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AISTllACT 
A dass of cubic Malorana-Mcfartand CM> bent functtons having no affine 
derivative was constructed by Canteaut and Olarpin { D«Dmposlng bent 
functions, IEEE Trans. Inform. Theory 49(8) (2003), pp. 2004-2019), thereby 
soMng an open problem posed by Hou [Cublcb~ntfunctJons, Discrete Math. 
189(1998),pp.149-161]. Thegoalofthepaperfstwofoht.weconstructtwo 
classes of cubic M bent functtons with no affine derivative and show their 
mutual affine lnequlvalence. 

1. Introduction 
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Let Z be the ring of integers, F 2" be the extension field of degree n over Fl, the prime field of char
acteristic 2. r;" = F1n \ {O}, and form, t E z+ (positive integers). let~= ((Xi.X2, • • . ,x,,,) : x; E 
11121, 1 ~ i ~ m} be the vector space of dimension m CNet I' 2r. It is customary for the extension field 
IF 2"" to be identified with rr, as F 2 r -vector spaces and used, interchangeably, where the context allows 
it. A function from lF 1" to !!I' 2 is said to be a Boolean function in n variables. The set of all Boolean 
functions ln n variables ts denoted by Bn. The univariate representation of any function/ e B,. is 

f(x) = L Tr;1 (aj~) + s(l + xln-1), 

Jer(n) 

(1) 

where f(n) is the set of cyclotomic coset leaders modulo 2" - 1, n1 is the size of the cydotomic 

class containing j, a1 e F 2"J , E = L"&F
2
"/(x) (mod 2), and Tt1Cx) = x + x2 + x21 

+ ... + x2"-1
, 

k E z+, is the trace function. For every j E Z/(2" - l)Z, we can write j = L1es2' where E ~ 
l0, 1 .. . , n - l}. The cardinality of B, denoted by I.El, l& referred to as the 2-we!ghtofj and written as 
w2(J). The support of/ e B,, is supp({)= {x e ll'2" :j(x) ~ O}, whose cardinality wt</)= I.supp(()[ 
iJ the (Hamming) weight off. The (Hamming) distance between any two Boolean functions f, g E Bn. 
denoted by d<f, g), is the nwnber of input values at which the outputs off and g disagree, Le. the 
cardinality of {x :f(x) ~ g(x),x e F211}. 

Tbea/gebraicdegreeof/isdefinedbydeg<J) = mUjer(n)fw2(i) : a1 =F O}. Booleanfunctionswith 
algebraic degree at most 1 are said to be affine functions. Precisely, an affine function '/Ja,r : F 2" -+ F 2 
ls of the form 
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where a e IF2"1 E E lF2 (ife = 0, thencpa,o is a linear function). Suppose n=mt, where m, t e z+,and 
f: ~-+ IF2. Then the m-varlau reprrsentation off is 

f (xi , ... , Xm) = Tr{ (g(Xt. ... , Xm)), for all (x1, . . • , x,,.) e F~, (2) 

where g(x1, ... , xm) e F 2, [x., . .. , Xm]. In this paper we will mostly use bivariate representations of 
Boolean functions. 

The nonlintarity off e 8" is nl(j) = min{d(f.q>41,t): a e J!i'2n,e e F1}. The Walsh-Hadamard 
transform off at a e F111 is defined by 

Wj(a) = L (-1y<x>+Tr~{ax). (3) 

XEF211 

The multlset [Wf(a) : a e F111] is said to be the Walsh-Hadamard spectrum off. In the bivariate case, 
where/ : F~, --+- F2, instead of Equation (3), we have 

W1(a, b) = L (-lf(x,y)+Tri Cax}+Tr~ Cb.1), 

(X,)l)E~1 

(4) 

for all (a. b) e F~,. It is known that the nonlinearity off e Bn can be expressed in terms of the 
Walsh-Hadamard coefficients as 

(5) 

(the upper bound is a direct consequence of Parseval's identity LoeF
2
,, W}(a) = 22n). It is known [8] 

that the Upper bound is tight if n E z+ is even, and achieved by bent junctions (first studied by 
Rothaus [IS] and Dillon [9]), which are functiomf forwhichnl(f) = 2"-1 - 2ir12-1• Also,/ is bent if 
and only if W1(x) = ±2"12, for allx e F211, if andonlyif"ExeF2~ (-1)f'Cx)+/(%+a) = 0, for all a e IF;. 

J. f. Molorona-Mdarland b1nt functions 

Suppose n = 2t where t e Z +. Atl'f permutation rr : F 2, --+- F 21 can be represented by a polynomial 
rr(x) = L}~o 1 a1xl where a1 e 1F 2,, for all o :s: j :s: 21 

- 1. The algebraic degree of rr is deg(x) := 
max{w2(11 : a1 =F O}. Rothaus [IS} proved that any function of the form 

f: f 2, x 1F21 -+- f2 

j(x,y) = Tr1 (X?r(y)) + g(y), for all (x,y) E F2r x Fz1, 
(6) 

where g e Bti is bent The.se bent functions are said to be Maiorana-Mc:Farlaod bent functions and 
their set is denoted by M. In t.hh paper we assume g to be identically zero. For f e M with g = 0 
the algebraic degree is deg({) = deg(7r) + 1. Malorana-McFarland construction provides a natural 
connection between pennutltiona over finite fields and functions in M. Pennutations having alge
braic degree I are said to be llneariud permutations. Each linearized permutation on F 2r generates a 
quadratic function ln M . 

Suppose that gcd(t, i) = e, with~ an odd positive integer, and a e F21 such that a# ~m(Z--l) for 
any me Zand any primitive element { ofF2r. BlolchuiB etal. fl] mention that a1,J E (1,2,3}, listed 
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below are linearized permutations on F 2, . 

a1 (x) = ,?' + ax, 

a2 (x) = x2
21 + a.21 

x, 

a3{.x) = x2' + a 21 x. 

Some other linearized polynomial• over f 21 which will be uaed in the paper are as follows: 

a,(y) = Ill + a12',, 

as(y) = y22J + ay, 

a6(y) = y + a2
'/, 

C1'7(y) = y + a 221y221. 

221 .::i' as(y) = y+a y • 

(7) 

(8) 

Observe that the linearized function a4(y) = O if and only if y= O or y221
- 1 = a 22'. If y221

- 1 = a 221
• 

then (a<2'-l)/Cl'-1))211 = 1, since t Ii, whichimpliesa<2'-l)/(l'-l) = 1. Thia is a contradiction, since 
aC2'-1>1<2'-1> # 1. Thua, a4 is a linearized permutation. Similarly, it can be proved that O'J,J=S.6,7.8 
are linearized permutation.&. 

Each functlonj(x,y) = ~ (xu1(y)), 1 :::; j:::; 8, is a quadratic bent in M. Moreover, the following 
two quadratic. permutations were constructed by Blockhuia et al. [1]: 

(y) . .21+1 • .2'-1+1 rr1 = 1 +al' , 
(9) 

Jr2(y) = y(Tr~(y) + ay), 

where t =kt., k is an odd integer and e > 1 is any politive integer (disaueed later in details in 
Section 2.1} on the parameter a. In this paper, we use the functions of the form Jj(.x, y) = n1 (.m1(1} ), 
1 :::; j S 2 as a source of cubic bent functions and consider their differential properties. 

1.2. PNllmlnory raub 

Recall the following well known facts from elementary number theory, which we uae frequently in 
this paper. Suppose that ax s b (mod n) where a, b, n e Zand d = gcd(a, n). Then 

(1) if d does not divide b, the congruence hu no solution; 
(2) if d divide b then aU solutions of the congruence are Xo + k(n/ d), 0 '!:: k < d, where xo ts the 

unique solution to (a/d)x !:iE. (b/d) (mod n/d). 

Lett be a positive integer and gcd(t, i) == e. Then (7, p. 2] 

{
2~ -1 

gcd(221 - 1, 2t - l) == 1scd<21•1> - 1 = 
221 -1 

t 
If- Jaodd; 

e 
t 

if- tsewn. 
e 

s. 04/15 
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Theorem 1.1 ([7, Tbeorem3.l]). ut( beaprlmitWedemmtofF21 andgcd(t, i) = e. Foranya e fi,. 
consitkr the e.quation a21 x?-21 + ax = 0 over F 21. Then: 

(1) Jf t/e is odd then there are 2e solutions to thisequalionforany choice of a e F;,. 
(2) Jf t/e is even thai there are two possible cases: 

(a) if a = ss(l'+l) for some s, then there are 22e solutions to the equation. 
(b) if a ';/: ("s(2r +I) for any s, then there exists onesolution only, namely x = 0. 

1.J. AMn• equlvol•na 

The general linear group of degree n aver lF 1• denoted by GL(n, IF 2 ), is the group of invertible linear 
transformatJom acting on F2•" For any A e GL(n,IP2) and x e IF2rr we denote the action of A on x 
by x f-+ xA. The dine general linear group, AGL(n, l 2)1 is the set of all transformations of the form 
x 1-+ .xA + bwhere be JF2,,. This group can bethoughtofuthesemid!rectproductGL(n,F2) K 11'211, 
but we will not need that here. 

Oefinltion 1.1. Two Booleanftmctionsf,g e Bn are said to be affine equivalent if there uists (A, b) e 
AGL(n,F2) such thatg(x) = f(xA + b),for all x e F1"· 

For Boolean functions used as cryptographic primitives the notion of equivalence is further 
generaliud as follows. 

Definition 1.2. 1Wo Boolean fancnons f,g e Bn an said to be extendtd affine equivalent (BA
tquivalent) if there uist (A, b) e AGL(n,F2). a e IF2 .. and t e lF2 such that g(x) = j(xA + b) + 
f/Ja,a(X),for all XE f2., where <f'o,e(X) = Tri (ax) + £ . 

If two Boolean functions f,g e Bn have different algebraic degrees then they are EA-inequivalent. 

s. 

Therefore, the algebraic degree serves 11.1 an B.A-invarlmt. The multiaet consisting of absolute values 
of Walsh-Hadamard transforms of a function! is said to be its absolute Walsh-Hadamard spectrum. ff 
the absolute Walsh-Hadamard spectra of two Boolean functions are different. which ls pollible even 
if their algebraic degrees are the same. then we know that they are EA-inequivalent. Thus. the absolute 
Walsh-Hadunard spectrum servea aa a more sophilticatcd BA-invariant. In fact, the autoconelation 
spectrum which ls another invariant is also connected to the Walsh-Hadamard spectrum. For bent 
functions the absolute Walsh-Hadamard spectrum ia unique and fiat, set to 2! where n is the number 
of variables. For thJs reason the invariants dependent on Walah-Hadamard spectra are unable to 
decide EA-inequivalenc:e of bent functions. In this paper, we use a second-derivative-based invariant 
to distinguish between the classes of cubic bent functions in M which have no affine derivative. 

1.4. Derltlflflva ond oflfne ln.,,,,,vol•nce 

The problem of deciding EA~inequivalence ls completely solved for Boolean functions having alge
braic degrees at moat 2, that ls, for affine and quadratic Boi>lean functions. We refer to MacWllliams 
and Sloane [ 14, Chapter 15) for detailed diacuslion on quadratic Boolean functions including their 
affine inequlvalence. In the absence of a general theory for functions having algebraic degree three 
and above we addreas the problem by considering derivatives of these functions. 

Defin.ition 1.3. The derivative off e Bn with respect roan m-dlmensional F2-.subspact V of Fl", or 
the mth-(order) thrivative, is the function Dvf : F211 - F2 defined by 

Dvf(x) = Lf(x+a), forallx e F211. (10) 
oeV 

05/15 



Jyl 9 70i~ 07 3G a~ 

09/07/2018 10: 39 05117628998 TIB KUND~NSERVlCE s. 

18 @ B. MANOAL ET AL. 

The algebraic degree to Dvf is at most deg(/) - m. If Vis one-dimensional then Dv/ (x) = f (x + 
a)+ /(x) where a e V \ {O}, which is usually denoted by DJ'(x). If V isa2.-dimensionalsubspueof 
F 2• we choose any pair of distinct clementa a, b e V \ {O) and write 

Dvf (x) = DaJ/(x) = /(x) + f (x +a)+ /(x + b) + /(x +a+ b), 

for allx e f111. Obviously the choice of (a, b) does not change the functionDv/. 
Dillon [9] proposed proving inequivalence of Boolean functions by considering their mth.-order 

derivatives over all distinct m-dimenstonal subspace• ofF 2". 

Tbeonm 1.2 ([9, Theorem 2.1]). For atty function f e Bn let 'Drc<f) deno~ the multiset of all k
dimmsional derivatives off If f,g e Bn are ajfinely equivalent, then so an! 'D1c(/) and 'D1c(g). IjtM 
nonsingular affine transformation A (operating on 8,,) maps f onto g, then it also maps 'D1c<J> onto 
'DJ:(g). 

Dillon proved the following corollary to Theorem 1.2. 

Corollary 1.1. If'P is any affine invariant for Bn. then f-+ 'P{'D,,(f)} is also an affine invariant 
jorB,,. 

Derivatives have been used for this purpose by Carlet [4] and Canteaut and Charpin [3]. Second 
derivatives have been used by Gqopadhyay { 11] extenlively to demonstrate affine inequivalence 
between cubic bent function in M which are in many ways similar to each other. The technique can 
be summarized as follows: 

(1) For/ e Bm construct the set 

St = { wt(Dvf) : V wries over all diatinct two-dimensional subspaces ofF;}. 

(2) Construct the frequency distribution of the weights ins,. We refer to SJ as the second-derivative 
weight distribution off. 

(3) For any two f ,g e 8 111 if the second-derivative weight distributions off and g are different then 
f and g are affine inequivalent. 

1.!. A,,,..,,,.,,. proposed 6y Hou 

Hou [12] proposed the problem of finding values of n for which there exist n-variable cubic bent 
functions having no affine derivative. Canteaut and Charpin [3, Lemma 1] considered the cubic bent 
functions of the form / (x,y) =Tri Cx./+1) and proved that they have no affine -derivative. Using 
this result they constructed an infinite family of cubic bent ~ctions. Gangopadhyay [11) identi
fied subcluses of inequivalent bent functions within thia c:lass, by using an invariant proposed by 
Dillon [9]. 

Theorem 1.3 ([11, Theorem 4)). Let n=2t. Ijft(x,y) = Tr1<.xf'+1) wh~ x,y e F21, n ~ 6, i e Z 
such that 1 ~ i < t and gcd(21 + 1, 2' - 1) = 1, then the number of constant functions among Dvfi is 

where gcd(t, i) = e. 

(2' - 1)(2t+•-1c21 + 1) - (2' + I)) 

3 

06/15 
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Using this result, Gangopadhyay [11, Corollary 5) proved that if gcd(t, i) :F gcd(t,;) thenflandfj 
are not affine equivalent. In th.la paper our goal is not only to identify some more daasea of cubic bent 
functions in M having no affine derivative but also to prove affine inequivalence between the classes 
of functions so obtained. We use Theorem 1.3 almost exclusively for that purpose. 

f ·'- Motlw.rflon 

Boolean functions are uaed in many crypt.oaystems, For ezample, in same LFSR-bued stream ciphers, 
a Boolean function is used to combine the outputs of sewral LFSRs. To destp a secure cryptosystem, 
it la required that the output of the Boolean function ahould not be correJ.ted with a subset of input 
variables, and thus, to resist correlation attacka {16), the concept of resiliency of a Boolean function 
was invented. In (2, Proposition 4.2], Camion et al. conatructed a resilient function which is quite 
similar to the Maioraoa-McFadand bent func:tion1. Further, in a. block dpher, linear structures have 
been investigated for their cryptanalytic siprlflcance. In [6], Charpln et al. derived a ttlation between 
polynomial with linear structure and a Maiorana-McFuland function with an affine derivative. 

In the recent past some new cryptographic properties have been proposed which are relevant 
particularly when functions depending on a small number of variables are used as cryptographic 
primitives. One such property is the second-order nonlinearity of a Boolean function {S}, that is, 
the Hamf1lin8 distance of the function from the aet of quadratic Boolean functions. The experimen
tal evidence (10, Section 3) suggests that cubic bent functions having no affine derivative might be 
poasessing higher second-order derivatives than the rest. 

Thus, Boolean functions that do or do not poises affine derivative are important from a ayp
tographic perspective. In this paper we show that the functions of the formfj(x,y) = 'li1CmJ(y)), 
1 ~ j ~ 2, where tr/ a are defined by F.quation {9), do not have affine derivative and they are mutually 
affine inequivalent. 

Our analysis ahowa that there mat quite a few affine inequivalent classes of cubic bent function in 
M having no affine derivative. Primary research direction ought to be t.owarda finding out such bent 
functions out.tide M a.nd evaluating the signt1icance of those functions in cryptography and coding 
theory. 

2. Cubic b.nt functions In M 

'IWo subcla.saea of cubic bent functions in M are constructed by using the permutations in {9). 
We show that the functions in each of these clasaes have no affine derivative. We prove that the 
functions in the different subclasses are affine inequivalent by considering their second-derivative 
weight distributions. Thus we extend the number of known cubic bent functions in M with no affine 
derivative. 

2.1. SUbdoss aaodatN wlfl11r1 (y) • y21+ 1 + cry2'-' + 1 

Let n=2t, t ~ 3 and ' be a primitive element of F21. Blokhuis et aL [1] proved that the function 
irt : F'2r --+- 1F21 defined by 

for all y e IF 21, where i e Z such that I !: i < t is a permutation if the following conditions are 
satisfied: 

1. gcd(i, t) = e and t/e is odd; 
2. a :I: {1<2'-1>, for any s e Z. 

07/15 
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Lemma 2.1 . Under the above conditions, the cubic Maiorano-McFarland bent function fi: F2' x 
IF 2• --+ IF 2 defined by 

does not possess any affine derivative. 

Proof: Let a, be F21. Then the fint derivative of.fj at (a. b) e IF21 x Fzr is 

D(a.liifi(x, y) = Ti1 (tm1 (y) + (x + a)Db'ft (y)) 

=Tr~ (a(y2
1
+1 + ay2

1-'+1) 

+ (x + a)(y2
1 
b + yb21 + b21

+l + ay2'-' b + ayb2' - ' + ab2'-'+1)), 

(ll) 

for all (x,y) e F21 x F2r. If a =f:. 0, then Dc0•0)/'i(x,y) is a quadratic function. If a=O and b :F 0, then 

Dco.1i).{i(x,y) = 111 {x(y2
1 
b + yb2; + ay2'-' b + ayb21

-;) + x(b2'+1 + ab21-•+1 )} 

is an affine function if and only if p(y) = r' b + yb21 + ay2'-' b + ayb21
-• is constant for ally e 1F2•· 

Since p(O) = 0, then (simplifying by y above) y21
- 1 + b2' - 1 + ay21

- ' - 1 +ab2'_,-l = O, for ally e 
Ill'* p b2'-t b2'-'-1 whi h d 11'11 • ory= l ,wcget +a = l +a, c ren ers 

21 I 21-I I 
y - + ay - + 1 + a = 0. (12) 

If a= 0, then the solution space of Equation (12) is F21 , If a i: 0, ~ know that for 
ye IF1c, then ./- 1 = 1 = y2'-'-1, since e = gcd(i, t). Therefore Equation (12} is identically 
zero. Otherwise, subatitutin'- y = c e lF21 \ IF2e in Equation (12) c11

- 1 + ac1•-•-i + 1 +a = 
0, so a= (c + c21

)/(c + c21
-) and then, a.21 = (c+ Ci)21 /(c + c21-<)1' = (c + r?-1)

21
- 1, that is, 

(a<21
- I ) / (l'-1>)21

:::: l , since e Ii, which implies cr<21
- 1>/Cl'-l) = 1. This is a contradiction. since 

a<2'-ll/(l'-lJ =f:. 1 (otherwise, the condition a -:f: ~1<2•- 1> would be violated). Thus Equation (12) 

does not hold for ally e lF 21 . Therefore, Dco.&)/t is not an affine function, and our lemma is shown. • 

Theorem 2.1 . The number of distinct two-dimensional subspaca cMnSponding to constant second 
-derlvaHves of fi ls 

(21 - 1)(21+e-1c2e + 1) - (2' + 1)) 

3 

Proof: Let V = ((a, b), (c,d)) beany2-dimenaionalsubspaceofF2r x F21. Theaecondorderderlva
tive off, is 

Dvfi(x,y) ==Tri ((ad + bc)j
1 + (ad

21 + cE?')y + a(ad + cb)y2
1
-' + ot(ad21

-; + cb2,_,)y 

+ yx + (ad21+1 + cb21+1) + a(atP'-'+• + cb2r-i+t) +(a+ c)y), 

12' ._11 21-1 2 1- 1 where y = (bti- + u- d) + a(bd + b d). 
Case 1: We firat usume h=O, d=O. Then Dvfi(x,y) = 0 for all (x,y) E F2, x F21. Thut. with 

respect to any 2-dimendonal subspace ofF2i x {O} the second order derivative of/I b O. Therefore 
the number of two-dimensional aubapacea such that Dvfi 11conatant,11 equal to (2' - 1) (2t-l - 1) /3. 

s. 08/15 
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Case 2: Let b = O but d =F 0, Then 

Dvfi(x,y) = TI1 ((ad)y
1 + (ad21)y + a(ad)y2,_, + ct(ad21

-
1
)y + (ad21

H) + a(ad2'-'+1)) 

= T~ (((ad)2t-i + ar:P' + (aad)2; + aatl11
-

1
)y) + Tr~(ar:P'-t-l + aad2H+1). 

Thus, Dvfi(x, y) is constant if and only if {ad)2t-J + ad2
1 + (aad)21 + aad2'-

1 = O, and so, 

21 211 221 2' 
0 = ad+ a d + (aad) + (aa) d 

= (a
21 + (aa)

221)d221 + (a+ (aa)
21

)d, 

which can be written as h21d111 + hd = 0, where h =a+ (aa)21
• Thus, h :f: 0 as a¥: 0. Then, by 

Theorem 1.1, the above equation hu le - l nonuro solutiona ford in F 2r. Therefore, for any nonzero 
a e F21, it is possible to choose din 2e - 1 ways, a can be chosen in 21 

- 1 ways and c in 2t WI)'!> 

slncethesubspacegencrated by{(a,O), (c, d)} is equal tothesubspacegeneratedby{(a,O), (a+ c,d}}. 
Therefore, the total number of two-dimensional subspaces such that the second derivative of J; is 
constant, is equal to (21 - 1)21- 1(2t - l}. 

Case 3: Let b =F 0 and d # 0. 
Subcase {i): Let b= d. Then the subspace generated by {(a, b), (c, d)} is equal to the subspace 

generated by {(a + c, b + d), (c, d)} = {(a + c, 0), (c, d) }, which is the same as in the previous cue. 
Subcast (ii): Let b # d. Then, Dvfi(x,y) u constant if and only ff 

Ll .ll A_I '11 .• lt-1 zt-1 2t-I 
Tr1 ((ad+ bc)y + (aa- +err )y + a(ad + cb)y + a(ad + cb ))') = 0 (13) 

and 

y =0. (14) 

From (14), we have &21
- 1 +ab2'-'-t = d21

- 1 +ad2'-'-1, since b~O and d~O. Again, from 
Equation (14}, 

21 21 22; 221 21 21 21 2' 21 2' 21 21 .11 21 
0 = y = y = b d + b d +a (b d + bd ) = (bd + b d) +a (er- d + bd ). 

Let z = bd11 + b21 d. Then the above equation can be written as z2' + a 21 z = 0, which has the only 
solution z = 0, that is, 

(d)2'-1 
b

21 d + bd1; = 0, ~ b = 1, as b ~ 0 and d "=F 0, 
(15) 

and so, ~ e r;. as gcd{t, i) = t . 

Since b #; d, for any nonzero b, there mat a nonzero>.. e F2• with). :f: 1 such that d = >..b. Thus, d 
can be chosen in 2' - 2 ways and bin 21 - l ways. 

Further, from Equation (13), we have 

""-t .;.r • ;.r-1 21 21 21-1 21-1 
u1 ((ad+ bc)y + a(ad + cb}y + y((ad + cb ) + a(ad + cb ))) = 0, 

~ 'rt1C(ad + bc)y2
1 + a(ad + cb}y2

1
-

1 + y(ad + bc)(b2'-1 +ab1
'-'-1n=0, 

~ Trl ((ad+ bc)21
- ' + (a(ad + cb))21 +(ad+ bc}(b2

1
- 1 + ab21-1_1))y) = O, 

s. 09/ 15 
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for ally e F 2r if and anly if the .following {equivalent) statements hold: 

21-I 1' I ')_j l 2t-f 1 
(ad+ be) + (a(ad + cb)) + (ad+ bc)(u- - +ab - ) == O, 

<::> b2,_, (a}.+ c)2,_, + b21 (a(ei>. + c))21 + (aA. + c)(b1
1 + ah2'-'> = O, 

1_21-1 1t-I , 'ti 11 21 21-I 
<::> u- w- + tr (aw) + w(b +ab ) = 0, where w = aA. + c, 

221 12' 221 2' 2' <::> bw + (ab) w- + (b +a b)w = 0, 

<=> w((ab)22
1w221

-
1 + (b221 +a21b)w2

1
-

1 + b) = 0. 

Therefore, we infer that either w= 0 or (ab)211 w221
- 1 + (b221 + a 21 b)w2'- J + b = 0, which can be 

transformed into 

(ab)221 w<2'-llc2'+1l + (b221 + a1' b)w1'-1 + b = o, 

221 221 2'+1 • ~I 2i 11 l <::> a b µ, + tr µ +a bµ + b = 0, where w- - = µ, 

21 zl 221 2' 
<::>(a µ+I) b µ.+(a µ + l)b = 0, 

<=> b(cr2' µ + l)(b22'-1µ.(cr2'µ + 1)2'-1+1) = O, 

a 21 µ + I -:f:. 0, since the only solution of a 21 w11 + w = 0 is w = 0 due to CT6()'), 

221-1 2' 21-1 21 
<::> b µ.(a µ. + 1) + 1 = 0, aa b #- 0 and a µ. + 1 #- 0, 

<=> bc21+nc21-n,;'-1<cl ,;'-1 +1)21-1+ 1 = o, 
I . I I 

<=> (bl +1 (a2' w2 + w))2-1 = l, 

. I I 
<::> b2'+l(a2 w2 + w) e F;,, 
<::> &21+1 (a

21 w2' + w) e F;., as gcd(i, t) = e, 

and thus 
2' 11 ').' 

a w- + w == &2'+l, as b #- 0 and >..' e F2•. (16} 

s. 

Since the homogeneous put of the above equation is a linear equation which has a unique tolution 
w = 0, then Equation ( 16) has a unique 1olution In F 21 for each >..' e F2'· Thus w can be chosen in 2' 
ways (including w = 0). For fixed a and b, c can be chosen in 2' ways. Therefore, a can be chosen in 21 

ways. bin 21 - l ways, din 2' - 2 ways and c in 2' ways. Each 2-dimenaiooal subspace generated by 
a pair of vectors (a, b) and ( c, d) satiafyiog the above conditions, contain& alto9ether 6 distinct bases 
satisfying these conditions. Therefore. the total nwnber of distinct two-dimensional subspaces with 
bases of this type is 21+1(2t - 1)(2' - 2)/6. Adding the counts from the above three cases we obtain 
the total count (21 - 1)(2t+e-1{2' + 1) - (2' + 1))/3, and the theorem is shown. • 

Remark 2. J: If a = 0, then the cubic Maiorana-McFarland bent function, defined as in 
Equation (11) is .fi(x, y) = 'fl1 (xy2'+1 ), for all (x.y) e IF1r x JF21. From Theorem 1.3, we have the 
number of constant functions among the second order derivative of/I is (2t - 1)(2'+11- 1(2' + 1) -
(21 +1))/3. 

2.l. Tll• subdoll aaodllfH with x:a (y) • y(T~ (y) + uy) 

We next conalder a clasa of permutation polynomials constructed by Blokhuis [ 1 J and referred to by 
Laigle-Chapuy (13]. 

10/ 15 
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Theorem 2.2 { [1 ], [13, Theorem 2] ). Let t = kt, when k be an odd and f. > 1 be any positive integer. 
Then the following polynomial Is a bilinear permutation over IF 21 of the form: 

ir(x) = x(Tr~(x) +ax), 

whena E IF2i \ 1P'2 andTri(x) = E~.:<: xl';. 

Using this claas of permutatiom we construct a claa of cu.hie Maiorana-McFarland bent functions. 
Lett= kt., where k be an odd and l > l be any positive integer. A function g: F21 x IF21 --+ 12 

defined by 

g(x,y) = 'Ii1<xy'n1(y) +axy), forall(x,y) e f 2r x F21, (17) 

ls a cubic Malorana-M<:Farland bent. We prove that if k > l, then the functions g belonging to this 
class do not have any affine derivative. 

Theorem l.3. Lett = ldt where k be an odd and i. > 1 be any positive integer. lf k > 1, then the cubic 
Malorana-McFarland bent function g defined as in Equation ( 17) has no affine derivative. 

Proof: Let (a, b) be an any element ofF21 x f 21. 

Dco.b)g(x. y) = g(x, y) + g(x + a, y + b) 

= Tr~ (xyTr~ (y) + (x + a)(y + b)~(y + b) + axy2 + a(x + a)(y + b)2
) 

= 'Iii {a(yTr~ (y) + ay) + (x + a)(y'I\1(b) + b'Ii1(1) + b~(b) + ab2
)). 

Let a i: 0. Since yT~(y) + ay2 = 0 {::::::::} y = 0 or TI1<Y> = ay ~ y = 0. Thus, if a# O, D(a.b)f ls 
a quadratic function. Let us conaider a= 0, so 

D(o,b)f(x.y) = Tti<x(Yn1(b) + bn1(1)) + x(b'I'z1(b) + ab2
)), 

which is an affine function if and only if p(y) = ~(b) + b'Il1()') is constant for all)' e lF2t. If that 
is so, since p(O) = 0, then p(y) = Yli1<b) + bT~(y) = O, for ally, in particular, for y= 1, we get b + 
~(b) = 0, that is, 

y~(b) + bTr~(y) = o ===* y + Tr~(y) = o ===* y e JF 2t . 

Thus p(y) is not a constant function for all ye P2r. Therefore g does not posses any affine 
derivative. • 

Remark 2.2: If k= l, then t = i and for any (a. b) e F2r x Ji'21, 

D(a,&)g(x,y) = Tr1 ((1 + a)(xb2 + a(y + b)2
)), 

which is an affine function. Therefore, if k= I, then a functiong of the form u in Equation {17) has 
affine derlvatiws. Thus, lf k = I , then ft and g are a1&ne inequivalent, where ft aad g are ddined as 
in (11) and (17), respectively. 

Theorem 2.4. Suppose n=2t and g be defined as In Equation (17}. The number of distinct two
dimensional subspaas corresponding to constant stcond derivatives of g is 

2-3l-1(22(U+t) + 24l+l+l _ 2st+t _ 5, 23l+2t + 2Sl+2t _ 22(t+t) + 23l+l + 2"') 

3 
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Proof: Let V = ((a, b) , (c,d)) be anytwo-dimenaionahubspacc ofF21 x IF21. 

Dvg(x,y)::: ~((rid+ bc)Tr~(y) + (a'!i1(d) + c~(b))y + (~(d) + cb'Ii1(b)) 

+ (b'!i1Cd) + 4I'11(b))x +(a+ c)(bTr~(d) + ~(b)) + a(atP + cb2)). 

s. 

Case l: Let b=O and d=O. Then Dvg(x,y) = 0, for all (x,y} e F21 x F1• · Thus, with respect to 
any 2-dlmenaional subspace off 21 x {O}, the aecond order derivative of g is 0. The number of such 
two-dimensional subspaces is (21 -1)(21- 1 - 1)/3. 

Case 2: Let b = O and d -:/:- 0. Then 

Dvg(x,y) =Tri (adTr~(y) + a1\1(d)y + adli1Cd) + aad2
). (18) 

Since 

~ (a~(y)) = Tr~ (ad(y +It + lu + ... + 1<~-111)) 
= Tr~ (y(ad + (ad)2<k-l)t + (ad)2<k-llt + ... + (ad)2t)) 

= Wi CYTuHad)>. 

Prom (18), we have 

which is constant if and only if 

Th~(ad) + a~(d) = 0. (19) 

Subcase (i): Let a e F 21 . Then Eqmdon (19) is satisfied for all de F2r. Therefore. d can be chosen 
in 21 - l ways and a in 2t - I ways. Thus, the number of two-dimensional sub.spacn on which the 
second dcrlvativea of g arc conatante is equal to (2t - 1 )21- 1 (2' - 1 ). 

Subcase (ii): Let a e 1F21 \ F2i. Then ~(ad)+ a~(d) = 0 if and only if ~(d) = 0 and 
Tr~(ad) = O. Sina both att (k- l)-dimensionalF2t-subspacea ofJF2,, d can bechoaenln 21-ll waya 
and a in 21 - 2t ways. Thus, the number of such two-dlmaialonal subspaces ts (2t - 2t)2t-1 (2t-2l -
1). 

Case 3 Let b :f: 0 and d :f: 0 and b = d. Then the subspace generated by {(a, b). (c. d)} is equal to 
the subspace generated by {(a+ c, b + d), (c, d)} = {(a+ c, O), (c, d)}, which is the nme as m the 
previous cue. 

Case 4: Let b :f. 0 and d ':f: O and b ::/: d. Then Dvg(x, y) is constant if and only if 

bT~(d) + tfrr~(b) = o, for all x e F21 {20) 

and we get the implications 

TG((ad + bc)~(y) + (a'fl1(d) + c~(b))y) = 0, 

T'1 ((Tr~(ad +be)+ (a~(d) + c~(b)))y) = 0, for ally e f 2,, (21) 

Tr~(ad +be) = a~(d) + c'I'r~(b). 

Subcast {i): Let Tr~(b) = O and ~(d) = 0. The dimemion of leer~) is t-l, where 
leer~) = {x e F 21 : TtiCx) = O}. Thus, d can be cho1en Jn 2t-t - 1 ways and b in 21-t - 2 ways. 
From Equation (21), we get ~(ad+ be) = 0, so Tr~(ad) = l'l1Ccb) = }. e F2t. For fixed b and d 
and for each A e F 2,, a and c both can be chosen in 2t-t ways. Thus, the number of such distinct 
two-dimcnslonal subepacea fa 221-tc2t-t -1)(2t-t-1 - 1)/3. 

12/15 
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T.wt 1. The number of twO-dlmensional S&bspaces on whfch the second derlvatlve of the Cl.Ible Maknna-McFllland bent 
functions ~ and 9 are constants. 

n=6 n=10 n=12 n=18 
t= l;t =3 t=1;t:m::5 t•2;l=2 e=l;l=9 e=l:l=3 

n,(e) 35 651 1207S 174251 3052203 
n1(t) 651 174251 53675 11453115051 25287339 

n•20 n=30 
1!=2;l = 2 t:::; l;t = 3 e = J;l • 5 e = S;t = 15 

3142315 879630115 12526594731 188614879915 
2831415467 3775311936432811 6052134955691 192153513564270240 

Subc:me (it): Let TJ1(b) = 0 but Tt1Cd) =F 0 or Ti1Cb) ::/; 0 but Ti1Cd) = 0. Then, from Equation 
(20}, b = O or d = 0 respectively, which is impouible. 

Subcase (iii): Let ~(b) # 0 and ~{d) i= 0. From Equation {20), we get 

T~(d) . ~(d) 
d = -,-b b, that is, d = fJb, where /3 = 'IiLJ b e F;t and .8 =F 1. 

'li'l( ) rt< } 

For each b e F;r, d can be chosen in 2t - 2 ways. From Equation (21 ), we get 

~(b(a.8 + c)) = (afJ + c)1i'}(b). (22) 

Equation (22) has a solution if and only if af3 + c e IF2e, so, c = af3 + fJ11 where fJ1 E IF1t. Then for 
any fixed a, c can be choacn in zt ways. Therefore the number of such two-dimensional distinct 
subspaces is 2t+tc2' - 1)(2t-l - 1)/3. Adding all the cues we get our count. • 

In what follows we demonstrate affine inequivalence among the cubic bent .functions constructed 
above. To do this we use Theorem 1.3 proved in { 11 ). However, it is to be remembered that the use of 
the properties of higher-order derivative• to decide affine inequivalence between bent function was 
introduced by Dillon [9) way back In the seventies. 

Remark l.3: Let n = 2t be a fixed positive integer. In Theorem 2.4, we proved that the number of 
two.dJmensionaJ subspaces with respect to which the second-order derivatives of g are constants 
depends on l . Thus, for any fixed n, for different choices oft the number of distinct two-dimensional 
subspaces to constant second derivatives of the corresponding functions are different. Therefore, for 
any fixed n, for dift'erent choices of l the corresponding cubic Maiorana-McFll'land bent functions 
are affine inequivalent. 

Enmple 2.1: Let n = 30. Then t =IS and possible values of l are 3, 5, and 15. If l = 15, then k= 1 
and, the bent function corresponding to l = 15 has an affine derivative. Aho from Table 1, ~get the 
cubic bent functions corresponding to t = 3, l = 5 and t = 15 are mutually affine inequivalent. 

Let n=lt, andn1(e) andn2(l) bethenumberoftwo-dimensionalsubspacesofF11 x 1'1, on which 
the second derivatives of fi and g (defined as in Equations { 11) and {17), respectively) are a>nstants. 
Then 

(2t - 1)(2t+•-1(2' + 1) - (2t + 1)) 
n1(e) = 

3 
(23} 
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and 

c2' _ 1><21+tc2t-1 _ l) + 2t- a _ 1> + 21t- tc2t- t -1)<2,-t-1 - n 
tt.l(l) = 3 

+ 2t-l((2l - 1)(21 - 1) + (21 - 2t)(2t-1t - 1)). (24) 

Lemma2.2. Ift. ~ e, then n2(t) > n1(e), wheren1(e)andn2(i) aredefinedaslnBquations(23)and 
(24), respectively. 

Proof: We first compute the difrerenc:e 

n2(t) - n1 (e) = (2t - 1)21- 1 (2' - I)+ (2' - 2t)21- 1 (2t-lt - 1) 

221-t c2t-t _ 1)(2,-t-1 _ 1> 
- (21 

- 1)21
-l (2t - l) + ---------

3 

21+tc21 - 1}c2t- 1 - 1) 21+ec2' - 1)(2c-1 - 1) 
+ 3 - 3 . 

If t = e, then t < t and n2(t) - n1 (e) > 0. Again if t > e then M2(t) - n1 (e) > 0 since 

and 

21+cc2' - nc2t-1 - 1) 21+•c2' - l)(2c-1 - 1) 
------- - > o. 

3 3 • 
Corollary 2.1. Ijf. ~ e, thenfi andgare affine intquiva~nt, where ft andgare defined as in (11) and 
(17), rtspectively. 

We compare n1(e) and n2(t) in Table l, for cWferentvalues of n. 

J. Conclusion 

In this article, we prove that cubic Maiorana-McFarland bent functions which ue constructed by 
Ullng some known type& of permutation polynomials (see [l, 13}) have no affine derivative. Con· 
sequently, we have obtained many affine inequivalent classes of bent function within the functions 
under consideration. 
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