
Calhoun: The NPS Institutional Archive
DSpace Repository

Acquisition Research Program Acquisition Research Symposium

2018-04-30

Seven Tips to Support Rapid Product
Deployment: Lessons Learned

Nagy, Bruce
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/58761

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

SYM-AM-18-078

Acquisition Research:
Creating Synergy for Informed Change

May 9–10, 2018

March 30, 2018

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

- 57 -

Seven Tips to Support Rapid Product Deployment:
Lessons Learned

Bruce Nagy—holds the position of Chief Architect for advanced development activities within
NAWCWD. He leads forward thinking research efforts involving machine intelligence,
simulation/regression techniques, software architecture, and battle engagement strategies. He
specializes in proactive management using predictive metrics. Using predictive metrics, Nagy has
shortened the development schedule for advanced R&D DoD and NATO-based projects. He has
been noted to recover a Navy satellite program from excessive schedule delays. While as a Naval
Officer, he specialized in troubleshooting critical path issues for high visibility programs. Nagy has
degrees in mathematics, biology, and electrical engineering from The Citadel and Naval Postgraduate
School. [bruce.nagy@navy.mil]

Abstract
Navy leadership has tasked its workforce to respond to an urgent need of identifying

good ideas that fulfill immediate warfighter gaps in offensive and defensive capability. This
paper describes how following seven tips gave a 3.5-person team the ability to develop a
working prototype demonstrating the framework of a cutting-edge, counter Unmanned Aerial
System (cUAS) technology, supporting a complete kill chain solution. When good ideas are
accepted by Navy leadership for feasibility investigation, budgets are tight, teams are small,
and expectations are high. This necessitates an environment that introduces a need for
rapid product prototyping of a working system/framework that will inspire additional monies
to support rapid deployment. Seven tips describe detailed lessons learned involving project
management, resource management, system engineering, and architectural analysis,
including the use of Open System Architecture (OSA). Specific best practice techniques
applied to the rapidly prototyped cUAS technology example, including generic discussions of
Program of Record technologies, are used as case studies emphasizing the benefits of each
tip described. By considering the seven tips, the workforce is given guidance, examples, and
food-for-thought as to how to meet Navy leadership’s urgent need for rapid deployment of
cutting-edge technology.

Background
“Months not years” is now the leadership’s call for urgency in getting products out to

the fleet in a shorter period of time. This call has become a mantra regarding the need for
new ideas taking advantage of existing technology in creative ways.

“Easier said than done” is one phrase heard by frustrated acquisition professionals.
For example, a reader’s response as annotated in a blog of the AirTALKs’ recipe (recited in
the previous introduction) was, “what bureaucratic barriers were eliminated?”

The current “recipe for success” described by AIRTalks on August 15, 2017, to
deliver products more rapidly to the fleet is as follows:

 Leadership set a clear and urgent goal

 Focused on schedule and outcomes; tailored in only what was critical

 Empowered the team to manage risk and make decisions; and

 Eliminated bureaucratic barriers to speed

Another initiative supported by the DoD’s MD5 National Security Technology
Accelerator focuses on teaching employees how to deliver a well-crafted elevator pitch and
interview stakeholders in support of future adaptation.

- 58 -

The above points are valuable to heed and the related training is important, but the
recipe misses a key ingredient: educating the workforce on how to deliver products more
rapidly to the fleet. This paper does not attempt to reinvent the acquisition cycle, but to more
effectively work with it to provide an approach to support rapid prototyping by using more
effective Open Systems Architectures (OSAs) and standards supported by industry best
practices associated with project management, system engineering, architectural analysis,
and resource management. The lessons learned described in this document also include
creating a constructive workforce environment—using a common-sense best practice, as
will be described.

The need to begin the birth of a program by rapid prototyping that uses more
effective OSAs and proper application of best practices ensures that the system of systems
architecture will support a rapid product deployment. This document describes examples
and related approaches associated with project management, system engineering,
architectural analysis, and resource management to ensure the proper selection of OSA and
application of best practices. Using the tips provided, a team can have a better chance to
take a “good idea” and get it funded, proving out concepts through the use of rapid
prototyping. Rapid prototyping, in the counter Unmanned Aerial System (cUAS) case
provided as the primary example within this document, means delivering a working system
of systems that demonstrates the concept and validates the selection of OSA that enables
cost reduction, productivity improvement, and product reliability.

In today’s urgent need to maintain technical superiority within a theater of operations,
rapidly deployable good ideas, using the proper OSAs through the use of best practices, are
more likely to gain attention and get funded. Most ideas are supported with limited funding,
therefore rapid prototyping, minimizing cost but emphasizing capability, becomes a
necessity.

The Necessity to Rapidly Prototype a Good Idea
It is logical to any acquisition professional to be concerned about rapid deployment

and its potentially adverse effects on the quality and reliability of product. Will the product
suffer if pushed into the hands of the warfighter too soon? That is certainly one of the
reasons why the acquisition cycle is so structured and rigorous. What emphasizes this
concern of a poorly developed product from skipping steps is that warfighters need highly
reliable, quality products because their lives might be in jeopardy and they are dependent on
the technology they are using. In most commercial products, this level of rigor or
dependability isn’t required. For example, if a smartphone breaks, the user is without a
phone until he or she takes it to the store for a replacement. If a warfighter’s communication
device stops working within a battle engagement, his lifeline for fire support may not be
available, creating a potentially life-threatening situation.

The main challenge is that the acquisition turnaround time for a new technology
consists of many approval cycles and gates, sometimes consuming a decade of reviews
and meetings before the proposed product is seen by the fleet. Within this same period of
time, the commercial market may have produced hundreds of components that might have
affected the performance, cost, and quality of the product under development.

The obvious answer is to focus on OSA and use of industry best practices that make
going through the acquisition cycle faster, but still allow for highly reliable, quality results. A
popular analogy is to be able to create a system of systems architecture in a similar manner
as putting together Legos, where the OSA associated with best practice interface standards
represent the nubs on each Lego block. Therefore, in the simplest of explanations, this

- 59 -

paper describes lessons learned in terms of using best practices based on specific, proven
tips and sound engineering practices supporting the proper use of OSA.

The goal of the paper is to offer seven tips for consideration in helping acquisition
professionals more easily create an effective Lego-based system of systems prototype
products.

The tips are centered on rapid prototyping to ensure that the selected OSA through
use of best practices is tested to be practical, economically feasible, and reliable in terms of
meeting goals. Examples in this document will be provided in which the wrong OSA
selection created increased acquisition issues. Specific solutions to this dilemma will be
described in terms of best practice approaches.

If rapid prototyping is done properly using the “right” OSA and following effective best
practices, then the benefit will more likely be a rapidly developed prototype, using minimal
cost over a short period of time. With regard to the cUAS example used to support tip
development, the technology was developed within two months using a team of 3.5
developers.

An additional benefit is that as new commercial technologies are created during the
acquisition cycle, the prototyped architecture, following the tips offered in this document, will
have proven to allow for a plug-and-play development environment. This will offer the
product, under the acquisition cycle, greater opportunities to keep in pace with technology
advancements, naturally reducing the acquisition cycle, increasing the reliability of the
product, and significantly decreasing overall program cost.

Seven tips will be discussed in the form of lessons learned to share how to
practically use OSA and industry best practices to answer Navy leadership’s “months not
years” call for urgency.

Seven Tips

Tip 1: “A Picture Is Worth a Thousand Words!”—Use a Storyboard to Clarify the
Problem and Solution

This tip supports the first step of gaining clarity regarding the problem and solution.
To gain this clarity, four questions need to be answered:

1. What specific problem does the Navy need to solve?

2. What assumptions are being made about the problem domain, and do those
assumptions still support Navy needs?

3. Is someone already solving this problem using the same assumptions? If so,
was this group contacted and solutions compared?

4. With regard to the proposed solution, is a complete kill chain scenario
described?

This first tip has to do with how the problem can be qualified to be a viable candidate
for funding. It avoids spending time solving a problem that lacks interest from potential
stakeholders willing to provide funds for the proposed solution. As stated, a cUAS project is
offered as an example to illustrate the value this tip offers in clearly defining a problem and
describing a complete solution.

A short background regarding cUAS: An effective cUAS solution is becoming an
important goal for all armed services, especially because of recent events in the news. From
a Navy perspective, the issue is potential threats to naval facilities from small, hard-to-spot
drones.

- 60 -

Because of this Navy focus, the problem defined was limited to an attack from sea.
The imagined attack involved a small boat, a small Unmanned Aerial Vehicle (UAV), and a
sinister intent. The problem definition naturally eliminated many solutions developed by the
Army or other branches. The Navy needs to be worried about sea attacks, more than other
government agencies. In this project, the assumptions were that the UAV could be launched
miles away from an ocean launch site. Depending on the distance, land-based sensors may
have difficulty identifying small objects from long distances away. The small object would be
a group 1 UAV with autonomous capability, designed as a fixed wing drone. The drone’s
performance would be typical of any fixed wing autonomous vehicle purchased on some
popular website that could fly long distances without operator intervention.

Again, to adequately address the third question regarding this tip, it was important to
investigate if there was already a solution to identify a group 1 UAV from far distances,
launched from the sea platform, and then eliminate this threat, if needed. It seemed that a
solution to support this water-based attack using the approach described would add to an
arsenal of Navy capabilities. Although, the Army supported a detailed cUAS solution and
because of this, a Technical Interchange Meeting was held to ensure the Navy cUAS
solution related to its unique problem was not already solved.

Once it was determined that the solution was unique, where no other groups were
providing similar solutions, the next step was defining a complete kill chain or mission
scenario. The goal was not to just define a piece of the solution, but to support the entire kill
chain scenario. The solution ranged from how the UAV was identified when approaching to
its elimination.

To capture these ideas, Department of Defense Architecture Framework (DoDAF)
Operational View-1 (OV-1) view was used in a unique way. Two OV-1s were combined to
make up a storyboard. OV-1 views are commonly used. A two-frame storyboard, as shown
in Figure 1, is a creative use of OV-1s. The point is that DoDAF views allow for creative
license. In Figure 1, the cUAS example is described from supporting identification using
video to a kamikaze defense solution.

Figure 1. A Simplified Version of Two Related DoDAF OV-1s Used as a Two-
Frame Storyboard

Figure 1 represents assumptions regarding both the problem and solution, which
allowed stakeholders and the development team to understand what type of subsystem
elements might be needed. “A picture is worth a thousand words,” but it is still
recommended that words provide the details behind each OV-1 views. With one sheet of
paper, the views along with dialogue can now communicate both solution and assumptions

- 61 -

to verify if both still support Navy needs. The goal is to use the OV-1 to ensure that there is
a clear definition of the problem and a complete solution. “Complete” refers to including all
parts of the kill chain scenario, from identification to elimination, as described in Figure 1.

Therefore, in following the approach described in this tip using OV-1s, all four
questions were more easily answered and explained to others.

Tip 2: Apply Assembly Line Thinking to Make “Months Not Years” a Possibility

This tip illustrates how DoDAF views can greatly enhance the ability to meet the
“months not years” goal without hindering productivity.

For review, an assembly line consists of a series of already prepared parts that are
integrated over a set period of time, normally defined by the speed of the assembly line
process. Using this analogy, consider platforms or subsystem elements to be the already
prepared parts. The schedule defines the assembly line time period. Each of these parts are
welded together via software interfaces or hardware constructs, like Ethernet cable. Note:
Even if the assembly line’s purpose is to only develop one item, the assembly line process is
still valid.

In the project mentioned above involving cUAS, the assembly line subsystem
elements/platforms were as follows:

 Kinetic Integrated Low-Cost Software Integrated Tactical Combat Handheld
(KILSWITCH), which has been used by the Marine Corps to support
situational awareness and other combat-related goals.

 Navy Unmanned Common Control System (CCS) Science and Technology
(S&T) version using the Office of Naval Research’s (ONR’s) Topside.
Topside is a multi-dimensional ground control station. The combination of
using CCS and Topside has been successfully demonstrated over the last
three years with a variety of demonstrations, including Large Displacement
Unmanned Undersea Vehicle (LDUUV), Autonomous Aerial Cargo/Utility
System (AACUS), and Common Mission Command Center (CMCC) with the
K-MAX Unmanned Aerial System (UAS).

 Maneuver Aviation Fires Integrated Application (MAFIA), Joint Multi-Platform
Advanced Combat (JMAC), and MAFIA Association System (MAS), which is
currently fielded as cUAS technology.

 Maneuver Aviation Fires Integrated Application (MFOCS), which is currently
fielded.

 Standardized Payload Management Systems (SPMS), which has been
demonstrated to manage a variety of weapons and payload systems on Navy
UAVs and is currently being enhanced using an Unmanned Aerial Vehicle
Control Segment (UCS) service interface.

The main interface, a common bridge, to connect these elements together was
determined to be UCS, a Navy supported standard. For the subsystem elements selected,
the bridges/interfaces to the UCS standard would therefore be

 Cursor on Target (COT) supporting KILSWITCH communication to UCS

 Tactical Counter-Unmanned Technologies (TCUT) supporting MFOCS
communication to UCS

This common bridge ensured interoperability while keeping communication under a
single bridge standard. The need for a common standard connecting all system elements is
described in Tip 3.

- 62 -

To implement an assembly line paradigm, a series of sequence diagrams were
chosen. The first diagram type started with operational sequence diagrams (DoDAF OV-6c;
see Figure 2) and then moved to system sequence diagrams supporting a system view
(SV). Figure 3 describes a DoDAF SV-10c which translated platforms in OV-6c to sub-
elements within those platforms. Figure 2 describes the use of various types of radars to
support various needs in identifying small targets. The Joint Integrated Fire Control System
(JIFCS) was the technology developed within months using the tips described in this paper.
Figure 2 describes how JIFCS needed to interface with sensor data, handheld devices, and
a group 1 UAV to implement the desired cUAS solution. The goal of both Figures 2 and 3 is
not to describe the JIFCS technology, but to show how assembly line thinking was applied
to rapidly develop a new product.

Figure 2. OV-6c View Regarding One Part of the cUAS Solution

The final suggestion related to Tip 2 is make sure the pieces to be assembled are
mature enough to be used within the project’s schedule. This pitfall was realized in a rocket
development project, where one of the main elements relied on a rocket engine that was still
in the experimental phase. The rocket engine needed several years to mature before it
could be considered to be realistically used in a combat environment. In this case, because
this element made the assembly line process take years, and not months, the project was
rejected. Redesigns were eventually investigated, but the project’s focus was lost. This type
of rocket development project became a very low priority for funding and eventually was
forgotten. Be careful: If an element takes several years to mature, it obviously should not be
used as part of the assembly line process when attempting to support leadership’s “months
not years” call for urgency.

- 63 -

Figure 3. SV-10c View Regarding One Part of the cUAS Solution

Tip 3: “To Be or Not to Be?”—Analyze the Layers of Interfaces to Determine What
Should or Should Not Be Used

Tip 3 provides a “rule of thumb” on how to determine whether it makes architectural
engineering sense to proceed with regard to interfaces between subsystem elements.

In the cUAS example, there were subsystem elements that required the use of three
to five protocols to exchange needed data. This caused an over-complication of the
architecture and implementation, resulting in integration and performance issues. This came
about because each of the original subsystems were developed using different interface
standards. To create even more complications, some of the elements were developed in a
Linux Operating System (OS) and others in Windows OS, causing additional enterprise
gluing issues.

Although the protocol associated with each subsystem involved well-known and
popular standards, the need to use many standards to support straightforward
communication caused installation and performance issues.

As a tip, if a straightforward bridge cannot be used between standards of different
subsystem elements, then consider reevaluating the subsystem elements. If there are no
other choices, then consider new development instead of forcing a square peg to fit a round
hole.

In the cUAS example, the UCS standard was determined to be able to bridge all
subsystem elements. The other elements were assessed as to whether straightforward
bridges could be produced, and the assessment came out positive. If it didn’t, then a
different architecture would have been investigated.

- 64 -

Figure 4 is an example of multiple protocols used through a thread of information in
the cUAS project. The upper thread represents four translator services that would potentially
be needed for communication between subsystem elements and a system that shouldn’t be
put together. The lower thread in Figure 4 represents an ability to architecturally reduce
subsystem communication to one translator service, creating a good system. The
architecture introduced an Air Force standard named Unmanned Command and Control
Initiative (UCI); however, the ongoing challenge was to ensure UCI and UCS efficiently
talked to each other.

Figure 4. Translator Service Designs Used for Communication Between
Subsystem Elements

Tip 4: Focus More on Integration, Less on New Development, to Create a “Months Not
Years” Project Plan

Once it has been agreed to proceed with the project, Tip 4 provides suggestions on
how to quickly create the first demo within the “months not years” timeframe. It provides
examples of system engineering techniques that support rapid development.

In the case of the cUAS project, using Tip 4’s technique showed that the
demonstration could be done within four two-week sprints, which included architectural
analysis, implementation, and test.

If the first three tips are already completed, then this tip will naturally follow and be
easier to achieve. The Tip 4 technique suggests using the time it takes to do the
integration/assembly of each primary element, including data usage, to determine the
shortest timeline to release a demo. If the “right” primary elements aren’t correctly identified
from your assembly line, it’s difficult to successfully use this tip. Primary elements are
identified by understanding how the key platforms are used. Sometimes the best way to
identify primary elements is to identify non-primary elements. Non-primary elements are
subsystems that use primary elements as their hosted platforms.

- 65 -

In the cUAS example, the primary elements were the MFOCS emulator, JIFCS
emulator, and KILSWITCH. Using the technique just described, the timeline for connecting
the primary elements first involved the development of two bridges/interfaces:

1. From the COT message standard to the UCS message standard between
KILSWITCH and JFICS

2. From the TCUT message standard to the UCS message standard between
MFOCS and JIFCS

It should also be noted that the timeline also included the time it took to develop the
software necessary to display the related data. Therefore, the completion of the demo was
principally based on two time related factors:

1. The time it took to develop the bridges that connected the standards (and
therefore connected these primary elements)

2. The time it took to display the related data on non-primary elements (e.g., for
JIFCS, non-primary elements would be the Topside display)

Additional features were determined based on whether they could be done in parallel
to bridge development or support bridge development, while keeping the main focus of the
project on bridge development or data that used the messages translated by the bridge.
Notice that the UCS message standard was the common connectivity between the primary
elements. The reason for having a common standard for connectivity was described in the
previous tip. If this technique is followed properly, there should be little to no lag time within
the assembly line timeline associated with connecting these primary elements.

After identifying this primary element assembly line timeline, the next key question
was what non-primary element features could be integrated without adding any time to the
schedule? Understandably, sometimes it is necessary to require additional time, above and
beyond the primary element timeline.

Figure 5, the cUAS project schedule, emphasizes that the timeline focused on bridge
development or relate data management/display. This meant that most times, these tasks
were on the critical path, meaning the smallest (to no) lag time between tasking. The
purpose of putting emphasis on the primary element assembly line timeline means that the
tasking is mainly focused on assembling primary and non-primary elements instead of
creating technology to integrate.

- 66 -

Figure 5. Schedule to Ensure Bridge Work Is on Critical Path and Not Added
Features

The tasking “Track Data Transfer/Communication” described in Figure 5 was the
incremental development of the bridges. Most of the tasks in Figure 5 containing the words
“track data” and “track displays” involved bridge development for primary elements to share
data, data management, or data display.

Again, Tip 4’s technique allowed the cUAS project team to maintain the goal of
reducing the schedule as much as possible to support a rapid demonstration. This technique
also supported a scheduling discipline when assessing how much added feature
development the timeline could permit without taking the focus away from bridge
development or related use of the messages translated.

In general, once a project’s original concept is demonstrated, then the next phase of
the project would be to add features to the existing framework, knowing the bridge
development and message use were working properly. This technique allows the project to
lay a foundation, like a solid chassis in a car assembly line. The only difference is that in this
assembly line, only one product is being created. This technique also allows the project to
identify the “ideal” shortest period of time. In following this technique, future development
risk is reduced, and potential customers are given a better understanding of value.

Tip 5: Constantly Remember—It Takes a Village to Raise a … Product

During implementation of a project, Tip 5 can help ensure that the support network is
adequately defined and that everyone remains “willingly helpful” during the development
cycle. This tip also provides a suggestion on how to deal with folks who may not have time
to be in a support network, but need to be available and willing in order for the project to
succeed.

Although subtle, this tip should be followed, maybe before all other tips suggested in
this paper: Be nice and help everyone as much as possible, because one day a challenging
task may need a helping hand and the money to pay for it may not be available. With regard
to the cUAS project being discussed, from video folks to weapons pairing experts, 15 to 20
minutes of conversational help about key problems became invaluable.

If individuals on a project team can sincerely promote another group’s work or help
out, even in small ways, great dividends are received. So, when the time comes that a
project team member needs help, someone will probably show up, without a need for a
charge object.

- 67 -

In the case of the cUAS project, a kind videographer took a few minutes to do some
editing. Yet, those few minutes made a significant difference in the realism of the demo.
Figure 6 is a snapshot of the video that took minutes to edit. Another example was a
weapons pairing expert who provided a check and balance for related algorithms that were
being developed regarding automated weapons pairing. These and other folks provided
invaluable support for the success of the cUAS project.

Figure 6. Snapshot of Picture Related to cUAS Project

It’s the old saying, “what goes around, comes around.” Tip 5: Help when possible,
and one day the rewards will appear.

Tip 6: Consider the 80/20 Rule to Support New Talent Growth and Challenging
Schedule Goals

There is a temptation to have only experienced people do the work when a short
timeframe is involved. Tip 6 describes how to use a version of the 80/20 rule regarding
developers and resource management.

In the cUAS example, the project team size was fairly small. Everyone had to pull
their own weight. The team consisted of 80% (or four) seasoned developers, and allowed for
20% (one) highly energetic, highly motivated person to work on the project. This meant that
the new developer would be allowed more scheduled time to accomplish the assigned
tasks. It was important that the new developer was not put under the pressure of being on
the critical path. Additionally, workarounds needed to be readily available. “Months not
years” is a short-term philosophy, but developing people within the organization provides
long-lasting results.

There’s no substitute for experience, but there is no greater reward than giving a new
developer a chance to shine. As stated, the cUAS development team consisted of five
people, represented on the left side of Figure 7. There were senior people on and off of the
project and “in the wings” ready to help all the developers, which goes back to following Tip
5: Be sincerely helpful to others and good things will become available.

- 68 -

Figure 7. 80/20 Resource Mix to Support Professional Development

As an important note, in addition to providing a successful demonstration of a
needed technology, the project also had the privilege to support the development of one
who became a much more capable and seasoned software developer—a significant win for
the organization.

Again to reemphasize per the cUAS project example, the development of junior
personnel is still possible within a rapid development project in which timelines are tight.

Tip 7: Share Lessons Learned—Know That Sharing Experience Creates a Village of
“Smart People”

Along with the “months not years” call for urgency, there is another popular
leadership phrase offered: “Take risks!” In some people’s mind, that means potential failure.
Tip 7 is about sharing knowledge so others learn how to overcome risks and succeed. In
other words, it describes the best way to make “lemonade out of lemons.” This paper was
written to share lessons learned and hopefully help some other project team create an
urgently needed product in a shorter period of time for the warfighter.

Lessons learned described via the previous tips came in two popular categories: (1)
what worked and (2) what didn’t work. Table 1 represents how the previous tips were
categorized in terms of what worked and didn’t work. During the previous description of
each tip, greater detail was included as to why the suggestion worked or why it didn’t work.

If one of the seven tips proves to support the ability of someone launching a good
idea to support warfighter supremacy, then the cUAS project described has had a significant
additional success, beyond cUAS. In other words, this tip suggests that success also
includes sharing lessons learned for others to have successes.

- 69 -

Table 1. Lessons Learned: What Worked and What Didn’t Work

- 70 -

Conclusions
These are exciting times because the U.S. Navy is looking for solutions to warfighter

needs, and the need to rapidly deploy a good idea is vital. Good ideas that can be rapidly
deployed are more likely to receive funding. The goal of sharing these tips is to provide
guidance to help navigate the challenges of assessing, designing, and planning a successful
project using OSA and best practices. “Months not years” is a hard mantra to follow. But
also consider the phrase, “Take risks!” With the myriad of technology currently developed,
putting these elements together to create a new system of systems can be an exciting
adventure. Yet, in an ironic way, the excitement is also associated with and sometimes
driven by the risk. Prototyping through the use of the proper OSA by applying the
appropriate best practices ensures greater rapid deployment success.

In the cUAS project, lessons learned showed the need to focus on sequence
diagrams to help determine whether a demonstration was possible within months. The
analysis showed how different elements could be integrated rather easily to fit within a
months’ timeframe. It showed the need to get as many people involved (within the village)
as possible. It doesn’t mean everyone needs to be on the payroll either. Fifteen minutes
here and there from various experts regarding key areas associated with your project pays
off in big dividends. These lessons learned also describe why a new programmer in the
learning phase using the “right” resource management schema can add value, both short
and long term, to an organization. Finally, whether a project is successful or not, sharing
lessons learned is an important aspect to the rapid development process.

Consider the seven tips described when a good idea pops up and the assessment as
to how to begin becomes an inviting next step. Table 2 describes a checklist based on the
seven previous tips suggested to help determine if any good idea qualifies to be a “months
not years” candidate. Answer the questions in this table using a product prototype.

- 71 -

Table 2. Checklist to Support “Months Not Years” Development Effort

If the answers to the questions in the checklist in Table 2 are predominately “yes”
based on a prototype, not just a paper exercise, then those good ideas are more likely to be
a good candidate for rapid product deployment. And rapidly deployable good ideas are more
likely to get funded. And if funded, those good ideas are more likely to be deployed in time,
proven through your prototype, to ensure U.S. combat superiority is maintained, saving lives
and eliminating enemy threats.

- 72 -

References
AirTALKS [Blog post]. (2017, August 15). Retrieved from

https://myteam.navair.navy.mil/corpapps/NAVAIRComm/NAVAIRBlog

Dam, S. H. (2006). DoD architecture framework: A guide to applying system engineering to
develop integrated, executable architectures. Marshall, VA: SPEC.

DoD. (2010). The DoDAF Architecture Framework Version 2.02. Retrieved September 1,
2017, from http://dodcio.defense.gov/Library/DoD-Architecture-Framework/

Grady, J. O. (2010). System synthesis: Product and process design. Boca Raton, FL: CRC
Press.

Kerzner, H. (2013). Project management: A systems approach to planning, scheduling, and
controlling. Hoboken, NJ: John Wiley & Son.

Langford, G. O. (2012). Engineering systems integration, theory, metrics and methods. Boca
Raton, FL: CRC Press.

Maier, M. W., & Rechtin, E. (2009). The art of systems architecting. Boca Raton, FL: CRC
Press.

Solomon, B. (n.d.). Crafting your “elevator pitch”; Building a tech transition plan.

Distribution Statement
Distribution Statement A. Approved for public release. Distribution is unlimited.

www.acquisitionresearch.net

