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Abstract 
We describe two-stage sequential experiments that are used in building and testing 

valid simulation models. In the first stage, preliminary samples are taken to estimate 
performance and inform the parameters for the experiments in the second stage. These 
two-stage experiments can be mapped to test and evaluation (T&E) by having the first stage 
applied to developmental test and evaluation (DT&E) and the second stage applied to 
operational test and evaluation (OT&E). By considering DT&E and OT&E as part of a 
combined two-stage experiment, we can better leverage the results of DT&E to inform 
OT&E. 

Introduction 
Statistical experimentation in test and evaluation is critical to obtaining clear, valid 

results and recommendations regarding the quality of a system being tested. We refer to 
test and evaluation (T&E) of a system, where a system can be a weapon, computer 
program, piece of machinery, and so forth. While much of the methodology for T&E has 
been developed, there is still much room for improvement in terms of ensuring widespread 
knowledge and implementation of statistical methods. Hill (2017) states, “The current T&E 
workforce, while very competent in the engineering domain and mechanics of test, will 
benefit by improving their baseline level of statistics, their statistical fluency, thus firming up 
their overall knowledge base” (p. 123). 

This research develops two-stage statistical procedures that use developmental test 
and evaluation (DT&E) data to design and conduct operational test and evaluation (OT&E) 
plans. Two-stage procedures rely on data collected in a first stage to estimate key 
parameters that are needed to determine what types of future tests should be run to answer 
a research question. In a T&E setting, these estimated parameters have some uncertainty 
given that testing conditions may be limited in the first stage or approximated using 
simulation. This uncertainty can be used to determine what tests and statistical parameters 
to use in the second stage. For example, if DT&E reveals strong performance in some areas 
and weaker performance in others, we can design OT&E tests that allocate more effort to 
quantifying the effect of the weaker performance areas on overall system sustainability.  

Two-stage statistical procedures are commonly used in analyzing simulation models. 
The first stage runs some preliminary experiments to estimate key parameters, like the 
variance and distribution of the output. Then, second-stage experimental parameters are 
chosen and the results from the second experiment contribute to the final assessment of the 
system. This research draws on two-stage procedures by mapping first-stage methods to 
DT&E, where simulation or less-costly experimental methods are available. The second-
stage method is then mapped to OT&E with an emphasis on the fact that these experiments 
may be much more costly.  
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Examples of highly cited two-stage procedures include Chick and Inoue (2001) and 
those reviewed in Goldsman and Nelson (1998). These methods use the first-stage samples 
to estimate the variance, among other parameters, of multiple systems. Estimation of 
system variance is critical to determining the details of an OT&E experiment. Giadrosich 
(1995) describes how an estimate of the standard deviation can be used to choose the 
sample size, and sequential sampling methods that rely on this variance estimation are 
presented in Singham (2014). We note that much of the simulation literature now focuses on 
fully sequential sampling rather than two-stage sampling, but these fully sequential methods 
may not always be appropriate for T&E because of high sampling costs and potential for 
bias. 

This paper exploits two-stage statistical procedures to provide a better link between 
statistical methods used in DT&E and OT&E testing. The case study presented addresses 
the unique challenges present within a T&E environment, such as specific capabilities 
requirements, limited budgets, and risk associated with an incorrect evaluation. OT&E often 
requires a much higher budget due to the operational nature of the testing. Thus, the 
information from the first-stage is critical in determining where effort should be focused in the 
second stage. However, in some cases, sophisticated simulation models can be employed 
for integrating testing, combining aspects of developmental and operational testing. For 
example, Allen (2010) describes the Boeing Engineering Development Simulator in its ability 
to replicate many operational settings while testing the enhanced capabilities of the aircraft, 
saving costs by using a simulated environment.  

The next sections summarize the background in T&E and two-stage procedures, 
present a proposed two-stage algorithm, and apply the algorithm to a case study.  

Background 
DT&E and OT&E each pose their own set of unique challenges. DT&E is often 

performed under highly controlled or even simulated environments, so there are limitations 
on how much this data can be extrapolated to estimate performance under operational 
conditions. Modeling and simulation (M&S) can help quickly obtain initial data sets, perform 
sensitivity analyses, and drive additional testing questions. M&S can be a cost-effective 
method when there are limits on physical experimentation, though it should not replace 
operational testing (Marine Corps Operational Test & Evaluation Activity [MCOTEA], 2013). 
Simulation methods can be integrated with a test process, especially in developmental 
phases before a final assessment is made, and can be especially important in DT&E (T&E 
Management Guide, 2005).  

DT&E can usually inform the types of experiments run in OT&E. DT&E plays a major 
role in evaluating a potential system and its ability to meet the capabilities requirements. In 
order to ensure that a proposed system meets the requirements, a detailed DT&E process is 
needed to test system capabilities, limitations, costs, and safety. The data carefully collected 
in these experiments provides a wealth of information that can be used to inform efficient 
OT&E exercises. Because the questions used to design an operational test plan are motived 
by the results of DT&E, there is a unique opportunity to leverage two-stage statistical 
methods to efficiently answer questions about whether the capability requirements have 
been met. 

For example, DT&E can be used to screen potential tests that may be unnecessary 
in OT&E because it is deemed that certain configurations of a system are likely to have poor 
operational performance and no further effort should be wasted on these settings. While 
Design of Experiments (DOE) is often considered a critical part of OT&E, using it in DT&E 
can only enhance the types of experiments that could be run in OT&E. Ortiz and Harman 



- 155 - 

(2016) argue for the use of DOE in DT&E in addition to OT&E because randomization, 
replications, and blocking can be more easily implemented. Such experiments in DT&E can 
narrow the space of possible feasible configurations to test in OT&E. This is part of the 
“shift-left” mentality to do more analysis in earlier stages of development to save costs and 
improve results throughout the entire acquisitions process.  

Because OT&E assesses the performance of a system under more realistic 
conditions, testing can be much more expensive and constrained. Thus, it is even more 
important to design a test plan that is able to obtain the best information possible given 
constraints on the overall testing budget across the two stages. Additionally, the research 
questions and decisions that need to be made may have changed as a result of DT&E. 
Understanding integrated testing and evaluation is critical to efficient implementation of 
modeling and simulation results (United States Marine Corps, 2010).  

Confidence Intervals 

Confidence intervals are commonly used to assess the risk associated with the 
system by evaluating mean performance. Here we give a brief summary of confidence 
intervals to define notation and introduce key parameters. A confidence interval is collected 
from n samples of system performance results to estimate the mean of the system μ using 𝑋 
as the centerpoint. The half-width on either side of the centerpoint defines the confidence 
interval 

     (1) 

where σ2 is the variance estimate for the data. If the data is normally distributed and the 
variance is known, then the confidence interval can be estimated exactly using standard z-
tables. If the variance of normal data is estimated, then t-tables are used. The two key 
parameters we study are the variance estimate, which is critical to understanding the risk 
associated with an estimate, and the sample size n, which is often controllable by the user. 
A larger variance estimate leads to a larger confidence interval. If the variance is 
underestimated, the confidence interval will be too narrow and there will be more certainty 
(than there should be) in the result. The sample size n is critical for estimating the variance, 
and it also determines the width of the confidence interval. More samples are better for 
reducing uncertainty in estimates, but often come at high cost in a T&E setting.  

Choosing the Sample Size 

Sequential methods for generating confidence intervals have been studied most 
recently in Singham and Schruben (2012) and Singham (2014). These methods increase 
the sample size until a confidence interval with a half-width smaller than some pre-specified 
level can be generated. They have traditionally been studied in the context of simulation 
models where large numbers of samples can be collected.  

Suppose the estimate of the standard deviation is s, and we have some desired 
precision in our confidence interval δ, which is the half-width of the interval. Then, the 
sample size that guarantees (for independent and normally distributed data) that the 
confidence interval for μ has a half-width smaller than δ is 

      (2) 

and this can be used to choose the sample size. Johnson, Freeman, Hester, and Bell (2014) 
study sequential methods for estimating ballistic resistance of armor, and note that the 
methods used by the Department of Defense (DoD) have not changed recently. The 
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methods can be simple to implement and do not require much statistical analysis, and the 
authors conduct simulation experiments to determine which tests are most effective at 
estimating different percentiles for the probability that the armor is perforated. Such tests are 
often used as part of Lot Acceptance Testing to determine whether a production item is 
acceptable.  

Two-Stage Procedures 

Two-stage procedures are often used instead of single-stage procedures because 
initial data collected in the first stage can be used to enhance the efficiency and quality of 
results in the second stage. A main example of this is using the first stage of an experiment 
to estimate the variance of the system. The variance is usually unknown ahead of time, yet it 
is a crucial part of estimating confidence intervals or other measures of performance. A poor 
variance estimate can lead to low validity of statistical results. Results from DT&E can be 
used to estimate the variance of the system, which in turn helps decide how many runs are 
needed in OT&E. For example, if the variance of the system is high, then more runs will be 
needed in OT&E to assess the feasibility of the system. If the variance of the system 
appears low, perhaps fewer runs will suffice. 

Given a set of n independent and identically distributed (i.i.d.) samples of system 
performance estimates, then  

     (3) 

is used as the variance estimate. When the data is dependent and is normally distributed, 
we can quantify the dependence using autocorrelation with lag h, which is a measure of 
dependence between sample Xi and Xi+h. If the output data of a series has positive 
dependence, we hope that this dependence decreases over time as h increases, so that 
observations far apart are relatively independent. If the dependence between samples is 
positive, the variance estimate will be smaller than it really is. This means that the risk in the 
system will be underestimated, and we would proceed to OT&E with more certainty in 
performance than what actually exists.  

Positive dependence between samples can exist for many reasons. For example, if a 
machine is not completely reset and recalibrated between samples, then the state left by the 
previous run can affect future runs. If the same operator tests the machine or weapon for 
each run, there may be correlation between outputs based on the habits or practices of the 
operator. In reality, there may be more variance in an operational setting because there will 
be many different people using the equipment. Thus, it is important to ensure independence 
between samples in the first stage. It may be useful to employ a confidence interval for the 
variance: 

     (4) 

where the chi-squared term is the relevant quantile of the chi-squared distribution with n-1 
degrees of freedom. This means that we can assess the uncertainty in the variance estimate 
based on the number of samples taken in the first stage, and inflate our estimate of the 
variance in the second stage using the upper confidence level of the variance estimate. 
Inflating the value of the variance estimate will encourage more samples to be taken in 
OT&E and will protect against the potential underestimation of risk resulting from a too-low 
variance estimate.  
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Ranking and Selection 

Ranking and selection procedures attempt to determine the best system inputs when 
the system configurations are discrete options that can be listed. There is uncertainty ahead 
of time about the actual performance of the system, and the feasibility of the system to meet 
some constraints. Figure 1 shows the potential layout from the first stage of a ranking and 
selection experiment. The x-axis measures the feasibility of the system, while the y-axis 
measures the performance along the main objective or measure of effectiveness (MOE). 
The goal is to select the system with the best objective that is feasible. Based on the figure, 
it makes sense to invest more time in the second stage on the “Feasible, good objective” 
system and the “Infeasible, best objective” systems. It is possible the latter system may 
actually be feasible if we tested more, or it’s possible the former system may actually be the 
best system. In any case, it probably does not make sense to spend resources in the 
second stage on the “Feasible, poor objective” and the “Infeasible, poor objective” systems.  

 

Figure 1. Comparison of System Configurations by Feasibility and Objective 
Function 

Subset Selection/Screening 

A number of subset selection procedures exist that screen out potential system 
configurations that are deemed suboptimal or infeasible. The first stage takes some initial 
number of samples from each system in the hopes of obtaining information that can be used 
for a more efficient second stage. In some cases, many system configurations can be 
eliminated from consideration in the second stage. This is something that occurs naturally in 
the transition between DT&E and OT&E; we do not usually bother to test options in OT&E 
that clearly did not work in DT&E.  

One such subset selection procedure is Singham and Szechtman (2016), which uses 
information in the first stage to estimate the variance of the system and then allocate effort 
to the second stage accordingly. Systems with higher variance obtain a higher allocation of 
effort because they have more uncertainty. Similar methods can be used, as in Figure 1, to 
allocate sampling effort to systems close to the feasibility boundary, or close to optimality. 
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Then, in the second stage, a subset of the systems is chosen which is likely to contain the 
best systems with high probability.  

A Two-Stage DT&E/OT&E Integrated Procedure 
We now describe a two-stage statistical procedure that can be mapped to the stages 

of DT&E and OT&E. There are many different contexts to consider, but here we study the 
case where DT&E experiments allow for an arbitrary number of trials. For example, 
computer simulation experiments can often be used to test the potential readiness of a 
system, and it can be easy to run many replications. 

The goal of the experiment is to determine which systems meet the requirements for 
performance, and, if more than one system meets the requirements, to determine which one 
is the best, or most cost-efficient, option. There are two main objectives of the first stage. 
The first is to screen out any system configurations that are highly likely to fail in OT&E, thus 
saving valuable experimentation resources. The second objective is to allocate resources to 
the remaining systems so that in OT&E the best system determination can be made. As in 
Figure 1, more resources would go to systems that are close to the feasibility boundary for 
meeting performance. Additionally, systems that display a high variance in the first stage 
would receive more samples in order to reduce their confidence intervals to make an 
operational suitability determination. 

Next, we present the details of the two-stage statistical experiment. We run the first-
stage experiments to estimate the mean and variance. These are used to calculate p-
values, which are used to determine which systems can be eliminated from contention as 
worse than the threshold. Then, an inflated variance estimate is used to assign sample sizes 
to each system. This inflated estimate is used to account for potential model error resulting 
from the simulation setting being different from an operational setting.  

1. The objective is to select the best alternative system that performs at 
least as well as the benchmark system, which determines the 
feasibility/capability requirements.  

2. Develop DT&E experimentation parameters to answer objectives. 

a. For example, when analyzing performance of a sensor, two 
factors are (1) the coverage area of the sensor and (2) the 
location and number of sensors. 

b. Given the first stage is a simulation stage, we can run a large fixed 
number of replications of each system configuration to estimate 
the variance. However, to illustrate the effect of variance 
estimation in a limited budget, we run 30 replications of each 
configuration. 

3. Run first-stage DT&E and analyze results. 

a. Estimate the mean 𝑋   and variance 𝜎  for each system 
configuration i, including the benchmark system. Call the 
estimated mean for the benchmark 𝑋   and, if the capabilities 
threshold for the benchmark is known, then its mean is fixed at μ.  

b. Reassess critical issues and specific objectives for the system, 
screen out factors and configurations if possible. 

i. Calculate p-values for each system for comparison to the 
system mean. Let n be the number of samples, and 𝐹  
be the cumulative distribution function of the t distribution 
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with n-1 degrees of freedom. If the benchmark is estimated 
then replace μ with 𝑋   (see Singham and Szechtman, 
2016, for an example of this type of calculation).  

   (5) 

ii. Use p-values to determine which systems to eliminate. 
These systems have a low probability of having 
performance that is better than the benchmark. For 
example, if 

     (6) 

then typically for 0 ≤ 𝛼 ≤ 0.1,, eliminate the system from 
contention for having a mean performance level that is so 
small to be unlikely to be better than the benchmark μ. This 
will remove systems that have a small mean relative to μ 
while also having a relatively a small variance because we 
are fairly certain these systems will perform poorly.  

c. Using confidence intervals for the sample variance, we can 
choose the upper confidence limit to deal with uncertainty 
associated with future OT&E experiments giving a conservative 
performance estimate. 

   (7) 

d. Determine the budget allocation for the second stage based on 
first-stage results by comparing outcomes to the threshold 
objectives. 

i. Calculate the sample size needed for each system to 
compare it to the threshold using properties of absolute 
and relative precision sampling as determined in Singham 
(2017). 

   (8) 

ii. We need to do a similar calculation for the benchmark 
system if its true performance μ is not known. We decide a 
precision δ >0, which is the allowed deviation from μ that 
would be acceptable in a confidence interval estimate of 
the benchmark. Then, the second stage number of 
samples for the benchmark is 

   (9) 

iii. Rescale the sample sizes to be proportions for the second 
stage given a total budget N, and S total systems under 
testing. 
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    (10) 

iv. If the unscaled 𝑛  values are much too large for OT&E, 
then run 𝑛  samples for system i in DT&E to obtain further 
information and repeat the screening, as in Step 3.b.ii, to 
remove additional systems that appear unlikely to beat the 
benchmark. 

4. Run second-stage OT&E and analyze results. 

a. Run experiments on the potential subset using 𝑛   sample sizes 
for each system i.  

b. Determine whether the requirements and objectives have been 
met by comparing the final results to the threshold. A similar p-
value calculation to the one above can be used to determine if a 
system is significantly better or worse than the threshold. 

What will most likely occur is that the first-stage experiment will determine a large 
number of samples 𝑛  that will be needed to test each system. If these sample sizes are too 
large for OT&E, then we recommend running these experiments in DT&E to obtain as much 
information as possible and repeating Steps 3 and 4. The idea is that with enough samples, 
the difference |𝑋 − 𝜇| becomes large relative to 𝜎 / 𝑛  so that a clear determination can be 
made whether system i is better or worse than the benchmark μ. This can be used to screen 
out systems that are worse than the benchmark, and determine the allocation of effort 
toward systems better than the benchmark. Afterwards, if the number of samples is still too 
high for OT&E and there is a total budget N for samples, the rescaling can be done to 
allocate the budget towards systems that require more samples to make a determination. 

In some cases, the T&E analyst may want to further reduce the subset from those 
that appear better than the benchmark for OT&E. For example, if seven out of 10 
configurations are in the selected subset, the analyst may only choose the top three for 
consideration in OT&E to determine the best one.  

Case Study—Unmanned Sensors for Intelligence Collection 

To illustrate the procedure, we use a simulation experiment designed to test the 
performance of sensors for tracking targets such as pirates or smugglers. These sensors 
are designed to report information on potential targets of interest in large unpatrolled areas 
of water. Different sensors have different properties. For example, some have larger areas 
of coverage, while others may be more accurate and have a higher probability of detecting a 
target. The goal is to determine whether a particular sensor configuration can achieve the 
performance needed to be successful in finding targets, while balancing the cost and 
number of sensors to be purchased. 

The simulation model has been built by the author and colleagues and is part of 
ongoing research being conducted at the Naval Postgraduate School. The full theoretical 
model details are available in Nunez, Singham, and Atkinson (2018). The model simulates 
numerous target paths given intelligence about the target’s trajectory. Sensors can then be 
placed, and the number of target paths that are successfully observed can be recorded. 
Experiments can be run to determine a number of objectives, for example, which 
configuration is the best, or how often a particular setup successfully observes the target. 
We note that in this study, we do not consider whether physical specification requirements 
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are met, but rather focus on whether the particular system can meet operational 
requirements.  

Cheng (2016) studied different sensor configurations using this model to compare 
their performance. The benchmark given was Lynx multi-mode radar, which has a range of 
80km (about 0.72 degrees) and an endurance of 48 hours. The Lynx radar system delivers 
high quality results but can be quite expensive (close to $7 million). Thus, we want to 
determine if we can obtain similar performance results using two cheaper unmanned 
sensors that may have smaller coverage areas. We use the sensor simulation model as the 
model to test the two-stage procedure. The model is flexible and allows for infinite input 
possibilities, and, as it is a computer simulation model, it is relatively inexpensive to run 
multiple replications to collect data.  

Experimental Results 

The experiment runs by simulating multiple potential target paths based on 
intelligence. Sensors are placed at the beginning of the run to attempt to locate the target as 
it passes through the area, and the simulation records the proportion of paths that intersect 
the sensor coverage areas. There will be variation each time the experiment is run due to 
randomness in the simulated paths. Thus, it is important to run multiple replications to 
estimate the potential error in the estimated probability of success.  

We place sensors along the central expected path of the simulated target to obtain 
the maximum probability of success. Figure 2 shows the benchmark sensor placement for a 
target that is predicted to depart off the coast of South America towards the western coast of 
Mexico (red box). The blue heatmap shows the relative likelihood of the target’s location 
given the intelligence at hour 25, with a higher probability in the middle. The Lynx sensor is 
positioned to anticipate observing the target at hour 50, but there is a high probability the 
target will not pass through the sensor and will remain undetected. 

 

Figure 2. Benchmark Sensor Placement (Red Box) and Target Distribution (Blue 
Heatmap) 

The alternative systems to the benchmark include those with two sensors with 
smaller coverage areas. We place the sensors to anticipate where the target will be at hours 
35 and 70. While these sensors are smaller, there are two of them, so the second sensor 
may capture targets that remained undetected by the first sensor.  
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Figure 3. Dual Configuration: Alternative Sensor Placement With Two Smaller 
Sensors 

We conduct first-stage experiments to compare different alternative configurations 
against the benchmark. The results of these experiments decide which systems have the 
potential to be better than the benchmark, and how to allocate second-stage experiments in 
OT&E. We note that sensors with smaller coverage areas are assumed to be cheaper and 
are preferred. A second-stage experiment could consist of more comprehensive simulation 
runs, or operational testing of the sensor in practice to see how it performs. Table 1 
summarizes names of the system configurations, with the benchmark, dual sensor 
configurations, and their coverage widths. 

Table 1. Names and Coverage of System Configurations 

 

All of the sensors in the dual configuration have much smaller coverage widths than 
the Lynx. We apply the algorithm to a series of first-stage experiments, as described 
previously, by running 30 replications of the experiment for each configuration and saving 
the mean and variance of the proportion of targets detected. Each replication simulates 200 
target paths based on intelligence. We use these values to calculate p-values relative to the 
benchmark, and then eliminate systems who have p-values smaller than α=0.05, as these 
are unlikely to be better than the benchmark. For the remaining systems still in contention, 
we calculate the upper bound on 𝜎  to determine the number of replications needed to 
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distinguish the system from the benchmark mean. Table 2 summarizes the results of the 
experiment. 

Table 2. First Stage Experiment Performance 

 

We require a precision of 1% on the estimate of the benchmark, so the allowable 
deviation in the estimated performance of the benchmark is 1%. The systems with two 
sensors with small coverage areas (Dual20, Dual30, Dual35, Dual37) all have estimated 
performance significantly below that of the benchmark, so the p-value is 0. We can eliminate 
these systems from consideration in the second stage. It is apparent that Dual50 has the 
best performance by far, with Dual38, Dual39, and Dual40 having performance close to that 
of the Lynx single sensor system. Depending on the requirements, we may want to choose 
the sensors with the smallest coverage width if they are cheaper. 

We use the algorithm to calculate the number of samples needed in the second 
stage for the remaining systems and the benchmark. The Lynx system requires 35 samples 
to estimate the mean performance down to 1% absolute error. The Dual50 system only 
requires 2 samples, mainly because its performance is much higher than the benchmark, so 
little additional testing is needed to distinguish it as an improvement. The Dual38 system 
requires 220 samples because its performance is closest to that of the benchmark, so many 
more samples are required to distinguish whether or not it is better. Dual39 and Dual40 
require 65 and 57 samples, respectively, to ensure they are better than the benchmark.  

The last column shows the percentage of effort needed for each system. If the 
second stage cannot complete the recommended sampling effort because of cost or 
operational constraints, the last column shows the relative effort that should be expended on 
each system, with 58% of the effort going to Dual38. At the end of the second stage, we 
hypothesize that Dual39 is the “cheapest” system that has performance at least as good as 
the benchmark, where the smaller coverage area sensors are cheaper. However, we must 
still expend significant effort on Dual38 because it could be better or indistinguishable from 
the benchmark.  

We conduct a second-stage experiment, which is meant to represent a more 
expensive operational setting but still involves a simulated model. Each replication now 
simulates 20,000 independent target paths (instead of 200 in the first stage), resulting in a 
more accurate estimate. In reality, the second-stage experiments would be in an operational 
setting where real information could be obtained.  
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Table 3. Second Stage Experiment Performance 

 

The second-stage results in Table 3 show clearly that Dual38 does not perform as 
well as the benchmark, while Dual39, Dual40, Dual50 are superior to the benchmark. Thus, 
the conclusion is that Dual39 is the cheapest system that performs at least as well as the 
benchmark, meaning two sensors with a coverage width of 0.39 would perform at least as 
well as one sensor with a coverage width of 0.72. However, the analyst could still choose 
Dual38 if she or he felt it was close enough to meeting the requirements. We note that the 
first stage required 270=9x30 total replications, while the second stage required 379 total 
replications. By eliminating some systems after the first stage and reallocating effort, we are 
able to focus effort on obtaining the best system. This saves effort over continuing to employ 
equal allocation over all systems in the second stage.  

Conclusion 
We present a two-stage statistical method that can be used to link experimental 

parameters in DT&E and OT&E experiments. The first-stage experiments can be used in 
DT&E to estimate the performance of different systems. These results can be analyzed to 
determine which system configurations to test in OT&E and how to allocate effort in the 
second stage. Typically, more effort should be allocated towards systems with high variance 
or those close to the feasibility boundary or capabilities requirement, which can be 
determined by a benchmark or other metric. We apply the algorithm to a model designed to 
compare different sensor configurations.  
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