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Abstract Runtime Monitoring (RM), also known as Run-
time Verification (RV), is the process of monitoring and
verifying the sequencing and temporal behavior of an under-
lying application and comparing it to the correct behavior as
specified by a formal specification pattern. Hidden Markov
Model (HMM)-based RM enables the monitoring of sys-
tems with both visible and hidden data, using the same
formal specifications used by deterministic RM. This paper
describes an online library of formal specification oracles and
an accompanying toolset for the runtimemonitoring log-files
that contain hidden and visible data.

Keywords Runtime monitoring · Formal specifications ·
UML · Hidden Markov models

1 Introduction

Formal Specifications (FS) are mathematically based lan-
guages for assisting with the implementation and assurance
of systems and software. Numerous FS languages have been
proposed over the past four decades, primary of which are
temporal logics [4,15,16] and diagrammatic languages, such
as statechart assertions [5], the FS formalism used by this
paper. There are two primary categories of temporal logics,
linear time and branching time, with Propositional Linear
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time Temporal Logic (PLTL) [17] being the better known
linear time FS language, and Computational Tree Logic
(CTL and CTL*) being the better known variant of branch-
ing time logic. FS languages do not necessarily enjoy the
same descriptive power. They differ in their domain of dis-
course: branching time logics assert about computation trees,
whereas other languages assert about sequences. They also
differ in descriptive power: PLTL is strictly sub-regular and,
therefore, weaker than any finite state machine formalism;
hence enters Regular LTL [14], which combines PLTL with
regular expressions. Nevertheless, as described by the V&V
tradeoff cuboid of [10], some formal verification techniques
use weaker FS languages to achieve greater verification cov-
erage. Section 2 overviews this tradeoff cuboid in greater
detail.

Runtime Verification (RV) of formal specification asser-
tions is a class of methods for monitoring the sequencing and
temporal behavior of an underlying application and com-
paring it to the correct behavior as specified by a formal
specification pattern [22]. In [21], the authors describe the
application of RV using PLTL for system healthmanagement
of real-time systems. [13] describes Runtime Verification
with Particle Filtering (RVPF), a method for controlling the
tradeoff between uncertainty and overhead in runtime veri-
fication. In [5,6], Drusinsky describes the application of RV
using statechart assertions to the verification of U.S Depart-
ment of Defense (DoD) and NASA applications, and to those
of the Brazilian Space agency. The StateRover [23] is a set
of Eclipse IDE plugins for UML statechart-based modeling,
specification, validation, and runtime verification.

A Hidden Markov Model (HMM) can be considered as
a state machine in which state transitions and state outputs,
or observations, are probabilistic. HMMs are used to learn
and classify sequences of observables. HMM technology has
been used successfully in a diverse set of applications, such
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68 D. Drusinsky

as speech recognition [18], Gene prediction [Rä], and Crypt-
analysis [24].

In [7,9], the author describes an RM technique and algo-
rithm for systems with hidden and visible inputs and outputs.
The technique uses deterministic statechart assertions as for-
mal specification. These specifications contain no probability
measures, i.e., the end user is not required to obtain a sample
space, or otherwise generate probability measures, for the
requirements. Rather, the end user needs to create a spread-
sheet representation of the HMM outputs as a function of
visible artifacts; the tool set then automatically generates the
HMM from this spreadsheet and uses it to perform proba-
bilistic verification.

This paper described the process and tools used to create
an RM oracle for checking log-files with hidden and visible
data against supervising formal specifications. The toolset
consists of two primary parts:

1. The rules4business.com [19] online specification pat-
terns and RM site is described in Sect. 2. It consists of
a library of generic Natural Language (NL) rules, their
corresponding formal specifications in the form of state-
chart assertions. This service performs RM by executing
customized rule instances in the presence of comma-
separated (csv) log-file data. The service also provides a
visual audit for the RM process. The rules4business.com
service does not cater for hidden artifacts within the log-
file data sets; hence enters part 2 below.

2. The DTRA toolset is described in Sect. 3. It enables
the enhancement of rules created and tested within the
rules4business environment by enabling RM of comma
separated (csv) log-files with both visible and hidden
data.

This two-tier approach is useful in that the end user can first
specify and test his or her rule instances assuming all inputs
are visible. Once the end user has gained confidence in the
correctness of his or her resulting rule instances they proceed
to the second part where some of the data are hidden.

Section 4 describes a few application domains of the com-
bined toolset.

[3] describes an approach for learning Temporal Logic
formal specification properties of a dynamic system using
statistical methods. Our approach does not learn such prop-
erties, but rather uses a library of pre-defined properties.
In addition, for reasons discussed in Sect. 2, we use visual
statechart assertion properties as our formal specification lan-
guage of choice.

[1,2] describe an approach Adaptive RuntimeVerification
(ARV), where overhead control, runtime verification with
state estimation, and predictive analysis are all combined.
This technique uses HMMs in the loop, as we do, but differs
fromour approach in that: (i) it is tailored for state estimation,
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Fig. 1 The coverage tradeoff cuboid [10]

while our approach performs RM on general log-file, and
(ii) this technique has no accompanying rule library, online
service, or visual audit. In fact, their technique is similar to an
earlier technique published by the author [8], where formal
specifications and HMMs in the loop are used to monitor a
Kalman Filter.

2 An online, library-based, visual formal
specification Oracle

In [10], the authors present a visual tradeoff space—depicted
in Fig. 1—called the Formal Verification and Validation
(FV&V) tradeoff cuboid, for software engineers to discuss
the various tradeoffs (e.g., cost, coverage, etc.) between
different FV&V approaches to select the appropriate tech-
niques for the FV&V of high-integrity software-intensive
systems. The dimensions of this tradeoff space are: Veri-
fication coverage (qualitatively measuring a given FV&V
technique’s coverage of all branches and paths a program can
execute), Specification coverage (measuring a specification
language’s expressive power), and Program coverage (qual-
itatively measuring the types of programs a given FV&V
technique can be applied to). It follows from the cuboid that
many FV&V techniques settle for a less expressive speci-
fication language (e.g., PLTL, known to be sub-regular) to
achieve higher verification coverage. In contrast, RM, being
a form of executable verification, does not need to compro-
mise on the descriptive power of its chosen specification
language and can, therefore, use a more expressive language.
Consequently, rules4business uses statechart assertions as
its formal specification language of choice; they are Tur-
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ing equivalent, yet visual and intuitive, and also enable
visual debugging. Note that although rules4business uses a
library of seemingly pre-defined generic rules, those rules are
actually programmable in the following two ways. First, as
discussed in the sequel, all events, time bounds, and count-
ing constraints are programmed (instantiated) using a script
language (Javascript or Python). In addition, additional rules
can be added to the library using the StateRover tool [6,23],
the tool used to create the current rules in the library. Both
capabilities are described in greater detail in the sequel.

The rules4business online rule specification and RM ser-
vice contains a library of three-dozen generic rules that
enable the specification of sequencing and temporal rules.
Each such rule is provided in two forms: NL, and a cor-
responding statechart assertion formal specification. The
following list is a sample of the generic rules available on
rules4business:

• Rule 7 (8): Flagwhenever eventQoccurs (does not occur)
every cycle between events P and R.

• Rule 9 (10): Flag whenever some pair of consecutive E
events is less (more) than time T apart.

• Rule 11 (12): Flag whenever event P with (with no) even-
tual event Q within time T after P.

• Rule 16 (17): Flag whenever event P and eventually Q
outside (within) time interval T1 T2 after P.

• Rule 19: Flagwhenevermore thanN events Ewithin time
T after Q.

• Rule 20 (23): Flagwhenever event Q occursmore (fewer)
than N times between events P and R.

• Rule 21 (24): Flagwhenever event Q occursmore (fewer)
than N times between some pair of consecutive E events.

• Rule 27 (29): Flag whenever more (fewer) than N events
E occur within one of a series of consecutive T intervals.

• Rule 34 (35): Flag whenever more (fewer) than N events
E within time T prior to Q.

For the purpose of RM, the end user must instantiate (cus-
tomize) one or more generic rules, as follows:

1. Customize event names, such as E, P, or Q, by associating
themwith the csv log-file; more details about this step are
provided in the sequel.

2. Customize time bounds, such as T, T1, and T2. For exam-
ple, rule 11 requires the specification of T; the end user
customizes T in the rules4business.comweb page bywrit-
ing T = n, n being an integer number, and also selecting
a time unit (year, month, week, day, hour or minute).

3. Customize counting constraints, such as specifying N =
3 for an instance of rule 27.

Every generic rule in the rules4business library is accom-
panied by a statechart assertion formal specification. A
statechart assertion [5] is a UML statechart with a special

Boolean flag. The assertion flags when an input scenario
causes the statechart to reach the Flag state. Figure 2 depicts
the statechart assertion diagrams for rules 9, 21, and 34 of
the rules4business library. It also depicts timeline diagrams
showing a scenario for each respective diagram. Note that
the statechart diagram for rule 34 is non-deterministic; non-
deterministic statechart assertions have the semantics of a
Non-deterministic FiniteAutomata (NFA), i.e., using an exis-
tential acceptance rule given all possible NFA computations
[12], with the Flag state being the equivalent of an NFA’s
accepting state [5].

The domain of discourse for the rules4business oracle
RM is a log-file in the form of a comma delimited (csv)
spreadsheet. Figure 3 depicts a snippet of the csv file used
throughout this section.

Consider an example where log-files are bank statement
csv files. In this context, consider generic rule 21 of Fig. 2c,
whose Natural Language (NL) specification is: “Flag when-
ever event Q occurs more than N times between some pair
of consecutive E events”. After selecting this generic rule,
the end user customizes Q, E, and N. An example of the cus-
tomization of Q is “description.indexOf(“Credit Card′′) >=
0 and amount > 500”. Q evaluates to true for every
csv file row that contains the string “Credit Card” in
the description column and also has an amount greater
than 500 in the amount column. An example for E is
“description.indexOf(“Payroll”) >= 0”, namelyE evaluates
to true for every csv file row that contains the word “Payroll”
in the description column. An example for N is 1. Hence,
the customized rule effectively means R21a: “flag whenever
there is more than one credit card charge transaction of more
than $500 between two consecutive payroll transactions”.

The rules4business oracle monitors (checks) an uploaded
csv file against the end user’s rule, thereby effectively per-
forming RM using formal statechart assertion specifications.
A visual audit of the oracle’s decision (i.e., Flag or no Flag
conclusion) is provided in the form of step-by-step anima-
tion of both the formal statechart assertion of the rule under
investigation, and the uploaded csv file; the end user can
move forwards and backwards in time while doing so. Fig-
ure 4 depicts the visual audit of rule 21 while evaluating the
csv log-file shown in Fig. 3.

The purpose of visual audit is to help identify specification
errors and to enhance trust in the service, not unlike the way
programmers use a debugger in a conventional IDE.

Rules4business rules are temporal and sequencing rules
with time and counting constraints. Such rules are typically
not specifiable by classical formal specification languages
such as Propositional Linear Time Temporal Logic (PLTL)
[10]. They also include rules that specify intervals (e.g., rule
27) and past time (e.g., rule 34).

Some rules4business rules enable data-specific pattern
matching. Consider, for example, generic rule 25, depicted
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70 D. Drusinsky

Fig. 2 Statechart assertions for
rules 9, 21, and 34. a Statechart
assertion for generic rule 9; its
Natural Language (NL)
specification is: “Flag whenever
some pair of consecutive E
events is less than time T apart”.
b Timeline diagram depicting a
scenario for rule 9, using T = 30.
c Statechart assertion for generic
rule 21; its NL specification is:
“Flag whenever event Q occurs
more than N times between
some pair of consecutive E
events”. d Timeline diagram
depicting a scenario for rule 21,
using N = 3. e Statechart
assertion for generic rule 34; its
NL specification is: “Flag
whenever more than N events E
within time T prior to Q”. Note
that the statechart is
non-deterministic. f Timeline
diagram depicting a scenario for
rule 34, using T = 30 and N = 3

in Fig. 5. Its NL specification is: “Flag whenever more than
N data-specific events E occur within time T after Q”; the
following example explains the meaning of the term “data
specific”. Suppose we want a rule that flags when there are
four or more expenses per week charged to the same orga-
nization, being one of PEETS, WHOLEFDS, or TARGET.
In other words, the rule should not flag when there are two
expenses to PEETS and two to TARGET, or four expenses

to SAFEWAY, etc., rather, it should flag when there are four
to TARGET, or four to PEETS, or four to WHOLEFDS. To
that end, we customize the data construct, which stands for
“data specific”; hence the customization parameters for rule
25 are now:

• E = amount > 0,
• Q = amount > 0, data=description.match(’PEETS|
WHOLEFDS|TARGET’)[0].
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Fig. 2 continued

Fig. 3 A snippet of a sample csv log-file used by the rules4business oracle

• N=3,
• T=1-week,

2.1 Rules4business service architecture

There are two actors that interface with the rules4business
system: a rule specification expert who creates generic rules,
and subject matter expert who uses generic rules by cus-
tomizing them and uploading csv log-files for monitoring
and verification purposes.

The rules4business service consists of four main compo-
nents:

1. Generic rule creation. Generic rules are created by the
rule specification expert using the StateRover IDE and
automatic code generator [5,23]. The service already
contains three-dozen rules but those can be changed.
StateRover diagram files are then manually uploaded
to the rules4business server where they go through
automatic code generation, resulting in an executable
Java implementation and corresponding Java class file.
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72 D. Drusinsky

Fig. 4 A visual audit of rule 21’s evaluation. It consists of three synchronized animated views: the statechart assertion, a timeline diagram, and
the uploaded csv log-file

In addition, all diagrams are converted to SVG vector
graphics, a form of graphics supported by modern web
browsers.

2. Rule customization service. As described earlier, the
end user manually customizes rules supplying small
Javascript or Python snippets to rules4business, using a
Web user interface. These snippets, along with time and
counting constraints, and the ID of the generic rule being
customized, constitute a rule instance; they are stored in
a MySQL database (DB).

3. Rule execution service.

(a) The engine (automatically) locates the class file per
each of the end user’s stored rule instances, and loads
it dynamically.

(b) As depicted in Fig. 6, when the end user uploads a csv
log-file, that file is evaluated read row by row, each
row inducing possible events, as follows. Suppose

a rule instance I contains the event handler Q, cus-
tomized as “description.indexOf(“Credit Card′′) >=
0 and amount > 500”. This Javascript code is auto-
matically executed on the server using the data in the
description and amount cells of the current csv row;
if the snippet evaluates to true then an event Q is fired
on I (Q is implemented as a class method—firing Q
is but a method call).

4. Visual audit service. While evaluating the csv file, the
server stores a log of all statechart events that fired
along with their corresponding csv row information.
Upon request, these data are automatically downloaded
to the end user’s browser in JSON format. In addi-
tion, as depicted in Figs. 4 and 5b, Javascript on the
browser/client side then automatically animates the SVG
representation of the statechart assertion, a timeline dia-
gram, and a browser copy of the input csv file, all in a
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Fig. 5 The statechart assertion and timeline diagram for rule 25. a Statechart assertion for rules4business generic rule 25. b A snippet of the
rules4business timeline diagram visual audit for the evaluation of generic rule 25 per the log-file in Fig. 3. It show four PEETS purchases on the
week prior to 03/26

synchronized manner, thereby providing the end user a
visual audit. The purpose of this audit is to help identify
specification errors and to enhance trust in the service, not
unlike the way programmers use a debugger in a conven-
tional IDE.

3 Monitoring systems with hidden data

As discussed in the introduction, the rules4business.com ser-
vice discussed in Sect. 2 caters for RM of visible data only.

The second primary component of our toolset supports RM
of data that are partially or all hidden. In this part, the end
user uses the rule instances she/he created and tested in the
rules4business.com part.

The underlying technique in this part is based on HMM’s,
overviewed below. The algorithms used for RM of statechart
assertion rules in the presence of hidden data are detailed in
[9]. The main components of the toolset are described in this
section.
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74 D. Drusinsky

Fig. 6 The RM process using customization script and a csv log-file

3.1 Hidden Markov models

A discrete emission HMM, of the kind used in this paper, is
a variant of a finite state machine with a set of states S and a
set of discrete emissions (also referred to as observables or
outputs) O , as follows:

1. All pairs of states are connected by a transition.
2. For every transition t : s1 → s2, s1, s2 ∈ S : t is labeled

with a probability measure, indicating the probability of
that transition firing. There are no other labels annotating
transitions.

3. For every state s ∈ S: the sum of probabilities annotating
transitions from s to other states is 1.

4. For every state s ∈ S: s emits all outputs o ∈ O , each
with a prescribed probability bs(o), where the sum of
probabilities of all emissions in s is 1.

In a traditional HMM use case, the states are hidden and the
emissions, also referred to as outputs, are considered visible.
AnHMMis typically created in a partially automaticmanner,
where the number of states and the output set O are given,
and a subsequent learning phase algorithm [20] calculates the
remaining HMM parameters, being: transition probabilities
and output probabilities. A typical HMM use case is classi-
fication, where a sequence of observables is mapped to one
of a plurality of candidate HMM’s using a best fit algorithm.
In such a use case, there is usually no interest in assigning a
meaning to individual HMM states; rather the HMM itself is
either selected or not selected as a best fit. As explained in
the sequel, our use case is somewhat different in that the end
user subject matter expert identifies the states by name and
meaning.

3.2 Asserting about hidden data

While Sect. 2.1 identifies two actors that interface with the
rules4business service, here we identify an actor too; usually
this is the second actor of Sect. 2.1, but she/he could be a third
person. This actor identifies hidden states and populates a
HiddenState column in a learning phase csv file, as discussed
below.

The NL rules and corresponding statechart assertions dis-
cussed in Sect. 1 assert about visible data within log-files,
such as contents of the amount column or the description col-
umn of the csv file of Fig. 3. Consider the following variant
of the banking-statement log-file oracle where each state-
ment transaction (row) can be in one of three hidden states:
Benign (B), Suspicious (S), or Fraud (F). These states are
hidden because they do not appear in the log-file of Fig. 3.
Rather, an HMM whose states are B, S, and F is learned
from learning-phase log-files and is later used in runtime
for the purpose of monitoring [9]. We now specify a variant
of rule R21a, R21b: “flag whenever there is more than one
suspicious credit card charge transaction of more than $500
between two consecutive payroll deposits”. R21b is modeled
in rules4business using a customization of Rule21 where:

• Q is: description.indexOf(“Credit Card”) >= 0 and
amount > 500 and HiddenState==S

• E is: description.indexOf(“Payroll”)>=0
• N is: 1

Note how Q refers to two visible csv columns (amount and
description) as well as a hidden column namedHiddenState.
The hidden column exists only for learning purposes—in a
learning phase csv log-file, i.e., when the HMM is learned.
In runtime, RM is performed using csv log-files that has the
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same structure as the files used by rules4business service,
i.e., files with no HiddenState column; instead, HiddenState
information is derived from the HMM.

Section 3.2 describes the architecture and tools for imple-
menting such RM.

3.3 A tool-kit for runtime monitoring of systems with
hidden data

The toolset relates to two phases of theRMprocess: (i) HMM
learning phase, and (ii) RM phase. The tools in the toolset
are named after the sponsor, DTRA.

3.3.1 HMM learning phase tool

Recall that an HMM is a probabilistic finite state machine in
which states (the hidden states) have probabilistic outputs.
The learning-phase csv log-file consists of one HiddenState
column (populated by a subject matter expert), and all other
columns are considered to be the visible output columns. In
other words, the learning-phase log-file describes the hidden
state associated with a row (a tuple) of visible outputs. A
sample of a learning-phase table is depicted in Table 1.

The dtrahmm tool creates an HMM from a learning-phase
log-file, using the algorithm described in [9]. In a nutshell,
this algorithm creates an HMM using frequency analysis,
such as the ratio of rows where HiddenState=“B” and where
the next rowhasHiddenState=“S” to the total number of rows
minus one constitutes the probability of the HMM transition
B → S.

Note that for theHMM induced by the learning-phase log-
file of Table 1, an HMMoutput is an element of the Cartesian
Product O = Amount × Description, where Amount and
Description are sets that consist of all possible values of the
respective columns in the learning-phase log-file. Hence, for
example, amount consists of all possible Dollar amounts that
can possibly be listed in theAmount column. Clearly, the car-
dinality of O is too large to enable effective learning of the
HMM.Hence, dtrahmm uses a quantized version of each col-
umn in the learning-phase log-file. For example, amount’,
the quantized version of amount, consists of three possi-
ble values: amountLT0, amount0to500, and amountGT500,
representing amount < 0, 0 ≤ amount ≤ 500, and
amount > 500, respectively. The end user specifies these
quantized values using a simple Python script that is pro-
vided to dtrahmm as an argument.

Table 1 Snippet of a learning phase log-file

Initial state Date Amount Hidden state Description

5/15/13 −104.99 B BILL PAY COMCAST CABLE CO ON-LINE xxxxxxxxxxx45839 ON 05-15

5/15/13 −200 B ATMWITHDRAWAL - 399 ALVARADO ST MONTEREY CA 9325
0002812

5/14/13 −211.54 S BILL PAY SAN-JOSE WA ON-LINE xxxxxx0000-5 ON 05-14

5/14/13 −35.94 S POS PURCHASE - WALGREENS 1301 FRANKLI PETALUMACA 2075
00463154105997638

5/13/13 −110 F CHECK # 1986

5/13/13 −3392.96 B BILL PAY BANK OF AMERICA ON-LINE xxxxxxxxxxx37591 ON 05-13

5/13/13 −29.99 B BILL PAY DISH NETWORK ON-LINE xxxxxxxxxxx32792 ON 05-13

5/13/13 −9.2 B BILL PAY NRG TEL. ON-LINE xx73634 ON 05-13

5/13/13 −50 B TRANSFER TO JOHNDOE REF #PPEXLPWGD9 CAR SERVICE

5/10/13 −100 B ONLINE TRANSFER TO JOHNDOE D REF #IBE5F9HZKT COMPLETE
ADVANTAGE(RM) GAS AND FOOD

5/10/13 −303 B ATMWITHDRAWAL - 12200 SARATOGA-CHASE SARATOGA CA 9325
00383130659057584

5/10/13 3197.25 B TRINET PAYROLL 130427 00001391829 JOHNDOE,JANET DOE

5/10/13 3557.26 B MAYA SOFTWARE SALARY 051013 XXXXX5030 JOHNDOE

5/9/13 −675 B CHECK # 1980

5/9/13 −78.47 B CHECK CRD PURCHASE 05/08 WHOLEFDS FRK 10044 PETALUMA
CA 357879XXXXXX2669 284852125152774 ?MCC=5457

5/9/13 −44.15 B CHECK CRD PURCHASE 05/08 CHEVRON 00090030 PETALUMA CA
357879XXXXXX2669 463139107653054 ?MCC=7642

5/8/13 −4.05 S CHECK CRD PURCHASE 05/06 PEET’S #10102 PALO ALTO CA
357879XXXXXX2669 163426855403466 ?MCC=5614

The HiddenState column describes the HMMs’ hidden state; it is populated by a subject matter expert. All other columns are considered the visible
outputs
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Fig. 7 The architecture of the HMM-based runtime Oracle

3.3.2 RM phase

The runtime toolset implements the process described in [9],
also illustrated in Fig. 7. As seen there, the process uses an
HMM generated in a learning phase. When observing a run-
time log-file, the Alpha method described in [9] processes
the HMM and a runtime log-file and generates a list of
<HMM-state, probability>pairs, one for every cycle,where
a cycle corresponds to a row of the csv log-file (i.e., row No.
1 is cycle 1, row No. 2 is cycle 2, etc.). This list of pairs is
provided to the RM algorithm implementing the statechart
assertion.

The specific details of the tools used in this process are as
follows.

1. dtraalpha. This program implements the Alpha method
component of Fig. 7. It is the Alpha method detailed in
[9] (based on [20]). Its inputs are:

• The HMM generated by dtrahmm.
• Quantized log-file rowsgenerated froma runtime log-
file using the end user’s quantization scripts.

Its output is a list of < hidden-state, probability > pairs, as
described [9].

2. dtracg. This program implements the statechart assertion
monitor component of Fig. 7, according to the algo-

rithm of [9]. It takes the Java implementation of a rule,
as automatically created by rules4business, and converts
it to a monitor that operates on both visible data (rows
of the log-files) and hidden data (list of <hidden-state,
probability> pairs generated by dtraalpha). This step
does not execute that monitor; it generates its code only;
dtrarm below executes the monitor.

In a nutshell, the Java implementation of a rule monitor
is an extension of an implementation of an NFA, i.e., it
contains a computation object for every NFA computa-
tion, where each computation object carries a probability
measure (the probability of reaching the Flag state). Each
computation is activated by calls to event handler meth-
ods, eachmethod being an implementation of a transition
such as a method E(double probabili t y) for the tran-
sition labeled E of Fig. 2a. The probability argument of
the message handler is used by dtrarm below.

3. dtrarm.This programperformsRMbyexecutingmonitor
code generated by dtracg, as detailed in [9]. Its inputs are:

• Java code for the rule’s implementation; this is the
output from dtracg.

• Runtime log-file; this file contains the deterministic
(visible) inputs. Note that the rule does not require a
quantized version of the log-file; only the HMM and
its Alpha method do.
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Fig. 8 The RM process of Fig. 6 in the presence of the alpha stream

• Pairs of <hidden-state, probability> generated by
dtraalpha.

This component executes a log-file the almost same way the
rules4business rule execution service (see Sect. 2.1; Fig. 6)
does. It does sowith twomodifications, as illustrated inFig. 8:

(a) Suppose a rule instance I contains the event handler Q,
customized as “description.indexOf(“Credit Card”) >=
0 and amount > 500 and HiddenState==S”. The
description and amount columns are visible; hence, as
in section 2.1, dtrarm executes the snippet using the
description and amount cells of the current csv row
(row i). HiddenState, however, is known to be hidden;
dtrarm, therefore, uses the probability of the i’th sym-
bol of dtraaplha input stream (i being the index of the
csv log-file row being evaluated) being “S” as follows. Q
evaluates to false if anyvisible term (e.g., amount > 500)
is false. It evaluates to true otherwise, but with a proba-
bility measure, being the probability of the i’th symbol
of dtraaplha input stream being equal to “S”.

(b) When an event handler, such as Q(double probability)
above, fires, it fires with a probability measure. The
probability of the computation is then multiplied by this
probability measure.

The dtrarm program generates a list of probabilities, one
per cycle,where an element of the list contains the probability
of the rule being flagged in the corresponding cycle. Listing
1 contains the output of dtrarm tool for rule R21b. It is often
assumed that a probability threshold of 0.5 should be used to
convert a probability of Flag to some resulting action, such
as declaring a failed test. However, as described in [8], when
RM is used for mission or safety critical applications, the
threshold will likely be lower.

The reason dtracg and dtrarm are separate programs is
that end users are expected to run dtrarm with a plurality of

runtime csv log-files using the same implementation of a rule
generated by dtracg.

The following is a list of probability values, one per cycle
(csv file row), indicating the probability of the monitor 
reaching the Flag state in that cycle
Row 1: probability of Flag=0.0
Row 2: probability of Flag=0.0
Row 3: probability of Flag=0.0
Row 4: probability of Flag=0.0
Row 5: probability of Flag=0.0
…
Row 38: probability of Flag=0.0
Row 39: probability of Flag=2.220446049250313E-16
Row 40: probability of Flag=0.0
Row 41: probability of Flag=4.440892098500626E-16
Row 42: probability of Flag=2.220446049250313E-16
Row 43: probability of Flag=4.440892098500626E-16
Row 44: probability of Flag=4.440892098500626E-16
Row 45: probability of Flag=2.220446049250313E-16
…
Row 69: probability of Flag=2.220446049250313E-15
Row 70: probability of Flag=1.7763568394002505E-15
Row 71: probability of Flag=0.7982817064429559
Row 72: probability of Flag=0.7982817064429559
Row 73: probability of Flag=0.7982817064429558
Row 74: probability of Flag=0.7982817064429558
Row 75: probability of Flag=0.7982817064429558
Row 76: probability of Flag=0.7982817064429558
Row 77: probability of Flag=0.7982817064429559
Row 78: probability of Flag=0.7982817064429559
..
Row 230: probability of Flag=0.9999819258671948
Row 231: probability of Flag=0.9999819258671948
Row 232: probability of Flag=0.9999819258671948
Row 233: probability of Flag=0.9999819258671948
Row 234: probability of Flag=0.9999819258671948
Row 235: probability of Flag=0.9999819258671948
Done!

Listing 1. The output of dtrarmtool for rule R21b 
based on the architecture of  Figure 7.
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Table 2 A snippet of Yilmaz’s learning-phase table

followers_count user_created_at HiddenState

1002 448 M

845 846 S

363 360 S

119 176 S

4 Application domains and examples

4.1 Monitoring tweets

In [25], Yilmaz investigates the use of RM for identifying
malicious Tweets by monitoring big data. He collected 22K
tweets from publicly available data of Twitter and used them
in testing and validation processes. Yilmaz identifies three
hidden states in the tweet data: Benign (B), Suspicious (S),
and Malicious (M). An example of a rules4business rule use
by Yilmaz is the following customization of rules4business’
Generic rule 9: “Flag when two suspicious tweets are less
than 4 weeks apart”, where the suspicious nature of a
tweet is its hidden state. Hence, the customization para-
meters of Rule 9 are: E is: HiddenState==“S”, T is: 4
weeks.

Table 2 depicts a snippet of Yilmaz’s learning-phase
csv log-file. Here, a subject matter expert assigned the
HiddenState column by observing the followers_count and
user_created_at columns (user_created_at contains the date
of account creation). An example of quantization he used
with dtrahmm is (for the followers_count column):

• followers_count < 100: followers_countLE100
• 100 ≤ followers_count ≤ 500: between 100 and 500
• followers_count > 500: followers_countGT500

4.2 Power grid stability and reliability

In [11], Galinski investigates the use of RM formodeling and
predicting failures in the electrical power grid. Galinski’s NL
and statechart assertions are classified into four categories:
Undesirable Events, Downward Trends, Failure to Recover,
and Undesirable Fluctuations.

Galinski identified four hidden states, i.e., information that
is not readily available in the log-files: Steady State (S), Loss
of a Generator (G), Transmission Line Down (T), and Vari-
able Energy Flow from a Renewable Resource (R).

An example of a Failure to Recover assertion that
asserts on both visible and hidden information is: “Flag
when PRC falls below 1354 MW (N-1 criterion) while
in state G and is not restored to 1354 MW or greater in

Table 3 Galinski’s quantization for the PRC column

PRC state PRC range

0 PRC < 1354

1 1354 ≤ PRC < 1500

2 1500 ≤ PRC < 1700

3 1700 ≤ PRC < 1900

4 1900 ≤ PRC < 2100

5 2100 ≤ PRC < 2300

6 PRC ≥ 2300

15 minutes”, where PRC is the Physical Response Capa-
bility, a measurement of responsive reserves in the grid.
Galinski modeled this assertion using rules4business generic
rule 12: “Flag whenever event P with no eventual event
Q within time T after P”, using P = PRC < 1354
and HiddenState==G, Q = PRC <= 1354, and T = 15
min.

Table 3 contains Galinski’s quantization for the PRC col-
umn of the csv log-file.

5 Conclusion

This paper described an RM technique that combines the
use of rules4business, a customizable and executable library
of visual formal specifications with visual audit, with a
toolset for performing RM on hidden data. Both components
perform RM of csv log-files in the presence of formal speci-
fications. The first tool does so assuming all data are visible,
whereas the second extends that RM to monitor hidden data
as well.

As described in Sect. 4, two students used the combined
approach for performingRMofvisible andhiddendata in two
specific domains, and the author did so for financial systems
[7]. We have gained the following insight into the ease of use
of the process:

1. While using rules4business component of the process is
mostly automatic, the second component of the process
(described in Sect. 3) consists of tools that are executed
manually. There is a relatively easy fix to this problem
using simple Python script that chains the execution of
all tools in the toolset.

2. Some of the tools (dtraalpha) described in Sect. 3 require
the specification of quantization using custom Python
scripts to be written by the end user. At present, the quan-
tization levels are defined rather arbitrarily.

3. Debugging a stream of RM outputs, such as those of
Table 1 is a challenge. For this reason, it is important
to gain trust in the rules while using the deterministic
rules4business step, using its visual audit capability.
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Some additional application domains we envision the pro-
posed approach can be used in are:

1. Online, automatic monitoring of malicious emails, and
network attacks in general. Here, hidden artifacts are
expected to be location and other identification informa-
tion not provided by an IP address.

2. Monitoring telemetric streams, of the kind sent from
NASA missions. Here, telemetry data are most often
rigid in structure; therefore, some additional information
needed for verification purposes might not be included
in that data and is, therefore, hidden.

3. Monitoring self-driving cars. Here, hidden artifacts are
expected to be the state and intent of human actors, such
as other drivers or pedestrians.
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