
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2017-09

Deception using an SSH honeypot

McCaughey, Ryan J.
Monterey, California: Naval Postgraduate School

https://hdl.handle.net/10945/56156

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



 

 

NAVAL 

POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 

 

 

 
THESIS 

 

 

Approved for public release. Distribution is unlimited. 

DECEPTION USING AN SSH HONEYPOT 

 

by 

 

Ryan J. McCaughey 

 

September 2017 

 

Thesis Advisor:  Neil Rowe 

Second Reader: Alan Shaffer 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB  

No. 0704–0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 

instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 

of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 

suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 

Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork 

Reduction Project (0704-0188) Washington, DC 20503. 

1. AGENCY USE ONLY 

(Leave blank) 

2. REPORT DATE   
September 2017 

3. REPORT TYPE AND DATES COVERED 
Master’s thesis 

4. TITLE AND SUBTITLE   

DECEPTION USING AN SSH HONEYPOT 
5. FUNDING NUMBERS 

 

6. AUTHOR(S)  Ryan J. McCaughey 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 

Monterey, CA 93943-5000 

8. PERFORMING 

ORGANIZATION REPORT 

NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND 

ADDRESS(ES) 

N/A 

10. SPONSORING / 

MONITORING  AGENCY 

REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the 

official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release. Distribution is unlimited. 

 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  

 

The number of devices vulnerable to unauthorized cyber access has been increasing at an alarming 

rate. A honeypot can deceive attackers trying to gain unauthorized access to a system; studying their 

interactions with vulnerable networks helps better understand their tactics. We connected an SSH honeypot 

responding to secure-shell commands to the Naval Postgraduate School network, bypassing the firewall. 

During four phases of testing, we altered the login credential database and observed the effects on attackers 

using the honeypot. We used different deception techniques during each phase to encourage more 

interaction with the honeypot. Results showed that different attackers performed different activities on the 

honeypot. These activities differed in total login attempts, file downloads, and commands used to interact 

with the honeypot. Attackers also performed TCP/IP requests from our honeypot to direct traffic to other 

locations. The results from this experiment confirm that testing newer and updated tools, such as 

honeypots, can be extremely beneficial to the security community by helping to prevent attackers from 

quickly identifying a network environment. 

14. SUBJECT TERMS  
honeypot, deception, SSH 

15. NUMBER OF 

PAGES  
83 

16. PRICE CODE 

17. SECURITY 

CLASSIFICATION OF 

REPORT 
Unclassified 

18. SECURITY 

CLASSIFICATION OF THIS 

PAGE 

Unclassified 

19. SECURITY 

CLASSIFICATION OF 

ABSTRACT 

Unclassified 

20. LIMITATION 

OF ABSTRACT 

 

UU 

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)  

 Prescribed by ANSI Std. 239–18 



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 iii 

 

Approved for public release. Distribution is unlimited. 

 

 

DECEPTION USING AN SSH HONEYPOT 

 

 

Ryan J. McCaughey 

Second Lieutenant, United States Army 

B.S., University of North Georgia, 2016 

 

 

Submitted in partial fulfillment of the 

requirements for the degree of 

 

 

MASTER OF SCIENCE IN CYBER SYSTEMS AND OPERATIONS 

 

from the 

 

NAVAL POSTGRADUATE SCHOOL 

September 2017 

 

 

 

 

 

Approved by:  Neil Rowe 

Thesis Advisor 

 

 

 

Alan Shaffer 

Second Reader 

 

 

 

Dan Boger 

Chair, Department of Information Sciences 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 v 

ABSTRACT 

The number of devices vulnerable to unauthorized cyber access has been 

increasing at an alarming rate. A honeypot can deceive attackers trying to gain 

unauthorized access to a system; studying their interactions with vulnerable networks 

helps better understand their tactics. We connected an SSH honeypot responding to 

secure-shell commands to the Naval Postgraduate School network, bypassing the 

firewall. During four phases of testing, we altered the login credential database and 

observed the effects on attackers using the honeypot. We used different deception 

techniques during each phase to encourage more interaction with the honeypot. Results 

showed that different attackers performed different activities on the honeypot. These 

activities differed in total login attempts, file downloads, and commands used to interact 

with the honeypot. Attackers also performed TCP/IP requests from our honeypot to direct 

traffic to other locations. The results from this experiment confirm that testing newer and 

updated tools, such as honeypots, can be extremely beneficial to the security community 

by helping to prevent attackers from quickly identifying a network environment. 



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii 

TABLE OF CONTENTS  

I. INTRODUCTION..................................................................................................1 

II. PREVIOUS WORK ...............................................................................................5 

A. HONEYPOT CLASSIFICATION ...........................................................5 

1. Usage ...............................................................................................6 

2. System .............................................................................................6 

3. Interaction ......................................................................................7 

B. HONEYPOT DATA ..................................................................................7 

C. HONEYPOT RISKS ..................................................................................8 

1. Detection and Fingerprinting........................................................8 

D. KIPPO .......................................................................................................10 

E. CONCLUSION ........................................................................................11 

III. TOOL SET ...........................................................................................................13 

A. PROBLEM ...............................................................................................13 

B. COWRIE HONEYPOT...........................................................................14 

C. SETUP .......................................................................................................17 

D. MACHINES..............................................................................................17 

IV. METHODOLOGY ..............................................................................................19 

A. DESIGN OF THE HONEYPOT EXPERIMENT ................................19 

B. CONFIGURATION .................................................................................20 

1. Phase 1...........................................................................................20 

2. Phase 2...........................................................................................21 

3. Phase 3...........................................................................................22 

4. Phase 4...........................................................................................22 

C. POSSIBLE FINGERPRINTING METHODS ......................................23 

V. DATA AND RESULTS .......................................................................................27 

A. INTERACTIONS DURING THE FIRST THREE PHASES ..............27 

1. Logs ...............................................................................................27 

2. Unset History ................................................................................28 

3. Information on the System ..........................................................28 

4. File Downloads .............................................................................29 

5. Commands ....................................................................................32 

B. LOGIN ATTEMPTS DURING THE FIRST THREE PHASES ........33 

1. Usernames .....................................................................................34 



 viii 

2. Passwords......................................................................................34 

3. Login Attempts by Date...............................................................35 

4. Countries and IP Addresses ........................................................37 

5. Multiple Successful Login Attempts...........................................40 

6. Username “richard” ....................................................................41 

C. TCP/IP REQUESTS DURING THE FIRST THREE PHASES .........42 

D. PHASE 4 VS PHASES 1–3......................................................................44 

1. File Downloads and Commands .................................................44 

2. Login Attempts .............................................................................45 

3. TCP/IP Requests ..........................................................................48 

E. FINGERPRINTING ................................................................................50 

VI. CONCLUSIONS AND FUTURE WORK .........................................................51 

A. CONCLUSIONS ......................................................................................51 

B. FUTURE WORK .....................................................................................52 

APPENDIX A. INSTALLING COWRIE ......................................................................53 

APPENDIX B. IP ADDRESSES TO COUNTRY NAMES .........................................55 

APPENDIX C. ADDITIONAL TABLES AND FIGURES ..........................................57 

LIST OF REFERENCES ................................................................................................63 

INITIAL DISTRIBUTION LIST ...................................................................................65 

 

  



 ix 

LIST OF FIGURES  

Figure 1. Honeypot deployment locations. Source: [4]...............................................5 

Figure 2. Kippo ping of an invalid IP address. Source: [14]. ....................................10 

Figure 3. Diagram of the network setup ....................................................................17 

Figure 4. Ping on google.com and 999.999.999.999 .................................................24 

Figure 5. Ping on google.com ...................................................................................24 

Figure 6. MSF script against Cowrie.........................................................................25 

Figure 7. Commands used to remove and create logs ...............................................28 

Figure 8. URL download with different IP’s and same file ......................................30 

Figure 9. File downloads by date ..............................................................................31 

Figure 10. Top 10 IP addresses that downloaded files ................................................32 

Figure 11. Top 10 IP addresses that provided inputs ..................................................32 

Figure 12. Top 10 Countries that provided inputs.......................................................33 

Figure 13. Top 10 IP addresses whose inputs failed ...................................................33 

Figure 14. Top 10 usernames ......................................................................................34 

Figure 15. Top 10 passwords ......................................................................................35 

Figure 16. Successful login attempts by date ..............................................................36 

Figure 17. Failed login attempts by date .....................................................................37 

Figure 18. All login attempts by country ....................................................................38 

Figure 19. Top 10 countries with unique IP addresses................................................39 

Figure 20. Geographical map of all unique IP addresses ............................................39 

Figure 21. Top 10 IP addresses with failed login attempts .........................................40 

Figure 22. Top 10 IP addresses with successful login attempts ..................................41 

Figure 23. Richard login attempts ...............................................................................42 



 x 

Figure 24. Number of TCP/IP requests by date ..........................................................43 

Figure 25. Top 10 TCP/IP requests .............................................................................44 

Figure 26. File downloads by country from Phase 4 ...................................................44 

Figure 27. Top 10 addresses that provide inputs from Phase 4 ...................................45 

Figure 28. Top 10 usernames from Phase 4 ................................................................46 

Figure 29. Top 10 passwords from Phase 4 ................................................................46 

Figure 30. Successful login attempts with username and password ...........................47 

Figure 31. Top 10 countries with unique IP addresses................................................47 

Figure 32. Number of login attempts by date ..............................................................48 

Figure 33. Top 10 connection requests from Phases 1-3 ............................................49 

Figure 34. Top 10 connection requests from Phase 4 .................................................49 

Figure 35. Cowrie fingerprinting experiment ..............................................................50 

Figure 36. Top 10 times users remained on the honeypot...........................................57 

Figure 37. Login attempts from 212.165.72.102 .........................................................58 

Figure 38. Activity from 212.156.72.102 ....................................................................59 

Figure 39. All file downloads by IP during Phase 4 ...................................................59 

Figure 40. Command inputs by date during Phase 4 ...................................................60 

Figure 41. Command inputs by country during Phase 4 .............................................60 

Figure 42. Top 10 connection requests from Phase 4 .................................................61 

 

  



 xi 

LIST OF TABLES  

Table 1. Cowrie events and parameters within each field .......................................16 

Table 2. Hardware information for host machine ....................................................18 

Table 3. Hardware information for virtual machine ................................................18 

Table 4. Login credentials during Phase 1 ...............................................................20 

Table 5. Login credentials during Phase 2 ...............................................................21 

Table 6. Login credentials during Phase 3 ...............................................................22 

Table 7. Login credentials during Phase 4 ...............................................................23 

Table 8. Command used hide activity on the honeypot ...........................................28 

Table 9. Commands to gain information about the system ......................................29 

Table 10. URL downloads and the output filenames .................................................30 

Table 11. Top 10 commands used .............................................................................57 

 



 xii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

DMZ demilitarized zone 

Gbps gigabits per second 

HTTP hypertext transfer protocol 

IoT Internet of things 

IP Internet protocol  

Mbps megabits per second 

MSF Metasploit framework  

NMAP network mapper 

OS operating system 

SFTP secure file transfer protocol  

SMDB server message block 

SSH secure shell 

TTP tactics, techniques, and procedures 

VM virtual machine 

 

 

 



 xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 



xv 

ACKNOWLEDGMENTS 

I offer a special thank you to my advisor, Dr. Rowe, for the guidance he has given 

me throughout the process. You were always quick to answer any questions I had. Thank 

you for keeping me focused and working with me when you were out of the office. 

I also would like to thank my second reader, Dr. Shaffer. Thank you for your 

quick responses, quality feedback, and patience throughout the editing process. 



 xvi 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

With the recent growth of devices connected to the Internet, the security 

community has been faced with solving many new problems. Most users own more than 

one device, and the predicted number of Internet of Things (IoT) devices will be 26 

billion by 2020 [1]. Today, 60 percent of the IoT devices connected to the Internet have 

security issues with their user interfaces [1]. Furthermore, Hewlett Packard Enterprise 

reported “80 percent failed to require passwords of sufficient complexity and length.” If 

this trend continues over the next three years, Hewlett Packard Enterprise reported 

approximately 21 million IoT devices will be connected to the Internet that are not 

secured. This not only applies to the device itself but also the device’s cloud and mobile 

infrastructure. 

This increase in unsecured devices connected to the Internet presents problems to 

users and organizations. Malicious users take advantage of this negligence to gain 

unauthorized access to devices, using commonly used protocols such as SSH (Secure 

Shell). This could lead to an increase in botnets and the amount of malicious traffic 

across networks.  

One example of an IoT botnet is the Mirai botnet, which spreads by infecting 

millions of IoT devices. It uses these IoT bots to conduct distributed-denial-of-service 

(DDoS) attacks against targets. Each individual compromised node waits for commands 

and then floods targeted networks or servers with traffic. 

Akamai [2] reported that the first quarter of 2017 saw a 17 percent decrease in 

total DDoS attacks from the last quarter of 2016. Although the number of attacks 

has decreased, Akamai observed half of attacks still remained between 250 Mbps and 

1.25 Gbps in size. These attacks might not necessarily harm bigger organizations, but 

they could cripple smaller organizations that are less protected.  

Akamai released another report to help inform consumers who are starting to use 

IoT devices in their daily lives. It recommends that users change the default credentials 

on these devices and entirely disable SSH services. However, if the user is unable to 



 2 

disable SSH on the devices or uses that service regularly, Akamai suggests the user create 

firewall rules to prevent SSH access to the device from outside the internal network. 

Akamai also recommended establishing firewall rules to deny the device communication 

with unknown IP addresses to prevent tunneling [3]. In addition, many organizations 

continue to use unsecured servers, and also have SSH enabled on their systems without 

knowledge that this service is running.  

Computer-security professionals use several techniques to gain an advantage over 

malicious users that attempt to penetrate systems. Setting up a honeypot on the network 

has been an important method since the early 2000s. Honeypots are decoy computer 

systems intended for no other purpose than to collect data on attackers. They gather 

information about attackers’ sessions secretly, while allowing them to operate normally 

[4].  

Honeypots allow researchers to analyze a variety of malicious user behaviors on a 

system. To connect to a computer remotely, users often enable SSH, which allows them 

to communicate on a secure connection [5]. An SSH honeypot specifically logs the 

username and password combinations from users attempting to connect into the system. 

Once they have gained access, their commands and input provided are logged.  

If a honeypot has been on the Internet for an extended period, malicious users can 

fingerprint the machine and determine it is a honeypot by using a variety of techniques. 

Source code is often available to the general public, so attackers can analyze this code 

and write programs to determine whether the system is a honeypot. Honeypots also 

exhibit different timing than non-honeypot machines, and this can be noted. As a result, 

malicious users and security professionals are in a continuous battle to be one step ahead 

of the other [6]. Security professionals develop new tools and provide updates to existing 

tools to reduce fingerprinting on honeypots. It is important to test updated honeypots to 

see the effectiveness of these newer tools.   

This thesis explored the tool Cowrie, an SSH honeypot that can be used to 

analyze specific deterrence methods to better understand attacker motives inside a 

system. It can, for example, study access to directories and the ease of access to the 



 3 

system. We ran a Cowrie honeypot exposed to the Internet for two-and-a-half months and 

recorded 2,071,823 events.  

Chapter II explores honeypots and their risk of being fingerprinted. The Cowrie 

tool used in this study and the problem this thesis is attempting to solve are introduced in 

Chapter III. The methodology of the experiment conducted and the setup of the honeypot 

are discussed in Chapter IV. A summary of the data collected is in Chapter V. Lastly, 

thesis conclusions, problems, and potential future work are described in Chapter VI. 

  



 4 

THIS PAGE INTENTIONALLY LEFT BLANK  



 5 

II. PREVIOUS WORK 

To gather intelligence on adversaries in the cyber domain, security professionals 

run decoy systems known as honeypots to deceive unauthorized users into gaining access 

to these systems. By allowing unauthorized users to access honeypots, security 

professionals can study their tactics to uncover new methods that attackers may be using 

to exploit operational systems. Honeypots can be placed in multiple locations on a 

network, including outside a DMZ, inside a DMZ, and inside an internal network, as 

displayed in Figure 1 [4]. To deceive attackers and allow them to interact with the 

system, a full-interaction honeypot must appear to be a normal host. As a result, full-

interaction honeypots can provide beneficial information but also present risks, as they 

provide attackers with full access to their systems. 

 

Figure 1.  Honeypot deployment locations. Source: [4]. 

A. HONEYPOT CLASSIFICATION 

Honeypots can be distinguished by three dimensions. One dimension is whether 

they are used for research or production purposes [7]. The second dimension is the 

environment a honeypot runs on. The third dimension relates to the interaction level that 

the honeypot provides the user. 



 6 

1. Usage 

Research honeypots gather large amounts of data on attackers. For example, the 

military can use information gathered internally to learn new malware and tactics being 

used. With a well-concealed honeypot, attackers would not know their methods have 

been revealed and would continue to operate as normal, while the military can establish 

safe countermeasures for the observed tactics. Also, organizations can use research 

honeypot information to patch systems where attackers have exploited a vulnerability, 

release reports on current methodologies, and expose the IP addresses of attackers.  

On the other hand, production honeypots provide commercial organizations with 

added protection specifically for their internal networks [7]. A company may place 

honeypots inside the DMZ, or outside connecting to the Internet, to monitor who is trying 

to access their internal network systems, and what information they are seeking. 

2. System 

Honeypots can be classified by whether they are implemented in a virtual or 

physical environment. Honeypots running in a virtual environment run on virtual 

machine monitor (VMM) software such as VMware or VirtualBox. This software allows 

for downloading an ISO file and running an operating system virtually. An advantage of 

running software in a virtual environment is the use of snapshots. Users can take a 

snapshot of a VM’s OS execution state, and revert back to it at any time. This is 

particularly useful if an attacker has made major modifications to an operating system 

that are difficult to undo. It is also useful if an attacker is able to break out of the VM, 

since then they can determine what environment they are running in, and proceed with 

caution [8].  

Physical machines running honeypots can be very beneficial, as they lead 

attackers to believe they are on a real system. In addition, virtual honeypots tend to have 

limited memory and processing power, and have a higher probability of being detected 

than physical honeypots. Instead of snapshots, physical machines can undergo regular 

backups to trace what the attacker did on the system. However, physical machine 



 7 

honeypots are typically more expensive to create and maintain than virtual ones, and less 

flexible for rapid reconfiguration. 

3. Interaction 

Honeypots can also be distinguished based on the interaction level they provide 

the user. Low-interaction honeypots open service ports, and then wait for a user or 

program to interact with the system, but do not do much beyond that [9]. By opening 

specific ports, their goal is to attract attackers into exploiting vulnerabilities in the 

services running on that specific honeypot, and record the initial steps in that 

exploitation. Low-interaction honeypots have many uses, such as web crawlers (Thug), 

logging web attacks (Glastopf), network emulation (HoneyD), and imitating SCADA/ICS 

systems (Conpot) [10].  

Medium-interaction honeypots allow an attacker to interact with the system 

directly, and to exploit the target. Their services are still emulated, but appear to be more 

realistic. These honeypots provide information to researchers that allow them study the 

tactics of the attackers and gain a better understanding of their methodology. Medium-

interaction honeypots are more expansive than low-interaction honeypots, allowing the 

attacker to perform more interactive activities such as uploading files and manipulating 

the file system. An example of a medium-interaction honeypot is Kippo, which emulates 

SSH and logs brute force attacks and attacker shell interaction [11]. Oosterhof [12] has 

added multiple features to Kippo to create his own version, Cowrie.  

High-interaction honeypots use real systems and services to deceive and coerce 

attackers. Data collected from high-interaction honeypots looks more like data collected 

from real-world attacks [9]. Because of this higher level of attacker interaction, these 

honeypots require more care and closer monitoring to prevent damage to the host 

network running them. 

B. HONEYPOT DATA 

The primary goal of implementing a successful honeypot is to gather information. 

To accomplish this, data control, data capture, and data analysis need to be satisfied [13]. 



 8 

Data control is harder to implement, since attackers expect the system to perform as if it 

were an actual host. When the honeypot overly restricts the actions and commands that 

attackers can perform, they can become skeptical. Too loose control, however, allows 

attackers too much access to communicate with other systems and attack other targets 

through methods such as SSH tunneling. Determining the right amount of privilege and 

freedom the attacker has is something one must consider when implementing a honeypot 

on a network [13].   

Data capture is the second data requirement that needs to be addressed. 

Communications on certain services can be encrypted, for example, with SSH [13]. With 

attackers using encrypted protocols, retrieving session information becomes more 

difficult. In addition, the data captured needs to be logged for future analysis. If these 

logs are stored on the honeypot itself, the attacker could delete them from the system. 

Storing captured data logs outside the honeypot is important and aids data integrity.  

Lastly, once the captured data is stored in a separate location, it needs to be 

analyzed [13]. Analyzing honeypot data to find new trends, threats, and methodologies 

can help to better understand the motives and techniques of the attackers. 

C. HONEYPOT RISKS 

Although deploying a honeypot on a host network can help to secure that 

network, there are some risks associated with their implementation. As mentioned earlier, 

allowing malicious users to infiltrate a honeypot system would provide them with 

elevated access to that system as if it were their own. Attack methods such as SSH 

tunneling or allowing the honeypot to operate as part of a botnet are enabled, and may be 

attributed to the honeypot [13],[14]. In particular, honeypots bring risks to the internal 

network as they promote “an aggressive atmosphere” [14]. 

1. Detection and Fingerprinting 

A honeypot is most effective when it completely deceives users into believing 

they have hacked a real system; therefore, attackers often use fingerprinting to determine 

if they are in a honeypot. Different versions of software often handle inputs in different 



 9 

ways under different operation systems. These differences can help an attacker determine 

what software and what system are being used on a honeypot [14]. This can be done 

through testing various inputs or analyzing the source code and writing scripts to 

determine the software. By pinpointing responses not typical of any known operating 

system, users are able to successfully fingerprint the new device and pinpoint a honeypot.  

Once a honeypot is identified, attackers would do one of two things. First, they 

may not waste their time further on the honeypot as they know it is not a real system. 

Second, they may give the honeypot invalid information in order to degrade the data the 

honeypot is collecting [13]; analyzing such corrupted data would not lead to any 

significant findings. In either case the honeypot is no longer useful against that attacker, 

and perhaps others with whom the attacker communicates. 

Many honeypot implementations are open-source, thus providing the honeypot’s 

source code to the public is necessary to allow legitimate users to test the honeypot and 

collect data. Over time, attackers can analyze the source code in depth and find bugs or 

vulnerabilities. This static analysis is unavoidable. Attackers can also perform dynamic 

analysis on the honeypot, and based on its behavior, can make educated guesses to 

determine the environment.  

Fingerprinting the honeypot gets significantly harder as the degree of interaction 

increases, since low-interaction honeypots generally have a higher chance of being 

detected, while high-interaction honeypots do not. Before gaining access to the system, 

an attacker would perform a vulnerability scan on the target. The low-interaction 

honeypot Dionaea, which attempts to capture malware, is vulnerable to fingerprinting 

from NMAP scans alone [15,][16]. FTP, MySQL, and SMDB services are also detected 

by NMAP scans. An NMAP scan on Dionaea would reveal the SMBD workgroup name 

as “WORKGROUP” and the Homeuser name as HOMEUSER-XXXXXX (x = integers) 

[16]. In addition, another low-interaction honeypot, HoneyD, can give invalid HTTP 

replies [17]. Another honeypot, Glastopf gives the user invalid error replies when they try 

to access a folder not located in the vulnerability group [16]. These honeypots are all 

examples of ones that are susceptible to fingerprinting by attackers. 



 10 

D. KIPPO 

Kippo, as mentioned earlier, is an SSH honeypot that logs brute-force logins and 

shell interactions. Yahyaoui [11] ran two separate Kippo honeypots over several months 

to test their ability to detect attackers. One of these honeypots ran in a virtual 

environment for four months, using VMware as a virtual platform. The other ran in a 

physical environment for three months. Analyzing the results from the two honeypots, it 

appears that the login database was altered to make it difficult for users to have 

successful logins. Users had limited shell interaction with these two honeypots. He found 

that the quantity of attacks was similar for both environments, but the shell interaction 

varied. He also found more unique IP addresses attempting to gain access to the virtual 

honeypot over the physical honeypot. These experiments by Yahyaoui focused on 

username and passwords used to gain access to the system.  

In other experiments, researchers discovered inputs that would alert attackers that 

the target was a honeypot [17]. Morris [17] showed that a ping to an unknown IP such as 

999.999.999.999 on a Kippo honeypot would display that the machine is up and running, 

as seen in Figure 2. 

 

Figure 2.  Kippo ping of an invalid IP address. Source: [14]. 

Morris also pointed out that when sending a message with carriage returns, Kippo 

gives the error “bad packet length 168430090”, whereas OpenSSH gives the error 

“Protocol mismatch” [17]. Using this information, he wrote a script to detect whether a 

host is running Kippo; the script has since been added to the Metasploit Framework 

(MSF) database as an auxiliary called “detect_kippo” [18]. The MSF database contains 

scripts used for penetration testing, which can also be used by malicious users.  



 11 

Another possible fingerprinting method involves the username and password 

combination of “root/123456,” as this is the default Kippo username and password [19]. 

If an attacker is able to connect using this combination, they potentially would be 

suspicious of being inside a Kippo honeypot and could disconnect immediately. 

Attackers would ignore this system as they feel it is not worth their time. 

E. CONCLUSION 

This chapter has explained the basics of honeypots and identified their 

characteristics, benefits, and risks. It is important to understand that attackers may be able 

to fingerprint honeypots, which can reduce or corrupt results. Nonetheless, honeypots are 

an essential tool for security analysis, and new and improved ones are appearing 

frequently. 

 



 12 

THIS PAGE INTENTIONALLY LEFT BLANK  

 



 13 

III. TOOL SET 

The previous chapter discussed honeypots, including how they are deployed and 

the risks of setting up a honeypot inside a network. This chapter describes the particular 

honeypot we tested. 

A. PROBLEM 

With attackers having the ability to detect the environment in which a full-

interaction honeypot is situated, deploying it successfully can be difficult. Manipulation 

of the username and password database on the honeypot can change the number of users 

able to access the system. Many of the newer devices attached to the Internet use login 

credentials with default username and passwords. Although this is a bad security practice, 

it could be a good tactic for a honeypot in encouraging attackers to access it. However, 

allowing multiple usernames to successfully login to the honeypot increases the risk it 

would be detected. For example, if a user performs a dictionary attack that provides two 

different passwords for the same username, neither password should be expected to work; 

otherwise, the user would become suspicious of the system. At the least, the user would 

run further tests to determine the environment. If they remain in the system, they would 

likely proceed very cautiously. 

This thesis explores the effectiveness of the Cowrie honeypot, which is based on 

the Kippo honeypot described earlier, and tests its fingerprinting methods. Prior to the 

experiment, we were curious to see whether we would gather different results when we 

altered the username and password database. Specifically, the interactions the users had 

with the honeypot. For example, we wanted to determine if there was a difference in 

interactions from those who ran dictionary attacks from those who only used one 

username to login on the honeypot. Furthermore, we wanted to observe if attackers 

showed a degree of persistence. If users had their session terminated, they could move on 

to other targets and scan other networks. The users could also attempt to regain access. 

Finally, this thesis analyzed fingerprinting methods used.  



 14 

Prior to the experiment, it was assumed that a honeypot is more effective when its 

users do not know they are inside a honeypot, and that the longer users remain in the 

honeypot, the more likely they are to recognize it. We assume activity would change once 

the username and password database is changed. When attackers are able to gain access 

to the honeypot using a dictionary attack that uses default username and password 

credentials, we suspect their activity to differ from that of an attacker who has to use a 

more creative dictionary or manually login. An attacker who uses a simple dictionary 

attack may try to use our host as a bot or an attack pivot point. Attackers who used only 

one username would have conducted some form of reconnaissance. These users could be 

more interested in information location on the machine.  

We also assume attackers would lower their guard when they cannot determine 

the honeypot’s login credentials. As a result, if they can gain access after multiple 

attempts, they would more likely believe it is a real, hardened system. 

B. COWRIE HONEYPOT 

Cowrie is software created by Michel Oosterhof for building and running SSH 

honeypots. It has a file system that resembles a Debian 5.0 installation, and can be used 

to add and remove files [20]. It supports SFTP, which allows for secure transfer of files 

using SSH. Files uploaded to the honeypot are placed inside a directory and accessible 

for future investigation. Cowrie also logs direct-tcpip requests [20], which logs and then 

redirects SSH forward requests to other addresses [21]. All logs are formatted in json 

format and are broken down by date. Cowrie accepts additional administrator commands, 

including sleep, sync, uname –r, dir, help, and jobs. Support for these extra commands 

reduces the chance of the honeypot being fingerprinted and allows the user to interact 

more fully with the honeypot. If a user issues a certain command to the system, but 

receives an error message that it is an “unknown command,” they would likely second-

guess the machine’s validity.  

The SSH protocols in Cowrie have also been updated. Oosterhof has enabled the 

“diffie-hellman-group-exchange-sha1 algorithm” in the honeypot [20]. However, he also 

notes that attackers can analyze the ciphers provided by the SSH server and be able to 



 15 

fingerprint the honeypot [20]. SSH servers provide users different ciphers to encrypt data. 

These ciphers alter the data into a non-readable form and can be decrypted with a key. 

The ciphers supported by Cowrie attempt to mirror OpenSSH (an SSH protocol suite). 

These ciphers are aes128-ctr, aes192-ctr, aes256-ctr, aes128-cbc, 3des-cbc, blowfish-cbc, 

cast28-cbc, aes192-cbc, and aes256-cbc [20]. As a result, a user could determine the 

supported ciphers and potently fingerprint the system. They could use the command “ssh 

–Q cipher” to display the ciphers supported. Oosterhof also took previous fingerprinting 

methods used against Kippo into consideration, adding functionality, and altering error 

responses to mimic a real system. The commands used to install Cowrie appear in 

Appendix A. 

We used the software Tableau to analyze the logs gathered from the Cowrie 

Honeypot [22]. Tableau displays information about events in the Cowrie logs. Tableau 

creates tables and graphs, and can graph data points based on geographic coordinates or 

country names. No geographical information is provided by Cowrie, so we used 

MaxMind database to convert the IP addresses into countries [23]. Python code was used 

to read IP addresses from a text file, convert the IP addresses to countries from the 

database, and print the countries to a new text file; see Appendix B for this code. 

As seen in Table 1, Cowrie logs 16 different types of events. Each event has its 

own specific set of information, for example, username and password fields are logged 

for the login failure and success events, whereas the message itself is logged in the 

command input event, which captures the user’s interaction with the honeypot. 

  



 16 

Table 1.   Cowrie events and parameters within each field 

Events Fields 

Cowire.client.size Timestamp, session, src_port, message, system, 
isError, src_ip, des_port, des_ip, 
sensor 

Cowrie.client.var Name, timestamp, message, system, value, isError, 
src_ip, session, sensor 

Cowrie.client.version macCS, timestamp, session, kexAlgs, message, 
system, isError, src_ip, des_ip, 
version, compCS, sensor, encCS 

Cowrie.command.failed Timestamp, message, isError, src_ip, session, input, 
sensor 

Cowrie.command.input Timestamp, message, isError, src_ip, session, input, 
sensor 

Cowrie.command.success Timestamp, message, isError, src_ip, session, input, 
sensor 

Cowrie.direct-tcpip.data Timestamp, sensor, system, isError, src_ip, session, 
des_port, des_ip, data 

Cowrie.direct-tcpip.request Timestamp, session, src_port, message, system, 
isError, src_ip, des_port, des_ip, 
sensor 

Cowrie.log.closed Timestamp, message, ttylog, system, isError, src_ip, 
sensor 

Cowrie.log.open Timestamp, message, ttylog, system, isError, src_ip, 
sensor 

Cowrie.login.failed Username, timestamp, message, system, isError, 
src_ip, session, password, sensor 

Cowrie.login.success Username, timestamp, message, system, isError, 
src_ip, session, password, sensor 

Cowrie.session.closed Timestamp, message, system, isError, src_ip, 
duration, session, sensor 

Cowrie.sessoin.connect Timestamp, session, message, src_port, system, 
isError, src_ip, des_port, des_ip, 
sensor 

Cowrie.session.file_upload Shasum, timestamp, message, system, filename, 
src_ip, outfile, session, sensor, 
IsError 

Cowrie.session.file_download Src_ip, session, shasum, url, timestamp, outfile, 
sensor, message 



 17 

C. SETUP 

We connected the Cowrie honeypot to the Internet using an AT&T line that NPS 

provided. This line was outside NPS’s firewall and allowed users to scan our IP range. 

We used two static IP addresses, one for the host machine, and one for the honeypot 

virtual machine. The virtual machine connected to the host machine by bridged 

networking. We configured the host machine and virtual machine subnet masks, gateway 

addresses, and name-servers, with the host machine’s IP set to .54, and the virtual 

machine to .53 (full IP addresses not given since testing is ongoing). Figure 3 shows the 

network configuration used for the honeypot tests. 

 

Figure 3.  Diagram of the network setup 

D. MACHINES 

Information for the host machine appears in Table 2 and information regarding 

the virtual machine appears in Table 3. We ran the virtual machine using OracleVM 

Virtualbox 5.1.20. 



 18 

Table 2.   Hardware information for host machine 

Operating System 14.04 LTS 

Memory 1..9 GB 

Processor Intel Core 2 Duo CPU P8600 @ 2.40GHz x 2 

Graphics Mobile Intel GM45 Express Chipset x86/MMX/SSE2 

OS type 32-bit 

Disk 244.0 GB 

 

Table 3.   Hardware information for virtual machine 

Operating System GNOME Version 3.14.1 

Memory 1008.2 MB 

Processor Processor Intel Core 2 Duo CPU P8600 @ 2.40GHz 

Graphics Gallium 0.4 on llvmpipe (LLVM 3.5, 128 bits) 

Base System Debian GNU/Linux 8 (Jessie) 32-bit 

Disk 7.9 GB 

 

There are differences between Kippo and Cowrie. Cowrie attempts to prevent 

attackers from being able to fingerprint the system, and also allows the user to have more 

interaction with the system than Kippo does. This chapter described the setup used to run 

Cowrie in a virtualized environment, and the next chapter discusses our experiment 

methodology. 

 

 



 19 

IV. METHODOLOGY 

This chapter explains the methodology of the experiment. It also explains how we 

tested whether this honeypot was vulnerable to specific fingerprinting methods. 

A. DESIGN OF THE HONEYPOT EXPERIMENT 

Our Cowrie honeypot ran for two and a half months. We started to collect data on 

May 1, 2017, and stopped the experiment on June 29, 2017. We resumed collection 

activity on August 3 and stopped it on August 15. The honeypot did not run continuously 

during this duration. Initially, the honeypot ran for three days, from May 1 to May 3, to 

confirm it was working correctly and that users could interact with it. We resumed on 

May 8, and during the next two weeks we left the honeypot running on the weekdays and 

shut down during the weekends to simulate business operations. On May 23 and May 31, 

we took it down for approximately two hours to change some configuration files.  From 

May 31 to June 29, we left the honeypot running uninterrupted, and used this time to 

observe the attacker’s actions on the honeypot. From August 3 to August 15, the 

honeypot was again left running uninterrupted.  

During the first month, the honeypot was brought offline during weekends and at 

times to reconfigure files, which closed any user sessions. This would happen Friday 

afternoon, the closing time for most organizations. One goal was to see whether attackers 

would revisit the honeypot when it was bought back online the following Monday to 

indicate that the attackers had a degree of persistence. During the second month of the 

experiment we compared the attacker’s behavior when they could remain in the system 

for an extended period of time. With the honeypot running for a month uninterrupted, 

attackers would not have any sessions closed. When we turned off the honeypot on 

June 29 to start analyzing the data, all active sessions were closed and no attackers were 

present in the system. After we determined commonly used login credentials, we ran the 

honeypot again in August. 



 20 

B. CONFIGURATION 

During the two-and-a-half months the honeypot ran, we changed the database 

configuration three times, breaking it up into four different phases. In this section, we 

describe the experiment phases corresponding to the database configurations, and the 

times corresponding to the dates the honeypot was running for each phase. 

1. Phase 1 

The first phase of the honeypot ran from May 1 to May 23. During this time, we 

left the username and password database as the default values from installation. Table 4 

shows these values. 

Table 4.   Login credentials during Phase 1 

Username Rule 

root !root 

root !123456 

root * 

richard * 

richard fout 

 

The username “root” would be denied with passwords that are “root” and 

“123456.” Any other password provided with the username “root” could gain access to 

the honeypot. The second username that could gain access to the honeypot is “richard.” 

These rules allow the password “fout” to gain access with the username “richard.” 

Additionally, any password provided with this username would work. 

This phase was implemented with the honeypot running during the weekdays 

only. We left the database with its default values to see whether any users could 

fingerprint our honeypot based on these credentials. We expected that almost all users 

could access our honeypot with this configuration. We would still record failed login 



 21 

attempts, as other usernames would be denied. If attackers used the username “root”, they 

would be likely to gain access since the system would accept most any password (other 

than the two exceptions in the rules). On May 23, we changed the honeypot’s login 

database to see whether we would gather different results. 

2. Phase 2 

The second phase of the honeypot ran from May 23 to May 31. We ran this phase 

for eight days straight without shutting it down over the weekend. Table 5 lists the rules 

we implemented for this phase. 

Table 5.   Login credentials during Phase 2 

Username Rule 

richard !root 

 

During this phase, the only username an attacker could use to successfully access 

our honeypot was “richard.” All passwords were accepted except for “root.” When we 

changed this, all users who were on the system during Phase 1 would have their sessions 

closed. If they tried to log back on at a later time using the old credentials, they would be 

unable to. This would indicate to the user that we had hardened the system.  

We ran this phase for only a week for two reasons. First, with only one allowable 

username, we expected a significant decrease in the number of users able to gain access. 

We expected a concomitant increase in login attempts as users would try more login 

credential combinations. The goal of this shortened phase was to collect username and 

password combinations. Second, we were interested in seeing how many users would be 

able to login with the username “richard.” We would be able to see if these users 

performed a dictionary attack against our system and then happened to use the word 

“richard,” or if the user was able to login on the first attempt to indicate a possible 

fingerprinting method. If they closed their session and tried to log back on with “root,” as 



 22 

in Phase 1, they would fail. After this, we were interested to see what actions they would 

take on the honeypot. 

3. Phase 3 

The third phase of the honeypot ran from May 31 to June 29, and during this time, 

we ran the honeypot uninterrupted. Table 6 lists the credentials required for this phase. 

Table 6.   Login credentials during Phase 3 

Username Rule 

root !root 

root !123456 

root !12345 

root !password 

root !pass 

root * 

richard * 

 

During this phase, we reverted to the original credentials, with some changes. We 

denied the passwords “123456,” “12345,” “password,” and “pass” for the username 

“root.” We kept this configuration for the entire phase, as we did not want to close any 

active sessions. We were satisfied with some of the results during Phase 1, so we chose 

similar rules for this phase. The four additional rules did not necessarily deny entry to 

users but attempted to better conceal that the system was a honeypot. 

4. Phase 4 

The fourth phase of the honeypot ran from August 3 to August 15. Table 7 shows 

the credentials required during this phase. In the first three phases, we accepted multiple 



 23 

passwords for a single username, representing a one-to-many relationship, but during this 

phase the relationship was one-to-one. 

Table 7.   Login credentials during Phase 4 

Username Rule 

user1 admin 

admin welc0me 

support  support 

user password 

root welc0me 

 

We created the login credential database based on commonly used usernames and 

passwords observed from the first three phases. We accepted the password “welc0me” 

with the usernames “admin” and “root”. This was the most used password in the first 

three phases. 

C. POSSIBLE FINGERPRINTING METHODS 

During Phases 1, 3, and 4, attackers analyzing our login credential database could 

fingerprint our honeypot. During Phase 2, our honeypot was not as vulnerable so 

fingerprinting was not possible. We assumed attackers had the resources to determine the 

environment based on usernames and passwords alone. 

We also tested the usefulness of an error message displayed to a user who 

provided an invalid IP address. Chapter II shows how Kippo displays an error message 

when a user attempts to ping an invalid host. Figure 4 shows the error message produced 

by Cowrie when a user attempts to ping an invalid IP address. 



 24 

 

Figure 4.  Ping on google.com and 999.999.999.999 

Any IP address out of range that is pinged within Cowrie is displayed as an 

unknown host. This makes it harder for users to fingerprint our honeypot, but a 

vulnerability remains. When we ping google.com we see the IP address is 29.89.32.244, 

which is not Google’s actual IP address but a fake IP address. If users compared this fake 

address to the actual address, then they could determine the response is invalid. Figure 5 

displays the results from a successful google.com ping. The valid ping response has an 

IPv6 address and the invalid ping response has an IPv4 address. This is something to 

consider if we notice any ping commands on our honeypot. 

 

Figure 5.  Ping on google.com 

We also tested the Kippo detection auxiliary script on MSF against the Cowrie 

honeypot to ensure users would not be able to fingerprint our honeypot using this 

method. Figure 6 displays the results from the script. 



 25 

 

Figure 6.  MSF script against Cowrie 

The results shown in Figure 6 indicate that the MSF script could not identify our 

system as having Kippo functionality. Although this scan is intended for Kippo, Cowrie 

is based on Kippo and we wanted to test if it could behave similarly in this test. 

 

 



 26 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 27 

V. DATA AND RESULTS 

This chapter summarizes the data we collected from the honeypot over two-and-a-

half months of operations. During this time we recorded 2,071,823 events, including two 

file uploads and 940 file downloads, and logged 10,314 successful commands and 325 

failed commands for users interacting with the honeypot. During our testing, IP addresses 

from 89 different counties attempted to login to our honeypot. 

A. INTERACTIONS DURING THE FIRST THREE PHASES 

Once an attacker gained access to the system, we saw activities such as removing 

traces of their presence on the system logs, identifying system properties, performing file 

downloads through wget requests, and TCP/IP requests.  

1. Logs 

We observed 96 instances of users removing logs located in the honeypot var 

directory, a clearly suspicious activity. These logs included .bash/history, lastlog, and 

mailog. Other log deletion attempts appear in Figure 7, where the right column represents 

the number of occurrences for each command. After users deleted the logs from the 

system, they created a new file with an identical name. Even without this logged 

information, we could still determine changes made to the var directory by analyzing the 

creation timestamps of these files. 



 28 

 

Figure 7.  Commands used to remove and create logs 

2. Unset History 

Our honeypot also recorded 96 instances of users attempting to hide their activity 

on the system by using the unset command shown in Table 8. This command was entered 

on one line but the shell ran each partial command individually. By unsetting these 

values, the users’ activities would not be recorded.  

Table 8.   Command used hide activity on the honeypot 

Command unset HISTORY HISTFILE HISTSAVE HISTZONE 

HISOTRY HISTLOG WATCH 

 

3. Information on the System 

Users also performed commands to gather system information (Table 9). The 

command free –m displays information about the memory of the system, such as how 

much memory is available, in use, and free. Command ps -x displays the processes 

running on the system and the respective process IDs. The id command provides the user 

with information about which group the user is in. The uname command returns 

information such as the kernel version, processor, and operating system. Finally, the w 

command provides information about who is logged onto the system and their login date.  



 29 

These commands are able to help the attacker identify the environment they are on and 

the resources they have available.  

Table 9.   Commands to gain information about the system 

Command Number of occurrences we observed 

free –m 203 

ps –x / ps x 198 

id / id –u 12 

ls / ls –al / –d / -la 8 

uname / uname –a / -m / -r  221 

w 2  

 

4. File Downloads 

Users also performed wget commands to download files. These files that were 

downloaded were secretly copied to a directory of ours on the honeypot for future 

analysis. The majority of files downloaded were .sh files, shell scripts that are executable 

in a terminal. Table 10 provides examples of files downloaded and shows how they were 

saved on our system.  

  



 30 

Table 10.   URL downloads and the output filenames 

URL Outfile 

http://27.118.21.217/sc.sh dl/cb1d9c280fbdddf521946c9a6c026c1fa5
52e08e7a30ffcd2728744aedeaa6ec 

http://77.247.178.189/bins.sh dl/f88388a7250ab66c77d54834c0bd6422b
7b761935b0a0c8aca88d2f2248be58d 

http://104.148.19.115/ys808e dl/02ab39d5ef83ffd09e3774a67b783bfa34
5505d3cb86694c5b0f0c94980e5ae8 

http://173.212.225.13/qbot/gtop.sh dl/4a70a24516a51493cec2011c1e3e99f8a
365d4af8f66a49a34a518e83ca95363 

 

We also recorded different IP addresses that downloaded the same file. Figure 8 

shows four different IP addresses that downloaded the file xcv.sh from IP address 

51.15.77.44 a total of eight times (right column shows number of attempts for each 

attacking IP). 

 

Figure 8.  URL download with different IP’s and same file 

The number of file downloads during the three phases was significantly different. 

During Phase 1, 10 file downloads took place over the course of three days. During Phase 

2, no file downloads occurred. The beginning of Phase 3 had limited file downloads, but 

they started to increase as the honeypot ran. We observed a maximum of 123 file 

downloads on June 15. After June 15, the number of files downloaded per day never 

reached over 50 again. Figure 9 displays the total number of file downloads, by date, 

during the honeypot operations. The month is shown at the top of the horizontal axis and 

the date is at the bottom of the horizontal axis. 



 31 

 

Figure 9.  File downloads by date 

Sixty-eight IP addresses performed a wget request to download files during 

Phases 1 through 3. Figure 10 displays the top 10 IP addresses that downloaded files, 

with the corresponding source country of each. The Netherlands accounted for the 

highest three instances of file downloads. 

 



 32 

 

Figure 10.  Top 10 IP addresses that downloaded files 

The activity on the honeypot during these three phases consisted of removing 

traces, downloading files and collecting system information. The command used most 

often to gather information was uname. We noticed that file downloads varied 

significantly during each phase, and were the greatest during Phase 3. The top three IP 

addresses that downloaded files accounted for 514 of the 892 total downloads.  

5. Commands 

Figure 11 shows the top 10 IP addresses that provided input to the honeypot. This 

includes both successful and failed commands. Approximately 16 percent of inputs 

provided to the honeypot came from the IP address 195.22.127.83, which is five times the 

rate of the next highest IP address. 

 

Figure 11.  Top 10 IP addresses that provided inputs 



 33 

We also combined all the IP addresses and gathered information based on 

country. Figure 12 shows that Poland was responsible for the majority of the inputs with 

1697 records, and The Netherlands was the next highest with 580 records. By comparing 

the two graphs, we determined that 33 other inputs were provided by other IP addresses 

originating from Poland. 

 

Figure 12.  Top 10 Countries that provided inputs 

Figure 13 shows the top 10 countries with failed input requests. The IP address 

195.22.127.83 once again was an outlier, accounting for 83 percent of all failed inputs. 

Roughly 15 percent of its total inputs failed. The IP addresses 195.22.127.83 and 

123.249.3.188 were the only two that appear in both failed inputs and overall inputs 

provided. The other eight addresses listed in Figure 11 do not appear in Figure 13. 

 

Figure 13.  Top 10 IP addresses whose inputs failed 

B. LOGIN ATTEMPTS DURING THE FIRST THREE PHASES 

We recorded 222,641 login attempts during the first three phases of testing, of 

which 12,294 were successful and 210,247 were unsuccessful. 



 34 

1. Usernames 

During the first three phases, 4,539 different usernames were used to attempt 

login to the honeypot. Figure 14 shows the top 10 usernames. The username “root” was 

used a total of 179,437 times. During Phases 1 and 3, only five passwords were denied 

with username “root”, thus the majority of users who attempted login with “root” gained 

access to the honeypot. 

 

Figure 14.  Top 10 usernames 

2. Passwords 

During the first three phases, we recorded 38,770 passwords used for login. 

During Phases 1 and 3, more passwords were used with a username other than “root”, 

and more were used with username “richard” during Phase 2. Figure 15 displays the top 

10 passwords used. We expected to see common passwords such as “admin”, “12345”, 

and “123456”, but we were surprised to see the top password was “welc0me”. 



 35 

 

Figure 15.  Top 10 passwords 

3. Login Attempts by Date 

During Phase 1, we recorded 1,145 successful login attempts. Only one successful 

login attempt took place during Phase 2, when on May 28 “richard/richard” was used for 

the login credentials. During Phase 3, we observed 11,148 successful login attempts. The 

date with the greatest number of successful login attempts was June 6. We added 

additional rules to deny access to the honeypot during Phase 3, but still observed an 

increase in the number of daily users gaining access to the honeypot. We speculate that 

this was due to the longer duration the honeypot was connected to the Internet, which 

allowed more users to scan its IP range. These daily login results are shown in Figure 16. 



 36 

 

Figure 16.  Successful login attempts by date 

The number of failed login attempts during Phases 1 and 3 was less than 1000 for 

35 of the 44 total days. During these phases, however, we recorded seven days with failed 

login attempts that exceeded 2000. During Phase 2, our honeypot recorded more failed 

login attempts, with May 28 being the highest with 69,552 failed attempts. The failed 

login attempts by date are displayed in Figure 17. The increase in failed login attempts 

during Phase 2 appeared to be due to the use of dictionary attacks. We observed 

numerous login attempts using the username “root” and a password that included 

common words, numbers, a combination of both, and random strings. 



 37 

 

Figure 17.  Failed login attempts by date 

4. Countries and IP Addresses 

Figure 18 shows the top 10 countries and the number of login attempts that each 

was responsible for. An overwhelming number of login requests were recorded from IP 

addresses located in China, with a total of 166,270 login attempts. No other country had 

more than 10,000 login attempts. 



 38 

 

Figure 18.  All login attempts by country 

We analyzed the number of login attempts from countries with unique IP address. 

Although the vast majority of login attempts originated from China, most of them came 

from only eight IP addresses. During the experiments, we recorded multiple login 

attempts from a single unique IP address in a country, e.g., the address 61.177.172.55 

attempted to login 19,657 times. We recorded these unique addresses only once, instead 

of the total number of login attempts. This data is displayed in Figure 19.  

China still had the most unique IP addresses in attempting to log into our 

honeypot, but they were not outliers as they were with overall numbers. Eight of the top 

10 countries from Figure 18 appear in Figure 19 with the exception of the Netherlands 

and Spain. All unique IP addresses that attempted to login are shown in Figure 20. From 

this geographical map, we were able to observe the distribution of login attempts from 

across the globe.  



 39 

 

Figure 19.  Top 10 countries with unique IP addresses 

 

Figure 20.  Geographical map of all unique IP addresses 

Since the number of unique IP addresses attempting to login differed significantly 

from the overall number of login attempts, we looked at the failed login attempts 

associated with each IP address. Figure 21 shows the top 10 IP addresses that failed to 

login to the system. The top three all belong to the same 61.177.172.xxx subnetwork. All 

three of these IP addresses recorded 19,657 attempts, totaling roughly 60,000 failed login 



 40 

attempts from this subnetwork, which was located in Lianyungang, China, and has the 

domain name chinatelecom.com.cn. As a result, China was an outlier in the total number 

of login attempts from each country. 

 

Figure 21.  Top 10 IP addresses with failed login attempts 

5. Multiple Successful Login Attempts 

During the first three phases, we put our honeypot offline at certain times, which 

would close active sessions. In addition, the SSH server had a timeout request if there 

was inactivity for three minutes, and users also could exit the system. If one of these 

events occurred, the user would be required to log back on again. Figure 22 displays the 

top 10 IP addresses that had successful re-login attempts; these revisited the honeypot 

over 200 times. 

The longest any user stayed on the system was 671,739 seconds, from June 6 to 

June 14. This user’s IP address was 144.76.139.164. This user provided no commands 

but had a total of 16,412 direct-tcp/ip requests. The highest occurrence among all 

durations that users remained on the system was two seconds, which occurred 19,311 

times. The top 10 most frequent times that users remained on the system, to the nearest 

second, were 0, 1, 2, 3, 4, 5, 6, 7, 36, and 37 seconds.  



 41 

 

Figure 22.  Top 10 IP addresses with successful login attempts 

6. Username “richard”  

During the first three phases, attackers providing the username “richard” gained 

access to the honeypot. We were curious to see whether these users used a dictionary 

attack against the honeypot, or were able to determine the username based on the default 

login database. Figure 23 shows the nine instances of the username “richard” being used. 

We looked at each IP address and its previous login attempts, and determined that all of 

the users gained access by some sort of dictionary attack. These IP addresses used 

different combinations of usernames and passwords before ultimately being successful.   

In these cases, we were interested to see whether users were able to fingerprint 

our honeypot, but our analysis showed they were not. The address 108.170.41.186 had 

two successful logins using the username “richard”. There was roughly a one-hour time 

difference between the two connections. Our logs showed that this address lost its 

connection and reran a dictionary attack to regain access to our system since it apparently 

did not record its previous successful attempt. 



 42 

 

Figure 23.  Richard login attempts 

C. TCP/IP REQUESTS DURING THE FIRST THREE PHASES 

Figure 24 shows the number of TCP/IP requests sent by users on the honeypot 

during the first three phases. The number of requests per date was similar during the first 

and third phases, when more users had access to the system. At the highest point, we 

recorded over 35,000 TCP/IP requests on June 12.  

We did not observe any TCP/IP requests during phase 2. We speculate that these 

requests attempted to communicate back home with a bot over IRC (Internet Relay Chat). 

To test this theory, we could alter the host file on our honeypot system and define some 

of the addresses to be directed to our localhost, and then analyze how the bot was 

communicating.  



 43 

 

Figure 24.  Number of TCP/IP requests by date 

The top 10 IP addresses that users on our honeypot attempted to communicate 

with are shown in Figure 25. The address 162.115.18.200 had the greatest number of 

connection requests with 235,291. Among these top ten, we observed the outgoing port to 

be 5556 in all instances. This is a TCP port known to be used for malware 

communications. Port 443 was the incoming port for communications nine of 10 times. 

The attackers liked this trusted and reliable port because it is not usually blocked by 

firewalls, and would not appear suspicious to a user on the machine. The other port that 

was used significantly to communicate with the infected machine was 8888, a port used 

for TCP communications. 



 44 

 

Figure 25.  Top 10 TCP/IP requests 

D. PHASE 4 VS PHASES 1–3 

During Phase 4, we observed 520,603 events that confirmed our results from the 

first three phases.  

1. File Downloads and Commands 

During Phase 4, IP addresses originating from The Netherlands performed the 

most file downloads, as was the case during Phases 1-3. Figure 26 shows the number of 

downloads by country. We did not observe any addresses during Phase 4 that were in the 

top 10 during Phases 1-3. The address 109.236.91.85 from the Netherlands accounted for 

26 file downloads. 

 

Figure 26.  File downloads by country from Phase 4 



 45 

During Phase 4, attackers had similar interactions with the honeypot as they did 

during Phases 1 through 3, despite the gap in time. Attackers provided inputs to gain 

information about the system, removed logs, and traversed directories. Figure 27 shows 

the top 10 IP addresses that interacted with the honeypot by providing inputs during this 

phase. We observed that an address from Poland, 195.22.127.83, provided the honeypot 

with the most commands in both Phase 4, and Phases 1 through 3. 

 

Figure 27.  Top 10 addresses that provide inputs from Phase 4 

2. Login Attempts 

We recorded 916 successful login attempts and 253,021 unsuccessful login 

attempts during this phase. The top three usernames during this phase were “roots” 

“admin,” and “support,” among 1,944 usernames attempted. Figure 28 displays the top 10 

usernames used during Phase 4. We observed 53,672 passwords used. Figure 29 displays 

the top 10 passwords used. 

 



 46 

 

Figure 28.  Top 10 usernames from Phase 4 

 

Figure 29.  Top 10 passwords from Phase 4 

Based on what we observed during Phases 1 through 3, we created a rule during 

this phase to allow password “welc0me” to be used with usernames “root” and “admin”, 

however, we did not observe this password in the top 10. This is likely because all 

instances of “welc0me” were used with the username “root”. We assume this login 

credential has become a common combination in dictionary attacks. All successful logins 

attempts are displayed in Figure 30. 



 47 

 

Figure 30.  Successful login attempts with username and password 

The number of unique addresses attempting to login was similar to those recorded 

during Phases 1 through 3. Figure 31 displays the number of login attempts from 

countries with unique IP addresses. Germany and Iran appeared in this phase but did not 

appear in the top 10 in the earlier phases. 

 

Figure 31.  Top 10 countries with unique IP addresses 



 48 

We also recorded the number of login attempts by date, shown in Figure 32. The 

most occurrences fell on weekends. On August 6, 12, and 13 (weekend days), we 

recorded a total of 130,893 attempts, which accounted for roughly 52 percent of all login 

attempts. 

 

Figure 32.  Number of login attempts by date 

3. TCP/IP Requests 

We analyzed TCP/IP requests and the addresses they were attempting to connect 

to. During both Phase 4 and Phases 1 through 3, address 162.115.18.200 accounted for 

the most connection requests. We also observed 137.188.82.200 in both groups. The top 

10 connection requests during the first three phases are  displayed in Figure 33, and the 

top 10 connection requests during Phase 4 are displayed in Figure 34. During Phase 4, we 

noticed that a subnetwork located in the United States had four IP addresses in the top 10 

for outbound connection requests. 



 49 

 

Figure 33.  Top 10 connection requests from Phases 1-3 

 

Figure 34.  Top 10 connection requests from Phase 4 

 

 

 

 

 

 

 



 50 

E. FINGERPRINTING 

During the 4 phases, we did not record any ping commands, which allows users to 

fingerprint our honeypot before logging in. We were also curious to see whether users 

could gain access using the username “richard” with a valid password, then logout and 

reattempt login with the username “richard” and a different password. We did not 

observe this during the test, and no users were able to fingerprint our honeypot using this 

method.  

On June 4, we did observe one user conducting a Cowrie fingerprinting 

experiment. This user’s interaction with honeypot is displayed in Figure 35. Before the 

user interacted with the honeypot and closed the session, he wrote a message asking us to 

ignore this session. The three commands used afterward were uname –a, ls –d, and ulimit 

–help. Two of these commands gave the user a response, and one command was not 

supported by the honeypot. 

 
 

Figure 35.  Cowrie fingerprinting experiment 

We were not confident that this user was able to fingerprint our honeypot using 

these commands. The user more than likely got the results from the commands and 

compared them with other servers connect to the Internet. 

 

 

 

 



 51 

VI. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

This thesis tested a honeypot tool that took earlier fingerprinting methods into 

consideration. This was Cowrie, an SSH honeypot. We ran four phases that had different 

parameters for the login credential database. We also varied the times which the honeypot 

was running.  

The honeypot ran on an ISP (Internet Service Provider) network for two and a 

half months and logged over two million events. We focused on login attempts, 

interactions attackers had with the honeypot, file downloads, and TCP/IP requests sent by 

attackers. We concluded that different countries performed different activities with 

honeypot. China had the most login attempts, whereas the Netherlands preformed the 

most file downloads. The file downloads were from wget requests and were mainly .sh 

scripts. Poland interacted with the honeypot the most, as they provided the most 

commands.  

We left the account name of “richard” in the password file during Phase 1. During 

Phase 2, we altered the login database to only accept the username “richard”. We only 

recorded one login during this phase from a persistent user who failed to login 

previously. This confirmed that users did not use the login credentials to fingerprint the 

honeypot during this phase.  

We analyzed the effectiveness of different fingerprinting methods and 

incorporated some of these methods when we deployed the honeypot. Changes made 

between the experimental phases also added a degree of deception to the honeypot. Once 

we observed an attacker conducting their own fingerprinting experiment on our honeypot. 

By creating the login database for Phase 4 based on the results from Phases 1-3, 

we could confirm that data such as file downloads by country, login credentials used, and 

login attempts from unique address were similar. We also could discover interesting 

datasets in the TCP/IP requests and gather more results. 



 52 

B. FUTURE WORK 

Future work could analyze the scripts downloaded by attackers to the honeypot. 

These scripts can be run in a virtual environment to dynamically analyze them. If any 

interesting behavior is observed, analyzing the binary code may be useful.  

We observed an attacker who advertised it was conducting a Cowrie 

fingerprinting experiment. Future work could search for other methods to fingerprint the 

honeypot and apply the fixes accordingly. Afterward, running the updated honeypot may 

provide different results.  

Other future work could compare results when the honeypot is deployed with the 

default file system and when it is deployed with a different file system. User interactions 

may change when they are presented with different files to inspect. 



 53 

APPENDIX A. INSTALLING COWRIE 

Installing Dependencies 

$ sudo apt-get install git python-virtualenv libmpfr-dev libssl-dev libmpc-dev 

 libffi-dev build-essential libpython-dev python2.7-minimal authbind 

User Account 

$ sudo adduser --disabled-password cowrie 

$ sudo su – cowrie 

Cowire Code 

$ git clone http://github.com/micheloosterhof/cowrie 

Virtual Environment 

$ pwd 

$ virtualenv cowrie-env 

$ source cowrie-env/bin/activate 

Starting Cowrie 

$ bin/cowrie start 

Redirection to port 2222 

$ sudo iptables -t nat -A PREROUTING -p tcp --dport 22 -j REDIRECT --to-port  2222 



 54 

THIS PAGE INTENTIONALLY LEFT BLANK   



 55 

APPENDIX B. IP ADDRESSES TO COUNTRY NAMES 

#Ryan McCaughey 

#Takes IP addresses and writes the corresponding country to a new text file 

import maxminddb 

reader = maxminddb.open_database(‘GeoLite2-Country.mmdb’)    

InputFile=open(‘IPAddress.txt’, ‘r’)             #File that is to be opened. Holds IPs 

OutputFile =open(‘IPCountries.txt’, ‘w’) #File that will have the counties written 

 to 

for data in InputFile: 

 dataTest =(data.strip()) 

 output = (reader.get(dataTest)) 

 if output:  

  newoutput = output[‘country’] 

  names = newoutput[‘names’] 

  country = names[‘en’] 

  #print(country) 

  OutputFile.write(country + ‘\n’) 

  



 56 

THIS PAGE INTENTIONALLY LEFT BLANK 



 57 

APPENDIX C. ADDITIONAL TABLES AND FIGURES 

 

Figure 36.  Top 10 times users remained on the honeypot 

Table 11.   Top 10 commands used 

Command  Number of records 

cd /tmp 827 

cd /var/run 715 

cd / 711 

cd /mnt 711 

cd /root 711 

wget http://107.174.34.70/Swag.sh 338 

cat /bin/ls 330 

echo –en “//x31//x33//x33//x37” 330 

free –m 203 

uname 197 



 58 

 

Figure 37.  Login attempts from 212.165.72.102 



 59 

 

Figure 38.  Activity from 212.156.72.102 

 

Figure 39.  All file downloads by IP during Phase 4 



 60 

 

Figure 40.  Command inputs by date during Phase 4 

 

Figure 41.  Command inputs by country during Phase 4 



 61 

 

Figure 42.  Top 10 connection requests from Phase 4 

  



 62 

THIS PAGE INTENTIONALLY LEFT BLANK 



 63 

LIST OF REFERENCES 

 [1] Internet of things research study. (Nov. 2015). Hewlett Packard Enterprise. Palo 

Alto, CA. [Online]. Available: 

http://h20195.www2.hpe.com/V4/getpdf.aspx/4aa5-4759enw 

 [2] Q1 2017 state of the Internet / security report. (May 2017). Akamai Technologies. 

Cambridge, MA. [Online]. Available: 

https://www.akamai.com/us/en/multimedia/documents/state-of-the-Internet/q1-

2017-state-of-the-Internet-security-report.pdf 

 [3] E. Caltum and O. Segal. (Oct. 2016). SSHowDowN: Exploitation of IoT devices 

for launching mass-scale attack campaigns. Akamai Technologies. Cambridge, 

MA [Online]. Available: 

https://www.akamai.com/us/en/multimedia/documents/state-of-the-

Internet/sshowdown-exploitation-of-iot-devices-for-launching-mass-scale-attack-

campaigns.pdf 

 [4] L. Even. (2000, Jul. 12). What is a honeypot? SANS. [Online]. Available: 

https://www.sans.org/security-resources/idfaq/what-is-a-honeypot/1/9 

 [5] SSH Communications Security. (2017). SSH protocol. [Online]. Available: 

https://www.ssh.com/ssh/protocol/ 

 [6] J. Riden and C. Seifert. (2008, Feb. 14). A guide to different kinds of honeypots. 

[Online]. Available: https://www.symantec.com/connect/articles/guide-different-

kinds-honeypots  

[7] L. Spitzner. (2013, Jan. 23). Honeypots—Definitions and value of honeypots. 

Windows Security [Online]. Available: 

http://www.windowsecurity.com/whitepapers/honeypots/Honeypots_Definitions_

and_Value_of_Honeypots.html 

[8] LM Security. (2016. Feb. 11). How malware detects virtualized environment (and 

its countermeasures).. [Online]. Available: 

http://resources.infosecinstitute.com/how-malware-detects-virtualized-

environment-and-its-countermeasures-an-overview/#gref 

[9] G. Kelly and D. Gan, “Analysis of attacks using a honeypot,” in Proceedings of 

Cyberforensics, 2014, pp. 65–72. 

[10] D. Watson. (2015, Aug. 06). Low interaction honeypots revisited. The Honeynet 

Project. [Online]. Available: https://www.honeynet.org/node/1267 

https://www.ssh.com/ssh/protocol/
http://www.windowsecurity.com/whitepapers/honeypots/Honeypots_Definitions_and_Value_of_Honeypots.html
http://www.windowsecurity.com/whitepapers/honeypots/Honeypots_Definitions_and_Value_of_Honeypots.html
http://resources.infosecinstitute.com/how-malware-detects-virtualized-environment-and-its-countermeasures-an-overview/#gref
http://resources.infosecinstitute.com/how-malware-detects-virtualized-environment-and-its-countermeasures-an-overview/#gref
https://www.honeynet.org/node/1267


 64 

[11] A. Yahyaoui, “Testing deceptive honeypots,” M.S thesis, Dept. Comp. Sci., Naval 

Postgraduate School, Monterey, CA, 2014 

[12] M. Oosterhof. Cowrie honeypot. [Online]. Available: 

http://www.micheloosterhof.com/cowrie/ 

[13] Honeynet Project. (2016, May 31). Know your enemy: Honeynets. [Online]. 

Available: http://old.honeynet.org/papers/honeynet/index.html 

[14] R.C. Joshi and A. Sardana, “Honeypots,” in Honeypots: A New Paradigm to 

Information Security, R.C. Joshi and A. Sardana, Eds. Boca Raton, FL: Science 

Publishers, pp. 1–37. 

[15] E. Tan. (2014, Feb. 13). Dionaea—A malware capturing honeypot. [Online]. 

Available: https://www.edgis-security.org/honeypot/dionaea/ 

[16]  R. N. Dahbul, C. Lim and J. Purnama, “Enhancing honeypot deception capability 

through network service fingerprinting,” in International Conference on 

Computing and Applied Informatics, 2016, vol. 801, no. 1. 

[17] A. Morris. (2014, Dec. 12). Detecting Kippo SSH honeypots, bypassing patches, 

and all that jazz. [Online]. Available: http://morris.sc/detecting-kippo-ssh-

honeypots/ 

[18]  A. Morris. Kippo SSH honeypot detector. [Online]. Available: 

https://www.rapid7.com/db/modules/auxiliary/scanner/ssh/detect_kippo 

[19] M. Foster. (2013, Apr. 15). Running a Kippo honeypot: Part one. [Online]. 

Available: https://hackerific.net/2013/04/15/running-a-kippo-honeypot/ 

[20] M. Oosterhof. (n.d.). Cowrie SSH/telnet honeypot. [Online]. Available: 

https://github.com/micheloosterhof/cowrie 

[21] M. Oosterhof. (n.d.). Forwarding.py [Online]. Available: 

https://github.com/micheloosterhof/cowrie/blob/master/cowrie/ssh/forwarding.py 

[22] Tableau. (n.d.). Business intelligence and analytics. [Online] Available: 

https://www.tableau.com/ 

[23] MaxMind. (n.d). Python MaxMind DB reader extension. [Online] Available: 

https://github.com/maxmind/MaxMind-DB-Reader-python 

  

http://www.micheloosterhof.com/cowrie/
http://old.honeynet.org/papers/honeynet/index.html
https://www.edgis-security.org/honeypot/dionaea/
http://morris.sc/detecting-kippo-ssh-honeypots/
http://morris.sc/detecting-kippo-ssh-honeypots/
https://www.rapid7.com/db/modules/auxiliary/scanner/ssh/detect_kippo
https://hackerific.net/2013/04/15/running-a-kippo-honeypot/
https://github.com/micheloosterhof/cowrie
https://github.com/micheloosterhof/cowrie/blob/master/cowrie/ssh/forwarding.py
https://www.tableau.com/
https://github.com/maxmind/MaxMind-DB-Reader-python


 65 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 

 Ft. Belvoir, Virginia 

 

2. Dudley Knox Library 

 Naval Postgraduate School 

 Monterey, California 


