
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2017

A GPU-accelerated continuous and
discontinuoous Galerkin non-hydrostatic
atmospheric model

Abdi, Daniel S.; Wilcox, Lucas C.; Warburton, Timothy C.;
Giraldo, Francis X.
Sage Publishing

D.S. Abdi, L.C. Wilcox, T.C. Warburton, F.X. Giraldo, "A GPU-sccelerated continuous
and discontinuous Galerkin non-hydrostatic atmospheric model," International
Journal of High Performance Computing Applications, (2017), pp. 1-29
https://hdl.handle.net/10945/56094

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



Full Length Article

The International Journal of High
Performance Computing Applications
1–29
� The Author(s) 2017
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342017694427
journals.sagepub.com/home/hpc

A GPU-accelerated continuous and
discontinuous Galerkin non-hydrostatic
atmospheric model

Daniel S Abdi1, Lucas C Wilcox1, Timothy C Warburton2 and
Francis X Giraldo1

Abstract
We present a Graphics Processing Unit (GPU)-accelerated nodal discontinuous Galerkin method for the solution of the
three-dimensional Euler equations that govern the motion and thermodynamic state of the atmosphere. Acceleration of
the dynamical core of atmospheric models plays an important practical role in not only getting daily forecasts faster, but
also in obtaining more accurate (high resolution) results within a given simulation time limit. We use algorithms suitable
for the single instruction multiple thread architecture of GPUs to accelerate our model by two orders of magnitude rela-
tive to one core of a CPU. Tests on one node of the Titan supercomputer show a speedup of up to 15 times using the
K20X GPU as compared to that on the 16-core AMD Opteron CPU. The scalability of the multi-GPU implementation is
tested using 16,384 GPUs, which resulted in a weak scaling efficiency of about 90%. Finally, the accuracy and perfor-
mance of our GPU implementation is verified using several benchmark problems representative of different scales of
atmospheric dynamics.
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1 Introduction

Most operational Numerical Weather Prediction
(NWP) models are based on the finite difference or
spectral transform spatial discretization methods. Finite
difference methods are popular with limited area mod-
els, due to their ease of implementation and good per-
formance on structured grids, whereas global
circulation models mostly use the spectral transform
method. Spectral transform methods often do not scale
well on massively parallel systems due to the need for
global (all-to-all) communication required by the
Fourier transform. On the other hand, the finite differ-
ence method requires wide halo layers at inter-
processor boundaries to achieve high-order
accuracy.The search for efficient parallel NWP codes in
the era of high-performance computing suggests the
use of alternative methods that have local operation
properties while still offering high-order accuracy (Nair
et al., 2011); their efficiency coming from the minimal
parallel communication footprint that is of vital impor-
tance as resolution increases. The Non-hydrostatic
Unified Model of the Atmosphere (NUMA) is one
such NWP model that offers high-order accuracy while

using local methods for parallel efficiency (Giraldo and
Rosmond, 2004; Giraldo and Restelli, 2008; Kelly and
Giraldo, 2012; Marras et al., 2015).

In Table 1, we give a summary of a recent review on
the progress of porting several NWP models to the
GPU (Sawyer, 2014). Among those models that ported
the whole dynamical core, a maximum overall speedup
of 3 times (from here on, we shall use, e.g. 33 to repre-
sent such a speedup) is observed for a GPU relative to
a multi-core CPU. The only spectral element model in
the review was the Community Atmospheric Model
(CAM-SE) that showed a speedup of 33 for the dyna-
mical core using CUDA.

When comparing the acceleration of CAM-SE tracer
kernels using OpenACC, though substantially easier to
program than the CUDA version, they performed
1.53 slower (Norman et al., 2015). This could occur,
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for example, by not fully exploiting the private worker
array capability of OpenACC. The most important
metric we shall use to compare performance on the
GPU is speedup, however, we should note that speedup
results are significantly influenced by how well the
CPU and GPU codes are optimized. For this reason,
we shall also report individual GPU kernel perfor-
mance in terms of rate of floating point operations and
rate of data transfer (bandwidth) and will illustrate our
results using roofline models.

Element-based Galerkin (EBG) methods, in which
the basis functions are defined within an element, are
well suited for distributed computing for two reasons
(Klöckner et al., 2009): Firstly, localized memory
accesses result in low communication overhead. In con-
trast, global methods require an all-to-all communica-
tion that severely degrades scalability on most
architectures and methods having non-compact high-
order support require larger halo regions, which trans-
lates to larger communication stencils that also reduce
scalability. Secondly, high-order polynomial expansion
of the solution results in a large arithmetic intensity per
degree of freedom. These two properties work in favor
of EBG methods for Graphic Processing Unit (GPU)
computing as well. The two EBG methods of NUMA,
namely continuous Galerkin (CG) and discontinuous
Galerkin (DG), are ported to the GPU in a unified
manner (see section 3.3). Parallel implementation of
DG is often easier and more efficient than that of CG
because of a smaller communication stencil; with a
judicious choice of numerical flux, only neighbors shar-
ing a face need to communicate in DG, as opposed to
the edge and corner neighbor communication required
by CG. Moreover, DG allows for a simple overlap of
computation of volume integrals and intra-processor
flux with communication of boundary data, which can
be exploited to improve the efficiency of the parallel
implementation (Kelly and Giraldo, 2012). CG can
also benefit from a communication–computation over-
lap, but it requires a bit more work than that for DG
(Deville et al., 2002).

EBG methods have been successfully ported to
GPUs to speed up the solution of various partial

differential equations (PDEs) by orders of magnitude.
Acceleration of a CG simulation using GPUs was first
reported by Goddeke et al. (2005). Later, Klöckner
et al. (2009) made the first GPU implementation of
nodal DG for the solution of linear hyperbolic conser-
vation laws. They mention that non-trivial adjustments
to the DG method are required to solve non-linear
hyperbolic equations, such as the compressible Euler
equations, on the GPU due to complexity of imple-
menting limiters and artificial viscosity. Another nota-
ble difference with the current work is that NUMA
uses a tensor-product approach with hexahedra ele-
ments for efficiency reasons (Kelly and Giraldo 2012).
Klöckner et al. (2009) argue tetrahedra are preferable
on the GPU due to larger arithmetic intensity and
reduced memory fetches. More recently Siebenborn et
al. (2012) implemented the Runge–Kutta (RK) discon-
tinuous Galerkin method of Cockburn and Shu (1998)
on the GPU to solve the non-linear Euler equations
using tetrahedral grids. They reported a speedup of
183 over the serial implementation of the method run-
ning on a single-core CPU. Fuhry et al. (2014) made an
implementation of the 2D discontinuous Galerkin on
the GPU using triangular elements and obtained a
speedup of about 503 relative to a single-core CPU.
The approach they used is a one-element-per-thread
strategy that is different from the one-node-per-thread
strategy we shall use in this work when running on the
GPU. However, thanks to our use of a device-agnostic
language, the same kernel code used on the GPU,
switches to using the one-element-per-thread strategy
of Fuhry et al. (2014) when running on the CPU using
OpenMP mode.Chan et al. (2015) presented a GPU
acceleration of DG methods for the solution of the
acoustic wave equation on hex-dominant hybrid
meshes consisting of hexahedra, tetrahedra, wedges and
pyramids. They mention that the DG spectral element
formulation on hexahedra is more efficient on the GPU
using Legendre–Gauss–Lobatto (LGL) points than
using Gauss–Legendre (GL) points. To avoid the cost
of storing the inverse mass matrix on the GPU, they
used different basis functions that yield a diagonal mass
matrix for each of the cell shapes except tetrahedra.

Table 1 GPU acceleration of a few atmospheric models based on a summary in sawyer (2014). The only spectral element (SE) code
is the hydrostatic CAM-SE model. A maximum speedup of 33 over a multi-core CPU is observed among those models that have
ported the whole dynamical core.

Model Non-hydrostatic Method GPU ported Speedup Language

CAM-SE No SE Parts of DyCore 33 CUDA + OpenACC
WRF Yes FD Parts of DyCore 23 CUDA + OpenACC
NICAM Yes FV DyCore 33 OpenACC
ICON Yes FV DyCore 23 CUDA + OpenACC + OpenCL
GEOS-5 Yes FV Parts of DyCore 53 CUDA + OpenACC
FIM/NIM Yes FV DyCore + Physics 33 F2C-ACC + OpenACC
GRAPES Yes SL Parts of DyCore 43 CUDA
COSMO Yes FD DyCore + Physics 23 CUDA + OpenACC
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For straight-edged elements, the mass matrix for tetra-
hedral elements is not diagonal, but a scalar multiple of
that of the reference tetrahedron, therefore the storage
cost is minimal. In Chan and Warburton (2015), they
consider the use of the Bernstein–Bezier polynomial
basis for DG on the GPU to enhance the sparsity of
the derivative and lift matrices as compared to classical
DG with Lagrange polynomial basis. However, this
comes at a cost of increased condition number of the
matrices that could potentially cause stability issues.
They conclude that, at high-order polynomial approxi-
mation, DG implemented with the Bernstein–Bezier
polynomial basis perform better than a straightforward
implementation of classical DG. Remacle et al. (2015)
studied GPU acceleration of spectral elements for the
solution of the Poisson problem on purely hexahedral
grids. The solution of elliptic problems is most effi-
ciently done using implicit methods; thus, they imple-
mented a matrix-free Pre-conditioned Conjugate
Gradient (PCG) on the GPU and demonstrated that
problems with 50 million grid cells can be solved in a
few seconds.

General purpose computing on GPUs can be done
using several programming models from various ven-
dors: AMD’s OpenCL, NVIDIA’s CUDA and
OpenACC, to name a few. The choice of the program-
ming model for a project depends on several factors.
The goal of the current work is to port NUMA to het-
erogeneous computing environments in a performance-
portable way, and hence cross-platform portability is
the topmost priority. In the future we shall address per-
formance portability using automatic code transforma-
tion techniques, such as Loo.py Klöckner and
Warburton, 2013). To achieve cross-platform portabil-
ity, we chose a new threading language called OCCA
(Open Concurrent Compute Abstraction) (Medina
et al., 2014), which is a unified approach to multi-
threading languages. Kernels written in OCCA are
cross-compiled at runtime to existing thread models
such as OpenCL, CUDA, OpenMP, etc.; here, we pres-
ent results only for OpenCL and CUDA backends and
postpone OpenMP for future work. OCCA has been
shown to deliver portable high performance for various
EBG methods (Medina et al., 2014). It has already
been used in Gandham et al. (2014) to accelerate the
DG solution of the shallow water equations, in
Remacle et al. (2015) for the Poisson problem, and in
Modave et al. (2016) for acoustic and elastic problems.

2 Governing equations

The dynamics of non-hydrostatic atmospheric processes
are governed by the compressible Euler equations. The
equation sets can be written in various conservative and
non-conservative forms. Among those, a conservative
set is selected with the prognostic variables ðr;U;YÞ>,
where r is density, U= ðU ;V ;WÞ= ru, Y= ru, where

u is potential temperature and u= ðu; v;wÞ are the velo-
city components. We write the governing equations in
the following way

∂r

∂t
+r �U= 0

∂U

∂t
+r � U�U

r
+PI3

� �
= � rg

∂Y
∂t

+r � YU

r

� �
= 0

ð1Þ

where g is the gravity vector.1 The pressure in the
momentum equation is obtained from the equation of
state

P=P0

RY
P0

� �g

ð2Þ

where R= cp � cv and g =
cp

cv
for given specific heat of

pressure and volume of cp and cv, respectively. We have
selected to use a conservative form of the equations, to
take advantage of not only global but also local conserva-
tion properties (given the proper discretization method).

For better numerical stability, the density, pressure
and potential temperature variables are split into back-
ground and perturbation components. The background
component is time-invariant and is often obtained by
assuming hydrostatic equilibrium and a neutral atmo-
sphere. Let us define the decomposition as follows

rðx; tÞ= �rðxÞ+ r
0 ðx; tÞ

Yðx; tÞ= �YðxÞ+Y
0 ðx; tÞ

Pðx; tÞ= �PðxÞ+P
0 ðx; tÞ

where ðx; tÞ are the space–time coordinates. Then, the
modified equation set is

∂r
0

∂t
+r �U= 0

∂U

∂t
+r � U�U

r
+P

0
I3

� �
= � r

0
g

∂Y
0

∂t
+r � YU

r

� �
= 0

ð3Þ

In compact vector notation form

∂q

∂t
+r:FðqÞ=SðqÞ ð4Þ

where q= ðr0 ;U;Y0Þ> is the solution vector, is
FðqÞ= ðU; U�U

r
+P0I3;

YU
r
Þ> the flux vector, and

SðqÞ= ð0;�r0g; 0Þ> is the source vector.
For the purpose of stabilization, we add artificial

viscosity to the governing equations as follows

∂q

∂t
+r � FðqÞ=SðqÞ+r � ðmrqÞ ð5Þ
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where m is the constant artificial kinematic viscosity.
We should mention that the equation sets are conserva-
tive only for the inviscid case; therefore, in order to
conserve mass, we do not apply stabilization to the con-
tinuity equation.

3 Spatial discretization of the governing
equations

Spatial discretization for the EBG methods, namely
continuous Galerkin and discontinuous Galerkin, is
conducted by decomposing the domain Oe � R

3 into
Ne non-overlapping hexahedra elements Oe

Oe =
[Ne

e= 1

Oe

A key property of hexahedral elements is that they
allow the use of a tensor-product approach thereby
decreasing the complexity (in 3D) from OðN6Þ to
OðN 4Þ where N is the degree of the polynomial basis.
In addition, if we are willing to accept inexact integra-
tion of the mass matrix then we can co-locate the inter-
polation and integration points to simplify the resulting
algorithm, in addition to increasing its efficiency with-
out sacrificing too much accuracy (Giraldo, 1998).

Within each element Oe are defined basis functions
cjðxÞ to form a finite-dimensional approximation qN of
qðx; tÞ by the expansion

qN
ðeÞðx; tÞ=

XM
j= 1

cjðxÞq
ðeÞ
j ðtÞ

where M is the number of nodes in an element. The
superscript ðeÞ indicates a local solution as opposed to
a global solution. From here on, the superscript is
dropped from our notations since we are solely inter-
ested in EBG methods.

The 3D basis functions are formed from a tensor
product of the 1D basis functions in each direction as

cijkðj;h; zÞ=ciðjÞ � cjðhÞ � ckðzÞ

where the 1D Lagrange basis functions are defined on
[–1, 1] as

ciðjÞ=
YN + 1

j= 1
j 6¼i

j � jj

ji � jj

where fjigM
1 is the set of interpolation points in ½�1; 1�.

In a nodal Galerkin approach, ciðjÞ are Lagrange poly-
nomials associated with a specific set of points; here we
choose the LGL points fjig 2 ½�1; 1� which are the
roots of

ð1� j2ÞPN 0 ðjÞ

where PN ðjÞ is the Nth degree Legendre polynomial.
These points are also used for integration with quadra-
ture weights given by

vi =
2

NðN + 1Þ
1

PN ðjiÞ

� �2

This choice of Lagrange functions gives the Kronecker
delta property

ciðjjÞ= dij

which, for the 3D basis functions, yields

cijkðja;hb; zcÞ= dai � dbj � dck

Unfortunately, the Kronecker delta property does not
hold for the derivatives of the basis functions.
However, in the case of tensor-product elements, there
exists a simplification that will tremendously decrease
the cost of evaluation of derivatives and also the associ-
ated storage space in case they are stored as matrix
coefficients. Let us write the derivatives in the following
way

∂cijk

∂j
ðja;hb; zcÞ=

dci

dj
ðjaÞ � dbj � dck

∂cijk

∂h
ðja;hb; zcÞ= dai �

dcj

dh
ðhbÞ � dck

∂cijk

∂z
ðja;hb; zcÞ= dbj � dai �

dck

dz
ðzcÞ

ð6Þ

Therefore, for tensor-product elements, we need to
consider only 3N nodes instead of N3 when computing
derivatives at a given node. If matrices are built to solve
the system of equations, the storage requirement would
increase in proportion to the polynomial order OðNÞ
instead of OðN3Þ. This saving is due to the fact that we
only have to compute and store dc

dx
ðxÞ where x is one of

the following: j;h; z. The derivatives with respect to the
physical coordinates x= ðx; y; zÞ are computed using
the Jacobian matrix transformation

rf= Jr̂f

where r̂ is the derivative with respect to the reference
coordinates ðj;h; zÞ and

J =

∂j

∂x

∂j

∂y

∂j

∂z
∂h

∂x

∂h

∂y

∂h

∂z
∂z

∂x

∂z

∂y

∂z

∂z

2
6666664

3
7777775 ð7Þ
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3.1 Continuous Galerkin method

Starting from the differential form of the Euler equa-
tions in vector notation, shown in equation (4), and
then expanding with basis functions, multiplying by a
test function ci, and integrating yields the element-wise
formulationZ

Oe

ci

∂qN

∂t
dOe +

Z
Oe

cir � FdOe =

Z
Oe

ciSðqN ÞdOe

ð8Þ

Integrating the second term by parts
ðcir � F=r � ðciFÞ � rci � FÞ yieldsZ

Oe

ci

∂qN

∂t
dOe +

Z
Ge

cin̂ � FdGe �
Z
Oe

rci � FdOe =Z
Oe

ciSðqN ÞdOe

ð9Þ

where n̂ is the outward pointing normal on the bound-
ary of the element Ge. The second term needs to be
evaluated only at physical boundaries because the
fluxes to the left and right of element interfaces are
always equal at interior boundaries, i.e. F+ =F�.
Equations (8) and (9) are the strong and weak CG for-
mulations, respectively, with the finite dimensional
space defined as a subset of the Sobolev space

VCGN = fc 2 H1ðOeÞjc 2 PNg

where PN defines the set of all N th degree polynomials.
Automatically, VCGN 2 C0ðOeÞ, thus CG solutions sat-
isfy C0 continuity.

3.2 Discontinuous Galerkin method

For DG, the finite dimensional space is defined as a
subset of the Hilbert space that allows for discontinu-
ities of solutions

VDG
N = fc 2 L2ðOeÞjc 2 PNg

Therefore F+ and F� are not equal anymore,
hence, we define a numerical flux F� as an approxi-
mate solution to a Riemann problem to be used in the
weak-form DGZ

Oe

ci

∂qN

∂t
dOe +

Z
Ge

cin̂ � F�dGe �
Z
Oe

rci � FdOe =Z
Oe

ciSðqN ÞdOe ð10Þ

where the Rusanov flux, suitable for hyperbolic equa-
tions, is defined as

FðqÞ�= fFðqÞg � n̂
jl̂j
2
½½q��

where jl̂j is the speed of sound, fg represent an average
and ½½ �� represent a jump across a face (from Oe to its
neighbor). If C0 continuity is enforced on the weak-
form DG in equation(10), i.e. F=F�, it reduces to the
weak-form CG in equation (9).

A strong-form DG that resembles equation (8) more,
can be obtained by applying a second integration by
parts on the flux integral to remove the smoothness
constraint on the test function ci as followsZ

Oe

ci

∂qN

∂t
dOe +

Z
Ge

cin̂ � ðF� � FÞðqN ÞdGe +Z
Oe

cir � FðqN ÞdOe =

Z
Oe

ciSðqN ÞdOe

ð11Þ

Again, if C0 continuity is enforced on the strong-form
DG formulation, i.e. F=F� at interior edges, it sim-
plifies to the strong-form CG formulation in equation
(8) (see Abdi and Giraldo (2016) for details).

3.3 Unified CG and DG

The element-wise matrices for both CG and DG are
assembled to form global matrices via an operation
commonly known as global assembly or direct stiffness
summation (DSS). Even though the local matrices are
the same for both methods, the DSS operation yields
different global matrices. CG is often implemented
through a global grid point storage scheme where ele-
ments share LGL nodes at faces so that C0 continuity
is satisfied automatically. Therefore, the DSS operation
for CG accumulates values at shared nodes, while that
for DG simply puts the local element matrices in their
proper location in the global matrix. DG uses a local
element-wise storage scheme because discontinuities
(jumps) at element interfaces are allowed. The standard
implementation of CG and DG often follows these two
different approaches of storing data; however, CG can
be recast to use local element-wise storage as well. To
do so, we must explicitly enforce equality of values on
the right and left of element interfaces by accumulating
and then distributing back (gather–scatter) values at
shared nodes for both the mass matrix and right-hand-
side (RHS) vector. The gather–scatter operation is the
coupling mechanism for CG, without which the prob-
lem is under-specified. DG achieves the same via the
definition of the numerical flux F� at element inter-
faces, which is used by both elements sharing the face.
A detailed explanation of the unified CG and DG
implementation of NUMA can be found in Abdi and
Giraldo (2016).
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4. Temporal discretization of the
governing equations

The time integrator used is a low-storage explicit
Runge–Kutta (LSERK) method proposed in Carpenter
and Kennedy (1994). It is a five-stage fourth-order RK
method that requires only two storage locations, which
is half of that required by the conventional high-
storage fourth-order RK method. The added cost due
to one more stage evaluation is offset by the larger sta-
ble timestep Dt the method allows. Each successive
stage is written on to the same register without erasing
the previous value. We need to store previous values of
the field variable q and its residual dq of size N each,
thereby, resulting in a 2N-storage scheme. Given the
initial value problem

dq

dt
=RðqÞ with qðt0Þ= q0

the updates at each stage j are conducted as follows

dqj =Aj dqj�1 +DtRðqj�1Þ
qj = qj�1 +Bj dqj

where Aj and Bj are constant coefficients for each stage
given in Table 2

Explicit RK methods have a stringent Courant–
Friedrichs–Lewy (CFL) requirement that often prohi-
bits them from being used in operational settings.
NUMA includes Implicit–Explicit (IMEX) methods
that allow for much larger timesteps, however, those
have not yet been ported to the GPU. The first goal of
the GPU project focuses on porting explicit time inte-
gration methods, which are known to scale well on
many processors and are also easier to port to GPUs.
Implicit methods require the solution of a coupled sys-
tem of linear equations; therefore, depending on the
chosen iterative solver and pre-conditioner, perfor-
mance on a cluster of computers and GPUs may be
severely impacted. For this reason, we reserve the port-
ing of the implicit solvers in NUMA to a future study.

5 Porting NUMA to the GPU

This section describes the implementation of the unified
CG and DG NUMA on the GPU using the OCCA

programming language (Medina ET AL., 2014). Before
we delve into details of the implementation, a few
words on GPU computing in general and design con-
siderations are warranted. GPUs provide the most
cost-effective computing power to date, however, they
come with a challenge of adapting existing code origi-
nally written for the CPU to a GPU platform.

5.1 Challenges

First of all, the candidate program to be ported to the
GPU should be able to handle massively fine grained
parallelism via threads. Even though current general
purpose GPU computing offers a lot more flexibility
than the days when they were exclusively used for image
rendering, there are still limitations on what can be
done efficiently on GPUs. Single Instruction Multiple
Data (SIMD) programs suited for vector machines are
automatically candidates for porting to GPUs. More
flexibility is achieved on the GPU by limiting SIMD
computation to a small group of threads, 32 threads
known as a warp in NVIDIA terminology, and then
scheduling multiple warps to work on different tasks.
In the code design phase, it is often convenient to think
of warps as the smallest computing unit for the follow-
ing reason. If even one thread in a warp decides to do a
different operation, warp divergence occurs in which all
threads in a warp have to do operations twice resulting
in a 50% performance loss.

The second issue concerns memory management.
Though the many cores in GPUs provide a lot of com-
putational power, they can only be harnessed fully if
unrestricted by memory bandwidth limitations.
Programs running on a single-core CPU are often
compute-bound because more emphasis is given to data
caching in CPU design. In contrast, most of the chip
area in GPUs is devoted to compute units, and as a
result, programs running on a GPU tend to be mem-
ory-bound. Programmers have to carefully manage the
different memory resources available in GPUs. To give
an idea of the complexity of memory management, we
briefly describe the six types of memory in NVIDIA
GPUs: global, local, texture, constant, shared and reg-
ister memory ordered in highest to lowest latency.
Register memory is the fastest but is limited in size and
only visible to one thread. Shared memory is fast and
visible to a block, a group of warps, and therefore it is
an invaluable means of communication between
threads. Constant and texture memory are read-only
memory that can be used to reduce memory traffic.
Local memory is cached but is only accessible by one
thread; automatic variables that cannot be held in reg-
isters are offloaded to the slow local memory. Global
memory, which is accessible by all threads, is the main
memory of GPUs where the data is stored.

Table 2 Coefficients of the five-stage LSERK time integrator.

Stage A B

1 0 0.097618354
2 0.481231743 0.412253292
3 21.049562606 0.440216964
4 21.602529574 1.426311463
5 21.778267193 0.197876053
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5.2 Design choices

Global memory bandwidth limitation and high latency
of access is often the bottleneck of performance in GPU
computing. To minimize its impact on performance,
memory transactions can be coalesced for a group of
threads accessing the same block in memory. The warp
scheduler also helps to alleviate this problem by swap-
ping out warps that are waiting for a global memory
transaction to complete for those that are ready to go.
There are two approaches to storing data. The first
approach, Array of Structures (AoS), stores all vari-
ables at a given LGL node contiguously in memory.
This is suitable if computation is done for all the vari-
ables in one pass. If, on the other hand, a subset of the
variables are required at a time, a second approach,
Structure of Arrays (SoA), is suitable. While the SoA
often degrades performance on the CPU due to reduced
cache efficiency, it can significantly improve perfor-
mance on the GPU because of coalesced memory trans-
actions for a warp. The approach we use is a mix of
these two methods similar to the AoSoFA (Array of
Structures of Fixed Arrays) described in Allard et al.
(2011), in which data for each element is stored in an
SoA manner, and thus an AoS for the whole domain.
Using this approach, scalar data for all nodes in an ele-
ment is stored contiguously in memory; this is repeated
similarly for each scalar variable. Variables that are
often accessed together, for instance coordinates (x,y,z)
or velocity (u,v,w) can be stored as one float3 on the
GPU. A pseudo-code for the data layout in CPU and
GPU modes is shown in Algorithm 1.

Our choice of data layout is influenced by our design
decision to do computation on an element-by-element
basis, for instance launching as many threads as the
number of nodes for computing volume integrals, and
as many as face nodes for surface integrals (see sections
5.3.1 and 5.3.2). We should note here that our approach
has a downside in that the number of threads launched
for processing an element could be small with low-order
polynomial approximations; also the number of threads
may not be a multiple of the warp size. We provide

solutions to this problem by processing multiple ele-
ments per block as will be explained in the coming sec-
tions. In the SoA approach, these two problems do not
exist and the appropriate number of threads that fit the
GPU device could be launched to process LGL nodes,
even from different elements simultaneously. The SoA
approach may be better for porting code to the GPU
using, for instance, OpenACC or other pragma-based
programming languages where the user has less control
of the device.

5.3 Unified CG and DG on the GPU

The implementation of CG done within the DG frame-
work differs only by the final DSS step required for
imposing the C0 continuity constraint instead of using
the numerical flux. Therefore, first we explain the
implementation details of nodal DG on the GPU and
then that of the DSS operation later. The three major
computations in DG are implemented in separate
OCCA kernels: volume integration, surface integration
and timestep update kernels. Other major kernels are
the boundary kernel required for imposing boundary
conditions, the project kernel for applying the DSS
operation for CG, and two kernels for stabilization: a
Laplacian diffusion kernel for applying second-order
artificial viscosity to be used with CG, and a kernel for
computing the gradient required by the Local
Discontinuous Galerkin (LDG) method used for stabi-
lizing DG; in future work, we will select one stabiliza-
tion method/kernel for both methods using the primal
form of the elliptic problem. For the strong-form DG
discretization of the Euler equations, the kernels repre-
sent the following integralsZ

Oe

c
∂q

∂t
dOe|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Update kernel

+

Z
Oe

cðr � F � SÞdOe|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Volume kernel

+

Z
Ge

cn̂ � ðF� � FÞdGe|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Surface kernel

=

Z
Oe

cðr � mrqÞdOe|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Diffusion kernel

ð12Þ

5.3.1 Volume kernel. The volume and surface integration
kernels are written in such a way that a CUDA thread
block processes one or more elements, and a thread
processes contributions from a single LGL node, i.e.
the one-node-per-thread approach we mentioned in the
Introduction. Gandham et al. (2014) mention that for
low-order polynomial approximations, performance
can be improved by as much as 53 by processing
more than one element per block. This is especially true
for 2D elements that were used in their study, which
have fewer nodes than the 3D elements we are using in
this work. The reason for this variation in performance
with the number of elements processed per block is the

Algorithm 1 Pseudo-code for data layout.

#ifdef OPENMP . CPU mode: Define an AoS for each node
where Jx,Jy,Jz are stored contiguously.

occaPrivateArray(float4, data, 3)
#define Jx data[0]
#define Jy data[1]
#define Jz data[2]

#else . GPU mode: Define AoSoFA where Jx is
contiguously stored for all ðN 3Þ nodes in each element.

occaPrivate(float4, Jx);
occaPrivate(float4, Jy);
occaPrivate(float4, Jz);
#endif

Abdi et al. 7



need for a block size that best fits the underlying hard-
ware limits. In traditional GPU kernels, for instance
the timestep update kernel discussed in section 5.3.3,
thread blocks are sized as multiples of the warp size (32
threads) for best performance. However, for the vol-
ume integration kernels, our algorithms are designed
such that one thread processes one LGL node, there-
fore the number of threads launched is not a multiple
of the warp size but the number of nodes.

The main operation in the volume kernel is comput-
ing gradients of the following eight variables (shown in
Algorithm 2): five prognostic variables ðr;U ;V ;W ;YÞ,
pressure P and two variables for moisture (here, we
omit precipitation). The gradient of four variables,
which are stored as one float4, can be computed
together for efficiency. The current work does not
include support for tracer transport, nor do we employ
the moisture dynamics even though the gradient is
computed. Once the gradients are calculated, we can
construct the divergence and complete the contribution
of the volume integration to the RHS vector as shown
in Algorithm 3.

For low-order polynomials, we can launch one
thread per node and perhaps more by processing multi-
ple elements per block. This approach works for a max-
imum polynomial order of seven on older GPU cards

and up to order eight on the Fermi architecture. The
reason why we cannot use this approach for higher
order polynomials than seven is two fold: first, the
number of threads in a block ðð7+ 1Þ3 = 512Þ
approaches the hardware block size limit. Second, we
also approach the shared memory limit at around this
polynomial order. Therefore, we use two different
approaches for volume integration for polynomial
orders less than seven (low order) and greater than
seven (high order). For low-order polynomials, we can
pre-load all the element data (the two float4s to shared
memory at startup, and then never read from global
memory again until the kernel completes).

We can overcome the thread block size limitation
for high-order polynomial approximation by launching
only the required number of threads to process one slice
of a 3D element, i.e. N 2

LGL nodes, as shown in Figure 1.
Then, we consider three ways of exploiting the shared
memory shown in pseudo-code in Algorithm 4. The
first approach, which we call the naı̈ve approach, does
not use shared memory but relies solely on the L1 cache
if available. Otherwise, data is read directly from global
memory every time it is required. We can optimize this
approach by adjusting the hardware division of L1
cache to shared memory to be 48 kb/16 kb instead of
the default 16 kb/48 kb in the K20X GPU. Ignoring

Algorithm 2 GPU algorithms for computing gradient, divergence and Laplacian.

Procedure GradDiv (q,grad,div,compute) . Compute gradient or divergence
Memory fence
for k; j; i 2 f0 . . . Nqgg do .Load field variables into shared memory

sq[k][j][i] = q
Memory fence
for fk; j; i 2 f0 . . . Nqg do

qx = 0; qy = 0; qz = 0;
for n 2 f0 . . . Nqg do .Compute local gradients

qx + = sD[i][n] 3 sq[k][j][n] . sD are rC at LGL nodes pre-loaded to shared memory.
qy + = sD[j][n] 3 sq[k][n][i]
qz + = sD[k][n] 3 sq[n][j][i]

if compute = GRAD then
grad�x = (qx 3 Jrx + qy 3 Jsx + qz 3 Jtx) . Js are coefficients of the Jacobian matrix J
grad�y = (qx 3 Jry + qy 3 Jsy + qz 3 Jty)
grad�z = (qx 3 Jrz + qy 3 Jsz + qz 3 Jtz)

else if compute = DIVX then
div = (qx 3 Jrx + qy 3 Jsx + qz 3 Jtx)

else if compute = DIVY then
div + = (qx 3 Jry + qy 3 Jsy + qz 3 Jty)

else if compute = DIVZ then
div + = (qx 3 Jrz + qy 3 Jsz + qz 3 Jtz)

Procedure GRAD (q,grad) . Compute gradient of a scalar field
call GRADDIV (q,grad,-,GRAD)

Procedure DIV (q,div) . Compute divergence of a vector field
call GRAD DIV (q� x,-,div,DIVX)
call GRAD DIV (q� y,-,div,DIVY)
call GRAD DIV (q� z,-,div,DIVZ)

Procedure LAP(q, lap) . Compute Laplacian of a scalar field
call GRAD (q,gq)
call DIV (gq,lap)
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cache effects, the naı̈ve approach reads 3NLGL values
from memory to compute the gradient of a variable at
a node, for a total of N 3

LGL 3 3NLGL memory reads. The
second approach, henceforth called Shared-1 loads a
slice of data to shared memory, then computes the con-
tribution to the gradient from those nodes on the slice.
The data on the slice is re-used between the N2

LGL nodes
on the same plane, therefore, a total of N 3

LGL 3 NLGL

memory reads are required. The third approach, hence-
forth called Shared-2, extends the previous method by
storing the column of data in register as suggested in
Micikevicius (2009). The column of data may not fit in
registers in which case it is spilled to CUDA private

memory, which is global memory. In the latter case, the
method will be the same as the Shared-1 approach with
the additional cost of copying data from global-to-
global memory. The best case scenario is when N3

LGL

memory reads are required, but this cannot be achieved
in practice due to the limited number of registers per
thread. The fourth approach does two passes on the
data in which the first pass calculates contributions to
the gradient from nodes on the same slice, say the x� y

plane; the second pass completes the gradient calcula-
tion by loading x� z slices, and adding the contribu-
tions from nodes in the z-direction. This approach
always requires N3

LGL 3 2 memory reads, and its imple-
mentation requires separate horizontal and vertical vol-
ume kernels that exploit shared memory within the
respective planes.

Figure 1. Volume integral contribution of a horizontal and
vertical slice of a 3D element with 4th degree polynomial
approximation. Due to the use of the tensor-product approach
for hexahedral elements, contributions to a given node (red
dot) come only from those collinear with it along the x-, y- and
z-directions. The horizontal volume kernel computes the
contribution from the purple and green nodes on the horizontal
slice, and the vertical volume kernel adds the contribution from
the light-blue nodes on the vertical slice.

Algorithm 3 Outline of a combined volume kernel for processing Nk elements per block with Ns slice workers. There are Nq

quadrature points, slices per element for volume kernels and Nf faces, for surface kernels.

Procedure VOLUMEKERNEL (q,R)
Shared data[Nk][Nq][Nq][Nq] . Extended shared memory array
for outerId0 do

for innerId2 do
wId = innerId2 mod Ns . Slice worker Id
eId = innerId2 div Ns . Multiple element processing
for slId = wId to Nq step Ns do . Nq slices to work on

e = Nk 3 outerId0 + elId . Element id

call GRADðqa;rqaÞ . Compute gradient of (U,V,W,p) as one float4 variable qa
DU=rxU+ryV +rzW
RðrÞ=DU
RðYÞ= u3DU
RðUÞ=U3DU+rxp+rU �U
RðVÞ= V3DU+ryp+rV �U
RðWÞ=W3DU+ryp+rW �U

call GRADðqb;rqbÞ . Compute gradient of ðr;Y;�;�Þ as one float4 variable qb
DR=U � rr
RðYÞ=Y3DR� U � rY
RðuÞ=U3DR
RðvÞ= V3DR
RðwÞ=W3DR

Algorithm 4 Methods for exploiting shared memory.

Global Q[NELEM[Nq][Nq][Nq] . Q is in global memory
Shared sQ[N][N] . Pre-loaded slice data in shared mem
Private pQ[N] . Column data loaded to private mem
(registers) with each of the N2 threads.
Pre-load sQ and pQ
if naı̈ve then

dataH = Q[e][sl][j][i]
dataV = Q[e][k][j][i]

else if SHARED-1 then
dataH = sQ[j][i]
dataV = Q[e][k][j][i]

else if SHARED-2 then
dataH = sQ[j][i]
dataV = pQ[k]
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Even though the slicing approach helps to handle
higher order polynomial approximations, it hurts per-
formance on the other end of the spectrum. Assuming
512 threads per block and a hardware limit of 8 blocks
per multi-processor, a 2D kernel using 3rd degree poly-
nomial approximations will require 8 3 ð3+ 1Þ2 = 128

threads, which yields 25% efficiency; on the other hand
a 3D kernel will occupy 100% of the device because
8 3 ð3+ 1Þ3 = 512 threads are launched per multi-pro-
cessor. We would like to run with high-order polyno-
mial approximations and also have kernels that are
efficient for low-order polynomial approximations. We
should mention here that occupancy is not the only
indicator of performance, and one could obtain better
results with fewer threads and better instruction level
parallelism (Volkov, 2010).

These two competing goals of optimizing kernels for
high-order and low-order polynomials can be handled
separately with different kernels optimized for each.
More convenient is to write the volume kernel in such a
way that it can process multiple elements in a thread
block with one or more slice workers simultaneously.
For this reason, the volume, surface and gradient ker-
nels accept parameters Nk , for number of elements to
process per block, and Ns, for the number of slice work-
ers per element. We should note here that due to the
runtime compilation feature of OCCA, parameters
such as the polynomial order are constants, as a result,
kernels are optimized for the selected set of parameters.
For example, with Nk = 1 and Ns = 1, the kernels pro-
duced will be exactly the same as those we had before
adding the multiple element per block and slicing
approaches. If a kernel uses shared memory to store
data for each element processed per block and slice
worker, its shared memory consumption will increase
in proportion with Nk 3 Ns, as shown in Algorithm 3.

5.3.2 Surface kernel. The surface integration, shown in
Algorithm 5, is conducted in two stages in accordance
with Klöckner et al. (2009): the flux gather stage col-
lects contributions of elements to the numerical flux at
face nodes, and the lifting stage integrates the face val-
ues back into the volume vector. Lifting, in our case, is
a simple multiplication by a factor computed from the
ratio of weighted face and volume Jacobians; this is a
result of the tensor-product approach in conjunction
with the choice of integration rule that results in a diag-
onal lifting matrix. If the numerical flux at a physical
boundary is pre-determined, for instance in the case of
a no-flux boundary condition, it is directly set to the
prescribed value before lifting. The workload in surface
integration can be split into slices similar to that used
for volume integration. The number of slices available
for parallelization in this case is the number of faces of
an element, six for hexahedra. However, since two faces
that are adjacent to each other share an edge, they can-
not be processed by two slice workers simultaneously.
One solution is to reduce the parallelization to pairs of
opposing faces, thereby avoiding the conflict that arises
at the edges when updating flux terms, as shown in
Figure 2. A second option is to use hardware atomic

Algorithm 5 Surface kernel.

map[3][2] = ((0,5),(1,3),(2,4)) . Pairs of faces, shown in Figure 2, for parallel computation
Procedure SURFACEKERNEL (q,R)

for outerId0 do
for innerId2 do

wId = innerId2 mod Ns . Slice worker Id
eId = innerId2 div Ns . Element Id
for wId to 2 step Ns do

for b = 0 to 2 do
slId = map[b][wId]; . Get face
for j,i 2 f0 . . . Nq}do

e=Nk3outerId0+ elId

Load face normal n̂ and lift coefficient L . L= wijJij
wijkJijk

Load q+ and q� for current node and adjoning node in the other element

Compute maximum wave speed jlj= jn̂3uj+
ffiffiffiffiffiffiffiffiffiffiffi
gp=r

p
Compute Rusanov flux FðqÞ�= fFðqÞg � n̂ jlj

2
½½q��

R+ =L3n̂ � ðFðqÞ� � FðqÞÞ

Figure 2. Coloring of faces for parallel computation of the
surface integral. Opposing faces can be processed simultaneously
because there are no shared edges between them.
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operations to update the flux terms. However, hard-
ware support for atomic operations on double-precision
(DP) floating point operations is not universally sup-
ported by all GPUs at this time.

5.2.3 Update kernel. The timestep update kernel is rela-
tively straightforward to implement because we are
using explicit time integration, in which new values at a
node are calculated solely from old values at the same
node. However, explicit timestepping is only condition-
ally stable depending on the Courant number. The
implementation of implicit–explicit and fully implicit
timestepping methods, which require the solution of a
linear system of equations, is postponed to the future.
For now, we implement the low-storage fourth-order
RK method of Carpenter and Kennedy (1994) by stor-
ing the solution at the previous timestep and its resi-
dual. Since there is no distinction between nodes in
different elements for this particular kernel, we can
select the appropriate block size that best fits the hard-
ware, e.g. 256 in OpenCL.

5.3.4 Project kernel. The DSS operation is implemented in
two steps, namely gather and scatter stages. The DSS
kernel, shown in Algorithm 6, accepts a vector of node
numbers in Compressed Sparse Row (CSR) format.
This vector is used to gather local node values to then
put the result in global nodes — which may be mapped
into multiple local nodes. One thread is launched for
each global node to accumulate the values from all local
nodes sharing this global node. As a result, no conflict
will arise while accumulating values, because the gather
at a node is done sequentially by the same thread. For
the single-GPU implementation, we can immediately
start the scatter operation, which does the opposite oper-
ation of scattering the gathered value back to the local

nodes. However, a multi-GPU implementation requires
communication of gathered values between GPUs before
scattering, as will be discussed in section 6.

5.3.5 Diffusion kernels. For the purposes of the current
work, we shall use constant second-order artificial visc-
osity to stabilize both the CG and DG methods in
NUMA2 The stabilizing term, shown in equation (5), is
in divergence form r � ðmrqÞ so that we will be able to
use dynamic viscosity methods in the future. However,
we use constant viscosity in the current work, which
reduces the stabilizing term to a Laplacian operator
mr2q.

For stabilizing CG, we use the primal form discreti-
zation of the Laplacian operator. Let us start with the
DG discretization with numerical flux q� given in weak
form asZ

Oe

cir � ðmrqÞdOe =

Z
Ge

cin̂ � ðmrq�Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
surface

�

Z
Oe

rci � ðmrqÞdOe|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
volume

ð13Þ

and in the strong form asZ
Oe

cir � ðmrqÞdOe =

Z
Ge

cin̂ � ðmrq� � mrqÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
surface

+

Z
Oe

cir � ðmrqÞdOe|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
volume

ð14Þ

If we, then, ensure C1 continuity in the CG discretiza-
tion, i.e. by applying DSS on the gradient so that
rq=rq�, the surface integral term disappears from
the strong-form formulation. The weak-form CG for-
mulation will still retain the surface integral term
despite DSS, however, this term needs to be evaluated
only at physical boundaries because it cancels at inte-
rior boundaries due to rq+ =rq�. In addition, the
term completely disappears if no-flux boundary condi-
tions are used; dropping the surface integral term in
other cases results in an inconsistent method, but some-
thing that could still be feasible for the purpose of
numerical stabilization. The kernel for computing the
volume contribution of the strong-form discretization
is already given as the Laplacian procedure in
Algorithm 2. The volume kernel for the the weak-form
discretization is shown in Algorithm 7. The first step in
this kernel is to load the field variable q into the fast
shared memory. Then, we compute and store the local
gradients at each LGL node similar to what is done in

Algorithm 6 DSS kernel.

Procedure DSSKERNEL (Q,Qcont,starts,indices,nGlobal,wgt)
for outerId0 do

n = outerId0 . Global node id
if n < nGlobal then

start = starts[n] . Read indices of local nodes for the
DSS operation
end = starts[n + 1]
gQ = 0 . Gather stage of DSS
for m = start to end do

ind = indices[m] . Local node index
if ind � 0 then

pw = wgt[ind]; . DSS weight computed based on
lumped mass coefficients
gQ + = Q[ind] 3 pw

Qcont[n] = gQ
for m = start to end do . Scatter stage of DSS

ind = indices[m]
if ind � 0 then

Q[ind] = Qcont[n]
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the volume kernel. The shared memory requirement of
this kernel is rather high due to the need for temporarily
storing the gradients in addition to the field variables.

On the other hand, the mixed-form stabilization
method we use for DG, i.e. by computing and storing
the gradient in global memory, puts less stress on
shared memory requirement, while being potentially
slower. The same kind of optimizations used for the
volume kernel, such as splitting into slices and multiple
elements per block processing, can be used here as well.
After computing the local gradients, the rci � mrqj

term can be computed immediately afterwards —
which is represented by the combined geometric factors
JJT. Note that we use local memory fences to synchro-
nize the read/write operations in shared memory. The
fact that we use a discontinuous space even for CG
forces us to apply DSS on both q, for which we already
applied DSS at the end of the timestep or RK-stage,
and rq, for which we ignore DSS for efficiency reasons
discussed later in this section. In the case of hyper-
viscosity of order three or more, the DSS on rq may
be required to ensure at least C1 continuity.

For stabilizing DG, we use the mixed form of Bassi
and Rebay (1997). The viscous term r � ðmrqÞ needed
for stabilizing the Euler equations in equation (5)
requires us to first compute the gradient rq. We can
write the computation of the stabilizing term in mixed
form as follows

rq=Q

r � ðmrqÞ=r � ðmQÞ
ð15Þ

where Q is the auxiliary variable. Because we are evalu-
ating the stabilizing term explicitly, we can solve the
equations in a straightforward decoupled manner Bassi
and 1997). The strong-form DG discretization of the
first part of equation (15) is as followsZ

Oe

ciqdOe=

Z
Ge

cin̂ � ðq� � qÞdGe|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
surface

+

Z
Oe

cirqdOe|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
volume

ð16Þ

We should note that the surface integral term is zero
for strong-form CG because q�= q due to continuity.
Once we compute Q, we can then compute the viscous
term via the discretizationZ

Oe

cir � ðmrqÞdOe =

Z
Ge

cin̂ � ðmQ� � mQÞdGe|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
surface

+

Z
Oe

cir � ðmQÞdOe|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
volume

ð17Þ

According to Bassi and Rebay (1997), we use centered
flux17es for both q and Q such that q�= fqg and
Q�= fQg. The mixed form is implemented directly by
first computing the volume integral of the gradient in
equation (16) using Algorithm 2, and then modifying
the result with the surface integral contribution com-
puted using centered fluxes q � = fqg. It is necessary to

Algorithm 7 Laplacian diffusion kernel.

Procedure Laplace Q,rhs,nu
Shared sq,sqr,sqs,sqt all arrays of size of [Nq][Nq][Nq]
Memory fence
for fk; j; i 2 f0 . . . Nqg do . Load field variables into shared memory}

sq[k][j][i] = q
Memory fence
for k; j; i 2 f0 . . . Nqg do

qr = 0; qs = 0; qt = 0; . Compute local gradients in r-s-t
for n 2 f0 . . . Nqg do

qr + = sD[i][n] 3 sq[k][j][n]; . sD are rc at LGL nodes pre-loaded to shared memory.
qs + = sD[j][n] 3 sq[k][n][i];
qt + = sD[k][n] 3 sq[n][j][i];

sqr[k][j][i] = m (G11 3 qr + G12 3 qs + G13 3 qt); . Gs are coeff. of the symmetric JJT matrix
sqs[k][j][i] = m (G12 3 qr + G22 3 qs + G23 3 qt);
sqt[k][j][i] = m (G13 3 qr + G23 3 qs + G33 3 qt);

Memory fence
for k; j; i 2 f0 . . . Nqg do

lapq = 0
for n 2 f0 . . . Nqg do

lapq + = sD[n][i] 3 sqr[k][j][n];
lapq + = sD[n][j] 3 sqs[k][n][i];
lapq + = sD[n][k] 3 sqt[n][j][i];

rhs - = Jinv 3 lapq
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store Q in global memory, unlike the case for CG, and
compute the surface integral using a different kernel,
because data is required from neighboring elements.
This difficulty would have also manifested itself in CG
if we chose to gather–scatter Q, which would require a
separate kernel for similar reasons, and force us to use
the mixed form. The fact that we need this term just for
stabilization, and not, for instance for the implicit solu-
tion of the Poisson problem, gives us some leeway to its
implementation on the GPU for performance reasons.
However, in the CPU version of NUMA we apply the
DSS operator (which requires inter-process communi-
cation) right after computing the gradient Q. The ker-
nel for computing the surface gradient fluxes is similar
to the surface integration kernel discussed in section
5.3.2 — with the only difference being that we use cen-
tered fluxes instead of the upwind-biased Rusanov flux.
Finally, the volume and surface integral contributions
of the viscous term in equation (17) are added to the
RHS vector in the volume and surface kernels, respec-
tively. In the future we will study stabilization of DG
using the Symmetric Interior Penalty Method (SIPG)–
which shares the same volume integration kernel as the
weak-form CG stabilization method.

6 Multi-GPU implementation

The ever increasing need for higher resolution in NWP
implies that such large-scale simulations cannot be run
on a single GPU card due to memory limitations.A
practical solution is to cluster cheap legacy GPU cards
and break down the problem into smaller pieces that
can be handled by a single GPU card; however, this
necessitates communication between GPUs, which is
often a bottleneck of performance. We extend our sin-
gle-GPU implementation of NUMA to a multi-GPU
version using the existing framework for conducting
multi-CPU simulations on distributed memory comput-
ers (see Kelly and Giraldo (2012) for details). The com-
munication between GPUs is done indirectly through
CPUs,which is the reason why we were able to use the
existing MPI infrastructure. We should note that the lat-
est technology in GPU hardware allows for direct com-
munication between GPUs, but the technology is not
yet mature and also the GPU cards are more expensive.

6.1 Multi-GPU parallelization of EBG methods

The goal of parallelizing NUMA to distributed mem-
ory CPU clusters has already been achieved in Kelly
and Giraldo (2012), in which linear scalability of up to
10s of thousands of CPUs was demonstrated. More
recently the scalability of the implementation was
tested on the Mira supercomputer, located at the
Argonne National Laboratory, using 3.1 million MPI
ranks (Müller et al., 2016). NUMA achieved linear

scalability for both explicit and 1D IMEX time integra-
tion schemes in global numerical weather prediction
problems. The current work extends the capability of
NUMA to multi-GPU clusters, which are known to
deliver much more floating point operations per second
(FLOPS/s) than multi-CPU clusters. In the following
sections, we describe the parallel grid generation and
partitioning, multi-GPU CG and DG implementations.

6.1.1 Parallel grid generation. The grid generation and
partitioning stages are done on the CPU and then geo-
metric data is copied to the GPU once at startup. The
reason for this choice is mainly a lack of robust parallel
grid generator software with a capability of Adaptive
Mesh Refinement (AMR) on the GPU. Originally
NUMA used a local grid generation code and the
METIS graph partitioning library for domain decom-
position; however, the need for parallel grid generation
and parallel visualization output processing was
exposed while conducting tests on the Mira supercom-
puter. Even though a parallel version of METIS
(ParMETIS) exists, we chose to adopt the parallel hex-
ahedral grid generation and partitioning software p4est
(Burstedde et al., 2011) mainly because of the latter’s
capability of parallel AMR.In static AMR mode, p4est
is in effect a parallel grid generator. Dynamic AMR
requires copying geometric data to the GPU more than
once, i.e. whenever AMR is conducted. For this reason,
recomputing all geometric data on-the-fly on the GPU
could potentially improve performance. ParMETIS is a
graph partitioning software and as such is not capable
of mesh refinements.

6.1.2 Multi-GPU CG. The coupling between subdomains
in the CG spatial discretization is achieved by the DSS
operator, which imposes C0 continuity of solutions at
element interfaces. The DSS operator is applied both
to the mass matrix and the RHS vector. Therefore, a
multi-GPU implementation of CG requires communi-
cation between GPUs only for applying DSS; in fact,
we require GPU kernels for applying DSS only on the
RHS vector because the construction of the mass
matrix is done on the CPU. However, to apply DSS on
the RHS vector, we need several kernels. Algorithm 8

Algorithm 8 DSS on the GPU for the RHS vector.

Procedure DSS RHS
Gather RHS . See Algorithm 6 for details
Copy boundary data to contiguous block of global memory
Copy boundary data to CPU
CPUs communicate and form the global RHS
CPUs copy the assembled RHS back to the GPU
for all neighbors do . To avoid conflict in RHS update

Boundary data is used to update the RHS vector
Scatter RHS . See Algorithm 6 for details

Abdi et al. 13



outlines the steps required for applying DSS in a multi-
GPU CG implementation. First, we need a kernel to
do the intra-GPU gather operation on the RHS vector.
Then, the values at inter-GPU boundaries are copied
to a contiguous block of GPU global memory, after
which the data is copied to the CPU. CPUs, then, com-
municate the boundary data to construct the global
RHS using the existing MPI infrastructure in NUMA.
Once the CPUs complete the DSS operation, the CPUs
copy the boundary data back to the GPU global mem-
ory. Contribution from neighboring processors are pro-
cessed one-by-one to update the RHS vector; without
this ‘coloring’ of neighboring processors, conflicts in
RHS updates can occur at shared edges and corner
nodes of elements. The last stage does the intra-GPU
scatter operation of DSS.

6.1.3 Multi-GPU DG. The coupling between subdomains
in the DG spatial discretization is achieved by the defi-
nition of the numerical flux at shared boundaries. DG
lends itself to a simple computation–communication
overlap; though CG can benefit from computation–
communication overlap as well, it requires more effort
to do so (Deville et al., 2002). Overlapping is especially
important in a multi-GPU implementation to hide the
latency associated with the data transfer between the
CPU and GPU. Inter-processor flux calculation
requires values from the left and right elements sharing
a face; however, intra-processor flux calculation and
computation of volume integrals can proceed while the
necessary communication for computing inter-
processor flux is going on. Algorithm 9 shows an out-
line of a multi-GPU DG implementation with
communication–computation overlap. The latest tech-
nology in GPUs allows for copying data asynchro-
nously using streams. We overlap computation and
communication using two streams designated for each.

The copying of data to and from the GPU is carried
out on the copy stream (COPY), all computations on
the GPU are done on the computation stream
(COMP), and MPI communications between CPUs are
on the host stream (HOST). A wait statement invoked
on any device stream blocks the host thread until all
operations on that stream come to completion. Even
though we do not show it for the sake of simplicity, the
communication of rq for the LDG stabilization
method is also done similarly.

7 Performance tests

7.1 Speedup results

First, we present speedup results for the GPU imple-
mentation of NUMA against the base Fortran code.3

In Table 3, the time to solution of three test case-
s,solved using explicit DG, is presented. This informa-
tion is useful to get a rough estimate of the performance
per dollar of NUMA on different GPU cards. The spe-
cification, peak single and DP GFLOPS/s and band-
width in GB/s,for the different types of GPU cards
used in this work are given in Table 4. The Error
Correcting Code (ECC) feature in these NVIDIA
GPUs is disabled for all performance tests.

We will present the details of the test cases later in
section 8; here we give the workload of each problem:

1. 2D Rising-thermal bubble: 100 elements with poly-
nomial order 7, for a total of 51,200 nodes;

2. 3D Rising-thermal bubble: 1000 elements with
polynomial order 5, for a total of 216,000 nodes;

3. acoustic wave on the sphere: 1800 elements with
polynomial order 4, for a total of 225,000 nodes.

where nodes, here, denote the number of gridpoints in
the mesh. We obtained two orders of magnitude speed-
ups on the newer GPU cards, GTX Titan Black and
K20X, over a single-core Intel and AMD CPUs,
respectively. The speedup on the relatively older Tesla
C2070 GPU card is a modest 503 for SP arithmetic,
which may make it competitive in terms of the perfor-
mance per dollar comparisons.

Next, we present performance tests on the Titan
supercomputer located at the Oak Ridge National
Laboratory, where each node is equipped with a K20X
GPU card and a 16-core 2.2, GHz AMD Opteron
6274 CPU. The speedup results are reported relative to
the base Fortran code using all 16 cores of the CPU.
We will examine the different kernel design and para-
meter choices we made in section 5 using the 2D rising
thermal bubble benchmark problem.

The problem size is increased progressively from
10 3 10= 100 elements until we fill up all the memory
available on the device at 160 3 160= 25; 600 elements.
The first test result, presented in Table 5, evaluates the

Algorithm 9 Asynchronous Multi-GPU DG.

Procedure Asynch_DG_Comm
[COMP] Pack boundary data to a contiguous block of global
memory
[COMP] Wait
[COPY] Start copying boundary data asynchronously from
GPU to CPU
[COMP] Start computing volume integrals and intra-
processor flux
[COPY] Wait
[HOST] Send boundary data to neighboring processors
asynchronously
[HOST] MPI_waitall
[COPY] Start copying boundary data asynchronously from
CPU to GPU
[COPY] Wait
[COMP] Compute inter-processor flux

14 The International Journal of High Performance Computing Applications



performance of the cube volume kernel at low-order
polynomials using both OpenCL and CUDA transla-
tions of the native OCCA code. Although NVIDIA
hardware includes interfaces for both OpenCL and
CUDA, we obtained better performance with CUDA
kernels on this particular hardware. Also, we observe
markedly better speedups at polynomial orders 4 and 7
compared to other polynomial orders. The reason for

Table 3 Speedup comparison between CPU and GPU for both SP and DP calculations. The test is conducted on three types of GPU
cards: an old Tesla C2070 and two newer cards GTX Titan Black and K20X GPUs. The time to solution is given in seconds for the
CPU/GPU along with relative speedup. Two orders of magnitude performance improvement is obtained relative to a single-core CPU
with the newer cards.

Test case Double precision Single precision

CPU GPU Speedup CPU GPU Speedup

Tesla C2070 GPU vs One core of Intel Xeon E5645

2D rtb 930.1 27.8 33.4 612.3 13.4 45.6
3D rtb 4408.9 141.9 31.1 3097.0 54.5 56.8
Acoustic wave 3438.8 96.7 35.6 2379.9 44.4 53.6

GTX Titan Black GPU vs One core of Intel Xeon E5645

2D rtb 930.1 8.87 104.9 612.3 4.67 131.0
3D rtb 4408.9 41.47 106.3 3097.0 18.68 165.8
Acoustic wave 3438.8 26.72 128.7 2379.9 15.56

K20X GPU vs 16-cores of 2.2,GHz AMD Opteron 6274

2D rtb 103.17 13.97 7.38 77.75 6.89 11.28
3D rtb 434.36 61.14 7.10 339.61 28.12 12.08
Acoustic wave 166.06 21.10 7.87 132.46 11.24 11.78

Table 4. Specs of the NVIDIA GPU cards used in this work.

GPU SP TFLOPS/s DP TFLOPS/s GB/s

Tesla C2070 1.03 0.52 144
Tesla K20c 3.52 1.17 208
Tesla K20X 3.95 1.31 225
GTX Titan Black 5.12 1.71 336

Table 5. OpenCL vs CUDA: Speedup comparison between CPU and GPU for DP calculations at different numbers of elements
and polynomial orders using OpenCL and CUDA translation of the native OCCA kernel code. The GPU card is K20X and the CPU
is a 16-core 2.2,GHz AMD Opteron 6274. The timing (in s) and speedup are given first for OpenCL and then for CUDA. The results
show CUDA compiled kernels are optimized better. Also polynomial orders 4 and 7 give better speedup numbers in all cases.

N 10310= 100 elements 30330= 900 elements 40340= 1600 elements

CPU GPU Speedup CPU GPU Speedup CPU GPU Speedup

2 1.46 0.59/0.52 2.47/2.81 10.62 2.57/2.17 4.13/4.90 18.83 4.34/3.70 4.34/5.09
3 2.68 0.69/0.59 3.88/4.54 22.01 3.56/3.06 6.18/7.19 41.53 5.84/5.04 7.11/8.24
4 5.30 0.97/0.86 5.46/6.16 46.45 5.50/5.12 8.45/9.07 81.91 9.27/8.69 8.84/9.43
5 8.12 1.47/1.37 5.52/5.93 77.03 10.53/9.88 7.32/7.80 137.49 18.33/17.11 7.50/8.04
6 13.89 2.27/2.11 6.11/6.58 122.27 17.24/16.11 7.09/7.59 210.35 30.15/28.15 6.98/7.47
7 20.49 2.68/2.41 7.64/8.50 195.61 20.82/18.87 9.40/10.37 343.74 36.36/33.05 9.45/10.40

N 80380= 6400 elements 1203120= 14; 400 elements 1603160= 25; 600 elements

CPU GPU Speedup CPU GPU Speedup CPU GPU Speedup

2 80.72 15.71/13.33 5.14/6.05 184.19 33.47/27.82 5.50/6.62 336.19 61.56/52.01 5.46/6.46
3 179.07 21.46/18.46 8.34/9.70 405.15 47.63/41.08 8.51/9.86 729.17 84.40/72.61 8.64/10.04
4 350.54 35.01/32.71 10.01/10.71 798.50 77.85/72.77 10.26/10.97 1392.60 138.64/129.64 10.04/10.74
5 587.17 71.90/67.03 8.17/8.76 1329.79 161.42/150.56 8.24/8.83 2352.46 286.74/267.48 8.20/8.79
6 925.25 118.81/110.92 7.79/8.34 2086.84 267.12/249.50 7.82/8.36 - - -
7 1406.61 142.67/130.16 9.86/10.81 3158.43 320.77/293.05 9.84/10.78 - - -
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the good performance at polynomial order 7 is due to
the thread block size of ð7+ 1Þ3 = 512 that perfectly
fits the hardware block size. Polynomial order 4 gives a
thread block size of 125, which is only slightly less than
128. Therefore, this observation emphasizes the impor-
tance of selecting parameters to get optimum block
dimensions that are multiples of the warp size.

GPUs are known to deliver higher performance
using SP arithmetic than DP. For instance, the SP peak
performance of a K20X GPU is 33 more than its DP
peak performance.In Table 6, we present the speedup
results comparing SP and DP performance. We obtain
a maximum speedup of about 153 and 113 using SP
and DP calculations, respectively. The reason for the
different speedup numbers for SP and DP is that
NUMA running on the CPU is able to achieve a
speedup of only 1.53 using SP, while the GPU perfor-
mance more than doubles using SP.

For low-order polynomials, we can process two or
more elements per block to get an optimal block size.
Table 7 shows the performance comparison of this
scheme using one and two elements per block. We can
see that the performance is significantly improved by
processing two elements per block for up to polynomial
order five; the block size, when processing two elements
per block, exceeds the hardware limit at polynomial
orders above five. The 100 elements simulation is not
able to see any benefit from this approach because the
device will not be fully occupied when processing two
elements per block. All the other runs show significant
benefits from processing two elements per block, except
at polynomial order four — for which performance
remains more or less the same. We mentioned earlier
that polynomial order four gives a block size that is
close to optimal, hence, there is really no need to pro-
cess more than one element per block for this particular
configuration.

We mentioned in section 5 that using vector data-
type float4 to store field variables may help to improve
performance because one load operation is issued when
fetching a float4 data instead of four. Table 8 compares
the speedup obtained using float1 and float4 versions
of the volume kernel. The float4 version performs bet-
ter in most of the cases; here, again, the performance at
polynomial order four is more or less the same.

We discussed in section 5 different ways to handle
the problem with hardware limitations for high-order
polynomial approximations. Thread block size and
shared memory hardware limits allow us to use the vol-
ume kernel we tested so far up to polynomial order
seven. First, we compare the performance of the four
ways to use shared and L1 cache memory; namely, the
naı̈ve, Shared-1, Shared-2 and two-pass (horizontal +
vertical) methods. Figure 3 shows that the two-pass
method performs the best — about two times better
than the naı̈ve approach, which does not use shared

memory but totally relies on L1 cache. The Shared-1
and Shared-2 methods perform similarly; this implies
that the Shared-2 approach suggested in Micikevicius
(2009) is not working as expected. Even though we try
to store the data in the vertical direction in registers,
most of it spills to global thread private memory.
Because the polynomial order is high and we are load-
ing all field data (eight floats) to registers, the register
pressure is too high for the method to show any benefit.

In Table 9, we present the performance of the high-
order volume kernel that uses the two-pass method for
polynomial orders 8 to 15. It is not possible to solve
bigger size problems than 40 3 40 elements with poly-
nomial order 15 on this GPU because of the limited
memory of 6 GB per card. We get a maximum speedup
of about 93 at higher order polynomials, which is
slightly less than the 113 performance we obtained at
low-order polynomials; this is understandable because
the two-pass method loads data twice and performs
calculations twice as well.

7.2 Individual kernel performance tests

To evaluate the performance of individual kernels, we
measure the rate of floating point operations in
GFLOPS/s and data transfer rate (bandwidth) in GB/s.
Many GPU applications tend to be memory-bound,
hence bandwidth is as important a metric as the rate of
floating point operations.The results obtained will
guide us how to go about optimizing kernel perfor-
mance by classifying them as either compute-bound or
memory-bound. A convenient visualization is the roof-
line model (Williams et al.,2009), which sets an upper
bound on kernel performance based on peak GFLOPS/
s and GB/s of the device.We use two approaches to

Figure 3. Comparison of different ways of exploiting the fast
L1 cache and Shared memory in the volume kernel. The
speedups obtained in DP arithmetic are reported relative to the
naı̈ve approach. The two-pass method performs the best due to
better use of shared memory. The GPU card is K20X and the
CPU is a 16-core 2.2, GHz AMD Opteron 6274.
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determine the GFLOPS/s and GB/s: hand-counting the
number of floating point operations and bytes loaded
to get an estimate of the arithmetic throughput and
bandwidth, and using a profiler to get the effective
values.

The first results, shown in Figures 4a–4d, are pro-
duced by hand-counting the number of FLOPS and
bytes loaded from global memory per kernel execution.
This would be enough to calculate the arithmetic inten-
sity (GFLOPS/GB) and determine whether a kernel
would be memory- or compute- bound; however, we
need to conduct actual simulations to determine kernel
execution time and, thus, the efficiency of our kernels

in terms of GFLOPS/s and GB/s. The roofline plots
show that our efficiency increases with problem size
and reaches about 80% for the volume and surface ker-
nels, while 100% efficiency is observed for the update
and project kernels. These tests are conducted on the
isentropic vortex problem (see section 8.1), which con-
cerns advection of a vortex by a constant velocity. The
GPU is a Tesla K20c GPU card.

The highest rate of floating point operations
observed in any of the CG or DG kernels is about 320,
GFLOPS/s for the horizontal volume kernel at N = 10

using SP arithmetic. The vertical volume kernel is a
close second, but the surface and update kernels lag far

Table 7. Multiple elements per block: The performance of the cube volume kernel can be improved by processing more than one
element in a thread block simultaneously. The GPU times and speedups are given first for the one- element-per-block and then for
the two-elements-per-block approaches. Improvement in performance is observed using two-elements-per-block in all the cases
except for the 10 3 10 elements case, which does not fully occupy the GPU device when processing two-elements-per-block. The
GPU card is K20X and the CPU is a 16-core 2.2,GHz AMD Opteron 6274.

N 10310= 100 elements 30330= 900 elements 40340= 1600 elements

CPU GPU Speedup CPU GPU Speedup CPU GPU Speedup

2 1.46 0.52/0.57 2.81/2.56 10.62 2.17/1.81 4.90/5.87 18.83 3.70/2.85 5.09/6.61
3 2.68 0.59/0.61 4.54/4.39 22.01 3.06/2.93 7.19/7.51 41.53 5.04/4.74 8.24/8.76
4 5.30 0.86/0.92 6.16/5.76 46.45 5.12/5.74 9.07/8.09 81.91 8.69/9.81 9.43/8.35
5 8.12 1.37/1.37 5.93/5.92 77.03 9.88/9.68 7.80/7.96 137.49 17.11/16.72 8.04/8.22

N 80380= 6400 elements 1203120= 14; 400 elements 1603160= 25; 600 elements

CPU GPU Speedup CPU GPU Speedup CPU GPU Speedup

2 80.72 13.33/9.96 6.05/8.10 184.19 27.82/21.10 6.62/8.73 336.19 52.01/38.09 6.46/8.83
3 179.07 18.46/17.5 9.70/10.23 405.15 41.08/38.51 9.86/10.52 729.17 72.61/67.62 10.04/10.78
4 350.54 32.71/37.15 10.71/9.43 798.50 72.77/82.93 10.97/9.63 1392.60 129.64/147.61 10.74/9.43
5 587.17 67.03/65.2 8.76/9.00 1329.79 150.56/146.67 8.83/9.07 2352.46 267.48/260.89 8.79/9.02

Table 8. float1 vs float4: Theeffect of using float4 for computing the gradientin the volume kernel is compared against the version of
the volume kernel where one field variable is loaded. The CPU/GPU time and speedups are given first for float1 and then for float4.
Some improvement is observed in most cases except when using polynomial order four, which results in a good thread block size.
The GPU card is K20X and the CPU is a 16-core 2.2,GHz AMD Opteron 6274.

N 10310= 100 elements 30330= 900 elements 40340= 1600 elements

CPU GPU Speedup CPU GPU Speedup CPU GPU Speedup

2 1.46 0.52/0.47 2.81/3.11 10.62 2.17/2.06 4.90/5.15 18.83 3.70/3.33 5.09/5.65
3 2.68 0.59/0.57 4.54/4.70 22.01 3.06/3.10 7.19/7.10 41.53 5.04/5.14 8.24/8.08
4 5.30 0.86/0.82 6.16/6.46 46.45 5.12/5.10 9.07/9.11 81.91 8.69/8.69 9.43/9.43
5 8.12 1.37/1.27 5.93/6.39 77.03 9.88/9.38 7.80/8.21 137.49 17.11/16.29 8.04/8.44
6 13.89 2.11/1.93 6.58/7.19 122.27 16.11/14.86 7.59/8.23 210.35 28.15/26.06 7.47/8.07

N 80380= 6400 elements 1203120= 14; 400 elements 1603160= 25; 600 elements

CPU GPU Speedup CPU GPU Speedup CPU GPU Speedup

2 80.72 13.33/12.00 6.05/6.73 184.19 27.82/26.50 6.62/6.95 336.19 52.01/46.85 6.46/7.18
3 179.07 18.46/18.99 9.70/9.43 405.15 41.08/42.66 9.86/9.50 729.17 72.61/74.93 10.04/9.73
4 350.54 32.71/32.88 10.71/10.66 798.50 72.77/73.00 10.97/10.94 1392.60 129.64/129.72 10.74/10.74
5 587.17 67.03/64.12 8.76/9.16 1329.79 150.56/144.01 8.83/9.23 2352.46 267.48/256.62 8.79/9.17
6 925.25 110.92/102.85 8.34/9.00 2086.84 249.50/222.08 8.36/9.40 - - -
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behind in terms of GFLOPS/s performed. The update
kernel, which does the explicit RK time integration,
shows the highest bandwidth performance at about
208 GB/s, which is in fact the peak memory bandwidth
of the device. The project kernel, which does the
scatter–gather operation of CG, comes in a close sec-
ond. The volume and surface kernels, though they have
the highest arithmetic intensity, lag behind in terms of
bandwidth performance. Therefore, no single kernel
exhibits best performance in terms of both GFLOPS/s
and bandwidth.

The roofline plots expose that the arithmetic inten-
sity (GFLOPS/GB) of the update kernel, project kernel
and surface kernel do not change with polynomial
order. When extrapolated, all three vertical lines hit the
diagonal of the roofline, confirming the fact that these
kernels are memory-bound. The arithmetic intensity of
the volume kernels increases with polynomial order,
complicating the classification to either compute- or
memory-bound; however, with polynomial degree up
to 11, the kernels are still well within the memory-
bound region.

The second group of kernel performance tests,
shown in Figure 5a–5d, were conducted using a GTX
Titan Black GPU. For these tests we used nvprof, to
determine the effective arthimetic throughput and
memory bandwidth. As a result, the plots obtained
from this test are less smooth than the previous plots,
which were produced by hand-counting the FLOPS
and GB of kernels. Moreover, here we use the cube vol-
ume kernels instead of the split horizontal + vertical
kernels. We also changed the test case to a 2D rising
thermal bubble problem, which requires numerical sta-
bilization, to invoke the diffusion kernel. The highest
GFLOPS/s observed in this test was 700 GFLOPS/s
for the volume kernel using SP. To compare perfor-
mance with the previous tests that were produced using
a different GPU, we look at the roofline plots instead.
We expect the roofline plot for the combined volume

kernel to lean more towards the compute-bound region
because more floating point operations are done per
byte of data loaded. Indeed this turns out to be the case
even though the cube volume kernels were run up to a
maximum polynomial order of eight. The diffusion ker-
nels, used for computing the Laplacian, also show simi-
lar performance characteristics to the volume kernels.

7.3 Scalability test

The scalability of the multi-GPU implementation was
tested on a GPU cluster, namely, the Titan supercom-
puter, which has 18,688 NVIDIA Tesla K20X GPU
accelerators. We conduct a weak scalability test, where
each GPU gets the same workload, using the 2D rising
thermal bubble problem discussed in section 8.2, using
900 elements per GPU with polynomial order 7 in all
directions. In a weak scaling test, the time to solution
should, ideally, stay constant as the workload is
increased; however, delays are introduced due to the
need for communication between GPUs.The scalability
result in Figure 6 shows that the GPU version of
NUMA is able to achieve 90% scaling efficiency on
tens of thousands of GPUs. Different implementations
of the unified CG/DG algorithms are tested, among
which, DG with overlapping of computation and com-
munication to hide latency performed the best. Our
current CG implementation does not overlap commu-
nication with computation and, as a result, its scalabil-
ity suffers.

The 900 element grid per GPU used for producing
the scalability plot is far from filling up the GPU mem-
ory, hence, the scalability could be improved by
increasing the problem size further. We compare scal-
ability up to 64 GPUs, which is the point where the
efficiency of the parallel implementation flattens out,
for different number of elements in Figure 8. The scal-
ability increases by more than 20% going from a 100
to 900 elements grid per GPU.

Table 9. Higher order polynomials: The performance of the two-pass method, with horizontal + vertical split, is evaluated at
higher order polynomials in DP calculations. This kernel performs slower than the cube volume kernel when used for low-order
polynomials, but it is the best performing version among the volume kernels we considered for high order. The GPU card is K20X
and the CPU is a 16-core 2.2,GHz AMD Opteron 6274.

N 10310= 100 elements 30330= 900 elements 40340= 1600 elements

CPU GPU Speedup CPU GPU Speedup CPU GPU Speedup

8 31.17 4.77 6.53 271.50 33.19 8.18 492.23 58.17 8.46
9 43.21 5.90 7.32 373.63 44.52 8.39 666.37 77.84 8.56
10 59.89 7.14 8.38 493.54 55.02 8.97 909.75 96.49 9.42
11 79.86 9.61 8.31 691.65 75.52 9.15 1199.67 132.28 9.07
12 103.64 13.40 7.73 923.22 107.44 8.59 1713.01 190.06 9.01
13 131.74 16.89 7.80 1140.64 138.13 8.25 2009.99 243.28 8.26
14 169.49 23.52 7.20 1468.72 195.32 7.52 2568.77 340.99 7.53
15 220.91 28.36 7.79 1862.14 233.06 7.99 3352.22 410.42 8.17
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In operational NWP, strong scaling on multi-GPU
systems may be as important as weak scaling because
of limits placed on the simulation time to make a day’s

weather forecast. For this reason, we also conducted
strong scaling tests, shown in Figure 7, on a global
scale simulation problem described in section 8.5. Our

Figure 4. Performance of individual kernels: The efficiency of our kernels was tested on a mini-app developed for this purpose.The
FLOPS and bytes for this test are counted manually. The volume kernel, which is split into two (horizontal + vertical), has the
highest rate of FLOPS/s. The timestep update kernel has the highest bandwidth usage at 208, GB/s.The SP and DP performance of
the main kernels in CG and DG are shown in terms of GFLOPS/s, GB/s and roofline plots to illustrate their efficiency. The GPU is a
Tesla K20c. (a) SP-CG kernels performance. (b) DP-CG kernels performance. (c) SP-DG kernels performance. (d) DP-DG kernels
performance.
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goal here was to determine the number of GPUs
required for a given simulation time limit for different
resolutions, namely, coarse grids of 13 km and 10 km

resolutions and a finer grid with 3 km resolution. The
grids are cubed spheres with 6 3 112 3 112 3 4,
6 3 144 3 144 3 4, and 6 3 448 3 448 3 4

Figure 5. Performance of individual kernels: The efficiency of our kernels was tested after being incorporated to the base NUMA
code. The measurements for this test were done using nvprof: effective memory bandwidth = dram_read_throughput+
draw_write_throughput, and effective arithmetic throughput = flop_dp/sp_efficiency. The SP and DP performance of the main kernels in
CG and DG are shown in terms of GFLOPS/s, GB/s and roofline plots to illustrate their efficiency. The GPU is a GTX Titan Black.
(a) SP-CG kernels performance. (b) DP-CG kernels performance. (c) SP-DG kernels performance. (d) DP-DG kernels performance.
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elements4 for the 13 km, 10 km and 3 km resolutions,
respectively, using a polynomial order of N = 7. The
plot shows that about 512, 1024 and 8192,GPUs are
required to bring down the simulation time below
100 min for grid resolutions of 13 km, 10 km and 3
km, respectively. The workload on each GPU card to

meet the 100 min wallclock target was then calculated
to be about 301 kNodes, 248 kNodes, and 301 kNodes
for the 13 km, 10 km and 3 km resolutions, respec-
tively. The 10 km resolution had a smaller kNodes per
GPU because we actually met a lower target of about
85,min at 1024 GPUs. We believe that once we port the
IMEX time integrators to the GPU, we can meet simu-
lation time limits with much fewer GPUs than the 3
million CPU threads required to meet a 4.5 min wall-
clock time limit required using the CPU version of
NUMA (see Müller et al. (2016) for details).

8 Validation with benchmark problems

The GPU implementation of our Euler solver was vali-
dated using a suite of bench mark problems showcasing
various characteristics of atmospheric dynamics. We
consider problems of different scale: cloud-resolving
(microscale), limited area (mesoscale) and global scale
atmospheric problems. Most of these test cases do not
have analytical solutions against which comparisons
can be made. For this reason, we first consider a rather
simple test case of advection of a vortex by a uniform
velocity, which has an analytical solution that will allow
us to compute the exact L2 error and establish the accu-
racy of our numerical model. The rest of the test cases
serve as a demonstration of its application to practical
atmospheric simulation problems.

8.1 2D Isentropic vortex problem

We begin verification with a simple test case that has
an exact solution to the Euler equations. The test case

Figure 6. Weak scalability test of multi-GPU implementation
of NUMA: The scalability of NUMA for up to 16,384 GPUs on
the Titan supercomputer is shown. Each node of Titan contains
a Tesla K20X GPU. An efficiency of about 90% is observed
relative to a single GPU. The test was conducted using a unified
implementation of CG and DG. The efficiency of DG was
significantly improved (by about 20%) when overlapping
communication with computation, which helps to hide both the
data copying latency between CPU and GPU and CPU–CPU
communication latency.

Figure 7. Strong scalability tests on a global scale simulation
using grid resolutions of 13 km (6 3 112 3 112 3 4 elements
at N= 7), 10 km (6 3 144 3 144 3 4 elements at N= 7) and
3 km (6 3 448 3 448 3 4 elements at N= 7).The number of
GPUs required to fulfill a target 100 min wallclock time for a
one-day forecast is about 512, 1024 and 8192,GPUs for the 13
km, 10 km, and 3 km resolutions, respectively.

Figure 8. Weak scalability test of the multi-GPU
implementation for different numbers of elements using up to
64 nodes of Titan. The 60 3 60 element grid gives a much
better scalability than the 10 3 10 grid, hence, we expect
better weak scalability results than shown in Figure 6 with bigger
problem sizes.
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involves advective transport of an inviscid isentropic
vortex in free stream flow. The problem is often used to
test the ability of numerical methods to preserve flow
features, such as vortices, in free stream flow for long
durations.However, the problem is linear, and hence
not suitable for testing the coupling of wave motion
and advective transport that are the causes of non-
linearity in the Euler equations.

The free stream conditions are

r= 1; u=U‘; v=V‘; u= u‘

Perturbations are added in such a way that the flow is
isentropic. The initial conditions are

ðu0; v0Þ= b

2p
exp

1� r2

2

� �
ð�y+ yc; x� xcÞ

u= u‘ �
ðg � 1Þb2

8gp2
expð1� r2Þ

where

r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 + ðy� ycÞ2

q
We simulate the isentropic vortex problem on a

[25 m, 5 m] 3 [25 m, 5 m] 3 [20.5 m, 0.5 m] com-
putational domain, with ðxc; yc; zcÞ= ð0; 0; 0Þ, b= 5,

U‘ = 1 m=s, V‘ = 1 m=s and u‘ = 1. The domain is
subdivided into 22 3 22 3 2 elements with a polyno-
mial order of N = 7 in all directions for a total of about
0.5,million nodes. The simulation is run for 10 s with a
constant timestep of Dt= 0:001 s using the modified
RK time integration scheme discussed in section 4. We
anticipate the vortex to move along the diagonal at a
constant velocity while maintaining its shape. This is
indeed what is obtained, as shown in Figure 9.

To evaluate the accuracy of the numerical model, we
compute the L2 norm of the error q� q‘ over the
domain Oe, i.e. jjq� q‘jjL2ðOeÞ, for both SP and DP
arithmetic, where q‘ is the exact solution.

The DP run takes about 267 s to complete while the
SP run takes 161 s; however, the maximum error associ-
ated with the SP calculations is much larger, as shown in
Figure 9e. Therefore, if this reduction in accuracy is
acceptable for a certain application, then using SP arith-
metic on the GPU is recommended.For this particular
problem, DG gives a lower maximum error than CG in
both the SP and DP calculations. The L2-error of density
decreases with increasing polynomial order as shown in
Figure 9e; the per-second L2-error also shows the same
behavior, affirming the fact that higher order polyno-
mials require less work per degree of freedom. N = 11 is
the maximum polynomial order that we were able to
run before we run out of global memory on the GPU.

Figure 9. Isentropic vortex: A plot of density ðrÞ of the vortex at different times shows that the vortex, traveling at a speed of
1 m/s, reaches the expected grid locations at all times. The density distribution within the vortex is maintained as shown in Figure
9d. A grid of 22 3 22 3 2 elements with a 7th degree polynomial is used. (a) t= 0; s. (b) t= 2; s. (c) t= 4; s. (d) Density along
diagonal. (e) L2 error norm of density.
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8.2 2D Rising thermal bubble

A popular benchmark problem in the study of non-
hydrostatic atmospheric models is the 2D rising ther-
mal bubble problem, first proposed in Robert (1993).
The test case concerns the evolution of a warm bubble
in a neutrally stratified atmosphere of constant poten-
tial temperature u0. The bubble is lighter than the sur-
rounding air, hence, it rises while deforming due to the
shear induced by the uneven distribution of tempera-
ture within the bubble. This deformation results in a
mushroom-like cloud. The initial conditions for this
test case are in hydrostatic balance in which pressure
decreases with height as

p= p0 1� gz

cpu0

� �cp=R

The potential temperature perturbation isgiven by

u0=
0 for r.rc
uc

2
ð1+ cosðpr

rc
ÞÞ for r	 rc

�
ð18Þ

where

r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 + ðz� zcÞ2

q
The parameters for the problem are similar to that

found in Giraldo and Restelli (2008) and Ullrich and
Jablonowski (2012): a domain of size [0 m, 1000 m]

3 [0,m, 100 m] 3 [0 m, 1000 m], with ðxc; zcÞ=
500 m; 350 mð Þ, rc = 250 m, and uc = 0:5; K,

u0 = 300; K and an artificial viscosity of m= 0:8; m2s
for stabilization. The domain is subdivided into
10 3 1 3 10 elements with polynomial order N = 6

set in all directions for a total of about 180k nodes.
The grid resolution is about 25,m therefore this prob-
lem can be considered as cloud resolving. An inviscid
wall boundary condition is used on all sides.

The simulation is run for 1000 s using the explicit
RK time integration method discussed in section 4 with
aconstant timestep of Dt= 0:02 s. The status of the
bubble at different times is shown in Figure 10. The
results agree with those reported in Giraldo and Restelli
(2008). Most importantly, the results are identical with
those obtained using the CPU version of NUMA, even
though those are not shown here. We should mention
here that matching the CPU version of NUMA up to
machine precision (e.g. 10�15) has been an important
goal in the development of the GPU code.

8.3 2D Colliding thermal bubbles

Next, we consider the case of colliding thermal bubbles
proposed in Robert (1993). The shape of the rising
warm bubble is now affected by the presence of a
smaller sinking cold bubble on the RHS. This destroys
the symmetry of the rising bubble. We should note here
that the rising thermal bubble problem in section 8.2

Figure 10. Potential temperature perturbation u0ðKÞ contour plot for the2D rising thermal bubble problemrun with CG and an
artificial viscosity of m= 1:5 m2s for stabilization. Results are shown at (a) t= 0, (b) 300, (c) 500, (d) 600, (e) 700 and (f) 900 s. A
grid of 10 3 1 3 10 elements with 6th degree polynomials is used.
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could have been solved considering only half of the
domain because of symmetry, which is not the case
here. Also, the potential temperature perturbation u0 is
specified differently for this problem. Within a certain
radius rc, the perturbation is a constant uc; outside of
this inner domain, it is defined by a Gaussian profile as

u0=
uc for r	 rc

uc exp½�ððr � aÞ=sÞ2� for r.rc

�

The warm bubble is centered at ðxc; zcÞ=
ð500 m; 300 mÞ, with a perturbation potential tempera-
ture amplitude of uc = 0:5, radius a= 150 m and
s= 50 m. The initial conditions for the cold bubble
are: ðxc; zcÞ= ð560 m; 640 mÞ, m= 0:8 m2s, uc = 0:5,
a= 0;m and s= 50 m.

The result of the simulation is shown in Figure 11,
which confirms the fact that the rising bubble indeed
loses its symmetry. The edge of the rising bubble
becomes sharper in some places from 600,s onwards.
Qualitative comparison with the results shown in
Robert (1993) and Yelash et al. (2014) show similar
large-scale patterns, while small-scale patterns differ
depending on the grid resolution used. Here, again the
results of the CPU NUMA code are identical with the
GPU version.

8.4 Density current

The density current benchmark problem, first proposed
in Straka et al. (1993), concerns the evolution of a cold

bubble in a neutrally stratified atmosphere of constant
potential temperature u0. The dimensions of this test
case are in the range of typical mesoscale models in
which hydrostatic assumptions are valid. Because the
bubble is colder than the surrounding air, it sinks and
hits the ground, then moves along the surface while
forming shearing currents, which then generate Kelvin–
Helmholtz rotors. The numerical solution of this prob-
lem using high-order methods often requires the use of
artificial viscosity or other methods for stabilization.
We use a viscosity of m= 75 m2s according to Straka
et al. (1993).

The problem setup issimilar to that of the rising
thermal bubble test case with the following differen-
ces:a cold bubble with uc = � 15 K in equation (18), a
domain of Oe = ½0; 25600 m�3 ½0;‘�½0; 6400 m�, ellip-
soidal bubble with radii of ðrx; rzÞ= ð4000 m; 2000 mÞ
and centered at ðxc; zcÞ= ð0; 3000 mÞ. The problem is
symmetric, therefore, we only need to simulate half of
the domain. The computational domain is subdivided
into 128 3 1 3 32 elements with polynomial order of
N = 4 set in all directions. With this set of choices, the
effective resolution of our model is 50,m. Inviscid wall
boundary conditions are used at all sides.

Figure 12 shows the evolution of potential tempera-
ture of the bubble up to 900 s. The vortical structures
formed at t = 900 s, namely three Kelvin–Helmholtz
instability rotors, are similar to that shown in Straka
et al. (1993) and Ullrich and Jablonowski (2012). The
first rotor is formed near the leading edge of the density
current at 300 s, then the second rotor develops at the

Figure 11. Colliding thermal bubbles. Evolution of potential temperature perturbation u0ðKÞ run with CG and an artificial viscosity
of m= 1:5 m2s for stabilization. Results are shown at (a) t= 0, (b) 300, (c) 500, (d) 600, (e) 700 and (f) 900,s. A grid of
10 3 1 3 10 elements with 6th degree polynomials is used.
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front of the density current around 600 s. Here again
the GPU code matched results obtained using
NUMA’s CPU code, which has already been verified
with many other atmospheric benchmark problems.

8.5 Acoustic wave

To validate the GPU implementation for global scale
simulations on the sphere, we consider a test case of an
acoustic wave traveling around the globe first described
in Tomita and Satoh (2005). Several issues emerge that
did not arise in the previous test cases. This test case
validates 3D capabilities, curved geometry, metric
terms, and a non-constant gravity vector. The initial
state for this problem is hydrostatically balanced with
an isothermal background potential temperature of
u0 = 300 K. A perturbation pressure P0 is superim-
posed on the reference pressure

P0= f ðl;fÞgðrÞ

where

f ðl;fÞ=
0 for r.rc

DP
2
ð1+ cosðpr

rc
ÞÞ for r	 rc

(

gðrÞ= sin
nvpr

rT

� �
where DP= 100 Pa, nv = 1, rc = re=3 is one third of the
radius of the earth re = 6371 km and a model altitude
of rT =10 km.The geodesic distance r is calculated as

r = recos
�1½sinf0 sinf+ cosf0 cosf cosðl� l0Þ�

where ðl0;f0Þ is the origin of the acoustic wave.

The grid is a cubed sphere 6 3 10 3 10 3 3 for a
total of 1800 elements with 3rd order polynomials.No-
flux boundary conditions are applied at the bottom
and top surfaces.Visual comparison of plots showing
the location of the wave at different hours, shown in
Figure 13, against results in Tomita and Satoh (2005)
indicate that the results are quite similar to these
results, as well as to those computed with the CPU ver-
sion of NUMA.

The speed of sound is about a=
ffiffiffiffiffiffiffiffiffiffiffi
gp=r

p
=

347:32 m=s with the initial conditions of the problem.
With this speed, the acoustic wave should reach the
antipode in about 16 h. The result from the simulation
indicates the acoustic wave has traveled 20.01 million
meters within this time — which gives an average
sound speed of 347.55 m/s, which is close to the calcu-
lated sound speed (a relative error of less than 1%).

9 Conclusions

In this work, we have ported the NUMA to the GPU
and demonstrated speedups of two orders of magnitude

Figure 12. Density current. Evolution of potential temperature perturbation u0ðKÞ run with CG and an artificial viscosity of
m= 75 m2s for stabilization. Results are shown at (a) t= 0, (b) 300, (c) 600, (d) 700, (e) 800 and (f) 900 s. A grid of 128 3 1 3 32
elements with 4th degree polynomials is used for an effective resolution of 50 m in the x- and z-directions.

Figure 13. Propagation of an acoustic wave. The density
perturbation after (a) 0 h, (b) 4 h and (c) 7 h. A cubed sphere
grid with 6 3 10 3 10 3 3 elements with a 3rd degree
polynomial is used.
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relative to a single-core CPU. Tests on one node of the
Titan supercomputer, consisting of a K20X GPU and a
16-core AMD CPU, yielded speedups of up to 153

and 113 for the GPU relative to the CPU using SP
and DP arithmetic, respectively. This performance is
achieved by exploiting the specialized GPU hardware
using suitable algorithms and optimizing kernels for
performance.

NUMA solves the Euler equations using a unified
continuous and discontinuous Galerkin approach for
spatial discretization and various implicit and explicit
time integration schemes. GPU kernels are written for
different components of the dynamical core, namely,
the volume integration kernel, surface integration ker-
nel, (explicit) time update kernel, kernels for stabiliza-
tion, etc. We use algorithms suitable for the Single
Instruction Multiple Thread (SIMT) architecture of
GPUs to maximize bandwidth usage and rate of float-
ing point operations (FLOPS) of the kernels. Some of
the kernels, for instance the volume integration, turned
out to be high on the FLOPS side, while some others,
such as the explicit time integration kernel, are high on
bandwidth usage. Optimizations of kernels should be
geared towards achieving the maximum attainable effi-
ciency as bounded by the roofline model.

We have also implemented a multi-GPU version of
NUMA using the existing MPI-infrastructure for
multi-core CPUs (Kelly and Giraldo, 2012).
Communication between GPUs is done via CPUs by
first copying the inter-processor data from the GPU to
the CPU. For the discontinuous Galerkin (DG) imple-
mentation, we overlap communication and computa-
tion to hide latency of data copying from the GPU and
communication between CPUs.We then tested the scal-
ability of our multi-GPU implementation using
16,384 GPUs of the Titan supercomputer — the third
fastest supercomputer in the world as of June 2016. We
obtained a weak scaling efficiency of about 90% that
increases with bigger problem size. The CG and DG
methods that do not overlap communication with com-
putation performed about 20% less efficiently, thereby,
highlighting the value of this approach.

For portability to a heterogeneous computing envi-
ronment, we used a novel programming language called
OCCA, which can be cross-compiled to either OpenCL,
CUDA or OpenMP at runtime.Finally, the accuracy
and performance of our GPU implementations were
verified using several benchmark problems representa-
tive of different scales of atmospheric dynamics.

In the current work, we ported only the explicit time
integration modules to the GPU. However, operational
NWP often requires use of IMEX time integration to
counter the limitation imposed by the Courant number.
In the future, we plan to port the IMEX time integra-
tion modules, which require solving a system of equa-
tions at each timestep.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship and/or publication of this
article: This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy (contract number DE-AC05-
00OR22725). The authors gratefully acknowledge support
from the Office of Naval Research (grant number PE-
0602435N).

Notes

1. The gravity vector is constant in mesoscale models,
whereas it varies with location in global scale models.

2. Hyper-diffusion can also be used, but in order to simplify
the exposition, we shall only remark on second-order
diffusion.

3. The base Fortran code is the original CPU code, i.e. the
non-OCCA implementation that we use on the GPUs.

4. On cubed sphere grids, the total number of elements is
denoted as Npanels 3 Nj 3 Nh 3 Nz where Npanels = 6 for
the six panels of the cubed sphere, Nj =Nh and Nz are
the number of elements in both horizontal directions and
the vertical direction, respectively.

References

Abdi DS and Giraldo FX (2016) Efficient construction of uni-
fied continuous and discontinuous Galerkin formulations

for the 3D Euler equations. Journal of Computational Phy-

sics 320: 46–68.
Allard J, Courtecuisse H and Faure F (2011) Implicit FEM

solver on GPU for interactive deformation simulation. In:
Mei W and Hwu W (eds) GPU Computing Gems Jade Edi-

tion. Boston: Elsevier, pp.281–294.
Bassi F and Rebay S (1997) A high-order accurate discontinu-

ous finite element method for the numerical solution of the
compressible Navier–Stokes equations. Journal of Compu-

tational Physics 131: 267–279.
Burstedde C, Wilcox LC and Ghattas O (2011) p4est: Scala-

blealgorithms for parallel adaptive mesh refinement on for-

ests of octrees. SIAM Journal on Scientific Computing 33:
1103–1133.

Carpenter M and Kennedy C (1994) Fourth-order 2N-storage

Runge–Kutta schemes. NASA Technical Memorandum
109112. Hampton: NASA.

Chan J and Warburton T (2015) GPU-accelerated Bernstein–

Bezier discontinuous Galerkin methods for wave prob-
lems. arXiv:1512.06025.

Chan J, Wang Z, Modave A, et al. (2015) GPU-accelerated
discontinuous Galerkin methods on hybrid meshes.

arXiv:1507.02557.
Cockburn B and Shu C (1998) The Runge–Kutta discontinu-

ous Galerkin method for conservation laws V: Multidi-

mensional systems. Journal of Computational Physics 141:
199–224.

Deville M, Fischer P and Mund E (2002) High-Order Methods

for Incompressible Fluid Flow. Cambridge: Cambridge Uni-
versity Press.

Fuhry M, Giuliani A and Krivodonova L (2014) Discontinu-

ous Galerkin methods on graphics processing units for

Abdi et al. 27



nonlinear hyperbolic conservation laws. Numerical Meth-

ods in Fluids 76: 982–1003.
Gandham R, Medina D and Warburton T (2014) GPU accel-

erated discontinuous Galerkin methods for shallow water

equations. arXiv:1403.1661.
Giraldo FX (1998) The Lagrange–Galerkin spectral element

method on unstructured quadrilateral grids. Journal of

Computational Physics 147: 114–146.
Giraldo FX and Restelli M (2008) A study of spectral element

and discontinuous Galerkin methods for the Navier–

Stokes equations in nonhydrostatic mesoscale atmospheric

modeling: Equation sets and test cases. Journal of Compu-

tational Physics 227: 3849–3877.
Giraldo FX and Rosmond TE (2004) A scalable spectral ele-

ment Eulerian atmospheric model (SEE-AM) for NWP:

Dynamical core tests. Monthly Weather Review 132:

133–153.
Goddeke D, Strzodka R and Turek S (2005, September)

Accelerating double precision FEM simulations with
GPUs. In: Proceedings of ASIM eighteenth symposium on

simulation technique, Montreal, Canada, 10–13 October

2005, pp: 139–144.
Kelly JF and Giraldo FX (2012) Continuous and discontinu-

ous Galerkin methods for a scalable three-dimensional
nonhydrostatic atmospheric model: Limited area mode.

Journal of Computational Physics 231: 7988–8008.
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