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ABSTRACT

The goal of this research is to provide a way for frontline troops to securely store and exchange

sensitive information on a network of mobile devices with resiliency. The �rst portion of the

thesis is the design of a �le system to meet military mission speci�c security and resiliency

requirements. The design integrates advanced concepts including erasure coding, Shamir's

threshold based secret sharing algorithm, and symmetric AES cryptography. The resulting sys-

tem supports two important properties: (1) data can be recovered only if some minimum number

of devices are accessible, and (2) sensitive data remains protected even after a small number of

devices are compromised. The second part of the thesis is to implement the design on Android

mobile devices and demonstrate the system under real world conditions. We implement and

demonstrate a functional version of MDFS on Android hardware. Due to the device's limited

resources, there are some issues that must be explored before MDFS could be deployed as a

viable distributed �le system.
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CHAPTER 1:
Introduction

1.1 Problem
Mobile devices can be harnessed to increase battle�eld awareness. Recent research has focused

on the ability to provision and �eld mobile devices to increase communications and situational

awareness using next generation tactical radio technologies such as JTRS and mobile network-

ing technologies such as WiFi, 3G, WiMax or LTE. These mobile devices provide a platform

for creating mobile networks capable of distributing tactically relevant information to the bat-

tle�eld [1]. The ability to communicate in almost any environment is ubiquitous. Secure and

resilient storage of sensitive data is often vital to effective communication. These mobile de-

vices provide a platform for communication of sensitive information, but at a potential cost to

mission and security. This is particularly true in a mobile environment where the underlying ar-

chitecture is unpredictable. Data can be unreachable due to unreliable communication channels

or compromised due to loss or capture of a device.

Suppose a small team of soldiers are on a mission where access to and sharing of data is critical

to the success of the mission. The soldiers require a device capable of transmitting and storing

sensitive data, but the loss of one or more of those devices could prove devastating if the enemy

is able to gain access to the sensitive data. Encryption on the mobile device could solve this

problem, but it does not address the issue that the data stored on the lost device is no longer

available to the rest of the team. Encryption alone does not solve this problem.

Current approaches to data sharing tend to focus on transmission security. Transmission secu-

rity addresses one important aspect of the overall security issue, but offers no solution to data

resiliency nor data security when a device is captured. This thesis combines several concepts,

including Shamir's threshold based secret sharing scheme, erasure codes, and AES encryption,

in a novel way to create a functional design for secure and resilient data sharing in a collection

of mobile devices. Currently, when a mobile device is lost, either a self-destruct mechanism

or a so-called “remote kill” method is required to destroy sensitive data on that device. Both

solutions have drawbacks. Self-destruct is a relatively expensive solution. Most COTS devices

do not support self-destruct. Remote kill fails if the lost device is no longer connected to the

network. This thesis provides an alternative solution. It guarantees that as long as the number
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of compromised devices is below a precon�gured threshold, sensitive data is protected. At the

same time, the solution supports resiliency by duplicating encrypted fragments of the same data

in multiple devices. We propose that data can be stored in fragments across many devices in

such a way that only a subset of those devices are required to recover the original �le. The key

difference between this approach and previous solutions is the use of a one-time session key that

requires no pre-sharing and the use of a distributed directory service capable of withstanding

the loss of one or more nodes. MDFS requires minimal network infrastructure to function.

In a mobile network, there are two classes of devices: content generators and content con-

sumers. One solution to �le distribution is accomplished by complete replication and relies on

the content generator to store and distribute �les to content consumers. However, the storage

of complete �les on a device presents security risks if the device is lost or captured. It is either

insecure, or requires complex key management schemes.

We propose a Mobile Distributed File System (MDFS) with three components: a distributed

directory service, a read function, and a write function. These functions will leverage the storage

capacity of the collective devices to securely store store �les distributed amongst multiple nodes.

When designing MDFS, we made the following assumptions:

� We assume an external security mechanism such that physical access to the network is

considered authorization for access to MDFS. MDFS itself does not provide authentica-

tion.

� We assume wireless security, such as WPA2, to prevent an adversary from passively sniff-

ing data transmitted between nodes.

� MDFS is designed to function on a collection of reachable mobile nodes. As a result, we

assume the maximum number of nodes to be less than 100.

� Because MDFS will operate on mobile devices with limited resources, we assume �le

sizes will be less than 5MB in size.

Rather than transmitting complete copies of a �le, content generators will encode the �le into

fragments using MDFS and distribute those fragments in the network. Once the �le is stored in

the network, meaning all fragments have been successfully stored, the local copy of the �le can
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be discarded. In order to retrieve the �le, a content consumer must gather some subset of the

�le's fragments to decode the original �le.

This approach to network storage offers the following advantages.

� A single device that is no longer connected to the collection of reachable mobile devices

does not have the ability to recover any information about the original �le as one fragment

is less than the minimum threshold required to recover the �le. This precludes the need for

a remote kill function. If the device is still connected to the network, the remaining nodes

can ignore the device. By refusing to respond to the compromised device, the remaining

devices prevent the compromised device from obtaining the required threshold number

of fragments. This is stronger than simply encrypting data on the device because even if

a device operator did somehow know the encryption key, they cannot be compelled to di-

vulge information stored on the phone without the cooperation of the minimum threshold

of other devices.

� Even if the device that generated the �le is no longer connected to the network, other

authorized devices will still be able to recover the �le as long as the minimum threshold

number of devices are still connected to the network. Authorized content consumers will

still have access to the data even if the content creator is no longer attached to the network.

In order to achieve these advantages, MDFS provides two basic primitives: write() and read().

This section provides a brief introduction to the desired functionality. For a more complete

description, see Section 3.2.2 and Section 3.2.3.

write

The content generator has some source �le,M , to be stored in the distributed storage system. In

order to distributeM , the content generator sendsM to thewrite() function. Thewrite()

function generates a session-key,S, and generates ciphertext,C, by encryptingM with S. It

then utilizes a Reed-Solomon function,encode() , that breaksC into n encoded fragments

labeledc0::cn� 1. It also uses Shamir's Secret Sharing algorithm to breakS into n fragments

labeleds0::sn� 1. The threshold for recovery of the ciphertext and the key isk. The function

returns a setE of encoded fragments whereE = f (c0; s0); (c1; s1); :::; (cn� 1; sn� 1)g. ci is a

fragment ofC andsi is a fragment ofS. Each unique fragment,(ci ; si ) 2 E, will be distributed

to a device connected to the network.
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read

Files can be uniquely identi�ed by a combination of their �lename and timestamp. The direc-

tory service provides alist() function that returns the �lename, timestamp,n value, and

k value for each �le. Section 3.2.1 provides a more details description oflist() . When a

content consumer wants to reconstructM , it sends the �lename and timestamp forM to the

read() function. Theread() function can use the �lename and timestamp to query the di-

rectory service for the addresses of the nodes that hold fragments ofM . Theread() function

gathersk0, wherek0 � k, fragments from other devices to generate the setR whereR � E

and jRj � k. R containsk0 unique Reed-Solomon encoded fragments ofC such thatR =

f (c0; s0); (c1; s1); :::; (ck0� 1; sk0� 1)g. Theread() function utilizes the functiondecode( R) .

The decode function must �rst recoverC by utilizing a functiondecode( c0; c1; :::; ck� 1) to

reconstructC from the FEC encoded fragments. It is also able to generate the decryption key,

S, by applying Shamir's secret sharing algorithm to the key fragments distributed with each �le

fragment. The function decodesC with S to recoverM to be returned by theread() function.

If jRj < k , decode( R) is unable to construct or infer any information aboutM .

Any fragment,(ci ; si ), or subset of fragments with size less thank is insuf�cient to reconstruct

M or infer any information aboutM . Figures 1.1 and 1.2 show an overview of how MDFS

functions. In Figure 1.1, Node 1 is the content generator. Ifn = 7 andk = 4, Node 1 generate

seven fragments and distributes fragments to all nodes, including itself. In Figure 1.2, Node 3 is

the content consumer and gathers four fragments from Nodes 2, 3, 4, and 5. Node 1, the content

generator, and Node 7 are no longer attached, but Node 3 is still able to gather the minimum

threshold number of fragments necessary to reconstruct the �le written to MDFS by Node 1.

This example omits the directory service details that provide the necessary information to store

and retrieve the �le fragments.

1.2 Research Questions
How can (k, n) threshold security be used to store �les securely in a distributed �le system

running on a mobile wireless network? The �le system must maintain the following properties:

� At leastk fragments are needed to recover the original �le. Anyk � 1 fragments yields

no information about the original �le.

� Once data is written to the network, authorized users will have access to that data even if
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Figure 1.1: MDFS Write (n = 7, k =
4)

Figure 1.2: MDFS Read (k = 4) with
loss of two devices

the originator of the �le is no longer connected.

� The system is entirely mobile and distributed. It requires no static infrastructure to oper-

ate.

MDFS was prototyped in the Java programming language on Android mobile devices running

Android 2.2.

1.3 Thesis Organization
Chapter 1: Introduction. This chapter provides a brief introduction to distributed storage along

with a very high level overview of required functionality for MDFS. In addition, it outlines the

research questions that will be explored in this thesis.

Chapter 2: Background. The background chapter provides a general overview of current tech-

nologies that are used for distributed storage. It will compare several similar approaches to

distributed storage and explain how they differ from the solution proposed in this thesis.
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Chapter 3: Concept and Design. This chapter discusses the design of the thesis topic in detail.

Chapter 4: Implementation and Experimental Results. This chapter discusses the implemen-

tation of the design as outlined in Chapter 3 on Android devices. Deviations from concept or

design will be discussed.

Chapter 5: Conclusion and Future Work. This thesis topic has many potential uses. This chapter

includes possible avenues for future research and improvements to the required functionality.
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CHAPTER 2:
Background

2.1 Distributed Storage Basics
The subject of distributed storage has grown in relevance as large data centers emerge to serve

storage needs for companies like Google and Amazon. These data centers are typically large

buildings with solid infrastructure requirements. Because space and power are readily available,

these data centers are able to store data in multiple copies across many servers. For example,

Google uses BigTable and MapReduce to store, access, and synchronize multiple copies of data

across multiple data centers [2] [3].

There are many approaches to distributed storage. Each approach aims to solve a different

problem and each has strengths and weaknesses that make it suitable for the given solution.

Table 2.1 provides a quick comparison of different approaches to distributed storage. Four dif-

ferent projects are listed across the top. The vertical axis lists characteristics that can be used

to differentiate each implementation.Encryptedrefers to whether the particular implementa-

tion employs encryption before storing fragments of data.Erasure codedis a complement to

complete replication. Pre-share keyrefers to whether the implementation requires a key to be

pre-shared before encryption.Relies on external authenticationrefers to whether or not access

to fragments or shares is restricted by the implementation or relies on an external authentication

mechanism.Scales to large sizesrefers to the ability of the �lesystem to deal with massive

storage on the petabyte scale. Bigtable and GFS were designed with type of scaling in mind.

Relies on external infrastructure refers to the external components required to implement the

distributed storage. Bigtable relies on the most external infrastructure, but both Tahoe-LAFS

and Stealth require �xed infrastructure to function.

Google uses a combination of the Google File System (GFS) and Bigtable to achieve their dis-

tributed storage needs [2] [4]. GFS is the distributed storage �le system and Bigtable provides

the means to manage structured data stored on GFS. Google built their infrastructure using com-

modity components and their primary assumption when designing GFS and Bigtable is that the

components will fail regularly. Reliability and availability played a key role when designing

and implementing GFS. Google's distributed storage system has many desirable properties, but

it relies on many smaller subsystems and is used in large data warehouses storing very large
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MDFS Tahoe-LAFS
Unisys
Stealth

GFS &
Bigtable

Encrypted ! ! !

Erasure coded ! ! !

Complete replication !

Pre-share key ! !

Relies on external authentication ! !

Scales to large sizes !

Relies on external infrastructure ! ! !

Table 2.1: Distributed Storage Comparison

datasets. GFS stores �les in �xed-size chunks that are globally identi�ed by a 64-bit chunk

handle.

A GFS cluster contains onemasterserver and multiplechunkservers. Themasterserver stores

the metadata about the chunks and access control information. Thechunkserversstore the

actual chunks which are referenced by their handle. When a client needs access to a chunk,

they poll themasterserver for the location of the chunk and then perform their I/O operations

directly with thechunkserverto prevent themasterserver from becoming a bottleneck. The

masterperiodically polls eachchunkserverwith heartbeat messages to give instruction and

collect state.

GFS and Bigtable offer many useful insights into how to design a distributed storage �le sys-

tem, but they are clearly designed for a different domain. MDFS must operate with very few

resources and does not need to handle very large datasets. Additionally, Google datacenters are

tightly controlled and data security relies a great deal on physical security to prevent unautho-

rized access. MDFS must provide data security at the fragment level since it cannot rely on

physical security for access control.

Tahoe-LAFS is an open source project that uses the zfec erasure code library to securely store

data on multiple servers [5]. It uses distributed storage to provide “provider independent secu-

rity” cloud based storage. The goal of Tahoe-LAFS is to provide secure and resilient storage

on multiple drives that is resistant to drive failure or malicious attack. A user runs a gateway

server on their own network that takes care of encryption and integrity checks before storing

erasure coded fragments on external disks. Tahoe-LAFS uses an encryption key stored at the

gateway to encrypt the data and then stores erasure encoded fragments of the ciphertext, along
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with a hash of the key used to encrypt the fragment on multiple drives [6]. Figure 2.1 provides

and overview of Tahoe-LAFS functionality. The Tahoe-LAFS Client sends an unencrypted �le

via a web API to the HTTPS Server. The HTTPS Server passes the �le off to the Tahoe-LAFS

Storage client which encrypts the �le and then uses erasure coding to store fragments of the �le

on multiple storage drives.

Figure 2.1: Overview of Tahoe-LAFS

Tahoe-LAFS relies on signi�cant infrastructure compared to MDFS, so it is well suited for

situations were infrastructure is available. The key difference in approach to distributed storage

between Tahoe-LAFS and MDFS is in how the directory service is implemented and how the

encryption session key is generated and distributed. MDFS generates a unique session key for

each �le stored and distributes fragments of the key with fragments of the ciphertext. Tahoe-

LAFS relies on a gateway which presents a single point of failure. Tahoe-LAFS mitigates this

by making the gateway easy to switch, but MDFS is designed to work without the need for

infrastructure. By generating session keys for each encryption and storing the key with the

fragments, MDFS eliminates the need to maintain a gateway between the devices accessing the

storage medium and the storage medium itself.

While MDFS does not use Pretty Good Privacy (PGP) in its implementation, we explored the

combination of symmetric and asymmetric encryption employed by PGP. In order to ensure

that individual fragments do not reveal information aboutM , it is necessary to either encrypt

M prior to erasure encoding it, or encrypt the fragments individually afterM has been erasure
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encoded. Public-key encryption is not a viable option as each fragment will go to different

nodes where the destination is not predetermined. Key management would be complex in this

scenario. Additionally, public-key encryption has several orders of magnitude higher costs

than symmetric encryption making it a less desirable solution on resource constrained mobile

devices. Symmetric encryption has signi�cant performance advantages over asymmetric en-

cryption, but each node would have to maintain a copy of the encryption key, which would be

insecure if one of the nodes were compromised.

Pretty Good Privacy (PGP) uses a combination of public-key and conventional encryption to

provide security services for electronic mail messages and data �les [7]. It works by generating

a session key and symmetrically encrypting mail or data. Then it uses the public key of the re-

cipient to encrypt the much smaller session key and sends the symmetrically encrypted message

along with the privately encrypted session key. PGP takes advantage of the relative ef�ciency

of symmetric encryption while providing the bene�ts of public-key encryption. MDFS adapted

adapted PGP's use of a session key to symmetrically encrypt data, but uses a different method

to distribute the session key that doesn't employ PKI.

Towards the end of our implementation phase, we became aware of another very similar dis-

tributed storage solution system called Stealth Technology. Stealth was introduced by Unisys in

2009. Unisys has taken an approach similar to MDFS for distributed storage, but their solution

aims to solve a completely different problem. Stealth uses distributed storage and encryption to

allow an organization to simulate multi-level security access based on workgroup af�liations.

Stealth uses the Multi-Level Security Tunneling Protocol (MLSTP) at a gateway to break data

into fragments and then encrypts those fragments using a session key before storing the frag-

ments in cloud storage. Encryption is accomplished using a technology called SecureParser

which distributes the key as fragments with each share of data similar to the way MDFS stores

the key with its fragments. Stealth is similar to MDFS in that access to the shares acts as the

authority to view the data. However, MDFS is implemented on relatively constrained resources

and does not rely on gateway servers or tunneling protocols to achieve security. MDFS's ability

to operate without infrastructure in a wireless environment differentiates it from Stealth.

MDFS's primary differentiation from other implementations is its distributed architecture that

relies on very little static infrastructure. MDFS is designed to meet the challenges of both

security and resiliency in a mobile environment by implementing a robust �le and fragment

management system capable of storing and retrieving fragments on mobile devices as needed.
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2.2 Advanced Encryption Standard (AES)
AES is a Federal Information Processing Standard (FIPS) approved cryptographic block cipher

standard used to encrypt and decrypt electronic data. It processes 128 bit data blocks using

cipher keys with lengths of 128, 192, or 256 bits. AES encryption takes a plaintext message

and a key to encrypt the plaintext message into an unintelligible stream called ciphertext. AES

decryption take the ciphertext and the same key to decrypt the ciphertext into the original plain-

text message [8]. A Java implementation of AES is included with the Java SDK as part of the

Java Cryptography Extension.

2.3 Erasure Codes
Erasure codes are forward error correction (FEC) codes that translate some messageM of

lengthjM j into a coded message with a length greater thanjM j such thatM can be recovered

from some subset of the coded message. In 1960, Reed and Solomon introduced a Maximum

Distance Separable (MDS) algorithm [9]. An MDS erasure codes stores a messageM in n

fragments of sizejM j=k such that anyk fragments is suf�cient to reconstructM [10].

Figure 2.2 shows an example of an erasure coding wheren = 5 andk = 3. The original �le is

encoded into 5 fragments. Fragments 3 and 4 are lost, but fragments 1, 2, and 5 remain. Since

the threshold for recover is 3, there are suf�cient fragments remaining to recover the original

�le.

Erasure codes have the desired threshold recovery property, meaning thatk or more fragments

out of n enable the reconstruction ofM , but they do not offer security of the individual frag-

ments. One of the requirements of MDFS is that any fragmentmi or subset of fragments less

thank is insuf�cient to reconstructM or infer any information aboutM . Unfortunately, some of

the fragments generated by Reed-Solomon encoding are just blocks of the original data. There-

fore, if an adversary were to capture some of the fragments, they would be able to infer partial

information aboutM , which does not meet the requirements of the system.

The use of erasure codes for storage resiliency is not new. The Apache Hadoop Disk File

System (HDFS) project has implemented a plugin to allow the use of erasure codes to reduce

disk storage requirements. The HDFS speci�cation requires the �lesystem to keep three copies

all data. However, a patch was introduced to HDFS to implement erasure codes that effectively

maintain a replication factor of three while reducing disk storage requirements to 2 [11]. Erasure

codes support the resiliency requirement for MDFS, but do nothing for the security requirement.
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Figure 2.2: (3, 5) Erasure Code

2.4 Shamir's Secret Sharing Algorithm
Fragment destinations are not predetermined, so public key management would be incredibly

dif�cult. Public key dissemination and management between arbitrary nodes is both a complex

process and a likely point of failure. Furthermore, it would be an undesirable side effect to

require the receiving node to decrypt the fragments and store them unencrypted on their physical

memory. We would like to take advantage of the ef�ciency of symmetric encryption, without

the complication added by public-key distribution.

Shamir's Secret Sharing Algorithm is closely related to Reed-Solomon and other MDS erasure

codes [12]. First discussed by Adi Shamir in 1979, he explains how to distribute information

using threshold security. In his example, he describes a situation where a company, with multi-

ple authorized executives, would require at least three signatures to sign a corporate check. This

system is an example of(3; n) threshold security.

Shamir's algorithm has the properties of security and resiliency required of MDFS, but is not
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ef�cient. It suffers from the fact that each fragment is larger than the original message. This

would increase network activity to unacceptable levels for relatively small �les.

2.5 Putting it Together
By replacing the public key step of PGP with Shamir's Secret Sharing Algorithm, we can gen-

erate a session key and encode it using the samen andk values as used for the Reed Solomon

encoding. We can generate a session key, encryptM to generate the encrypted �leC, encode

n Reed Solomon encoded fragments ofC, generaten key fragments using Shamir's algorithm,

and distributen fragments containers with a �le fragment and a key fragment each.

Whenk fragment containers are assembled, the node hask �le fragments andk key fragments

which is suf�cient for recovery. The node can decode the key,S, using the key fragments. It

can erasure decode the �le fragments to recoverC. and then useS to decodeC and recoverM

whereM = AESS(C).
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CHAPTER 3:
Concept and Design

3.1 Concept
MDFS targets both the secure storage and the secure dissemination of data. In a mobile ad-hoc

network, there are two classes of devices: content generators and content consumers. One im-

plementation of distributed storage is accomplished by storing multiple complete replications

and relies on signi�cant infrastructure to organize and retrieve data. Google's Bigtable is an ex-

ample of this implementation. One common distribution implementation relies on the source to

store and distribute �les to receivers [2]. Twiddlenet is a mobile content sharing system devel-

oped at Naval Postgraduate School to facilitate rapid dissemination of information between �rst

responders in a crisis [13]. It accomplishes this task by allowing content consumers to subscribe

to content creators via atom feeds. When a content consumer sees a �le in an atom feed, it sends

a request to the content creator and a traditional �le transfer is initiated. Twiddlenet provides

a convenient means of sharing data in a mobile environment, but it lacks security features and

redundancy necessary to secure the data.

Storing multiple copies of data is not practical with the limited storage available to mobile de-

vices. Relying on the content generator to provide copies of data to each requestor does not

meet the resiliency requirements of MDFS. In order to address these issues, we propose a Mo-

bile Distributed File System (MDFS) that leverages a robust directory service, AES symmetric

encryption, erasure coding, and Shamir's secret sharing algorithm to achieve security of data at

rest while providing resiliency, maintaining usability, and reducing end-user complexity.

3.1.1 Requirements
Security

One of the primary requirements of MDFS is that data at rest is secured against unauthorized

disclosure. Storage of complete sensitive �les on the device constitutes a security risk if the

device is in the physical possession of an adversary.

In order to address this requirement, MDFS uses 256 bit AES encryption and employs a (k, n)

threshold scheme [12]. MDFS takes some �leM and divides it inton piecesm0; m1; :::; mn� 1,

wheremi = ( ci ; si ), such that:
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1. M can be easily computed with knowledge of anyk (where1 < k � n) or moremi

fragments

2. M is completely undeterminable with knowledge of anyk � 1 or fewermi fragments

In order to recoverM , a node requires the cooperation of at leastk nodes. Since anyk � 1

nodes leavesM completely undetermined, the requirement that no information aboutM can be

determined by analyzing any one fragment is also satis�ed.

Resiliency and Ef�ciency

Resiliency addresses the requirement that a lost node does not prevent other authorized nodes

from accessing data. The storage of complete �les on any one mobile device means that all

content created by that mobile device is gone if it is lost or destroyed. By adopting Shamir's

convention of settingn = 2k� 1 to satisfy the security requirement as discussed in Section 3.1.1,

we are able to lose up tok � 1 nodes while still maintaining the ability to recoverM .

Usability

The �lesystem is designed as a low level library that exports a simple API to store and retrieve

�les. The complex task of fragment generation and tracking is taken care of by MDFS's di-

rectory service so the application user is not exposed to fragment management. The API is

simpli�ed such that thewrite() method takes a �lename, an value, and ak value as argu-

ments. Thelist() function requires no arguments. Theread() function takes a �lename

and timestamp as arguments. The �lename and timestamp arguments can be retrieved from the

directory service'slist() method.

3.2 Design
Each fragment is packaged in a fragment container (Figure 3.1) that contains the fragment bits

along with metadata required by the erasure coding library and the Shamir coding library. The

fragment container contains a method to generate a unique MD5 fragment hash based on the

�lename, creation timestamp, and the fragment number to identify individual fragments within

a �le. It also provides a method to generate a �le hash based on just the �lename and creation

timestamp. This allows MDFS to ensure that fragments with different fragment hash values

are from the same �le. In other words, fragments with the same �le hash value, but a different

fragment hash value are unique fragments of the same �le.
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We chose to use the �le's timestamp in the hash rather than some other metadata for a number of

reasons. The original motivation was that it was readily available for all �les and the likelihood

of two different �les having the same �lename and the exact same timestamp is remote. It

provides an easy way to differentiate between two �les with the same �lename. Furthermore,

it allows for future development where �les could be updated and versioned based on their

timestamp. In other words, if a �le is updated, it would have a more recent timestamp than

the original. If the updated �le's metadata contains a reference to the original �le hash, then

�le versioning over time could be maintained. Figure 3.2 shows how one �le could be updated

with references to the original for versioning. As our initial design of MDFS does not include

versioning control, this implementation has not been designed into MDFS, but is intended to

explain our motivation for using the timestamp in the hash function over other metadata.

Figure 3.1: Fragment Container

The fragment container class provides methods,getFragmentHash() andgetFileHash() ,

to obtain the hash values of �le container objects. Additionally, the fragment container class
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Figure 3.2

provides static methods,generateFragmentHash(filename, timestamp, fragNum)

andgenerateFileHash(filename, timestamp) to generate the hash values given

the �lename, timestamp, and fragment number for use in lookup operations. This hash scheme

forms the basis for how the directory service manages �les and how theread() andwrite()

functions use the directory service to access fragments.

The proposed �le system contains three major design components for mobile �le distribution:

read, write, and a directory service. During awrite() , for each fragment successfully stored

on a remote node, the content generator registers the fragment hash value and its destination

address with the directory service. When all fragments have been successfully written, the

content generator registers the �lename, timestamp, source,n, andk values as metadata with

the directory service.

A content consumer can poll the directory service for a current list of �les and then request

one of those �les. When the content consumer requests a list of �les, the directory service will

return a list containing �lenames, timestamps, source description,n, andk values. Given the

�lename, and timestamp, theread() function can use the static methods from the fragment

container class to generate fragment hash values from0 ! n � 1 and request the location of
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those fragments from the directory service. The content consumer can then retrievek fragments

from other nodes and recoverM .

3.2.1 Directory Service
The directory service is the foundation for the other pieces of MDFS to function properly. In

order to securely encode and decode distributed �le fragments that meet the security require-

ments outlined in Section 3.1.1, it is necessary to create a robust directory service capable of

managing the fragments.

The directory service is a distributed information store that is referenced by thewrite()

function to register �les and fragments. It keeps track of which �les are written to MDFS

and where each fragment associated with each �le is located. Theread() function uses the

directory service to request a list of �les stored in MDFS and to �nd the location of fragments

associated with a particular �le. It is important that the directory service be distributed and

suf�ciently redundant to avoid becoming a single point of failure for the entire system.

Each node will maintain its own directory service database (DSDB). This database consists of

three main tables. The�les table holds the �lename, timestamp, source description,n, and

k values for each �le present in the system. Thefragments table holds the fragment hash

value and address of the node that holds that fragment for each fragment. Finally, as each node

connects to the network, it will register as an active node in the directory service. The directory

service will maintain a list of neighbors and will respond with a list ofn addresses when queried

for storage locations by thewrite() function. Identical copies of the database are maintained

at each node. Updates to the database are accomplished using multicast �ooding to all nodes

listening on a multicast channel.

Directory Service Methods to Support the Write Function

As thewrite() function executes, the content generator is responsible for updating the direc-

tory service with information about the fragments and the �le. Once thewrite() function has

successfully completed, the directory service will have an updated �le list containing an entry

for the new �le and the address where each fragment associated with that �le is stored. The

following functions provide this functionality.

void registerFragment(String fragHash, String location)

After each successful transfer of a fragment, the content generator will register the fragment

hash value and storage location with the directory service. The directory service will store this
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information in a database so that it can provide the location of a fragment given its fragment

hash value during theread() method.

void registerFile(String filename, long timestamp,

int n, int k, String source, String[] filterKeywords )

Once alln fragments have been written to remote nodes and registered with the directory ser-

vice, the content generator will �nish thewrite() function by registering the �lename, times-

tamp,n value,k value, source, and keywords with the directory service for inclusion in its list

of �les.

The filterKeywords parameter is optional array of strings and allows the user to de�ne

keywords that can be used to search the directory service. If no keywords are provided, it

defaults to the source.

String[] getActiveNodes(int n)

Thewrite() function requires a list of available active nodes. As each node joins the network,

they register with the directory service as an available active node. This function returns a list

of node addresses corresponding ton active node entries. The nodes returned by this function

are selected such that fragment storage is balance across all active nodes.

Directory Service Methods to Support the Read Function

DataRecord[] list( String[] filterKeywords )

This method returns an array of DataRecords containing the �lename, creation timestamp, �lter

keywords as a String array,n, and k values for each �le that has been registered with the

directory service. The source description is for information purposes only and is not required

to retrieve the fragment.

The filterKeywords parameter is an optional list of strings and allows the user to pass a

parameter to thelist() function to �lter the results. The strings infilterKeywords will

be compared to the strings infilterKeywords in the DataRecord object for each �le and

only return matching results. If the user provides no keywords, thelist() function returns

all �le entries.

String whoHasFragment(String fragmentHash)

Once the content consumer has selected a �le from the list of �les provided by the directory

service, it can provide the �lename, timestamp, and fragment number to the static methods of

the fragment container in order to generate fragment hash values that can be used to request the
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location of �le fragments. The directory service provides the address of the node that has the

fragment so the content consumer can request the fragment directly from the active node.

3.2.2 Write Function
1. The sender has some �leM to distribute

2. The sender picks the number of fragments to generate,n, and the threshold for recovery,

k

3. The sender generates a random session key,S, for symmetric AES encryption of this �le

only

4. The sender symmetrically encrypts �leM with S to generate an encrypted �le,C where

C = AESS(M )

5. The sender encodes the encrypted �leC into (k, n) fragments using Reed-Solomon era-

sure encoding resulting inf c0; c1; :::; cn� 1g

6. The sender encodesS into (k, n) fragments using Shamir's secret sharing algorithm re-

sulting inf s0; s1; :::; sn� 1g

7. The sender packages �le fragments and key fragments to createn fragment containers

such thatf (c0; s0); (c1; s1); :::; (cn� 1; sn� 1)g

8. The sender requests the address ofn available active nodes from the directory service

9. The sender distributes fragment containers ton neighbors and deletes the local complete

copy ofM

In order for the write to be successful,n fragments must be written to the system. The content

generator will requestn addresses from the directory service. The content generator creates an

integer arraysuccess[ n] and initialized to all1s to keep track of which fragments have been

successfully written to the system. An integer variablefragmentRemaining is initialized

to n to keep track of how many fragment still need to be transmitted. The content generator

writes the fragments, contained in a fragment vector from0 ! (n � 1), to other nodes. If

it is successful,success[current index] is set to 0 to indicate the fragment has been

successfully transmitted, the fragment hash value and destination address are registered with the

directory service, andfragmentsRemaining is decremented by 1. The write loop continues
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until fragmentsRemaining = 0, indicating that all fragments were written successfully.

This process is shown as pseudocode in Figure 3.3.

WRITE(byte[] �le, DataRecord record, String[] neighbors,String[] �lterKeywords)

1 int index= 0
2 int fragmentsRemaining= n
3 DirectoryService ds= DirectoryService.getInstance()
4 fragments[n] = MDFS.getFragments(File,n, k)

// returns a Vector< FragmentContainer> of sizen
5 let success[0::n � 1] be an array of 1s
6 while fragmentsRemaining> 0
7 if success[index]== 1 // only send if haven't sent before
8 send(fragment[i ], neighbors[i ])
9 if send== success

10 success[index]= 0
11 ds.registerFragment(fragments[i ].getFragHash(), neighbors[i ])

// registers the fragment hash value and the destination
// address with the directory service

12 fragmentsRemaining= fragmentsRemaining� 1
13 index= (index + 1) MODn // loops from 0 ton � 1
14 ds.registerFile(record.�lename(), record.timestamp(), record.n(), record.k(), �lterKeywords)

Figure 3.3:write() Pseudocode

This code assumes that the neighbors will be accessible. If not, then it is possible for this loop

to continue inde�nitely. In order to mitigate this issue, the content generator could request

fragmentsRemaining new addresses whenindex = n. It is also important to note that

the write could be considered successful when any number of fragments greater thank have

been successfully sent, but any number of fragments less thann reduces reduces resiliency.

The interesting part of this pseudocode is thegetFragments function call. This is the func-

tion that actually performs the encryption, erasure coding of the �le, and Shamir encoding of

the AES key. Details of how this function works are addressed in the pseudocode in Figure 3.4.

To maintain security, MDFS should ensure that one host does not contain more than one frag-

ment from each �le, or if that is not possible, no host hask or more fragments.

The �nal step is for the content generator to update the directory service with the �lename,

timestamp, source,n value, andk value of the �le so that the directory service is able to provide
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Vector< FragmentContainer> GETFRAGMENTS(byte[] �le, int n, int k)

1 FragmentContainer tempContainer= null // temporary holder
2 Vector< FragmentContainer> fragmentVector= new Vector< FragmentContainer> ()
3 AESKey= generateAESKey()
4 byte[] encryptedFile= AESEncrypt(�le, AESKey)
5 byte[][] �leFragments= ReedSolomon.encode(encryptedFile,n, k)
6 byte[][] keyFragments= ShamirSecretShare.encode(AESKey,n, k)
7 for i = 0 to n � 1
8 tempContainer= new FragmentContainer(�leFragments[i ], keyFragments[i ])
9 fragmentVector.add(tempContainer)

10 return fragmentVector

Figure 3.4:getFragments() Pseudocode

an updated list of available �les to any requesting node.

3.2.3 Read Function
1. The receiver wants to recover some �le,M , obtained from the directory servicelist() .

2. The receiver requests at leastk unique fragments ofM from neighbors until it has

f (c0; s0); (c1; s1); :::; (ck� 1; sk� 1)g

3. The receiver reconstructsS from f s0; s1; :::; sk� 1g using Shamir's secret sharing algo-

rithm

4. The receiver recovers the encrypted �le,C, by applying the Reed-Solomon erasure de-

coder onf c1; c1; :::; ck� 1g

5. The receiver recoversM by applyingS to decryptC such thatM = AESS(C)

In order for the read to be successful, at leastk fragments must be gathered from the system. The

content consumer can query the directory service for a list of available �lenames and the corre-

sponding timestamp,n value, andk value for each. Using thegenerateFragmentHash()

method of the fragment container class, the content consumer can generate the hash for each

fragment of the desired �le. It then uses that hash as the argument to thewhoHasFragment()

method of the directory service to �nd the location of each fragment. This process is shown as

pseudocode in Figure 3.5.
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byte[] READ(Stringf ilename , longtimestamp, int n, int k)

1 byte[] plainByteFile[]= null // holds the decoded �le in bytes
2 index= 0
3 totalFrags= 0
4 FragmentContainer fragment= null // temp holding value
5 DirectoryService ds= DirectoryService.getInstance()
6 Vector< FragmentContainer> fragments= new Vector< FragmentContainer> ()
7 String fragHash= null // temp holder to hold the calculated fragment hash
8 while totalFrags< k
9 fragHash= FragmentsContainer.generateFragmentHash(

�lename, timestamp, index))
10 address= ds.whoHasFragment(fragHash)
11 fragment= getFragment(fragHash, address)// returns the FragmentContainer
12 if getFragment== success
13 fragments.add(fragment)
14 totalFrags= totalFrags+1
15 index= index+1
16 if index== n throw Insuf�cientFragmentException

// fragments Vector now containsk FragmentContainers
17 plainByteFile = MDFS.getFile(fragments, n, k)

// returns the File as a byte array
18 return plainByteFile

Figure 3.5:read() Pseudocode

The content consumer will start at fragment 0 and will request fragments until it has obtainedk

fragments, which is suf�cient for the recovery ofM . If the content consumer reachesn requests

before obtainingk fragments, there are insuf�cient fragments available to recoverM . This error

condition occurs if(n � k) � 1 nodes are unreachable.

As with the write() function, the interesting part of this pseudocode is thegetFile()

function call. Oncek fragments have been obtained, MDFS is able to reconstruct the encryption

key, reconstruct the encrypted �le, and decrypt the �le using the encryption key to recoverM .

This is the function that actually performs the combining of fragments, the combining of the

AES key fragments, and the decryption of the �le. Details of how this function works are

addressed in the pseudocode in Figure 3.6 on page 25.
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byte[] GETFILE(Vector< FileContainer> fragments , int n, int k)

1 byte[] encryptedByteFile= null
2 byte[] plainByteFile= null
3 for int i < fragments.size()
4 process fragments
5 process keyFragments
6 encryptedByteFile= ReedSolomon.decode(fragments)
7 AESkey= ShamirSecretShare.decode(keyFragments)
8 plainByteFile= AESDecrypt(encryptedByteFile, AESKey)
9 return plainByteFile

Figure 3.6:getFile() Pseudocode
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CHAPTER 4:
Experimental Results

4.1 Equipment Used
In just the past two years, there has been a marked increase in availability of smart phones.

Apple's iPhone, running iOS, greatly increased the demand for smart phones with a correspond-

ing App Store that allows consumers to easily install third party applications. The iPhone was

quickly joined by several models of phones running Google's Android OS capable of installing

third party applications via the Android Market. Both iOS and Android devices provide more

than enough capability to implement network applications. Given the wide variety of phones

available for implementation, it was necessary to choose one technology for implementation

purposes.

Android devices provide an easy path for “on device” development without the need to join a

developer program. Another differentiating factor between Android devices and iOS devices is

that Android devices are programmed using the Java programming language while iOS devices

use Objective-C. Given the similarity in device capability, we chose Android due to its availabil-

ity, capability, and our familiarity with the programming language. As of March, 2011, Android

holds the largest market share of smartphones in the United States [14]. We implemented MDFS

on HTC Evo 4G phones running Android 2.2.

4.2 Device Limitations
Mobile application development presents some restrictions that are not encountered in typical

development scenarios. As mentioned before, Android development is done in Java. However,

not all libraries and features of the standard Java Development Kit (JDK) are available in An-

droid. Speci�cally, some libraries are modi�ed to provide ef�ciency on devices with limited

memory and power, or modi�ed to accommodate the additional security requirements of a cell

phone. For example, available heap memory and access to disk storage is severely limited in

Android when compared to programming using the standard JDK.

One of the most challenging aspects of developing MDFS was porting the JErasure 1.2 library,

written in C, to run on Android. The standard JDK provides the Java Native Interface (JNI)

to allow native code libraries to run in the JVM. Android provides an analogous development
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environment called the Native Development Kit (NDK). The NDK allows an application devel-

oper to compile code written in C into native libraries that can be called by the Java program.

The NDK was on revision 3 when we began to develop MDFS and the documentation for

implementing native libraries on Android was very limited. Each revision of the NDK adds

signi�cant functionality, documentation, and support for additional features. NDK revision 3

did not include build scripts, so we spent a signi�cant amount of time learning how to build na-

tive libraries that would run on Android. Google released NDK revision 4 in June 2010 which

introduced a build script and signi�cantly simpli�ed the build process for native libraries. In

December 2010, Google released NDK revision 5 which added signi�cant features that will be

useful for follow on work that requires native library development [15].

MDFS relies on the availability of other devices to function correctly. Each device acts as both

a server and a client. In traditional server/client applications, the server is always listening to

the server socket and available for connections. Mobile devices do not listen to the server socket

when they are sleeping. Furthermore, each application runs as a separate process in Android,

so unless the application is actually running in the foreground, the phone will not respond to

server requests from other devices.

Android provides a mechanism called a Broadcast Receiver, which allows a program to register

to receive noti�cations when certain events, called Broadcasts, occur on the phone. We were

able to mitigate the problem of requiring the application to be running in the foreground by

writing our own service to act as a daemon. This service registers to receive a Broadcast when

the phone boots and responds by listening on the server socket while the phone is on. When a

connection is made from a client, the service processes the message in the background. This

approach solves the problem of requiring the application to run in the foreground to function

correctly, but the service will not respond while the phone is in sleep mode. While it is not

required that the MDFS application be running, it is required that the phone be powered on. It

is possible to set the phone to prevent it from going to sleep, but that has signi�cant impact on

battery performance.

4.3 Application Details

4.3.1 Jerasure 1.2
A number of excellent erasure code software libraries are available as open source projects.

Two of the most common are zfec and JErasure [16]. Erasure code libraries are written in C
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for ef�ciency reasons. We considered porting one of the implementations to Java to examine

the feasibility of performing erasure coding using Java on Android hardware. At the time,

documentation of the NDK was minimal and it wasn't clear if a C implementation of an erasure

code library would compile under the NDK. Both zfec and JErasure use pointers extensively

in their implementation. Porting C code that relies on pointer math to Java is not trivial, so we

chose to experiment with the NDK.

JErasure is written in C and zfec is written in a combination of C and Python. Plank con-

ducted experiments and concluded that zfec had the fastest Reed-Solomon implementation and

JErasure was fastest in all other erasure code implementations [16]. After examination of func-

tionality and source code, we chose JErasure 1.2 for our Reed-Solomon erasure coding library

due to its �exibility and it's pure C implementation. MDFS implements classic Reed-Solomon

coding, but JErasure provides many more erasure coding algorithms, which could allow for

more options and �exibility in future work.

4.3.2 secretsharejava
MDFS utilizes a library called secretsharejava for its Shamir Secret Sharing algorithm [17].

This library is a Java implementation of the LaGrange Interpolating Polynomial Scheme as

described in Applied Cryptography [18, 528].

Both the secretsharejava and the JErasure 1.2 libraries are released under the GNU Lesser Gen-

eral Public License 2.1 (LGPL) which allows for them to be used in MDFS in accordance with

the LGPL.

4.4 Implementation Details
4.4.1 Source Code
Figure 4.1 on page 30 shows the directory structure of the SecureShare application. Thejni

directory contains the source code for the native JErasure library. Thelibs directory contains

the dynamically linked JErasure library compiled for Android devices. Thesrc directory holds

the Java source code with a base package ofedu.nps.secureshare . All Android speci�c

code resides in theandroid subdirectory. Thecrypto , directoryservice , network ,

mdfs , reedsolomon , shamir , andutil directories contain code corresponding to their

respective function capable of running under a standard Java Virtual Machine (JVM) and is

not speci�c to the Android platform. All code under theshamir subdirectory is part of the

secretsharejava library.
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Figure 4.1: Tree View of SecureShare Source Code

4.4.2 Directory Service

The largest deviation between design and implementation occurs in the directory service. The

design calls for a completely distributed directory service to avoid a single point of failure. Due

to time constraints, the actual implementation utilizes a single node as the directory service. All

other nodes communicate with the node acting as the directory service via unicast messages.

The node acting as the directory service maintains a database to ful�ll directory service queries.

This implementation does introduce a single point of failure for the directory service, but al-

lowed the experiments to be conducted without implementing an additional multicast network-

ing service. The messages used to communicate with the designated directory service node are
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the same messages that would be used on a multicast channel to update the directory service.

Each installation of the SecureShare Android app is exactly the same on all nodes, so there is

no modi�cation to the underlying architecture of the software.

4.5 Experimental Setup
The test bed consisted of �ve Android devices networked in infrastructure mode using a wireless

access point. The use of infrastructure mode is necessary because current Android implemen-

tations do not support Mobile Ad-Hoc network without modi�cation of the platform itself. One

phone was chosen arbitrarily to act as the directory service.

Description IP Address
Node 1 192.168.1.100
Node 2 192.168.1.101
Node 3 192.168.1.102
Node 4 192.168.1.103
Node 5 192.168.1.104

Table 4.1: Experimental Setup: Notional IP Address Assignment

For each case, one node acts as the content generator. An image �le will be encoded with MDFS

usingn = 5 andk = 3 in accordance with the convention thatn = 2k � 1. One fragment will be

distributed to each of the 5 nodes. Each fragment may be inspected to ensure that no information

aboutM , other than the public information such as �lename,n, andk, is determinable given

just one fragment. Table 4.1 will be used as a notional IP address assignment to describe the

experiments and their results.

Each experiment was run from a completely fresh installation of the SecureShare application

to ensure that there was no artifact data remaining from previous runs. One node is always

available to act as the directory service. When SecureShare is launched, the user is prompted

to enter the IP address of the node to act as the directory service. All �ve nodes use the same

IP address. Once the IP address is entered, the node registers with the directory service as

an active node and is now available to thegetActiveNodes() function provided by the

directory service. Because all messages must pass through the directory service node, we use

this node to monitor network activity and application logging.

For each experiment, Node 1 is designated the directory service. Node 2 is designated the

content generator. Using the camera on Node 2, we took a picture and selected it to act as
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the �le, M . Node 2 requested �ve active node addresses from the directory service. Only

one fragment store message was observed while monitoring the directory service at Node 1 as

the other fragments were sent directly to the remaining four nodes. After each fragment was

transferred to a neighbor, Node 2 registered the fragment hash value and the destination address

with the directory service. After all fragments were registered, Node 2 registered the �lename,

n value,k value, and source address with the directory service. Once the �le was registered

with the directory service, we veri�ed that each node could see the �le available for download

by calling thelist() function of the directory service from each node (Figure 4.2).

Figure 4.2: View oflist() output with one �le

4.6 Experimental Results
4.6.1 Show thatM is recoverable given the loss of any 2 nodes
Nodes 3 and 4 were switched off so that they were no longer listening for fragment request

queries. Node 2 selected the image from the available downloads listing. Theread() function

32



requested fragment locations for fragments in order from0 ! n � 1. FivewhoHasFragment

(fragHash) queries were observed at the directory service as expected. Node 2 needed three

fragments to recoverM , so it queried and received fragment locations for nodes 1 and 2. The

directory service returned the address for nodes 3 and 4, but those nodes were not available, so

the third fragment was retrieved from node 5. With three fragments, Node 2 was able to recover

and displayM .

4.6.2 Show thatM is recoverable given the loss of the content generator
Node 2 was switched off so that it was no longer listening for fragment request queries. Node 4

selected the image from the available downloads listing. FourwhoHasFragment(fragHash)

queries were observed at the directory service as expected. Node 4 needed three fragments to

recoverM , so it queried and received a fragment location from node 1. Node 2 did not respond

to the fragment query and nodes 3 and 4 returned fragments. With three fragments, node 4 was

able to recover and display the image that was uploaded by node 2 despite the fact that node 2

is no longer in the network.

4.6.3 Show thatM is not recoverable if less thank phones are available
Nodes 3, 4, and 5 were switched off. Since only two nodes remain, which is less thank, we ex-

pected thatM would not be recoverable. We observed �vewhoHasFragment(fragHash)

messages at the directory service as expected. Passing less thank fragments to MDFS for recov-

ery of M causes SecureShare to crash. While it would be desirable for SecureShare to handle

the exception more elegantly, node 2 was unable to recoverM when less thank devices were

available.

These experimental results demonstrate that MDFS is capable of meeting the requirements as

discussed in Section 3.1.1. However, this implementation suffers stability problems related

to heap size and allocation. If the heap grows larger than what is allowed by Android, the

application crashes. Further re�nement of the implementation may mitigate this problem, but

resource constraint will remain a limiting factor. This issue is discussed further in Section 5.3.

4.6.4 Security Analysis
Erasure coding, without encryption, does not provide security for each fragment. In fact, the

�rst k fragments are unencoded fragments ofM with sizejM j=k. If a human readable 900 byte

text �le is erasure encoded withn = 5 andk = 3, the �rst 3 fragments would be 300 byte

readable text �les. By using AES encryption before erasure coding, the �les are unreadable.

33



The MDFS fragments are stored on the Android device in external storage (Figure 4.3). Some

public information required for the erasure code and Shamir's algorithm to function, such as

�lename, n value, andk value, are prepended to the encrypted data and is viewable by inspect-

ing the fragment �les with a HEX Editor. No information, beyond the public information, is

discoverable by inspecting the fragment �les.

Figure 4.3: SecureShare Fragments Directory

To verify that MDFS does indeed encrypt the data as expected, we ran MDFS on a text �le

and inspected the resulting fragments generated by plain erasure coding, using JErasure 1.2,

and MDFS. Figure 4.4 shows the �rst few lines of a text �le called de�nitions.txt. Figure 4.5

shows the same �le as viewed in a HEX editor. We used a HEX editor because the encrypted

fragment is not viewable in a standard text editor and we are able to compare both the text view

and the corresponding HEX values. We erasure encoded de�nitions.txt using a value ofn = 5

andk = 3. Figure 4.6 is a view of the �rst fragment generated by JErasure 1.2. Fragment 1

contains the �rst one third of de�nitions.txt, so we expect the beginning of de�nitions.txt and

fragment 1 to be identical. Next we encoded de�nitions.txt with MDFS using the samen and

k values. Figure 4.7 shows fragment 1 of MDFS. Fragment 1 generated by MDFS contains the

same information, but is AES encrypted and therefore no information about the actual contents

of de�nitions.txt can be determined by simply inspecting the fragment.

The purpose of this analysis is not to demonstrate robust defense against a cryptanalysis attack

on MDFS, but rather to show that MDFS does provide security against simple inspection of

fragments as intended. The ability to withstand sophisticated cryptanalysis is left for future

work.
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Figure 4.4: de�nitons.txt File Figure 4.5: HEX View of de�nitions.txt

Figure 4.6: HEX View of Fragment 1 (Era-
sure Code)

Figure 4.7: HEX View of Fragment 1
(MDFS)
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CHAPTER 5:
Future Work and Conclusion

5.1 Fragment Regeneration
Once issue that arises when utilizing erasure coding for distributed storage is the need to replace

fragments due to loss. Erasure coding provides some inherent redundancy, however as nodes

leave or become otherwise unreachable, resiliency is diminished. One naive, yet inef�cient,

method of providing redundancy is to store multiple copies of each fragment at different nodes

thus increasing the storage complexity and space requirement and network overhead while re-

ducing ef�ciency. For example, the system could storen fragments to2n devices so there are

2 complete copies of all the fragments in the network. If one is lost, a copy can be made from

the remaining fragment to ensure two copies are always available. Another method is for the

directory service to periodically poll each node to ensure it is reachable and if not, regenerate

fragments by recovering the original �le and redistributing the new fragments. This is also an

incredibly inef�cient design. Dimakis presents Regenerating Codes which address this issue by

providing a more ef�cient way to regenerate lost fragments under certain conditions [10].

5.2 Device Authentication
The goal of MDFS is to provide security and resiliency, but makes the assumption that authen-

tication is handled external to MDFS. It is assumed that physical access to the fragments is

suf�cient authentication. With the current implementation it is important that suf�cient wire-

less security be implemented to prevent fragments from being gathered by passive snooping.

The fragments themselves are symmetrically encrypted, but MDFS provides no mechanism to

prevent a third party from gathering enough packets through passive snif�ng to reconstruct the

symmetric key and decode the original �le.

One way to mitigate this problem would be to implement public key infrastructure (PKI) en-

cryption on top of MDFS. During the initial storage operation, the content generator could

request public keys from each of the destination nodes and encrypt the fragments using the

public key to secure the fragment in transit. During the read operation, the content consumer

could include its own public key in the request fragment message. As previously discussed,

asymmetric encryption is a relatively expensive operation, so the encrypting node could use

the destination's public key to encrypt just the symmetric key fragment as the fragment itself
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is already encrypted. Therefore, the symmetric key can only be decoded by the requestor, and

consequently, the entire fragment maintains its security.

5.3 File Size Limitation
The current implementation has a limitation on the size of �les that can be processed. Heap

memory is limited on mobile architectures such as Android and iOS. In most modern Android

devices, each application is limited to 16 - 24MB of memory. MDFS implements the erasure

code in a native library and when the native code is called, an array of byte arrays is passed back

that is larger than the original �le. System instability results if the array of byte arrays exceeds

the size allowed by the operating system. This condition can be easily triggered by setting thek

value small and then value large. The size of the array of byte arrays is(�lesize=k) � n. When

the native library passes an array that is too large for the Android heap, SecureShare quits with

no error message or exception thrown.

The alternative solution would be to pass back each fragment as an individual byte array one at

a time, but that would require a rewrite of the native code. It would require the native code to

write the byte array directly to the �lesystem on the android device as it is generated. Revision

5 of the NDK supports native calls to Android methods, so this approach may be more feasible

than it was prior to this release.

5.4 Cryptographic Security
Section 4.6.4 was intended to show that MDFS provides encryption that will withstand simple

inspection of the generated fragments. MDFS has not been subjected to extensive forensic

analysis or sophisticated cryptanalysis. Study and feedback from experienced security experts

would be useful for ensuring the cryptographic security of MDFS.

5.5 Secure Data Deletion
Filesystem permissions are very tightly controlled by the Android OS. Access to images and

videos are regulated by Content Providers and Media Controllers. File access permissions are

controlled by the physical storage location. The data fragments are stored on the external media

card storage of the Android device. Android's security permissions prevent standard Android

methods from accessing �les once they are deleted, however the susceptibility of data to forensic

techniques is outside the scope of this work. In order to secure the data against a logical device
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dump, it will probably be necessary to implement secure delete methods in native libraries

capable of accessing the �le system below the Android layer.

5.6 Distributed Directory Service
This thesis proposes a distributed directory service, but implemented the directory service as

a well known host on one of the phones. This approach achieved the goal of running MDFS

without the need of extensive infrastructure, but fell short of the goal to not have a single point

of failure. While the SecureShare directory service runs on a single node, even the hosting

node accesses the directory service through the network API. The application installed on the

directory service node is identical to the installation on all the other nodes.

The move from the single node directory service to a distributed directory service will involve

the implementation of an additional service on the phone. The current service receives and

processes unicast messages. In order to implement a completely distributed directory service, it

will be necessary to add an additional service that sends and receives messages on a multicast

channel. The most challenging issue for maintaining a distributed directory service will be

managing database synchronization between the various nodes. Each node must have the most

up-to-date information about which �les and fragments are available in the system.

The Directory Service is implemented as a SQLite database that keeps track of the �lenames

and where they are stored. Fragment �lenames are created as a hash of the original �lename, the

timestamp of the original �le, and the fragment number. One important function that needs to be

added is a delete function. The process is the opposite of the write function. First the �lename

needs to be removed from the �les database to prevent other nodes from requesting the �le.

Then a message needs to be sent to each node that stores a fragment of that �le instructing it to

delete the fragment and the fragment hashes need to be purged from the fragments database.

5.7 Metrics
The implementation of MDFS resulting from this thesis functioned adequately for images. It

was able to transmit fragments and recover images without noticeable lag or signi�cant delay,

but throughput metrics were not gathered. A detailed study of throughput and performance

metrics needs to be conducted. Simple performance metrics on MDFS fragment generation and

�le recovery would be a good start to determine if the mobile devices are capable of performing

the necessary erasure coding and Shamir coding within a reasonable threshold. This metric

excludes �le I/O and network latency. A more detailed analysis of performance should be
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conducted on a full scale deployment of MDFS with multiple devices where total throughput,

including �le I/O and network delays, can be gathered.

5.8 Conclusion
This implementation of MDFS, while primitive and in its very early stage, shows that mobile

phones have the processing power and functionality to support the requirements of MDFS.

There is still much work to be done before this is a viable system for deployment. We feel

that the most severe limitation is that the underlying directory service is unable to function

when the phone is sleeping. While it may be possible to mitigate the effects of this problem by

implementing the directory service as a delay tolerant network (DTN), that will, by de�nition,

introduce signi�cant delays to the system.

MDFS successfully combines erasure coding, Shamir's secret sharing algorithm, AES symmet-

ric encryption, and a directory service to store �les securely in a distributed �le system running

on a mobile wireless network. It meets the requirements as set forth in Section 1.2. MDFS can

tolerate the loss of up ton � k nodes and still recover data.
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