
Calhoun: The NPS Institutional Archive
DSpace Repository

Acquisition Research Program Acquisition Research Symposium

2017-03

Transformation of Test and Evaluation: The
Natural Consequences of Model-Based
Engineering and Modular Open Systems Architecture

Guertin, Nickolas H.; Hunt, Gordon
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/58871

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Transformation of Test and Evaluation:

The Natural Consequences of Model-Based Engineering
and Modular Open Systems Architecture

Nickolas H. Guertin, PE

(703) 350-1061

Nickolas.Guertin@Hotmail.com

CAPT Gordon Hunt, USN

(650) 743-1040

Gordon@skayle.com1

mailto:Nickolas.Guertin@Hotmail.com
mailto:Gordon@skayle.com

Our lives are filled with
complicated things that are

responsive to our needs

Our sailors fight with
complicated things that have to

be responsive and robust

Flexible, Fast, Responsive

2

The Defense Marketplace is Due for
Transformation

• Products take to long to get to the user

• Capability is not delivered modularly

• Destabilizing forces abound
• Modularity

• Ubiquitous technologies

• Demands for different performance outcomes

• We have seen these dynamics before

• Can accelerate to a better approach if we act

Page 3

Our Paper Addresses

• Things that limit DoD transformation success
• Gaining the benefits of modularity

• Generating enterprise value

• Reference Frameworks vice program-specific approaches

• Create interoperable data, vice only open interfaces

• Improving cost-performance of integration

• A holistic test strategy, starting with the architecture

• End the systems of systems integration nightmare

4

Eli Whitney and Software

• Environment where modules can be replaced or added
• Rules of Construction
• Consistent approaches
• Preserving Creativity

• Screwing components together
• Loose coupling and high cohesion

• Achieving Robust outcomes
• Leveraging practices

• Continuous capability change

• Complexity management and affordable, rigorous testing
5

The Building Code Analogy

Enterprise Architecture

Reference Architecture

TRF TRF TRF

Product Architecture

System A System B System n

Implementation
Specific

Implementation
Agnostic

…

Master Plan

Zoning, Regulatory
Building Codes, etc.

Category Plans

This Project’s
Building’s Plans

This Building
6

Cyber-Physical “Building Codes”

Cyber-Physical Concepts
Execution & Implementation

Core
Architectural

Tenets

Reference
Architecture

Category

Hardware and Networks
Deployment

Hardware

Documentation, Configuration,
Intrinsic Knowledge of Meaning

Knowledge
Information

Data

Software Environment,
Development Aids

Applications
Infrastructure

Software

Defined Interfaces
Standards (commercial and defacto)
DoD Specifications & Requirements

Standards
Interfaces
Messages

Functional

Acquisition, Contracting and
Requirements & Specifications

Business Model Governance
7

The Power of Technical Frameworks

Page 8

Technical Reference Frameworks (TRFs)

• TRFs are key to use of OSA
• e.g., FACE, UCS, HOST, & SPIES

• Navy has many TRFs

• Build Reusable Modules of Capability

• Account for programmatic realities
• New programs begin with them
• Legacy program transition over time

Page 9

Gaining benefits of TRFs need an enterprise approach

Historical use of Frameworks:
The Evolution of Complex Systems

External
Interfaces

Common
Domain Capabilities

Common Data
Capabilities

Infrastructure
Capabilities

Ad Hoc
Architectures

B
M

/C
4

I

Se
n

so
rs

W
ea

p
o

n
s

MOSA
With Key
Interfaces

…

B
M

/C
4

I

Se
n

so
rs

W
ea

p
o

n
s

Common
Layered

Architecture

…
B

M
/C

4
I

Se
n

so
rs

W
ea

p
o

n
s

Common Domain
Capabilities via
Product-Lines

…

B
M

/C
4

I

Se
n

so
rs

W
ea

p
o

n
s

http://blog.sei.cmu.edu/post.cfm/architectural-evolution-dod-combat-systems-359

…?

10

The Challenge of System(s) Integration

• Different timelines for integration
and technology refresh cycles

• Hard to test designs prior to
implementation

• Different implementation frameworks
and interfaces

• Not managed/funded by the
same program

11

Addressing the Challenge

What we need:
• A common way to specify an interface

• Temporal and scale requirements

• Apply the right protocol for the job

• Configuration & deployment needs vary

• Architecture that’s explicitly specified

How we get to the root:
• Content, context & behavior of data

• Scale testing and integration to new
problems and situations

12

Architecture & Interoperability

13

Functional Architecture

Data Architecture

Software Architecture

Hardware Architecture

Semantics and Data Architecture
An Example

The procedure is actually quite simple:

• First you arrange things into different groups.

• Of course, one group may be sufficient depending on how much there is to do.

• Go somewhere else if there is a lack of facilities.

• It is better to do too few things at once than too many.

• In the short run this may not seem important but complications can easily arise.

• At first the whole procedure will seem complicated.

• Soon, however, it will become just another facet of life.

• It is difficult to see any end to the necessity for this task in the immediate future,

• After the procedure is completed one rearranges the materials into different groups

• Then they can be put into their appropriate places.

• Eventually they will be used once more and the cycle will then have to be repeated.

- Bransford & Johnson (1972)14

How we get there

• A testable architecture, including “Non-
functional Requirements”

• The test-points are baked in and verifiable
prior to implementation

• Test the design during incremental progress

• Transformations Require Effort
• Have to be rigorous in the rules

15

Applying Architecture

16

Functionality

Data Exchange

Devise I/OA
b

st
ra

ct
io

n

La
ye

r

FACE

 Platform Specific Services Segment

 I/O Services

 Segment

Platform Device Services Radar

Alt

GPS Other Radio

Computing H/W

MIL-STD-1553

429

Svc

232

Svc

 Operating System Segment

Portable Components Segment

 Common Services

Drivers

1553

Driver

RS-232

Driver

ARINC

429

Transport Services Segment

DDS . . .

Radar

Altimeter

ARINC 429

Cursor

RS-232

OFP

Ethernet

GPU

Driver

OFP to FACE

adapter

Own Ship Position* FUEL*

O/S API

GPS EGI

TS

Distribution Capabilities

IO O/S

API

OS

O/S

API

Dist
Config

CapabilityParadigm Xlate
Transformation

ServicesQoS

Portable Applications
App1 App2Fusion

1553

Svc

O/S

API

Legacy 27Sept11

Platform Common Services

Health MonitoringConfiguration Service Graphics Services

GLX

Server

ARINC

739

CORBA
ARINC/

POSIX

Enterprise
Architecture

Technical Reference
Framework

Reference
Architecture

Product
Architecture

Start
testing
with a

Testable
system,

the game is
over.

Start testing
with a

Testable
Architecture,
Checkpoints
throughout

development

Adapt the Classic DoD Approach

• Apply Continuous Engineering practices

• Decompose Capabilities into modular
components

• Reuse where possible and appropriate

• Use automated testing extensively

• Adapt the development lifecycle and have
T&E community set the architecture rules

Page 17

Actions

•Match the Speed of Need
• Eliminate waisted effort
• Build so the user focuses on fighting
•New Strategies for Sustainment
• Rapid Delivery

•Use Architectures that are testable, flexible and
decoupled
•Delivery modular capability
• Integrate innovation from anywhere
• Provide robust and secure products

Enterprise Business Challenges

Page 18

