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1. INTRODUCTION 
A Hidden Markov Model  (HMM) can be considered a state machine in which 

state transitions and state outputs, or observations, are probabilistic. HMM’s are used to 
learn and classify sequences of observables. HMM technology has been used 
successfully in a diverse set of applications, such as speech recognition [Da, Pi], Gene 
prediction [Rä], and Cryptanalysis [Si]. 

Because of the probabilistic nature of the underlying process being observed by 
HMM’s, they are not used often to recognize long-periodic sequences. Rather, they are 
mostly used as discriminators, to determine whether one HMM is better than another. For 
example, an HMM-based speech recognition system may have each HMM represent a 
word, with run time voice recognition choosing the HMM that best fits the incoming 
sequence of speech features. This is in contrast with Deterministic Finite Automata 
(DFA) [HWU], Finite State Machines (FSM’s) [KJ], or Harel-Statecharts [Ha, D1, D2], 
which are often used to identify and classify individual sequences. Stated differently, 
because HMM’s identify individual sequences of external observables with a relatively 
low probability, it is usually not perceived as convincing evidence of the occurrence of a 
particular sequence.  

Run-time Verification (RV) of formal specification assertions is a class of 
methods for monitoring the sequencing and temporal behavior of an underlying 
application and comparing it to the correct behavior as specified by a formal 
specification pattern. Some published RV tools and techniques are: the TemporalRover 
and DBRover [D3], PaX [HR] and RT-Mac [SLS], all of which use extensions and 
variants of Propositional Linear-time Temporal Logic (PLTL) as the specification 
language of choice, and the StateRover [SR] that uses deterministic and non-
deterministic statechart diagrams as its specification language. In [D2], Drusinsky 
describes the application of RV using statechart assertions to the verification of DoD and 
NASA applications, and to those of the Brazilian Space agency. 

In this paper, we use HMM’s to identify hidden events and sequences thereof. 
However, we will not be using the (rather small) probability of an observable sequence, 
but rather the probability of a hidden state being reached given a sequence of 
observables. Hence, the technique identifies hidden events with a relatively high 
probability. 

This paper describes a pattern detection technique suitable for financial systems 
in which not all artifacts are necessarily observable. The technique is a novel 
combination of Hidden Markov Models (HMM’s) with RV techniques for probabilistic 
pattern matching of statechart patterns. Throughout the paper, we will be using the 
Statechart assertion formal specification language of [D1, D2]. We will show a 
probabilistic variant of this formalism suitable for pattern detection within systems with 
hidden inputs. 

The technique in this paper is not positioned as a method for achieving financial 
gains in financial markets. Various papers investigating and analyzing such statistical 
techniques can be found in the literature, using artifacts such as long-term memory 
[MBH], self similarity [GMP], and fat-tailed distributions [SCLC]; in fact, power laws 
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are used to classify time series sequences in many other fields besides financial systems 
[L, TV, LC, LZ].  

Rather, the technique suggested in this paper is positioned as a hybrid pattern 
detection technique that combines patterns written by humans with statistical 
observations – manifested as HMM’s. In other words, it is positioned as a hybrid 
between formal specification and run-time verification techniques (e.g., [D1, D2, DMS]) 
and statistical pattern detection. Section 8 addresses the possibility of extending our 
approach to utilize some of the above mentioned statistical techniques such as long-term 
memory, fat tailed distributions, and various other fractal properties. 

The rest of the paper is organized as follows. Section 2 provides an overview of 
behavioral pattern detection using deterministic UML statechart patterns. Section 3 
provides an overview of HMM’s and HMM related algorithms. Section 4 describes our 
proposed pattern detection architecture and process that uses a combination of hidden 
and visible data, using an HMM connected to a behavioral pattern detection monitor. 
Section 5 describes HMM parameter estimation for the financial data HMM component, 
and section 6 describes the operation of the pattern detector. Section 7 describes the 
operation of the probabilistic pattern-matching monitor, and section 8 describes three 
techniques for computing the probability distribution used by that monitor.  

2. BEHAVIORAL PATTERN DETECTION USING 
DETERMINISTIC UML STATECHART PATTERNS – AN 
OVERVIEW 

Consider the following natural language (NL) patterns for a credit card (CC) 
system; the NL pattern is specified as being flagged when a scenario conforms to the 
pattern: 

R1. Flag a customer whose average expense, over three consecutive non-holiday 
weekend clothing related transactions is of a Dollar amount greater than his or her +, 
where  and  are respectively, the mean and standard deviation of the customer’s 
clothing expenses during the previous year. 

Figure 1 depicts a statechart-pattern for R1. As described in [D1,D2], a statechart- 
pattern is a state-machine augmented with hierarchy, flowcharting capabilities, a Java 
action language, and a built in Boolean flag named bFlag whose default value is false, 
with a true value indicating that the pattern has been flagged (e.g., per pattern R1, flags 
that the input scenario conforms to R1). 
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Figure 1. A statechart-pattern for requirement R1. 

The statechart-pattern of Fig. 1 combines flowchart and state-machine elements. 
Rectangular boxes and decision diamonds are flowchart elements – the statechart flows 
through them while executing their actions and conditions, eventually resting on a state 
machine state like WaitForTransaction where the statechart waits for an event. Hence, 
the statechart flows through the Init flowchart box, executes its actions and waits in the 
WaitForTransaction state. When a user transaction occurs (newTransaction event, with 
two arguments, a Transaction object and a User object) the statechart checks whether the 
argument is a holiday and clothing related transaction. If not, then the statechart waits for 
the next transaction. If it is, then the statechart checks whether the transaction is a 
weekend transaction. If it is, the statechart calculates the average amount spent on the 
most recent three such transactions this weekend (see the CalculateAverage flowchart 
box). If this average exceeds the user’s + then the pattern detection flag is raised 
(bFlag = true). 

Pattern matching is performed by comparing a trace of the financial system (e.g., 
a CC statement or bank log) to the behavior of the pattern set. The StateRover tool  does 
so using a two step process. First, a transaction log, or statement, is converted into an 
equivalent JUnit test [JU], and the pettern is code-generated into an equivalent Java class 
(details about this code generator are available in [D1]). Next comes an RV step where 
the JUnit test is executed, thus checking that the transaction log conforms to the pattern1. 

The extended pattern matching technique suggested in this paper uses the same 
process for the development of patterns, i.e., patterns are developed as deterministic 
patterns. However, rather than performing deterministic RV by the virtue of using a code 
generator that generates a deterministic pattern implementation, our technique performs 
probabilistic pattern detection using a special pattern code generator that generates a 
probabilistic, weighted implementation. Specific details are provided in section 6. 

3. HIDDEN MARKOV MODELS 
A (discrete) hidden Markov model (HMM) is a statistical Markov model in which 

the system being modeled is assumed to be a Markov process with unobserved, or hidden                                                  
1 Note that we assume that for an instance of the R1 pattern – i.e., an instance 

object of the Java class generated for statechart-pattern of Fig. 1, exists per user. 
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states. While in a regular Markov model the state is directly visible to the observer, in a 
hidden Markov model the state is not directly visible, while the output, dependent on the 
state, is visible.  

The parameters of a simple HMM are [Ra]: 
 N, the number of states in the model. Individual states are denoted S = {s1, s2,...sN}, 

and the state at time t as qt. 
 M, the number of distinct observation symbols. Individual states are denoted V = {v1, 

v2,...vM}. 
 The state transition probability distribution A = {aij} where aij = P[qt+1 = sj|qt = si], 1  

i,j  N. Clearly, i, 1iN, 1 jN  aij= 1. 
 The observation symbol probability distribution in state j, B={bj(k)}, where bj(k) = 

P[vk at t | qt = sj], 1 jN, 1k M. 
 The initial state distribution  = {i}, where i = P[q1 = si], 1iN. 

Rabiner [Ra] describes the following three primary problems associated with 
HMM’s: 
1. Given the observation sequence O = O1O2...OT, and an HMM model  = (A,B, ), 

how do we efficiently compute P(O|)? 
2. Given the observation sequence O = O1O2...OT, and an HMM model  = (A,B, ), 

how do we choose an optimal state sequence Q = q1 q2...qT? 
3. How do we calculate the model parameters  = (A,B, ) to maximize P(O|)? 

The most well known algorithms used to solve these problems are: 

1. The forward algorithm, for calculating the forward variable t(i) = P(O1O2...Ot, qt = 
si | ). The forward algorithm is a dynamic programming algorithm based on the 
recurrence:  

t+1(j) = [i=1..N t(i) aij ] bj(Ot+1), 1tT-1, 1jN, 
with the initialization: 
  1(j) = j bj(O1). 
Note that P(O1O2...Ot|)=i=1..Nt(i).  
` is the normalized version of : 
`t(j)=P(qt=si|O1O2...Ot, ), calculated recursively as: 

`t+1(j)=t+1(j)/P(O1O2...Ot|). 

2. The backward algorithm, for calculating the backward variable t(i) = 
P(Ot+1Ot+2...OT |qt = si, ). The algorithm is a dynamic programming algorithm based 
on the recurrence:  

t(i) = j=1..N  aij  bj (Ot+1) t+1(j), for  
t =T-1,T-2,...,1, and 1iN, 

with the initialization: 
 T(i) = 1, for 1iN. 

3. The forward-backward algorithm, for calculating the forward-backward variable  
t(i)= P(qt = si | O1...OT, ).  
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 is also: 
t(i)=(t(i)  t(i))/ P(O1O2...OT|) 

4. The Viterbi algorithm, for calculating the best state sequence that explains an 
observation sequence, T(O1O2...OT | ). The algorithm defines: 

 t(i)=max[q1,q2,... qt-1] P(q1,q2,...qt=si, O1O2...Ot | ), 
and uses the following recursive formula: 
  t(j) = max1iN [t-1(i) aij] bj(Ot) 
along with the following formula, used to recover the actual most probable 

state sequence: 
 t(j) = argmax1 i N [ t-1(i) aij], where  1(j)=0; 
The Viterbi algorithm is essentially the forward algorithm with a recurrence in 

which a max operator is used instead of the sum. The probability of best state 
sequence T(O1O2...OT | ) is then the maximal   T(i), 1  i  N, and qT = argmaxi  

T(i), 1  i  N. 
The most probable state sequence q1,q2,...qT is calculated in a backward 

manner, using qt-1 =  t(qt). 

4. PATTERNS WITH HIDDEN DATA 
Suppose our financial system would like to detect patterns that assert about data 

that is not explicitly present in the list of transactions, such as whether a transaction is 
business related (albeit using a personal CC or bank account), is personal, is suspect (as 
fraudulent), or is investment related. More specifically, consider the NL for pattern R2. 

R2. Flag a customer that for a period of a week with at least two investment 
transactions, customer’s investment transaction Dollar amount is 20% higher than 
customer’s personal transaction Dollar amount. 

Figure 2 depicts a statechart-pattern for requirement R2. Note that it asserts about 
visible information (e.g., newTransaction event and transaction amount data item) as well 
as hidden information (hmmType, being PERSONAL or INVESTMENT). 

  
Figure 2. A statechart-pattern for requirement R2. 

To enable pattern detection of a transaction log with respect to R2 and its 
corresponding statechart-pattern, we apply the pattern detection architecture of Fig. 3. 
Key components of the architecture are: 
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1. It contains a Hidden Markov Model (HMM), used to decode the probability of 
occurrence of sequences of hidden states given sequences of the observable 
transactions. The states of the HMM are: Business, Personal, Suspect, and 
Investment, referring to the four transaction types discussed earlier. This HMM 
provides a plurality of weighted transaction type inputs to the statechart-pattern, 
weights reflecting the probability the corresponding HMM state was reached given 
the observed transaction sequence. 

2. It uses a special code generator that generates a probabilistic implementation for the 
statechart-pattern, one that operates on the weighted inputs from the HMM. 

3. It evaluates the pattern using a success score in the range [0,1]. 

  
Figure 3. The pattern matching architecture for the transaction log and 

requirement R2. 
The HMM parameters for this example are determined in the learning-phase 

discussed in section 5. They are: 
 The state set Q consists of the four states mentioned above: Business, Personal, 

Suspect, and Investment, denoted as states 0, 1, 2, and 3, respectively. 

 An observable O, which is a triplet describing the data combinations required by the 
HMM to determine the next state. For example the Boolean conjunction: 

isHoliday ^ isAutomotive ^ !isYouthExpense, means the (visible) transaction 
occurred during a holiday, is not automotive related, and is related to an expense a 
young person typically makes. We represent each observable as a tuple of integers 
such as<2,6,0>, where each integer component represents a condition. 

Section 5 describes in greater detail the set of observable triplets for this 
example and the their associated learning process. 

 State transition probabilities, given by the matrix A in Table 1.  

Transition Source\Target Buss. Pers. Susp. Inv. 
Buss. 0.35 0.46 0.05 0.14 
Pers. 0.25 0.60 0.06 0.09 
Suspect 0.37 0.39 0.23 0.01 
Inv. 0.35 0.38 0.05 0.22 

Table 1. Matrix A of  HMM state transition probabilities 

Transaction 
log Pattern (e.g., Fig. 

2) with weighted 
implementation 
(described in 
section 6) 

 Transaction 

HMM 
HMM 
state  

Pattern matching 
 score 

[0..1] 
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 Matrix B, containing bs(O), the probability of an observable O being  observed in 
state s, part of which is presented in Table 2. 

O\state Buss. Pers. Suspect Inv. 
<0,1,0> 0.01 0.11 0.01 0.03 
<0,2,1> 0.03 0.15 0.01 0.0001 
<1,0,0> 0.01 0.22 0.03 0.01 

Table 2. A part of Matrix B, of probability of observation O in HMM state s. 
 The initial state distribution is [0.2, 0.65, 0.05, 0.1] for Business, Personal, Suspect, 

and Investment, respectively. 
Pattern-detection now proceeds according to the process illustrated in Fig. 3, as 

follows.  
 Transactions from the transaction-log are fed into the HMM, which then executes 

a probability estimation algorithm, such as the forward-algorithm, for the current iteration 
(section 7 discusses three probability estimation techniques). These probability values 
represent probabilities of the HMM being in states Business, Personal, Suspect, or 
Investment. This vector of symbols and corresponding probabilities is passed to the 
pattern’s implementation code, which executes a weighted version of a state-machine 
state change, detailed in section 6. Finally, as discussed in section 6, the pattern detector 
announces the probability it flagged a pattern match.  

5.  FROM PATTERNS TO HMM PARAMETER ESTIMATION 
HMM parameter estimation, i.e., estimating the transition probability and 

probability of state observations, is considered a difficult problem. In particular, it is 
difficult to estimate the number of HMM states, the extreme cases being using one state 
(i.e., reducing the HMM to a stationary process) or n states, n being the length of the 
observation sequence.  

In our case however, HMM states are known; they are directly related to the 
hidden pattern artifacts. In our example, the four hidden symbols Business, Personal, 
Suspect, and Investment, are derived from Fig. 2 and its pattern specification R2, as well 
as from other patterns. 

Our use-case for HMM’s induces a simple method for calculating transition and 
observable probabilities. Because HMM states relate to real world artifacts, we can 
conduct learning-phase experiments, which measure relative frequencies using standard 
frequency analysis. The financial industry performs such experiments as a matter of 
business [Se]. Table 3 illustrates the learning-phase process with a list of transactions 
taken from the authors CC statement; the author annotated the transactions with the 
corresponding HMM state, listed in the right-most column. 
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 Date Merchant Amt  
1 9/22/11 WHOLEFDS   57.25 P 
2 9/22/11 TRADER JOE'S  113.35 P 
3 9/23/11 IKEA  975.86 P 
4 9/23/11 IKEA  68 B 
5 9/23/11 UNION 76       38.46 P 
6 9/25/11 M. LI DDS     38.8 P 
7 9/30/11 UNION 76       25.6 P 
8 

10/5/11 
DOG EAR 
PUBLISHING       175  B 

9 10/6/11 UNITED AIR   1666.8 P 
10 10/7/11 MCAFEE                  45.99 B 
11 10/8/11 GREAT TANS 49.25 S 
12 

10/9/11 
CVS 
PHARMACY 30.27 P 

13 

10/11/11 

K APT HOME 
OWNERS 
ASSOC 303 

I 

14 10/13/11 RADIOSHACK  13.04 B 

Table 3. A sample segment of the author’s transaction log. The rightmost column 
indicates the HMM state as added by the author in the learning phase. 

With this information the process continues by identifying the combination of 
visible transaction-log data, in the form of Boolean conditions, that according to the 
training user induces the states in the rows of Table 3. Table 4 presents this information.  

 Condition Condition Condition  

1 Food   P 

2 Food   P 

3 Furniture Weekend  P 

4 Furniture !Weekend !Holiday B 

5 Automotive   P 

6 Health   P 

7 Automotive   P 

8 Publishing   B 

9 Travel Amt>1000  P 
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10 ITSecurity Amt > 40  B 

11 Leisure Youth 
Expense 

 S 

12 Health   P 

13 Residential Non Local  I 

14 Electronics Weekday  B 

Table 4. Conditions that induce the HMM states in Table 3. 
The conditions of table 4 represent data items required by the HMM to determine 

the next state. In our example these items are: isWeekend, isHoliday, isFurniture, 
isPublishing, isResidential, isElectronics, isHealth, isAutomotive, isLeisure, 
isYouthExpense, isITSecurity, and Amt (Dollar amount). All data items with the prefix is 
are Boolean conditions. According to table 4, the Amt data can be divided into 3 mutually 
exclusive segments: less than $40, between $40 and $1000, and above $1000, denoted as 
Amt<40, Amt[40,1000], and Amt>1000, respectively.  

Note that the number of combinations of these data items is large: 3211=6144. 
However, most conditions are not necessarily orthogonal, but are often mutually 
exclusive. We identify three bins of mutually exclusive conditions:  
1. Temporal – containing isWeekend, and isHoliday (when a certain day is both we say 

its isHoliday). 
2. Type of purchased object – containing isFurniture, isPublishing, isResidential, 

isElectronics, isHealth, isAutomotive, isLeisure, and isITSecurity. 
3. Age group for purchased object – containing isYouthExpense. 

Using these three bins we encode observables as triplets, such as: <2,6,0> being: 
 isHoliday ^ isAutomotive ^ !isYouthExpense. 
HMM parameters follow from this information in a straight-forward manner. For 

example, the probability  of a transition from state Personal to state Business is the ratio 
of number transactions with a P state whose next transaction is B state to the total number 
of transactions with a P state, being 0.375 for the data in Tables 3 and 4. Similarly, the 
probability of observable <2,6,0> in state Personal is the ratio of number transactions 
with a P state and observable <2,6,0> to the total number of transactions with a P state, 
being 0.25 for the data in Tables 3 and 4. 

6. BEHAVIORAL PATTERN MATCHING IN THE PRESENCE OF 
HIDDEN DATA 

Using the architecture of Fig. 3, the pattern-matching module observes sequences 
that consist of visible as well as hidden artifacts; in Fig. 2 for example, newTransaction is 
a visible event, while hmmType is hidden. Hidden artifacts have an associated probability 
distribution which we call the probability-of-occurrence distribution (POD), such as 
POD-1: hmmType=BUSINESS, PERSONAL, SUSPECT or INVESTMENT at time 5 
occurs with probability 0.1, 0.8, 0.05, 0.05, respectively. Section 7 describes three 
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techniques, called `, , and ``, for computing the cycle-by-cycle POD, based on , , 
and , respectively. We consider a visible artifact to have a probability of occurrence of 
1. 

A weighted/probabilistic implementation of the statechart-pattern module of Fig. 
3 responds to an input sequence I = <S1, P1>, <S2, P2>,.., <ST, PT>, where St is a visible or 
hidden artifact (i.e., event such a newTransaction, or data artifact, i.e., variable, such as 
hmmType, both in Fig. 2), and Pt is the POD of St.  

We use the UML notation for St, St=eventt[conditiont], where conditiont is 
optional; eventt and conditiont can either or both be visible or hidden.  

A pattern implementation consists of a collection C of instances, or copies, of the 
pattern, called configurations. Each configuration executes as a standalone pattern and 
preserves its own present-state. Each configuration Con has a probability measure 
P(Con), called the Configuration Probability Measure (CPM), that measures the 
probability the pattern is behaving as suggested by Con, i.e., that its present-state is Con’s 
present state. Upon startup, C consists of a single configuration Condefault whose present-
state, denoted PS(Condefault), is the pattern’s default state (e.g., state Init in Fig. 2), and 
having P(Condefault)=1.   

All configurations of C respond to a pair <St,Pt> of I, as  follows. If Pt = 1 then 
the configuration performs a conventional state machine state change upon input Si. 
Otherwise, either eventt or conditiont are hidden. In this case the configuration Con is 
replaced with two configurations: Con1 and Con2, whose present-state probabilities are 
calculated as follows: 

 If eventt is hidden (as discussed in section 7) then  P(Con1) = P(Con)*Pt  and P(Con2) 
= P(Con)*(1-Pt). The calculation of the probability of hidden events is described in a 
companion paper 

 If conditiont is hidden, then we calculate P(conditiont), the probability of the 
condition, as a function of the probabilities of its constituent variables using standard 
probability calculations. For example, if conditiont is hmmState = BUSINESS || 
hmmState = INVESTMENT then P(conditiont) = P(hmmState = BUSINESS) + 
P(hmmState = INVESTMENT), where each term is taken from the POD at time t, 
such as 0.1 and 0.05 respectively, using POD-1.  

We set P(Con1)=P(Con)P(conditiont), and P(Con2)=P(Con)(1-P(conditiont)). 

Let PS(Con) denote Con’s present-state. PS(Con1) and PS(Con2) are determined 
as follows: 

 If eventt is hidden then PS(Con1) is the next state determined by the pattern’s 
transition out of PS(Con), under the assumption that the event  fired, and PS(Con2)= 
PS(Con). 

 If conditiont is hidden (e.g., hmmState==PERSONAL condition in Fig. 2), then 
PS(Con1) is calculated assuming conditiont=true and PS(Con2) is calculated 
assuming conditiont=false,   



 11 

For the sake of simplicity we disallow patterns in which both eventt and conditiont 
are hidden. 

C configurations are routinely (i.e., every cycle t) managed as follows. All 
configurations Con` with the same present-state2 are merged into a single configuration 
Conmerged, using the sum of all P(Con`) as P(Conmerged). 

The statechart-pattern declares a probability of flag (POF), i.e., the probability its 
corresponding NL requirement has been flagged, on a cycle by cycle basis, being the sum 
of all P(Con) for all configurations Con such that PS(Con) is an flag state. 

Note that statechart-patterns typically use sink-states as flag states, sink-states 
being states with no outgoing transitions. For such patterns, the POF is monotonically 
increasing with time. 

7. CALCULATING THE POD OF A HIDDEN ARTIFACT 
We propose three techniques for estimating the POD at time t: the alpha, gamma, 

and delta methods, as follows. 

 The alpha method, which uses N values of `t(i)=P(qt=si|O1O2...Ot, ), one per 
symbol si, 1iN. Note that ∑1iN `t(i) = 1. 

 The gamma method, which uses N values of t(i)=P(qt=si|O1O2...OT, ), one per 
symbol si, 1iN. Note that ∑1iN t(i) = 1. 

 The delta method, which uses N values of: 
t``(i) = t`(i)/∑1iN t`(i), where  
t`(i) = max[q1,q2,... qt-1]P(q1,q2,...qt=si| O1O2...Ot ,), where 
P(q1,q2,...qt=si| O1O2...Ot ,)=t(i)/P(O1O2...Ot). In other words, t``(i) is a 

normalized version of t`(i), which in turn is the probability of the HMM generating 
symbol si at time t, via the most probable state sequence, given the observation. 

The gamma method is a backward-forward algorithm; it therefore requires the 
entire observable sequence O1O2...OT for the evaluation of t(i) for t  T. The alpha and 
delta methods on the other hand, are forward algorithms and therefore do not require 
future-time information. 

When the HMM contains transitions with probability 0, then all three methods 
might induce sequences of symbols that cannot be physically generated. For example, 
consider an an HMM with N=3 and a1,2=0, and  suppose t(1)=0.3 and t+1(2)=0.2; The 
pattern then considers the  sequence s1, s2 as possible, having a positive probability of 
0.06.  

8. CONCLUSION AND FUTURE RESEARCH 
We have demonstrated a technique for performing financial pattern detection in 

the presence of hidden financial data. Our technique induces a workflow for developing 
the components of the architecture of Fig. 3 - depicted in Fig. 4. 
                                                 

2 More accurately, PS(Con) is an extended state vector, that includes the state variable and the states of 
all local variables, such as the timer state and the bFlag flag. 
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Figure 4. Workflow for developing the pattern matching components of Fig. 3. 

We are planning to build a special StateRover code-generator that generates 
weighted/probabilistic implementation code for statechart patterns.   
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