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UNSCENTED CONTROL FOR UNCERTAIN 
DYNAMICAL SYSTEMS 

This application claims the benefit of U.S. Provisional 
Application No. 61/985,917, filed Apr. 29, 2014, which is 
hereby incorporated in its entirety by reference. 

BACKGROUND OF THE INVENTION 

2 
compute the error signal and as a consequence an incorrect 
control signal will be output by the feedback law. In general, 
this will cause the response of the dynamical system under 
control to drift outside of the desired tolerance. In some 
cases, the control system can become unstable causing the 
destruction of the system. 

An approach for operating a dynamical system in the 
absence of, or degradation of feedback sensors, is to imple­
ment an open-loop control system by designing a suitable 

1. Field of the Invention 
The present invention is directed to the field of dynamic 

system control. In particular, the present invention is 
directed to the field of improved open loop control of 
uncertain dynamical systems. 

10 control history a priori and using it to drive the system 
directly. Designing an open-loop control history to correctly 
manage uncertainty and thereby achieve the desired toler­
ances for the system response is a considerable challenge 
and consequently very little has been done to address this 

2. Description of the Related Technology 15 issue. 
In control of dynamical systems, feedback is generally 

utilized to achieve a specified performance despite a range 
of system (plant) uncertainty. Such uncertainty may be the 
result of physical changes in the characteristics of the system 
under control that occur over time, for example due to age 20 

or use, or that occur due to changes in the environment, such 
as the change in density of the atmosphere as a function of 
altitude, season, latitude, longitude, and local time of day. In 
addition, system uncertainty may arise in the control system 
design due to the operator's lack of knowledge or ignorance 25 

of the true values of the system parameters. For example in 
the control of the angular rotation of a rigid body, an 
important system parameter is the inertia of the body about 
the rotational axis. In general, an estimate of the inertia is 
developed based on measurements of certain characteristics 30 

of the body such as its mass distribution and dimensions. 
However, since these parameters are often difficult to mea­
sure with precision, the exact value of the inertia is difficult 
to predict. As a consequence, it is difficult in practice to 
achieve a desired input-output relation due to imprecise 35 

knowledge of the system. The role of feedback is therefore 

One representative approach employs the concept of a 
system sensitivity function, obtained by linearizing the 
system dynamics that attempts to capture the effects of 
uncertainty in the neighborhood of the system response 
obtained under nominal conditions. Open-loop control is 
implemented by introducing a constraint that requires the 
sensitivity states to be forced to zero at or near the final time. 
One difficulty with this approach is that the construction of 
the sensitivity function is generally based on the lineariza­
tion of a dynamical model of the system. As a result, 
uncertainties causing significant drifts may be difficult or 
impossible to accommodate. This can lead to failure of the 
open-loop control to achieve the desired objective(s). 

SUMMARY OF THE INVENTION 

An aspect of the present invention is a method for 
providing unscented system control. The method comprises 
identifying a dynamical model of the system and determin­
ing a vector of one or more uncertain parameters and/or 
initial conditions of the system. Sigma points and weights 
for each of the uncertain parameters and/or initial conditions 
are then computed using the unscented transform to encode 
the statistical information of the uncertain parameter/initial 

to obtain the desired input-output relation within desired 
tolerances despite the system uncertainty, which may addi­
tionally include the effects of disturbances acting on or 
within the system. 40 condition distributions into a small number of points. Using 

sigma points computed for capturing the effects of uncertain 
system parameters and/or initial conditions, along with a 
dynamical system model, two or more copies of equations 

In a feedback dynamic control system, sensors are used to 
measure the system variables or states. The sensor data is 
processed and fed back into the input of the system to force 
the system to produce an acceptable output despite uncer­
tainty. In this setting, the system accuracy can be no greater 45 

than the accuracy of the sensors used to provide the feed­
back. As a consequence, the performance of the feedback 
system will become degraded when sensors fail. In the 
situation where the sensors fail completely, that is to say the 
sensors can no longer produce an output that allows the 50 

system states to be estimated, the feedback mechanism will 
also fail and it will become impossible to control the system. 
In this situation, it may still be possible to achieve a specified 
performance tolerance if a suitable open-loop control (one 
that does not rely on sensor data for implementation) can be 55 

designed and applied to the system. 
In the past, feedback has been utilized to achieve the 

necessary sensitivity reduction by using sensors to measure 
the system state so that the system state may be compared 
with the desired state. As a consequence of this comparison, 60 

an error signal may be computed and subsequently filtered 
by a feedback law in order to generate a control input to 
drive the plant. By measuring the system states, any devia­
tions caused by parametric uncertainties or other distur­
bances are automatically accommodated by the resulting 65 

changes in the error signal. In the event that some or all of 
the system sensors fail, it becomes impossible to correctly 

for dynamics of the system are created (one for each of the 
two or more sigma-point vectors). Copies of the equation of 
the dynamics of the system corresponding to each sigma 
point are used to propagate the uncertain dynamics so that 
the influence of the uncertain parameters and/or initial 
conditions can be determined and thereby modified or 
controlled according to the objectives or desired outcome of 
the user of the unscented system control process. Control-
ling or otherwise modifying the effects of the uncertain 
parameters and/or initial conditions on the system response, 
as modeled using the sigma points along with copies of a 
dynamical system model, is accomplished by constructing 
and solving an optimal control problem using the two or 
more copies of the dynamical system model with appropri­
ate constraints as determined by the user of the process. As 
part of the present invention, an optimal control problem is 
thus constructed that minimizes the cost functional and 
achieves an outcome. Optionally, at least one box bound 
and/or one or more linear or non-linear path constraints 
and/or one or more linear or non-linear terminal constraints 
(on the boundary conditions) are then established for the 
system. Unscented optimal control computations are then 
performed using said two or more copies of the equations for 
the dynamics of the system while minimizing the cost 
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function and adhering to the defined problem constraints. 
Control instruction is then provided to the system based on 
results obtained from the unscented optimal control com­
putation. 

In one embodiment, pseudo-spectral optimal control 
theory is employed in the step of performing the unscented 
optimal control computations. 

One or more of the at least one outcome and/or box bound 
and/or path constraint and/or terminal constraint and/or cost 
function may be weighted functions of the sigma points and 
may satisfy the weighted function: 

gL(X(t)),;L;~!Naw;r(X;(t)),;gu(X(t)) 

where 
r:~ n---;.~ k' gL:~ n---;.~ k' gu:~ n---;.~ k 

with 
~sgu, component-wise 

4 
parameters and/or initial states of the system may have 
mixed probability distributions other than Gaussian or uni­
form. 

The system may be configured for control of a device or 
a component of a device selected from satellites, aircraft, 
rockets, robots, automobiles, heavy machinery engines, 
chassis systems, hydraulic systems, pneumatic systems, 
unmanned systems, autonomous systems, chemical pro­
cesses, energy conservation systems, quantum systems, 

10 financial and epidemic/biological systems. In certain 
embodiments, the system is configured as a guidance and/or 
navigation system. 

The invention also relates to a control system comprising 
a controller configured to implement the method of the 

15 invention, preferably for control of a device or a component 
of a device selected from satellites, aircraft, rockets, robots, 
automobiles, heavy machinery engines, chassis systems, 
hydraulic systems, pneumatic systems, unmanned systems, 
autonomous systems, chemical processes, energy conserva-

where X,(t) is the vector of values of one replica of the state 
space corresponding to the i-th sigma point. In one embodi­
ment, weighted functions of the sigma points can provide the 
mean values or combinations of the mean values of the 
system states X(t), wherein the bounds, gL and gU are each 
vectors whose individual entries may be functions ofX(t), or 
constants, or zero, w is a vector of weights associated with 

25 
sigma points and Na is the number of sigma points. 

20 tion systems, quantum systems, financial and epidemic/ 
biological systems. The control system may also be config­
ured for guidance and/or navigation and, in some 
embodiments the control system is an open loop control 
system. 

BRIEF DESCRIPTION OF THE DRAWINGS 
In another embodiment, one or more of the at least one 

outcome and/or box bound and/or terminal constraint and/or 
path constraint and/or cost function satisfy the weighted 
function: 

hL(X(t)),;L;~!Naw;(X;(t)-µ;)(X;(t)-µ;)T,;hu(X(t)) 

representing constraints on the covariance of the system 
states X(t), or combinations thereof, bounds hL and hU are 
matrices whose individual entries may be functions ofX(t), 
or constants, or zero, w is a vector of weights associated with 
sigma points and Na is the number of sigma points. For each 
of the above mentioned embodiments, the variable t can be 
a continuous variable or represent a discrete set of values, t:J, 
j=l, ... , k, including the final value, y In one embodiment 
of the present invention, the weighted functions described 
above or their variants may be applied as terminal conditions 
in which case variable t is taken as an initial time t

0 
or as a 

final time 1r· 
The unscented optimal control computation may mini­

mize the cost function J=E(X(t0 ,1r)+J,o'f F (X(t), u(t), t)dt, 
wherein E is an endpoint cost function whose value depends 
on the values of state variables in vector X at an initial time 
t0 and/or a final time S, F is a running cost functional whose 
value at time t depends on the integral of the function F from 
an initial time t

0 
to a final time 1:Ji and the value of function 

F at a particular time depends on the values of the state 
variables in vector X and/or the values of the control 
variables in vector u and/or time t. 

In one embodiment, the function E=~;~i Naw,X,(1r) and, in 
an alternative embodiment, the function E=~,~1N°w,(X,(1r)­
µ,(1r))(X,(1r)-µ,(1r)f. Also, in certain embodiments, the func­
tion F=~;~1N°w,(X,(1r)-µ,(1r))(X,(1r)-µ,(1r)f. 

In some embodiments, the uncertain parameters and/or 
initial states of the system have uniform probability distri­
butions. In other embodiments, the uncertain parameters 
and/or initial states of the system have Gaussian probability 
distributions. In still other embodiments, the uncertain 
parameters and/or initial states of the system have mixed 
Gaussian and uniform probability distributions. These 
embodiments are expected in common practice, however, 
other embodiments are possible wherein the uncertain 

30 

FIG. 1 is a flow chart of the method for providing 
unscented optimal control to a system. 

FIG. 2 is a simplified diagram of a navigation system in 
which unscented optimal control can be implemented. 

FIG. 3 shows a simplified block diagram of the Hubble 
Space Telescope's pointing control system. 

FIG. 4 is a graph showing target error distributions 
35 produced in Example 1 from a Monte Carlo simulation of a 

shortest-time-maneuver implementation for the Hubble 
Space Telescope operating in an open loop zero-gyro mode 
with system inertia uncertainty. 

FIG. 5 is graph showing additional target error distribu-
40 tions produced in Example 1 from a Monte Carlo simulation 

of a shortest-time-maneuver implementation for the Hubble 
Space Telescope operating in an open loop zero-gyro mode 
with system inertia uncertainty. 

FIG. 6 is a third graph showing target error distributions 
45 produced in Example 1 from a Monte Carlo simulation of a 

shortest-time-maneuver implementation for the Hubble 
Space Telescope operating in an open loop zero-gyro mode 
with system inertia uncertainty. 

FIG. 7 is a fourth graph showing target error distributions 
50 produced in Example 1 from a Monte Carlo simulation of a 

shortest-time-maneuver implementation for the Hubble 
Space Telescope operating in an open loop zero-gyro mode 
with system inertia uncertainty. 

FIG. 8 is a graph showing an exemplary unscented 
55 optimal control for targeting a zero mean error. 

FIG. 9 shows a graph of the rotation rates corresponding 
to sigma point state trajectories for the Hubble Space 
Telescope that target a zero mean error. 

FIG. 10 shows graph of the quaternion states correspond-
60 ing to sigma point state trajectories for the Hubble Space 

Telescope that targets a zero mean error. 
FIG. 11 shows a graph that compares the terminal cova­

riance ellipse of a shortest time maneuver to the terminal 
ellipse of an unscented control that targets zero mean 

65 terminal error, comparing the first two rotation rates. 
FIG. 12 shows a graph that compares the terminal cova­

riance ellipse of a shortest time maneuver to the terminal 
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ellipse of an unscented control that targets zero mean 
terminal error, comparing pitch 8, and roll, cjJ error. 

FIG. 13 is a graph showing a ten-fold reduction in the 
covariance of the target values of the sample state variables, 
employing an unscented control that bounds the terminal 
covariance while targeting the mean error. 

FIG. 14 is a second graph showing a ten-fold reduction in 
the covariance of the target values of the sample state 
variables, employing an unscented control that bounds the 
terminal covariance while targeting the mean error. 10 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT(S) 

6 
terns with failed sensors and/or may be utilized to reduce or 
eliminate the need for sensors in the control of dynamical 
systems. 

"System sensitivity" is defined as a measure of the change 
in the response of a dynamical system to a given control 
input arising from uncertainties in the system parameters, 
from disturbances and/or arising from uncertainty in the 
initial conditions. In order to design a control input to a 
dynamical system to achieve a result within prescribed 
tolerances on the system response it is necessary to develop 
a control input profile that drives the system in such a way 
that the resulting output reduces the system sensitivity as 
much as possible. That is to say the output is made insen-

For illustrative purposes, the principles of the present 
disclosure are described by referencing various exemplary 
embodiments. Although certain embodiments are specifi­
cally described herein, one of ordinary skill in the art will 
readily recognize that the same principles are equally appli­
cable to, and can be employed in other systems and methods. 

15 sitive to the perturbations caused by uncertainty. 
The method and apparatus of the present invention pro­

vide a new approach for open-loop control of linear or 
nonlinear systems that combines unscented transforms with 
optimal control theory so as to directly manage uncertainties 

Before explaining the disclosed embodiments of the pres­
ent disclosure in detail, it is to be understood that the 
disclosure is not limited in its application to the details of 
any particular embodiment shown. Additionally, the termi­
nology used herein is for the purpose of description and not 
of limitation. Furthermore, although certain methods are 
described with reference to steps that are presented herein in 

20 in an open loop framework. In the present invention, the 
sigma points associated with the unscented transform in 
addition to the other system states as described by a math­
ematical model of a dynamical system, are treated as con­
trollable particles that are all driven by the same open-loop 

25 control. The behavior of the controllable particles, as a 
function of time, can be modified by changing the open-loop 
control. Hence optimal control can be used to find an 
open-loop control trajectory that meets the constraints on the 

a certain order, in many instances, these steps may be 
performed in any order as may be appreciated by one skilled 30 

in the art; the novel methods are therefore not limited to the 
particular arrangement of steps disclosed herein. 

It is to be noted that as used herein and in the appended 
claims, the singular forms "a", "an", and "the" include plural 

35 
references unless the context clearly dictates otherwise. 

system performance as defined by a user of the process. 
A system-of-systems dynamical model, which may be a 

linear model or a nonlinear model, is constructed where each 
system is a copy of the other. In application of the control­
lable particle assumption, each particle is driven by the same 
open-loop control. Thus, because the sigma points capture 
and encode statistical information about the system uncer­
tainty it is possible to ensure that the response of the 
uncertain process adheres to tolerances prescribed by the 
user by appropriately constraining the behavior of the sys­
tem-of-systems over time. Pseudo-spectral optimal control 

Furthermore, the terms "a" (or "an"), "one or more" and "at 
least one" can be used interchangeably herein. The terms 
"comprising", "including", "having" and "constructed 
from" can also be used interchangeably. 

The present invention provides a method and system for 
determining and implementing open-loop control for a 
dynamical system. This system may be described math­
ematically by a state space model to achieve a specified 
performance tolerance on the output state or other system 
states despite uncertainties that may also include the effects 
of disturbances acting on the system. 

40 techniques may be applied to this system-of-systems for 
constraining the system and for obtaining a solution of the 
resulting large-scale optimal control problem and to obtain 
a control history to assist in achieving the user specified 
objectives. The method and apparatus of this invention 

In the present invention, the effects of uncertainties are 
characterized through the use of the unscented transform as 

45 enables the design and implementation of an open-loop 
control system that produces an acceptable output in the 
presence of uncertainty and with at least a reduced reliance 
on feedback from sensors. 

a collection of sigma points. The open-loop control is 50 

determined as a solution to an unscented optimal control 
problem by propagating or collocating the sigma points 
using an equal number of copies of a model. The desired 
performance tolerances are realized by enforcing constraints 
on the propagated or collocated sigma points either during 55 

the evolution of the state trajectories and/or at a terminal 
event and/or by minimizing a cost functional whose value 
may depend fully or in part upon the propagated or collo­
cated sigma points. Each copy of a model is driven by the 
same open-loop control trajectory. Therefore, the specified 60 

tolerances for the system performance will be realized by 
open-loop control of the uncertain dynamical system over 
the entire range of uncertainty described or otherwise 
encoded by the sigma points. In this way, it is possible to 
control an acceptable output in the presence of uncertainty 65 

and without reliance on feedback from sensors. Such a 
sensor-less control scheme can be utilized to recover sys-

In one embodiment of the present invention, the open­
loop control system of the present invention may be used to 
operate a feedback system with one or more failed sensors. 
In this embodiment, the control system of the invention can 
supplement or replace the feedback control system as 
desired. For example, the control system of the invention 
may be used for emergency or temporary control in the 
advent of the failure of one or more sensors in a feedback 
control system until the feedback control system is repaired 
or replaced. Alternatively, the control system of the present 
invention can be used for permanent partial or complete 
control of any system that initially relied on feedback 
control in order to supplement or completely replace the 
feedback control system. 

In certain embodiments of the present invention, the 
solution of the optimal control problem may be implemented 
in a feedback control system in order to reduce the control 
effort, e.g. number of sensors, amount of sensor data, etc. 
that is required to manage the system. 
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The present invention provides a method and system of 
using unscented optimal control. This can be applied to 
design the control commands for a broad range of control 
problems. For example, the concepts of the invention can be 
used to solve an attitude control problem in an uncertain 
environment. In principle, unscented optimal control con­
cepts can be applied to any controllable process with uncer­
tain parameters and/or initial conditional and/or distur­
bances. 

The unscented transform is a mathematical function used 10 

to estimate the result of applying a given nonlinear trans­
formation to a probability distribution that is characterized 
only in terms of a finite set of statistics. The unscented 
transform has been used as a means to design nonlinear 

15 
filters without linearization. The unscented transform is also 
used in situations where it is better to approximate a prob­
ability distribution function than to linearize a generic 
nonlinear function due to the magnitude of error introduced 
by linearization. Unscented optimal control combines the 20 
unscented transform with optimal control to produce an 
approach to directly manage uncertainties in an open-loop 
framework. The implementation of the method of the pres­
ent invention is set forth in greater detail below. 

In the first step of the method a dynamical model of the 25 
system is identified. For example, x0 EJR Nx defines the initial 
random state of a nonlinear controlled dynamical system 
with a mean µx, and a covariance ~x· Then, a set of 

sigma-points, P=[P1 , ... , Pn] is identified that character­
izes uncertain parameters of the dynamical system. For each 30 

sigma-point, P,, a copy of the underlying state dynamics is 
generated, x,(t), with implicit dependence of the i-th sigma 
point, and with initial conditions Xi 0 , X2 °, ... , XN °, at t=t0

. 

For this initial description of the method, a joint 
0

Gaussian 
35 

probability distribution function for the set of sigma-points 
P is used. However, as discussed below, the unscented 
transform holds for non-Gaussian probability distribution 
functions as well and thus other probability distributions 
such as a uniform distribution or a combination of a Gauss-

40 
ian and a uniform probability distribution as may be 
employed within the scope of the invention. 

Parameters that may be used to identify the dynamic 
system depend on the particular system. For mechanical 
systems, uncertain parameters can be mass, inertia actuator 

45 
alignment vectors, friction, component dimensions, as well 
as other parameters. For electrical systems, uncertain param­
eters can be resistance, inductance, capacitance, as well as 
other parameters. For aerospace systems, uncertain param­
eters can be aerodynamic coefficients, mass and inertial 

50 
properties, control surface effectiveness, feedback margins, 
center of gravity, thermal conductivity, radiation, as well as 
others. In some systems, environmental parameters can be 
variations in temperature, pressure, humidity, wind speed, 
electromagnetic field strength, solar radiation pressure, aero-

55 
dynamic drag, obstacles, the presence or influence of other 
controlled systems, keep out or no-fly zones, weather cells, 
and other effects. 

The dynamics of the nonlinear dynamical system are 

X:= 

XI 

x2 

8 

Then, the dynamics ofX produced by N
0 

copies ofF are 
given by, 

f(x1. u, t) 

f(xi. u, t) 
X = := F(X, u, t) 

f(XNa-' U, t) 

In unscented optimal control, the controlled dynamical 
system X=F(X, u, t), is considered. The initial state is given 
by, 

X(to) = X 0 := 

x? 
xg 

The objective is to find a control trajectory, t>-+ u, that 
drives X0 to a target state, which may or may not be a fixed 
point, while minimizing a cost function. Thus, the purpose 
of unscented optimal control is to use the concept of the 
unscented transform to control the statistics of the propaga­
tion. 

A fundamental unscented optimal control problem can be 
stated in a standard format as, 

X EX Na- CE Na-Nx, u E 1lJ CR Nx 

Minimize J[X(·), u(· ), t1] := E(X(tf ), t1) (2) 

Subject to X(t) =F(X(t), u(t), t) 

(U) (X(to), to) = (Xo, to) 

e(X(t1), t1) sO 

h(X(t), t) sO 

where E: X N°x JR -;. JR is an endpoint cost function, e: 
X N°xJR-;. JR N" is an endpoint constraint function that 
defines an endpoint set, and h: X N°xJR -;. JR Nh is a path 
function that constrains the entire collection of sigma-point 
trajectories to an allowable region. The endpoint cost func­
tion, the endpoint constraint function and the path functions 
may in some embodiments comprise weighted sums of the 
states for each sigma point dependent copy of the dynamical 
system. The cost function, the endpoint set, and the allow­
able region may all be chosen by the designer to achieve 

given by, 
60 various outcomes. 

x=f(x,u,t) (1) 

where uEU c JR N" is the control variable and is differen­
tiable with respect to xEX -'=-JR N". Then, the dynamics of 
each sigma point dependent copy of the dynamical system, 
x,, i=l, ... ' NCT are given by x,=f(x,, u, t). Let x be an 
N0 Nx-dimensional vector given by, 

An objective in unscented optimal control is the formu­
lation of a problem for which a solution exists. Guaranteeing 
the existence of a solution to an optimal control problem is 
difficult but, in engineering practice, this problem can be 

65 overcome to thereby design algorithms and produce viable 
solutions because the physics of the problem can be used as 
a tool for design of a solvable problem. 
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Unscented optimal control is able to manage uncertainty 
even without the use of feedback ifthe problem formulation 
is carried out in a manner that ensures that a solution exists. 
Optimal control methods can be used to guarantee a com­
putable solution under existence of certain hypotheses. 
Additionally, the chosen method should be capable of han­
dling large dimensions (NaxNx) and producing implement­
able control instructions. 

10 
underlying statistical distribution of an uncertain variable. 
Preferred sigma point computations may use order 2 and/or 
order 3 sigma points to precisely match the first two/three 
moments of the underlying statistical distribution of an 
uncertain variable, respectively. Example statistical distri­
butions include a Gaussian distribution, a uniform distribu­
tion or a combination thereof. 

Pseudo-spectral (PS) optimal control theory may be 
employed in one implementation of the invention. PS opti­
mal control theory is able to provide some certainty as to the 
existence of a solution to the unscented control problem. 
Further, PS optimal control theory is capable of handling 
large dimensions and thus PS optimal control theory is 
well-suited for use in combination with unscented control. 

Order 3 sigma points and corresponding weights for a 
d-dimensional Gaussian distribution are easily constructed. 

10 In the real space, Rd there are 2d sigma points that exactly 
match all Gaussian Order 3 moments. These sigma points 
are given as the columns of the matrix equation 3 below, 
presuming a zero mean and unity variance. Each sigma point 

15 
has a size given by IP,l=v'a and the weight for each sigma 
point is given by w,=1/(2d). The sigma points in equation 3 
can be mapped to any mean and variance by a linear 
transformation. 

PS optimal control theory overcomes limitations in the 
sensitivity of the system by algebraizing the differential 
equations while curbing the problem of dimensionality 
through spectral methods. Among the large number of 
available PS methods, two techniques, the Legendre and 20 

Chebyhsev PS methods, are the most suitable for optimal 
control, as well as for systems that use optimal control 
methods. These two PS methods avoid the possibility of 
producing false positives or divergence under mild condi­
tions and these PS methods have mathematically provable 25 

convergence properties under existence assumptions. 
If desirable, unscented control problems can be imple­

mented in DIDO™, the MATLAB® tool for solving optimal 
control problems. The DIDO™ optimal control toolbox has 
been used previously with success for providing flight 30 

guidance in the aerospace industry. In the method described 
below, DIDO™ is used for generating both the open-loop 
control, as well as the unscented optimal control trajectory. 

FIG. 1 is a flow chart showing an unscented control 
method 100 for implementation using an unscented control 35 

system. In an exemplary system, the method is implemented 
in a controller governing a system that requires unscented 
control to provide system control where limited or no 
feedback is available. In FIG. 1, in step 102 the system 
dynamics, defined by the equation 1, below are identified: 40 

x=f(x,u,t,n) (1) 

(3) 

Q= 

See e.g. Julier, S. J. and Uhlmann, J. K., "A consistent, 
debiased method for converting between polar and Cartesian 
coordinate systems," Proceedings of SPIE-The Interna­
tional Society for Optical Engineering, pp. 110-121 (1997). 

There is also a preferred method for constructing Order 3 
sigma points for a uniform distribution of any dimension, d. 
A uniform distribution has compact support, e.g. [-1, 1] for 
dimension 1, and it is important to ensure that the resulting 
sigma points fall within the compact support, e.g. -lsP,sl. 
Without loss of generality, equation 4, shows a support for 
the uniform distribution: 

d-times (4) 
Id= TxTx--.-:~-xi, where I= [ -1 1] 

There are 2d Order 3 sigma points for the uniform 
where x is the system state, u is the control vector, t is the 
time and it represents a vector comprising uncertain param­
eters, it,. 

In step 104 of the method of FIG. 1, the vectors of 
uncertain parameters and/or uncertain initial conditions are 
determined, with known joint distribution (Gaussian, uni­
form, etc.) 

45 distribution and these points may be transformed to accom­
modate any support shifted from Id by applying a linear 
transformation of the Order 3 sigma points. Each Order 3 
sigma point has a size IP,l=Yd/3, with an associated weight 
w,=1/2d. The matrix Q of 2d Order 3 sigma points for the 

(2) 50 

In step 106 of the method of FIG. 1, the sigma points P=[ 

P 1 , ... , P N] of II=[Jt1 , ... , JtN] and weights wElR. Na are 

selected, with P,EJR. NP, calculated using an embodiment of 
the sigma point computation discussed in greater detail 55 

below. In step 108, a plurality of copies of the systems 
dynamical equations is computed giving rise to a state vector 

60 

X(t)= 

X1(t, U, pNa-) 

uniform distribution is defined in equation 5: 

Q= (5) 

For dimension d>3, the Order 3 sigma points fall outside of 
the support Id because v' d/3> 1. In a preferred embodiment of 
the present invention, the sigma points for d>3 should all be 
within the support Id. To ensure that the support Id is 

In step 108, the sigma point computation uses a plurality 
of sigma points that precisely match the moments of the 

65 satisfied, an orthogonal rotation matrix, M, is employed to 
provide the property that if P=(pi/)=MQ, then lpi/I sl and P 
is a matrix wherein the 2d columns of P are the order 3 
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uniform probability distribution of sigma points that lie 
within the support Id. Therefore, as the dimension increases, 
the components of M are reduced in magnitude. 

The column vectors in Q satisfy the Order 3 uniform 
distribution matching constraints on Id. Colunms outside the 
support Id do not match. 

The orthogonal transformation M when applied to Q will 
force all components of P=MQ to have a magnitude smaller 
than 1. The resulting column vectors are sigma point vectors, 10 

which now lie within the support of the uniform distribution 
Id. This is due to the orthogonality of the matrix M. 
Computation of the matrix M may be cast as a nonlinear 
optimization problem (NLP), Pas shown in (6). 

Let M = (mu) E IR d x !R d 

Then 

mini = nonn(M) 
mu 

P subject to the box bounds 

lmul s {3/d 
and the orthogonality constraint 

MMT =MTM =I 

(6) 

15 

20 

25 

There is also an analytical method that can be used 
specifically for uniform distributions of dimensions 4 and 6, 

30 
that employs the Givens transformation. By way of example, 
consider the rotation matrix: 

( 
cos( 8) sin( 8) ) 

G = -sin(8) cos(8) · 

If this is an even vector space, R 2k, where k is a positive 
integer, the matrix; 

may be constructed leading to the matrix product: 

MD=(G 0 )(,/d/3/i 0 ) 
0 /2k-2 0 /2k-2 

35 

40 

45 

50 

r.= ~ 
sin( 8) v a / " = \j ----:3-

3
- . 

12 

This quantity is bounded by 1 if and only if ds6. Hence if 
d=4 or d=6, the transform can be applied to compute the 
rotation matrix G. 

Another approach to the uniform distribution problem is 
to construct a general orthogonal matrix with sufficiently 
small entries. A candidate example is shown in equation 8: 

M = (mpq), 1 s p, q s n (8) 

Each entry in the candidate matrix is bounded (in absolute 
value) by 

and thus meets the size requirement. 

The matrix should be shown to be orthogonal by illus­
trating that equation (9) is satisfied. 

n { 0, p * q 

SE(p, q) = ~ sin(:;! )sin(::ql) = n; 1, p = q 

(9) 

The trigonometric identity, shown in equation 10, is 
employed to recast the terms of the matrix given in (8) as a 
simple linear combination of cosines: 

. . cos(x- y) cos(x + y) 
sm(x)sm(y) = --

2
-- - --

2
--

(10) 

.j nkp ) .j nkq ) cos(nk(p - q)) cos(nk(p + q)) 
E(p, q) = 51'\_n_+_l 51'\_n_+_l = 2 - -~2~-

The goal is to bound the components of the upper 2x2 Casting the resulting cosine in terms of complex expo-
block by 1. This is equivalent to the following constraints: 55 nentials, the following expressions of equation 11 are 

obtained: 

(7) 

-1 s cos(8)H s +1 

-1 ssin(8)H s+l 

60 E(p, q) = --4- + --4- - --4- - --4-

Assuming, without loss of generality, that Os8sit/2, then 65 

the smallest value of 8 may be chosen, for which cos(8)s 
Y3/d, i.e., 8=acos(Y3/d). It follows that 

SE(p, q) = 

n n 

~E=~ 
k=l i=O 

n 

+~ 
i=O 

n n 

-~ -~ 
i=O i=O 

(11) 
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These sums can be simplified if p=q, as shown in equation 
12: 

(12) 5 

E(p, p) = -4- + -4- - -4- - -4-

and 

n 

~ 
i=O 

n 

~ 
i=O 

14 
-continued 

1 - e-H(p+q)i 

lf(p+q)i 
l-e---n+r 

1 - e +H(p+q)i 

1 - e+~ifft-F 

If p+qE2.'l ( ~ p-qE2.'l ), where .'l is the set of integers, 
( 

n 2Hkp;) ( n 2rrkp;) 
n n -l + ~ e--n+r -1 + ~ e+--n+r 

SE(p, p) = 4 + 4 - 4 - 4 
1 o then each of the exponential sums in equation 14 is zero. It 

follows that E(p,q)=O. Otherwise, without loss of generality, 
it may be assumed that p is even and q is odd. With this 
assumption, each of the exponential sums that occur in 
E(p,q) is computed, as shown in equations 15: The exponential sums in equation 12 can be viewed as a 

geometric series, and thus have very simple expressions, as 15 

shown in equation 13. 

n 

~ 
i=O 

n 

~ 
i=O 

l -e-2.Jrpi 

= -------,;cp; = 0, 1 < p < n + 1 
l -e-n-+I 

l -e+2:Jrpi 

= -------,;cp; = 0, 1 < p < n + 1 
l-e+n-+I 

It follows that 

(13) 

n 

SEl(p, q) = ~ 
i=O 

n 
20 SE2(p, q) = ~ 

i=O 

n 

SE3(p, q) = ~ 
i=O 

25 n 

SE4(p, q) = ~ 
i=O 

1 - e-H(p-q)i 1 - e+Hqi 2 (15) 

-Jr(p-q)i Jrqi Jrqi 
l -e-----n~ 1 - en+I 1 - en+I 

1 - e+H(p-q)i 1 - e-Jrqi 2 
lf(p-q)i -Jrqi Jrqi 

l-e+--n+r 1 -en+r l-e-n+I 

1 - e-H(p+q)i 1 - e-Jrqi 2 
lf(p+q)i -Jrqi Jrqi 

l -e---n+r 1 -ell+T 1-e -n+I 

1 - e+H(p+q)i 1 - e+Hqi 2 
lf(p+q)i +Jrqi l-e+~ l -e+--n+r 1 -en+r 

n+l 
E(p, p) = -2-. Then, 

30 

Also, all of the rows (and columns, by symmetry) of the 
candidate matrix, M, have unit magnitude. Next, it is dem­
onstrated that the rows (resp. columns) are orthogonal by 
showing that SE(p,q)=O if p,.q. The exponential sums to be 35 

analyzed are displayed in equation 14: 

n 

~ 
i=O 

n 

~ 
i=O 

1 - e-H(p-q)i 

lf(p-q)i 
1 - e---n+T-

1 - e +H(p-q)i 

1 - e+!_r_~if-li 

0.19134 
0.35355 
0.46194 
0.50000 
0.46194 
0.35355 
0.19134 

(14) 

40 

0.35355 
0.50000 
0.35355 
0.00000 

-0.35355 
-0.50000 
-0.35355 

SE(p, q) = SEl(p, q) + SE2(p, q) + SE3(p, q) + SE4(p, q) 

2 2 2 
=-1+---. -1+---. +1----. + 

Jrq1 Jrq1 Jrq1 

l-en+I l-e-n+I l-e-n+I 

A seven dimensional example of the Order 3 uniform 
sigma points computed by way of the present invention is 
shown in Table 1. The rotation matrix values are bounded by 
-v21s=o.s. 

TABLE 1 

Exemplary 7 x 7 rotation matrix (M) 

0.46194 0.50000 0.46194 0.35355 0.19134 
0.35355 0.00000 -0.35355 -0.50000 -0.35355 

-0.19134 -0.50000 -0.19134 0.35355 0.46194 
-0.50000 0.00000 0.50000 0.00000 -0.50000 
-0.19134 0.50000 -0.19134 -0.35355 0.46194 

0.35355 0.00000 -0.35355 0.50000 -0.35355 
0.46194 -0.50000 0.46194 -0.35355 0.19134 

Exemplary Order 3 Uniform Sigma Points for d = 7 

-0.29228 -0.54006 -0.70562 -0.76376 -0.70562 -0.54006 -0.29228 
0.29228 0.54006 0.70562 0.76376 0.70562 0.54006 0.29228 

-0.54006 -0.76376 -0.54006 0.00000 0.54006 0.76376 0.54006 
-0.54006 -0.76376 -0.54006 0.00000 0.54006 0.76376 0.54006 
-0.70562 -0.54006 0.29228 0.76376 0.29228 -0.54006 -0.70562 

0.70562 0.54006 -0.29228 -0.76376 -0.29228 0.54006 0.70562 
-0.76376 0.00000 0.76376 0.00000 -0.76376 0.00000 0.76376 
-0.76376 0.00000 0.76376 0.00000 -0.76376 0.00000 0.76376 
-0.70562 0.54006 0.29228 -0.76376 0.29228 0.54006 -0.70562 

0.70562 -0.54006 -0.29228 0.76376 -0.29228 -0.54006 0.70562 
-0.54006 0.76376 -0.54006 0.00000 0.54006 -0.76376 0.54006 
-0.54006 0.76376 -0.54006 0.00000 0.54006 -0.76376 0.54006 
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TABLE I-continued 

-0.29228 
0.29228 

0.54006 
-0.54006 

-0.70562 
0.70562 

0.76376 
-0.76376 

-0.70562 
0.70562 

0.54006 
-0.54006 

-0.29228 
0.29228 

Returning to FIG. 1, in step 108, Na copies of the system 
dynamics are created. In some embodiments, two copies of 
the system dynamics are sufficient. However, in some other 
situations, a minimum of three, four, five, six or seven copies 10 
of the system dynamics may be required. In still other 
embodiments, even more copies of the system dynamics 
may be required or additional precision in the control system 
may be obtainable by use of additional copies of the system 

values of the control variables in vector u. Uu is a vector of 
upper limits on the possible values of the control variables 
in vector u. 

The path constraints are another type of constraint placed 
on the system. In relation to the path constraints, h is a vector 
of functions whose values depend on the values of the state 
variables in vector X at time t and/or the values of the control 
variables in vector u at time t. 

dynamics. This is represented by equation 16 below: In some embodiments some or all of the end point 
15 conditions, box bounds, path constraints and the cost func-

X1 f(xiJ 

X(t)= 
X2 f(x2J 

XNu f(XNa-) 

(16) 

20 

tion satisfy one of the weighted functions of the sigma points 
set forth above in equations (17)-(18). In some embodi­
ments, one or more of the end point conditions or outcomes 
satisfy one of the weighted functions of the sigma points set 
forth above in equations (17)-(18). In some embodiments, 
one or more of the box bounds satisfy one of the weighted 
functions of the sigma points set forth above in equations 
(17)-(18). In some embodiments, one or more of the path 
constraints satisfy one of the weighted functions of the f(x)=f(x,u,t, P) is a deterministic function or a vector of a 

deterministic functions of a variable that models the dynami­
cal behavior of the system. 

25 sigma points set forth above in equations (17)-(18). 
In the cost function, E is an endpoint cost function whose 

value depends on the values of the state variables in vector 
X at an initial time and/or a final time. F is a running cost 
functional whose value at time t depends on the integral of 

In step 110 of FIG. 1, the end point conditions, or 
outcomes, eLse(X(t0 ),t0 )seu and/or eLse(X(l_r),l_r)seu, box 
bounds, XLsXsXu and/or uLsusuu, path constraints, hLsh 
(X(t),u(t), t)shu and the cost function J=E(X(t0 ,y)+J,o'f F 
(X(t), u(t), t)dt are established. 

30 the function F from an initial time t0 to a final time 1:f- The 
value of function F at a particular time depends on the values 
of the state variables in vector X and/or the values of the 
control variables in vector u and/or time t. 

Any or all of the end point conditions or outcomes, box 
bounds, path constraints and the cost function may be 
weighted functions of the sigma points of the unscented 
transform. In one embodiment, one or more of the end point 35 

conditions or outcomes, box bounds, path constraints and 
the cost function satisfy the weighted function of equation 
17: 

(17) 40 

representing mean values or combinations of mean values of 
the system states X(t), wherein the bounds, gL and gU are 
each vectors whose individual entries may be functions of 
X(t), or constants, or zero, Pis a matrix of sigma points, w 
is a vector of weights associated with sigma points and Na 45 

is the number of sigma points. 
Alternatively, one or more of the end point conditions, 

box bounds, path constraints and the cost function satisfy the 
weighted function of equation 18: 

hL(X(t)),;L;-!Naw;(X;(t)-µ;)(X;(t)-µ;)T,;hu(X(t)) (18) 

representing constraints on the covariance of the system 
states X(t), or combinations thereof, bounds hL and hU are 
matrices whose individual entries may be functions ofX(t), 

50 

or constants, or zero, P is a matrix of sigma points, w is a 55 

vector of weights associated with sigma points and Na is the 
number of sigma points. 

The end point conditions are the conditions that should be 
achieved by the system. The function e is an endpoint 
function or a vector of endpoint functions whose values 60 

depend on the values of the state vectors at an initial time t0 

or a final time 1:f-
The box bounds are additional constraints placed on the 

system. In relation to the box bounds, XL is a vector oflower 
limits on the possible values of variables in vector X. Xu is 65 

a vector of upper limits on the possible values of variables 
in vector X. uL is a vector of lower limits on the possible 

The function E may also be constructed based on the 
weighted sum of the sigma points, e.g. to minimize the mean 
value of the terminal states as follows 

(20) 

or 

(19) 

Or the above formulas may be applied selectively to par­
ticular values in the vector X, such as the trace of the 
covariance matrix 

The function F may also be constructed based on the 
weighted sum of the sigma points, e.g. to minimize the 
dispersion of the states over an entire trajectory. In this 
embodiment: 

F=L;-!Naw;(X;(t,)-µ;(t,))(X;(t,)-µ;(t,))T (20). 

In step 112 of FIG. 1, the unscented optimal control 
computations are performed. In performing these computa­
tions the relationships shown in equation 21 below are used: 

U: 

Minimize J = E(X (t0 ), Xt1) +ff F(X (t), u(t), t) dt 
to 

Subject to 

f(xiJ 

f(x2J 
X(t) = 

f(XNa-) 

e L ,; e(X (t0 ), t0 ) ,; eu 

gL,; g(X(tf), t1),; gu 

hL ,; h(X (t), u(t), t) ,; hu 

(21) 
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In constructing problem U, the terminal constraints e and/or 
g, and/or the path constraints, h, and/or the cost functionals 
E and/or F may be weighted functions of the sigma points as 
described previously. Preferably, in performing the optimal 
control computation the solution to problem U is obtained 
by using Pseudo-spectral optimal control theory. 

In step 114 of FIG. 1, the solution to the optimal control 
computation is used to generate the unscented optimal 
control history. In step 116 of FIG. 1, this history is used to 
provide control signals to the system modeled by the system 10 

dynamic equations. 
The unscented control method may be implemented in 

any suitable system that requires a control trajectory as 
either the primary or sole control means, or as a supplemen-

15 
ta! or partial control means used in combination with, for 
example, a feedback control system. Exemplary devices in 
which the control system of the invention may be imple­
mented include systems such as space and aerospace sys­
tems, mechanical systems, hydraulic and pneumatic systems 20 

and for the command and control of unmanned and autono-

18 
The invention will now be further illustrated by the 

following non-limiting examples. 

EXAMPLES 

Example I-Control of the Hubble Space 
Telescope (HST) 

Referring to FIG. 3, in a normal functioning mode, the 
Hubble Space Telescope (HST) 10 is a spacecraft that 
performs an eigenaxis slew between two points of interest 
using gyros that provide information for feedback control. 
Solar-exclusion zones are managed using dog-leg maneu­
vers. Such constraints are handled through the use of optimal 
control techniques including the present unscented control. 
The gyros onboard HST 10 provide feedback signals that are 
used for slewing while the fine guidance sensors provide 
accurate information used for precision pointing. 

Prior to 2001, normal operations of HST 10 required four 
functioning gyros that allowed autonomous operation of 
HST 10 in case of a single gyro failure. In its long history, 
some of the gyros have failed and have been replaced by 
servicing missions. With the cancellation of these servicing 
missions, multiple gyro failures could doom the mission of 

mous systems, for example, in a navigation system. 
Unscented optimal control may be applied in satellites, 
aircraft, rockets, robots, automobiles, heavy machinery 
engines, chassis systems, hydraulic equipment, pneumatic 
equipment, unmanned systems, autonomous systems, 
chemical processes, energy conservation systems, quantum 
systems, financial and epidemic/biological systems, among 
other systems. 

25 HST 10 even though the science instruments may still be 
operational. 

Starting in 2001, the HST project began operations in a 
three-gyro mode. While this has no effect on performance, 
gyro anomalies occasionally result in a temporary halt to 

The invention also relates to a control system that 
includes a controller configured to implement at least one of 
the unscented control methods of the present invention. The 
control system may be configured for control of a device or 

30 science activities. In anticipation of additional gyro failures, 
the HST project has developed a two-gyro science (TGS) 
mode. In TGS mode, the rate information formerly provided 
by the third gyro is provided by other sensors such as 
magnetometers, star trackers and field guidance sensors. a component of a device selected from satellites, aircraft, 

rockets, robots, automobiles, heavy machinery engines, 
chassis systems, hydraulic systems, pneumatic systems, 
unmanned systems, autonomous systems, chemical pro­
cesses, energy conservation systems, navigation systems, 
quantum systems, financial and epidemic/biological sys­
tems. The control system may be an open loop control 40 

system or may be a supplemental or backup control system 
for a feedback control system. 

35 Because of their widely different sensor characteristics, 
three sub-modes have been defined within the TGS. 

The unscented control system will now be illustrated in 
the context of a navigation system. FIG. 2 shows a guidance 
system 200 including a controller 210 in which the 45 

unscented control method is implemented. Controller 210 
may be a processor, a collection of processors, or a device 
able to issue control signals to the system being controlled. 
Vehicle 220 is operably connected to controller 210. Con­
troller 210 may be located within vehicle 220, be located 50 

remotely from vehicle 220 or be part of a controller 210 that 
is distributed so that part of controller 210 is located 
remotely and part of the controller is located in the vehicle. 

Vehicle 220 may be, for example, a plane, satellite, space 
vehicle, space object or other object. Vehicle 220 may have 55 

a plurality of parameters that govern the state of the system, 
such as mass, inertia, initial position, and initial velocity. 
System 200 may include one or more sub-modules, i.e. mass 
module 230, inertia 240, position module 250 and velocity 
module 260. Each of these sub-modules may correspond to 60 

a parameter of the dynamic system. 
In vehicle 220 the unscented control method 100 is 

implemented so that controller 210 is able to provide control 
signals to vehicle 220 that are able to achieve the control 
outcomes without the use of feedback, though the system 65 

can also be used in combination with or as a backup for a 
feedback control system. 

Although there is no degradation in image quality in the 
TGS mode, there is a reduction in science productivity due 
to difficulties encountered in target scheduling and con­
straints imposed by the star trackers. A single-gyro science 
mode is also theoretically possible but this expected to have 
a further detrimental impact on the HST's science return. 

FIG. 3 shows a simplified block diagram of the Hubble 
Space Telescope's pointing control system. In FIG. 3, matrix 
I represents the inertia tensor of the HST 10. The compo­
nents of I =[Ixx,Ixy,Ixz;Ixy,Iyy,Iy.z;Ixz,Iyz,Izzl are the space 
vehicle moments of inertia. PID in FIG. 3 is the proportional 
integral derivative control law, which is a feedback control 
structure that is commonly utilized in the control of space 
and other mechanical and electrical systems. RGA is the 
rate-gyro-assembly, which comprises a plurality of rate 
measurement devices that are used to sense and determine 
the rotational rate of the HST 10. ac is the commanded 
acceleration that may vary over time and is provided to the 
HST 10 attitude control system by a command generator 20. 
co is the vector of HST 10 rates that are sensed or measured 
using the RGA, and 8 is an estimated attitude angle or 
change in attitude angle of the space vehicle derived from 
measurements of the rates of HST 10. 8c is the commanded 
attitude angle or change in attitude angle of the HST 10 that 
is provided to the attitude control system by the command 
generator 20 and which may vary over time. "tc is a vector of 
commanded torques that may vary over time and which is 
applied to the HST 10 by the on board actuation system. 

The commanded torques may be computed as the sum of 
a feed-forward acceleration signal multiplied by the inertia 
tensor of the HST 10 and the output of the PID control law, 
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or as the output of the PID control law only, or as a 
feed-forward acceleration signal multiplied by the space 
vehicle inertia tensor, or as a vector of feed-forward torque 
command trajectories computed using an embodiment of the 
present invention. 

A command generator 20 generates commands for four 
reaction wheel assemblies, which generate command control 
torques. Along any axis, assume it is possible to command 
a maximum torque of 0.95 Nm, with some margin left for 
managing uncertainties. The torque is generated by a 10 

momentum exchange between the reaction wheel assem­
blies and the main body of HST 10. The maximum angular 
velocity of HST 10 is assumed to be limited to 0.15 deg/s. 
The nominal principal moments of inertia for HST 10 are 
given by, (Ixx,Iyy,Izz)=(I,, I2 , I3 )=(3.6, 8.7, 9.4)x104 Kg·m2

. 15 

The off diagonal terms are assumed to be zero, but non-zero 
entries do not limit the successful application of the inven­
tion. Non-zero entries only serve to complicate the system 
dynamical equations. The solution of the unscented optimal 
control is transparent to this increased complexity and the 20 

process of the present invention will naturally accommodate 
such non-zero entries. 

Initially, the attitude of HST 10 is estimated by the flight 
guidance system to an accuracy of 90 arc seconds. The main 
unknowns for the slew are therefore not the initial quater- 25 

nions. Despite the precision in initial knowledge, in the 
absence of feedback from gyros, HST 10 as presently 
implemented will not be able to follow the commands 
produced by the command generator 20. This is because the 
command generator 20 may produce signals that are not 30 

dynamically feasible. This issue is normally accommodated 
by the feedback control law. 

The shortest-time-maneuver (STM) is a flight implement­
able method that solves a number of challenges through the 
application of optimal control techniques. Unlike the com- 35 

mand generator 20 of HST 10, STM commands are dynami­
cally feasible and can execute a slew in a zero gyro mode 
with HST 10 with correct knowledge of the initial states, 
inertia tensor and zero disturbances. Although the initial 
states are known to a very high precision, a pure STM 40 

command is generally not a viable option for slewing 
because the unknowns for HST 10 are: (1) the inertia tensor, 
(2) the gravity gradient, and (3) the atmospheric torques. 
These unknowns can cause the space vehicle to drift away 
from the STM attitudes if the control toruqes are imple- 45 

mented in the open loop. 
The first step in implementing the unscented optimal 

control of the present invention in this context is to quantify 
the effects of these three unknowns. For this purpose, an 
STM is simulated using a Monte Carlo simulation of the 50 

Hubble Space Telescope operating in an open loop zero-gyro 
mode with system inertia uncertainty. 

The state of HST 10 can be represented by, 

20 
-continued 

1 
i/2 = 2[w1q3 +w2q4-w3qi] 

1 
Cf3 = 2[-w1q2 +w2q1 +w3q4] 

1 
Cf4 = 2[-w1q1 -w2q2-w3q3] 

U1 ( /, - f2) 
W1 = I; - -/1- W2W3 

The state and control spaces for a feasible slew of HST 10 
is given by, 

X :{xEJR 7:llqlb~l,llwlb,;wm=} (24) 

U :{uEJR 3 llulbo;;umaJ (25) 

The standard STM problem is to find the state-control 
function pair, t---;.(x, u)EX xU, that drives the vehicle from 
its initial position, x(tO)=X0 to its target position given by 
x(y)=xf while minimizing the cost function, 

J[x(•),u(•),tj:~1r10 (26) 

The boundary conditions corresponding to a large-angle­
maneuver are considered and are given by, 

x0~[0,0,0,1,0,0,0]T 

cef ~[-0.27060,0.27060,065328,0. 65328,0,0,0] T (27) 

These numbers correspond to a yaw of1jJ=90 degrees, a pitch 
of 8=45 degrees and zero roll (<I>). 

For flight implementation, the impact of all of the 
unknowns is preferably considered. In pre-flight analysis, 
the impact of each of the unknowns should be considered 
separately. For this reason, the impact of a 3.3%, la Gauss­
ian uncertainty in the principal moments of inertia was 
assessed. 

FIGS. 4-7 show the errors in the targeted angular position 
and velocity generated from 1000 Monte Carlo simulations 
of the Hubble Space Telescope operating in an open loop 
zero-gyro mode with system inertia uncertainty. The errors 
are the deviations from xf given in (25) when the STM is 
implemented in the open-loop. From the statistics of the 
errors provided in Table 2 below, the mean angular velocity 
is off of its targeted value by about 0.2 arcsec/s, while the 
mean angular position is off by 741 arcsec. The covariances 
for the angular velocity and mean angular position are 
shown by the ellipses in FIGS. 6-7. Based on this simulation, 
HST 10 would not be able to perform its mission in an 
open-loop, zero-gyro framework using this control method. 
This is because the errors due to the inertia uncertainty are 
too large. Thus, a first step in developing a zero-gyro 

(22) 

55 framework is to employ the unscented control method of the 
present invention is to target a zero mean error. 

where q and co are the familiar quaternions and body rates. 60 

Then, the nonlinear dynamics, x=f(x, u), are given by the 
equation: 

1 
i/1 = 2 [w1q4 - w2q3 + w3q2] 

(23) 65 

Target Parameter 

w 1 ( arcsec/s) 
w2 ( arcsec/s) 
w3 ( arcsec/s) 

1jJ (arcsec) 
8 (arcsec) 
<I> (arcsec) 

TABLE 2 

Error Mean Standard Deviation 

-0.197 6.26 
-0.356 9.18 
-0.063 2.43 

666.0 14,616 
-158.0 1519 

284.0 4644 
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It is assumed that there is no uncertainty in the initial 
states and thus, x:=(q, w), as a result of the availability of the 
flight guidance system. Hence, the dynamical model of HST 
10 can be parameterized by uncertainties in the three prin­
cipal moments of inertia, 

(28) 

From Julier's second order minimal simplex method N=5. 
See Julier, S. J., "The Spherical Simplex Unscented Trans­
formation," Proceedings of the American Control Confer­
ence, Denver, Colo., Jun. 4-6, 2003, Vol. 3, Pages 2430-
2434, the disclosure of which is hereby incorporated by 
reference in its entirety for the purpose of describing the 
algorithm of the unscented transform. 

Hence, the state space for the unscented optimal control 
problem is X 5=~ 35 for HST 10. The state variable, X, 
comprises five copies of the ( q, w) states vector. Each of 
these five copies of the state vector starts at the same initial 
point, xit0)=x0

, j=l, ... , 5, each with the same dynamical 
law but with five different velocities the precise values of 
which will depend on the inertia parameters as expressed in 
terms of the Na=S sigma points representing the three 
dimensional uncertainty in the space vehicle inertia 

22 
approach may still be risky in practice because the covari­
ances shown in Table 3 are about the same order of mag­
nitude as those shown in Table 2 above. FIGS. 11and12 plot 
two illustrative covariance ellipses (STM) demonstrating 
that the means indicated by the+ symbol in FIGS. 11and12 
are within milli-arc seconds of the target but the spread 
shown by the covariance ellipses (STM) is about 1 degree 
which is a large enough error to have a significant adverse 
impact on the performance of HST 10. For example, the fine 

10 guidance sensor of the HST may not be able to lock onto the 
science target. Thus, it is necessary to determine a lower risk 
solution by controlling the variances at the target point in 
order to reduce the size of the terminal covariance ellipse. 

15 TABLE 3 

Target Parameter Error Mean Standard Deviation 

w1 (arcsec/s) -2.44E-15 4.10 
w2 (arcsec/s) 2.lOE-14 9.47 

20 w3 (arcsec/s) -2.55E-15 1.26 
1jJ (arcsec) 1.20E-07 14,112 
8 (arcsec) -2.72E-08 1476 
<I> (arcsec) 8.89E-08 5760 

Y,~JCy,,u;I/,Ij,Ij)j~l, . .. ,5 (29) 25 To reduce the error covariance of the exemplary 
unscented open-loop control described above, control over 
the spread of the final values of the sigma points is imple­
mented. One measure of this spread is the variance; hence, 
an additional set of terminal conditions are proposed as 

where I/, Ij, Ij, j=l, ... , 5 are the values of the principal 
moments of inertia that correspond to the five sigma points. 
Each evolution of the state trajectory, t>-> xi' must satisfy the 
state-space constraints, 

{y,(t)~(q)t),w)t)):llq)t)o~l,llw)t)lb,;wmaJ 
Vj~l, ... ,5 (30) 

The evolutions of the state trajectories, for each of the 
Na=S sigma points, are then driven in such a way that the 
final value of the mean sigma-point vector, ux (tr)= 
~,~ 1N°w,X,(1r), is equal to the target value given by yf Using 
the unscented optimal control framework, therefore, the 
final-time conditions should satisfy the equality constraint, 

30 
given by, 

diag[Ly(x)(t,)J,;[ 0'1' 
2 ,Os2 

,<j><I> 
2 

Pw! 
2
Pw2 

2
,<Jw3 

2
]T (33) 

where a2
(.) are user-specified values of acceptable variances 

on the attitude angles given in terms of Euler angles and the 
35 angular rates and y represents the transformation from the 

quaternion space to the space of Euler angles for which the 
first three variances are defined. Thus, the new set of 
endpoint (terminal) conditions for this problem are given by, 

e(X(t)):~µ.(1r)-:ef~o (31) 40 (34) 

In computing µx, we note that it is important to satisfy the 
norm constraint llqlb=l. A minimum time unscented optimal 
control problem can be posed as finding the open-loop 
control trajectory, t>-> u, that minimizes the endpoint cost 
function: 

E(X(tr),tjr~1r10 (32) 

while satisfying all of the constraints including equation 
(29). This is now a high-dimensional optimal control prob­
lem that can be solved, for example, by using one of the 
largest PS methods implemented in DIDO™. The unscented 
optimal control generated by DIDO™ is shown in FIG. 8. 
The corresponding sigma point state trajectories are shown 
in FIGS. 9 and 10. It is apparent from these figures that the 
state-space constraints, taken from equations (22) and (23), 
are met by all of the sigma point trajectories. From the 
statistics of the endpoint values, provided in Table 3, it is 
clear that the mean is near zero, which is a significant 
improvement over the standard open-loop statistics of Table 

(35) 

The same process as before was followed to solve the new 
45 unscented control that additionally adheres to constraint 

(33). The statistics resulting from this solution are given in 
Table 4 below. 

TABLE 4 
50 

Target Parameter Error Mean Standard Deviation 

w 1 (arcsec/s) 3.60E-02 0.341 
w2 (arcsec/s) -6.77E-12 .932 
w3 (arcsec/s) 6.77E-13 .130 

55 1jJ (arcsec) 1.24E-06 1,436 
8 (arcsec) -1.16E-06 153 
<I> (arcsec) 1.19E-06 619 

2 above. The error mean in the target angles is only about 1 60 

milli-arc seconds which demonstrates the feasibility of this 
method. 

Comparing the last column of Table 4 with Table 3 above 
shows that this problem formulation achieved a ten-fold 
reduction in the standard deviations of the attitude angle and 
angular rate errors. This is further elaborated in FIGS. 13 
and 14 where two illustrative covariance ellipses, denoted as 
Bound Cov, of both instances of unscented optimal control 

As demonstrated above and in FIG. 8, the unscented 
control solution is implementable as a zero-gyro solution for 
the HST 10 since the mean error in the target angles is only 
about 1 milli-arc seconds which allows the HST's fine 
guidance sensor to acquire a science target. However, the 

65 techniques are plotted showing that the spread shown by the 
covariance ellipses has been significantly reduced relative to 
the spread of FIGS. 11-12. 
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herein. It is intended that the specification and examples be 
considered as exemplary only, with a true scope of the 
disclosure being indicated by the following claims. 

All documents mentioned herein are hereby incorporated 
by reference in their entirety or alternatively to provide the 
disclosure for which they were s relied upon. 

This example illustrates the viability of the present inven­
tion and process for an unscented control system as well as 
an actual real-life implementation of the unscented control 
system. The method described above can be used for con­
trolling the HST 10. A skilled person in the art can also apply 
this same type of method for control of many other types of 
systems. 

Example 2 

The applicant(s) do not intend to dedicate any disclosed 
embodiments to the public, and to the extent any disclosed 
modifications or alterations may not literally fall within the 

10 scope of the claims, they are considered to be part hereof 
under the doctrine of equivalents. The system and method may be employed to control a 

space mission. A typical space mission consists of several 
trajectory segments: from launch to orbit, to orbital transfers 
and possible reentry. The guidance and control problems for 
the end-to-end mission can be framed as a hybrid optimal 15 

control problem; i.e., a graph-theoretical optimal control 
problem that involves real and categorical (integer) vari­
ables. Even when the end-to-end problem is segmented into 
simpler phases as a means to manage the technical and 
operational complexity, each phase may still involve a 20 

multi-point optimal control problem. The sequence of the 
optimal control problems is dictated by mission require­
ments and many other practical constraints. 

Optimal control techniques can be used to address chal­
lenges in guidance and control systems where the objectives 25 

are higher performance at reduced cost with demands for 
graceful degradation in the event of failures, unforeseen 
uncertainties and other unknowns. The traditional means to 
manage these uncertainties is feedback. However, in the 
absence of feedback or the absence of sufficient feedback for 30 

optimal control, there is no room for graceful degradation. 
Furthermore, management of uncertainties through the use 
of feedback principles alone is no longer the discriminating 
concept for inexpensive control systems. Unscented control 
offers an inexpensive and simple means to manage uncer- 35 

tainties in the absence of feedback. Furthermore, unscented 
optimal control offers an improved method for controlling 
other systems that have uncertain parameters. 

It is to be understood, however, that even though numer­
ous characteristics and advantages of the present invention 40 

have been set forth in the foregoing description, together 
with details of the method, composition and function of the 
invention, the disclosure is illustrative only, and changes 
may be made in detail, within the principles of the invention 
to the full extent indicated by the broad meaning of the terms 45 

in which the claims are expressed. 
It should be understood that the steps of the exemplary 

methods set forth herein are not necessarily required to be 
performed in the order described, and the order of the steps 
of such methods should be understood to be merely exem- 50 

plary. Likewise, additional steps may be included in such 
methods, and certain steps may be omitted or combined, in 
methods consistent with various embodiments of the inven-

What is claimed is: 
1. A method for providing or augmenting system control 

comprising: 
identifying a dynamical model of the system; 
determining a vector of one or more uncertain parameters 

and/or initial conditions of the system; 
computing sigma points and weights for each of the 

uncertain parameters and/or initial conditions; 
creating two or more copies of equations for dynamics of 

the system; 
establishing at least one outcome and/or at least one 

terminal constraint and/or at least one box bound and/or 
at least one path constraint for the system; 

providing a cost function for the system; 
performing unscented optimal control computations using 

said two or more copies of the equations for the 
dynamics of the system while minimizing the cost 
function and 

satisfying the at least one outcome and/or at least one 
terminal constraint and/or the at least one box bound 
and/or the at least one path constraint; and 

controlling the system based on results obtained from the 
unscented optimal control computation. 

2. The method of claim 1, wherein pseudo-spectral opti­
mal control theory is employed in the performing step. 

3. The method of claim 1, wherein one or more of the at 
least one outcome and/or at least one terminal constraint 
and/or box bound and/or path constraint and/or cost function 
are weighted functions of the sigma points or their trans­
formations according to the copies of the system dynamical 
model. 

4. The method of claim 3, wherein one or more of the at 
least one terminal constraint and/or box bound and/or path 
constraint and/or cost function satisfy the weighted function: 

gL(X(t)),;L;~1Naw;X;(t)),;gu(X(t)) 

representing mean values or combinations of mean values of 
the system states X(t), wherein the bounds, gL and gU are 
each vectors whose individual entries may be functions of 
X(t), or constants, or zero, w is a vector of weights associ-
ated with sigma points and Na is the number of sigma 
points. 

ti on. 
Reference herein to "one embodiment" or "an embodi­

ment" means that a particular feature, structure, or charac­
teristic described in connection with the embodiment can be 
included in at least one embodiment of the invention. The 

5. The method of claim 4, wherein the terminal con-
55 straints, box bounds and path constraints satisfy the 

weighted function gL(X(t))s~,~1N°w,X,(t))sgu(X(t)). 

appearances of the phrase "in one embodiment" in various 
places in the specification are not necessarily all referring to 60 

the same embodiment, nor are separate or alternative 
embodiments necessarily mutually exclusive of other 
embodiments. The same applies to the term "implementa­
tion." 

Other embodiments of the present disclosure will be 65 

apparent to those skilled in the art from consideration of the 
specification and practice of the embodiments disclosed 

6. The method of claim 3, wherein one or more of the at 
least one terminal constraint and/or box bound and/or path 
constraint and/or cost function satisfy the weighted function: 

hL(X(t)),;L;~!Naw;(X;(t)-µ;)(X;(t)-µ;)T,;hu(X(t)) 

representing constraints on the covariance of the system 
states X(t), or combinations thereof, bounds hL and hU 
are matrices whose individual entries may be functions 
of X(t), or constants, or zero, w is a vector of weights 
associated with sigma points, Na is the number of 
sigma points, and µi is a mean sigma-point vector. 
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7. The method of claim 6, wherein the terminal constraint, 
box bounds and path constraints satisfy the weighted func­
tion hL(X(t))s~;~1N°w,(X,(t)-µ,)(X,(t)-µ,lshu(X(t)). 

26 
14. The method of claim 13, wherein the order 3 sigma 

points for d>3 are within the support Id. 

8. The method of claim 3, wherein the unscented optimal 
control computation minimizes the cost function J=E(X(t0 , 5 
y)+J,}f F (X(t), u(t), t)dt, wherein E is an endpoint cost 
function whose value depends on the values of state vari­
ables in vector X at an initial time t0 and/or a final time tp 
Fis a running cost functional where the value of the running 
cost at a final time ydepends on the integral of the function 10 
F from an initial time t

0 
to a final time tp and the value of 

function F at a particular time depends on the values of the 
state variables in vector X and/or the values of the control 
variables in vector u and/or time t. 

15. The method of claim 14, wherein to insure that the 
support Id is satisfied, an orthogonal rotation matrix, M, with 
M=[mi/] and 

/2.(nij) mu = -\j ;::;-+! sm ;::;-+! , 

1 <i, j<n so that lm,)sv'3Tcl, is employed to provide the 
property that if P=(pi/)=MQ, then lpi/lsl and Pis a matrix 
wherein the 2d columns of P are the order 3 uniform 

9. The method of claim 8, wherein the function 
E=~;~1Naw,X,(y). 

10. The method of claim 8, wherein the function 
E~L;~ 1N°w,(X,(1f)-µ,(tj!)(X,(1f)-µ,(t))T 

wherein µi is a mean sigma-point vector. 
11. The method of claim 8, wherein the function 

F~L;~ 1N°w,(X;(1f)-µ,(t))(X;(1f)-µ,(t))T 

wherein µi is a mean sigma-point vector. 
12. The method of claim 8, wherein the uncertain param­

eters and/or initial states of the system have uniform prob­
ability distributions. 

13. The method of claim 12, wherein a support (Id) for the 
uniform probability distribution is represented by: 

d-times 

Id = Tx!x-.-:~-xi, where I = [ -1 1 ] 

15 probability distribution of sigma points that lie within the 
support Id. 

16. The method of claim 15, wherein for uniform prob­
ability distributions of dimensions ( d) of 4 and 6, a Givens 
transformation is employed to compute the order 3 sigma 

20 points so that the sigma points that lie within the support Id. 
17. The method of claim 8, wherein the uncertain param­

eters and/or initial states of the system have Gaussian 
probability distributions. 

18. The method of claim 17, wherein the sigma points are 
25 order 3 sigma points that match the first three moments of a 

Gaussian statistical distribution of an uncertain variable, and 
the sigma points are given as the colunms of the matrix 
equation: 

30 

Q= 

wherein there are 2d order 3 sigma points, each order 3 
sigma point has size P,=v'd/3 and associated weight w,=1/2d 35 

and the matrix Q is defined as: 

Q= 

presuming a zero mean and unity variance, wherein there are 
2d order 3 sigma points, each sigma point has size given by 

40 P 1 =v'CI and the weight for each Sigma point is given by 
w,=1/(2d). 

19. The method of claim 8, wherein the uncertain param­
eters and/or initial states of the system have mixed Gaussian 
and uniform probability distributions. 

* * * * * 


