå rules). Unsurprisingly, all priority
policies achieve the maximal reward rate

Pk
i=1 ãiRi

in the no abandonment limit since in the limit all
jobs are served. Think of a surveillance problem in
which abandonments of the system are rare, but very
damaging, and attention focuses on making the O4à5
loss rate from abandonments as small as possible.
Now consider a situation in which the class orderings
determined by the Råà and Rå rules are distinct. It
follows from (8) and (9) that

RRåà4à5ÉRRå4à5= à4hRå ÉhRåà5+O4à250

When Råà and Rå are distinct, the quantity that
multiplies à in the above expression is strictly positive.
Consequently, there exists à⇤ such that for à< à⇤, we
have that RRåà4à5>RRå4à5. Therefore,

maxè Rè4à5ÉRRåà4à5

maxè Rè4à5ÉRRå4à5
! 01 as à! 00

It follows that the percentage loss of reward rate due
to abandonment from the use of Råà relative to that
experienced from the use of Rå becomes negligible in
the limit à! 0. Numerical support for this conclusion
can be found in Appendix C in the online supplement.

A similar conclusion can be drawn for a multiserver
system, if the condition in Proposition 1 is met. It
follows from the analysis in Glazebrook and Niño-
Mora (2001) that for any case in which Rå and Råà
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rules differ in their choice of lowest priority customer
class, the difference hRå Éminè h

è diverges in the limit.
It then follows from (8), (9), and Proposition 1 that
when à is small for problems close to the ê!m limit,
the suboptimality gap maxè Rè4à5ÉRRåà4à5 will be
negligible compared to maxè Rè4à5ÉRRå4à5.
In the special case with k = 2, å1 = å2, R1 � R2,

and à1 � à2, both the Råà and Rå rules prescribe the
priority policy 1! 2, which is optimal according to
Down et al. (2011).

3.3. The PaS Class of Priority Policies
We conclude this section by describing a simple pairwise-
swapping mechanism to explore local improvements
in any given priority policy. Given any class ordering
4è11è21 0 0 0 1èk5, we take the classes in order from è2
to èk and explore, in turn, whether each class should
be promoted up the order. This is achieved for each
class by a sequence of pairwise comparisons with the
next highest class in the list to determine how high
up the list the class can be promoted. In comparing
classes i and j , we consider the two-class subsystem
comprising them alone (with their class parameters
inherited from the full problem) and use value iteration
to compute the respective performance of the two
priority policies i! j and j ! i. If the better policy
contradicts the current class ordering, then a pairwise
swap is performed, and the procedure is repeated until
a comparison does not result in a swapping. We then
examine the potential promotion for the next class
on the original list è2 to èk. We label this priority
policy PaS.

4. Approximate Policy Improvement
Algorithm

This section introduces an approximate policy improve-
ment (API) algorithm to improve our suite of simple
priority policies. Section 4.1 overviews the methodology,
and §4.2 discusses the algorithm in detail.

4.1. Heuristic Based on Policy Improvement
Policy improvement (PI) develops optimal policies
for MDPs by using the DP recursion to produce a
sequence of successively improving policies (Howard
1960). In our problem, we truncate the state space and
uniformize, as in §2, to develop an ergodic system
with optimality equation in (7). To develop a PI step
from policy è, let óè4n5 be the bias associated with
system state n under policy è. A new policy PIè , say,
is obtained as follows:

PIè4n5=argmax
a

⇢
Raåa

„
+

X

n02S
p4n0 ón1a5óè4n05

�
0 (11)

Accordingly, policy PIè always takes the current deci-
sion optimally, given that all future decisions are made

according to è . Tijms (1994) noted that the first few PI
iterations usually yield the greatest improvement.
The challenge to implementation of PI in large sys-

tems lies in the intractability of the computation of the
bias óè . Hence, approximations are required, and the
PI step in (11) can be replaced by

APIè4n5=argmax
a

⇢
Raåa

„
+

X

n02S
p4n0 ón1a5ó̃è4n05

�
1 (12)

where ó̃è approximates óè .
Computation of the bias óè involves specification

of a reference state m, which we take to be one fre-
quently visited under è. We introduce the following
quantities:
• rè4n5 is the expected reward received starting

from state n until the system enters the reference state
m for the first time, if policy è is used.
• tè4n5 is the expected time starting from state n

until the system enters the reference state m for the
first time, if policy è is used.
The system evolving under policy è is ergodic, so

rè4n5 and tè4n5 are guaranteed to be finite for all
states. Using the fact that the system regenerates upon
entry to the reference state, the theory of regenerative
processes (Tijms 1994) indicates that

óè4n5= rè4n5É gètè4n51 (13)

where gè is the gain of policy è.
From (13), the approximations ó̃è4n5 can then be

obtained by approximating the quantities rè4n5, tè4n5,
and gè . The heuristic policy can then be defined
from (12).

4.2. The Algorithm
The implementation of an API step depends crucially
on the approximation scheme used for the bias function.
Because the bias function does not have an analyti-
cal form, we use simulation to estimate it. However,
since simulation carries a computational cost, our con-
strained computational resource needs to be effectively
managed through a carefully designed algorithm. The
algorithm consists of five sequential, complementary
stages, taking an initial policy è as an input to produce
a new policy APIè . The five steps are summarized
next, with more details to follow.
1. Pilot: Simulate the steady state of initial policy è

to estimate its gain and the frequency each state is
visited.

2. Selection: Based on the pilot run, select a set
of states at which we estimate the bias function via
simulation.
3. Sampling: For each state n selected, simulate

the system under è from that state until some cho-
sen reference state m is entered and estimate óè4n5
using (13).
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4. Interpolation: Use the simulation results for
selected states to interpolate the bias function for all
other unselected states.
5. Improvement: Use (12) to produce a new policy

APIè .
In step 1, we run a pilot steady state simulation to

estimate the gain gè required to estimate óè from (13).
To facilitate steps 2 and 3, we also collect data on how
often each state is visited in steady state under è.
Step 2 consists of the selection of a small number

of states, denoted Ssel, at which the bias óè will be
estimated by simulation in step 3. Interpolation of óè

at other states will follow in step 4. The set Ssel consists
of the anchor set together with a support set. The anchor
set consists of the states most frequently visited in
the pilot and hence influential to policy performance.
However, anchor states are likely to be tightly grouped
together, so alone they will not create an adequate
basis for the construction of an effective interpolation
scheme. The support set will complement the anchor
set to ensure adequate coverage and wider exploration
of the state space.
To select M support states, we adopt lattice points

of the following form:

PM = 844zj mod M5/M5= 44z1j mod M5/M1 0 0 0 1

4zkj mod M5/M5 ó 0 j M É 191

where z is an integer vector modulo M . The compo-
nents of z are chosen to be relatively prime to each
other and to M . In what follows, policies will be con-
structed for numerous problems with k = 213, and
5 making use of the choices z= 421351 4213155, and
421315171115, respectively. These lattice points are then
appropriately scaled and rounded from the unit hyper-
cube to the state space to obtain the support states.
Such well-spread points were proposed in the field of
quasi-Monte Carlo methods for numerical integration
and shown to enable good approximations of integrals
(Niederreiter 1978).
In step 3, we choose reference state m to be the

one most visited in the pilot and use Monte Carlo
simulation to estimate rè4n5 and tè4n5 for each n 2 Ssel.
In what follows, we use n for the size of Ssel and
m for the number of simulated realizations of the
system from each n 2 Ssel until entry into reference state
m. If we write Rè4n5 and T è4n5 for the simulation-
based estimators of rè4n5 and tè4n5, respectively, and
Gè for the estimator of gè available from the pilot,
then from (13) our estimator of óè4n5 for n 2 Ssel is
Ïè4n5 = Rè4n5 É GèT è4n5. Since all estimators are
unbiased, and Gè is independent of Rè4n5 and T è4n5,
we conclude by conditioning on Gè that

Var8Ïè4n59 = Var8Rè4n5É gèT è4n59

+Var4Gè5E64T è4n55270 (14)

Equation (14) decomposes the variance of the bias
estimators into two terms. The first term is controlled
by the number of replicates m used in the simulation
relating to state n in step 3, and the second term is
controlled by the size of the pilot study in step 1. The
computational challenge is dominated by the need to
control the first term in (14) because designing a pilot
study large enough to control the second term has not
proved to be an issue. One feature that helps reduce
the first term is that Rè4n5 and T è4n5 are positively
associated. In addition, our choice of reference state m
means that the biases at anchor states (with smaller
Rè4n5 and T è4n5) tend to be estimated with greater
precision than those at support states, which is a feature
shared with other approaches to ADP (see Powell 2011,
§10.10). The central trade-off for the quality of the
method for given computational effort is that between
large n supporting the quality of the interpolation and
large m supporting precision at the selected states.
In step 4, we use the bias estimates in Ssel to inter-

polate a bias function approximation for the entire
state space S. Although there are many interpolation
algorithms, we use the radial basis function method
(see Powell 1987) for its simplicity. Assume that some
function f 2 S!✓ has known values at each xi 2 Ssel.
An augmented radial basis function h2 S !✓ that takes
the form

h4x5=
nX

i=1

Åiî4òxÉ xiò5+
dX

j=1

Çjpj4x51 x 2✓k1 (15)

will be designed as a smooth interpolator of f , tak-
ing the values f 4xi5 for xi 2 Ssel. From (15), h4x5 is a
weighted sum of n= óSseló radial basis functions î4 · 5,
one centered on each xi 2 Ssel, together with d low
order polynomials pj4 · 5. Note that ò ·ò denotes the
Euclidean norm. For î4 · 5, we take the thin plate spline
î4r5 = r2 log4r5; for low order polynomials, we set
d= k+ 1 and use p14x5= 1, pj4x5= xjÉ1, 2 j  k+ 1.
These choices produce a surface which minimizes a
measure of smoothness (Powell 1999).
We write A for the n ⇥ n matrix with elements

Aij =î4òxi É xjò5, 1 i1 j  n and P for the n⇥ 4k+ 15
matrix with elements Pij = pj4xi5, 1 i n, 1 j  k+ 1.
We write f for the n-vector with fi = f 4xi5, 1 i n. Let
¡ and ¬ be corresponding vectors of coefficients. The
matrix form of the interpolation problem is

✓
A P
PT 0

◆✓
¡
¬

◆
=
✓
f
0

◆
0

The equations A¡+P¬= f ensure that h4xi5= f 4xi5,
xi 2 Ssel, whereas the k+ 1 equations PT¡= 0 take up
the extra degrees of freedom in the problem, which
ensures the radial basis function h4 · 5 is conditionally
positive definite and the interpolation problem solv-
able. Consequently, the interpolation matrix delivers a
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Figure 1 Illustration of the Selection and Interpolation Stages of the Algorithm in the Example System

unique solution in the coefficients and hence in h. If
we take f 4xi5, xi 2 Ssel, in the above to be the estimates
of bias from step 3, we can then use the resulting h4x5,
x 2 S, as bias estimates for all states.

In step 5, we design a new policy APIè by using the
function h from step 4 in place of ó̃è in (12) to obtain

APIè4n5= argmax
a

⇢
Raåa

„
+

X

n02S
p4n0 ó s1a5h4n05

�
0

In principle, the preceding procedure can be repeated
multiple times. Although obtaining progressively better
policies—a feature of exact PI—can no longer be guar-
anteed, we have found that, in practice, improvement
in policy performance is indeed achieved. To highlight
key design choices, we denote the preceding procedure
by API4è1n1m1 r1 t5. The parametrizing arguments
offer great flexibility and are as follows: the initial
policy is è, n is the number of states selected for bias
estimation via simulation, m is the number of replicated
simulations at each selected state, r is the fraction of
selected states in the anchor set (so 1É r the fraction
in the support set), and t is the number of iterations
of the algorithm. In what follows, we write APIè for
the best performing policy from t iterations of the
algorithm, including the initial policy, which ensures
that we only consider policies which improve as t
increases. The trade-off between different choices of
the parameters will be explored in §6.2, where we will
give a recommendation for their selection.
We now present an example to illustrate the algo-

rithm. Consider a k = 2 example with the parame-
ters ã1 = 2051ã2 = 31å1 = 3051å2 = 41à1 = 00751à2 =
2051R1 = 2051R2 = 107. We use truncation levels N1 =
N2 = 20 throughout. Please note that for this example
the Rå rule gives priority to class 1, and the Råà rule
gives priority to class 2. We use algorithms of the form

API4Råà1451m132/45115 to construct policies. Figure 1
illustrates the selection and interpolation stages of the
algorithm for the case m= 105. Figure 1(a) shows Ssel,
with anchor states shown as diamonds and support
states as circles. Figure 1(b) shows the interpolated
bias estimates over the entire state space. Although
not shown here, the surfaces of exact biases óè and
simulated bias estimates throughout S closely resem-
ble the interpolated surface, capturing its shape and
curvature well, especially so around the anchor set.
Figure 2 shows the actions taken in each state by the
optimal policy for this example, along with the actions
resulting from use of the above algorithm with m set
at 103, 104, and 105. We observe that as m increases,
the corresponding policies approach more closely the
switching curve structure of the optimal policy.

5. An Upper Bound on Achievable
Rewards

To evaluate heuristic policies when the optimal solution
in (7) is not available, we derive an upper bound for
the long-run reward rate. For a given feasible policy, if
xi represents the implied fraction of time the server
spends on class i customers, then

kX

i=1

Riåixi (16)

is the long-run reward rate for the feasible policy. To
compute an upper bound for the optimal long-run
reward rate, we formulate a linear program with the
variables xi � 0, 1 i k, and the objective function to
maximize (16), subject to the constraint

Pk
i=1 xi  1. The

key to get a tight upper bound is to impose additional
constraints on the xi so that the resulting optimal
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Figure 2 Class 1 (Diamonds) and Class 2 (Circles) Actions in Each State Under Various Policies in the Example System

policies come as close as possible to those implied by a
feasible policy.
First, denote by A8i9 the long-run fraction of time

the server is busy if he serves only class i customers
and ignores all other classes, 1  i  k. Taking the
number of class i customers as the state, we have a
birth-and-death process, so it is straightforward to
compute

A8i9 = 1É
 àX

n=0

4ãi5
n

⇢ nY

m=1

4åi +mài5

�É1�É1

1 1 i k0

We can add xi  A8i9 as a constraint in the afore-
mentioned linear program, 1 i  k, or a total of k
constraints.

To extend this idea, for T ✓ 811 0 0 0 1k9, we can add a
constraint

P
i2T xi AT , where AT denotes the maximal

long-run fraction of time that the server serves customer
classes in T by ignoring all other classes. To compute
AT , consider the same MDP model in §2 with customer
class set T and substitute Ri =åÉ1

i , i 2 T so that the
long-run reward rate becomes equivalent to the long-
run fraction of time that the server is busy. Using DP

value iteration to compute the optimal solution when
óT ó= 2 or óT ó= 3 is computationally viable, resulting in�
k
2

�
+
�
k
3

�
additional constraints.

Computing AT when óT ó � 4 is computationally
infeasible, but we can still impose constraints derived
from relaxed systems. To do so, we create a single
fictitious class by aggregation and relaxation of the
customer classes in T . Denote the arrival, service, and
abandonment rates of this fictitious class by ã=P

i2T ãi,
å=mini2T 8åi9, and à=mini2T 8ài9, respectively. Since
the server can only be busier with this fictitious class,
the long-run fraction of time that the server is busy
in this relaxed system is a legitimate upper bound
for

P
i2T xi.

Taking this idea further, we could improve this upper
bound by formulating a number of two-class MDPs.
Divide customer classes in T into two groups and
aggregate the classes in each group into a fictitious
class, as before. We then use DP value iteration to
compute the maximal fraction of time that the server is
busy dealing with these two fictitious classes. When
óT ó � 4, we write BT for the tightest upper bound for
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P
i2T xi derived with this method and add it as one

constraint. Although it is possible to divide T into three
or more groups, the marginal benefit is outweighed by
the increased computational burden.

To formulate a linear program to compute an upper
bound for the optimal long-run reward rate, define
S k0 ⌘ 8T ✓ 811 0 0 0 1k92 óT ó= k09, which is the set of all
subsets of 811 0 0 0 1k9 whose cardinality is k0. This linear
program is thus given by

max
kX

i=1

Riåixi

subject to
kX

i=1

xi  11 xi � 01 1 i k3

X

i2T
xi AT for all T 2S k01 k

0 = 112133

X

i2T
xi  BT for all T 2S k01 4 k0  k0

We would expect the upper bound to come close to the
optimal long-run reward rate in smaller systems k 3,
mainly because of the optimized upper bounds AT .
The upper bounds BT in subsystems of size k0 > 3 will
worsen as k0 increases because of a greater relaxation
when creating more customer classes. Consequently,
the quality of the upper bound tends to degrade as the
size of the system k increases.

6. Numerical Study
In this section, we conduct extensive numerical exper-
iments to assess the impact and design of our API
method as well as the performance of a range of
heuristics that includes our suite of priority policies.
Section 6.1 uses a numerical study based on cases with
two customer classes to explore design choices for
our API heuristics. We assess, inter alia, the relative
performance of the candidate initializing priority rules
Rå and Råà as well as testing different choices of
parameters for our API method. This test yields a
recommended API policy that we denote rAPI. Using
numerical studies based on cases with three and five
customer classes, §6.2 compares the performance of
rAPI with that of other heuristics. Section 6.3 contains
a brief discussion of the computational burden of
developing rAPI and the upper bound discussed in §5.

6.1. Selecting Parameters for the API Algorithm
To explore the trade-off between different choices of
parameters for our API algorithm, we test the algorithm
on systems with k= 2 customer classes. Problems were
randomly generated to reflect a wide range of condi-
tions with regard to (1) the length of job lifetimes in
relation to service times (reflected in the categorization
A1B1C in (17c)–(17e)) and (2) the traffic intensity or

workload in the corresponding system without aban-
donments. There are three categories of traffic—light,
moderate, and heavy—as determined by the value of
ê=Pk

i=14ãi/åi5; see (17f)–(17h). For all nine combina-
tions of A1B1C with the traffic categorization light,
moderate, and heavy, 500 problems were generated at
random. Parameters were sampled as follows:

åi ⇠U 6002157 (all cases)3 (17a)

ãi ⇠U 6002157 (all cases)3 (17b)

àÉ1
i åi óåi ⇠U 6005127 (short lifetimes, A)3 (17c)

àÉ1
i åi óåi ⇠U 651107 (moderate lifetimes, B)3 (17d)

àÉ1
i åi óåi ⇠U 62012007 (long lifetimes, C)3 (17e)

ê 2 600610087 (light traffic)3 (17f)

ê 2 600911017 (moderate traffic)3 (17g)

ê 2 610211047 (heavy traffic)3 (17h)

In the parameter generation, åi and ãi were sampled
according to (17a) and (17b) by means of a rejection
algorithm until a desired ê condition (17f)–(17h) was
met. An additional rejection step ensured that the
Råà and Rå rules of each parameter set were distinct;
otherwise, all parameters were resampled. In all cases,
rewards were sampled as follows: R2 ⇠U 61137 and
R1R

É1
2 óR2 ⇠U 61025127. To compute the optimal policy,

we use DP value iteration by truncating the state space
at Ni = 40 for each class i with case A, and Ni = 60
with cases B and C, as discussed in §2.

Table 1 reports the numerical results with k = 2
customer classes. In comparing the Råà and Rå rules,
please recall that we use the descriptors light, moder-
ate, and heavy as shorthand for ranges of the traffic
intensity ê. The actual volume of traffic in the system
will also be strongly influenced by the abandonment
rate à, with case C (small à) yielding higher volumes
than case A (large à). Hence, although the Råà rule
performs very well in the case {C, light}, as is consistent
with Theorem 1, it performs poorly in the heaviest
traffic case of all, namely {C, heavy}. Its performance
under A is less variable than under C because larger
abandonment rates act as a moderator on traffic levels,
though it still performs best under A when ê is small.
The Råà rule clearly outperforms the Rå rule when ê
is small and à not too large, whereas Rå is the better
policy when ê is large, increasingly so as à declines in
value and the traffic levels increase. It is worth noting
that at least one of these two priority rules delivers a
median performance less than 1% suboptimal across
all cases, so they complement each other well.
Table 1 also reports the performance of the policy

PI-Råà, which is derived from exact application of
a single PI step to the Råà rule. The fact that the
PI-Råà is nearly optimal shows the promise of the
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Table 1 Percentage Suboptimalities in k = 2 Class Systems of Various Traffic and Abandonment Level Combinations

API

Case Workload Råà Rå PI-Råà GADL 411m15 421m15 431m15 411m25 421m25 431m25 411m35 rAPI UB

A Light
90th 1007 1.17 0.00 0.80 0.12 0.10 0.08 0.00 0.00 0.00 0.00 0.00 1.30
75th 0059 0.45 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95
Median 0017 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65

Moderate
90th 1069 1.29 0.00 1.08 0.13 0.07 0.05 0.00 0.00 0.00 0.00 0.00 1.89
75th 1003 0.38 0.00 0.52 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.34
Median 0036 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90

Heavy
90th 3064 1.39 0.00 1.61 0.12 0.07 0.06 0.02 0.01 0.01 0.00 0.00 2.41
75th 2001 0.35 0.00 0.90 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 1.77
Median 0076 0.00 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.13

B Light
90th 0052 1.51 0.00 0.79 0.15 0.11 0.10 0.07 0.04 0.03 0.02 0.01 1.37
75th 0021 0.82 0.00 0.39 0.06 0.05 0.05 0.03 0.02 0.01 0.00 0.00 1.00
Median 0000 0.25 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65

Moderate
90th 1070 1.81 0.00 0.99 0.40 0.32 0.30 0.18 0.10 0.08 0.04 0.03 2.17
75th 0093 0.67 0.00 0.67 0.27 0.20 0.18 0.10 0.06 0.04 0.02 0.00 1.53
Median 0028 0.01 0.00 0.35 0.10 0.09 0.08 0.03 0.01 0.01 0.00 0.00 0.97

Heavy
90th 6016 1.10 0.01 1.97 1.41 0.88 0.77 0.65 0.36 0.32 0.31 0.05 2.23
75th 3075 0.11 0.00 1.41 0.81 0.59 0.54 0.36 0.21 0.17 0.17 0.00 1.67
Median 1071 0.00 0.00 0.77 0.40 0.35 0.32 0.14 0.09 0.07 0.02 0.00 1.11

C Light
90th 0000 1.79 0.00 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.45
75th 0000 0.96 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31
Median 0000 0.41 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18

Moderate
90th 0097 2.92 0.03 1.09 0.34 0.28 0.24 0.33 0.24 0.21 0.27 0.09 1.75
75th 0033 1.71 0.01 0.62 0.14 0.12 0.11 0.13 0.11 0.10 0.11 0.04 1.25
Median 0004 0.62 0.00 0.33 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.00 0.79

Heavy
90th 16048 0.01 0.00 2.16 1.53 0.96 0.80 0.69 0.25 0.19 0.29 0.01 0.26
75th 11057 0.00 0.00 1.65 0.79 0.40 0.33 0.14 0.07 0.06 0.06 0.00 0.04
Median 7038 0.00 0.00 1.08 0.08 0.06 0.04 0.00 0.00 0.00 0.00 0.00 0.00

Notes. Variations of API using Råà as the initial policy with n = 45 are denoted by 4t1m5, where t 2 8112139 and m 2 8m11m21m39 with m1 = 1031m2 = 1041m3 =
105. In the last column, we report the percentage of the upper bound above the optimal policy.

API method, if the bias function can be approximated
satisfactorily. The policy GADL—due to Glazebrook
et al. (2004), with GADL referring to the paper’s four
coauthors—requires much computational effort but is
typically not as good as the better between the Råà
and Rå rules.

The next seven columns in Table 1 explore the trade-
off between different choices of parameters of the
API4Råà1n1m1 r1 t5 proposed in §4.2. We use n= 45
selected states throughout, with r = 32/45. As one
would expect, increasing m and t improves performance
whilst increasing computational effort. For a given
level of computational effort, the strong performance of
PI-Råà suggests that the policy API4è1n1m1 r1 t5 may
perform better with a single, more detailed iteration.

Based on our wider experimentation, there appears to
be a degree of indifference in performance between mul-
tiple, less detailed iterations and a single, more detailed
iteration. Further, and unsurprisingly, a strongly per-
forming initial policy è usually improves performance.
Based on these observations, to choose parameters
in API4è1n1m1 r1 t5 for general k class systems, we
recommend t = 1 and a large value of m (105, say) and
allow n, the number of selected states, to scale roughly
linearly with k so that 20k n 25k. To choose the
initial policy è in general, we first run the pairwise-
swapping mechanism in §3.3 on the Råà rule and on
the Rå rule, separately. It turns out that in all numerical
tests in this section, the final orderings are the same,
which we label PaS. The initial policy è in the API
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method is thus set to be the best performing among
Råà, Rå, and PaS. We shall denote our recommended
API policy by rAPI. As seen in Table 1, the rAPI is
nearly optimal in all our k= 2 class cases. The final
column in Table 1 reports the quality of the upper
bound presented in §5. The upper bound typically sits
about 1%–2% above the optimal value.

6.2. Comparing the rAPI and Other Heuristics
This section compares the rAPI and other heuristics
in systems with k = 3, 5 customer classes. Problem
parameters were again generated according to (17a)–
(17h), along with suitable rejection algorithms. We now
use Ri ⇠U 61147 for sampled rewards. For each life-
time/traffic combination, 100 problems were generated
at random.
Table 2 reports the performance of various service

policies against the optimal solution for systems with
k= 3 customer classes. The rAPI was constructed with
t = 1, m= 105, n= 75, and r = 52/75. As seen in the
table, the rAPI delivers near-optimal performance in all
cases, which reaffirms the strength of policies based on
a single, well-estimated (but nonetheless approximate)
PI step applied to a well-chosen priority policy. Table 2
also shows that a naive heuristic that always serves
the longest queue (labeled SLQ) can perform poorly. In
most cases, PaS improves on both Råà and Rå, though
this is not universal. The quality of the upper bound
for k= 3 customer classes is similar to that for k= 2
customer classes.
Table 3 reports the performance of various service

policies against an upper bound on the optimal solution,
as discussed in §5, for systems with k= 5 customer
classes. Since value iteration is not computationally
feasible, the gain of each heuristic is estimated as the
mean of 1,000 Monte Carlo realizations, which is then
compared with the upper bound presented in §5. The
policy rAPI was constructed with t = 1, m= 105, n= 100,
and r = 69/100. As seen in Table 3, the relative quality
among Råà, Rå, PaS, and rAPI is consistent with that
in Table 2. The PaS typically improves Råà and Rå,
and then the rAPI further improves the PaS, although
the improvement, on average, is rather marginal. The
rAPI is the best-performing policy in all cases, and its
median performance is within 4% of the upper bound
derived in §5. Although it is difficult to judge how
the rAPI compares with the optimal policy, the fact
that the rAPI is much closer to the optimal value than
it is to the upper bound in Tables 1 and 2 suggests
that the figures in Table 3 are a conservative statement
of where the policies stand in relation to the optimal
value.

Whereas our numerical experiments in Tables 1–3
show that the suite of priority policies (Rå, Råà, and
PaS) generally perform very well, and in several cases
the API method offers only marginal improvement

Table 2 Percentage Suboptimalities in k = 3 Class Systems of
Various Traffic and Abandonment Level Combinations

Case Workload Råà Rå PaS SLQ rAPI UB

A Light
90th 0.76 0.46 0.01 5054 0.00 1.03
75th 0.23 0.23 0.00 3029 0.00 0.70
Median 0.03 0.07 0.00 1020 0.00 0.34

Moderate
90th 1.30 0.75 0.01 6064 0.00 1.25
75th 0.62 0.39 0.00 3025 0.00 0.94
Median 0.11 0.03 0.00 1050 0.00 0.51

Heavy
90th 1.32 0.86 0.02 8052 0.00 1.54
75th 0.62 0.32 0.00 5028 0.00 0.99
Median 0.11 0.02 0.00 2041 0.00 0.61

B Light
90th 0.26 0.69 0.04 3039 0.01 1.15
75th 0.07 0.24 0.01 2032 0.00 0.76
Median 0.01 0.09 0.00 1043 0.00 0.45

Moderate
90th 0.85 0.89 0.08 6003 0.02 1.58
75th 0.38 0.30 0.01 4027 0.00 0.92
Median 0.10 0.05 0.00 2058 0.00 0.55

Heavy
90th 1.52 0.86 0.16 10010 0.03 1.65
75th 0.84 0.32 0.04 7015 0.01 1.03
Median 0.13 0.02 0.00 3070 0.00 0.58

C Light
90th 0.01 0.97 0.00 1044 0.00 0.63
75th 0.00 0.50 0.00 0090 0.00 0.29
Median 0.00 0.21 0.00 0050 0.00 0.14

Moderate
90th 0.67 1.52 0.29 4076 0.10 1.51
75th 0.24 0.70 0.07 3028 0.02 0.93
Median 0.02 0.22 0.00 1088 0.00 0.56

Heavy
90th 6.62 0.45 3.02 13048 0.09 0.80
75th 2.78 0.13 1.03 8083 0.01 0.38
Median 0.76 0.00 0.09 5023 0.00 0.17

Notes. In the last column, we report the percentage above the optimal policy of
the upper bound.

on average, it is not always the case. To conclude
our numerical study, we offer one example where
the improvement of the rAPI method is substantial.
Consider a k= 3 example in which the class parameters
4ãj , åj , àj , Rj5 are given for classes 1–3 by 4ã, 3, 0.1, 5),
45ã/3, 5, 1, 2), and 44ã/3, 4, 5, 1), respectively. With
these parameters we have ã= ê, and the Råà rule
gives class ordering 321, and the Rå rule gives 123.
As seen in Figure 3, the Råà rule performs well for
small ê, whereas the Rå rule performs well for large
ê, which coincides with intuition. For intermediate ê
values, however, there is a substantial gap between the
suite of priority policies (Rå, Råà, and PaS) and the
rAPI method (with t = 1, m= 105, n= 75). In particular,
when ê= 107, the Rå rule is 4.26% suboptimal, but the
rAPI is 0.04% suboptimal.
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Table 3 Percentage Below the Upper Bound in k = 5 Class Systems
of Various Traffic and Abandonment Level Combinations

Case Workload Råà Rå PaS SLQ rAPI

A Light
90th 3.86 4.05 3.76 7095 3.72
75th 3.40 3.43 3.24 6028 3.23
Median 2.88 2.89 2.73 5046 2.73

Moderate
90th 5.47 4.91 4.91 11063 4.89
75th 4.08 3.92 3.86 9086 3.86
Median 3.32 3.19 3.13 7038 3.13

Heavy
90th 6.00 5.86 5.52 13039 5.52
75th 5.16 4.97 4.80 10060 4.80
Median 4.38 4.05 3.94 8079 3.94

B Light
90th 3.76 3.97 3.74 7085 3.74
75th 3.25 3.51 3.25 6052 3.25
Median 2.74 2.88 2.70 5036 2.70

Moderate
90th 5.76 5.96 5.73 13030 5.73
75th 4.77 5.15 4.71 11034 4.67
Median 3.40 3.41 3.37 9030 3.37

Heavy
90th 6.45 6.29 6.08 17056 6.07
75th 4.86 4.94 4.75 14064 4.74
Median 3.87 3.82 3.78 11066 3.64

C Light
90th 1.00 1.55 1.00 2085 1.00
75th 0.80 1.23 0.80 2032 0.80
Median 0.59 0.77 0.59 1081 0.59

Moderate
90th 3.85 4.09 3.85 9021 3.65
75th 2.53 3.29 2.53 7023 2.51
Median 2.03 2.25 2.03 5082 2.02

Heavy
90th 4.73 1.77 4.40 19011 1.51
75th 2.92 1.01 2.24 15009 0.88
Median 1.20 0.48 1.04 11003 0.41
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Figure 3 Percentage Suboptimality for Six Heuristics for the
Example at the End of §6.2

Note. The variations of API shown denote the initializing policy.

6.3. Computational Time for rAPI
and the Upper Bound

Table 4 summarizes the time needed to compute the
rAPI heuristic. Please note that the algorithm was
coded in the C programming language and carried
out on a High Performance Computing cluster, with
a typical node specification of 2.26 GHz Intel Xeon
E5520 processor. Unsurprisingly, the computational
burden grows with the number of customer classes k.
Recall that the number of selected states n used in
the approximate PI step grows roughly linearly in k.
Further, as k increases, the balance of computational
effort moves toward the sampling stage of the API
algorithm and, within the sampling stage, toward the
estimation of bias at the support states. These trends
particularly reflect the nature of the growth in the
mean times tè4n5 for a single simulation run during the
estimation of the bias óè4n5. The mean computation
times for the upper bound in each problem are in the
order of 10, 400, and 3,000 seconds for systems with
two, three, and five customer classes, respectively. This
growth in the computational burden reflects the growth
in the number of MDP subproblems that must be
solved through DP methods to generate the constraints

Table 4 Mean Computation Time (Secs) Needed to Generate the
rAPI Policy in Each Problem of Various k Class Systems

Proportion

k Case Workload Time Pilot Anchor Support

2 A Light 25 0.07 0.54 0.39
Moderate 26 0.07 0.54 0.39
Heavy 29 0.06 0.54 0.39

B Light 39 0.05 0.43 0.52
Moderate 49 0.04 0.44 0.52
Heavy 73 0.03 0.47 0.50

C Light 69 0.03 0.36 0.61
Moderate 233 0.01 0.45 0.54
Heavy 291 0.01 0.50 0.48

3 A Light 76 0.04 0.30 0.67
Moderate 81 0.03 0.31 0.66
Heavy 87 0.03 0.31 0.65

B Light 127 0.02 0.24 0.74
Moderate 157 0.02 0.27 0.71
Heavy 209 0.02 0.31 0.67

C Light 249 0.01 0.19 0.80
Moderate 806 0.01 0.32 0.68
Heavy 1822 0.00 0.45 0.54

5 A Light 198 0.02 0.17 0.81
Moderate 210 0.02 0.18 0.80
Heavy 224 0.02 0.19 0.79

B Light 338 0.01 0.14 0.84
Moderate 422 0.01 0.18 0.81
Heavy 559 0.01 0.24 0.75

C Light 810 0.01 0.11 0.88
Moderate 2371 0.00 0.29 0.71
Heavy 8786 0.00 0.49 0.51

Note. Also shown are the mean proportions of overall computation time spent
on the pilot study, sampling of the anchor set, and sampling of the support set.
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for the linear program in §5, when the number of
customer classes increases.

7. Conclusions
This paper studies the problem of developing effective
service policies for multiclass queues with abandon-
ment in a computationally efficient manner. Whereas it
is known in the literature that the server can do well
simply by maximizing the instantaneous reward rate
using the Rå rule in heavy-traffic systems, we show
that in light-traffic systems it becomes important to
take into account the abandonment rate using the Råà
rule. We also consider an approximate policy improve-
ment algorithm to improve a given service policy. Our
numerical study shows that the Råà rule complements
the Rå rule, and applying a pairwise-swapping mech-
anism to each often yields an even stronger priority
policy. The best priority policy that we compute is
often nearly optimal; in the cases where it is not, the
approximate policy improvement algorithm invariably
substantially tightens up either the optimality gap or
the gap relative to the upper bound that we compute.
There are several interesting future research direc-

tions. If a customer’s lifetime in the system does not
follow an exponential distribution, then the server
needs to take into account the arrival time of each
customer when selecting which customer to serve. The
problem will be further complicated if the time needed
for the server to switch to another queue cannot be
ignored. Still another research direction is to allow the
customers to be active decision makers. For example,
in military applications, an adversarial customer may
not select a queue to join at random as assumed in our
model but instead chooses the one that maximizes the
expected gain from his standpoint.
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