
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2017-06

Mobile computing solutions for effective and
efficient generation and dissemination of
tactical operations orders

Haagenson, Paul D.
Monterey, California: Naval Postgraduate School

https://hdl.handle.net/10945/55611

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

MOBILE COMPUTING SOLUTIONS FOR EFFECTIVE
AND EFFICIENT GENERATION AND DISSEMINATION

OF TACTICAL OPERATIONS ORDERS

by

Paul D. Haagenson

June 2017

Thesis Advisor: John Gibson
Co-Advisor: Gurminder Singh

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2017

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
MOBILE COMPUTING SOLUTIONS FOR EFFECTIVE AND EFFICIENT
GENERATION AND DISSEMINATION OF TACTICAL OPERATIONS
ORDERS

5. FUNDING NUMBERS

6. AUTHOR(S) Paul D. Haagenson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government. IRB number
____N/A____.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Leaders of all grades and occupational specialties in the Marine Corps and throughout the

military issue operations orders to communicate intended action in tactical environments.
Despite advances in communication and mobile computing technology, most leaders in austere
environments still create orders with pen and paper and disseminate them verbally or with
manual copying. This process is inefficient and error-prone. We propose an Android application,
the Tactical Operations Order Tool–Handheld (TOOTH), to increase the effective development
and dissemination of tactical operations orders by expeditionary leaders. Our research utilizes
the author’s experience as an instructor and practitioner in conjunction with Marine Corps and
Joint doctrine, to establish a new paradigm for capturing, storing and transmitting the
informational elements of an operations order. We developed a working technology
demonstrator that incorporates a new object-oriented data structure into existing open-source
mobile technology to provide a framework for future development and testing. We received
positive feedback on the initial application design, and early results indicate time savings over
the manual process in excess of 50%. We believe that a fully implemented version of this
capability has the potential to increase mission planning effectiveness, decrease errors, and
save tens of thousands of person-hours annually.
14. SUBJECT TERMS
operations, orders, mobile, application, Android, five paragraph, mobile, map, software

15. NUMBER OF
PAGES

141
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release. Distribution is unlimited.

MOBILE COMPUTING SOLUTIONS FOR EFFECTIVE AND EFFICIENT
GENERATION AND DISSEMINATION OF TACTICAL OPERATIONS ORDERS

Paul D. Haagenson
Major, United States Marine Corps

B.S., United States Naval Academy, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2017

Approved by: John Gibson
Thesis Advisor

Dr. Gurminder Singh
Thesis Co-Advisor

Dr. Peter Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Leaders of all grades and occupational specialties in the Marine Corps

and throughout the military issue operations orders to communicate intended

action in tactical environments. Despite advances in communication and mobile

computing technology, most leaders in austere environments still create orders

with pen and paper and disseminate them verbally or with manual copying. This

process is inefficient and error-prone. We propose an Android application, the

Tactical Operations Order Tool–Handheld (TOOTH), to increase the effective

development and dissemination of tactical operations orders by expeditionary

leaders. Our research utilizes the author’s experience as an instructor and

practitioner in conjunction with Marine Corps and Joint doctrine, to establish a

new paradigm for capturing, storing and transmitting the informational elements

of an operations order. We developed a working technology demonstrator that

incorporates a new object-oriented data structure into existing open-source

mobile technology to provide a framework for future development and testing.

We received positive feedback on the initial application design, and early results

indicate time savings over the manual process in excess of 50%. We believe that

a fully implemented version of this capability has the potential to increase mission

planning effectiveness, decrease errors, and save tens of thousands of person-

hours annually.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION .. 1
A. TECHNOLOGY GAP .. 3
B. SYSTEM PURPOSE ... 3
C. RESEARCH QUESTIONS .. 4
D. SCOPE AND BOUNDARIES .. 5
E. RELEVANCE TO THE DEPARTMENT OF DEFENSE 6
F. INITIAL RESULTS .. 6
G. THESIS ORGANIZATION ... 6

II. BACKGROUND ... 9
A. THE OPERATIONS ORDER ... 9

1. History ... 9
2. Usage ... 10
3. Format ... 12

B. ORDER CREATION AND DISSEMINATION 20
1. Doctrine ... 20
2. Best Practices ... 22
3. Pitfalls and Shortfalls ... 23

C. EXISTING TECHNOLOGY ... 26
1. Military ... 26
2. Civilian ... 34

D. FUTURE TECHNOLOGY .. 38
1. Mobile Devices in the Marine Corps 38
2. The Ideal Convergence of Theory and Technology 39

E. SUMMARY .. 40

III. APPLICATION DESIGN .. 41
A. REQUIREMENTS AND GOALS ... 41

1. Concept of Operations ... 41
2. Use Cases.. 42
3. Goal Hierarchy .. 44
4. Design Constraints ... 46

B. OVERARCHING DESIGN ... 48
C. DATA STRUCTURES ... 49

1. Using the Object-Oriented Concept 50
2. Defining Data Interactions ... 52
3. Data vs. Format Focus ... 54

 viii

D. USER INTERFACE ... 55
1. Overarching Goals .. 55
2. Map Display Design .. 58
3. Data Entry Design ... 59

E. SUMMARY .. 61

IV. DESIGN IMPLEMENTATION AND TESTING ... 63
A. IMPLEMENTATION PLAN ... 63

1. Agile Method ... 63
2. Android Studio Programming .. 64
3. Application Debugging .. 64
4. KILSWITCH Plugin Integration .. 65

B. APPLICATION STRUCTURE ... 65
1. Data Object Structure ... 68
2. Data Manipulation ... 71

C. USER INTERFACE ... 76
1. Fragment Interactions .. 76
2. Map Implementation ... 79
3. Data Entry and Display Implementation 82

D. DEVELOPMENT STATISTICS ... 96
E. DEMONSTRATION ... 96
F. SUMMARY .. 97

V. CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORK 99
A. CONCLUSIONS .. 99
B. RECOMMENDATIONS ... 100
C. FUTURE WORK.. 101

APPENDIX A. GOAL HIERARCHY LIST ... 105

APPENDIX B. DATA RELATIONSHIP GRAPH ... 113

LIST OF REFERENCES ... 115

INITIAL DISTRIBUTION LIST .. 121

 ix

LIST OF FIGURES

 Basic Five Paragraph Order Structure. Adapted from The Figure 1.
Basic School (2015a). ... 14

 Example of Internal Order Information Dependencies – Figure 2.
Tactical Tasks. .. 16

 Examples of External Information Dependencies in the Figure 3.
Operations Order. .. 18

 Examples of External Products Derived from the Operations Figure 4.
Order. .. 19

 The Marine Corps Planning Process. Source: United States Figure 5.
Marine Corps (2010). ... 20

 C2PC Screen Capture. Source: tandef (2012). 28 Figure 6.

 Google Earth Screen Capture. Source: Google Earth. 29 Figure 7.

 KILSWITCH Screen Capture. Source: NAVAIR (2015). 30 Figure 8.

 Diagram of a Typical Expert System. Adapted from Franklin et Figure 9.
al. (1988). .. 31

 Example Results and Scheme of Maneuver (SOM) for AI Figure 10.
Mission Planning. Source: Kewley and Embrechts (2002). 33

 Microsoft Project Gantt Chart Example. Source: Anderson Figure 11.
(2010). ... 35

 Google Maps vs. OpenStreetMap Screen Captures. Source: Figure 12.
Buczkowski (2015). ... 36

 Example of Shared Sub-Steps in Use Cases. 43 Figure 13.

 Example Goal Hierarchy Chain. .. 46 Figure 14.

 Overview of System-Level Design and Interactions. 49 Figure 15.

 Example Diagram of Data Scalability. ... 50 Figure 16.

 Example of Object Inheritance in the TCM Class. 51 Figure 17.

 Example Graph of TCM Data Object Interactions.......................... 53 Figure 18.

 x

 Example Task Object Method Logic for Consistency in Self-Figure 19.
Deletion. .. 54

 Initial User Interface Design Idea – Pop-up Windows Overlaid Figure 20.
on Map. ... 56

 Initial User Interface Design Idea – Map-as-a-Timeline. 56 Figure 21.

 Initial User Interface Design Idea – Compromise Model with Figure 22.
Radial Menu Button. .. 57

 Map Window Template before Implementation. 58 Figure 23.

 Example Table of Organization for a Marine Corps Special Figure 24.
Operations Unit. Source: Global Security (2017). 60

 Example of a Temporal Bar Graph. Source: Börner and Polley Figure 25.
(2014). ... 61

 Life Cycle of an Android Application Activity. Source: Google Figure 26.
(2017). ... 66

 Pseudocode for TOOTH Activity Initiation. 68 Figure 27.

 Pseudocode for Creating Default Task Type Objects. 70 Figure 28.

 Pseudocode for Add to Order Function. .. 72 Figure 29.

 Screen Capture of Java Code for Add to Order Function. 73 Figure 30.

 Screen Capture of Filename Prompt. .. 74 Figure 31.

 Fragment Area Nesting in TOOTH. ... 77 Figure 32.

 TOOTH User Interface. ... 78 Figure 33.

 Full Map Interface. ... 80 Figure 34.

 Map Interface with Unit Location Overlay. 81 Figure 35.

 Pseudocode for Select Parent Unit Array Adapter Usage. 83 Figure 36.

 Example Form for Unit Object Editing. .. 84 Figure 37.

 ArrayAdapter Interface for Parent Unit Selection. 84 Figure 38.

 Unit Hierarchy Interface Fragment... 86 Figure 39.

 xi

 Unit Hierarchy Interface – Unit Editing Option Menu. 87 Figure 40.

 Unit Information Form Fragment.. 88 Figure 41.

 Pseudocode for Unit Hierarchy Tree Width Calculations. 89 Figure 42.

 Pseudocode for Unit Hierarchy Coordinate Assignment. 90 Figure 43.

 Unit Hierarchy Interface With Multiple Unit Levels. 91 Figure 44.

 Examples of Task Relationships. .. 92 Figure 45.

 Pseudocode for Task Dependency Graph Ordering. Adapted Figure 46.
from Cormen, Leiserson, and Rivest (2001). 93

 Task Editing Form Interface. ... 94 Figure 47.

 Task Dependency Interface. .. 95 Figure 48.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Goal One Hierarchy List. ... 106

Table 2. Goal Two Hierarchy List. ... 107

Table 3. Goal Two (Continued) and Goal Three Hierarchy Lists. 108

Table 4. Goals Four Through Seven Hierarchy Lists. 109

Table 5. Goal Eight Hierarchy List. .. 110

Table 6. Goals Nine and Ten Hierarchy Lists. ... 111

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

AI Artificial Intelligence

API Application Program Interface

BML Battle Management Language

C2PC Command and Control Personal Computer

C-BML Coalition Battle Management Language

COA Course of Action

CPOF Command Post of the Future

DAG Directed Acyclic Graph

DOD Department of Defense

GPS Global Positioning System

GRG Grid Reference Graphic

HTML Hyper-text Markup Language

IDE Integrated Development Environment

IEEE Institute of Electronics and Electrical Engineers

J-BML Joint Battle Management Language

JMPS-E Joint Military Planning System – Expeditionary

MaS Modelling and Simulation

MAGTF Marine Air-Ground Task Force

MCPP Marine Corps Planning Process

MTWS MAGTF Tactical Warfare Simulator

NATO North Atlantic Treaty Organization

NPS Naval Postgraduate School

OTIC Operations and Tactics Instructor Course

SOM Scheme of Maneuver

TBS The Basic School

TCM Tactical Control Measure

TOOTH Tactical Operations Order Tool - Handheld

U.S. United States

USMC United States Marine Corps

WBS Work Breakdown Structure

 xvi

WWI World War One

WWII World War Two

XML Extensible Markup Language

 xvii

ACKNOWLEDGMENTS

I would like to thank my advisors for taking my ideas and shaping them

into a worthwhile project. Their guidance and expertise has been invaluable.

I would like to thank my lovely wife for being my best friend and for her

constant support in allowing me to do the job that I love, even when it has

resulted in deployments and more work for her. I would like to thank my adorable

children for giving me extra reasons to enjoy coming home every day.

I would like to thank my peers for helping to smooth my transition into the

world of computer science.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Less than two years from today, a United States Marine Corps (USMC)

lieutenant will be sitting against the wall in a dark room in a nameless building in

a nameless country in the Middle East. He will be subconsciously listening to his

Marines as they finish clearing the upper stories of the building and establish

perimeter security, but his focus is on the task that he just received over the

radio: a change of plans. His company is no longer going to be clearing their

current sector of the city but has instead been tasked to conduct a movement-to-

contact several kilometers into an assault on a suspected enemy strong point

along the nearby river. His platoon will be the lead element and he has been

given a series of checkpoints to follow, along with the last known information

about the enemy’s positions. The company moves in four hours, but the

company commander wants to be back-briefed on the Lieutenant’s plan in one

hour. His platoon sergeant enters the room and says that he heard the word has

changed; he wants to know what he can tell the squad leaders. “Tell them we’re

walking,” says the Lieutenant. “Tell them to change their socks and to spread-

load First Squad’s gear. I’ll tell them more once I have a plan.” He rubs his

forehead, tired like the others after seven straight days of nerve-racking and

bone-numbing building clearing. He slaps himself in the face and forces himself

to focus.

He knows how this used to be done, the way he was taught at the Infantry

Officer Course (IOC). He remembers the stress of frantically scribbling words on

write-in-the-rain paper with a grease pencil, of making side-lists of any items to

revisit in order to keep his entire plan synchronized. He still carries a paper map,

compass, GPS receiver, and combat orders template in his pack just in case. But

he doesn’t need it today. He reaches instead into his cargo pocket and pulls out

the Marine Corps-issued Android tablet that he has been using to track friendly

and enemy positions all day. Still mostly charged from the night before, it is now

time to put it to work in a different way. He opens the tactical planning

 2

application, and is greeted with a series of simple questions and easy-to-press

buttons. He selects the option to build a new operations order and selects the

type of mission from a list of templates. He loads information previously saved

about his company’s units and their locations with a few more taps on the tablet’s

screen. He flips over to the map that is built into the application and quickly

adjusts the friendly and enemy locations based on the information he was given

on the radio. He changes the map from satellite imagery to a topographic layer

and, with a few more clicks, he adds the checkpoints he has been told to use. He

stares at the map for a few minutes, seeing a plan develop in his mind.

He knows what he wants to do. He also recognizes his own mental

exhaustion, so he taps the button that says, “Guide Me.” The application asks if

he wants to load the standard tasks for a movement-to-contact, and then walks

him through the sequencing of those tasks, working backwards from the

objective. As he makes adjustments to the tasks, they appear on a continuously-

updating timeline and he is able to see that his plan is tactically sound. He adds

an engineering unit that he forgot was attached to his platoon. All of his

adjustments have been automatically plotted on the map, with graphics depicting

the tactical tasks to be accomplished. He clicks the “Check Me” button, and the

application reminds him to assign a task to the engineers. It also points out some

potentially dangerous problems with his geometry of fires. Several quick fixes

and the application is “happy.” The plan is sound.

He calls for his squad leaders and uses a small hand-held projector to

beam the plan onto the grimy walls of the building. He flips to another screen that

lists the tasks for each squad and a set of recommended gear checks and

inspections that are customized to those tasks. As the squad leaders move out to

prepare their Marines, the Lieutenant’s fellow platoon commander comes through

the door after running from the next sector over. He pulls out his own tablet and

in a minute the operations order has been wirelessly transferred. They talk about

a few details, shake hands, and part ways. Within a few minutes that other leader

will sit in his own dark room. A few taps on his tablet, and he is presented with

 3

the option to make a new order for his own platoon based on the existing one.

The company commander is briefed with fifteen minutes to spare.1

A. TECHNOLOGY GAP

The Five Paragraph Order Format for operations orders has existed in its

current form since 1954, and is universally understood as a means of

communicating intended military actions to all levels of the chain of command.

Marine Corps officers are steeply versed in the format during their basic officer

training, but the highly administrative process can distract from a focus on

communicating sound tactical thought. Tactical leaders in the Marine Corps

working in austere environments currently and primarily rely on manual methods

for generating and disseminating operations orders.

Currently, both the hardware and software capabilities exist to develop a

tool that would help tactical-level leaders build and disseminate orders more

efficiently and accurately, but those technologies have not been combined at the

mobile device level. A shift in the paradigm of the way we view the operations

order information allows for the application of object-oriented programming

design to the problem of creating and disseminating sound plans. This research

examines those information elements and attempts to find the best approach to

addressing the needs of the warfighter. This research will produce a working but

tightly scoped technology demonstrator that will serve as a framework for future

research and development efforts.

B. SYSTEM PURPOSE

The purpose of the proposed system, which the authors have named the

Tactical Operations Order Tool–Handheld (TOOTH), is to make the preceding

scenario a reality by treating the information in an operations order as a set of

interconnected objects replacing the current highly-linear, paper-based format. If

these information objects can be defined and linked, then those linked objects

1 This scenario is based on the primary author’s personal experience as a platoon
commander in Iraq in 2005, except for the existence of mobile technology.

 4

can be saved as a completed plan. If the resulting data structure can be

represented in an easy-to-use application, then the orders-writing process

becomes accessible to a greater number of Marines, even in austere

environments. A user only needs to define each object and relationship once, at

which point the completed set of objects can be exported in any number of

formats, including traditional written formats or non-traditional formats such as

simulator definition files or detailed fire support documents. Those same linkages

between objects can be examined in order to check the completed order for

irregularities or potentially dangerous omissions. This capability has the potential

to make leaders at all levels more efficient and accurate in generating and

disseminating operations orders. Moreover, the system could be used as a

training tool to improve the tactical thought of less experienced leaders.

C. RESEARCH QUESTIONS

This thesis strives to answer the following question:

 How can we automate the best practices of operations order
generation in order to improve effectiveness and efficiency?

The following sub-questions parse the primary question:

 Which artificial intelligence tools and data structure algorithms are best
suited to aiding the manual creation of operations orders while
simultaneously identifying and resolving discrepancies, and how might
they be utilized for the desired capability?

 Which data structures most accurately capture the information
contained in an operations order while still allowing portability and
flexibility in a digital format, and how might they be integrated to form
an intuitive application?

 Which principles of human/computer interface design can be employed
to increase efficiency and accuracy of orders generation?

 Can the tools identified to increase orders generation efficiency be
employed within the framework of existing digital interoperability
products?

 5

 Does new software created using these tools show potential to
improve the ability of USMC leaders to quickly and accurately generate
operations orders?

D. SCOPE AND BOUNDARIES

This thesis focuses on making the tactical operations order process more

accurate and efficient through the use of mobile computing technology. It

envisions a mobile application that combines an object-oriented data structure

and a mapping component with the ability to template information. It shapes the

data for import and export in a variety of formats. This thesis does not provide a

fully-functional system due to the limitations of time and development resources;

rather, it will create a partially developed application to serve as a technology

demonstrator and a framework upon which to add future capability. The goal

hierarchy discussed in Chapter III and included in Appendix A serves as a vision

of what the authors believe is ultimately possible—several major features will not

be fully implemented in the technology demonstrator. While every effort has been

made to exercise sound practices with respect to application design and coding,

any formal continuation of this work would benefit from review by professional

programmers.

TOOTH is designed for use by Marines who have completed their entry

level training and Military Occupational Specialty (MOS) schooling, and have

therefore been exposed to the basics of operations orders. The technology

assumes some familiarity with the process of writing and disseminating those

orders and also assumes that the user meets health requirements for continued

military service. The application is designed with the needs of the military user in

mind and does not provide accommodation to persons with vision or other

disabilities.

The technology demonstrator is designed to be stand-alone. Initial efforts

to integrate with existing technologies were abandoned in the interest of reducing

complexity and dependency on external support during the development

process; however, the authors recognize the value of having the technology

 6

interface with existing programs and software systems, and encourage focus on

interoperability in future work. Additionally, the technology demonstrator is built to

run on specific Android devices. A full product should support scaling for a wide

range of device types and capabilities, but achieving that level of accessibility

was not necessary to demonstrate the core ideas of this research.

E. RELEVANCE TO THE DEPARTMENT OF DEFENSE

The Department of Defense (DOD) possesses operational planning

systems, mapping technologies, mobile device technologies, and a series of

formats and language constructs for capturing the information contained in

tactical operations orders. It currently has no system that combines all of these

features into a single tool for leaders at the tactical level. The creation and

adoption of a mobile computing solution for generating and disseminating

operations orders at the tactical level has the potential to save tens of thousands

of person-hours per year while simultaneously improving the accuracy and

lethality of leaders operating in austere environments.

F. INITIAL RESULTS

Although TOOTH has not been formally tested in any way, early results

suggest that its usage will result in efficiency gains well in excess of the 10%

development target. For example, the amount of time needed for TOOTH to

convert an existing operations order into a shell for a new order, with relevant

original information moved to the appropriate locations in the new shell, is less

than ten seconds. This represents a time-savings of more than 90% over similar

actions in a manual process.

G. THESIS ORGANIZATION

Chapter I introduces this research by outlining the technology gap in the

current tactical operations order process, introduces TOOTH as a potential

solution, discusses the relevance of this research to the DOD, specifies the

 7

research questions to be addressed, and describes the scope and limitations of

this thesis.

Chapter II discusses the background of the operations order, the current

methods for creating and disseminating operations orders (along with their

pitfalls), the existing technology, and a possible merger of ideas to create a

solution to the current technology gap.

Chapter III discusses the design of the application. The requirements and

goal structure for the application are detailed, to include the constraints imposed

by working with existing Marine Corps mobile devices. We then detail the

overarching design of the application, to include interfaces between the user, the

software, and existing hardware and operating system features. The concept of

object-oriented programming is reviewed, and the proposed data structures are

outlined along with descriptions of how they will meet the requirements of the

application. Finally, the proposed user interface is explained in the context of

predicted user requirements and environmental limitations.

Chapter IV discusses the implementation of the design detailed in Chapter

III and describes the creation of the technology demonstrator, including the

choice of software development methodology, the design of the application data

structure, and the algorithms required to implement the data structure effectively.

This chapter also details the user interface implementation and the methods

used to display order information within the interface. It concludes with a

discussion of software testing and the results of initial demonstrations of the

software to community representatives.

Chapter V concludes the thesis by discussing the effectiveness of the

technology demonstrator’s data structure and user interface. The chapter also

details recommendations for both the adoption of the ideas presented and for the

further development of TOOTH. It outlines potential future research projects in

expert system theory, artificial intelligence, natural language processing, and

 8

military simulations, all of which have direct correlation to objectives listed in the

software goal hierarchy.

 9

II. BACKGROUND

A. THE OPERATIONS ORDER

For as long as there have been conflicts between organized militaries,

there has been a requirement for military leaders to effectively communicate their

intent to their subordinates. The form taken by those communications, or orders,

has changed over time, but the overall purpose has not—to communicate a plan

and to coordinate the actions of various units across time, space, and

contingencies. The United States (U.S.) military and its allies are no different.

Many leaders have debated and worked to find the most efficient way for

commanders to communicate their plans and intent to subordinates, and after

every major conflict in our nation’s history there always follows much soul

searching and deliberation about the standard processes (Smith 1989). This

chapter examines the benefits and challenges of using the current standard

tactical-operations order format and focuses specifically on its use within the

United States Marine Corps (USMC), but the principles discussed can be applied

to almost any format.

1. History

In his seminal book Command in War, Martin Van Creveld (Van Creveld

1985) identifies six unique systems of command and control of military

operations throughout history, ranging from leadership on the literal front lines

during melee combat to today’s heavily technology-dependent and

geographically-dispersed leadership challenges. He particularly highlights two

driving factors that led to our current paradigm of command and control—the

switch from oral to written orders between 1750 and 1850 (and the resulting

relentless pursuit of the perfect format), and the advent of technology allowing for

instantaneous communications across great distances (radio and satellite voice

communications) (Van Creveld 1985).

 10

In a 1989 thesis for the School of Advanced Military Studies, Major

Matthew Smith explains that the five-paragraph format currently used by the

United States and its allies has its roots in work introduced by a cavalry officer,

Eben Swift, in 1897.

In general terms, Swift’s orders were clear, short, precise, and
complete. They avoided every form of expression that could have
been misunderstood because experience showed that such orders
had invariably been misunderstood. Swift’s order format used
positive terms so that responsibility could be placed with ease.
Orders were complete in form and legible even by a bad light. They
avoided conjectures, expectations, reasons or apologies for
measures taken. No order was given for things which would
ordinarily be done without special instructions. (Smith 1989, 5)

The format was modified again after both WWI and WWII, and finally took

its more modern form in 1954. The details of the schemes of maneuver were

moved deeper into the format, giving recipients context for their tasks before

telling them what to do. Compared to previous formats, this modern version is

“more detailed and highly structured, having a paragraph for almost each type of

information” (Filiberti 1987, 29).

2. Usage

The U.S. services and our North Atlantic Treaty Organization (NATO)

allies all use the same basic structure of the tactical operations order, with only

minor variations (U.S. Joint Forces Command 2011; NATO Military Agency for

Standardization 2000). This leads to an ease of communication and

interoperability that otherwise might not exist, especially where differences in

language or operational experience create predictable difficulties. The format is

used extensively within the U.S. military, not only by the Army and Marine Corps

but also by ground combat elements in other services such as the Navy civil

engineering units and Air Force combat air controllers.

Within the Marine Corps, the Five Paragraph Order format is used by all

ground Military Occupational Specialties (MOSs), but is most pervasive in

 11

combat units and those who directly support combat units. All Marine Corps

Officers undergo the same leadership training at The Basic School (TBS), where

they are first taught to be provisional rifle platoon commanders before learning

their specific MOS skills. The Five Paragraph Order format is used for

communication of tactical ideas during all tactical field events and tactical

decision games at the school, and thus its structure provides the framework for a

large portion of basic Marine Corps officer training. Five horizontal themes of

officership guide all training at The Basic School; one particularly pertinent to this

study is to be “able to decide, communicate, and act in the fog of war” (The Basic

School 2015b, 11). The Five Paragraph Order is expressly listed as the vehicle

for training this ability (The Basic School 2015b). Due to this shared training

background, the format is more engrained in the Marine Corps ethos and shared

tradition than with other services. It is arguably the one commonly shared

language of the entire Marine Corps officer community.

In order to understand the primary assertion of this thesis, it is first helpful

to understand how much time is spent creating and disseminating operations

orders every year. There is a surprising lack of research and data available, but

we can derive an estimate from the author’s experiences serving in several

different infantry battalions and from conversational anecdotes with peers from

other services. There are 24 active duty infantry battalions in the Marine Corps

(United States Marine Corps 2017), each of which we estimate contains

approximately 135 leaders who develop or brief tactical operations orders as part

of their duties. Although actual numbers vary by specific billet, we estimate that

each of these leaders averages six hours per month generating, reading, or

disseminating tactical orders. As shown in Equation (1), this estimate predicts the

total number of hours devoted to orders development in the Marine Corps

infantry community is in excess of 233,000 hours per year.

 12

(1)

Even small increases in efficiency with respect to the way that the Marine

Corps writes and disseminates tactical orders have huge potential benefits in

terms of saving of time and labor. In the Marine Corps infantry alone, a ten

percent improvement in the process would save more than 23,300 hours of

leaders’ time per year. This is approximately 10.8 person-years or full-time

equivalent (FTE). Given that the annual DOD composite rate for a junior grade

Marine Corps officer (O-3) in 2017 is approximately $139,000, this represents a

minimum annual savings of $1,501,200 (Comptroller 2016). Expanding this result

to include training commands and other MOSs such as Artillery, Combat

Engineering or Logistics would realistically cause this number to double. Given

the relative sizes of the U.S. Army and Marine Corps, the calculated total would

triple if expanded to include the active-duty Army, and would expand further if

other services and allied nations who use the same orders format are included.

Additional potential savings exist in the form of efficiencies in training with regard

to development of mission orders and reductions in human-induced errors in

orders development.

3. Format

In order to understand where anticipated efficiencies of 10 or more

percent can be found in the writing and disseminating operations orders, it is

necessary to understand the structure and complexities of the format. Although

the additions and other changes to the order that we have previously examined

have been made for good reason, it is also not hard to understand why new

Marine Corps officers spend the majority of their six month basic officer training

135 leaders
24 battalions x 3,240 leaders

battalion

6 hours 12 months 233,280 leader hours
3,240 leaders x x

month year year

 13

immersed in it, and why so many of them end up falsely equating a well-

formatted order with a solid plan.

a. Basic Structure

The tactical operations order format is comprised of five main paragraphs,

each with various subparagraphs and associated lists and graphics. That

structure is depicted in Figure 1, and is formulated around Swift’s idea that the

recipient of the order needs to understand context (Paragraph 1) in order to

conceptualize their tasks. The primary task of the unit (Paragraph 2 – Mission)

takes priority over all other information in the order, which is why it is presented

as soon as the recipient can process it in the proper context. When a unit

understands their primary task and purpose, everything else becomes additional

amplification and clarification (Filiberti 1987). Paragraph 3 gives an overview of

the plan, conveys specific tasks to subordinate units, and details the use of

supporting arms in achieving those objectives. Paragraph 4 provides detailed

administrative and logistics coordination, and Paragraph 5 provides information

about how the operation will be commanded and controlled.

 14

 Basic Five Paragraph Order Structure. Adapted from The Figure 1.
Basic School (2015a).

 15

b. Internal Dependencies

The overall operations order format appears simple, but it hides the fact

that much of the information it contains is inter-connected. For example,

information about tactical control measures (TCMs) such as unit objectives or

phase lines that is given in Paragraph 1 of the order is linked to the specific

actions that Marines will take at each of those TCMs. The type of operation that

the unit is conducting shapes the unit’s overarching task and implies that

subordinate units will be assigned certain individual tasks. The operation type

may also imply that the order will contain specific communications protocols or

require specific rehearsals to be conducted prior to execution. The amount of

communications equipment needed, its distribution among the unit, and the

appropriate signals that are listed in Paragraph 5 all have their roots in the

scheme of maneuver, fire support plan, and tasks listed in Paragraph 3. These

are just a few examples from a list of interdependencies within the order that

could be overwhelmingly large depending on the myriad variables associated

with the entire spectrum of military operations. An example depicting the

relationship of tactical tasks to other information within the order is given in

Figure 2.

 16

 Example of Internal Order Information Dependencies – Figure 2.
Tactical Tasks.

In normal, manual use, every one of these interconnections is a potential

point of error. If a leader changes a task in Paragraph 3 but neglects to change

the associated tactical control measures or the signal plan the result could be

confusion on the battlefield. The more complex the order the greater the potential

for disconnects between the different paragraphs if the person writing the order is

manually attempting to keep everything straight.

 17

In an informal review of several operations orders used in training

missions during pre-deployment workups, the authors found that as much as

80% of the information in a given operations order is tied in some way to other

information in that same order or to respective orders of adjacent units or higher

headquarters.

c. External Dependencies

External connections between the information in a given operations order

and those of higher headquarters or adjacent units pose the same issues as

internal dependencies, with the added complication that multiple leaders are

often working on their orders simultaneously. Additionally, there is a lot of

information in a given unit’s order that is drawn directly from the order published

by its parent unit. In a manual, orders-generation process, that information must

be manually copied verbatim from one order to the other. This is an inefficient

use of a leaders’ time and is an example of the format driving the process.

Other parts of the order are dependent on external stores of information,

or inform additional external processes and products. Some examples include

TCMs that are generated by higher headquarters and are propagated to all units

via tactical overlays, information about the enemy situation that comes in a

separate intelligence update, and information about friendly unit locations and the

capabilities of supporting fires agencies that come from other command and

control systems. Much of this information is copied over and over again from

order to order with little variation, another example of wasted effort and energy

that could instead be focused on the tactics of each specific plan. Examples of

this type of external dependency are depicted in Figure 3.

 18

 Examples of External Information Dependencies in the Figure 3.
Operations Order.

There are also outputs that are generated from a given operations order

that inform other units and processes. These also fall into the category of

external dependencies. For example, a leader needs to communicate the

resulting fire support plan (usually in a different format from the one used in the

order) to any external agencies supporting his or her maneuver. Small-unit

leaders are given equipment lists and plans for rehearsal and inspections based

 19

on the tasks that are being accomplished. If the operation uses vehicles, there

are separate manifests, load plans or “bump” plans to handle the organization of

loading/unloading or to handle the loss of a vehicle. All of these special outputs

and formats are simply a restructuring of information that is already in other parts

of the order, but building them manually places an additional burden on the

leader writing the order. Examples of this type of external dependency are

depicted in Figure 4.

 Examples of External Products Derived from the Operations Figure 4.
Order.

 20

B. ORDER CREATION AND DISSEMINATION

1. Doctrine

The Marine Corps uses an operation planning process that is aptly named

the Marine Corps Planning Process (MCPP), detailed in Marine Corps

Warfighting Publication 5-1 (United States Marine Corps 2010). This process is

scalable to fit the size of the operation being planned, from company-level tactics

to entire campaign plans. It consists of six phases arranged in a cycle, starting

with Problem Framing (Figure 5).

 The Marine Corps Planning Process. Source: United States Figure 5.
Marine Corps (2010).

Problem Framing consists of organizing all of the information available

about a given battlespace and seeking to understand the problem that the

operation must solve. Course of Action (COA) Development, COA Wargaming,

and COA Comparison/Decision all revolve around choosing a specific plan

toward which to commit the unit’s resources. The actual process of capturing the

 21

plan in a communicable format (Orders Development) should only occur once the

idea for the plan has been formulated. Finally, Transition is the step where action

is taken on an order—whether briefing it to Marines for execution or passing it

from a future operations cell to a current operations cell for further refinement.

The cyclical nature of the process seeks to ensure that if new ideas or

information come to light they can be incorporated into the broad understanding

of the operation and COA formulations and decisions can be revisited as

necessary (United States Marine Corps 2010).

This same process is theoretically applied at the tactical level, including

the ability to adapt an order mid-development if new information comes to light

(The Basic School 2015a). Unlike planning at the battalion level or higher,

however, leaders at the lower tactical levels are often generating orders alone,

without the staff personnel needed to quickly rework a plan administratively if

need be. Their timelines are usually more compressed than those experienced

by leaders planning at the battalion level or above (it is common for a battalion to

develop the plan a single operation for several weeks, whereas units at the

company level often have less than a day—or even less than an hour—to

formulate and brief a plan). Furthermore, they usually do not have the luxury of

waiting until their ideas are finalized to begin capturing them in a communicable

format—for the sake of their Marines they usually issue a “Warning Order”

containing the information needed to begin preparations as soon as the basics of

the plan are sketched out. The result of all of these factors is a “bird in the hand”

mentality: small unit leaders can be reluctant to change a plan once they have

started writing it down and can often be said to have “fallen in love” with their

plans.

The Marine Corps’ doctrine does not specify or prescribe a format for the

completed operations order, and acknowledges that they may even be purely

verbal (United States Marine Corps 2010), but the reality is that Marines default

to what they know, and all Marine leaders know the five paragraph format.

 22

2. Best Practices

From the outset of training at TBS, new officers are told that although they

will receive a solid grounding in the fundamentals of the tactical order writing

process, their understanding of how to quickly sum up a situation, formulate a

plan and communicate that plan effectively will come with repeated practice and

experience (The Basic School 2015a). Much of that understanding comes in the

form of “best practices”—ideas and methods gleaned from the experiences and

instructions of others. This begins at TBS with the instruction provided by each

student’s Staff Platoon Commander and continues with the feedback and

personal anecdotes of other staff members who coach the students through a

series of field exercises.

Once assigned to the operating forces, leaders continue to hone their

abilities, to include order writing, through their own successes and failures and

also through their initiative to learn from peers and more experienced leaders.

This can be done through a number of modes ranging from personal interaction

to reading the opinions of others expressed in books or publications such as the

Marine Corps Gazette. The end goal is a commander who possesses

“coup d’oeil” (“stroke of the eye”), defined by Carl Von Clausewitz (1989) as the

ability to

see things simply, to identify the whole business of war completely
with himself, that is the essence of good generalship. Only if the
mind works in this comprehensive fashion can it achieve the
freedom it needs to dominate events and not be dominated by
them. (578)

With very little of the instruction in proper tactical thought and

communication formalized beyond entry level training, it is easy to see how

individuals are largely the products of their personal initiative and circumstances

(to include the other leaders to whose influence they are exposed). It is the

author’s assertion based on experience teaching new Marine Corps officers that

one method of enhancing this largely oral tradition would be to develop a tool that

 23

incorporates best practices in tactical thought and coaches less experienced

users in the application of those best practices.

3. Pitfalls and Shortfalls

The Five Paragraph Order format as it exists today does a fine job of

conveying information to Marines in a manner that they are trained to digest, but

the process of preparing orders is fraught with problems. There are several broad

issues with the current format and its associated orders generation process that

can be alleviated with a software solution while simultaneously preserving the

familiar structure, and therefore not invalidating years of training methodology.

a. One Size Fits All

It is the experience of the author during time spent teaching operations

orders at The Basic School that the emphasis placed on proper orders format

during entry-level training is a necessary evil. Providing student lieutenants with a

standard way of organizing and communicating their thoughts is immensely

valuable. This is undoubtedly one of the reasons that the format has grown in

size and prescriptiveness over time—whenever someone comes up with a good

idea for communicating a portion of an order, that idea is incorporated as part of

the “standard.” Thus, for example, the counter-insurgency efforts in Iraq and

Afghanistan prompted the addition of cultural and geo-political information into

the situation paragraph of the order (Department of the Army 2014). While these

issues were appropriate to consider and brief in counterinsurgency fights, the

danger is that expanding the operations order format to fit those details added a

permanent layer of complication even for situations in which that information has

little relevance.

This expansion of the orders format to fit all possible contingencies has a

distinct and observable downside of causing inexperienced leaders to adjust their

plan to fit the format rather than adjusting the format to fit their plan. This problem

could be remedied by a method that forces the user to formulate a focused plan

and then converts that plan into written documents and templates as required.

 24

b. Redundancy and Error

As we have previously demonstrated, the basic structure of the Five

Paragraph Order contains myriad internal and external dependencies, with the

same information being formatted in different ways for different audiences. While

this makes it easy for subordinates who are familiar with the format to find the

specific pieces of information that they need, it also introduces an un-necessary

amount of complexity to the process of actually writing an operations order. The

natural result of the interdependencies is that a change made in one part of the

order has a “ripple effect” throughout the rest of the order. The more pronounced

the change, the greater the ripples. The author observed in the course of grading

hundreds of student orders during his time as an instructor at TBS that most

errors are the result of un-reconciled changes made to a different portion of the

order.

Some errors in tactical orders are inconsequential. Others are obvious to

anyone who spots them and are summarily dismissed. Due to the nature of the

business of war, however, there is a significant chance that an error in an

operations order could not only be gravely consequential, but also could be

difficult to identify as an error due to the stress and fatigue of combat. This is

especially true given the short planning timelines associated with orders

generation at the leading edges of the battlefield. A system that reduces the

probability of these errors occurring would be greatly beneficial to the armed

services.

c. Combat and Human Factors

The redundant and error-prone nature of the orders format is magnified by

the fact that its primary purpose is to serve as a communication vehicle during

the stress of combat, an activity that is inherently chaotic and distracting. It is

widely understood that stress and fatigue effect decision making, but what is less

studied is the role that the format of the operations order plays in enhancing or

mitigating the effects of that stress.

 25

Neuroscience and Behavioral Reviews published a review in 2012

summarizing nearly 30 years of scientific studies on the effects of stress (Starcke

and Brand 2012). Among its findings are some that directly relate to the decision-

making abilities of leaders under significant stress from fatigue, fear, uncertainty,

anger, grief, and other emotions that commonly accompany combat operations.

The review found fairly unanimous agreement among the scientific community on

three common responses to stress that are relevant to the military decision

maker:

(1) “Dysfunctional strategy use” – People under unusual amounts of
stress do a poor job of evaluating all of their available options, and
tend to decide on an outcome prematurely—that is, they choose
before they know all of the necessary information. (Starcke and
Brand 2012, 1234).

(2) “Insufficient adjustment from automatic response” – The surveyed
research was mixed on whether people tend toward more or less
risky decisions under stress, and seemed to depend on
personalities of those being tested and the reward schemes used
by the researchers. The studies were unanimous, however, in
confirming that stress increases the “bounding effect”—the idea
that decisions are largely biased by the context in which they are
originally presented. (1236).

(3) “Altered feedback processing” – People under stress tend to rely
more on the immediately available opinions of those around them,
regardless of the correctness of those opinions. (1236).

These findings reinforce the idea that manual creation of the current

orders process under stress is prone to error. The current process is based more

on format than it is on content, and therefore it does not lead a user to focus on

available options. It is also prone to the bounding effect in that users are more

likely to copy and paste ideas from higher headquarters’ order without applying

critical thought to correctness. A system that helps the user to focus on

organizing necessary tasks and simultaneously checks for correctness might do

a lot to mitigate the effects of stress on the order generation process.

 26

C. EXISTING TECHNOLOGY

The concept of using computers to aid in planning is not new, nor is the

idea of using data structures or mobile technology to make complicated tasks

simpler for the user. In order to understand how an application like TOOTH might

fill the current technology gap, it is necessary to discuss the significant work that

has already been done in the area of planning tools and applications.

1. Military

Given that planning and conducting operations is the essence of the

military’s existence, it is not surprising that there are a number of tools and

processes dedicated to collecting, organizing, sharing, and displaying tactical

information. What is surprising is that, for all of the effort spent capturing the

“how” of military operations, there has been very little technical emphasis placed

on improving the thought process of the junior leader regarding the “what”—

helping them to build and communicate sound plans.

The following are some of the tools available in the military today, along

with reasons why each presents only a part of a possible holistic solution:

a. Languages and Data Structures

The idea of defining a data structure that captures all of the interactions

between pieces of information in an operations order is not new. There is NPS

thesis work dating back to 1994 that attempted to organize tasks for output in a

now-defunct set of simulator languages (Mohn 1994; Serbest 1994).

A more lasting effort has been to codify military terminology in a way that

allows universal communication between various U.S. military and allied C2 and

simulator systems. Battle Management Language (BML) sought to define a

precise language for tasking and reporting that would capture doctrinally correct

tasks and other order information without constraining the free expression of

commander’s intent (Pullen, Hieb, and Levine 2007).

 27

The BML effort became a North Atlantic Treaty Organization (NATO) effort

in September of 2004, with the acknowledgement that “an open framework is

needed to establish coherence between C2 and Modeling and Simulation (MaS)

type systems in order to provide automatic and rapid unambiguous initialization

and control of one by the other” (NATO Research and Technology Organization

2012, 1–2). In total, more than nine separate systems and languages have been

integrated into a very comprehensive set of definitions for the interaction between

systems (Pullen, Hieb, and Levine 2007). The results of the initial BML effort

were released in 2012 with the recommendations for continued work to bring the

technology to a readiness level that would support operational use (NATO

Research and Technology Organization 2012).

BML as a structure is very robust, but has been developed from a

perspective of system-to-system communication. Thus, many of the aspects of

an operations order that are derived directly from information such as task

relationships or commander’s intent are expressed merely as “free text” (Pullen

et al. 2011). Furthermore, BML does not appear to support finely-grained

relationships between tasks of the type necessary to describe a scenario in

which one task had a pre-determined overlap with another, or where one task

had to both start after another task and also end before it (nested inside of said

task). This issue will be addressed again in Paragraph III, Application Design.

b. Planning / C2 Technologies

The DOD uses numerous desktop computing systems and software for

those systems that assist in timely command and control of friendly forces. These

systems contain very robust capabilities for graphically planning operations and

real-time tracking of movement and reporting information. Among these systems

are Northrup Grumman’s Command and Control Personal Computer (C2PC)

(Figure 6), the Command Post of the Future (CPOF), and the Joint Military

Planning System–Expeditionary (JMPS-E).

 28

 C2PC Screen Capture. Source: tandef (2012). Figure 6.

While robust, these systems are focused on mapping and reporting and

place little to no emphasis on tying information together as a holistic plan.

Furthermore, these systems are not widely available in a mobile format and

require significant levels of operator training in order to be used effectively, even

in a desktop Combat Operations Center (COC) environment.

c. Mapping Technologies

The military also uses robust mapping software in ways that are an

extension of their original purpose. One example of this is the use of the National

Geospatial-Intelligence Agency’s FalconView, the mapping software that makes

up the core of the Air Force’s Portable Flight Planning Software (NGA 2016). The

mapping aspect of FalconView looks very similar to that of C2PC, but the ease of

loading satellite images has long made it a favorite tool of the ground operations

community. The author first used it in Iraq in 2005, and it was still being taught at

the Expeditionary Warfare School (EWS) when he attended in 2012. Another

example of robust mapping technology is Google’s GoogleEarth (Figure 7),

which was introduced to the author as a planning tool during his training at the

 29

Tactical Marine Air Ground Task Force (MAGTF) Integration Course (TMIC), and

that he observed in frequent use as an alternate situational awareness tool in

COC environments both in training and in Afghanistan. It is attractive as a tool in

part because of the simplicity of its learning curve and its ability to quickly

represent three dimensional shapes, which are useful when dealing with fire

support TCMs.

 Google Earth Screen Capture. Source: Google Earth. Figure 7.

While very useful for mapping the special relationships between

information, this type of software has no capability of storing and organizing the

other information inherent to the operations order.

 30

d. Mobile Technologies

The military has already begun embracing mobile technology, with some

services taking a more active role in the acquisition and fielding of mobile devices

and applications than others. The Army has established a mobile application

store and a branch in its doctrine organization dedicated to vetting and publishing

applications for soldier use (Lopes 2015). Without a similarly established

capability, the Marine Corps is arguably behind in this regard, but it does have at

least one very impressive tool in KILSWITCH (see Figure 8), part of NAVAIR’s

Electronic Knee Board initiative (NAVAIR 2015). This software was used by the

author extensively in Afghanistan. It provides a handheld GPS-enabled mapping

tool capable of displaying satellite imagery and grid reference graphics (GRGs)

and on which the user can add their own overlay information. In this capacity, it

acts as a sort of “poor man’s C2PC” for the mobile environment. It also has

significant capabilities in its primary mission as a fires planning tool, to include

integration of full-motion video from support assets.

 KILSWITCH Screen Capture. Source: NAVAIR (2015). Figure 8.

 31

While incredibly useful for mapping elements of an operations order,

KILSWITCH also mirrors more robust desktop software in its lack of processes

for handling the majority of the information resident in operations orders.

e. Expert Systems

The increase in accessible computing power in the 1980s led to an

explosion in popularity of a subset of artificial intelligence (AI) technology known

as “expert systems,” computer algorithms that “attempt to duplicate results

obtained by actual experts in a particular field or domain” (Franklin et al. 1988,

1328). These systems are typically built by programmers who use logic-based

languages such as Prolog to encode the thought process of recognized experts

in a given field. This usually consists of a series of in depth interviews translated

into logical constructs (“if this is true, then that is true”). The resulting knowledge

base of facts could then be leveraged by personnel without the same level of

training and experience (Franklin et al. 1988). Figure 9 gives a diagram of a

typical expert system.

 Diagram of a Typical Expert System. Adapted from Franklin et Figure 9.
al. (1988).

 32

This methodology was originally applied to every conceivable aspect of

the military, from recognition and categorization of enemy vehicles to truck repair,

and everything in between, including operational planning. Within a decade,

however, the DOD seemed to have soured on the concept of an expert system

being able to effectively plan complex military operations—the number of input

variables was simply too large. In her work on naturalistic decision-making,

originally published in 1997, Caroline E. Zsambok concludes that

battle command is one of the most complex decision-making
environments in which true expertise comes into play. Unlike
games like chess or physics problems, battles go on far longer, the
forces are not equal, there are external forces acting, and
sometimes it is difficult to know whether you won or lost. The
definition and measurement of expertise, therefore, are quite
difficult. Experience and training, perhaps, are the best measure of
expertise. (Zsambok and Klein 2014, 77)

That is not to say, however, that the DOD gave up on the use of AI.

Military researchers instead began to focus on newer fields of AI as a means to

improving military planning. One such experiment is detailed in a 2002 paper by

Robert Kewley and Mark Embrechts. Their approach was to use a type of

computational system called “fuzzy-genetic decision optimization” (FGDO) in

combination with more traditional probabilistic military simulations to test whether

a computer could arrive at a more optimal planning solution than a human

military expert for a given scenario (Kewley and Embrechts 2002). Their system

took the following approach to generating plans:

1. A military commander’s preferences for the end result of a given
tactical action were entered into the software in order to determine
a numerical set of target outcomes.

2. A genetic algorithm produced a set of battle plans covering
iterations within a range of possible options.

3. Those battle plans were fed into a traditional stochastic combat
simulation.

4. A preference model examined the results of each simulation and
assigned that plan a score based on its ability to meet the
commander’s intent.

 33

5. The genetic algorithm added that result to its information base and
generated the next set of plans to test.

6. This loop continued until halted, producing plans that scored better
and better in the simulator over time, eventually eclipsing the
results of plans produced by military planning experts (Kewley and
Embrechts 2002).

The test ultimately compared six different sets of plans: Those produced

by the military experts, those produced by four different versions of their

algorithms, and a set of computer-generated plans modified by military experts.

Given enough time, the computer algorithms were able to come up with plans

that scored better than the best human plans in the simulator every time (Figure

10). However, the computer in this scenario took up to eight times as long as the

human expert to achieve this result.

 Example Results and Scheme of Maneuver (SOM) for AI Figure 10.
Mission Planning. Source: Kewley and Embrechts (2002).

 34

Despite the relatively-advanced, good performance of this system and the

subsequent increase in technology availability, there is no system available in a

distributed tactical environment that helps a commander by suggesting possible

courses of action. However, the system also showed that applying human

decision-making to algorithmic thought could improve the overall simulated

outcome. If a similar algorithmic power was instead dedicated to helping make a

commander’s decision-making more efficient in the first place, such a system

could leverage both the logical ability of the computer with the obvious speed

advantage of a trained military mind.

2. Civilian

The military is not unique on the need to plan large and complicated

operations. With the exception of interpersonal violence, many military processes

have a direct correlation to the civilian sector. Thus, it is no surprise that there is

a significant amount of civilian research devoted to the application of technology

to efficient planning and communication. For example, computer systems are

increasingly being used to plan and optimize large construction projects

(Hartmann et al. 2012).

a. Planning Technologies

Another analogy to be made between military planning and the civilian

sector is the similarity between detailing the many concurrent efforts of a military

campaign and the plan to develop, test, and release a product in the business

world. Collaborative planning software, such as Microsoft Project, has long

helped to visually depict the relations between tasks and events through the use

of automated Gantt charting (Figure 11).

 35

 Microsoft Project Gantt Chart Example. Source: Anderson Figure 11.
(2010).

Although the Program Evaluation and Review Technique (PERT) and its

subsequent business strategies originally grew out of military programs (Weaver

2007), the divergence between military and civilian planning needs means that

most civilian tools are optimized toward specific use cases and no longer transfer

well to military processes. Furthermore, there is a more granular need for

mapping and real-time reporting in the military than is generally needed in the

civilian world, and the software differences bear that out.

b. Mapping Technologies

The rapid advances in mobile computing have led to the creation of a

robust set of mapping tools that are available to developers for inclusion into their

applications. The scalability of these applications when tied to a cloud

infrastructure has led to some novel uses on the part of individuals and

businesses (Miller 2006). Google’s GoogleMaps is one of the most prevalent

examples of this software (another is Microsoft’s Bing Maps). GoogleMaps allows

a person to use the GPS in their device to plot their location on a number of

different map layers, and allows application designers to populate the map with

 36

customized icons based on everything from user preferences to search terms to

context-based content.

OpenStreetMap (OSM) attempts to provide a similar service, but without

the proprietary data restrictions that companies like Google and Microsoft can

impose on their products (Buczkowski 2015). The software code and all of the

data is open-sourced, to include contributions by a vibrant community of editors.

While Google strives to provide users with a sleek interface that highlights only

what it thinks the user wants to see, the OSM software lacks the same clean

feeling (Figure 12). The accessibility of OSM has led to the formation of an active

user community, however, and in some areas of the world its maps are more

accurate and useful than those produced by the major corporations (Cipeluch et

al. 2010).

 Google Maps vs. OpenStreetMap Screen Captures. Source: Figure 12.
Buczkowski (2015).

 37

Another relatively new contender in the mapping application space is

WorldWind, a National Air and Space Administration (NASA) project that

provides open-source access to its code. The aim of WorldWind is to allow

researchers and application developers to harness the power of NASA’s imagery

and technology to improve communications and education (NASA 2017).

c. Artificial Intelligence and Expert Systems

When people think artificial intelligence (AI), one of the first names to pop

into their heads is IBM’s Watson, the supercomputer AI that beat human players

in the television game show Jeopardy in 2011. Fewer people know of Watson’s

subsequent task as an intelligent advisor to medical professionals, but that type

of application is what led IBM to develop Watson in the first place. Its natural-

language interpretation ability and ability to sift through large data has allowed it

to make connections between massive numbers of patient records that would be

impossible for a human to process, and its intelligent advice to doctors has the

potential to both reduce diagnostic errors and simultaneously improve the

knowledge base of its human counterparts (Ferrucci et al. 2013). This same

concept of computing power being used to reduce human error could also be

applied in the military planning field.

Another system that many Americans are familiar with is TurboTax®, the

tax software that guides its users through the process of filing their returns. Its

goal is to streamline the 70,000+ pages of the U.S. tax code by only presenting

the relevant portions to the user. It pulls previously saved data and inputs from

external sources and compares them against the user’s prompted inputs in order

to find discrepancies or errors, using computing power to greatly reduce the

administrative burden in filing tax returns (Goolsbee 2002). The smoothness of

this experience for the user is one of the inspirations behind the development of

TOOTH, and is one of the ultimate goals for the system.

 38

D. FUTURE TECHNOLOGY

Understanding the existence of these technologies allows us to then

examine what their merger might look like, both in terms of fitting in with the

Marine Corps’ vision for mobile computing and in terms of an ideal application for

solving the identified technology gap.

1. Mobile Devices in the Marine Corps

The Marine Corps updated its Concept of Command and Control in

September of 2015, with a particular emphasis on future combat and the systems

necessary to operate in a network-degraded environment. Of note, the document

continued to stress an emphasis on mission-type orders as the building blocks of

combat communication:

To achieve the adaptability and discrimination required in future
combat, commanders must embrace decentralized command with
mission-type orders, backed by a networked control system that
informs the commander in a timely manner. Such a decentralized
approach, coupled with shared understanding and applied in an
environment of trust, enables subordinates to develop the situation,
seize the initiative, create and exploit opportunities and cope with
uncertainty. Use of mission-type orders will remain especially
important given that many future enemies will attempt to disrupt
U.S. and coalition information systems through computer network
attack and other means. Commanders and their staffs must
prepare and train for operations in an electronic denied or degraded
environment, operating with locally available data and networks
until connectivity can be restored. (6)

In a 2015 thesis examining mobile device procurement needs within the

Marine Corps, Jesse Adkison highlighted the Corps’ commitment to “providing an

agile method to access information needs through the use of mobile devices,”

and specified ways that the service can utilize the Department of Defense’s

mobile device implementation plan to ensure joint application interoperability

(Adkison 2015, 30). There is clearly an imperative to ensure that future

technologies developed for the Marine Corps are done with an eye toward

mobility and deploy-ability.

 39

2. The Ideal Convergence of Theory and Technology

A single program that manages all inputs and propagates any
changes to all applicable documents (i.e, “TurboTax®-like approach
for amphibious planning”) would make the process more
responsive and agile as well as reduce the probability of error.
Existing automated tools, such as Joint Mission Planning System–
Expeditionary (JMPS-E), were not used to their full potential due to
the lack of trained personnel.

(Expeditionary Warfare Collaborative Team 2012, 6)

Rather than rely on potentially stressed or tired leaders to accurately

chase their own changes around an orders format, we propose a paradigm that

treats the operations order as one concrete and interconnected set of information

points that can be manipulated, displayed, or exported in a variety of ways. To

change a piece of information once and have that change replicated across an

entire order and resulting products would allow leaders to focus more on their

plans and less on the administrative burdens of communicating those plans in

the standard written format. This is a fundamental disagreement with the

recommendation found in the 2015 examination of Marine Corps mobile

application needs, specifically that:	

The orders process may be better conveyed through other means
than a mobile application. The warning and fragmentary orders are
typically conveyed through verbal communications. The operations
order is generally too lengthy to be delivered by any means other
than textual. The order delivery process should not be considered
for specific application development that is not already addressed
with existing organic mobile device applications. (Adkison 2015, 68)

In order to be an effective tool at helping leaders create operations orders

effectively and efficiently, an ideal software application would have the following

characteristics:

1. Mobile. The software would run on a touch-enabled tablet device
small enough to be easily portable on the battlefield, and would be
able to function without a network connection, to include the ability
to store maps and templates in local memory.

 40

2. Valid. The software accounts for all of the different types of
information present in the order, and makes links between the
individual data points in ways that can be manipulated logically.

3. Usable. The user interface is designed in a way that is intuitive and
easily manipulated by persons otherwise encumbered by fatigue,
stress, or physical constraint.

4. Focusable. The data comprising an order can be used as the basis
of a subordinate order or as an input to a higher order, thus saving
the work of copying data between orders.

5. Exportable. The order data can be displayed in a variety of formats,
ranging from the traditional ordered text output to various graphics
or simulator-language formats.

6. Assistive. The application can guide the user in the creation of their
order by suggesting next steps or by highlighting likely errors.

The full and detailed goal hierarchy established for the design and

implementation of the prototype software can be found in Appendix A. Goal

Hierarchy List.

E. SUMMARY

This chapter reviewed the Five Paragraph Order format in depth, and has

identified both its reasons for existence and its inefficiencies—the numerous

points at which the same information is used in different contexts. It is not the

intention of this thesis to question whether or not the Five Paragraph Order itself

should be redesigned. Instead, we embrace the utility that comes from having a

universal format, and while we appreciate the need for information to be

formatted in specific ways for subsets of the greater audience, we feel that

manually replicating information multiple times in different ways throughout the

order is an unnecessary waste of effort given the mobile computing technology

available, let alone fraught with human error. The application design is specified

in the following chapter.

 41

III. APPLICATION DESIGN

The traditional method of software development is called the “waterfall”

method, and it progresses in linear fashion through a series of steps: defining

requirements, designing all interactions within the system, implementing the

design, and finally testing the software. This method is primarily used for building

well-defined programs to solve well-understood problems with a high degree of

code reliability, but the initial steps can also be useful for organizing thoughts and

determining overall system design before transitioning into an “iterative” or

incremental approach to building software. The iterative method is much more

responsive and useful for building nascent technologies: create a small portion of

the application and then test that portion and its interactions with the rest of the

system in a manner that can rapidly adjust to feedback and changing

requirements (Braude 2001). We used the above combination of requirements

definition with iterative development in creating TOOTH.

A. REQUIREMENTS AND GOALS

All software engineering projects should start with an examination of the

requirements that need to be met, regardless of the development model chosen

for the project. In his book Software Engineering: An Object-Oriented

Perspective, Eric Braude says of requirements definition that “the great challenge

we face is expressing clearly what customers want and need.” He recommends

starting with an examination of the “concept of operations” for the application

before looking deeper at specific “use cases” (Braude 2001, 145). We follow the

same approach here. Once we have defined the broad requirements, we outline

them further here in a detailed goal hierarchy that can be used to design the data

structures and user interfaces.

1. Concept of Operations

As referenced in Chapter I, the overall purpose of TOOTH is to be a one-

stop shop for the creation and dissemination of operations orders. This means

 42

that the user should be able to create a complete, tactically sound, and

communicable plan using only the application and its access to the host device’s

hardware and software tools (GPS, storage, radio card, input devices, etc.). It

also implies that the application needs to be capable of addressing the

complexities of the operations order process that were defined in Chapter II.

Specifically, the software needs to be capable of pulling information from external

sources, creating and manipulating information objects, performing operations on

those objects, and then displaying or exporting those objects in the format

chosen by the user.

2. Use Cases

Using Braude’s method, the next step in detailing the application’s

requirements was to outline the specific tasks encompassed in the concept of

operations. Each of these use cases may have multiple sub-steps, some of

which are shared between use cases. The use cases are intended to address the

eight characteristics of an ideal application that were introduced at the end of

Chapter II (noted here in parenthesis).

1. Generate a new operations order: the user wishes to create a new
order from scratch. This requires establishing a blank copy of the
data structure to contain the user’s inputs in a way that is uniquely
distinguishable from other operations orders saved or edited on the
device. (usable, assistive)

2. Save an operations order for future use: this case involves the
ability to save the information in the operations order to the device’s
storage in a way that can be uniquely accessed at a later time.
(usable, exportable)

3. Edit an existing order: this case presents the user with a list of
operations orders that are saved on the device and reads the
appropriate operations order from the saved file when selected by
the user. (usable, assistive)

4. Create a new order from an existing order: this case presents the
user with a list of operations orders saved to the device, opens the
selected operations order, and then presents the user with a list of
units saved within that operations order. The user selects a unit,
and the application re-focuses the data structure to make the

 43

selected unit the base unit for the new operations order. This use
case shares steps with the previous use case, as demonstrated in
Figure 13. (usable, focusable)

 Example of Shared Sub-Steps in Use Cases. Figure 13.

5. Guide the user through creation of an operations order: this case
generates a new operations order data structure and then prompts
the user to select the type of operation that they are trying to plan
from a list of templates. The application then guides the user
through the creation of their plan using lists of information objects
that are doctrinally associated with the chosen operation type.
(valid, usable, assistive)

6. Validate the current operations order: in this use-case the
application applies a series of logical tests to the selected
operations order in order to find omissions or inconsistencies. The
logical rules are based on doctrinal templates and best practices,
and they can be expanded throughout the development life cycle of

 44

the application. This case can be initiated at any time during the
user’s workflow. (valid, assistive)

7. Export the operations order information: this case allows the user to
package the data in a saved operations order into a variety of
templates for export. Possible templates include:

 A Hypertext Markup Language (HTML) document that follows the
traditional Five Paragraph Order format, compatible with any standards
compliant web browser or word processing software.

 Map overlay files containing all of the Operational Terms and Graphics
contained in the order. This includes unit locations, tactical control
measures, and task graphics. File formats might include those
necessary for viewing in GoogleEarth, C2PC, FalconView, Blue Force
Tracker, and others.

 Documents needed by combat and support agencies assigned to
provide fires or maneuver support to the operation. This includes target
list worksheets, helicopter manifests, synchronization timelines,
execution checklists, communications smart packs, and a host of other
necessary de-confliction measures.

 Simulator definition files. This would re-package the information in the
operations order into a battlefield management language or similar
construct and allow leaders to test portions of their plan in a simulator
or conduct large scale live/virtual training. (exportable)

8. Automatically generate mission-preparation and execution
documents: this case examines the tasks and TCMs used in the
order and generates mission preparation tools. Possible examples
include:

 Prioritized rehearsal plans focused on practicing the most
essential tasks first.

 Custom gear and equipment checklists tied to the tasks being
conducted.

 Vehicle loading manifests and “bump plans.” (valid, usable,
assistive)

3. Goal Hierarchy

Translating these use cases into a series of programming tasks required

the use of a goal hierarchy, a tool that traces its origins to the Work Breakdown

 45

Structure (WBS) of project management originally made popular in the 1980s.

Using a WBS approach can greatly help in defining the scope of a software

engineering effort (Hans 2013). The goal hierarchy itself consists of a series of

nested tasks that need to be accomplished in order for the software to perform as

desired. The purpose of the hierarchy is to ensure that there are no extraneous

tasks (those which do not support a higher level in the hierarchy), and that there

is a roadmap leading to the successful completion of each high-level goal

(Tausworthe 1979).

In building the goal hierarchy for TOOTH, we started with the use cases

outlined in the preceding section and continued to add sub-goals until we

reached a state where each goal could be represented by an individual function

within the application software. Each individual goal is listed in the hierarchy

once, and is referenced from other locations if necessary.

One example of a goal hierarchy is the use case for generating a new

operations order with user input. Sub goals include initiating the data structure,

designating the type of operation to be conducted, inputting the battlespace

framework information, designating a unit mission statement, and inputting the

scheme of maneuver and other major information categories in the operations

order.

If we examine the sub-goal of inputting the battlespace framework

information we find that it is comprised of entering known tactical control

measures, along with friendly and enemy unit hierarchies. Within the goal of

entering a friendly unit hierarchy, we find a sub-goal for inputting the information

for a single unit, a goal that will likely require an interface with the user. This goal

has its own sub-goals, including entering the units name, entering the unit’s

location, its type, etc. We continued this examination until we had modelled the

process of generating an operations order as it is taught to new lieutenants at

TBS (The Basic School 2015a). This small example portion of the overall goal

hierarchy is displayed in Figure 14.

 46

 Example Goal Hierarchy Chain. Figure 14.

The goal hierarchy was a living document throughout the development of

TOOTH, and was color-coded for quick reference to the progression of task

completion. The full goal hierarchy is included as Appendix A.

4. Design Constraints

Before we transitioned from the goal hierarchy to the design that would

accomplish those goals, it was necessary to ensure that the vision and the

design principles applied would fit within the constraints imposed on TOOTH by

both the Marine Corps and its user base. These constraints ultimately shaped

both the design and implementation of the resulting technology demonstrator.

a. USMC Requirements

In order for TOOTH to ultimately achieve adoption within the greater

Marine Corps community, it will be required to conform to the Defense

Information Systems Agency’s (DISA) requirements for commercial mobile

device applications and its requirements for secure storage of classified

information. Because encryption and secure communications are outside of the

scope of this thesis, that compliance effort is left for future work. Although

TOOTH in its current form as a technology demonstrator will not contain any

classified information, efforts were made during design and implementation to

 47

ensure that the data structure used will support best practices for the security of

data at rest on the device.

b. Device Constraints

TOOTH is designed for adoption into the Marine Corps using existing gear

and equipment. This means that it needs to run on the Android tablets that the

Marine Corps has already fielded for running KILSWITCH software as part of the

Precision Close Air Support System. Those tablets use versions of the Android

operating system as old as API version 17 (NAVAIR 2015). Furthermore, the

application needs to be designed for use on the screen sizes most likely to be

carried by Marines in expeditionary environments. This means designing for a

mobile device that fits in a user’s cargo pocket with a diagonal screen size of 8

inches or below.

c. User Constraints

Additional constraints are imposed by the capabilities and operational

limitations of the target users of TOOTH, which must be navigable by the “least

common denominator” within the user base. This user is basically trained, but is

not very familiar with either the steps or the desired outcome of the orders

generation process. We also expect that while this user is familiar with mobile

technology, he or she will most likely not be comfortable navigating the device’s

file structure in order to make changes or find files. The application must

compensate for those deficiencies, as well as others that come as a result of the

user’s expected operating environment:

 Fatigue – We expect the user will be suffering from the general effects
of sleep loss and will have difficulty concentrating on the task at hand
or remembering simple steps in the orders generation process.

 Diminished vision – We expect the user to have some difficulty viewing
the screen of the device, whether due to using the tablet in low-power
mode (such as for light-discipline reasons at night or to save battery-
life) or due to straining to see the screen in bright sunlight.

 48

 Diminished fine motor control – We expect the user to have some
difficulty making fine muscle movements. This could be due to muscle
fatigue, anxiety, parasympathetic backlash (Grossman and
Christensen 2007) or other factors, such as having to operate the
device while wearing gloves.

These constraints drove several key areas in the design of the application

logic and the user interface.

B. OVERARCHING DESIGN

Because the goal of TOOTH is to provide a one-stop-shop for the entire

orders process, it is essential that the user be able to access all of the tools that

they need without leaving the application. TOOTH will save and load files from

the device storage and prompt the user to turn on GPS. The application will also

leverage the operating system’s soft (on-screen) keyboard and touchscreen

display to provide an input method to the user.

The internal workings of the application will also seek to simplify the

process for the user. There will only be one order loaded in the application at a

time, with a backup order slot being used to save / auto-save and switch orders.

The system will automatically present the order information from the designated

base unit’s perspective, and will only allow the user to change perspectives by

generating a new order from the base order. Only one order can be active at a

time, so there is no confusion over which set of data is being examined in the

user check and guide functions. The high level software-hardware interactions

are displayed in Figure 15.

 49

 Overview of System-Level Design and Interactions. Figure 15.

C. DATA STRUCTURES

The central idea of this thesis is the assertion that viewing the information

in an operations order as a set of inter-connected objects provides a framework

for achieving significant increases in efficiency and accuracy. Thus, the design of

the data structure is critically important to the success of TOOTH. Another key

idea from Chapter II is the principle that the software needs to be “focusable” in

that it can generate a new order shell from a higher, subordinate or adjacent unit

order. For this to be implemented, the data structure needs to be extensible in all

directions. A battalion commander should be able to issue an order to company

commanders, who in turn issue it to platoon commanders, who in turn issue it to

squad leaders, etc. The original battalion order information is retained all the way

down the chain of command, with new layers and objects being added to the

structure at each level. This basic idea is demonstrated in Figure 16.

 50

 Example Diagram of Data Scalability. Figure 16.

1. Using the Object-Oriented Concept

Another way that the data needs to be scalable is in the quantity and types

of each piece of information. An operations order at the battalion level may

contain information on dozens of units, scores of tasks, and hundreds of tactical

control measures. Each of these information objects will share some common

features, but may be unique in others. The system is perfect for modelling with

an object-oriented approach, with each object representing a specific class of

information.

C. Thomas Wu’s An Introduction to Object-Oriented Programming with

Java (2006) defines it this way: “In object-oriented programming, we use a

mechanism called inheritance to design two or more entities that are different but

share many common features. First we define a class that contains the common

features of the entities. Then we define classes as an extension of the common

class inheriting everything from the common class” (23).

For the TOOTH data structure, we started with a root object definition

called OrderDataObject from which all other data types are extended. This root

 51

object has parameters for information such as the date and time that the object is

created or modified and the application user who created or modified it. It also

contains a string field that is set according to the object’s specific type. An

example of a specific type of order data is the case of tactical control measures

(TCMs)—named points, lines and areas on the map that serve as reference

points for tasks and other coordinating instructions. In this application, all TCMs

share certain attributes. They all have a name and an associated faction

(friendly, enemy, etc.) in addition to the attributes that they inherit from the base

OrderDataObject class. Within the TCM class are several sub-classes based on

the unique types of TCMs. Some are defined by a single point on the map, some

are lines, some are circles, and others are two or three dimensional areas. Within

each of those types are further sub-classes. Checkpoints and point targets are

both examples of point TCMs, for example, but they are used in very different

ways by the other information in the operations order. This tree of relationships is

depicted in Figure 17.

 Example of Object Inheritance in the TCM Class. Figure 17.

Another benefit of using an object-oriented approach is that objects can

have their own “methods,” or functions. In the context of TOOTH, for example, a

TCM object can have a method that adds its information to a master list of TCMs

 52

upon its creation, or removes it from the order data structure if the user calls for

its deletion. This ability for objects to perform operations on themselves and the

data stored in them is a large part of the application’s proposed user guiding and

data validation functions.

2. Defining Data Interactions

The next step after building the full inheritance tree containing the various

information objects that comprise the operations order was to define the links

between those objects. Besides inheritance, the other basic object relationship is

association—linking two objects together by having one (or both) of the objects

contain a parameter that links to the other. Association links can be one-to-one,

one-to-many, or many-to-many (Braude 2001). For a TOOTH example, every

TCM objects contains (links to) one or more geographic locations, each of which

is a unique data object containing latitude, longitude and altitude data.

In order to determine the full set of linkages between information objects,

we retraced the operations planning process taught at EWS (United States

Marine Corps 2010) and the tactical order generation process taught to new

officers at TBS (The Basic School 2015a) and cross-referenced those processes

with the official definitions of operations and terms found in Joint doctrine (U.S.

Joint Forces Command 2011; Department of the Army 1997) and the official

definitions of operational terms (Department of the Army 2004) in order to ensure

that the data interactions were modelled in a doctrinally sound manner. A portion

of the full graph is shown in Figure 18.

 53

 Example Graph of TCM Data Object Interactions. Figure 18.

The relationships between information objects not only need to be defined,

they also need to be reinforced. There are a number of one-to-one and one-to-

many relationships defined in the data structure. If a link is made between two

objects and one of those objects is later deleted, the link needs to be deleted as

well. Otherwise, one of two things is likely to happen: the application will crash

because it attempts to follow a link to a non-existing object (a “null pointer” error),

or the order information presented to the user will be wrong because the data

structure will have failed to maintain consistency (this is the more insidious error).

The latter defeats the entire promise of a system in which changes made to one

part of the operations order are automatically replicated to others. Figure 19

demonstrates an example of the logic used to ensure data consistency.

54

 Example Task Object Method Logic for Consistency in Self-Figure 19.
Deletion.

3. Data vs. Format Focus

The resulting graph of the interactions between all of the information

objects showed a contrast between the Five Paragraph Order Format and the

underlying data. The graph especially highlighted the importance of tasks, since

both Paragraph 2 (Mission) and the scheme of maneuver are essentially re-

wording of tasks. Similarly, the friendly and enemy unit hierarchies prove central

to making sense of both the tasks and the tactical control measures. The data

structure also highlights the areas that will be most important in designing the

data validation function of the application—the more heavily-weighted a data

object’s connections to other objects the more important its role in the order as a

whole. The full data relationship graph is included as Appendix B.

55

D. USER INTERFACE

In his book, Android User Interface Development, Jason Morris (2011)

defines the “core guidelines which every user interface should follow”:

 Consistency – Items in the user interface should move as little as
possible, so as to be predictable to a user. Furthermore, the user
should be able to identify which items in the interface are buttons, and
should be able to anticipate the results of a given action.

 Simplicity – The user interface should allow the user to accomplish
their intended task in the fewest number of steps possible, while
simultaneously limiting their options to keep from overwhelming them.
This is especially important for new users.

 Feedback – The interface should respond to a user’s actions and
should provide a navigation mechanism that helps the user know
where they are in the interface at any given time. (21).

1. Overarching Goals

Although the central idea of this thesis is tied to the functioning of the data

structure as a way of interconnecting all of the information in an operations order,

that idea will be lost on the target users if it is not implemented in a way that is

accessible to the average user. This requires a user interface that presents the

information in a way that is not only tailored to the characteristics of the data

being displayed but is also both useful and familiar to the user.

Military operations are inherently organized and described using time and

space, so the user interface must have a way of graphing the information on a

map while also displaying elements such as tasks in relations to each other on a

timeline. The initial design sketches attempted to merge those two ideas, either

through a map with a series of pop-up windows that could be accessed from the

edges or on a map with a timeline “slider” that would allow the user to see the

progression of their plan by changing time as a dependent variable. These initial

sketches are shown in Figure 20 and Figure 21.

 56

 Initial User Interface Design Idea – Pop-up Windows Overlaid Figure 20.
on Map.

 Initial User Interface Design Idea – Map-as-a-Timeline. Figure 21.

 57

We felt that the map-centric interface with the array of buttons around the

edge was un-necessarily cluttered and had the potential to be confusing—we felt

the user would have a hard time knowing where they were in the application’s

logic. Similarly, the idea of changing the map based on a timeline slider seemed

novel, but it might also be extremely counter-intuitive and discouraging to a

novice user. It would be more difficult to program and would probably require

more fine-motor actions on the part of a fatigued user. The end result was a

compromise (Figure 22) that placed a thin title bar and application-level menu

above an almost full-screen window that could be “flipped” between two different

views: an interactive map as a logical way to display all plot-able data points and

an organized display of compartmentalized windows structured along the familiar

Five Paragraph Order Format. The user would flip back and forth between the

two interfaces with a button and, because both interfaces access the same

underlying data structure, changes made in one “side” of the application would

automatically be displayed on the other, and vice versa.

 Initial User Interface Design Idea – Compromise Model with Figure 22.
Radial Menu Button.

 58

Most elements of this compromise design were incorporated into the

technology demonstration software, although the menu design proved to be

unwieldy and would have been difficult for a user to navigate with shaky or

gloved fingers.

2. Map Display Design

The goal of the mapping portion of the software was to provide the user

with a large map canvas that operated intuitively according to the motions she is

used to using on her personal mobile device. The map should be zoom-able and

scrollable, and it should allow the user to get the coordinates of a point simply by

clicking on it. The map should also integrate with the device’s GPS application to

position a user location icon that is constantly updated. Users should be able to

create and edit any information object with an associated location parameter

simply by clicking on the map or selecting options from a short menu. The map

should also implement an on-screen compass and should allow for both online

and offline map storage. In the end, the design template looked very similar to

other mapping software due to the overlap in required capabilities (Figure 23).

 Map Window Template before Implementation. Figure 23.

 59

3. Data Entry Design

The data entry part of the user interface was harder to design than the

map. Unlike the map, which simply graphs all location-based information objects

in relation to each other, the data entry part needs to display different views

depending on the type of information being collected or displayed.

Most data types can be added and updated through the use of simple

forms, with text fields for entry of simple parameters such as names. Any

associations between objects can be established by prompting the user to select

objects from a drop-down list of eligible candidates. This method is seamless to

the user, but as discussed in Chapter IV, it is not trivial to program. Other lists of

items are similarly easy to conceptualize. For example, when the user is

prompted to load a saved order, the device can simply query its storage and

return a list of all saved files with the proper extension. Once the user selects an

option from the list, the program performs the necessary operations to load the

chosen order data into memory.

Lists are not the most appropriate way of displaying other data in the

operations order. A list of units, for example, does a poor job of showing which

units are subordinate to the others. For this reason, written orders usually depict

unit relationships in a table of organization (Figure 24).

 60

 Example Table of Organization for a Marine Corps Special Figure 24.
Operations Unit. Source: Global Security (2017).

This tree-like view provides an informative and useful way to visualize unit

relationships. We decided that the unit portion of the user interface should

provide a “clickable” unit tree that automatically updates with every change to the

unit structure. This allows users to see their changes in real time, and also allows

them to change other information elements associated with the units by selecting

them in the user interface. For example, in Figure 24, clicking on “Fires HQ”

should provide a menu of options for that unit such as “Change Unit Location” or

“Modify Unit Information.”

Similarly, a list of tasks does a poor job of showing their relationship to

one another with respect to time. Instead, tasks are best displayed on an

overlapping timeline similar to the Gantt chart discussed in Chapter II. One way

of building this type of graph is the “Temporal Bar Graph” discussed in their book

Visual Insights: A Practical Guide to Making Sense of Data by Katy Börner and

David Polley (2014) (Figure 25).

 61

 Example of a Temporal Bar Graph. Source: Börner Figure 25.
and Polley (2014).

The ideal solution we envisioned for a task interface is a combination of a

temporal bar graph and a Gantt chart, showing the overlap between different

tasks while at the same time displaying the relationships between them in a way

that indicates which tasks are pre-conditions of other tasks. Similar to the unit

interface, clicking on a specific task in this interface should enable the user to

edit its properties, define new task relationships, or edit its spatial characteristics

with respect to the map. This interface also needs to update automatically upon

user changes.

E. SUMMARY

This chapter detailed the organization and design work that was

necessary in order to set conditions for the actual implementation of the

 62

technology demonstrator. It discussed the design ideas for a flexible and multi-

layered object-oriented data structure and discussed ways to make that data

structure intuitive to the user in the form of a custom user interface. Chapter IV

discusses the work done to actually produce the TOOTH application, including

the ways that these ideas were implemented.

 63

IV. DESIGN IMPLEMENTATION AND TESTING

In order to effectively demonstrate the ideas and software design that

were detailed in Chapters II and III, it was necessary to create a working

application to serve as the technology demonstrator—software that could be

manipulated by users on an actual physical tablet computer. We prioritized the

goal hierarchy to give precedence to the functions that were essential to

conveying the central idea of the thesis. That prioritization is reflected in the full

goal hierarchy found in Appendix A.

A. IMPLEMENTATION PLAN

The author’s original intent was to build the software in the same order

that its design was developed—a complete implementation of the data structure

followed by a user interface to manipulate the data. This quickly proved

infeasible, as there was limited ability to test the functioning of the data structure

without creating the means to interact with the individual data objects.

1. Agile Method

Instead, the author adopted a more “agile” approach to the development

of TOOTH. The agile family of methodologies is highly iterative and embraces

early requirements changes as an opportunity to take projects in useful

directions. It also values creating working software more than the organization

that comes from following a formal process. It is especially useful for creating

new technologies where formal definitions and documentation do not

exist (Highsmith 2004). For the development of TOOTH, this method became a

rapid loop of creating functions and then testing them against existing elements

of the software, fixing obviously broken elements of the technology demonstrator

but bypassing formal proofs in favor of a physically demonstrable product.

 64

2. Android Studio Programming

As discussed in Chapter II, TOOTH or any subsequent software iterations

must be written for Google’s Android operating system in order to be compatible

with currently-fielded USMC devices. Android uses an implementation of the

Java programming language for its programming logic and a series of Extensible

Markup Language (XML) files to define the visible layout of elements on the

screen (Morris 2011). Android Java is very well-documented, with an official

Application Program Interface (API) available on Google’s website for developers

to make use of features available in the Android operating system (Google 2017).

Google also provides a robust and open-source Integrated Development

Environment (IDE) called Android Studio that simplifies a large amount of the

mundane work of writing Android Java code. The final version of Android Studio

used in the development of the TOOTH technology demonstrator was

version 2.3.1.

3. Application Debugging

The primary method of error detection and correction used during

development of TOOTH was the practice of “wrapping” potentially faulty code

elements with Java try / catch statements that utilized custom error messages.

This allowed the author to follow the flow of function calls in the IDE’s operating

system monitor and note which elements of the code were causing the

application to throw error codes. This method, combined with the ability to “step

through” the code execution by setting break points in the IDE, allowed the

author to quickly determine faults in the code or recover system-generating error

messages that could then be used as search terms in the software development

forum, StackOverflow.

Although there are some elements of TOOTH that lend themselves to

formal unit testing (such as the functions that automatically sort and display

tactical unit relationships), the fact that most data operations in the software are

tied to user interactions made it difficult to design effective unit tests. The author

 65

opted instead to design the software in such a way that it appropriately handled

predictable input mistakes, and then used a trial-and-error approach to finding

and correcting issues in the software logic. For example, the author tested

combinations of completed and blank data entries on user-interface forms in

order to ensure that the application did not attempt to create links to non-existent

objects. Although this method was effective for finding and fixing errors that might

have prevented a working technology demonstrator, it is by no means sufficient

to ensure that the logic of the software is immune to crashing based on user

inputs. A formal unit test of the data structure is part of the recommended future

work discussed in Chapter V.

4. KILSWITCH Plugin Integration

The original vision for TOOTH was that its data structure and logic could

be nested within the KILSWITCH application (discussed in paragraph II.C.1.d) in

the form of a “plug-in”—an application that makes use of the KILSWITCH API to

build functionality into the already-robust mapping software. This remains a

possible future avenue for development of TOOTH; however, by the time the

author had learned enough about Android application development to make use

of the KILSWITCH API, the implementation of the TOOTH data structure and

user interface had already progressed to the point that integrating with

KILSWITCH would have required a time-intensive reworking of already-

completed functionality. Furthermore, the KILSWITCH API only allows the

developer partial control over the user interface and limited control over the

application’s interactions with the Android operating system (NAVAIR 2016).

Instead, the author made the decision to proceed with development of TOOTH

as a stand-alone application utilizing an open-source mapping capability for the

purpose of ensuring a working technology demonstrator.

B. APPLICATION STRUCTURE

The central building block of Android applications is the “activity” (Google

2017). Activities directly interface with the operating system, and are created,

 66

paused, restarted, stopped, and destroyed by the operating system based on the

actions of the user. An application by default consists of a single activity and

exists as a single process and thread within the Android Linux kernel (Google

2017). However, applications can consist of multiple activities, and developers

can choose to open additional threads in order to run elements of the application

asynchronously. These separately-threaded activities communicate with each

other using messages called “intents” (Google 2017). The basic life cycle of an

Android application activity is shown in Figure 26.

 Life Cycle of an Android Application Activity. Source: Google Figure 26.
(2017).

 67

TOOTH is a single-activity application that conducts the vast majority of its

operations on a single primary thread. Some minor elements of the application,

such as the auto save and power management functions, run concurrently with

the main application in their own separate threads. Additionally, elements such

as the map function and the file saving function have the ability to open helper

threads that run in the background in order to accomplish tasks such as

downloading additional map data. Despite the potential for delay during times of

intense processor usage, the decision to execute the data and user interface

functions of the application on a single thread was a deliberate one. This decision

streamlined the development of the application while simultaneously ensuring

data integrity. The application logic executes linearly in a single thread, so there

are no race conditions in which multiple threads may attempt to manipulate data

at the same time. This eliminates the need for data locks and semaphores to

ensure data consistency, and greatly simplifies the requirements for the

application’s interactions with its data. This decision will likely need to be

revisited as the application grows in complexity with future work, but in this

implementation the delay experienced by the user as a result of synchronous

execution is negligible.

The primary activity in TOOTH is called “ToothMain” and is the first java

class loaded upon initiation of the application. Figure 27 provides pseudo-code

for the actions completed by ToothMain.

 68

 Pseudocode for TOOTH Activity Initiation. Figure 27.

1. Data Object Structure

The data structure (OrderData java class) instance generated by TOOTH

at application initiation is the container for all of the objects that comprise a given

operations order. Its attributes include information such as the order title and

description, the user who created or modified the order, the time the order was

created or modified, and the unit designated as the base unit for the order. It also

contains a separate list for each of the specific order data object types.

Whenever an object is created or deleted, a reference to the object is added to

(or removed from) the associated list. This allows for functions to iterate through

all order objects of a specific type, and also prevents the Java garbage collector

from deleting objects that are relevant to the operations order.

 69

a. Object Serialization

One feature of the Android Java language is its ability to serialize objects.

This essentially converts the object’s attributes to a byte stream that can then be

written to storage or transmitted to another device or application. An exact replica

of the object can be reconstructed as long as the target device/application has a

copy of the object’s class definition file. This is required because the serialized

byte stream does not carry the methods inherent in the object, only its attributes

(Google 2017).

TOOTH implements serialization on all order data objects so that they can

be saved to the device’s storage and reloaded into memory without having to be

recreated by the user. This allows the order data to be saved between sessions

or shared with other devices that have the TOOTH application installed. It also

allows multiple copies of the same object to be compared attribute-by-attribute,

which in turn allows for version control and enables functionality that would allow

information from multiple subordinate operations orders to be absorbed into a

higher-level operations order.

b. Default Object Generation

The central premise of TOOTH is that all of the information in an

operations order can be represented as a set of interconnect objects. This

requires a library of “descriptor” objects that provide additional attributes for

object instances created by the user. For example, the tactical task object class

has an attribute “task type” that allows a user to select the type of task they are

creating from a doctrinally correct list of tasks. The user could select the

descriptor object for the tactical task “block” in this example, and the application

would use the attributes of the descriptor object called “block” to extract some

facts about the tactical task object being instantiated: that it should be assigned

to a friendly unit, oriented against an enemy unit, contain links to certain tactical

control measures, and what its map icon looks like. Because there is only one

doctrinally-correct definition for the “block” task, there only needs to be one

 70

“block” task-type object resident in memory. As many new tactical task instances

as necessary can be linked to it.

This paradigm requires that the descriptor objects be already instantiated

and available to the user before they attempt to create individual tactical task

objects. To ensure that this is the case, each new OrderData object instantiates

the libraries of descriptor objects at its creation using a series of internal

methods. The pseudocode for one such method, titled “createDefaultTaskTypes,”

is given in Figure 28.

 Pseudocode for Creating Default Task Type Objects. Figure 28.

The function first looks in the device’s storage for a saved list of task

types. If a list of task type objects is not found on the device, the application uses

a packaged XML library file to instantiate the default objects and save a new

copy of the list to the device. Loading a saved list of serialized objects is the

preferred method because it takes less time than regenerating the default objects

from the packaged XML file. The inclusion of the regeneration method ensures

 71

that TOOTH can continue to function even if a user deletes all of their saved data

from the device.

c. User-Defined Object Creation

Another benefit of storing a list of serialized default objects is the ability to

offer the user the option of creating their own default types. For example, there is

no doctrinal tactical task for “engage local leaders in conversation” but it is very

likely that a user planning an operation in a counterinsurgency (COIN)

environment might want to plan a patrol around this type of task. A simple form

interface allows the user to define the attributes of this type of task and save it to

the list of doctrinal task types that are prepackaged with TOOTH. Once the user

has finished entering the information, the application generates a new task type

object with the specified attributes, adds it to the task type list, and then

overwrites the stored task type file with the new list of objects. The process of

storing and reloading objects is described in detail in Paragraph 2.a.

2. Data Manipulation

Another concept central to the goals of TOOTH is the idea that changes to

information in one part of the order are instantly and automatically represented

throughout the order. This happens because of the linked nature of the

information objects. If the user changes a unit’s name, for example, that name

change is reflected in the unit hierarchy and is also reflected on the map icons. If

that unit had subordinate (or “child”) units, then clicking on a subordinate unit

would reflect the name change of its parent. The manipulation of data attributes

is possible because the data object classes contain methods called “setters” that

enable modification of individual attributes. These setters can be used in

conjunction with a user interface form to enable the user to quickly adjust

attributes by means of the device’s standard inputs. The implementation of these

user interfaces is described in detail in Paragraph C.3.a.

 72

a. Object Storage and Referencing

As discussed in Paragraph III.C, each individual piece of information in the

operations order was implemented either as its own unique object (if the data

relationship graph indicated that it could be used as a parameter for another

information object) or as an attribute to one of the unique information object

classes. These objects all contain a “type” attribute that denotes the appropriate

list where they should be categorized within the greater OrderData object. All

object types inherit the properties and methods (functions) of the root

OrderDataObject class. One of these methods is called addToOrder() and its

purpose is to ensure that each new data object created is filed in the appropriate

list within the OrderData object. The pseudocode for this function is given in

Figure 29. For comparison, a screen capture of the actual Java code for the

same function is shown in Figure 30.

 Pseudocode for Add to Order Function. Figure 29.

 73

 Screen Capture of Java Code for Add to Order Function. Figure 30.

A similar function exists for the removal of objects from the operations

order. Unlike when objects are added, however, the removal functions must

ensure that the object to be deleted is not referenced by any other object. If, for

example, the unit object to be removed is linked as the parent unit in the

attributes of another unit object, then it must first be removed from the second

unit object before being removed from the order as a whole. This requires each

object to have a custom deletion method that iterates through all potentially

linked objects and severs those links before calling the universal removal method

of the root data class. Once the object to be removed is no longer linked to any

other object and is not referenced in the organization lists maintained by the

OrderData container, it is no longer accessible by the application and is

subsequently removed by the Java garbage collector.

b. Data Saving and Reloading

Saving whole or selected portions of the data structure to the device’s

storage is relatively trivial due to the fact that all of the objects in the data

 74

structure are serialized as discussed in Paragraph 1.a. This allowed us to save

portions of the data structure as templates that can be reused in different orders,

which is a helpful feature for leaders whose unit organizations do not change

very often. We used the same construct in each of these cases:

1. The user requests to save the order or a template via a button in
the user interface.

2. The user is prompted to provide a meaningful string for use as a file
name. This file name is then checked for validity and appended
with an appropriate file extension.

3. TOOTH queries the operating system’s file manager to see if the
specified file name already exists in the TOOTH data directory. If
so, it prompts the user to select a different file name.

4. A copy of the selected data is serialized and the byte stream is
written to a file with the selected file name.

5. The file is closed and the application waits for the next user input.

Figure 31 shows TOOTH prompting a user to select a filename.

 Screen Capture of Filename Prompt. Figure 31.

 75

Loading saved data follows a similar construct in reverse, with the notable

difference that the data being loaded replaces the data in the current order. This

requires examining the current data structure and breaking links and removing

objects that are destined to be replaced. Assume, for example, that a user

created an order with a single unit and started assigning tasks to that unit before

remembering that he could save time by importing a previously-used unit

structure. When he clicks to import a saved unit template, the application will ask

him to acknowledge that his action will remove his existing unit. Once he clicks to

accept that action, the application iterates through the list of current units and

calls their self-removal methods before prompting him to select a saved template.

c. Order Focus Shifting

Both the unit hierarchy and the task elements of the data structure are

extensible, meaning that their tree-like structure can be expanded to fit various

levels of operations orders. This concept is the key behind the goal of making the

application “focusable”—that is, able to shift the focus of an operations order

from one unit to another. As discussed in Chapter II, the current methods of

creating an operations order from a higher headquarters or adjacent unit order

consists of manually identifying and copying information from the existing order

to the appropriate places in the new order.

Rather than shuffle information around, TOOTH simply shifts the focus

from one element of an extensible structure to another. When a user selects the

option to create a new order from an existing order, the application presents a list

of saved orders for her to choose from. The order that she chooses is loaded into

the active order placeholder, and the user is then presented a list of units within

that order (with the exception of the currently-assigned base unit). The user

selects a new base unit, and the application simply changes the base unit

designation for the order from the previous unit to the new unit. All of the

information related to the previous base unit is still there, but now a different set

of links between information objects takes priority. For example, if the user

 76

selected a company-sized unit based on a battalion’s order, she should expect

that the battalion commander’s intent is still resident in the operations order.

Now, however, instead of that intent being categorized as a sub-paragraph of the

Execution section of the order, it is now categorized as “higher’s intent” in the

Situation paragraph. Nothing about the commander’s intent or the relationship of

the two units changed, and viewing the extensible structure from a different angle

merely caused information to shift in prominence.

C. USER INTERFACE

No matter how well the data structure worked, TOOTH would be a failure

without an effective interface between the information objects and the user

manipulating them. The creation of this interface turned out to be a more

ambitious project than originally planned, as the implementation easily consumed

75% or more of the time spent programming the application. This section

explores the process of creating that interface.

1. Fragment Interactions

The primary building blocks of an Android user interface are Java classes

called “fragments” that define how the application responds to user interaction

with the interface. Each fragment has a corresponding XML file called a “layout”

that defines the visual elements of the fragment and specifies the spatial

relationships between those visual elements (Morris 2011). The fragment initiates

a series of “listeners” that are tripped if the operating system registers that

specific events have occurred. If a user clicks an on-screen button, that click

registers with Android’s onClickListener() function, and associates the click with a

unique button identifier. The operating system then executes any code that is

listed in the fragment’s onClick() method. This code can include anything from

displaying a dialogue box to performing arithmetic to manipulating the data

structure, or even launching another fragment.

Every application invokes an Android class known as a “fragment

manager” that handles the creation, tracking, and deletion of all fragments in the

 77

application. When a fragment is created, the function that called for its creation

also specifies a target “frame” for it to fill. These frames can be thought of us

window panes—they can be as large as the whole screen, or as small as the

designer wishes them to be. It is the fragment manager’s job to measure the

designated frame, specify the sizing of different objects in the layout file based on

the space available, and finally declare the fragment to be visible once its

elements have all been drawn to the screen (Google 2017).

Fragments can be nested inside of each other, which also requires the

creation of nested fragment managers. This technique is used in TOOTH to allow

user selections in one portion of the interface to present different content views in

another portion of the interface. Figure 32 demonstrates the nesting of fragments

within the main application screen.

 Fragment Area Nesting in TOOTH. Figure 32.

The fullscreen area is divided into two parts—the menu ribbon across the

top and the content area across the majority of the bottom. The content area

implements its own “child” fragment manager that controls the opening and

 78

closing of fragments in the content menu, content display, and map toggle button

areas. The actual implementation of this same nesting is shown in Figure 33.

 TOOTH User Interface. Figure 33.

Buttons on the application menu bar across the top of the screen generally

change the entire screen view, whereas buttons in the left side menu change the

content displayed in the central portion of the screen and also adjust the left side

menu to provide context for the user’s location within the menu tree.

Nearly every menu selection in TOOTH causes a fragment to be created,

hidden, or made visible. In order to avoid repeating similar blocks of code for

every button definition, we instead built a set of helper functions tied to the child

fragment managers for the major elements of the user interface. These helper

functions keep track of the currently-visible fragments and provide the ability to

load new fragments with a single line of code.

 79

2. Map Implementation

The original goal of building TOOTH on top of the KILSWITCH map

technology proved to be infeasible, as discussed in Paragraph A.2. This was

problematic because the ability to conduct graphically-based planning and

immediately see the effects of information changes on a map is a core capability

of TOOTH. This left two options: implement different mapping software or create

a series of static fragments and images to show how the technology might look

when implemented. The latter option would have been easier to build, but would

ultimately have distracted viewers from being able to visualize the technology’s

ability to present multiple ways to view the same information (to include viewing

changes in either “side” of the app as they are made).

a. OpenStreetMap

We examined two software solutions in order to ensure that TOOTH would

contain a representative mapping capability. The first was GoogleMaps, for which

Google provides an API to allow developers to incorporate maps into their

applications. GoogleMaps is simple to implement, but does not provide an option

for developers to integrate their own custom-generated offline mapping (saving

maps to the storage of the device for reference without an internet connection).

Instead, TOOTH implements OpenStreetMap, an open-source clone of the

GoogleMaps software. The API for OpenStreetMap provides a number of the

features included in our design requirements, including the ability to use offline

mapping, the ability to add touch controls (such as “pinch zoom”) to the map

interface, and the ability to build multiple custom overlays of clickable icons for

display on selected maps.

Each map instance of the OpenStreetMap software is its own fragment.

TOOTH uses one instance for the tactical map and creates and destroys

overlays that appear on that instance, rather than generating a new instance

every time the map portion of the user interface is loaded. This helps to ensure

that changes made by the user regarding map positioning and zoom level are not

 80

undone each time the user navigates back and forth between the map and the

rest of TOOTH’s user interface.

The remainder of the desired map functions not provided by

OpenStreetMap were implemented by building a custom, transparent user

interface fragment that sits on top of the OpenStreetMap fragment. The Android

API allows users to click through a transparent background and interface with the

layer beneath, which allowed us to place “floating” buttons above an otherwise

clickable map. The full map interface is displayed in Figure 34.

 Full Map Interface. Figure 34.

The “Go to my location” button queries the device’s GPS and centers the

map on that location. The “stored location” button allows users to capture the

coordinates that are underneath the crosshair on the center of the screen for use

in editing items. The “jump to grid” button allows the user to input coordinates on

which to center the map. Finally, the “Add item” button allows the user to add a

data element (unit, TCM or task) at the stored coordinates.

 81

b. Overlay Generation

Order data items are plotted on the map using three types of overlays: unit

locations, TCM locations, and task locations. Whenever a user adds, deletes, or

edits an information object contained in one of the overlays, that version of the

overlay containing the item is flagged for update the next time that the user

accesses the mapping interface. If the user adds or edits an item from the

mapping interface itself, the change is made immediately. This prevents the

application from devoting un-necessary processing cycles to map updates if the

user is changing a whole series of data points in one of the non-map user

interfaces. An example of a non-topographical mapping layer with a friendly unit

overlay plotted is shown in Figure 35.

 Map Interface with Unit Location Overlay. Figure 35.

 82

3. Data Entry and Display Implementation

Chapter III discussed the need for the data manipulation portions of the

user interface to be as simple and intuitive as possible. This section discusses

the methods that were used to make that goal a reality.

a. Data Input Forms

The central idea of this research is that the information in an operations

order can be represented as a series of interconnected objects. Thus, the

majority of the data manipulation in the interface is done by presenting the user

with forms and lists of eligible objects. These lists are created using an Android

method called an ArrayAdapter that turns a list array of objects into a clickable

user interface (Google 2017). The list of items presented to the user can be

customized to display whichever object attribute text is most appropriate. When

the user selects an item, its position in the list corresponds with its index in the

original array of objects, allowing the selected object itself to be linked as an

object attribute in a one-to-one or one-to-many relationship. An example function

that uses an ArrayAdapter is shown in Figure 36.

 83

 Pseudocode for Select Parent Unit Array Adapter Usage. Figure 36.

This function is called by the form for editing a unit’s information when the

user presses the “parent unit” button. The form is shown in Figure 37 and the

ArrayAdapter interface for this function is shown in Figure 38.

 84

 Example Form for Unit Object Editing. Figure 37.

 ArrayAdapter Interface for Parent Unit Selection. Figure 38.

 85

b. Unit Hierarchy View

Although the majority of the data entry and manipulation can be handled

through the use of forms and lists, there are several information structures that

are best represented in a manner that graphically depicts the relationships

between information objects. The unit hierarchy is one of those structures, as

discussed in Paragraph III.D.3. At its heart it is a simple tree structure, with each

unit object containing attributes for linking to a parent unit object and a list of child

unit objects. The soundness of the graph is maintained by checking for loops

prior to allowing a unit to be assigned as the child of another unit. This is done by

recursively scanning a unit’s child tree for references to the proposed parent

before formally establishing the relationship. The real implementation dilemma

was how to best display the information in a way that is intuitive to the user but

also flexible to immediate change. The author’s vision was for a self-drawing

organizational chart that presented options to the user when units were “clicked”

in the user interface. A search for open-source organizational chart-style graph

generation code did not yield any results, and so the focus of effort shifted to

creating a custom solution.

The author experimented with creating a custom “canvas” that would

update after any changes to organizational structure, but quickly realized that the

bitmapping code required to make individual unit graphics “clickable” required

more than a trivial effort. Instead, the author realized that he could use the same

OpenStreetMap software used for the mapping interface to create custom

overlays of units on a “blank” map. Like the graphics in the map interface, these

icons could be programmed with menu options to be presented to the user

depending on his or her actions. Figure 39 shows the unit hierarchy interface with

a single battalion-level unit created.

 86

 Unit Hierarchy Interface Fragment. Figure 39.

Clicking on the unit provides basic information about the unit, while

clicking and holding presents several options to the user, as demonstrated in

Figure 40.

 87

 Unit Hierarchy Interface – Unit Editing Option Menu. Figure 40.

When the user clicks the button to add an additional unit, she is presented

with another data entry form as depicted in Figure 41. This is the same form used

to edit an existing unit’s information. In that case, the unit’s currently-saved

information is pre-populated into the form before it is presented to the user.

 88

 Unit Information Form Fragment. Figure 41.

As with previously-discussed forms, the drop-down menus in this form use

array adapters to link to previously-created information objects.

Once the user clicks to save a unit, TOOTH must decide how to display

the changes in the user interface. This required the creation of a two-tiered

algorithm to assign display coordinates to each unit (its relative position on the

“blank” map), followed by algorithms to create the unit icons, place them into map

overlays, and draw connecting lines to show the structure of the tree. The first

step in the coordinate-generation is to recursively determine the structure of its

child tree using a depth-first search that starts from parent-less root node units.

This determines how much horizontal space each section of the unit hierarchy

tree will consume. The pseudocode for this step is shown in Figure 42.

 89

 Pseudocode for Unit Hierarchy Tree Width Calculations. Figure 42.

Once each unit knows how large its tree of children is, the next step is to

assign all units a set of mock-Cartesian coordinates. These coordinates are

determined relative to one another in an X/Y plane using fixed widths and heights

for node depth and width, but are ultimately converted to actual latitude/longitude

coordinates for plotting on the “blank” world map. (The actual center of the unit

hierarchy interface is centered several hundred miles south of Ghana at the

intersection of the equator and the prime meridian, the 0/0 location in the mock-

 90

Cartesian system). The pseudocode for assigning these coordinates is given in

Figure 43.

 Pseudocode for Unit Hierarchy Coordinate Assignment. Figure 43.

Once each unit has been re-assigned coordinates, they are re-plotted on a

map overlay on top of horizontal and vertical lines that use each unit’s

coordinates and relationships to show the links between units. The graph

resulting after adding several levels of subordinate units is shown in Figure 44.

 91

 Unit Hierarchy Interface With Multiple Unit Levels. Figure 44.

c. Task Dependency View

Displaying the relationships between tactical tasks presented a similar

interface challenge and prompted a similar solution. As discussed in Paragraph

III.C.3, the proper ordering of tactical tasks is central to a well-constructed

operational plan, but displaying those relationships in an intuitive and dynamic

user interface presented a difficult problem. The structure of task dependencies

can be modeled as a complicated directed acyclic graph (DAG), for which there

are well-established algorithms (Cormen, Leiserson, and Rivest 2001). These

algorithms ensure consistency within the graph, measure distance between

nodes, and perform other useful functions. As with the unit hierarchy, we could

not find any useful and available Android Java code sources for creating dynamic

DAGs. We developed our own implementation, once again using

OpenStreetMap to provide a dynamically-updatable and clickable user interface.

 92

Several factors make a DAG of tactical task relationships more

complicated than one for other processes such as civilian project timelines. Not

all dependencies between tactical tasks are simple cause-and-effect

relationships where one task must be completed before others can be started, an

easier problem to graph and one suited for a traditional Gantt chart. Some tasks

must overlap with others, such as when machine gun fire suppresses an

objective so that infantrymen can maneuver onto the enemy position. Some

tasks mirror the execution timelines of another task, such as when a unit is

tasked to follow-in-support of another unit. In the latter case, the timeline for the

task to follow-in-support is dependent on the primary task that it is supporting. In

order to allow for overlaps, parallel timelines, and inclusionary tasks (where one

task must start after another task but finish before that task is complete), we split

each task into start and end nodes and used the relationships between those

nodes to define the relationships between tasks. This concept is shown in

Figure 45.

Solid arrows between nodes show which node must come “first” in the ordering
of the DAG. Dashed arrows indicate nodes that are tied to the DAG ordering of
other nodes (parallelism).

 Examples of Task Relationships. Figure 45.

 93

As with the unit hierarchy interface, TOOTH checks for graph loops at the

time that a user attempts to add a relationship. This ensures that the graph can

be ordered and placed on an arbitrary timeline. The actual process of assigning

relative positions to nodes is adapted from the DAG-SHORTEST-PATH

procedure (Cormen, Leiserson, and Rivest 2001, 593) and is shown in Figure 46.

 Pseudocode for Task Dependency Graph Ordering. Adapted Figure 46.
from Cormen, Leiserson, and Rivest (2001).

 94

Once the start- and end-nodes are assigned an ordering, it is a simple

problem to assign them X coordinates on a Cartesian plane. In order to

compress the resulting interface into a screen with minimal scrolling, TOOTH

utilizes an algorithm which “walks” the graph from left to right and assigns task

nodes the highest available vertical “row” based on whether or not their graphic

would overlap with a previously-drawn graphic. The menu interface for adding or

editing a task is shown in Figure 47 and the full task dependency interface is

shown in Figure 48.

 Task Editing Form Interface. Figure 47.

 95

 Task Dependency Interface. Figure 48.

d. HTML Plain-Text View

One of the last functions developed for the technology demonstrator is a

Hyper-Text Markup Language (HTML) generator that demonstrates the potential

to create any number of specifically-formatted documents based on the TOOTH

data structure. This function arranges the human-readable attributes of the order

information objects into a form that approximates the traditional Five Paragraph

Order Format. Using HTML allows for the resulting document to be displayed

within a custom HTML-viewing fragment in TOOTH or on any other device with a

web browser. Furthermore, this exported text document could be imported into

more-powerful word processing software for conversion to other formats or

inclusion into slide shows.

 96

D. DEVELOPMENT STATISTICS

In the course of implementing the features listed above, the author

generated three major revisions of the user interface and twelve major

milestones in the application structure. Each of the features implemented was

tested incrementally, resulting in upwards of three hundred total software builds.

At the time of publication, the author had personally generated 61 Java files

containing more than 8,430 lines of code and 74 XML files containing an

additional 6,490 lines. This code relies on Android and OpenStreetMap libraries

consisting of another ~336,000 lines of code. An archive file containing the

project source code is included as an attachment to this thesis.

E. DEMONSTRATION

The technology has been successfully demonstrated at its current

maturation level to several entities within the Marine Corps. The author and his

advisors travelled to the Washington, D.C., area in February of 2017, where they

met with NPS research sponsors as part of a broader synchronization of

research efforts. Part of these meetings included the opportunity to use the

technology demonstrator to brief potential application stakeholders on the central

ideas of this thesis. TOOTH was discussed in several meetings at The Basic

School, the Infantry Officer Course, and with Marine Corps innovation leaders at

MCB Quantico and the Pentagon. The overall response to the idea was very

positive, especially among those with first-hand experience creating operations

orders, and it is a testament to the strength of the concept that everyone who

saw the demonstration immediately started thinking about what the idea meant

for their particular communities, saying “it would be great if it could do ...”

The technology was also demonstrated to various Marine Corps entities at

the 2017 NPS Naval Research Working Group (NRWG), with several expressing

interest in the concept. One Marine Corps research sponsor agreed to pursue

further topics related to the TOOTH concept. This connection helps set the stage

for follow-on research described in Chapter V.

 97

F. SUMMARY

This chapter detailed the creation of the TOOTH data structure and user

interface. It covered aspects of the implementation in depth, especially where

custom algorithms or solutions were required in order to achieve the goals of the

technology demonstrator. Chapter V presents conclusions about the work

completed to-date and suggest ways that the capability of TOOTH can be

enhanced through future research work.

 98

THIS PAGE INTENTIONALLY LEFT BLANK

 99

V. CONCLUSIONS, RECOMMENDATIONS AND FUTURE
WORK

This chapter summarizes the results of this research in the form of

observations on the performance of the technology demonstrator. It also

presents ideas for improving the central themes of this research through future

work.

A. CONCLUSIONS

Although the efficiency and usability of TOOTH was not formally tested in

the course of this research, we believe that the implementation of the central

ideas of this thesis has shown them to be valid and worthy of further study and

eventual adoption by the Marine Corps and other services. The following

observations are arranged according to the characteristics of an ideal application

presented at the end of Chapter II:

1. Mobile. The software utilizes features of the Android operating
system to effectively harness the capabilities of modern mobile
devices, and the technology demonstrator application runs
effectively on a hand-held Samsung Galaxy Tab device.

2. Valid. We believe that the data structure provides a methodology
for accurately representing the attributes of the different types of
information in an operations order and provides example methods
for defining the connections between those information objects.

3. Usable. We believe that the user interface, while simple, is intuitive
and is capable of presenting the information in the operations order
to the user in ways that allow the user to effectively manipulate the
data.

4. Focusable. TOOTH shows the immense time-saving potential of
the object-oriented approach to organizing the information resident
in tactical operations orders. The process of creating a new
operations order shell from an existing higher-headquarters order,
with all of the previous information reformatted into its new
locations (a process that takes between five minutes and an hour to
complete using manual methods), is accomplished accurately and
completely within TOOTH in less than ten seconds.

 100

5. Exportable. The application’s successful ability to save and re-
generate data objects implies a wide range of potential data export
techniques. Furthermore, the initial work related to generating plain-
text HTML documents from the order’s information indicates the
potential for the order information to be manipulated by a natural-
language algorithm for rapid conversion to human-readable formats
that are familiar to all Marines (Kiser 2016).

6. Assistive. The simple options menus implemented in TOOTH show
the potential for a more robust algorithm to guide the user through
the orders generation process while simultaneously checking that
order for potential mistakes.

In summary, we believe that the technology demonstrator produced for

this thesis effective communicates the potential presented by its ideas and

provides a structural framework upon which to build.

B. RECOMMENDATIONS

The following recommendations are based on observations made during

the completion of this thesis.

(1) Continued Development and Testing

The TOOTH application is matured to the point that it is capable of

demonstrating the central ideas of this thesis, but in its current state it is far from

a complete or useable product. The author intends to continue working toward

completion of an actual prototype during his follow-on assignment, and would be

happy to help any future NPS students who are interested in research contained

in the following future work section.

We recommend that any development of the technology prior to wide

distribution in the Marine Corps or other services include a complete re-working

of the code by professional Android Java programmers. Ideally, this development

effort would include subject-matter experts whose understanding of the tactical

operations order generation process would help to focus and clarify the efforts of

the technical professionals.

 101

(2) Marine Corps Adoption

We believe that this technology has the potential to revolutionize the way

that tactical operations orders are created and disseminated, but we also know

that the barriers to service-wide adoption are high. The best course of action is to

engage the stakeholder organizations that have a say in the doctrine and training

of tactical operations orders. Targeting new generations of leaders who are more

familiar with the use of mobile technology will help to demonstrate the time

saving potential to traditionalists.

(3) NPS Code Repository

The NPS computer science department does not have a central code

repository for archiving and sharing code produced by students in the course of

their thesis work. In addition to the potential loss of work product as students

graduate, the lack of a central repository potentially complicates the efforts of

students who are working on joint theses or continuing the research of previous

students. Furthermore, it introduces the possibility of potential leaks of NPS code

via open commons licenses when students resort to using commercial version

control products. We believe that NPS would benefit from the creation and

maintenance of a central code repository that is advertised to all students as a

forum for sharing algorithms.

C. FUTURE WORK

A review of Appendix A reveals that many of the envisioned functions of

TOOTH are incomplete. Several of these are strong avenues for future research

in applying computing principles in artificial intelligence, natural language

programming, and simulator development to the central idea of this thesis.

(1) Expert System Generation

The basic menu options and user interactions programmed into TOOTH

show the potential for quickly guiding users to accomplish their intended actions,

 102

but are barely a starting point for the possible ways that an expert system could

help users with the creation and dissemination of operations orders.

 “Guide Me” Function

One potential research project would be the application of artificial

intelligence principles of expert systems to the full process of guiding a user

through the generation of an operations order. This would include the use of

order type templates to shape the user’s selection of appropriate TCMs and

tactical tasks, and would include the guided creation of sound schemes of

maneuver by walking the user through doctrinally-correct relationships between

tactical tasks.

 “Check Me” Function

Another potential expert system would check the order for errors in the

user’s tactical thought process that extend beyond issues that are easily fixed by

the design of the data structure. Examples of this type of functionality include

simple problems such as assigning a unit tactical tasks whose completion is

impossible due to constraints of time and space, or more complex issues such as

finding errors in an operation’s geometry of fires by using data on unit locations

and their associated weapon systems.

(2) Natural Language Output

The simple HTML-generation tool included in the technology demonstrator

is sufficient to demonstrate the ability to convert object parameters into

exportable plain text; it is not sufficient in its current form for producing human-

readable plans from the interconnect information objects in a TOOTH operations

order file. Natural language techniques could be used to automatically export the

operations order information in formats familiar to all basically-trained recipients.

(3) Simulator (BML) Output

The potential also exists to export TOOTH data in a format that is

machine-readable for generating simulated versions of live operations orders.

 103

This is a potential research area for a modeling and simulation student to use

TOOTH as a tool for converting tactical thought into Battle Management

Language or other XML formats, especially if those products can be used with

the Marine Air-Ground Task Force (MAGTF) Tactical Warfare Simulation

(MTWS) (Marine Air Ground Task Force Training Center 2017).

(4) Application Effectiveness Testing

The success of the function that creates a new operations order from an

existing order suggests that TOOTH could improve user efficiency by as much as

90% or more in certain steps of the orders generation process. Assumptions like

that need to be verified with actual human-subject testing, preferably in an

environment such as a formal school that uses operations orders in its curriculum

and provides the opportunity for a large sample size and a control population.

(5) Doctrinal Completeness Review

The data types and templates included in the technology demonstrator are

sufficient to demonstrate the manipulation of inter-connected data, but are not an

exhaustive or doctrinally-complete set of default data types. Future work on

TOOTH should continue to expand the default options presented to users in

order to ensure that the platform is sound and produces relevant operations

orders.

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

APPENDIX A. GOAL HIERARCHY LIST

Tables 1 through 6 represent the full goal hierarchy list used in creating

TOOTH. The implementation column denotes whether or not the goal was fully

implemented in TOOTH prior to publication. The Java code files for major

functions are listed in the source file column. Implemented goals with no

associated file name are implemented within the file name listed under their

nearest parent goal.

 106

Table 1. Goal One Hierarchy List.

Goal Implemented? Source File

G1. Initiate application Yes _ToothMain.java

1.1. Load user interface Yes _ToothMain.java

1.1.1. Cover loading process with splash screen Yes A_SplashActivi ty.java

1.1.2. Load interface components Yes _ToothMain.java

1.1.2.1. Set up fragment managers Yes

1.1.2.2. Load main content Yes

1.1.2.3. Load map engine Yes

1.1.3. Load data templates Yes D_OrderData.java

1.1.3.1. Check for default object lists Yes

1.1.3.1.1. Create if missing Yes

1.1.4. Load menu items Yes M_MainMenu.java

1.2. Set a user Yes M_UserMenu.java

1.2.1. Populate user ID field Yes I_CreateUserObject.java

1.2.2. Create new user Yes I_CreateUserObject.java

1.2.2.1. Generate user ID Yes

1.2.2.2. Save user in user file Yes

1.2.2.3. Save preferences in user file Partial

1.2.3. Load a saved user Yes L_UserLis t.java

1.2.3.1. Open user file Yes

1.2.3.2. Allow user to select ID Yes

1.2.3.3. Validate user with 4‐digit code No

1.2.4. Delete existing user Partial M_SettingsMenu.java

1.2.4.1. Validate user privilege to delete account No

1.3. Load preferences and libraries Yes M_SettingsMenu.java

1.3.1. Import preference list Partial M_SettingsMenu.java

1.3.2. Import libraries (and build libraries if they don’t exist) Yes D_OrderData.java

1.3.2.1. Import order type list Partial

1.3.2.1.1. Allow user creation of new types No

1.3.2.2. Import task type list Yes

1.3.2.2.1. Allow user creation of new types No

1.3.2.3. Import tactical control measure type list Yes

1.3.2.3.1. Allow user creation of new types No

1.3.2.4. Import unit type list Yes

1.3.2.4.1. Allow user creation of new types No

1.3.2.5. Import faction list Yes

1.3.2.5.1. Allow user creation of new types Partial

1.3.3. Import saved unit hierarchies Yes M_SettingsMenu.java

1.3.3.1. Designate order unit in import hierarchy Yes

 107

Table 2. Goal Two Hierarchy List.

Goal Implemented? Source File

G2. Generate new operations order Yes D_OrderData.java

2.1. Designate order type (used in error checking) Partial D_OrderType.java

2.1.1. Load default order types Partial

2.2. Initiate data structure Yes D_OrderData.java

2.2.1. Initiate base order information class Yes

2.3. Prompt for user guiding (see G6) Partial _ToothMain.java

2.4. Input battlespace framework information Partial M_EditPara1Menu.java

2.4.1. Input areas Partial

2.4.1.1. Create area of operation (unique) No

2.4.1.2. Create area of influence (unique / optional) No

2.4.1.2.1. Set equal to AoO? No

2.4.1.3. Create area of interest (unique / optional) No

2.4.1.3.1. Set equal to AoO? No

2.4.1.4. Add to operations overlay Partial

2.4.1.4.1. Add to map overlay display Partial

2.4.2. Input friendly unit hierarchy Yes C_UnitTree.java

2.4.2.1. Input friendly unit Yes I_AddUnitObjectDia log.java

2.4.2.1.1. Input unit name Yes

2.4.2.1.1.1. Designate display name (5 char limit) Yes

2.4.2.1.2. Input unit location Yes

2.4.2.1.2.1. Get location from map input Yes

2.4.2.1.2.2. Get location from manual input Yes

2.4.2.1.3. Input unit type Yes

2.4.2.1.4. Input unit relationships Yes

2.4.2.1.4.1. Designate parent unit Yes

2.4.2.1.4.2. Designate child unit Yes

2.4.2.1.4.3. Designate support relationship No

2.4.2.1.5. Input weapons system types No

2.4.2.1.5.1. Load weapons systems from library No

2.4.2.1.5.2. Store weapons information as template No

2.4.2.1.6. Input unit communications information No

2.4.2.1.6.1. Input number / type of radios No

2.4.2.1.6.1.1. Call information from library No

2.4.2.1.6.2. Input communications nets / callsigns No

2.4.2.1.6.2.1. Generate radio freq/netID list No

2.4.2.1.6.2.2. Generate radio freq/netID datatypes No

2.4.2.1.7. Add to operations overlay Yes

2.4.2.2. Prompt to save unit hierarchy as template Yes

2.4.3. Input enemy units Yes C_UnitTree.java

2.4.3.1. Input unit name Yes I_AddUnitObjectDia log.java

2.4.3.1.1. Designate display name (5 char limit) Yes

2.4.3.2. Input unit location Yes

2.4.3.2.1. Get location from map input Yes

2.4.3.3. Input unit type Yes

2.4.3.4. Input unit relationships Yes

2.4.3.4.1. Designate parent unit Yes

2.4.3.4.2. Designate child unit Yes

2.4.3.4.3. Designate support relationship Yes

2.4.3.5. Add to operations overlay Yes

 108

Table 3. Goal Two (Continued) and Goal Three Hierarchy Lists.

Goal Implemented? Source File

2.4.4. Input Tactical Control Measures (TCMs) Partial

2.4.4.1. Input objectives Partial

2.4.4.1.1. Add to operations overlay Partial

2.4.4.1.1.1. Add to map overlay display Partial

2.4.4.2. Input checkpoints Partial

2.4.4.2.1. Add to operations overlay Partial

2.4.4.2.1.1. Add to map overlay display Partial

2.4.4.3. Input phase lines Partial

2.4.4.3.1. Add to operations overlay Partial

2.4.4.3.1.1. Add to map overlay display Partial

2.5. Input unit mission statement (Paragraph 2 – Mission) Yes M_EditPara2.java

2.5.1. Designate a unit in hierarchy as owning unit for the order Yes M_EditPara2.java

2.5.2. Create task tree with this task as its base Yes C_TaskTree.java

2.6. Input scheme of maneuver Partial M_EditPara3Menu.java

2.6.1. Create tasks Yes C_TaskTree.java

2.6.1.1. Designate associated TCM(s) Partial

2.6.1.2. Designate task dependency Yes

2.6.1.3. Designate task concurrency Yes

2.6.2. Create non‐task timeline events Yes

2.6.2.1. Indicate event dependency Yes

2.6.2.2. Indicate event concurrency Yes

2.6.3. Re‐order tasks and events Partial

2.6.4. Designate phases/stages/parts Partial

2.6.5. Assign tasks to subordinate units Yes

2.7. Input fire support plan Partial

2.7.1. Create fires tasks Yes

2.7.1.1. Tie fires task to supported maneuver tasks Yes

2.8. Input administration and logistics information (paragraph 4) Partial M_EditPara4Menu.java

2.8.1. Input non‐auto generated information Partial

2.9. Input command and signal information (paragraph 5) Partial M_EditPara5Menu.java

2.9.1. Input non‐auto generated information Partial

G3. Open existing operations order Yes L_SavedOrderLis t.java

3.1. Confirm file password No

3.2. Decrypt file No

3.3. Read file Yes

3.3.1. Populate data structures Yes

 109

Table 4. Goals Four Through Seven Hierarchy Lists.

Goal Implemented? Source File

G4. Generate new order from existing order Yes L_Modi fiableOrderLis t.java

4.1. Designate base unit from existing order Yes D_OrderData.java

4.1.1. Peek at existing unit structure Yes

4.1.2. Designate base unit Yes

4.1.3. Update unit mission Yes

4.1.3.1. Create task tree with this task as its base (See G2) Yes

4.2. Open existing order (see G3) Yes

4.2.1. Use designated base unit for situation and task import Yes

4.3. Update orientation / situation information Yes

4.3.1. Import tactical control measures Yes

4.3.1.1. Confirm area of operations Yes

4.3.2. Import higher unit information Yes

4.3.2.1. Update higher mission and intent Yes

4.3.3. Import adjacent unit information Yes

4.3.4. Import supporting unit information Yes

4.3.4.1. Update fires availability matrix No

4.3.5. Input additional battlespace framework information (see G1) Partial

4.4. Input scheme of maneuver information Partial

4.4.1. User confirmed clear of current data Partial

4.4.1.1. User confirmed clear of tasks for subordinate units Partial

4.4.1.2. User confirmed clear of fires information Partial

4.4.2. Task and event input and sequencing (see G2) Yes

4.4.3. Fires input and sequencing (see G2) Yes

G5. Edit existing order Yes L_SavedOrderLis t.java

5.1. Open existing order (see G3) Yes

5.2. Allow user editing of existing data structures (see G2) Yes

5.3. Prompt for user guiding (see G6) Partial

G6. Guide user through order creation Partial

6.1. Update this based on process flow determination (task tree) No

6.2. Prompt for auto‐generation of additional products (see G7) No

6.3. Prompt for order validation (see G8) Partial

G7. Auto‐generate additional order sections and products No

7.1. Populate administration and logistics portion No

7.1.1. Generate TCM list No

7.1.2. Generate task‐specific PCC / PCI list No

7.2. Populate command and signal portions No

7.2.1. Generate signal list from ordered SOM list No

7.2.2. Generate frequency / call sign list from unit hierarchy No

7.2.3. Generate succession of command list (ordered list) No

7.2.3.1. Allow user addition of additional persons No

7.2.3.2. Allow user deletion of persons No

7.2.3.3. Allow user re‐ordering or list No

7.2.3.4. Allow for re‐generation of default No

7.3. Populate additional products No

 110

Table 5. Goal Eight Hierarchy List.

Goal Implemented? Source File

G8. Validate order No

8.1. Confirm situation / orientation validity (para 1) No

8.1.1. Confirm no duplicate TCM names No

8.1.1.1. Check adjacent unit checkpoint names No

8.1.1.2. Check duplicate objectives on same grid No

8.1.1.2.1. Combine object names in data type No

8.1.2. Confirm TCMs are inside of area of operations No

8.1.3. Check validity of friendly unit tree No

8.1.3.1. Confirm no unit double‐attached No

8.1.3.2. Confirm all unit parent/support relationships No

8.2. Confirm mission validity (para 2) No

8.2.1. Confirm mission tied to unit No

8.2.2. Confirm mission tied to appropriate objective No

8.3. Confirm execution validity (para 3) No

8.3.1. Confirm task validity No

8.3.1.1. Confirm all tasks tied to units No

8.3.1.2. Confirm all supporting tasks tied to primary task No

8.3.1.3. Confirm all tasks have signal associated No

8.3.1.4. Confirm no unit has more than one task per phase No

8.3.1.5. Confirm task location suitability No

8.3.2. Confirm SOM validity No

8.3.2.1. Confirm SDZ geometry No

8.3.3. Confirm fires validity No

8.3.3.1. Confirm supporting assets firecap prior to use No

8.3.3.2. Confirm supporting assets in range No

8.3.3.3. Confirm round counts support timeline No

8.4. Confirm administration and logistics validity (para 4) No

8.5. Confirm command and signal validity (para 5) No

8.5.1. Confirm signal plan validity No

8.5.1.1. Confirm each task / event has a primary signal No

8.5.1.2. Confirm each task / event has a secondary signal No

8.5.1.3. Confirm units on same net are within frequency range No

8.5.1.4. Confirm units have enough radios to maintain comms No

8.5.2. Confirm command information validity No

8.5.2.1. Confirm all listed leaders have a geographic location No

8.5.2.2. Confirm all listed leaders have a netID / callsign No

 111

Table 6. Goals Nine and Ten Hierarchy Lists.

Goal Implemented? Source File

G9. Save / export operations order Yes D_OrderData.java

9.1. Save operations data to file Yes

9.1.1. Generate XML / X‐BML file No

9.1.1.1. Set file password No

9.1.2. Write data to file by data type Yes

9.1.3. Encrypt file No

9.2. Automatically save operations order Yes T_AutoSave.java

9.2.1. Check to see previous saved time Yes

9.2.2. Save order as autosave.order Yes

9.3. Export operations order as human‐readable HTML Partial L_HTMLGenerator.java

9.3.1. Export all data elements by readable‐text property Partial

9.3.2. Organize human‐readable elements into 5 Paragraph Format Partial

9.3.2.1. Display 5 Paragraph Format in TOOTH Partial V_HTMLView.java

9.4. Export operations order as readable Word document No

9.5. Export map data as overlay file No

G10. Manage device power consumption Yes T_PowerMgmt.java

10.1. Check battery status Yes

10.2. Prompt user for low‐power mode Yes

10.2.1. Decrease screen brightness Yes

10.2.2. Autosave order Yes

10.2.3. Prompt to turn off GPS Partial

 112

THIS PAGE INTENTIONALLY LEFT BLANK

 113

APPENDIX B. DATA RELATIONSHIP GRAPH

 114

THIS PAGE INTENTIONALLY LEFT BLANK

 115

LIST OF REFERENCES

Adkison, Jesse D. 2015. “Data Supporting Mobile Application Development for
Use within the Marine Air-Ground Task Force.” Master’s thesis, Naval
Postgraduate School.

Anderson, Brett. 2010. “Benefits of Using a Gantt Chart.” hubPages.
https://hubpages.com/business/Benefits-of-using-a-Gantt-Chart.

The Basic School. 2015a. “Combat Orders Foundations.” In Basic Officer Course
Student Handbook. B2B2377. Quantico, VA: United States Marine Corps.

———. 2015b. “Officership Foundations.” In Basic Officer Course Student
Handbook. B1X0099XQ. Quantico, VA: United States Marine Corps.

Börner, Katy, and David E. Polley. 2014. Visual Insights : A Practical Guide to
Making Sense of Data. Cambridge, MA: MIT Press. http://cns.iu.edu/docs/
presentations/2013-borner-visualinsights-cs10k.pdf.

Braude, Eric J. 2001. Software Engineering: An Object-Oriented Perspective.
New York, NY: John Wiley & Sons.

Buczkowski, Aleks. 2015. “Why Would You Use OpenStreetMap If There Is
Google Maps?” Goawesomeness.com. http://geoawesomeness.com/why-
would-you-use-openstreetmap-if-there-is-google-maps/.

Cipeluch, Blazej, Ricky Jacob, Adam Winstanley, Peter Mooney, Blazej Ciepluch,
Ricky Jacob, Adam Winstanley, and Peter Mooney. 2010. “Comparison of
the Accuracy of OpenStreetMap for Ireland with Google Maps and Bing
Maps.” Ninth International Symposium on Spatial Accuracy Assessment in
Natural Resuorces and Enviromental Sciences, 337. http://eprints.nuim.ie/
2476/.

Clausewitz, Carl von. 1989. On War. Ed. and Transl. Michael Eliot Howard and
Peter Paret. Princeton, NJ: Princeton University Press.

Comptroller. 2016. FY 2017 Department of Defense Military Personnel
Composite Standard Pay and Reimbursement Rates. Washington, D.C.:
Department of Defense.

Cormen, Thomas H, Charles E Leiserson, and Ronald L Rivest. 2001.
Introduction to Algorithms. 2nd ed. Boston, MA: MIT Press.

Creveld, Martin L Van. 1985. Command in War. Boston, MA: Harvard University
Press.

 116

Department of the Army. 1997. Staff Organization and Operations. FM 101-5.
Washington, D.C: Department of the Army.

———. 2004. Operational Terms and Graphics. FM 1-02. Washington, D.C:
Department of the Army.

———. 2014. Insurgencies and Countering Insurgencies. FM 3-24. Washington,
D.C: Department of the Army.

Expeditionary Warfare Collaborative Team. 2012. Bold Alligator 2012 Final
Report. Washington, D.C.: Expeditionary Warfare Collaborative Team.

Ferrucci, David, Anthony Levas, Sugato Bagchi, David Gondek, and Erik T.
Mueller. 2013. “Watson: Beyond Jeopardy!” Artificial Intelligence 199–200.
Elsevier B.V.: 93–105.

Filiberti, E. J. 1987. “The Standard Operations Order Format: Is Its Current Form
and Content Sufficient for Command and Control?” Master’s thesis, United
States Army Command and General Staff College.

Franklin, Jude E., Cora Lackey Carmody, Karl Keller, Tod S. Levitt, and Brandon
L. Buteau. 1988. “Expert System Technology for the Military: Selected
Samples.” Proceedings of the IEEE 76 (10): 1327–66.

GlobalSecurity.org. 2017. “Marine Corps Special Operations Command Table of
Organization.” http://www.globalsecurity.org/military/agency/usmc/images/
mcsocom-det-org.jpg.

Google. 2017. “Android Developers API Guide.” https://developer.android.com/
guide/index.html.

Goolsbee, Austin. 2002. “The TurboTax Revolution? Evaluating the Ability of
Technology to Solve the Tax Complexity Dilemma.” Chicago, IL.

Grossman, Dave, and Loren W Christensen. 2007. On Combat: The Psychology
and Physiology of Deadly Conflict in War and in Peace. Belleville, IL:
PPCT Research Publications.

Hans, Robert T. 2013. “Work Breakdown Structure : A Tool For Software Project
Scope Verification.” International Journal of Software Engineering &
Applications (IJSEA) 4, no. 4: 19–25.

Hartmann, Timo, Hendrik Van Meerveld, Niels Vossebeld, and Arjen Adriaanse.
2012. “Aligning Building Information Model Tools and Construction
Management Methods.” Automation in Construction 22. Elsevier B.V.:
605–13.

 117

Highsmith, Jim. 2004. Agile Project Management: Creating Innovative Products.
Boston, MA: Addison-Wesley.

Kewley, Robert H., and Mark J. Embrechts. 2002. “Computational Military
Tactical Planning System.” IEEE Transactions on Systems, Man and
Cybernetics Part C: Applications and Reviews 32, no. 2: 161–71.

Kiser, Matt. 2016. “Introduction to Natural Language Processing (NLP).”
Algorithmia. http://blog.algorithmia.com/introduction-natural-language-
processing-nlp/.

Lopes, C. Todd. 2015. “TRADOC Opens App Store.” Army.mil.
https://www.army.mil/article/157984/TRADOC_opens_app_store.

Marine Air Ground Task Force Training Center. 2017. “BSC MTWS.” Marines.mil.
http://www.29palms.marines.mil/Staff/G3-Operations-and-Training/
MAGTFTC-Simulations/Staff-Training/MTWS/.

Miller, Christopher C. 2006. “A Beast in the Field: The Google Maps Mashup as
GIS/2.” Cartographica: The International Journal for Geographic
Information and Geovisualization 41, no. 3: 187–99.

Mohn, Howard L. 1994. “Implementation of a Tactical Mission Planner for
Command and Control of Computer Generated Forces in MODSAF.”
Master’s thesis, Naval Postgraduate School.

Morris, J. 2011. Android User Interface Development Beginner’s Guide.
Birmingham, UK: Packt Publishing.

NASA. 2017. “NASA World Wind.” https://worldwind.arc.nasa.gov/.

NATO Military Agency for Standardization. 2000. “Formats for Orders and
Designation of Timings, Locations and Boundaries (Stanag 2014).”
Brussels, Belgium: NATO Military Agency for Standardization.

NATO Research and Technology Organization. 2012. Coalition Battle
Management Language (C-BML). Hanover, MD: NASA Center for
AeroSpace Information.

NAVAIR. 2015. “Strike Planning and Execution Systems.”
http://www.navair.navy.mil/index.cfm?fuseaction=home.display&key=D0B
91B0C-3FA3-4ECA-BADE-CA8F7C3A9825.

———. 2016. “KILSWITCH Application Program Interface.” Data files. China
Lake, CA: NAVAIR.

 118

NGA. 2016. “FalconView.” https://www.nga.mil/ProductsServices/Pages/-
FalconView.aspx.

Pullen, J. Mark, Ababneh, M., Singapogu, S., Brown, R., Murphy, B., Hall P., and
Ave, H.. 2011. “Testing a NATO OPORD Schema with C-BML.” George
Mason University, Fairfax, VA. http://netlab.gmu.edu/pubs/11E-SIW-
014.pdf.

Pullen, J., Hieb, M., and Levine, S. 2007. “Joint Battle Management Language
(JBML)-US Contribution to the C-BML PDG and NATO MSG-048 TA.”
IEEE European Simulation Interoperability Workshop.
http://netlab.gmu.edu/pubs/07E-SIW-029.pdf.

Serbest, Fikret. 1994. “An Automated Tactical Operations Command, Control,
Communications, and Intelligence Planning Tool Using Hyper-NPSNET.”
Master’s thesis, Naval Postgraduate School.

Smith, Major Matthew L. 1989. “The Five Paragraph Field Order: Can a Better
Format Be Found to Transmit Combat Information to Small Tactical
Units?” Master’s thesis, United States Army Command and General Staff
College.

Starcke, K., and Brand, M. 2012. “Decision Making under Stress: A Selective
Review.” Neuroscience and Biobehavioral Reviews 36 (4). Elsevier Ltd:
1228–48. doi:10.1016/j.neubiorev.2012.02.003.

tandef. 2012. “Lessons Learned Command Post Exercise Garuda Shield.” Blog
post. https://tandef.wordpress.com/2012/07/31/lesson-learn-pelatihan-
interoperability-dan-interagency-melalui-command-post-exercise-garuda-
shield/.

Tausworthe, Robert C. 1979. “The Work Breakdown Structure in Software
Project Management.” Journal of Systems and Software 1: 181–86.
doi:10.1016/0164-1212(79)90018-9.

U.S. Joint Forces Command. 2011. Joint Operation Planning. JP 5-0.
Washington, D.C: U.S. Joint Forces Command.

United States Marine Corps. 2017. “USMC Unit Directory.” Marines.mil.
Accessed March 3. http://www.marines.mil/Units/srtype/Infantry/.

———. 2010. MCWP 5–1: Marine Corps Planning Process. Quantico, VA: United
States Marine Corps.

———. 2015. Marine Corps Concept for Command and Control. Quantico, VA:
United States Marine Corps.

 119

Weaver, P. 2012. “The Origins of Modern Project Management.” Science,
1401(2003), 557–575. https://doi.org/10.1126/science.1089370.

Wu, C. Thomas. 2006. An Introduction to Object-Oriented Programming with
Java. 4th ed. New York, NY: McGraw-Hill.

Zsambok, Caroline E, and Gary Klein. 2014. Naturalistic Decision Making. New
York: Psychology Press.

 120

THIS PAGE INTENTIONALLY LEFT BLANK

 121

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

