
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2005-06

A Framework for Seamless Interoperation of
Heterogeneous Distributed Software Components

Raje, Rajeev R.; Olson, Andrew M.; Bryant, Barrett R.;
Burt, Carol C.; Auguston, Mikhail

Raje, Rajeev R., et al. A Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components. No. TR-CIS-0624-05. INDIANA UNIV FOUNDATION
INDIANAPOLIS RESEARCH AND SPONSORED PROGRAMS, 2005.
https://hdl.handle.net/10945/59369

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

aea a ... aa..z .. ~ &£JR .. & nz __ = a a ma a c_ _£&& & £4

A Framework for Seamless
Interoperation of Heterogeneous

Distributed Software Components

DfSTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

(Final Report)
20050705 053

Funded by the DoD and Office of Naval Research

under the CIPISW Program

Form Approved REPORT DOCUMENTATION PAGE
OMB No. 0704-0188

T.oc reporting burden for thos collectoon of mformatoon os estimated to average 1 hour per response. oncludong the tome for revoewong onstructoons. searchong exostong data sources.
9 and maintaining the data needed. and completing and reviewing the collect1on of 1nformat1on. Send comments regarding this burden estimate or any other aspect of this collect1on of
in on, 1ncludrng suggestions for reducing the burden. to Department of Defense. Washington Headquarters Services. 01rectorate for lnformat1on Operations and Reports (0704-01881.
12 efferson Davis Highway, Suite 1204. Arlington. VA 2.2202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be sub1ect to any
penalty for fa11tng to comply with a collection of informat•on 1f 1t does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE fDD-MM-YYYY! I 2. REPORT TYPE 3. DA TES COVERED (From - To}

06/27/05 Final Technical Re_port 05.lOl_LOl-31.11 /05
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Framework for Seamless Interoperation of N00014-01-1-0746
Heterogeneous Distributed Software components 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6 . .AUTHORISI 5d. PROJECT NUMBER

Raje, Rajeev, R.' Olson, Andrew, M.' Bryant,
Barrett, R.' Burt, Carol, c.' and Augustan, Mikhail 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(SI AND ADDRESS(ESI 8. PERFORMING ORGANIZATION

Indiana University REPORT NUMBER

Research and Sponsored Programs TR-CIS-0624-05
620 Union Drive, Room 618
Indiana,polis, IN 46202-5167

9.0NSORINGIMONITORING AGENCY NAME(S) AND ADDRESSIESI 10. SPONSORIMONITOR'S ACRONYM(SI

• Ralph Wachter
Office of Naval Research, ONR311
Ballston Center Tower One 11. SPONSORIMONITOR'S REPORT

800 N. Quincy Street, Arlington, VA 22217-5660
NUMBER(S)

12. DISTRIBUTIONIAVAILABILITY STATEMENT

Public Availability (UU) D~STDH~UT10M STATEMENT A

13. SUPPLEMENTARY NOTES

Apprnv0cl f~r Publi? ~el~ase
UIBU flJUTIOTTUTTlll I lllt;:;U

14. ABSTRACT

The UniFrame research was supported under the CIP/SW Program. The vision of this
r:esearch is to automate the process of integrating heterogeneous and distributed
systems that conform to specific quality requirements. This research addressed three
key challenges : a) architecture-based interoperability, b) distributed resource
discovery, and c) validation of quality requirements. Principles and prototypical
systems were created to demonstrate the successful completion of the research.

15. SUBJECT TERMS

Component-based software, distributed computing, Quality of Service, Model-driven
architecture.

iaCURITY CLASSIFICATION OF: 17. LIMITATION OF

a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT

u u u uu

18. NUMBER
OF
PAGES

370

19a. NAME OF RESPONSIBLE PERSON

Rajeev R. Ra_ie
19b. TELEPHONE NUMBER (Include area code/

317-274-5174
Standard Form 298 (Rev. 8198)
Prescnbed by ANSI Std Z39. 18

Participants

· • I Rajeev R. Raje
• Andrew M. Olson

Barrett R. Bryant
Carol C. Burt

Mikhail Auguston

http :/lwww. cs. iupiti. editluniFrame

•

•

•

•

Final Report

Contract Information

Contract Number N00014-01-1-07 46

Title of Research A Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components

Principal Investigator Rajeev R. Raje

Organization Indiana University Purdue University Indianapolis

Technical Section

Executive Summary

This is the final report for the project entitled "A Framework for Seamless Interoperation of
Heterogeneous Distributed Software Components'', supported by the Office of Naval Research under the
CIP/SW program, and which was jointly investigated by the Indiana University Purdue University
Indianapolis, The University of Alabama at Birmingham, and New Mexico State University/Naval
Postgraduate School. The objectives, approach, results achieved, publications, presentations, interactions
with other organizations, and educational impact are described in this report. Copies of sample
publications are also included as an appendix.

The vision of this research is to automate the process of integrating heterogeneous and distributed
software components, so as to create distributed systems that conform to specific quality requirements.
The research addressed three key issues while creating a framework, called UniFrame, as a first step
towards achieving the vision of the research. These three issues were: a) architecture-based
interoperability, b) distributed resource discovery, and c) validation of the quality requirements. The
underlying principles for the research are based on model-driven generation, multi-level specification of
components, a proactive and distributed discovery of resources, and formalism based on Two-level
Grammars and Event Grammars. Many different prototypes were created as a proof of concept for this
research and were empirically validated. The results were extensively published in professional forums,
such as journals, conferences, and invited presentations. The results of the research were also
incorporated in the curricula at all the participating organizations and benefited undergraduate as well as
graduate students. The infrastructures at the participating universities were also enhanced by creating
dedicated laboratories for the research. The results achieved during the life of the project have
successfully demonstrated the soundness of the UniFrame principles, thereby, reaffirming the belief that
UniFrame presents a comprehensive approach for constructing distributed component-based systems that
satisfy quality requirements .

1

• Objectives

•

•

The vision of this research is to automate the process of integrating heterogeneous components to create
distributed software systems that conform to quality requirements. As a first step towards accomplishing
this ambitious vision, the objective of this research contract was to create a comprehensive framework,
called UniFrame. that will enable a seamless interoperation of heterogeneous distributed components.

The key research issues, investigated by this project, to achieve the above mentioned objective are:

i) Architecture-based interoperability
ii) Distributed resource discovery
iii) Validation of quality requirements

Each of these research issues requires addressing several challenging topics, which are indicated below.

i) Architecture-based interoperability

ii)

a. To investigate the roles of modeling, mapping, and automation in achieving
interoperability between heterogeneous components.

b. To develop principles for designing the necessary tools and implement proof-of-concept
prototypes.

c. To explore the challenges related to model-based standardization in the domain of
heterogeneous distributed components .

Distributed resource discovery
a. To develop a multi-level specification mechanism, based on a meta-model that utilizes

and facilitates the principle of design by multi-level contract.
b. To create an infrastructure for publication and distribution of the software components.
c. To design and experiment with a prototypical system that will provide the hierarchical

discovery and selection mechanisms for locating appropriate distributed components.

iii) Validation of quality requirements
a. To develop a comprehensive vocabulary and associated metrics for the quality

parameters of a system.
b. To investigate the composition and decomposition rules for these quality parameters.
c. To create the necessary formalism for monitoring events related to these quality

parameters.

Approach

The assumptions of the research are: a) distributed system construction is to be achieved by integrating
independently deployed heterogeneous components, and b) automation aids in increasing the quality of
the generated system and requires less development time. The technical approach used in UniFrame is
based on principles of: a) model-driven design and construction, b) distributed discovery using multi
level specifications, and c) Two-Level and event grammars .

2

• Figure I indicates the UniFrame process [BC-I, CW-I) 1 for constructing distributed systems from
geographically distributed heterogeneous software components. The central piece in the UniFrame
process is a comprehensive knowledgebase (KB) that contains detailed descriptions of a) a service-based
architecture (modeled by feature diagrams) for a family of systems for the particular type of application
under consideration, b) rules for matching and selecting distributed components, c) rules for semi
automatically generating a distributed system from selected components, and d) the rules for the
description, the instrumentation and the measurement of the quality requirements of the generated
system. In the current research effort, it is assumed that this KB is developed by domain experts, such as
various task forces of the Object Management Group (OMG), using the available standards. However,
for the purposes of the prototypical development and experiment, this KB has been handcrafted. Details
of the prototype KB are provided in [DT-4), whereas the architecture and application of the more general
concept are explained in [BC-I, CW-I].

•

•

Component ,_
Distributed Resource

Discovery

Modified
Query

Component
Deployment

.. - .. ,,, .. :

-
~!l'-·,··c

.

.

Component
Quality Measures

Component Developer

System Integrator

Assembled ff; J
UniFrame Knowledgebase

l.~'I
System '\ti~.~,

'I\-

No

~.,.
lflfli&-~'I'

Yes
Quality Validation

/)
/-;?
~)

System Deployment
(End)

Domain Expert
(Start)

Figure 1: The UniFrame Approach

Standards

In the UniFrame process, it is assumed that developers independently create components using a specific
distributed component technology that adhere to the KB standards. In addition to creating, validating, and
deploying the components, they are required to develop a multi-level specification, called a UMM
(Unified Meta-component Model) specification [OR-I, CW-1), for each of their components. This UMM
specification is an enhanced version of the multi-level contract principle advocated in [OR-2]. Each
component has four levels of contract: a) syntax, b) semantics, c) synchronization, and d) Quality of

1 The following scheme is used in indicating citations. These references are divided into: a) Book Chapters (BC), b)
Journal Papers (JP), c) Conference and Workshop Proceedings (CW), d) Standards Documents (SD), e) Dissertation
and Theses (DT), and f) Other References (OR). Each citation contains a prefix, which indicates the corresponding
category (e.g., BC), followed by a number (e.g., BC-I).

3

• Service (QoS). Various mechanisms are utilized to describe these different levels of the contract. For
example, the semantics contract uses pre-, post-conditions and invariants, while the QoS level contract
indicates the appropriate QoS parameters with their metrics and their behavior as a function of the
execution environment. Examples of UMM specifications are available in [BC-1, CW-1). The component
along with it's UMM specification (in XML) is deployed on the network using the underlying
infrastructure provided by the technology that was used to develop the component. Once a component is
deployed, it is available for discovery.

•

•

The task of locating a component is carried out by the UniFrame Resource Discovery Service (URDS).
URDS is hierarchical, proactive, interoperable, and decentralized in nature. Its three constituents are: a)
active registries (AR), b) headhunters (HH), and c) Internet component broker (ICB). ARs are the native
registration mechanisms of different distributed component technologies (such as the registry in Java
RMI) except for the fact that they are proactive in nature, i.e., they are always listening for
communications from HHs. HHs are responsible for discovering components that are deployed on a
network. Once a HH discovers components, it registers them in its local store, called meta-repository
(MR). HHs are responsible for matching requests for components with the available components and also
propagating these requests to other HHs. The ICB is a collection of various services such as the
authentication, federation, and query processing. Comprehensive details of URDS are available in [DT-1,
CW-15).

The discovery process is initiated by a request, or query, for a distributed system from a system integrator
with the intent of constructing it from components deployed on a network. This query indicates the
nature and the features of the desired distributed system. The features include a combination of a variety
of QoS parameters (such as tum-around time < 200 ms) and a type of the desired system. The query
manager (a part of the ICB) uses the KB to determine a system design instance out of the families of
systems stored in the KB that is appropriate for the query. Once that instance is identified, the query is
decomposed into sub-queries, each indicating specific types of components, along with their QoS
features, that are needed to construct the desired distributed system. This decomposition process uses the
rules that are described in the KB. The details of this process are described in [DT-4, DT-5, CW-23).
These sub-queries are supplied to the URDS for locating the components that match their criteria
appropriately. Once components are located, they are presented back to the system integrator for
selecting, in case there is more than one candidate for a given sub-query.

Once the system integrator selects a complete set of components, the system generator described in [DT-
4, CW-24) constructs a distributed system from them. The construction process does utilize the
generation rules, which are described in the KB, that express the architecture of the system design. In
addition, the construction process instruments the necessary QoS-related code into the integrated system.
The generation process uses the principles of Two-level Grammar (TLG) [CW-16), and the
instrumentation process is based on the concepts of event grammars [OR-3). Once the system is
integrated, composition rules, which are part of the KB, are used to make a prediction about the QoS of
the entire system based on the individual QoS values. Then, the prediction is validated against the actual
values obtained from collecting the event traces (based on the event grammars) resulting from
experimental testing of the system. The details of composition rules are in [DT-5).

It is possible to perform the discovery, generation, integration and validation in an iterative manner. For
example, the discovery process may yield no satisfactory components, or the integrated system may not
meet the desired QoS requirements. In such scenarios, the query could be reissued, with possible
modifications, and reprocessed by the URDS. Such an iterative process provides the necessary flexibility
of an incremental design. This is discussed further in [BC-1, BC-3).

4

• The salient features and scientific merits of the UniFrame approach are that it:

•

•

i) provides a unified approach through the UniFrame Process (described briefly above).
ii) uses the principles of model-driven (KB-based) automation for the system construction.
iii) allows interoperation among heterogeneous software components meeting QoS requirements.
iv) uses a meta-model-based approach for multi-level specification of components.
v) follows a proactive advertisement and discovery of components.
vi) proposes a Quality of Service Framework that contains a QoS catalog and a unifying system

monitoring technique.

The UniFrame research offers the following benefits to the CIP/SW initiative:

i) The UniFrame process, supported by appropriate tools, will enable a semi-automatic
distributed system assembly from heterogeneous and distributed software components.

ii) The standards-based technology will be enhanced to achieve a seamless integration of the
heterogeneous components.

iii) A semi-automated system assembly with integrated validation metrics will improve the
system quality.

The UniFrame research project has supported students at all levels, from the undergraduate to MS and
PhD, at the participating institutes, thereby, enriching their educational experience. In addition, various
research topics that are being investigated have been incorporated into the curricula at all the
participating institutions. Specialized computing laboratories have been created as a result of the
UniFrame research.

Accomplishments

A brief summary of the tasks accomplished during the life of the UniFrame research (2001-2005) is
presented below. It is classified under the three key challenges that UniFrame research is addressing.
Detailed technical aspects of the accomplishments are published in many papers, a listing of which is
provided under the publications section of the report and a few representative papers are attached as an
appendix.

i) Architectural-based interoperability

The challenge of architecture-based interoperability was tackled using a multi-pronged
approach. First, a formal process, based on the UniFrame principles, was designed [BC-1,
BC-3, DT-2]. Second, the contents and the formalization of the KB were carried out [DT-4,
DT-5, DT-24, CW-33], and associated model-transformation techniques were explored [JP-6,
CW-43]. Third, principles, based on the applicability of the Two-level grammar, for the
generation of the glue code were identified [JP-4, CW-13, CW-16, CW-17, CW-22, CW-25,
CW-29, CW-40, CW-41, CW-44, CW-45, DT-23, DT-24], and prototypes were created
which generated glues and hence, inter-operable distributed systems [DT-4, DT-10, DT-23,
DT-24, CW-30]. Finally, preliminary explorations about the applicability of the UniFrame
approach to other domains, such as Grid Computing, were carried out [DT-21, JP-7, CW-46].
The significant results achieved while addressing this challenge are described below:

5

•

•

•

a. The activity of formulating the requirements for a family of computing systems in a
particular domain was studied as part of the effort to develop the knowledgebase. A
formal, machine processable language was developed for expressing the domain's
alternatives in terms of feature graphs [DT-2]. This work was extended to
representations of designs of systems in the domain [DT-4, CW-24), A process for
developing component-based systems within the UniFrame context was formalized [BC-
1, BC-3], and a prototype was developed [DT-4]. An example problem was examined to
illustrate the OMG's Model Driven Architecture (MDA) approach to generating platform
specific designs from platform independent models [CW-19]. With this prototype, a
system developer could formulate the requirements for a specific system in the domain
and generate an appropriate, component-based implementation automatically.

b. Because the effort of creating the knowledgebase is so extensive, the domain experts
with this task must have at their disposal adequate representation languages and strong
support tools. A major problem is that feature graphs are an incomplete representation
of the systems within a domain because they represent essentially just alternatives among
the systems. A more complete design representation requires a standard system design
language, such as UML, with an extension for representing the feature variants that
typify a design family. To address this issue, a study was made of a number of such
extensions. However, none was found that is mature enough to have tools with which to
generate the domain representations in an open form satisfactory for use by the
UniFrame development process described above. The closest product found is
proprietary. It is based on the concept of 'archetype patterns', a generalization of design
patterns. It permits the UML-like abstract representation of alternative designs in a
domain, and can generate code in an MDA fashion, given what is called a "cartridge" for
the appropriate language. Existing cartridges do not permit construction at the
component-based level. This survey and analysis, with example applications, are
reported in [DT-16].

c. The integration of the aspect-orientation into generative domain modeling for modeling
component domains was completed. This approach to modeling facilitates component
specification as well as component integration. The approach to modeling Web Services
(WS) for the purpose of integrating components following the web services technology
domain model was specifically investigated [JP-5, CW-35, CW-41, DT-23]. Software
systems can incorporate WS technology in order to be reused and integrated in a
distributed environment across heterogeneous platforms. The following issues were
specifically addressed: 1) the migration of legacy distributed software systems toward
WS applications; 2) the innovation of new infrastructure, and languages in support of
WS application development. The relationships between this type of model and
traditional Entity-Relationship diagrams was also explored [CW-47].

d. The hypothesis that the UniFrame model of components distributed over the network
was an embodiment of the semantic web was further investigated [BC-2]. UniFrame
exists in a semantic web of software components. The natural language foundation of
UniFrame queries may also be used in querying the semantic web [JP-2, DT-7, CW-6,
CW-8, CW-9, CW-18, CW-26, CW-38] .

e. Two-Level Grammar (TLG) [CW-5, CW-39] continued to be applied to model the
feature composition in domain models [JP-8, CW-14, CW-37, CW-43]. The foundation

6

• of grammar for this approach appears to offer a number of interesting possibilities for
model-driven development, as detailed in [CW-12, CW-21, CW-28].

•
ii)

•

f. As the UniFrame process places a strong emphasis on the incorporation of the QoS
parameters during the entire life cycle of distributed component-based systems, it was
necessary to develop a mechanism that allowed the depiction of the QoS parameters
during the design stage. For that purpose, the concept of the collaboration diagram was
extended to incorporate the modeling of QoS parameters during the design phase. Case
studies were carried out to assess the effectiveness of this approach [DT-12]. It
demonstrated that annotated collaboration diagrams are an effective mechanism for
modeling the QoS parameters during the design of distributed systems. Formal
specification methods for QoS were also investigated [JP-3, CW-11, CW-36].

g. As indicated earlier, heterogeneity is the main challenge that UniFrame has to address; a
template-based approach was investigated and a prototype was created that allowed an
interoperation between Java-RMI and CORBA components. The effects of different
placements of the generated glue on the performance metrics (such as the tum-around
time) were observed by experimenting with the prototype [DT-10). Different alternatives
(such as centralized or one-to-one distributed) were selected for the placement of the
glue that is generated using the template approach. It was observed that the distributed
placement on the initiator and responder machines yielded less performance penalty and
thus, is a better choice than the other alternatives, such as the centralized placement.

h. A preliminary exploration about the applicability of UniFrame principles to other
domains was initiated by considering grid computing as a potential target. Grid
computing, due to its inherent distributed, heterogeneous and quality-aware (e.g.,
precision, speedup) properties, represents an ideal target domain. The simplified
structure of the KB for a grid-related application was presented in [DT-21 CW-46, JP-7]
and a few experiments that allowed an interoperability of UniFrame components with
Grid-based components (developed using Globus) were designed and executed. These
preliminary investigations indicate a potential for UniFrame to act as a formal process
for grid-related application development.

Distributed resource discovery

One of the assumptions in the UniFrame research is that a distributed system is realized by
integrating various heterogeneous and independently created components. Thus, the process
of discovering components is not only a pre-requisite for generating a distributed system, but
also a critical task in the UniFrame process. This task of discovery in UniFrame, as indicated
earlier, is performed by the UniFrame Resource Discovery System (URDS). Many different
aspects of URDS were investigated in the research. The highlights of this exploration are:

a. The starting point for the URDS was the design of its architecture. [DT-1, CW-15) This
architecture is hierarchical, proactive, and allows an interoperation across different
component models. An initial prototype was created in [DT-1) using the J2EE and was
experimented with. The results established the validation of the architecture and the
proactive nature of URDS .

b. As a next step, the applicability of the URDS architecture to the .Net component model
was investigated in [DT-6, DT-13]. The prototypes developed in this effort used the

7

•

•

•

UDDI mechanism of the .Net model. [DT-13, CW-31) explored an extensive comparison
between the .Net model and the UniFrame paradigm in general, with a specific focus on
URDS. The principles of URDS were found applicable in the context of the .Net model
as well and this prototype was made to interoperate with the one developed using J2EE
model, thereby, indicating the interoperable nature of the URDS architecture.

c. Investigations indicated in (a) and (b) were carried out on prototypes which were
moderately sized. Thus, to explore the scalability of the URDS, a simulation was created
[DT-21). This allowed the investigation of different configurations of URDS constituents
and their impact on the performance, measured by the time required for serving a
request. These experiments indicated that the URDS architecture is scalable, which is
attributed to its hierarchical nature.

d. In addition to empirically evaluating the scalability of the URDS architecture.
investigations were carried out to perform selective search techniques while locating
appropriate components. This required designing different query propagation schemes
and studying their effect on the performance (e.g., response time) and the quality of the
components discovered (e.g., precision). Different query propagations were carried out
using the concept of acquaintances [OR-4), which uses the principles of reinforcement
learning [OR-5]. A Headhunter, in addition to searching its local meta-repository,
propagates the incoming query to other headhunters. Thus, the search process is
equivalent to traversing different graphs created due to the selection of acquaintances.
Different techniques such as, random, short-term, long-term, and profile-based, were
designed and used in deciding the acquaintances [DT-19, DT-21, JP-10]. Experiments
were carried out to study the impact of these techniques on different query and
component distributions. It was shown that the long-term and profile-based techniques
performed better in most of the cases.

e. The above mentioned investigations used simple techniques, based on component types
and QoS values, for matching queries with the available component specifications. Such
a matching, although simple, is far from comprehensive. Also, it does not take advantage
of the other levels of the contracts (e.g., semantics, and synchronization) that a UMM
specification employs. Hence, investigations were carried out for multi-level matching
during the discovery process. In [OR-6, OR-7] techniques are described that allow the
matching at the syntax and semantics levels. These are based on the type relations and
predicate logic. These principles acted as the starting point for the investigations of
multi-level matching. These explorations resulted in identifying the formal structure of
the synchronization and QoS contracts and associated matching principles [DT-15, JP-9).
Rules for different types of matching (e.g., exact-match and relaxed-match) were created
and validated by developing a synchronization policy catalog and using the temporal
logic of actions [OR-8). Different operators were also defined for matching the QoS
level contracts. Such a multi-level matching is more comprehensive than the simple
matching that URDS prototypes were employing. An incorporation of the multi-level
matching is future work that is being currently investigated.

f. During the empirical evaluation of the scalability of URDS, it was realized that the
monitoring and management functions were largely done in a manual manner. Thus, a
GUI-based monitoring and management system for URDS was created [DT-20). This
system uses the model-view-controller pattern and employs the principles of event-driven
as well as periodic modeling. It provides two views, one for the manager of the URDS

8

•

iii)

•

•

and the other for the user of the URDS. Empirical evaluations were carried out to
demonstrate the effectiveness of this system.

g. The incorporation of mobility into the URDS architecture was carefully evaluated and a
design that encompasses mobile headhunters was created. A mobile agent-based version
of URDS (called MURDS) was created and experimented with to show the effectiveness
of the incorporation of the mobility into the URDS architecture [DT-11].

h. The multi-level contracts make the task of creating the UMM specification for a
component fairly elaborate and increase the complexity during the component
development process. Hence, a UMM-specification editor was developed that assists in
this task [DT-9].

Validation of quality requirements

As indicated earlier, UniFrame emphasizes the quality requirements throughout the
development of the distributed systems. It specially focuses on the QoS features, as these
features are critical in many different application domains, such as distributed real-time
systems. The approach followed to address this challenge was: a) to create a vocabulary of
the QoS parameters and to study the effects of the environment on the QoS parameters, b) to
propose a methodology for incorporating QoS parameters in a model-driven approach, c) to
propose a methodology and associated tools for empirically validating the QoS parameters,
d) to study access control as a QoS parameter, and e) to propose and investigate the
applicability of UniFrame' s QoS approach to distributed real-time systems. These are briefly
discussed below.

a. As a first step towards addressing the QoS aspects, a comprehensive QoS catalog was
created [CW-4]. This catalog contains commonly used QoS parameters, along with a
description of their features (such as intent, method of evaluation, etc.). The structure of
the catalog is loosely based on the structure of the design patterns catalog [OR-9]. Thus,
each parameter, in this catalog, is described using a template that is similar to the one
used in the design patterns catalog. Models for measuring the parameters are also
indicated in the catalog and have been experimentally validated for the dynamic
parameters. These parameters are classified based on their nature (e.g., static/dynamic)
and on the application domains that they appear in. This was further enhanced to create a
QoS-based framework for UniFrame [JP-1]. Also, the effects of different factors, such as
the execution environment and usage patterns, on dynamic QoS parameters were also
studied in [DT-3]. This work also acted as a foundation for the QoS composition and
decomposition rules that were studied in [DT-5]. Composition and decomposition rules
for parameters from the catalog were created and empirically validated [DT-5, CW-23].

b. The incorporation of QoS framework (as described in (a)), into OMG's model driven
architecture (MDA) was investigated [CW-7]. Based on this, an approach for
transforming QoS features from the platform independent models to platform specific
models was developed [CW-19]. This work was also discussed with different task forces
of the OMG and also resulted in the corresponding OMG RFPs [SD-1, SD-2] .

c. The investigations in (b) were further expanded by specifically focusing on access
control as a QoS parameter. In [CW-32] an approach was presented to unify
authorization models for fine-grain access control. It defines a model-driven method to

9

•

•

•

construct software which meets access control requirements and validates that the
software does in fact have the necessary level of security. This was further studied in
[DT-17, JP-11], where the inclusion of access control features in the UMM specification
of components was investigated. Also, this incorporation of the access control in the
multi-level interface was used in the discovery and selection of components. The access
control properties of an ensemble of components, based on the individual access control
features, were predicted. This was based on the principles of logic programming and the
logic of temporal actions.

d. The initial exploration of the applicability of the UniFrame principles to the distributed
real-time and embedded (DRE) systems was started during FY 2003. Since a UniFrame
approach to constructing such systems would necessarily entail many different possible
compositions, techniques based on genetic algorithms and Petri nets to prune this set of
combinations to achieve a better QoS assurance were developed [CW-48, CW-49, CW-
50].

e. Implementation of the first version of visual meta-programming language was completed
[CW-2, CW-3, DT-14]. An original approach to the software monitoring automation
based on precise behavior models and event grammars was developed. This allows an
implementation of different kinds of monitoring, such as assertion checking, profiling,
performance measurement, debugging queries, software visualization, intrusion
detection, and dynamic QoS metrics within a uniform framework [CW-10, CW-20, CW-
27, CW-34, CW-42, CW-51, CW-52, CW-53, DT-8, DT-18] .

f. The design of the prototype for an automated test generator for reactive and real time
systems based on attributed event grammars was completed. Efforts to assess the
effectiveness of the tool were started in FY 2003. This approach provides for new tools
for automated test driver generation and system safety assessment [CW-51, CW-52, CW-
53, DT-22].

g. The design of a run-time monitoring tool for CIC++ programs based on the Dyninst
instrumentation tool was also created. The exploration with this tool on different test
scenarios was initiated in FY 2003.

h. Also, the feasibility of reactive system prototype verification based on Statechart models
and build-in temporal logic assertion checking was explored [CW-52].

1. The design of the prototype for an automated test generator for reactive and real time
systems based on attributed event grammars was completed. Efforts to assess the
effectiveness of the tool were started in FY 2003.

Dissemination

The results of the UniFrame research were published and presented in various professional forums such
as journals, conferences, workshops, showcases and seminars during the entire duration of the project.
The details of these are provided below. In addition, a website (www.cs.iupui.edu/uniFrame) was created
and maintained for the dissemination of the research results. The copies of a few sample publications are
enclosed with this report.

10

•

•

•

Publications
Book Chapters [BC]

J. Andrew M. Olson, Rajeev R. Raje, Barrett R. Bryant, Mikhail Auguston, Carol Burt, "UniFrame
-- A Unified Framework for Developing Service-oriented, Component-based Distributed
Software Systems", in Service-Oriented Software System Engineering: Challenges and Practice
(Eds: Stojanovic and Dahanayake), pp: 68-87, Idea Group Publishing, 2005.

2. Graham Wilcock, Paul Buitelaar, Antonio Pareja-Lora, Barrett Bryant, Jimmy Lin, Nancy Ide,
"The Roles of Natural Language and XML in the Semantic Web", in Computational Linguistics
and Beyond (Eds: Huang and Lenders), pp. 139-186, Institute of Linguistics, Academia Sinica,
Tamkang, Taiwan, 2004.

3. Andrew M. Olson, Rajeev R. Raje, Barrett R. Bryant, Mikhail Auguston, Carol Burt, "A Process
for Generating Software for Distributed, Heterogeneous Systems", (invited) in Parallel and
Distributed Computing: Evaluation, Improvement and Applications (Eds: Y.S. Dai, Y. Pan, and
R. Raje), Nova Science Publishers, 2005, (To Appear).

Journal Papers [JP]

I. Rajeev R. Raje, Barrett Bryant, Mikhail Auguston, Andrew Olson, Carol Burt, "A QoS-based
Framework for Creating Distributed and Heterogeneous Software Components", Concurrency
and Computation: Practice and Experience: 2002, 14, pp: 1009-1034, 2002 .

2. Lee, Beum-Seuk and Bryant, Barrett R., "Applying XML Technology for Implementation of
Natural Language Specifications," International Journal of Computer Systems, Science and
Engineering 5 (September 2003), 3-24.

3. Chunmin Yang, Barrett R. Bryant, Carol Burt, Rajeev R. Raje, Andrew M. Olson, Mikhail
Auguston, "Formal Methods for Quality of Service Analysis in Component-based Distributed
Computing'', Journal of Design & Process Science: Transactions of the Society for Design and
Process Science, 8, 2, pp. 137-149, 2004.

4. Fei Cao, Barrett Bryant, Rajeev R. Raje, Andrew Olson, Mikhail Auguston, Wei Zhao, Carol
Burt, "A Component Assembly Approach Based on Aspect-oriented Generative Domain
Modeling", Electronic Notes in Theoretical Computer Science (ENTCS), Elsevier Science, Vol.
114,pp. 119-136,2005.

5. Fei Cao, Barrett Bryant, Rajeev R. Raje, Andrew Olson, Mikhail Augustan, Wei Zhao, Carol
Burt, "A Non-Invasive Approach to Assertive and Autonomous Dynamic Component
Composition in Service-Oriented Paradigm", Journal of Universal Computer Science, (Invited -
Under Review) 2005.

6. Fei Cao, Barrett R. Bryant, Wei Zhao, Carol C. Burt, Rajeev R. Raje, Andrew M. Olson, Mikhail
Auguston, "Model-Driven Reengineering Legacy Software Systems to Web Services",
International Journal of Information Technology and Web Engineering (Under Review), 2005 .

11

• 7. Pradeep Mysore, Rajeev R. Raje, Barrett R. Bryant, Purushotham Bangalore, "Building High-

•

•

performance Systems using GridFrame", International Journal of High-performance Computer
Applications (Invited - To be Submitted), 2005.

8. Wei Zhao, Barrett R. Bryant, Fei Cao, Rajeev R. Raje, Mikhail Auguston, Carol C. Burt,
Andrew M. Olson, "The Language Oriented Domain Analysis Method," Computer Languages,
Systems and Structures (To be Submitted), 2005.

9. Rajeev R. Raje, Anjali Kumari, Andrew Olson, Barrett Bryant, Mikhail Auguston. Carol Burt,
"Multi-level Specification Matching'', Concurrency and Computation (To be Submitted), 2005.

10. Rajeev R. Raje, Barun Devaraju, Pradeep Mysore, Andrew Olson, Barrett Bryant, Mikhail
Auguston, Carol Burt, "Incorporating Selective Search and Customization in the UniFrame
Resource Discovery Service", Cluster Computing (To be Submitted), 2005.

11. Alex Crespi, Rajeev R. Raje, Carol Burt, Andrew Olson, Barrett Bryant, Mikhail Augiston,
"Access Control in UniFrame", IEEE Transactions on Parallel and Distributed Systems (To be
Submitted), 2005.

Conference/Workshop Papers [CW]

I. Rajeev R. Raje, Barrett Bryant, Mikhail Auguston, Andrew Olson, Carol Burt, "A Unified
Approach for the Integration of Distributed Heterogeneous Software Components", Proceedings
of the 2001 Monterey Workshop (Sponsored by DARPA, ONR, ARO and AFOSR), pp: 109-199,
Monterey, California, 2001.

2. Mikhail Auguston, "Visual Meta-Programming Notation", Proceedings of the 2001 Monterey
Workshop (Sponsored by DARPA, ONR, ARO and AFOSR), pp: 50-61, Monterey, California,
2001.

3. Mikhail Auguston, Valdis Berzins, Barrett Bryant, "Visual Meta-Programming Language",
Proceedings of the OOPSLA 2001 Workshop on Domain Specific Visual Languages, pp: 69-
82,Tampa Bay, Florida, 2001.

4. Girish Brahnmath, Rajeev R. Raje, Andrew Olson, Barrett Bryant, Mikhail Auguston, Carol
Burt, "A Quality of Service Catalog for Software Components", Proceedings of the Southeastern
Software Engineering Conference}, pp: 513-520,Huntsville, Alabama, 2002.

5. Barrett R. Bryant, Beum-Seuk Lee, "Two-Level Grammar as an Object-Oriented Requirements
Specification Language", Proceedings of the 35th Hawaii International Conference on System
Sciences, CD-ROM, 10 pages, Hawaii, 2002.

6. Beum-Seuk Lee, Barrett Bryant, "Automated Conversion from Requirements Documentation to
an Object-Oriented Formal Specification Language", Proceedings of the 2002 ACM Symposium
on Applied Computing, pp: 932-936, Madrid, Spain, 2002.

7. Carol Burt, Rajeev R. Raje, Mikhail Auguston, Barrett Bryant, Andrew Olson, "Quality of
Service (QoS) Standards for Model Driven Architecture", Proceedings of the Southeastern
Software Engineering Conference, pp: 521-529, Huntsville, Alabama, 2002.

12

- --

• 8. Beum-Seuk Lee, Barrett Bryant, "Prototyping of Requirements Documents Written in Natural

•

•

Language'', Proceedings of SESEC 2002, the Southeastern Software Engineering Conference,
pp: 538-543, Huntsville, Alabama, 2002.

9. Beum-Seuk Lee, Barrett Bryant, "Contextual Knowledge Representation for Requirements
Documents in Natural Language'', Proceedings of FLAIRS 2002, the 15th International Florida AI
Research Symposium, pp: 370-374, Pensacola Beach, Florida, 2002.

JO. J. Bret Michael, Mikhail Auguston, N. Rowe, R. Riehle, "Software Decoys: Intrusion Detection
and Countermeasures", Proceedings of the IEEE Workshop on Information Assurance, United
States Military Academy, pp: 130-138, West Point, New York, 2002.

11. Chunmin Yang, Barrett Bryant, Rajeev Raje, Mikhail Auguston, Andrew Olson, Carol Burt,
"Formal Specification in Heterogeneous Distributed Software Integration'', Proceedings of the
401h Annual ACM Southeast Conference, pp. 201-202, Raleigh, North Carolina, 2002.

12. Fei Cao, Barrett Bryant, Rajeev Raje, Mikhail Augustan, Andrew Olson, Carol Burt, "Specifying
Heterogeneous Distributed Components", Proceedings of the 40th Annual ACM Southeast
Conference, pp: 199-200, Raleigh, North Carolina, 2002.

13. Wei Zhao, Barrett Bryant, Rajeev Raje, Mikhail Augustan, Andrew Olson, Carol Burt, "A
Unified Approach to Component Assembly Based on Generative Programming", Online
Proceedings of the Workshop on Generative Programming, Austin, Texas, 2002 .

14. Wei Zhao, Barrett Bryant, Rajeev Raje, Mikhail Augustan, Andrew Olson, Carol Burt,
"Generative Composition of Distributed and Heterogeneous Components", Proceedings of the
401h Annual ACM Southeast Conference, pp: 195-196, Raleigh, North Carolina, 2002.

15. Nanditha Siram, Rajeev Raje, Barrett Bryant, Andrew Olson, Mikhail Augustan, Carol Burt,
"An Architecture for the UniFrame Resource Discovery Service", Proceedings of the 3rd
International Workshop on Software Engineering and Middleware, pp: 20-35, Orlando, Florida,
2002.

16. Barrett Bryant, Mikhail Augustan, Rajeev Raje, Andrew Olson, Carol Burt, "Formal
Specification of Generative Component Assembly Using Two-Level Grammar'', Proceedings of
the SEKE 2002, Fourteenth International Conference on Software Engineering and Knowledge
Engineering, pp: 209-212, Ischia, Italy, 2002.

17. Wei Zhao, "A Product Line Architecture for Component Model Domains", Proceedings of
PhDOOS 2002, Online Proceedings of the 12th Workshop for PhD Students in Object-Oriented
Systems, Malaga, Spain, 2002.

18. Beum-Seuk Lee, Barrett Bryant, "Contextual Processing and DAML for Understanding Software
Requirements Specifications", Proceedings of COLING 2002, the 19th International Conference
on Computational Linguistics, pp: 516-522,Taipei, Taiwan, August 2002.

19. Carol C. Burt, Barrett R. Bryant, Rajeev R. Raje, Andrew Olson. Mikhail Augustan, "Quality of
Service Issues Related to Transforming Platform Independent Models to Platform Specific
Models", Proceedings of the 6th IEEE International Enterprise Distributed Object Computing
Conference, pp: 212-223, Lausanne, Switzerland, 2002.

13

•

•

•

20. Mikhail Augustan, C. Jeffery, S. Underwood, "A Framework for Automatic Debugging",
Proceedings of the 17th IEEE International Conference on Automated Software Engineering, ASE
2002, pp: 217-222, Edinburgh, U.K., 2002.

21. Fei Cao, "Using Two-Level Grammar in Component Specification", Proceedings of the First
ACM SIGPLAN Conference on Generators and Components (GPCE 2002), Young Researchers
Workshop, Pittsburgh, Pennsylvania, 2002.

22. Wei Zhao, "Two-Level Grammar as the Formalism for Middleware Generation in Internet
Component Broker Organizations", Online Proceedings of the First ACM SIGPLAN Conference
on Generators and Components (GPCE 2002), Young Researchers Workshop, Pittsburgh,
Pennsylvania, 2002.

23. Changlin Sun, Rajeev Raje, Andrew Olson, Barrett Bryant, Mikhail Augustan, Carol Burt,
Zhisheng Huang, "Composition and Decomposition of Quality of Service Parameters in
Distributed Component-Based Systems", Proceedings of the IEEE 5th International Conference
on Algorithms and Architectures for Parallel Processing, pp: 273-277, Beijing, China, 2002.

24. Zhisheng Huang, Rajeev Raje, Andrew Olson, Barrett Bryant, Mikhail Auguston, Carol Burt,
Changlin Sun, "System-Level Generative Programming of Unified Approach Based on UMM for
the Integration of Distributed Software Components", Proceedings of the IEEE 5th International
Conference on Algorithms and Architectures for Parallel Processing, Beijing, China, 2002 .

25. Fei Cao, Barrett Bryant, Rajeev Raje, Mikhail Augustan, Andrew Olson, Carol Burt,
"Component Specification and Wrapper/Glue Code Generation with Two-Level Grammar using
Domain Specific Knowledge", Proceedings of the Proceedings of ICFEM 2002, 4th International
Conference on Formal Engineering Methods, pp: 136-142, Shanghai, China, 2002.

26. Beum-Seuk Lee, Barrett Bryant, "Automation of Software System Development Using Natural
Language Processing and Two-Level Grammar", Proceedings of the Monterey Workshop, pp:
244-257, Venice, Italy, 2002.

27. Clinton Jeffery, Mikhail Augustan, S. Underwood, "Towards Fully Automatic Execution
Monitoring", Proceedings of the Monterey Workshop, pp: 232-243, Venice, Italy, 2002.

28. Chunmin Yang, Beum-Seuk Lee, Barrett Bryant, Carol Burt, Rajeev Raje, Andrew Olson,
"Formal Specification of Non-Functional Aspects in Two-Level Grammar", UML 2002
Workshop on Component-Based Software Engineering and Modeling Non-Functional Aspects,
Dresden, Germany, 2002.

29. Wei Zhao, Barrett R. Bryant, Rajeev R. Raje, Mikhail Augustan, Andrew M. Olson, Carol C.
Burt, "A Component Assembly Architecture with Two-Level Grammar Infrastructure", Online
Proceedings of the OOPSLA'2002 Workshop on Generative Techniques in the context of MDA,
Seattle, Washington, 2002.

30. Purvi Shah, Barrett R. Bryant, Rajeev R. Raje, Carol Burt, Andrew Olson, Mikhail Augustan,
"Interoperability between Mobile Distributed Components using the UniFrame Approach",
Proceedings of the 41 st Annual ACM South East Conference, pp: 30-35, Savannah, GA, 2003.

14

•

•

•

31. Natasha Gupta, Rajeev R. Raje, Andrew Olson, Barrett Bryant, Mikhail Augustan, Carol Burt,
"Analyzing the Web Services and UniFrame Paradigms", CD-ROM Proceedings of the
Southeastern Software Engineering Conference (8 pages), Huntsville, Alabama, 2003.

32. Carol C. Burt, Rajeev R. Raje, Barrett R. Bryant, Andrew Olson, Mikhail Augustan, "Model
Driven Security: Unification of Authorization Models for Fine-Grain Access Control",
Proceedings of the 7th IEEE International Enterprise Distributed Object Computing Conference,
pp: 159-173, Brisbane, Australia, 2003.

33. Wei Zhao, Barrett R. Bryant, Jeff Gray, Carol C. Burt, Rajeev R. Raje, Mikhail Augustan,
Andrew M. Olson, "A Generative and Model Driven Framework for Automated Software
Product Generation", Proceedings of the 6th Workshop on Component-Based Software
Engineering: Automated Reasoning and Prediction, pp: 103-108, Portland, Oregon, 2003.

34. Clinton Jeffery, Mikhail Augustan, "Some axioms and issues in the UFO dynamic analysis
framework", Proceedings of Workshop on Dynamic Analysis, ICSE'03, 25th International
Conference on Software Engineering, pp: 45-48, Portland, Oregon, 2003.

35. Fei Cao, Barrett Bryant, Carol Burt, Jeffrey Gray, Rajeev Raje, Andrew Olson, Mikhail
Augustan, "Modeling Web Services: Towards System Integration in UniFrame", Proceedings of
the 7th World Conference on Integrated Design and Process technology (IDPT 2003), pp: 83-91,
Austin, Texas, 2003 .

36. Chunmin Yang, Barrett Bryant, Carol Burt, Rajeev R. Raje, Andrew Olson, Mikhail Augustan,
"Formal Methods for Quality of Service Analysis in Component-Based Distributed Computing",
Proceedings of the 7th World Conference on Integrated Design and Process technology (IDPT
2003), pp: 291-299, Austin, Texas, 2003.

37. Fei Cao, Barrett R. Bryant, Carol C. Burt, Zhisheng Huang, Rajeev R. Raje, Andrew M. Olson,
Mikhail Augustan, "Automating Feature-Oriented Domain Analysis", Proceedings of the
International Conference on Software Engineering Research and Practice (SERP'03), pp: 944-
949, Las Vegas, Nevada, 2003.

38. Barrett Bryant, Beum-Seuk Lee, Fei Cao, Wei Zhao, Carol Burt, Rajeev Raje, Andrew Olson,
Mikhail Augustan, "From Natural Language Requirements to Executable Models of Software
Components", Proceedings of the 2003 Monterey Workshop, pp: 51-58, Chicago, Illinois, 2003.

39. Beum-Seuk Lee, Xiaoqing Wu, Fei Cao, Shih-hsi Liu, Wei Zhao, Chunmin Yang, Barrett R.
Bryant, Jeffrey G. Gray, "T-Clipse: an Integrated Development Environment for Two-Level
Grammar", OOPSLA 2003 Workshop on Eclipse Technology eXchange, pp: 91-95, Anaheim,
California, 2003.

40. Fei Cao, Barrett Bryant, Rajeev Raje, Mikhail Augustan, Andrew Olson, Carol Burt,
"Assembling Components with Aspect-oriented Modeling/Specification", Proceedings of UML
Workshop W2 -- Workshop in Software Model Engineering WiSE@UML'2003), (Online),
Francisco, California, 2003 .

15

•

•

•

41. Fei Cao. Barrett Bryant, Rajeev R. Raje, Mikhail Auguston, Andrew Olson, Carol Burt. "A
Component Assembly Approach Based on Aspect-Oriented Generative Domain Modeling",
Proceedings of SC'04, Software Composition Workshop affiliated with ETAPS 2004, (Online),
Barcelona, Spain. 2004.

42. Mikhail Augustan, Mark Trakhtenbrot, Run Time Monitoring of Reactive System Models, in
Proceedings of Second International Workshop on Dynamic Analysis WODA 2004, the 26th
International Conference on Software Engineering ICSE 2004, pp: 68-75, Edinburgh, Scotland,
2004,

43. Wei Zhao, Barrett R. Bryant, Fei Cao, Rajeev R. Raje, Mikhail Augustan, Carol C. Burt, Andrew
M. Olson, "Grammatically Interpreting Feature Compositions", Proceedings of the 16th
International Conference on Software Engineering and Knowledge Engineering (SEKE'04), pp:
185-191. Banff, Canada, 2004.

44. Fei Cao, Barrett Bryant, Carol Burt, Rajeev R. Raje, Andrew Olson, Mikhail Augustan, "A
Meta-modeling Approach to Web Services'', Proceedings of ICWS04, IEEE International
Conference on Web Services, pp: 796-799, San Diego, California, 2004.

45. Wei Zhao, Barrett R. Bryant, Rajeev R. Raje, Mikhail Augustan, Carol C. Burt, Andrew M.
Olson, "Automated Glue/Wrapper Code Generation in Integration of Distributed and
Heterogeneous Software Components'', Proceedings of the 8th IEEE Enterprise Distributed
Computing Systems Conference (EDOC'04), pp: 275-285, Monterey, California, 2004 .

46. Pradeep Mysore, Rajeev R. Raje, Purushottam Banglore, Barrett Bryant, "GridFrame -- A
Framework for Building Component-based Grid Systems", Proceedings of 12th International
Conference on Advanced Computing & Communication (ADCOM '04), pp: 23-31, Ahmedabad,
India, 2004.

47. Fei Cao, Barrett Bryant, Wei Zhao, Carol Burt, Rajeev R. Raje, Andrew Olson, Mikhail
Augustan. "Marshaling and Unmarshaling Models Using Entity-Relationship Model",
Proceedings of ACM SAC'05, ACM Symposium on Applied Computing, pp: 1553-1557, Santa
Fe, New Mexico, 2005.

48. Shih-hsi Liu, Barrett Bryant, Jeffrey Gray, Rajeev R. Raje, Andrew Olson, Mikhail Augustan.
"Two-level Assurance of QoS Requirements for Distributed Real-time and Embedded Systems'',
Proceedings of ACM Symposium on Applied Computing, SAC'05, pp: 903-904, Santa Fe, New
Mexico, 2005. ·

49. Shih-hsi Liu, Barrett R. Bryant, Jeffrey G. Gray, Rajeev Raje, Andrew Olson and Mikhail
Augustan, "QoS-UniFrame: A Petri Net-based Modeling Approach to Assure QoS Requirements
of Distributed Real-time and Embedded Systems", Proceedings of the 12th Annual IEEE
International Conference and Workshop on the Engineering of Computer Based Systems
(ECBS'05), pp: 202-209, Greenbelt, Maryland, 2005.

50. Shih-hsi Liu, Fei Cao, Barrett R. Bryant, Jeffrey G. Gray, Rajeev Raje, Andrew Olson and
Mikhail Augustan, "Quality of Service-Driven Requirements Analyses for Component
Composition: A Two-Level Grammar Approach", To appear in the Proceedings of the17th

16

•

•

•

International Conference on Software Engineering and Knowledge Engineering (SEKE'05),
Taipei, Taiwan, 2005.

51. Mikhail Auguston, James Bret Michael, Man-Tak Shing, Environment Behavior Models for
Scenario Generation and Testing Automation, in Online Proceedings of the First International
Workshop on Advances in Model-Based Software Testing (A-MOST'05), The 27th International
Conference on Software Engineering ICSE'05, 2005, St. Louis, 2005.

52. Mikhail Auguston, James Bret Michael, Man-Tak Shing, Test Automation and Safety
Assessment in Rapid Systems Prototyping, to appear in Proceedings of 16th IEEE International
Workshop on Rapid System Prototyping, pp: 188-194, Montreal, Canada, 2005.

53. Mikhail Auguston, James Bret Michael, Man-Tak Shing, and David L. Floodeen, "Using
Attributed Event Grammar Environment Models for Automated Test Generation and Software
Risk Assessment of System-of-Systems", To appear in the Proceedings of 2005 IEEE
International Conference on Systems, Man, and Cybernetics, Special Session on Recent
Advances in Engineering Systems-of-Systems to Support Joint and Coalition Warfighters, The
Big Island, Hawaii, 2005.

Standards Documents [SD]

l. Carol C. Burt, "mars/04-04-15: Business Model Driven Access Management for Service
Oriented Applications'', OMG Draft RFP .

2. Carol C. Burt, "mars/04-02-12: Model Driven Access Management", OMG Draft RFP for a
Platform Independent Model for Access Management (with mappings to existing PSMs such as
OASIS XACML, OMG RAD, JCP JAAS, Microsoft Authorization Manger.

Dissertations and Theses [DT]

I. Nanditha N. Siram, "An Architecture for Discovery of Heterogeneous Software Components.",
M. S. Thesis, Department of Computer & Information Science, Indiana University Purdue
University Indianapolis, May, 2002.

2. Christina Varghese, "Examining, Documenting, and Modeling the Problem Space of a Variable
Domain", M. S. Project, TR-CIS-0612-02, Department of Computer & Information Science,
Indiana University Purdue University Indianapolis, August, 2002.

3. Girish Brahnmath, "The UniFrame Quality Of Service Framework", M. S. Thesis, Department of
Computer & Information Science, Indiana University Purdue University Indianapolis, December,
2002.

4. Zhisheng Huang, ''The UniFrame System-Level Generative Programming Framework", M. S.
Thesis, Department of Computer & Information Science, Indiana University Purdue University
Indianapolis, May, 2003.

5. Changlin Sun, "QoS Composition and Decomposition in UniFrame", M. S. Thesis, Department
of Computer & Information Science, Indiana University Purdue University Indianapolis, August,
2003.

17

•

•

•

6. Robert Berbeco, "The UniFrame .NET Web Service Discovery Service", M. S. Project, TR-CIS-
0630-03, Department of Computer & Information Science, Indiana University Purdue University
Indianapolis, August, 2003.

7. Beum Seuk Lee, "Automated Conversion from a requirements document to an executable formal
specification using two-level grammar and contextual natural language processing", Ph. D.
Dissertation, Department of Computer and Information Sciences, The University of Alabama at
Birmingham, August 2003.

8. Tee Huu Saw. Captain (Singapore Armed Forces), "Evaluation of a Multi-agent System for
Simulation and Analysis of Distributed Denial-of-Service Attacks", Department of Computer
Science, Naval Postgraduate School, June 2003.

9. Richard M. Neidermyer, "Unified Meta-Component Model Specification Editor", M.S. Project
TR-CIS-0330-04, Department of Computer & Information Science, Indiana University Purdue
University, May, 2004.

JO. Kalpana Tummala, "Glue Generation Framework In UniFrame for the CORBA-JAV A/RMI
Interoperability", M.S. Project TR-CIS-0302-03, Department of Computer & Information
Science, Indiana University Purdue University Indianapolis, May, 2004.

11. Jayasree Gandhamaneni, "UniFrame Mobile Agent Based Resource Discovery Service
(MURDS)'', M.S. Project TR-CIS-1122-03, Department of Computer & Information Science,
Indiana University Purdue University, August 2004.

12. Praveen Gopalakrishna, "Modeling QOS Parameters In Component-Based Systems", M. S.
Thesis, Department of Computer & Information Science, Indiana University Purdue University
Indianapolis, August, 2004.

13. Natasha S. Gupta, "An Exploratory Analysis of the .NET Component Model and UniFrame
paradigm using a collaborative approach", M. S. Thesis , Department of Electrical and Computer
Engineering, Indiana University Purdue University Indianapolis, August, 2004.

14. Graham C. Pierson, Major (US Marine Corps), "Code Maintenance and Design for a Visual
Programming Language Graphical User Interface", M. S. Thesis, Department of Computer
Science, Naval Postgraduate School, September 2004.

15. Anjali Kumari, "Synchronization and Quality of Service Specification and Matching of Software
Components", M. S. Thesis, Department of Computer and Information Science, Indiana
University Purdue University Indianapolis, December, 2004.

16. Padmavathi Kambhampati, "UML Variability and Automation of Variant Models", M. S. Thesis,
Department of Computer and Information Science, Indiana University Purdue University
Indianapolis, December, 2004.

17. Alexander Crespi, "An Access Control Model for the UniFrame Framework", M. S. Thesis,
Department of Computer and Information Science, Indiana University Purdue University
Indianapolis, December, 2004.

18

• 18. Yuan Chen, Major (Singapore Navy), "Evaluation of a Multi-agent System for Simulation and

•

Analysis of Distributed Denial-of-Service Attacks", M. S. Thesis, Department of Computer
Science, Naval Postgraduate School, December 2004.

19. Barun Devaraju, "Enhancement of The UniFrame Resource Discovery Service", M. S. Thesis,
Department of Computer and Information Science, Indiana University Purdue University
Indianapolis, May, 2005.

20. Srikanth Reddy, "UniFrame Resource Discovery Service Monitoring and Management System",
M. S. Project, TR-CIS-0411-05, Department of Computer and Information Science, Indiana
University Purdue University Indianapolis, May, 2005.

21. Pradeep Mysore, "An Experimental Evaluation of UniFrame Resource Discovery System'', M. S.
Thesis, Department of Computer and Information Science, Indiana University Purdue University
Indianapolis, May, 2005.

22. James Imanian, LCDR (US Navy), "Automatic Test Case Generation for Reactive Software
Systems Based on Environment Models", M. S. Thesis, Department of Computer Science, Naval
Postgraduate School, June 2005.

23. Fei Cao, "Model-Driven Development and Dynamic Composition of Web Services'', Ph. D.
Dissertation, Department of Computer and Information Sciences, The University of Alabama at
Birmingham, July 2005 .

24. Wei Zhao, Ph. D. Dissertation, "Transformations from Business Process Models to High Level
Programming Languages", Department of Computer and Information Sciences, The University of
Alabama at Birmingham, December 2005.

Invited Presentations
(Apart from the conference and workshop presentations)

I. Rajeev R. Raje, "UniFrame", Software Engineering Research Center Summer Showcase,
Indianapolis, Indiana, June 2001.

2. Rajeev R. Raje, "UniFrame", CIP/SW Kickoff Meeting. Washington, D.C., July 2001.

3. Carol C. Burt, Barrett R. Bryant, Rajeev R. Raje, "UniFrame'', OMG Meeting. Toronto, Ontario,
Canada, September 2001.

4. Barrett R. Bryant, "Object-Oriented Natural Language Requirements Specification", Sun Yat
Sen University, Guangzhou, China, United Nations University, International Institute for
Software Technology, Macau, China, and Chinese University of Hong Kong, Shatin, Hong
Kong, China, October 2001.

5. Andrew Olson, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", SERC Showcase, Muncie, Indiana, December 2001.

• 6. Rajeev R. Raje, "UniFrame", at the Connect-Tech, Indianapolis, IN, December 2001.

19

•

•

•

7. Carol Burt, "UniFrame - a unified framework for integration of distributed components'', OMG
Technical Meeting (to ORB/OS Group), Anaheim, California, February 2002.

8. Barrett R. Bryant, "XML and DAML for Contextual Knowledge Representation of Natural
Language Requirements Documents", 79m Annual Meeting of the Alabama Academy of Science,
Livingston, Alabama, March 2002.

9. Fei Cao, "Locating Heterogeneous Distributed Components Using Headhunters'', 79m Annual
Meeting of the Alabama Academy of Science, Livingston, Alabama, March 2002. (This
presentation was co-winner of the Student Research Award for best student presentation in the
Engineering and Computer Science Section of the Alabama Academy of Science.)

JO. Chunmin Yang, "Application of Formal Methods in Distributed Computing", 79m Annual
Meeting of the Alabama Academy of Science, Livingston, Alabama, March 2002. (This
presentation was co-winner of the Student Research Award for best student presentation in the
Engineering and Computer Science Section of the Alabama Academy of Science.)

11. Wei Zhao, "Generative Automation of Middleware", 79m Annual Meeting of the Alabama
Academy of Science, Livingston, Alabama, March 2002.

12. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components," University of Houston, Houston, Texas, April, 2002 .

13. Barrett R. Bryant, "Object-Oriented Natural Language Requirements Specification", University
of Milan at Crema, Crema, Italy, and Soft People Tecnologie.net, Milan, Italy, April 2002.

14. Natasha Gupta. "Encompassing .Net Framework and Web Services into UniFrame", Spring
Showcase of SERC, Morgantown, VW, May 2002.

15. Carol C. Burt, "UniFrame", University of Edinburgh, Edinburgh, Scotland, United Kingdom,
May 2002.

16. Rajeev R. Raje, "UniFrame," U. S. Office of Naval Research, London, England, United
Kingdom, May, 2002.

17. Barrettt R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components," University of Lancaster, Lancaster, England, United
Kingdom, May 2002.

18. Barrett R. Bryant, "Object-Oriented Natural Language Requirements Specification",Carlos ID
University of Madrid, Madrid, Spain, June 2002.

19. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", INRIA, Sophia Antipolis, France, June 2002.

20. Barrett R. Bryant, "Object-Oriented Natural Language Requirements Specification", University
of Ljubljana, Ljubljana, Slovenia, July 2002 .

21. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", National Taiwan University, Taipei, Taiwan, August 2002.

20

•

•

•

22. Rajeev R. Raje, "UniFrame", NSF ES-EU Workshop, Landsdowne, VA, September 2002.

23. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", Illinois Institute of Technology, Chicago, Illinois, October
2002.

24. Rajeev R. Raje, "UniFrame", VJTI, University of Bombay, India, December 2002.

25. Natasha Gupta, Girish Brahnmath, "UniFrame and Component Quality of Service", SERC Fall
Showcase, Muncie, Indiana, December 2002.

26. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", Magic City Java Users Group, Birmingham, Alabama,
February, 2003.

27. Andrew Olson, "Herding Software Development Over the Electronic Range", Department of
Computer & Information Science, IUPUI, March, 2003.

28. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", Jagiellonian University, Krakow, Poland, April, 2003.

29. Rajeev R. Raje, Barrett Bryant, Mikhail Augustan, "UniFrame", U. S. Office of Naval Research
(Annual Review), Harpers Ferry, West Virginia, May 2003.

30. Alex Crespi, Praveen Gopalakrishna, "UniFrame Discovery Service and the System Generator",
Spring 2003 Software Engineering Research Center Showcase, West Virginia University,
Morgantown, West Virginia, May 2003.

31. Rajeev R. Raje, Barrett R. Bryant, Andew M. Olson, Mikhail Auguston, Carol C. Burt,
"UniFrame", U. S. Office of Naval Research (Final Review), Annapolis Junction, Maryland,
November 2003.

32. Carol Burt, "Model Driven Access Management", OMG's Security Information Day, London, U.
K., November 2003.

33. Andrew M. Olson, "Constructing Distributed Computing Systems with the UniFrame Process",
Departamento de las Ciencias de la Computaci6n, Facultad de Ciencias Ff sicas y Matematicas,
Universidad de Chile, Santiago, Chile, December 2003.

34. Carol Burt, "Model Driven Access Management", OMG's Security Information Day, Anaheim,
California, January 2004.

35. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", ACM Student Chapter, University of Porto, Porto, Portugal,
March 2004 .

36. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components'', University of Minho, Braga, Portugal, March 2004.

21

• 37. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous

•

•

Distributed Software Components", New University of Lisbon, Lisbon, Portugal, March 2004.

38. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", NASA Ames Research Laboratory, Mountain View,
California. September 2004.

39. Arnruta Jejurikar, Rajeev R. Raje, "Development of Distributed Component-based Systems -
A Symbiosis of UniFrame Principles and Microsoft's Infrastructure", Microsoft Corporation,
Redmond, Washington, June 2005.

40. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", University of Maribor, Slovenia, and University of Milan at
Crema, Italy, June 2005.

41. Rajeev R. Raje, "UniFrame Resource Discovery Service", The University of Alabama at
Birmingham and IEEE Section of Birmingham, July 2005 (Scheduled).

Prototypes

1. URDS (UniFrame Resource Discovery Service) - Different Versions
2. URDS Management and Monitoring System
3. UniFrame System Constructor
4. UniFrame QoS Catalog
5. Glue and Wrapper Generators
6. Automated test generator for reactive and real time systems based on environment models
7. Run time monitoring system for CIC++ executables via Dyninst

Collaborations and Interactions

The UniFrame research team interacted with a variety of groups, academic and industrial organizations,
during the investigations. The interactions were in the forms of discussions, seminars, joint publications
and proposals. Below these partners are enumerated.

1. Academic Institutes: Michigan State University, Charles University (Czech Republic),
University of Maribor (Slovenia), Lancaster University (UK), University of Edinburgh (UK),
Jadavpur University (India), IIT-B (India), VJTI (India).

2. Industrial Organizations: 2AB, Inc., Microsoft Corporation, Stryon Incorporated, Disha
Technologies, Inc., OMG (Object Management Group), SERC (Software Engineering Research
Center), BBN Technologies, Computer Sciences Corporation.

Citations
The UniFrame research publications have been well received by the community. Many of these
publications have been cited by other researchers. A citation search on Google indicated more than fifty
external citations to various UniFrame related publications .

22

•

•

•

Educational Activities
Students

1. IUPUI - R. Berbeco, G. Brahnmath, R. Bulusu, A. Crespi, V. Cheekati*, B. Devaraju, J.
Freeman, J. Gandhamaneni*, P. Gopalkrishna, N. Gupta*, J. Hansome, Z. Huang, A. Jejurikar*,
A. Kumari*, P. Kambhampati*, P. Mysore, N. Nayani*, R. Neidermyer, S. Reddy, M. Ridzal, C.
Sun, 0. Tilak, K. Tummala*, C. Varghese*.

2. UAB-F. Cao, B. Lee, S. Liu, S. Mugala, R. Puljala, P. Shah*, X. Wu. C. Yang*, W. Zhao*.

3. NMSU/NPS-G. Fragkos, A. Islam, S. Underwood, T. Saw, G. Pierson, Y. Chen, J. Imanian.

(Note: A majority of these students were financially supported by this award. The remaining
students, although not financially supported, worked on research topics that stemmed from the
UniFrame research. The women students are indicated with an * symbol. Students, at NPS, were
employees of the DoD - US as well as allied countries.)

Impact on Education

This research has impacted the education at all the participating institutes. The impact is classified
into the four categories indicated below:

1. Enriching Student Research Experience by:
a. Inter- and intra-university collaborations
b. Proficiency with prevalent state-of-the-art
c. Participation in professional forums

2. Impact on Curricula by:
a. Incorporation of research material into courses at IUPUI, UAB, NMSU and NPS .

3. Computing Infrastructure Enhancement by:
a. Creation of Heterogeneous Computing Laboratories at IUPUI, UAB and NMSU

4. Invited Presentations to:
a. Academic institutions, industrial forums and standards organizations

Other References [OR]

1. Raje, R., "UMM: Unified Meta-object Model for Open Distributed Systems", Proceedings of 4th
IEEE International Conference on Algorithms and Architecture for Parallel Processing,
ICA3PP'2000, pp: 454-465, 2000.

2. Beugnard, A., Jezequel, J., Plouzeau, N., Watkins, D., "Making Components Contract Aware",
IEEE Computer, Vol. 32, No. 7, pp: 38-45, 1999.

3. Auguston, M., "Program Behavior Model Based on Event Grammar and its Application for
Debugging Automaton'', Proceedings of the 2°d International Workshop on Automated and
Algorithmic Debugging (AADEBUG'95), pp: 277-291, 1995.

23

•

•

•

4. Mukhopadhyay, S., Peng, S., Raje, R., Palakal, M., Mostafa J., "Multi-Agent Information
Classification Using Dynamic Acquaintance Lists", Journal of the American Society for
Information Science and Technology, Vol. 54(10), pp: 966-975, 2003. @article{Tha85,

5. Thathachar, M., Sastry, P., "A New Approach to the Design of Reinforcement Schemes for
Learning Automata", IEEE Transactions on System Man Cybernetics, vol. 15, pp: 168-175,
1985.

6. Zaremski, A., Wing, J., "Specification Matching of Software Components, Proceedings of
SIGSOFT'95 Third ACM SIGSOFT Symposium on the Foundations of Software Engineering,
pp: 6-17, 1995.

7. Zaremski, A., Wing, J ., Specification Matching of Software Components, ACM Transactions on
Software Engineering, vol. 6, no. 4, pp: 333-369, 1995.

8. Lamport, L., "Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers, Addison Wesley Publication Company, 2002.

9. Gamma, E., Helm R., Johnson, R., Vlissides, J., "Design Patterns: Elements of Reusable Object
Oriented Software", Addison Wesley Publication Company, 1994 .

24

•

•

•

Appendix (List of Sample Publications)

Following papers are included as sample publications. The details (such as the venue of publication,
dates, and authors are indicated earlier under the publications sections). The rest of the publications are
available at the UniFrame website (11ww.cs.iupui.edulwziFrame).

1. A Unified Approach for the Integration of Distributed Heterogeneous Software Components

2. Two-Level Grammar as an Object-Oriented Requirements Specification Language

3. A Quality of Service-based Framework for Creating Distributed Heterogeneous Software
Components

4. A Quality of Service Catalog for Software Components

5. Quality of Service (QoS) Standards for Model Driven Architecture

6. An Architecture for the UniFrame Resource Discovery Service

7. Quality of Service Issues Related to Transforming Platform Independent Models to Platform
Specific Models ·

8. A Framework for Automatic Debugging

9. Unified Approach for System-Level Generative Programming

JO. Composition and Decomposition of Quality of Service Parameters in Distributed Component
based Systems

11. Automation of Software System Development Using Natural Language Processing and Two
Level Grammar

12. Formal Specification of Non-Functional Aspects in Two-Level Grammar

13. Towards Fully Automatic Execution Monitoring

14. A Component Assembly Architecture with Two-Level Grammar Infrastructure

15. Some Axioms and Issues in the UFO Dynamic Analysis Framework

16. Automating Feature-Oriented Domain Analysis

17. Model Driven Security: Unification of Authorization Models for Fine-Grain Access Control

18. From Natural Language Requirements to Executable Models of Software Components

19. Assembling Components with Aspect-Oriented Modeling/Specification

25

•

•

•

20. Modeling Web Services: Towards System Integration in UniFrame

21. Automated Glue/Wrapper Code Generation in Integration of Distributed and Heterogeneous
Software Components

22. Formal Specification of Generative Component Assembly Using Two-Level Grammar

23. Analyzing the Web Services and UniFrame Paradigms

24. A Component Assembly Approach Based on Aspect-Oriented Generative Modeling

25. QoS-UniFrame: A Petri Net-based Modeling Approach to Assure QoS Requirements of
Distributed Real-time and Embedded Systems

26. Quality of Service-Driven Requirements Analyses for Component Composition: A Two-Level
Grammar++ Approach

27. Marshaling and Unmarshaling Models Using the Entity-Relationship Model

28. A Meta-Modeling Approach to Web Services

29. Model-Driven Reengineering Legacy Software Systems to Web Services

30. A Non-Invasive Approach to Assertive and Autonomous Dynamic Component Composition in
Service-Oriented Paradigm

31. GridFrame -- A Framework for Building Component-based Grid Systems

32. UniFrame -- A Unified Framework for Developing Service-oriented, Component-based
Distributed Software Systems

26

•
(Appeared in the Proceedings of the 2001 Monterey Workshop - Pages 109-119)

A Unified Approach for the Integration of
Distributed Heterogeneous Software Components1

Rajeev R. Raje2 3 Mikhail Auguston4 5 Barrett R. Bryant4 6 Andrew M. Olson2 Carol Burt7

•

Abstract
Distributed systems are omnipresent these days. Creating efficient and robust software for such systems is a highly

complex task. One possible approach to developing distributed software is based on the integration of heterogeneous
software components that are scattered across many machines. In this paper, a comprehensive framework that will allow
a seamless integration of distributed heterogeneous software components is proposed. This framework involves: a) a meta
model for components and associated hierarchical setup for indicating the contracts and constraints of the components,
b) an automatic generation of glues and wrappers, based on a designer's specifications, for achieving interoperability, c)
a formal mechanism for precisely describing the meta-model, and d) a formalization of quality of service (QoS) offered
by each component and an ensemble of components. A case study from the domain of distributed information filtering is
described in the context of this framework.

Keywords: Distributed systems, Formal methods, Glue and Wrapper technology, Quality of Service

1 Introduction
The rapid advances in the processor and networking technologies have changed the computing paradigm from a centralized
to a distributed one. This change in paradigm is allowing us to develop distributed computing systems (DCS). DCS
appear in many critical domains and are, typically, characterized by: a) a large number of geographically dispersed and
interconnected machines, each containing a subset of the required data, b) an open architecture, c) a local autonomy
over the hardware and software resources, d) a dynamic system configuration and integration, e) a time-sensitivity of the
expected solution, and f) the quality of service with an appropriate notion of compensation. These characteristics make
the software design of DCS an extremely difficult task .

One promising approach to the software design of DCS is based on the principles of distributed component computing.
Under this paradigm DCS are created by integrating geographically scattered heterogeneous software components. These
components constantly discover one another, offer/utilize services, and negotiate the cost and the quality of the services.
Such a view provides a scalable solution and hides the underlying heterogeneity.

Various distributed component models, each with strengths and weaknesses, are prevalent and widely used. However,
almost a majority of these models have been designed for 'closed' systems, i.e., systems, although distributed in nature,
are developed and deployed in a confined setup. In contrast, a direct consequence of the heterogeneity, local autonomy
and the open architecture is that the software realization of DCS requires combining components that adhere to different
distributed models. This in turn increases the complexity of the design process of DCS. Hence, a comprehensive framework,
that provides a seamless access to underlying components and aids in the design of DCS, is needed.

In this paper, one such framework is described. This framework consists of: a) a meta-model for components and
associated hierarchical setup for indicating the contracts and constraints of the components, b) an automatic generation of
glue and wrappers, based on a designer's specifications, for achieving interoperability, c) a formal mechanism for precisely
describing the meta-model, and d) a formalization of the notion of quality of service offered by each component and an
ensemble of components. The paper also presents a case study that shows the application of the framework to a specific
problem domain.

The rest of the paper is organized as follows. The next section contains a detailed discussion about the meta-model.
As an application of the meta model, a case study from the domain of distributed information filtering is presented in
the Section 3. Section 4 deals with the formal specification of the meta model, the automated system integration, and
evaluation of the approach. Finally, we conclude in Section 5.

1This material is based upon work supported by, or in part by, the U. S. Office of Naval Research under award number N00014-01-1-0746.
2 Department of Computer and Information Science, Indiana University Purdue University Indianapolis, 723 W. Michigan Street,

SL 280, Indianapolis, IN 46202, USA, {rraje, aolson}@cs.iupui.edu, +1 317 274 5174/9733
3This material is based upon work supported by, or in part by, the National Science Foundation Digital Libraries Phase II grant.
4 Computer Science Department, Naval Postgraduate School, 833 Dyer Rd., SP 517, Monterey, CA 93943, USA,

{auguston,bryant}@cs.nps.navy.mil, +1 831 656 2509/2726
5This material is based upon work supported by, or in part by, the U.S. Army Research Laboratory and the U.S. Army Research Office under

contract/grant number 40473-MA. On leave from Computer Science Department, New Mexico State University, USA .

•

his material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office
r contract/grant number DAAD19-00-1-0350. On leave from Department of Computer and Information Sciences, University at Alabama at
ingham, USA.

72AB, Inc., 1700 Highway 31, Calera, AL 35040, USA, cburt@2ab.com, +1 205 621 7455

•

•

•

2 Component Models and a Meta-model
Many models and projects for the software realization of DCS have been proposed by academia and industry. A few
prominent ones are: Java™ Remote Method Invocation (RMI) [16], Common Object Request Broker Architecture
(COREA™) [16, 20], Distributed Component Object Model (DCOM™) [11, 16], Web-component model/DOM [10],
Pragmatic component web [5], Hadas [6], Infospheres [4], Legion [22], and Globus [21]. Each of these models/projects has
strength and weaknesses. Some of these are language-centric and only assume a uniform way of the world (Java); while
the others allow a limited interoperability (COREA - allowing implementations in different languages). Some of these
are general-purpose, i.e., not concentrating on any particular application domain (DCOM), while others are specifically
tailored to high-performance computing applications (Legion). However, almost all of these models/projects do not assume
the presence of other models. Thus, the interoperability which they provide is limited mainly to the underlying hardware
platform, operating system and/or implementational languages. Also, there are hardly any models which emphasize the
notion of quality of service offered by the components. Projects, such as Agent TCL [8], etc., based on the principles of
intelligent agents have imbibed the notion of the quality of service and related compensation. However, the agents are at
a higher level of abstraction than components and many of the agent projects/frameworks use one or the other existing
distributed-component models at the low-level.

2.1 Why a Meta-model?
Given the above mentioned plethora of component-based models and also noting the fact that components, by their
definition, are independent of the implementation language, tools and the execution environment; it is necessary to answer
the questions: why is a meta-model needed for a seamless interoperation of distributed heterogeneous components? and
how would a meta-model assist in seamlessly integrating distributed heterogeneous software components? The answer to
these question lies in: a) in any organization, software systems undergo changes and evolutions, b) local autonomy is an
inherent characteristic of today's geographically (or logically) dispersed organizations, and c) if reliable software needs to
be created for a DCS by combining components then the quality of service offered by each component needs to become a
central theme of the software development approach.

The consequence of constant evolutions and changes is that there is a need to rapidly create prototypes and experiment
with them in an iterative manner. Thus, there is no alternative but to adhere to cyclic (manual or semi-automatic)
component-based software development for DCS. However, the solution of decreeing a common COTS environment, in an
organization, is against the principle of local autonomy. Hence, the development of a DCS in an organization will, most
certainly, require creating an ensemble of heterogeneous components, each adhering to some model. Also, every DCS is
designed and developed with a certain goal in mind, and usually that goal is associated with a certain perception of the
quality (as expected from the system) and related constraints.

Thus, there is a need for a comprehensive meta-model that will seamlessly encompass existing (and future) heterogeneous
components by capturing their necessary aspects, including the quality of service offered by each component and an
amalgamation of components.

2.2 Unified Meta-component Model (UMM)

In [17] we have proposed a unified meta-component model (UMM) for global-scale systems. The core parts of the UMM
are: components, service and service guarantees, and infrastructure. The innovative aspects of the UMM are in the
structure of these parts and their inter-relations. UMM provides an opportunity to bridge gaps that currently exist in the
standards arena. For example, the COREA Component Model (CCM™) [13] and Java Enterprise Edition component
models (J2EE™) are consistent, and yet, because of the absence of a formal meta-model, it is difficult during the evolution
of each to recognize when the boundaries that maintain the consistency are crossed. Similarly, it has been demonstrated in
numero_us products that the Component Object Model (COM™) [18] and COREA component models are similar (in an
abstract sense) enough to allow meaningful bridging. It is, however, not possible to point to a Meta-model that constrains
the implementations of these technologies.

For enterprise component solutions, this is an area where significant standards work is now focused. The OMG Meta
Object Facility (MOF™) [14] provides a common meta-model that allows the interchange of models between tools as well
as the expression of models in XMI™ (an MOF compliant XML™ (eXtended Markup Language)) (12]. This work allows
the generation of interfaces from Unified Modeling Language (UML) (19] models, however, a careful analysis of the resulting
interface specifications makes it clear that distribution is not a key factor in the algorithms used. For example, quality of
service requirements for performance, scalability and/ or security would dictate the use of iterators, the factoring of interfaces
to separate "query" and "administrative" operations, and the use of structures and/or objects passed by value. The current
standards in this tend to focus on data access with accessors and mutators and relationship transversal. This is acceptable
in a single machine environment, but unacceptable for highly distributed communications and collaborations. The recent
shift in focus for the Object Management Group to "Model Driven Architecture" (MDA ™) (15] is a recognition that
to create mechanized software for the collaboration and bridging of component architectures will require standardization

•

•

•

of Business and Component Meta-Models. The need to support the evolution of component models and to describe the
capabilities of the models will be key to realizing the full potential of an E-business economy .

The following sections describe the various aspects of UMM in detail.

2.2.1 Component

In UMM, components are autonomous entities, whose implementations are non-uniform, i.e., each component adheres to
some distributed-component model and there is no notion of either a centralized controller or a unified implementational
framework. Each component has a state, an identity and a behavior. Thus, all components have well-defined interfaces
and private implementations. In addition, each component in UMM has three aspects: 1) a computational aspect, 2) a
cooperative aspect, and 3) an auxiliary aspect.

Computational Aspect

The computational aspect reflects the task(s) carried out by each component. It in turn depends upon: a) the objective(s)
of the task, b) the techniques used to achieve these objectives, and c) the precise specification of the functionality offered
by the component. In DCS, components must be able to 'understand' the functionality of other components. Thus, each
component in UMM supports the concept of introspection, by which it will precisely describe its service to other inquiring
components. There are various alternatives for a component to indicate its computation - ranging from simple text to
formal descriptions. Both these extremes have advantages and drawbacks. UMM takes a mixed approach to indicate the
computational aspect of a component - a simple textual part, called inherent attributes and a formal precise part, called
functional attributes.

The functional part is formal and indicates precisely the computation, its associated contracts and the level(s) of service
offered by the component. Multi-level contracts for components have been proposed by [2], classifying the contracts into
four levels - syntactic, behavioral, concurrency and quality of service (QoS). UMM integrates this multi-level contract
concept into the functional part of the computational aspect. As stated earlier, in DCS each component will be offering a
service and hence, the level related to the QoS is especially critical in UMM. The QoS depends upon many factors such
as, the algorithm used, the execution model, resources required, time, precision and classes of the results obtained. UMM
makes an attempt at quantifying the QoS by creating a vocabulary and providing multiple levels of quality, which could
be negotiated by the components involved in an interaction. The functional part will also be specified by the creator of
the component .

Cooperative Aspect

In UMM, components are always in the process of cooperating with each other. This cooperation may be task-based
or greed-based. The cooperative aspect depends on many factors: detection of other components, cost of service, inter
component negotiations, aggregations, duration, mode, and quality. Informally, the cooperative aspect of a component
may contain: 1) Expected collaborators - other components that can potentially cooperate with this component, 2) Pre
processing collaborators - other components on which this component depends upon, and 3) Post-processing collaborators
- other components that may depend on this component.

Auxiliary Aspect

In addition to computation and cooperation, mobility, security, and fault tolerance are necessary features of DCS. The
auxiliary aspect of a component will address these features. In UMM, each component can be potentially mobile. The
mobility of the component will be shown as a 'mobility attribute' (a notion similar to the inherent attribute). If a component
is mobile, then the mobility attribute will contain the necessary information, such as its implementation details and required
execution environment. Similarly, security in DCS is a critical issue. The security attribute of a component will contain the
necessary information about its security features. As DCS are prone to frequent failures, full and partial, fault tolerance is
critical in these systems. Similar to mobility and security, each component contains fault-tolerant attributes in its auxiliary
aspect.

2.2.2 Service and Service Guarantees

The concept of a service is the second part of the UMM. A service could be an intensive computational effort or an access to
underlying resources. In DCS, it is natural to have several choices for obtaining a specific service. Thus, each component,
in addition to indicating its functionality, must be able to specify the cost and quality of the service offered.

The nature of the service offered by each component is dependent upon the computation performed by that component.
In addition to the algorithm used, expected computational effort and resources required, the cost of each service will be
decided by the motivation of the owner and the dynamics of supply and demand. In a dynamic environment costs must
always be accompanied by the duration for which the costs are valid. As the system dynamics undergo constant changes,
the methodologies used to fix the cost of a service will evolve as time progresses, thereby creating a need to indicate the
time sensitiveness of the cost. The quality of service is an indication given by an component, on behalf of its owner, about

•

•

•

its confidence to carry out the required services in spite of the constantly changing execution environment and a possibility
of partial failures. The techniques used to determine the cost, the time-validity and the quality of a service will depend
upon the tasks carried out by the component and the objectives of its owner and will involve principles of distributed
decision making.

There are many parameters that a component can use to indicate its quality of service. A few examples are: i)
Throughput - number of methods executed per second and classification of methods based on their read/write behaviors,
ii) Parallelism constraints - synchronous or asynchronous, iii) Priority, iv) Latency or End-to-End Delay - turn-around
time for an invocation, v) Capacity - how many concurrent requests a given component can handle, vi) Availability -
indication of the reliability of a component, vii) Ordering constraints - can invocations (asynchronous) be executed out
of order by a component, viii) Quality of the result returned - does the component provide a classification or ranking
of the result, and ix) Resources available - how many resources (hardware/data) are accessible to the component under
consideration and what are the types of resources.

When a component uses certain metrics to indicate its QoS (either all the mentioned criteria or a sub/super set of
them), three interesting issues need to be addressed: a) how does the component developer decide these parameters?,
b) how does the developer guarantee the advertised QoS during the execution?, an'd c) when components are collected
together as a solution for specific DCS, what happens to the QoS of the combination and how does the combined QoS
meet the quality requirements of DCS?

The parameters to be used to describe the QoS of a component are highly context (application) dependent. The
proposed approach is to create lists of QoS metrics for common application domains. A few examples of such domains
are: scientific computing, multi-media applications, information filtering, and databases. Once such lists are created, they
would be used as a template by the component developers while advertising the QoS of their components.

QoS of Components

The issue of guaranteeing a particular QoS, for a component, in an ever changing dynamic DCS is extremely critical;
mainly because of external (e.g., policy matters related to resources) and internal (e.g., changes in algorithms) factors
that affect a life cycle of a component. In addition, as the software realization of DCS is based on an amalgamation of
heterogeneous components, a proper guarantee of a QoS offered by a component effectively decides the QoS of the entire
DCS. The quality metrics are expected to vary from one application domain to another and which metrics to select would
depend on the intentions of the component developer and the functionality offered by that component. A few examples of
such QoS metrics are already mentioned in the previous section. Irrespective of the metrics selected, there is a need for
a well-defined mechanism that will assist the developer to achieve the necessary QoS when that component is deployed.
Just like any software development process, the process of guaranteeing a certain QoS, as offered by a component, will be
an incremental and iterative one, as will be discussed later.

QoS of an Integrated System

In addition to the QoS of individual components, there is a need to achieve a certain QoS for the ensemble of heterogeneous
components assembled for a distributed system under discussion. The QoS of such an amalgamation will be decided by
the design constraints of the system under construction. However, the integral characteristics of such a system typically
cannot be expressed as a function of individual components but as a property of the whole system behavior. Hence, there
is a need for a formal model of system behavior, which will integrate the behaviors of each component in the ensemble
along with its QoS guarantees.

The proposed approach to address the problem of QoS is as follows. First, build a precise model of systems behavior
(event trace notion), provide a programming formalism to describe computations over event traces, and then apply these
in order to define different kinds of QoS metrics. Constructive calculations of QoS metrics on a representative set of test
cases is one of cornerstones of the proposed iterative approach to system assembly from components meeting user's query
specifications.

This approach to the design of a system behavior model assumes that the run time actions performed within the system
may be observed as detectable events. Each event corresponding to an action is a time interval, with beginning, end, and
duration. Certain attributes could be associated with the event, e.g. program state, source code fragment, time, etc. There
are two binary relations defined for the event space: inclusion (one event may be nested within another), and precedence
(events may be partially ordered accordingly to the semantics of the system under consideration). Hence, when executed,
a system generates an event trace - set of events structured along the relations above. This event trace actually can be
considered as a formal behavior model of the system ("lightweight semantics"). This model could be presented as a set of
axioms about event trace structure called event grammar [I].

For example, suppose that the entire system execution is represented by an event of type execute-system. It may
contain events of the type evaluate-component-A and evaluate-component-B. Event grammar may contain an axiom:
execute-system: (evaluate-component-A evaluate-component-B)•
which states that evaluate-component-A is always followed by the evaluate-component-B event, and these pairs may be
repeated zero or more times.

A new concept for specification and validation of target program behavior based on the ideas of event grammars and

•

•

•

computations over program execution traces has been developed, and assertion language mechanisms, including event
patterns and aggregate operations over event traces, to specify expected behavior, to describe typical bugs, and to evalu
ate debugging queries to search for failures (e.g. gathering run time statistics, histories of program variables, etc.) have
been created. An event grammar provides a basis for QoS metrics implementation via target program automatic instru
mentation. Since the instrumentation is conditional, it does not deteriorate the efficiency of the final version generated
code. This mechanism based on independent models of system behavior makes it possible to define QoS metrics as generic
trace computations, so that the same metric may be applied to different versions of an assembled system (via automatic
instrumentation). To facilitate use of the event grammar model for the assembled system, the event definitions should be
consistent through the entire component space. The QoS metrics for components should adhere to this principle. The
process proposed in Section 4.4 for assembling a distributed system from components in a distributed network offers a
possible approach to achieving this.

2.2.3 Infrastructure

As local autonomy is inherent in open DCS, forcing every component developer to abide by certain rigid rules, although
attractive, is doomed to fail. UMM tackles the issue of, non-uniformity with the assistance of the head-hunter and Internet
Component Broker. These are responsible for allowing a seamless integration of different component models and sustaining
a cooperation among heterogeneous (adhering to different models) components.

Head-hunter Components

The tasks of head-hunters are to detect the presence of new components in the search space, register their functionalities,
and attempt at match-making between service producers and consumers. A head-hunter is analogous to a binder or a
trader in other models, with one difference - a trader is passive, i.e., the onus of registration is on the foreign components
and not on the trader. In contrast, a headhunter is active, i.e., it discovers other components and makes an attempt to
register them with itself. There are many approaches possible for the discovery of components. They range from the
standard search techniques to broadcasts and multi-casts to selected machines. At a conceptual basis, UMM does not tie
itself to a specific approach but during the prototype development a particular approach will be selected for the discovery
process. During registration, each component will inform the head hunter about all its aspects. The head hunter will
use this information during matching. A component may be registered with multiple head-hunters. Head-hunters may
cooperate with each other in order to serve a large number of components. The functionality of head hunters makes it
necessary for them to communicate with components belonging to any model, implying that the cooperative aspect of
head hunters be universal. Considering the heterogeneous nature of the components, it is conceivable that the software
realization of a distributed system will require an ensemble of components adhering to different models. This requires a
mediator, the Internet Component Broker, that will facilitate cooperation between heterogeneous components.

Internet Component Broker

The Internet Component Broker (ICB) acts as a mediator between two components adhering to different component
models. The broker will utilize adapter technology, each adapter component providing translation capabilities for specific
component architectures. Thus, a computational aspect of the adapter component will indicate the models for which it
provides interoperability. It is expected that brokers will be pervasive in an Internet environment thus providing a seamless
integration of disparate components. Adapter components will register with the ICB and while doing so they will indicate
their specializations (which component models they can bridge efficiently). During a request from a seeker, the head hunter
component will not only search for a provider, but it will also supply the necessary details of an ICB.

The adapter components achieve interoperability using the principles of wrop and glue technology [9]. A reliable,
flexible and cost-effective development of wrap and glue is realized by the automatic generation of glue and wrappers based
on component specifications. Wrapper software provides a common message-passing interface for components that frees
developers from the error prone tasks of implementing interface and data conversion for individual components. The glue
software schedules time-constrained actions and carries out the actual communication between components.

The functionality of the ICB is analogous to that of an object request broker (ORB). The ORB provides the capability
to generate the glue and wrappers necessary for objects written in different programming languages to communicate
transparently; the ICB provides the capability to generate the glue and wrappers necessary for components implemented in
diverse component models {and providing service guarantees) to collaborate across the Internet. An ORB defines language
mappings and object adapters. An ICB must provide component mappings and component model adapters. While the
ICB conceptually provides the capabilities of existing bridges (COM-CORBA for example), the ICB will provide key
features that are unique; it is designed to provide the auxiliary aspects of the Internet - collaboration between autonomous
environments, mobility and security. In addition, the UMM includes quality of service and service guarantees. The ICB, in
conjunction with head-hunters provide the infrastructure necessary for scalable, reliable, and secure collaborative business
using the Internet .

•

•

•

3 A Case Study
In order to explain the UMM and the proposed approach, below a case study from the domain of distributed information
filtering is presented. Although the case study uses a specific domain, the principles can be easily extended to other
application domains that involve the software realization of a DCS.

3.1 Distributed Information Filtering
It is desired to develop a global information filtering system, in which, users will be interested in receiving selected
information, based on their preferences, from scattered repositories. Usually, a filtering task involves contacting the
scattered resources, performing an initial search to gather a subset of documents, representing, classifying and presenting
based on the user profile. Many different methods are employed for the sub-tasks involved in filtering. Thus, it can be easily
envisioned that different components, each employing a different algorithm to perform these sub-tasks, will be scattered
across an interconnected system. Each component may belong to a different model, may quote different costs and offer
different qualities of service.

Hence, a typical distributed information filtering system consists of the following types of components: a) Domain
Component (DC), b) Wrapper Component (WC), c) Representer Component (RC), d) Classifier Component (CC), and e)
User Interaction Component (UIC). In addition to these domain-specific components, headhunter components (HC) and
the ICB are needed.

All these components, their aspects and characteristics need to be defined using UMM. For the sake of brevity, only
the complete description of the domain component (DC) is shown below.

3.2 Domain Component
The domain component is responsible for maintaining a repository of URLs of associated information sources for particular
type (e.g., text, structure, sequence) of information that needs filtering.

For example, the inherent attributes might consist of Author (name of the component developer), Version (current
version of the component), Date Deployed, Execution Environment Needed and Component Model (e.g., Java-RMI 1.2.2),
Validity (e.g., one month from the deployment), Atomic or Complex {indivisible or an amalgamation of other components,
e.g. atomic), Registrations {with which headhunters this component is registered, e.g., Hl - '11VV.cs.iupui.edu/h1 and
H2 - 'IW'll. cis. uab. edu/h2) .

An informal description of the functional part of a component may contain:

1. Computational Task Description -- e.g., searching a selected set of databases over the Internet.
2. Algorithm Used and its Complexity -- Webcravling and O(n-2), respectively.
3. Alternative Algorithms -- Indexing.
4. Expected Resources (best, average and vorst-cases) -- multi-processor, uni-processor (300MHz
vith an CPU utilization of 50Y,), and uni-processor (100MHz vith CPU utilization of 99%), respectively.
5. Design Patterns Used (if any) -- Broker.
6. Knovn Usages -- for assembling an up-to-date listing containing addresses of knovn information
repositories for a particular domain.
7. Aliases-- such a component is usually called a Pro-active Agent.
8. Multi-level contracts:
e.g., for a function like List getURLs (Domain inputDomain, Compensation inputCost), the behavioral
contract could specify the pre-condition to be (valid Domain Name and cost), post-condition to be:
if successful (activeClientThreads++ and cost+=inputCost)
else (raise DomainNotKnovnException and InvalidCostException)
and the invariant could be (ListOfURLs > 1). Also, for the same function, the concurrency contract
could specify (maximum number of active threads alloved = 50).

The cooperation attributes of the domain component may consist of 1) expected collaborators UIC, WC, HC, TC and
RC, 2) pre-processing collaborators HC and TC, and 3) post-processing collaborators RC and UIC.

The auxiliary attributes of the domain component are 1) fault-tolerant attributes, e.g., check-pointing versions, 2)
security attributes, e.g., simple encryption, and 3) mobility attributes, e.g .. "not mobile."

For the domain component, the QoS parameters may contain 1) number of available URL's, 2) ranking of URL's, and
3) average rate of URL collection.

A component developer may offer several possible levels of QoS, e.g., Ll) novice (number of URL's < 50 and no ranking
of URL's and average rate of URL collection 2:: 1 week and average latency 2:: 2 minutes), L2) intermediate (number of
URL's < 500 and simple ranking of URL's and average rate of URL collection 2:: 3 days and average latency 2:: 1 minute),
and L3) expert {number of URL's < 1500 and advanced ranking of URL's and average rate of URL collection 2:: 1 day and
average latency 2:: 5 seconds).

•

•

•

Compon nt Implementation

Dnmain Knowledge Base

Computationa
UMM Specification UMM Interface
Ofa NLP Behavioral

Component TLG Generator

QoS

Reline the UMM Specification and the Implementation of the Component

QoS

Validation

No

Component
is Ready
for
Deployment
(Collaboration
with

Headhunters)

Figure 1: The Component Development and Deployment Process in UMM

The expected compensations for the above levels in terms of the number of URLs could be 1) Ll > 100 and < 200, 2)
L2 > 200 and < 400, and 3) L3 > 400 and < 600.

4 Component and System Generation Using UMM Framework

The development of a software solution, using the UMM approach, for a DCS has two levels: a) component level - in this
level, different components are created by developers, tested and verified from the point of view of QoS, and then deployed
on the network, and b) system level - this level concentrates on assembling a collection of components, each with a specific
functionality and QoS, and semi-automatically generates the software solution for the particular DCS under consideration.
These two levels and associated processes are described below .

4.1 Component Development and Deployment Process

The component development and deployment process is depicted in Figure 1. As seen in the figure, this process starts with
a UMM specification of a component (from a particular domain). This specification is in a natural-language format, as
illustrated in the previous section. This informal specification is then refined into a formal specification. The refinement
is based upon the theory of Two-Level Grammar (TLG) natural language specifications [3, 23}, and is achieved by the
use of conventional natural language processing techniques (e.g. see [7]) and a domain (such as information filtering)
knowledge base. TLG specifications allow for the generation of the interface (possibly multi-level) for a component. This
interface incorporates all the aspects of the component, as required by the UMM. The developer provides the necessary
implementation for the computational, behavioral, and QoS methods. This process is followed by the QoS validation. If the
results are satisfactory (as required by the QoS criteria) then the component is deployed on the network and eventually,
it is discovered by one or more headhunters. If the QoS constraints are not met then the developer refines the UMM
specification and/or the implementation and the cycle repeats.

4.2 Formal Specification of Components in UMM

Since the UMM specifications are informally indicated in a natural language like style, our approach is to translate this
natural language specification into a more formal specification using TLG. TLG is a formal notation based upon natural
language and the functional, logic, and object-oriented programming paradigms. The name "two-level" in Two-Level
Grammar comes from the fact that TLG consists of two context-free grammars, one corresponding to a set of type
declarations and the other a set of function definitions operating on those types. These type and function definitions are
incorporated into a class which allows for new types to be created.

The type declarations of a TLG program define the domains of the functions and allow strong typing of identifiers used
in the function definitions. On the other hand, function definitions may be given without precisely defined domains for
a more flexible specification approach. This framework consists of a knowledge-base which establishes a context for the
natural language text to be used in the specification under a particular domain model, in this case information filtering.
This allows the TLG to be translated into internal representations such as predicate logic, the natural representation for
TLG, event grammars, or multi-level Java interfaces taking the form of the UMM specification template. For the case

•

•

•

study, we may use a TLG class to describe the component structure and functionality as elaborated in the following
subsections .

4.2.1 Component Structure Specification

Syntactically, TLG type declarations are similar to those in other languages. Types are capitalized whereas constants
begin with lower case letters. The usual primitive types, such as Integer, Float, Boolean, and String are present as are
list constructors based upon regular expression notation, e.g. {X}* and {X}+ mean 0 or more and 1 or more occurrences
of X, respectively.

The types of the domain component in our information filtering system are defined in the following way in TLG.

Component : : DomainComponent; WrapperComponent; RepresentationComponent; ClassificationComponent;
UserinteractionComponent; Head.hunterComponent; !CB.

DomainComponent : : Name, InformalDescription, Attributes, Service.
Name:: de.
Attributes :: ComputationalAttributes, CooperationAttributes, AuxiliaryAttributes.
ComputationalAttributes :: InherentAttributes, FunctionalAttributes.
InherentAttributes :: Author, Version, DateDeployed, ExecutionEnvironment,

ComponentModel, Validity, Structure, Registrations.
FunctionalAttributes :: TaskDescription, AlgorithmAndComplexity,

Alternatives, Resources, DesignPatterns, Usages, Aliases, FunctionsAndContracts.
AlgorithmAndComplexity :: webcrawling, n-2;
Alternatives :: {AlgorithmAndComplexity}*.
Resource :: Architecture, Speed, Load.
Architecture :: uni-processor; multi-processor.
Speed :: Integer.
Load : : Integer.
DesignPatterns :: broker;
Aliases :: pro-active agent;
FunctionAndContract :: Function, BehavioralContract, ConcurrencyContract.
Function : :
BehavioralContract :: Precondition, Invariant, Postcondition.
ConcurrencyContract :: single threaded; maximum number of active threads allowed= Integer;
CooperationAttributes :: ExpectedCollaborators, PreprocessingCollaborators, PostprocessingCollaborators.
ExpectedCollaborator :: uic; we; he; tc; re.
PreprocessingCollaborator :: he; tc.
PostprocessingCollaborator :: re; uic.
AuxiliaryAttribute :: FaultTolerantAttribute; SecurityAttribute; MobilityAttribute.
FaultTolerantAttribute :: check-pointing versions;
SecurityAttribute :: simple encryption;
MobilityAttribute :: mobile; not mobile.
Service :: ExecutionRate, ParallelismConstraint, Priority, Latency, Capacity, Availability,

OrderingConstraints, QualityOfResultsReturned, ResourcesAvailable,
ExecutionRate :: Float.
ParallelismConstraint :: synchronous; asynchronous.
Priority :: Integer.
Latency:: AverageRateOfURLCollection.
AverageRateOfURLCollection :: Float.
Capacity :: NumberOfAvailableURLs.
NumberOfAvailableURLs :: Integer.
Availability :: Float.
OrderingConstraint :: Boolean.
QualityOfResultsReturned :: {URL}+.
ResourcesAvailable :: HardwareResources, SoftwareResources.
HardvareResources ..
SoftvareResources ::

The remaining components (e.g., wrapper, representation, etc.) may be described in a similar manner. All domains not
specified explicitly in the above example are assumed to be of type String, with the exception of Function which may take
the form of an interface definition in a programming language such as Java. Using standard natural language processing
techniques (7], the UMM specification may be automatically refined into this TLG specification, with user assistance as

•

•

•

needed to clarify ambiguities. The process is facilitated by the presence of a knowledge base which understands the domain
of information filtering from the point of view of vocabulary which may be used in making the original UMM specification .

4.2.2 Component Functionality Specification

The second level of the TLG specification is for function declarations. These resemble logical rules in logic programming
with variables coming from the domains established in the type declarations. For the Domain Component example, the
levels of Quality of Service may be specified as follows.

number of urls : size of QualityOfResultsReturned.
average latency : ...
no ranking of urls : ...
simple ranking of urls :
advanced ranking of urls
average latency: ...
qos level 1 is novice : number of urls < 50, no ranking of urls,

AverageRateofURLCollection >= 1 veek, average latency >= 2 minutes.
qos level 2 is intermediate : number of urls < 500, simple ranking of urls,

AverageRateofURLCollection >= 3 days, average latency >= 1 minute.
qos level 3 is expert : number of urls < 1500, advanced ranking of urls,

AverageRateofURLCollection >= 1 day, average latency >= 5 seconds.

Each rule defines how the particular entity is to be computed. As these rules are normally part of a class definition
encapsulating a corresponding set of type declarations, each rule has access to the data specified in the type declarations.
These natural language like rules may be further refined into a more formal specification, e.g. using event grammars.

4.3 QoS Guarantee of a Domain Component

For the case study, the event grammar to describe the system behavior is given below. The first part is the set of type
definitions and the second part is the description of computations over event traces implementing different QoS metrics.

exec_syst :: (request_sent I response_received)•
response_received :: (URL_detected I failed)

These type definitions describe the types of events which may occur as the system executes. The computations over these
events include verification that the number of URL's detected is less than 50 and also the latency (e.g., for all requests for
URL's, every response received occurs within 10 units of time). id is an event attribute which associates a unique identifier
between query attributes and corresponding responses. Both of these metrics yield Boolean values.

CARD [URL_detected from exec_syst] < 50

Forall x : request_sent from exec_syst
Exists y response_received from exec_syst

id (x) = id (y) l begin_time (y) - end_time (x) < 10

4.4 Automated System Generation and Evaluation based on QoS

In general, different developers will provide on the Internet a variety of possibly heterogeneous components oriented
towards a specific problem domain. Once all the components necessary for implementing a specified distributed system
are available, then the task is to assemble them. Figure 2 shows a process to accomplish this. The developer of the desired
distributed system presents to this process a system query, in a structured form of natural language, that describes the
required characteristics of the distributed system. For example, such a query might be a request to assemble an information
filtering system. The natural language processor (NLP) processes the query. It does this aided by the domain knowledge
(such as key concepts in the filtering domain) and a knowledge-base containing the UMM description (in the form of a
TLG) of the components for that domain. The result is a formal UMM specification that will be used by headhunters
for component searches and as an input to the system assembly step. This formal UMM specification will be a basis for
generating a set of test cases to determine whether or not an assembly satisfies the desired QoS. The framework, with the
help of the infrastructure described in Section 2.2.3, collects a set of potential components for that domain, each of which
meets the QoS requirement specified by the developer. From these, the developer, or a program acting as a proxy of the
developer, selects some components. These components along with the component broker and appropriate adapters (if
needed) form a software implementation of the distributed system. Next this implementation is tested using event traces
and the set of test cases to verify that it meets the desired QoS criteria. If it does not, it is discarded. After that, another
implementation is chosen from the component collection. This process is repeated until an optimal (with respect to the
QoS) implementation is found, or until the collection is exhausted. In the latter case, the process may request additional

•

•

•

UMM TLG uf Components

System Query
(Natural
Language)

NLP

Headhunters

No -- Refine the Query

Sclecti nCriterin

Ensemble of

Components
(including Glues and Wrappers)

Syslcm Assembled from Componcnls

Sys1em is Ready for Dcploymcni

Iterative

Experimentation

Figure 2: The Iterative System Integration Process in UMM

components or it may attempt to refine the query by adding more information about the desired solution from the problem
domain. Once a satisfactory implementation is found, it is ready for deployment.

5 Conclusion
This paper has presented a framework that allows an interoperation of heterogeneous and distributed software components.
The software solutions for future DCS will require either automatic or semi-automatic integration of software components,
while abiding with the QoS constraints advertised by each component and the collection of components. The result of using
UMM and the associated tools is a semi-automatic construction of a distributed system. Glue and wrapper technology
allows a seamless integration of heterogeneous components and the formal specification of all aspects of each component will
eliminate ambiguity while detecting and using these components. The UMM does not consider network failures or other
considerations related to the hardware infrastructure, however, these could be integrated into the QoS level of components.
The UMM approach to validating QoS is to use event grammar to calculate QoS metrics over run-time behavior. The
QoS metrics are then used as a criteria for an iterative process of assembling the resulting system as shown in Section 4.4.
UMM also provides an opportunity to bridge gaps that currently exist in the standards arena. Although, the paper has
only presented a case study from the domain of distributed information filtering, the principles of UMM may be applied
to other distributed application domains. Future work includes refinement of the UMM feature thesaurus and methods
for translating UMM specifications into Two-Level Grammar, refining the head-hunter mechanism, developing Quality of
Service metrics for components and systems, and development of generation mechanisms for domain-specific component
reuse.

References
[l] Augustan, M. A Language for Debugging Automation. In Proceedings of 6th International Conference on Software

Engineering and Knowledge Engineering, pages 108-115, 1994.

[2] Beugnard, A., Jezequel, J., Plouzeau, N. and Watkins, D. Making Components Contract Aware. IEEE Computer,
32(7):38-45, July 1999.

[3] Barrett R. Bryant. Object-Oriented Natural Language Requirements Specification. In Proceedings of ACSC 2000,
the 23rd Australasian Computer Science Conference, January 31-February 4, 2000, Canberra, Australia, pages 24-30,
January 2000.

[4] California Institute of Technology. Caltech Infospheres On-line Documentation,
URL:- http://www.infospheres.caltech.edu/, 1998.

[5] Fox, G. The Document Object Model Universal Access Other Objects CORBA XML Jini JavaScript etc.
http://www. npac.syr. edu/users/gcf /msrcobjectsapril99, 1999.

[6] Israel, B. and Kaiser, G. Coordinating Distributed Components Over the Internet. IEEE Internet Computing, pages
83-86, 2(2), 1998.

[7] Jurafsky, D. and Martin, J. H. Speech and Language Processing. Prentice Hall, 2000.

[8]

• [9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

•

•

Kotz, D., Gray, R., Nog, S., Rus, D., Chawla, S. and Cybenko, G. Agent TCL: Targetting the Needs of Mobile
Computers. IEEE Internet Computing, pages 58-67, 1(4), 1997 .

Luqi, Berzins, V., Ge, J., Shing, M., Auguston, M., Bryant, B. R. and Kin, B. K. DCAPS -Architecture for Distributed
Computer Aided Prototyping System. In Proceedings of RSP 2001, the 12th International Workshop on Rapid System
Prototyping, 2001. .

Manola, F. Technologies for a Web Object Model. IEEE Internet Computing, 3(1):38-47, January-February 1999.

Microsoft Corporation. DCOM Specifications, URL:- http:j /www.microsoft.com/oledev/olecom, 1998.

Object Management Group. XML Metadata Interchange. Technical report, Object Management Group Document
No. ad/98-10-05, October 1998.

Object Management Group. COREA Components. Technical report, Object Management Group TC Document
orbos/99-02-05, March 1999.

Object Management Group. Meta Object Facility (MOF) Specification, Version 1.3. Technical report, Object Man
agement Group, March 2000.

Object Management Group. Model Driven Architecture: A Technical Perspective. Technical report, Object Manage
ment Group Document No. ab/2001-02-01, February 2001.

Orfali R, and Harkey, D. Client/Server Programming with JAVA and COREA. John Wiley & Sons, Inc., 1997.

Raje, R. UMM: Unified Meta-object Model for Open Distributed Systems. In Proceedings of the fourth IEEE
International Conference on Algorithms and Architecture for Parallel Processing (ICA9PP'2000}, 2000.

Rogerson, D. Inside COM. Microsoft Press, 1996.

Rumbaugh, J., Jacobson, I. and Booch, G. The Unified Modeling Language Reference Manual. Addison-Wesley, 1998.

Siegel, J. COREA Fundamentals and Programming. John Wiley & Sons, Inc., 1996.

The Globus Project. Globus Website, URL:- http://www.globus.org/, 2000.

University of Virginia. Legion Project, URL:- http://www.cs.virginia.edu/ legion, 1999.

van Wijngaarden, A. Orthogonal Design and Description of a Formal Language. Technical report, Mathematisch
Centrum, Amsterdam, 1965 .

• Two-Level Grammar as an Object-Oriented Requirements
Specification Language *

Barrett R. Bryant Beum-Seuk Lee ·
Department of Computer and Information Sciences

The University of Alabama at Birmingham
1300 University Boulevard

Birmingham, AL 35294-1170, U.S. A.
{bryant, leebs }@cis.uab.edu

Abstract

Two-Level Grammar {TLG) is proposed as an
object-oriented requirements specification language with
a natural language {NL) style but sufficiently for
mal to allow automatic transformation of the TLG
specification into formal specifications in VDM++,
an object-oriented version of the Vienna Development
Method. The VDM++ specification may be further
transformed into Java™ code or integrated with the

•
Unified Modeling Language {UML) using the !FAD
VDM Toolbox™. The translation into an executable
programming language facilitates rapid prototyping of
TLG specifications and the integration with UML al
lows TLG specification to be used in conjunction with
software systems being constructed using UML. This
software specification approach is supported by a speci
fication development environment (SDE) for construct
ing TLG specifications and a natural language process
ing system to assist in translating an NL requirements
specification into TLG. The system described is a use
ful and constructive tool for automating the production
of software systems from NL specifications.

1. Introduction

Despite a wide variety of formal specification lan
guages [1] and modeling languages such as the Uni
fied Modeling Language (UML) [11), natural language
(NL) remains the method of choice for describing soft-

*This material is based upon work supported by, or in part
by, the U.S. Army Research Laboratory and the U.S. Army Re
search Office under contract/grant number DAAD19-00-l-0350

•

nd by the U.S. Office of Naval Research under award number
00014-01-1-07 46. •

ware system requirements. Informal specifications in
NL must be turned into more formal designs on the way
to a complete implementation. These formal require
ments are necessary not only for the rapid prototyping
of the evolving software systems but also to provide
a standard reference model upon which all successive
implementations should be constructed. Since object
oriented modeling using UML and associated tools is
now a standard for software system design, there is a
need for a requirements specification language which
may be both conveniently used to express the origi
nal NL specification but also mapped into an object
oriented design. Since objects are already concepts in
the domain of an NL vocabulary, an object-oriented
design has the potential for most closely matching a
requirements specification in the user's vocabulary. In
fact, one technique of object-oriented analysis is to de
termine the objects of the problem domain using nouns
in the requirements specification and determine the in
teractions between objects and their associated oper
ations using verbs and their direct objects [2]. While
objects may be more natural to describe in a require
ments specification, some additional tools are needed
to facilitate the mapping between the user's descrip
tion of requirements and the actual design. Toward
this end, we have developed a requirements specifica
tion language based upon Two-Level Grammar (TLG)
[13] with the following advantages:

1. The NL nature of a TLG specification makes it
very understandable and useful as a communica
tion medium between users, designers, and imple
mentors of the software system.

2. Despite an apparent NL quality, the TLG notation
is sufficiently formal to allow formal specifications
to be constructed using the notation.

.... ~
COMPUTEll

SOCIETY

•

3. TLG specifications are wide-spectrum, meaning
that the specification may be very detailed for im
plementation as well as very general for design.

4. We have developed implementation techniques to
rapidly prototype the TLG specifications, when a
sufficient level of detail is specified, by means of
translation into efficient executable code in object
oriented programming languages.

This paper describes the details of the TLG specifica
tion language and its implementation, including type
system, object-orientation, and natural language base,
and shows how TLG is mapped into VDM++.

2. Two-Level Grammar

Two-level Grammar (TLG, also called W-grammar)
was originally developed as a specification language for
programming language syntax and semantics, and later
used as an executable specification language [4), and as
the basis for conversion from requirements expressed in
natural language into a formal specification [3).

2.1. Language Description

• The name "two-level" in Two-Level Grammar
comes from the fact that TLG consists of two context
free grammars defining the set of type domains and
the set of function definitions operating on those
domains, respectively. Note that while we use the
term "domain" in a type-theoretic context, the notion
can be scaled up to a much larger context as in
domain of "objects." These grammars may be defined
in the context of a class in which case the type
domains define the instance variables of the class and
the function definitions define the methods of the class.

2.1.1. Types. The type declarations of a TLG pro
gram define the domains of the functions and allow
strong typing of identifiers used in the function defini
tions. In traditional TLG literature, these declarations
are referred to as meta-rules. The function domains of
TLG may be formally structured as linear data struc
tures such as lists, sets, bags, or singleton data objects,
or be configured as tree-structured data objects. The
standard structured data types of product domain and
sum domain may be treated as special cases of these.

Domain declarations have the following form:

•
entifier-1, Identifier-2, ••• , Identifier-m ::
data-object-1; data-object-2; ••• ; data-object-n.

where each data-object-i is a combination of domain
identifiers, singleton data objects, and lists of data ob
jects, which taken together as a union form the type
of Identifier-1, Identifier-2, ... , Identifier-m.
If n=l, then the domain is a true singleton data ob
ject, whereas if n>l, then the domain is a set of the
n objects. Syntactically, domain identifiers are capi
talized, with underscores or additional capitalizations
of successive words for readability (e.g., Integer List,
SymboLTable, etc.), and singleton data objects are
lists of NL words written entirely in lower case letters
(e.g., sorted list). A list, set or bag structure is de
noted by a regular expression or by following a domain
identifier with the suffix List, Set, or Bag, respectively.
Following conventional regular set notation, * implies
a list of zero or more elements while + denotes a list
of one or more elements. Furthermore, there exists
a predefined environment of primitive types, such as
Integer, Boolean, Character, String, etc. To clarify
these, consider the following examples.

Person :: first name String middle initial Character
last name String.

Persons :: PersonList.
People :: {first name String middle initial Character

last name String}•.
Symbol_Table :: {id Identifier type Type value Integer}+.

Person denotes a product of String, Character, and
String types, each tagged with an appropriate iden
tifier to establish context. The types Persons and
People are equivalent, as is the type {Person}*.
SymboLTable denotes a compiler symbol table config
ured as a list of records, each with three fields: id, type
and value, with corresponding types Identifier,
Type, and Integer (the first two of these are not stan
dard TLG types and so should be explicitly declared).
Each type name which appears on the right side of
a declaration rule represents a value of that type, i.
e., type names may be used as variables, making type
declarations unnecessary although they enhance read
ability.

These examples have illustrated list structured types
which essentially correspond to regular sets in formal
language theory. Type checking then corresponds to
simple pattern matching between regular sets. Deter
mining the equivalence between two types is always de
cidable and checking the type of a value is equivalent
to executing a deterministic finite automaton (O(n)).

The main difference between list structures and tree
structured domains in terms of their declaration is
whether the defining domain identifier declaration is
recursive or not. Recursive domains are more pow
erful in that they allow "context-free" data types to
be defined, such as expression strings with balanced
parentheses as in the following example:

""~ COMPUTER
SOCIETY

Expression :: (Expression).

a.The context-free grammars defining such data types
~ay not be left recursive and must be unambiguous,

so as to allow proper parsing. Left recursion is not
needed since regular expression notation may be used
in it's place. For example, instead of expressing:
Expression :: Expression+ Term I Term.

we may express:
Expression :: Term{+ Term}•.

Type checking on tree structures corresponds to
pattern matching over context-free grammars, i.e.,
parsing. Since we have imposed the restrictions of
no left recursion and no ambiguity, we can guarantee
that type checking a value may be done in O(n) time
using conventional context-free parsing techniques
(e.g. LL (k) parsing). However, we can not deter
mine the equivalence of two tree structured types
as equivalence of context-free grammars is undecidable.

2.1.2. Functions. Function definitions comprise the
operational part of a TLG specification. Their syn
tax allows for the semantics of the function to be ex
pressed using a structured form of natural language.
In traditional TLG literature, these are referred to as
hyper-rules. Function definitions take the forms:

function signature.

•

unction signature :
FunctionCall-1, FunctionCall-2, ••• , FunctionCall-n.

where n~ 1. Function signatures are a combination
of NL words and domain identifiers, corresponding to
variables in a logic program. Some of these variables
will typically be input variables and some will be out
put variables, whose values are instantiated at the con
clusion of the function call. Therefore, functions usu
ally return values through the output variables rather
than directly, in which case the direct return value is
considered as a Boolean true or false. true means
that control may pass to the next function call, while
false means the rule has failed and an alternative rule
should be tried if possible. Alternative rules have the
same format as that given above. If multiple function
rules have the same signature, then the multiple left
hand sides may be combined with a; separator, as in:

function signature :
FunctionCall-11, FunctionCall-12, ••• , FunctionCall-1j;
FunctionCall-21, FunctionCall-22, ••• , FunctionCall-2k;

FunctionCall-n1, FunctionCall-n2, ••• , FunctionCall-nm.

where there are n alternatives, each having a varying
number of function calls. Besides Boolean values, func

•. ions may return regular values, usually the result of

arithmetic calculations. In this case, only the last func
tion call in a series should return such a value.

An important aspect about TLG is that the
functions may be written at a very high level of
abstraction (e.g. compute the total mass and
total cost) or embedded into a domain definition as
in traditional object-oriented programs (e.g. compute
the TotalMass and TotalCost of This Part by
computing the TotalMass and TotalCost of its
Subparts, which might be embedded as a method
in a Part class). The use of NL in the function
may be regarded as a form of infix notation for
functions, in contrast with the customary prefix forms
of most other programming languages. It is similar
to multi-argument message selectors in Smalltalk but
provides even greater flexibility, including the presence
of logical variables, denoted by the use of domain
names (capitalized). This notation provides a highly
readable way of writing what is to be done and is
wide-spectrum in the sense that "what is to be done"
may be expressed at multiple levels. The functions
typically return a Boolean value as the main operation
is to instantiate the logical variables, but simple
function values such as arithmetic expressions may
also be computed. These function definitions form
the basis for the initial design. In an implementation,
they may be represented by functions in traditional
object-oriented programming languages, such as Java.

A function may be defined as a rule. For example,
we could define an expensive part using the syntax
Expensive part : part with an imported base
part and cost more than $100 . or alternatively we
could write in more natural form Expensive parts
are parts with an imported base part and cost
more than $100. An implementation would trans
form the second form into the first, and even that form
into the more formal rule for Part objects: expensive

BasePart imported, Cost > 100.

To explain the operational semantics of TLG func
tion rules, note that each function call on the right
hand side of a function definition should correspond
to a function signature defined within the scope of
the TLG program or be a special operation such as a
Boolean comparison, assignment statement, or if-then
else statement. Every domain identifier with the same
name is instantiated to the same value within a func
tion invocation. This is called consistent substitution.
If variables have the same root name but are numbered,
then the numbers are used to distinguish between vari
ables. A numbered variable V1 will then be different
from a variable V2 and the two can have different val
ues. However, they will be of the same type, namely
type V. Once a variable has been assigned a value, it

""~ COMPUTER
SOCIETY

may not be reassigned, unless it is an instance variable

•
f a class, and even in this case, it would not be usual

to do so in the same function. Each function definition
may therefore be thought of as a set of logical rules.
The function calls are executed in the order given in
the function definition. Functions may be recursive
with the expected operational behavior.

Besides defined functions, TLG supports the
usual arithmetic and Boolean operations, as well
as list comprehensions and iterators over lists.
The syntax of a list comprehension is list all
Element from ElementListt such that Element
condition giving ElementList2. This returns
a list, ElementList2, of all Element values in
ElementList satisfying the given condition. The
syntax of an iterator is select Element from
ElementList with Element condition. This re
turns the first Element from ElementList which
satisfies the condition.

To explain the language further, consider the follow
ing examples.

Example 1. Palindrome.

Character is a palindrome.
Character String Character is a palindrome

String is a palindrome.

.his TLG specification has no explicit type declara
tions since the function rules use the type names di
rectly as variables. The two function rules are mutu
ally exclusive, the first handling single characters and
the second handling strings of two or more characters.
The second rule matches if and only if the first and last
characters of the string argument are the same.

Example 2. Quick Sort.

Pivot :: Integer.
IntegersLess, IntegersGreater, SortedintegersLess,

SortedintegersGreater :: IntegerList.

quick sort Empty into Empty.

quick sort Pivot IntegerList into SortedintegersLess
Pivot SortedintegersGreater :

split IntegerList into lists IntegersLess and
IntegersGreater using Pivot,

quick sort IntegersLess into SortedintegersLess,
quick sort IntegersGreater into SortedintegersGreater.

split Empty into lists Empty and Empty using Pivot.

split Integer IntegerList into lists Integer IntegersLess
and IntegersGreater using Pivot :

Integer <• Pivot,
split IntegerList into lists IntegersLess and

IntegersGreater using Pivot.

~lit Integer IntegerList into lists IntegersLess and

Integer IntegersGreater using Pivot:
Integer > Pivot,
split IntegerList into lists IntegersLess and

IntegersGreater using Pivot.

The two quick sort rules are mutually exclusive, but
the second and third split rules may both match non
empty lists. Each of these two split rules serves to dis
tribute the Integer at the beginning of the list to the
IntegersLess list or IntegersGreater list, depend
ing on its relationship to Pivot. The first function call
in each case serves as a guard to distinguish the two
rules. This could have been written using an if-then
else construction, avoiding the need for the guard.

split Integer IntegerList into lists IntegerList1 and
IntegerList2 using Pivot :

split IntegerList into lists IntegersLess and
IntegersGreater using Pivot,

if Integer <• Pivot then begin
IntegerList1 :• Integer IntegersLess,
IntegerList2 :• IntegersGreater,

end
else begin

IntegerList1 :• IntegersLess,
IntegerList2 :• Integer IntegersGreater,

end.

This imperative style of writing TLG's includes the
begin-end grouping block and assignment statements.

The split rule may be eliminated completely
by using list comprehensions to determine the
IntegersLess and IntegersGreater, as shown below.

quick sort Pivot IntegerList into SortedintegersLess
Pivot SortedintegersGreater :

list all Integer from IntegerList such that
Integer <• Pivot giving IntegersLess,

quick sort IntegersLess into SortedintegersLess,
list all Integer from IntegerList such that

Integer > Pivot giving IntegersGreater,
quick sort IntegersGreater into SortedintegersGreater.

Note that the variable Integer appearing in the list
all function is not actually instantiated and so may
be used in both list all functions without confusion.

2.1.3. Classes. TLG domain declarations and associ
ated functions may be structured into a class hierarchy
supporting multiple inheritance. The syntax of TLG
class definitions is:

class Identifier-1
[extends Identifier-2, ••• , Identifier-n].
{instance variable and method declarations}

end class [Identifier-1].

Identifier-1 is declared to be a class which inherits
from classes Identifier-2, ... , Identifier-n. In the
above syntax, square brackets are used to indicate the

""~
COMPUTEP

SOCIETY

extends clause is optional so a class need not inherit
... rom any other class. The instance variables compris-
9ig the class definition are declared using the domain

declarations described earlier. In general, the scope
of these domain declarations is limited to the class in
which they are defined, while the methods, correspond
ing to TLG function definitions, have scope anywhere
an object of the given class is referred to. These no
tions of scoping correspond to private and public access
respectively in object-oriented languages such as Java,
and either scope may be declared explicitly or the scope
may be made protected. Methods are called by writing
a sentence or phrase containing the object. The result
of the method call is to instantiate the logical variables
occurring in the method definition.

For every class, there are predefined methods begin
ning with This which serve only to select the instance
variables of a class (e.g., This InstanceVariable re
turns the value of InstanceVariable). This serves
as a special variable used within the method body to
denote the object to which the method is being ap
plied. Likewise, for every instance variable of simple
type there are get and set methods to access or mod
ify that variable. For every instance variable of list
type, there are add and remove methods. These are
assumed and do not need to be explicitly defined.

TLG class declarations serve to encapsulate the

•
LG domain declarations and function definitions.
he class hierarchy which is resident in TLG is a small

forest of built-in classes, such as integers, lists, etc. The
"main" program is nothing more than a set of object
declarations using the existing class identifiers as do
main names and a "query" of the appropriate methods.

3. Implementation

To effectively use TLG in the requirements specifica
tion process, we have developed a Specification Devel
opment Environment (SDE) which facilitates the con
struction of TLG specifications from requirements doc
uments expressed in natural language, and then trans
lates TLG specifications into executable code. NL re
quirements are translated into TLG through Contex
tual Natural Language Processing (CNLP) [10) which
constructs a knowledge representation of the require
ments which may be expressed using TLG. The TLG is
then translated into VDM++ [5), the object-oriented
extension of the Vienna Development Method (VDM)
Specification Language (VDM-SL) [9). The IFAD
VDM Toolbox [8) is then used to generate code in an
object-oriented programming language such as Java.

.he complete system structure is shown in Figure 1.

Natural Language Requirements

~
Cont.extual Natura) Language

Processing

~
Two-~ve1 Grammar

~
Class, Objec4 and Function

Translation

-!-
VDM++

-!-
IFAD VDM Toolkit

/ ~
UML Model Java Code

Figure 1. Structure of Specification Develop
ment Environment

These components are explained in the following sec
tions in terms of an example, the Automatic Teller Ma
chine (ATM) requirements specification below.

The bank keeps the list of accounts.
Each account has three integer data fields; ID, PIN, and
balance. The ATM machine has 3 service types; withdraw,
deposit, and balance check. For each service first it
verifies ID and PIN from the bank.

Withdraw service withdraws an amount from the account of
ID with PIN in the bank in the following sequence:
First it gets the balance of the account of ID from
the bank, if the amount is less than or equal to the
balance then it decreases the balance by Amount,
updates the balance of the account of ID in the bank,
and then outputs the new balance.

Deposit service deposits an amount to the account of ID
with PIN in the bank in the following sequence:
First it gets the balance of the account of ID from the
bank, it increases the balance by Amount, updates the
balance of the account of ID in the bank, and then
outputs the new balance.

Balance check service checks the balance of the account
of ID with PIN in Bank in the following order:
It gets the balance of the account of ID from the bank,
and then outputs the balance.

Transfer service withdraws an amount from the account of
ID1 with PIN in the bank and deposits the amount to the
account of ID2.

3.1. Processing NL Requirements Specifications

The SDE has NL parsing capabilities as well as a
lexicon to aid in classification of words into nouns (ob
jects) and verbs (operations on objects) and their re
lationship. Since all domain knowledge is specified by
the domain definitions of the specification, the require
ments written by the user can be parsed to determine

llH~
COMPUTER

SOCIETY

the object being acted upon and the operation needed

•
to be performed. This initial analysis of the require
ments document provides the basis for further refine
ment according to the syntax of Two-Level Grammar
function and domain definitions. The SDE analyzes
each function definition and attempts to classify from
the NL text which domains were involved, including
the primary domain, perhaps a class, the function be
longs to. A sufficient degree of interaction with the
user ensures a correct interpretation. Any aspect of
the specification which cannot be understood by the
system can be resolved through further querying of the
user. This may include the specification of additional
domains and/or functions which make the specification
more detailed. Once the system has "understood" the
requirements that the user has specified, it can pro
ceed with the transformation into the design and the
underlying design tool can further refine this into a
prototype implementation for the user to review. This
process may be repeated iteratively until the require
ments have been sufficiently developed to satisfy both
the user and designer. By ''user" we refer to either the
end-user who has commissioned the system or require
ments specification engineer working with the end-user.
The designer can then finalize the mapping of the re
quirements specification into the final design. Applying

•

this NL processing front end to the ATM requirements
pecification gives the following TLG.

class Account.
Id, Pin, Balance, Amount :: Integer;

vithdrav Amount giving Balance1
Amount <• Balance,
Balance1 :• Balance - Amount,
set balance to Balance1.

deposit Amount giving Balance1 :
Balance1 :• Balance + Amount,
set balance to Balance1.

end class.

class Bank.
Accounts :: AccountList.
Id, Pin :: Integer.

get account using Id giving Account
select Account from Accounts

vith id of Account • Id.

get account using Id and Pin giving Account
select Account from Accounts vith
id of Account • Id and pin of Account • Pin.

end class.

class ATM.
Id, Pin, Balance, Amount :: Integer.

•

vithdrav Amount from account of Id vith Pin in Bank
giving Balance :

get account from Bank using Id and Pin
giving Account,

vithdrav Amount from Account giving Balance.

deposit Amount account of Id vith Pin in Bank
giving Balance :

get account of Bank using Id and Pin
giving Account,

deposit Amount to Account giving Balance.

check balance of Id vith Pin in Bank giving Balance
get account of Bank using Id and Pin giving Account,
get balance of Account giving Balance.

transfer Amount from account of Id1 vith Pini to
account of Id2 in Bank :

vithdrav Amount from account of Id1
vith Pini in Bank giving Balance1,

get account of Bank using Id2 giving Account2,
deposit Amount to Account2 giving Balance.

end class.

It can be seen that the TLG is a structured form of the
original NL specification. The exact same vocabulary
is used as it is extracted by the NL processing front end.
Additional information is added as needed to provide
object data member access, e.g., get functions to access
component objects.

Previous work in the area of NL specification of
requirements includes a software reuse system which
uses NL descriptions of library components to facil
itate their selection for incorporation into an imple
mentation [7), and "controlled natural language" [6),
which is NL of a specific syntax with all vocabulary
coming from a fixed domain. The latter system is able
to translate the controlled NL specifications into Pro
log so that they may be executed. We believe that
our object-oriented approach to this problem offers a
number of advantages with respect to both formal spec
ification and object-oriented modeling.

3.2. Translation of TLG into VDM++

VDM++ has been selected as the target spec
ification language for TLG because VDM ++ has
many similarities in structure to TLG and also
has tool support for analysis and code generation.
Although TLG and VDM++ are both formal spec
ification languages, the translation from TLG into
VDM++ is not simply a direct mapping between
them. We will first give an overview of VDM++
and then explain how TLG is translated into VDM++.

3.2.1. VDM++. The structure of a VDM++ spec
ification is organized as a collection of classes which
take the following general form:

class identifier

""~ COMPUTER
SOCIETY

•
[is subclass of identifier-1,
value definitions
type definitions
instance variable definitions
operation definitions

end identifier

•.. , identifier-n]

Value and type definitions define constants and types
that may be used in the class, respectively. VDM ++
types include the basic data types as well as compound
types in the form of sets, sequences, and maps. In
stance variable definitions are the state variables of the
class. Operation definitions correspond to methods.
Operations have a signature and a body which may be
an expression in the style of functional programming
languages or a collection of imperative statements
with return statements to return the function values.
VDM++ also includes the option of defining state
invariants, and pre-conditions and post-conditions for
operations. Synchronization of concurrent operations
and multi-threading are also provided for. At present
we do not use these features in our translation schemes.

3.2.2. 'Iranslation Schemes. The translation of
class definitions, including with inheritance, and com
pound type declarations, may be described through the
tables shown in Figures 2 and 3. The translation of ba
sic types is straightforward and so is not shown here.

•
Type declarations in TLG specifications occur. in class
definitions for two purposes: I) to define an mstance
variable of the class, and 2) to define variables which
may be used in function definitions, either as function
arguments or to calculate intermediate values. These
are not difficult to distinguish as instance variables are
related only to the state of the object and so must be
used in function definitions other than as function ar
guments, typically a get or set operation. It is also
straightforward to determine a variable used only for
intermediate value calculation as such a variable will
always be written before it is read - instance variables
must have some function which reads them only.

A TLG function is translated into a VDM++ op
eration. TLG variables local to that function will be
translated into VDM++ function local variables. Fig
ure 4 indicates the general scheme for function defini
tions, which essentially consist of a function signature
and a series of function calls. In these translations
schemes, Arg-1, Arg-2, etc., are the arguments to the
function, Return-1, Return-2, etc., are the results of
the function, and Arg-Type-i and Return-Type-i are
their respective types. The declaration of a result vari
able occurs only if the variable is not an instance vari
able of the class. This would not normally be the case
unless the function was a get method associated with

• that instance variable. Since TLG functions may re-

.... "" - ~ M-. ... ':tCN.. ,. u 11 ,..,,,,._ , ,.. c.-.... - c-i IUl,..CC "lC'""''

turn many result values whereas VDM++ operations
only return a single value, these multiple result values
should be constructed into a product for the purpose
of returning them as a single value. The mlc opera
tion accomplishes this. mlc is not needed if only one
return value is required. Figure 4 also shows the trans
lation schemes for function calls. The declaration of a
return variable occurs only if the variable has not been
declared previously either as a return variable of the
function definition in which the function call appears,
or as an instance variable of the class. Since function
g may return multiple values, the VDM++ operation
returns a product of those values which may then be
extracted into the individual values.

In addition to returning the values of result vari
ables TLG functions will either succeed or fail, as in ,
logic programming predicates. Failure implies that no
result variables are instantiated. This situation must
be detected by VDM++ operations corresponding to
those functions. In our generated VDM++ code, a
special Boolean variable is introduced into the state
of every object to indicate whether an operation
performed on that object succeeded or failed. If the
operation O fails, then so does the operation O' that
invoked 0, the operation that invoked O', etc. ~hat
is, this failure may be propagated to each previous
operation until it causes the entire operation to fail
or an alternative operation is possible. An alternative
operation is one in which multiple rules are given for
the same function signature. For function definitions
defined by several rules, TLG uses pattern matching
to determine which rule is appropriate. This pattern
matching is implemented in VDM++ by either com
parisons in cases where the pattern is a simple data
type or by VDM++ pattern matching for compound
data types. The examples in Figures 5 and 6 illustrate
each case. Note that the factorial function is not
defined over all integers as the TLG rules will succeed
only for natural numbers. Therefore, the VDM ++
operation may fail on a negative number argument,
rendering the return value invalid. Functions calling
factorial must also check for this failure. This does
not include the recursive call since it can be detected
that factorial (n - 1) will never fail since n > 1.

3.2.3. Example. The VDM++ translation of our
running example, according to the rules given in the
previous section, is shown below. As with the gener
ated TLG, this code has been distilled for readability.

cla1111 Acconnt
inatanc• variabl•s

id, pin, balance int;

op•rations

.... ~
COMPUTEF

SOCIETY

Simple Class Class With Inheritance
TLG VDM++ TLG VDM++
class C. class C class SC class SC

instance variables extends C. is subclass of c
domain declarations variable declarations . .

operations end class. end C
· function definitions operation definitions

end class. end C

Figure 2. Translation Schemes for Classes

TLG VDM++ Type
DataObj .. DataTypeSet. DataObj = set of Data Type Set
DataObj .. DataTypeList. DataObj = seq of Data Type Sequence
DataObj .. {DataType}•. DataObj = seq of DataType Sequence
DataObj .. {DataType}+. DataObj = seq1 of DataType Sequence
DataObj .. DataType1 DataType2. DataObj = DataType1 * DataType2 Product
DataObj .. {DataName1 DataType1 DataObj = DataName1 : DataType1 Composite

DataName2 DataType2}. DataName2 : DataType2
DataObj .. DataType1; DataType2. DataObj = DataType1 I DataType2 Union

Figure 3. Translation Schemes for Compound Data Types

Function Definitions Function Calls

•

TLG TLG
f of Arg-1 and ... and Arg-n g of Arg-1 and ... and Arg-n

giving Return-1 and ... and Return-m
function calls

giving Return-1 and ... and Return-m

VDM++
f ArgType-1 * * ArgType-n ==>

ReturnType-1 * ... * ReturnType-m
f (arg-1, ... , arg-n) ==

VDM++
dcl Return-1
...
dcl Return-m
dcl Returns

: ReturnType-1;

: ReturnType-m;
:

(dcl Return-1 : ReturnType-1; ReturnType-1 * ... ReturnType-m;

)

dcl Return-m : ReturnType-m;
function calls
return mk_ (Return-1, ... , Return-m)

Returns
Return-1
...
Return-m

:= g (Arg-1,
:= Returns

:= Returns

Figure 4. Translation Scheme for Functions

TLG VDM++
factorial of 0 : 1. factorial : int => int
factorial of Integer : factorial (n) ==

Integer > 1, if n = 0 then return 1
Integer * factorial of (Integer - 1). elseif n > 1 then return n

••• t Arg-n);
#1;

#m;

* factorial
else (fail := true; return 0)

Figure 5. Simple Data Type Pattern Matching

(n - 1)

""~ COMPUTE!l
SOCIETY

•

TLG
quick sort Empty into Empty.
quick sort Pivot IntegerList into SortedintegersLess Pivot SortedintegersGreater

split IntegerList into lists IntegersLess and IntegersGreater using Pivot,
quick sort IntegersLess into SortedintegersLess,
quick sort IntegersGreater into SortedintegersGreater.

VDM++
quicksort seq of int ==> seq of int
quicksort (pivotintegerList) --

cases pivotintegerList :
[] -> return [] ;
[pivot] - integerList ->

(dcl splitReturns, integersLess, integersGreater seq of int;
dcl sortedintegersLess, sortedintegersGreater : seq of int;
splitReturns := split (integerList, pivot);
integersLess := splitReturns • #1; integersGreater := splitReturns #2;
sortedintegersLess := quicksort (integersLess);
sortedintegersGreater := quicksort (integersGreater);
return sortedintegersLess - [pivot] - sortedintegersGreater

)

end

Figure 6. Compound Data Type Pattern Matching

•.• getid, setid, getPin, setPin, etc ••••

vithdrav : int ••> int
vithdrav (amount) ••

(dcl amount : int;
if amount <• balance then

(dcl balance1 : int;
balance1 :• balance - amount;
setBalance (balance1)

) ;
return balance

);

deposit : int --> int
deposit (amount) ..

(dcl amount, balance1 : int;
balance1 :• balance + amount;
setBalance (balance1);
return balance

class ATM
instance variables

banlc : Banlc;

operations
• • • getBanlc and setBanlc •••

vithdrav : int • int • int ••> int
vithdrav (amount, id, pin)

(dcl account : Account;
dcl balance : int;
account :• banlc • getAccountByidPin (id, pin);
balance :•account • vithdrav (amount);
return balance

);

deposit : int • int • int ••> int
deposit (amount, id, pin) ••

);
end Account

(dcl account : Account;
dcl balance : int;

class Banlc
instance variables

accounts : seq of Account;

operations
•• addAccount and removeAccount •••

getAccountByid : int --> Account
getAccountByid (id)•• •••

account :• banlc . getAccountByidPin (id, pin);
balance :•account • deposit (amount);
return balance

) :

checkBalance : int • int ••> int
checkBalance (id, pin) ••

(dcl account : Account;
dcl balance : int;
account :• banlc • getAccountByidPin (id, pin);
balance :• account • getBalance ();

getAccountByidPin
getAccountByidPin

end Banlc

int • int ••> Account
(id, pin)•• •••

return balance
);

•
""~ COMPUTER
SOCIETY

• transfer : int • int • int • int --> ()
transfer (amount, idt, pint, id2) ••

(dcl account2 : Account;
dcl balance, balancet : int;
balancet :• vithdrav (amount, idt, pint);
account2 :•bank . getAccountByid (id2);
balance :• account2 . deposit (amount)
return;

);

end ATM

4. Summary and Conclusions

Two-Level Grammar has been presented as an
object-oriented requirements specification language
which is natural language-like in style but sufficiently
formal to allow automatic transformation of the TLG
specification into a VDM++ object-oriented formal
specification. The IFAD VDM Toolbox provides for
an integration of VDM++ with the Unified Model
ing Language (UML) [11] through a link between the
Rational Rose 2000™ [12] implementation of UML
and VDM++. This tool translates between UML and
VDM ++ and so supports round-trip engineering which
may be iterative. Presently we use this in a single
direction, from TLG to VDM++ to UML. This ef
fectively allows for UML modeling of the TLG spec-

J:cation and so is useful for integration with existing
--ML models. Rational Rose does provide an "Add-In"

mechanism with which we hope to have a direct inte
gration with TLG in the future. The translation into
an executable programming language using the IFAD
VDM ++ to Java code generator facilitates rapid proto
typing of TLG specifications. Our approach to software
specification is supported by a specification develop
ment environment (SDE) for constructing TLG speci
fications and a natural language processing system to
assist in translating an NL requirements specification
into the TLG. The system is a useful and constructive
tool for automating the production of software systems
from NL specifications.

At present the SDE exists only in prototype form
but is able to handle simple NL specifications, as our
example illustrated. We a.re extending this system so
that more complex NL specifications may be handled.
We would also like to automate the interaction between
our SDE and tools like Rational Rose directly, in ad
dition to going through VDM++. This will give us
a complete visual modeling tool not only for object
oriented design but also for specification as well.

Acknowledgements. The authors would like to
~ank IF AD for providing an academic license to the
..,.'.AD VDM Toolbox in order to conduct this research.

References

[1] V. S. Alaga.r and K. Periyasamy. Specification of
Software Systems. Springer-Verlag, 1998.

[2] G. Booch. Object-Oriented Analysis and Design
with Applications. Benjamin/Cummings, 1994.

[3] B. R. Bryant. Object-Oriented Natural Language
Requirements Specification. Proc. ACSC !JOOO,
23rd Australasian Computer Science Conf., pages
24-30, 2000.

[4] B. R. Bryant and A. Pan. Formal Specification
of Software Systems Using Two-Level Grammar.
Proc. COMPSAC '91, 15th Ann. Intl. Computer
Software and Applications Con/., pages 155-160,
1991.

[5] E. H. Diirr and J. van Katwijk. VDM++ - A For
mal Specification Language for Object-Oriented
Designs. Proc. TOOLS USA '92, 1992 Technology
of Object-Oriented Languages and Systems USA
Con/., pages 63-278, 1992.

[6] N. E. Thchs and R. Schwitter. Attempto Con
trolled English (ACE). Proc. CLAW '96, First
Intl. Workshop Controlled Language Applications,
1996.

[7] M. Girardi and B. Ibrahim. A Software Reuse Sys
tem Based on Natural Language Specifications.
Proc. ICCI '93, 5th Intl. Conf. Computing and
Information, pages 507-511, 1993.

[8] IFAD. The VDM++ Toolbox User Manual. Tech
nical report, IFAD (http://www.ifad.dk), 2000.

[9] P. G. Larsen, et al. Vienna Development Method
- Specification Language - Part I: Base Language.
Report, International Standard ISO/IEC 13817-1,
December 1996.

[10] J. McCarthy. Notes on Formalizing Context. Tech
nical report, Computer Science Department, Stan
ford University, Stanford, CA, 1993.

[11] Object Management Group. OMG Unified Model
ing Language Specification, Version 1.3. Technical
report, Object Management Group, June 1999.

[12] T. Quatrani. Visual Modeling with Rational Rose
2000 and UML. Addison-Wesley, 2000.

[13] A. van Wijngaarden. Orthogonal Design and De
scription of a Formal Language. Technical report,
Mathematisch Centrum, Amsterdam, 1965 .

""~ COMPUTER
SOCIETY

• (Appeared in Concurrency and Computation: Practice and Experience, 2002; 14:1009-1034)

A Quality of Service-based Framework for Creating
Distributed Heterogeneous Software Components

Rajeev R. Raje1 Barrett R. Bryant 2 Andrew M. Olson 1 Mikhail Auguston3 Carol Burt2

Abstract

Component-based software development offers a promising solution for taming the complexity found
in today's distributed applications. Today's and future distributed software systems will certainly require
combining heterogeneous software components that are geographically dispersed. For the successful de
ployment of such a software system, it is necessary that its realization, based on assembling heterogeneous
components, not only meets the functional requirements, but also satisfies the non-functional criteria such as
the desired QoS (quality of service). In this paper, a framework based on the notions of a meta-component
model, a generative domain model and QoS parameters is described. A formal specification based on Two
Level Grammar is used to represent these notions in a tightly integrated way so that QoS becomes a part
of the generative domain model. A simple case study is described in the context of this framework.

Keywords: Distributed systems, Quality of Service, Generative Domain Models, Heterogeneous Components,
Formal methods, Two-Level Grammar.

1 Introduction

• In the recent past, component-based software design has emerged as a viable and economical alternative
to the traditional software design process. The notion of independently created and deployed components,
with public interfaces and private implementations, loosely integrating with one another to realize a software

•

solution is appealing. It is even more so in the field of distributed computing, where the underlying hetero
geneity can be masked by the use of a coalition of distributed software components. Due to the inherent
complexities of the distributed computing paradigm and due to the nascent nature of the component-based
approach in this context, the potential of this approach has yet to be fully exploited. Many challenging issues
need to be addressed in order to fully harness the potential of the component-based approach to distributed
systems. The prominent ones are: a) the creation of a formal meta-component model, b) a mechanism to
precisely describe the meta-model and associated features , c) the formalization of QoS (Quality of Service)
offered by components, and d) a mechanism to assure the specified QoS. Thus, a comprehensive frame
work that will encompass these issues and aid the software developers is needed. In this paper, one such
framework (called UniFrame) is proposed and applied to a case study.

The rest of the paper is organized as follows. The next section contains a brief description of the
related efforts. It is followed by the details of Unified Meta-component Model, which accomplishes (a) and
(b) above, and a brief discussion of the Generative Domain Model (GDM), which provides the domain
knowledge necessary to support semi-automatic generation of component-based systems. The part of the

1Department of Computer and Information Science, Indiana University Purdue University Indianapolis, 723 W. Michigan
Street, SL 280, Indianapolis, IN 46202, USA, {rraje, aolson}@cs.iupui.edu, +1 317 274 5174/9733

2Department of Computer and Information Sciences, The University of Alabama at Birmingham, 1300 University Blvd.,
Birmingham, Alabama 35294-1170, USA, {bryant, cburt}@cis.uab.edu, +1 205 934 2213

3Department of Computer Science, New Mexico State University, Las Cruces, New Mexico 88003, USA, mikau@cs.nmsu.edu,
+1 505 646 5286

1

•

•

•

framework that deals with Quality of Service (QoS) is described in section 4. Section 5 discusses Two-level
Grammar (TLG), which is a formal specification method that provides a unified way to express natural
language requirements, including QoS, and facilitates the semi-automatic generation of systems that satisfy
them. Section 6 describes a simple case study. It illustrates the UMM description of components in a query
to assemble a system from them, the TLG specifications for such components, and how to assemble them
into the requested system. It does not illustrate how the GDM represents a family of architectural design
specifications from which a TLG selects one appropriate for a given query. A short conclusion summarizes
the observations of the paper.

2 Related Work

2.1 Component Models

Several communities have provided component (and/or collaboration) models, interoperability protocols,
and directory services. These include the Object Management Group (OMG), World Wide Web Consor
tium (W3C), Universal Description, Discovery, and Integration (UDDI), Java Community Process (JCP),
and Organization for the Advancement of Structured Information Standards (OASIS). The work of these
organizations and its relevance to this research is being monitored and reported in U niFrame publications
such as [11, 10]. The OMG's CORBA Component Model (CCM™) [30] provides th specification for a
component framework (compatible with J2EE™ - Java 2 Enterprise Edition) that enables th deployment
of containers for non-Java components that can interoperate with Enterprise Java Beans (EJB). The new
Model Driven Architecture (MDA) initiative is the way that the OMG will begin to standardize Platform
Independent Model (PIMs) that can be mapped to multiple Platform Specific Models (such as CORBA,
J2EE, Component Object Model (COM™) [35], .NET [28], and/or Web Services) for implementation. This
approach holds promise for the standardization of components that could potentially be used in collabora
tive environments as a result of their common semantic model. W3C has progressed from pure information
exchange to defining a messaging protocol using W3C standards (SOAP) and a service definition language
(WSDL), which form the foundation of the "Web Services" Architecture. However, W3C has not published
a component architecture.

There are also significant other research projects in this area; such as [29, 32], Web-component model/DOM [25],
Pragmatic component web [14], Hadas [19], Infospheres [12], Legion [40], and Globus [16]. Some of these are
language-centric, while others allow a limited interoperability. Some are general-purpose, i.e., not concen
trating on any particular application domain, while others are domain-dependent. However, almost all of
these models do not assume the presence of others. Thus, the interoperability which they provide is limited
mainly to the underlying hardware, operating system and/or implementation languages. If component-
based distributed software systems are to become successful, then there is certainly a need for an approach
that will transcend this limited interoperability. One possible approach to achieve comprehensive interop
erability is that of using a meta-model for heterogeneous distributed components.

2.2 Generative Programming

In [13] the generative programming paradigm is defined as: "Generative Programming is about manu
facturing software products out of components in an automated way. It requires two steps: a) a design
and implementation of a generative domain model, representing a family of software systems (development
for reuse), this model includes also domain-specific software generator; b) given a particular requirements
specification, a highly customized and optimized end-product can be automatically manufactured from im
plementation components by means of generation rules (development with reuse)". The notion of generative
programming is incorporated in the proposed approach as described in section 3.2.2.

2

•

•

•

2.3 Quality of Service (QoS)

Although QoS and its guarantees have been widely used in networking, not many attempts have been made
to incorporate QoS into component-based software systems. Quality Objects (QuO) [5] is a framework for
providing QoS to software applications composed of objects (especially CORBA-based objects) that are
distributed over wide area networks. QuO bridges the gap between the socket-level QoS and the distributed
object level QoS. QuO's emphasis is on specification, measuring, controlling, and adapting to changes
in QoS. RAPIDware [27] is an approach for component-based development of adaptable and dependable
middleware. It uses rigorous software development methods to support interactive applications executed
across heterogeneous networked environments. It focuses on specification, design, and use of component
based middleware.

3 Unified Meta-Component Model and Generative Domain Model

3.1 Why a Meta-model?

Given the plethora of component-based models and noting the fact that components, by definition, are
independent of the implementation language, tools and the execution environment, it is necessary to an
swer the questions: why is a meta-model needed for a seamless interoperation of distributed heterogeneous
components? and how would a meta-model assist in seamlessly integrating distributed heterogeneous soft
ware components? The answer to these question lies in: a) in any organization, software systems undergo
changes and evolutions, b) local autonomy is an inherent characteristic of today's geographically (or logi
cally) dispersed organizations, and c) if reliable software needs to be created for a distributed computing
system (DCS) by combining components, then the QoS offered by each component needs to become a
central theme of the software development approach.

The consequence of constant evolutions and changes is that there is a need to create prototypes rapidly
and experiment with them in an iterative manner. Thus, there is no alternative but to adhere to cyclic
(manual or semi-automatic) component-based software development for a DCS. However, the solution of
decreeing a common COTS environment, in an organization, is against the principle of local autonomy.
Hence, the development of a DCS in an organization will, most certainly, require creating an ensemble
of heterogeneous components, each adhering to some model. Also, every DCS is designed and developed
with a certain goal in mind, and usually that goal is associated with a certain perception of the quality (as
expected from the system) and related constraints.

Thus, there is a need for a comprehensive meta-model that will seamlessly encompass existing (and
future) heterogeneous components by capturing their necessary aspects, including the quality of service and
associated guarantees offered components. As distributed systems are becoming omni-present and many
of them are mission-critical, their software development should emphasize and integrate the QoS-oriented
theme.

For enterprise component solutions, the standards necessary to design systems using a meta-model that
can be realized in many diverse technologies is an area where significant standards work is now focused.
The recent shift in focus for the OMG to "Model Driven Architecture" (MDA) [31] is a recognition that
to create mechanized software for the collaboration and bridging of component architectures will require
standardization not only of infrastructure but also Business and Component Meta-Models. The need to
support the evolution of component models and to describe the capabilities of the models will be key to
realizing the full potential of an E-business economy.

3.2 Unified Meta-component Model (UMM) and Unified Approach (UA)

In [33, 34] a unified meta-component model (UMM) and a unified approach (UA) based on it, for distributed
component-based systems, are proposed. A brief description of UMM and UA is presented below. A more

3

•

•

•

detailed discussion of UMM and UA is found in [33, 34] .

3.2.1 UMM

The core parts of the UMM are: components, service and service guarantees, and infrastructure. The
innovative aspects of the UMM are in the structure of these parts and their inter-relations. UMM provides
an opportunity to bridge gaps that currently exist in the standards arena. For example, the CORBA
Component Model and J2EE component models are consistent, and yet, because of the absence of a formal
meta-model, it is difficult during the evolution of each to recognize when the boundaries that maintain
the consistency are crossed. Similarly, it has been demonstrated in numerous products that the COM and
CORBA component models are similar (in an abstract sense) enough to allow meaningful bridging. It is,
however, not possible to point to a meta-model that constrains the implementations of these technologies
so that bridging is assured in practice.
Component

In UMM, components are autonomous entities, whose implementations are non-uniform, i.e., each com
ponent adheres to a distributed-component model but there is no notion of a unified implementation
framework. Each component has a state, an identity, a behavior, a well-defined interface and a private
implementation. In addition, each component has three aspects: 1) computational, 2) cooperative, and 3)
auxiliary.

The computational aspect reflects the task(s) a component carries out. In a DCS, components must
be able to 'understand' the functionality of other components. Thus, each UMM component supports the
introspection, by which it precisely describes its services to others. UMM takes a mixed approach to indicate
the computational aspect of a component - a simple textual part, called inherent attributes and a formal
precise part, called functional attributes. The inherent attributes contain the book-keeping information
about a component (e.g., author, version, etc.); while the functional part is formal and indicates precisely
the computation, its associated contracts and the level(s) of service the component offers. Both the inherent
and functional attributes are specified by the component's creator .

In UMM, components are always in the process of cooperating with each other. This is depicted in
the cooperative aspect of each component. Informally, the cooperative aspect of a component contains: i)
Pre-processing collaborators - other components on which this component depends, and ii) Post-processing
collaborators - other components that may depend on this component.

In addition to computation and cooperation, mobility, security, and fault tolerance are necessary features
of a DCS. The auxiliary aspect of a component addresses these features. In UMM, each component can
be potentially mobile. The mobility of the component is indicated as a mobility attribute. Similarly, the
security and fault-tolerant attributes of a component contain the necessary information about its security
and fault-tolerance features.
Service and Service Guarantees

A service offered by a component could be an intensive computational effort or an access to underlying
resources. In a DCS, it is natural to expect several choices for obtaining a specific service. Thus, each
component must be able to specify the quality of the service offered.

The QoS offered by each component depends upon the computation it performs, the algorithm used,
its expected computational effort, required resources, the motivation of the developer, and the dynamics of
supply and demand. The QoS is an indication given by an component, on behalf of its owner, about its
confidence to carry out the required services. The task of guaranteeing the necessary QoS is a key issue in
any quality-oriented framework. Section 4 discusses the solutions provided by the unified approach based
on UMM.
Infrastructure

Because local autonomy is inherent in a DCS, forcing every component developer to abide by certain rigid
rules is doomed to fail. UMM tackles the issue of non-uniformity with the assistance of the head-hunter and

4

•

•

•

Internet Component Broker. These are responsible for allowing a seamless integration of different component
models and sustaining cooperation among heterogeneous (adhering to different models) components .

The tasks of head-hunters are to detect the presence of new components in the search space, register
their functionalities, and attempt match-making between service producers and consumers. A head-hunter
is analogous to a binder or a trader in other models, with one difference - a trader is passive, while a
head-hunter is active. It attempts at discovering components and registering them. During the registration
process, a component informs the head-hunter about its aspects to be used during the matching process. A
component may register with multiple head-hunters. Head-hunters may cooperate with each other in order
to serve a large number of components.

Considering the heterogeneous nature of the components, it is conceivable that the software realiza
. tion of a distributed system will require an ensemble of components adhering to different models. This

requires a mediator, the Internet Component Broker, that will facilitate cooperation between heterogeneous
components.

The Internet Component Broker (ICB) acts as a translator between two heterogeneous components.
ICB utilizes adapter technology, each adapter component providing translation capabilities for specific
models. Thus, an adapter component's computational aspect indicates the models for which it provides
interoperability. It is expected that brokers are pervasive in an Internet environment, thus providing a
seamless integration of disparate components. Adapter components register with ICB and indicate their
specializations (which component models they can bridge efficiently). During a request from a seeker, the
head-hunter component not only searches for a provider, but also supplies the necessary details of an ICB.

The adapter components achieve interoperability using the principles of wrap and glue technology [24).
Wrappers provide a common message-passing interface for components that frees developers from the error
prone tasks of implementing interfaces and data conversions. The glue schedules time-constrained actions
and carries out the actual communication between components. The automatic generation of glue and
wrappers based on component specifications provides a reliable, flexible and cost-effective way to achieve
interoperability.

The functionality of the ICB is analogous to that of an object request broker (ORB). The ICB provides
the capability to generate the glue and wrappers necessary for components implemented in diverse compo
nent models (and providing service guarantees) to collaborate across the Internet; the ORB does this only
at the level of objects written in different programming languages. An ORB defines language mappings and
object adapters. An ICB provides component mappings and model adapters. While the ICB conceptually
provides the capabilities of existing bridges (COM-COREA for example), it has key features that are unique;
it is designed to encompass all the aspects of components and the QoS features and associated guarantees.
Thus, the ICB, in conjunction with head-hunters, provides an infrastructure necessary for scalable, reliable,
and secure collaborative computation for a DCS. A preliminary version of the resource discovery service,
that consists of ICBs and head-hunters, has been created and is discussed in [37, 38).

3.2.2 UA

The UA is based on the principles of UMM. The creation of a software solution for a DCS, using UA,
has two levels: a) component level - developers create components, test and validate the appropriate QoS
and deploy the components on the network, and b) system level - a collection of components, each with
a specific functionality and QoS, and a semi-automatic generation of a software solution for the particular
DCS is achieved. These two levels and associated processes are described below.
Component Development and Deployment Process

The component development and deployment process starts with a UMM requirements specification of a
component from a particular domain. This specification is in a natural language and indicates the functional
(i.e., computational, cooperative and auxiliary aspects) and non-functional (i.e., QoS constraints) features
of the component. This specification is then refined into a formal specification. The refinement is based
upon the theory of Two-Level Grammar (TLG) and natural language specifications [7, 8). The refinement

5

•

•

•

is achieved by the use of conventional natural language processing techniques (e.g. [20]) with a domain
knowledge base [23] TLG specifications allow for the generation of the interface (possibly multi-level) for
a component. This interface incorporates all UMM-aspects of a component. The developer then provides
the implementation to all the methods indicated in the interface. This process is followed by the validation
against requirements specifications. ff the results are satisfactory then it is deployed on the network and
is discovered by one or more head-hunters. If the component does not meet the requirement specifications
then the developer refines either the UMM requirements specification or the implementation and the cycle
repeats.
Formal Specification of Components in UMM

Since the UMM specifications are informally indicated in a natural language like style, UA aims at
translating these into more formal specifications using TLG. TLG is a formal notation based upon natural
language and the functional, logic, and object-oriented programming paradigms. The reason that TLG is
chosen is that it allows queries over the knowledge base to be expressed in a natural language like manner
which is consistent with the way in which UMM is expressed. TLG is then a framework under which natural
language may be used to both describe and inquire about the nature of components and systems. More
details of TLG, which facilitate a formal specification of components and queries, are described in section 5.
Automated System Generation

In general, different developers will provide on the Internet a variety of possibly heterogeneous compo
nents oriented towards a specific problem domain. Once all the components necessary for implementing a
specified distributed system are available and a specific problem is formulated, then the task is to assemble
them into a solution. The proposed framework takes a pragmatic approach, based on Generative Pro
gramming [4, 13], to component-based programming. It is assumed that the generation environment will
be built around a generative domain-specific model (GDM) supporting component-based system assembly.
The distinctive features of the proposed approach are as follows:

1. The developer of the desired distributed system presents to this process a system query, in a structured
form of natural language, that describes the required characteristics of the distributed system. The
query is processed using the domain knowledge (such as key concepts from a domain) and a knowledge
base containing the UMM description (in the form of a TLG) of the components for that domain. From
this query a set of search parameters is generated which guides head-hunter agents for a component
search in the distributed environment.

2. The framework, with the help of the infrastructure, collects a set of potential components for that
domain, each of which meets the QoS requirement specified by the developer. After the components
are fetched, the system is assembled according to the generation rules embedded in the generative
domain model. Essentially, the generated code constitutes the glue/wrapper interface between the
components. The TLG formalism is used to describe the generative rules (see section 6 for further
discussion) and the output of the TLG will provide the desired target code (e.g., glue and wrappers
for components and necessary infrastructure for distributed run-time architecture).

3. Along with the generated system will be a formal UMM specification of the generated system so that
it may be used in subsequent assemblies. This formal UMM specification will also be a basis for
generating a set of test cases to determine whether or not an assembly satisfies the desired QoS.

4. The static QoS parameters are processed during generation time and hence will be processed by the
TLG directly. Dynamic QoS parameters result in instrumentation of generated target code based on
event grammars, which at run time will produce the corresponding QoS dynamic metrics.

To summarize, the inputs for the system assembly and generation step are: the query for the system
build, UMM descriptions of the components found by headhunters, and the QoS parameters for the system
build. The outputs are the generated code instrumented for the dynamic QoS metric evaluation and
auxiliary code needed to compile, assemble and run the system, and UMM description of the generated
system which makes it possible to add the new component to the component database. Two-Level Grammar

6

•

•

•

is the formalism for representing UMM's, GDM's, QoS parameters, supporting queries, and generation rules.
Only the queries that have counterparts in the GDM are processed. The GDM contains generation rules
for system assembly from the components. The query language becomes an essential part of the proposed
approach since the query provides the input for component search via the headhunter mechanism and
following glue and wrapper generation. The query supplies the initial parameters for the headhunters to
search in the distributed environment and gives the input for the generation step itself.

The proposed approach to Generative Programming besides the domain-specific generative models in
volves yet another dimension: components and their attributes found in the distributed environment. Since
the environment is changing, the results of a query depend on the component resources available. The
attributes found in the UMM descriptors of the fetched components determine the hierarchy of generation
rule calls and hence the architecture of the assembled system. This implies that the UMM descriptor has
to be generation-oriented, i.e. contain attributes specific for the generation needs. The generation rules
represent typical design patterns for the selected domain and more general software design patterns, e.g. as
advocated in (15].

QoS parameters given in the query provide yet another aspect for the generated code - the instrumenta
tion necessary for the run-time QoS metrics evaluation. Static QoS parameters are processed at generation
time by corresponding rules within the domain model. Since dynamic QoS metrics can be calculated only
for particular inputs, in order to find the best possible approximation for the system, the following approach
is suggested. Based on the query or informal requirements, the user has to come up with a representative
set of test cases. Next the implementation is tested using the set of test cases to verify that it meets the
desired QoS criteria. If it does not, it is discarded. After that, another implementation is chosen from the
component collection. This process is repeated until an optimal (with respect to the QoS) implementation
is found, or until the collection is exhausted. In the latter case, the process may request additional com
ponents or it may attempt to refine the query by adding more information about the desired solution from
the problem domain. If a satisfactory implementation is found, it is ready for deployment.

The same GDM is used to generate the final optimized version of the required system and UMM
description of the system if the system is to be used as a stand-alone component .

4 QoS-based Approach

The UA to assuring the QoS of a DCS is made up of three steps: a) the creation of a catalog for QoS
parameters (or metrics), b) a formal specification of these parameters, and c) a mechanism for ensuring
these parameters, both at each individual component level and at the entire system level. In next few
sections, these three steps are described in detail.

4.1 A Catalog of QoS Parameters

There are many possible QoS parameters that a component (and its developer) can use to indicate the
associated service. In UA, as a first step, a catalog of QoS parameters is created [6]. The format of this
catalog is based on that of the design patterns (15] catalog. This catalog provides a vocabulary for a
QoS-based approach. A QoS parameter is entered into this catalog only if it is completely different from
the existing ones and appears in many application domains. It is expected that this catalog will gradually
evolve over a span of time.

The goal of creating the QoS catalog is two-fold: a) it assists the component developer (or the system
integrator) in selecting the necessary QoS parameters for the component (or system) under construction,
and b) it enables the developer (or integrator) to ensure the necessary QoS guarantees by integrating the
selected QoS parameters into the assurance process.

7

•

•

•

4.1.1 Description of QoS Parameters

Each parameter is described by using the following features:

1. Name: indicates the name of the parameter.

2. Intent: indicates the purpose of the parameter.

3. Description: provides a brief informal description of the parameter.

4. Influencing Factors: depicts the factors on which the parameter depends along with their measures
and degree of influence, if any.

5. Measure: indicates the unit in which to measure the parameter.

6. Known Usages: describes the known usages of the parameter.

7. Aliases: indicates other prevalent names, if any.

8. Related Parameters: indicates other related QoS parameters.

9. Consequences: indicates the effects if this parameter is used in describing the QoS of a component.

10. Levels: indicates possible QoS levels offered by a component.

11. Technologies: indicates the underlying technologies.

12. Applications: indicates the application domains in which the parameter has been used.

13. Exceptions: indicates the possible error situations and associated exception handling capabilities.

14. Example Scenario: indicates a possible scenario where it is appropriate for the parameter to be used.

4.1.2 List and Brief Description of QoS Parameters

In [42], a few QoS parameters for objects are described. That list has been augmented to create a current
version of the catalog that contains the following parameters:

1. Throughput: indicates the efficiency or speed of a component (e.g., user-interaction component).

2. Capacity: indicates the maximum number of concurrent requests a component can serve (e.g., server
component).

3. End-to-End Delay: indicates the time difference between the invocation of a method of a component
to its completion (e.g., numerical computational component).

4. Parallelism Constraints: indicates whether a component can support synchronous or asynchronous
invocations (e.g., server component).

5. Availability: indicates the duration when a component is available to offer a particular service (e.g.,
classifier component).

6. Ordering Constraints: indicates the order of the return results and its significance (e.g., transaction
component).

7. Error Rate: indicates the probability of returning incorrect results or no result at all (e.g., arithmetic
computational component).

8. Security: indicates the security-related details of a component (e.g., e-commerce component).

9. Transmission: indicates the quality of the data communication provided by a component (e.g., a
routing component).

10. Adaptivity: indicates how a component can adapt to changing environment (e.g., information service
provider component).

8

•

•

•

11.

12.

13.

14.

15.

16.

17.

18.

Evolvability: indicates how easily a component can evolve over a span of time (e.g., text-editor com
ponent).

Reliability: indicates reliability of the service offered by a component (e.g., real-time controller com
ponent).

Stability: indicates whether a component can provide a predictable quality (e.g., network controller
component).

Result: indicates quality of the results returned (e.g., numerical computational component).

Achievability: indicates if a component can provide a higher degree of service than promised (e.g.,
multi-media transmission component).

Priority: indicates if a component is capable of providing prioritized service (e.g., scheduling compo
nent).

Compatibility: indicates if a component is environment (e.g., platform) dependent or not (e.g., applet
component).

Presentation: indicates the presentation aspects of the result returned by a component (e.g., database
component).

4.1.3 Detailed Sample Description

Although, all the above mentioned parameters have been fully described in (6], for the sake of brevity below
only one parameter, Throughput, is described in detail.

• Name: Throughput.

• Intent: This parameter indicates the speed of efficiency of a component.

• Description: This parameter is used to specify the number of methods or requests that a component
can serve per a given time unit (e.g., second) and the classification of the requested methods based
on their read/write behaviors.

• Influencing Factors: This parameter depends on the following factors:

Algorithms used by each method and associated complexity measures (e.g., time, space) - weight
of this factor is very important.
Available resources and their abilities and quantities - weight of this factor is very important.
Operating system scheduling scheme - weight of this factor is important.

• Measure: Methods_completed/Second.

• Known Usages: FTP Server, HTTP Server, Email Server, Information Classifying System, User In-
teraction Environment.

• Aliases: Execution Rate.

• Related Parameters: Capacity, Parallelism Constraints, and End-to-End Delay.

• Consequences: A guarantee of a higher throughput could have an adverse effect on the resources
allocated to other components running on that machine thereby deteriorating their performance.

• Levels: The possible levels for throughput could be: a) low (< 50 requests completed per second),
b) moderate(< 500 requests completed per second), and c) high (< 5000 requests completed per
second).

• Technologies: RPC, RMI, etc.

• Applications: Web, E-commerce, Database, Scientific Computation.

9

•

•

•

• Exceptions: a) actual throughput is less than the one promised (LessThanPromisedException) - this
can lead to disastrous situations in critical application domains, and b) actual throughput exceeds
the promised number (MoreThanPromisedException) - in most cases, this will not have any adverse
effect, but in some it can lead to problematic situations.

• Example Scenario: In an information filtering system, a representer component provides the ser
vice of converting a textual document into its numerical equivalent form. The representer, typically,
supports a function called represent_document (). If such a component specifies its QoS as 15 meth
ods_completed/second, then it indicates that the representer is able to convert 15 textual documents
into their numerical forms in one second. A representer can also specify that it provides either one
level (say 15 methods/second) or two levels (15 methods/sec and 30 methods/sec) or three levels (15
methods/sec, 30 methods/sec and 45 methods/sec) of services.

4.2 Empirical Analysis of QoS Parameters

In [39] an empirical study is provided that illustrates the rules for composing and decomposing QoS pa
rameters. Here a brief discussion is provided in the context of the end-to-delay (also called as turn-around
time) for a simple account system (similar to the case study presented in the section 6).

As stated earlier, the end-to-end delay is the response time of any system. Many IT professionals use the
eight-second rule as a threshold for the maximum allowable limit for the end-to-end delay with a download.
It is ranked as the second most important QoS parameter after the availability4 and is critical for many
different application domains. Many different factors affect end-to-end delay. These include, the actual
computational efforts and policies, network delays, and possible security delays. End-to-end delay is a
dynamic parameter and is easily composable, i.e., the total end-to-end delay for a system is a summation
of the end-to-end delays of the individual components that make up the system. Thus, given the individual
end-to-end delays, it is possible to predict the delay of the assembled system.

As a simple case study, to validate this model, a simple bank system consisting of three components (a
client, a server and a database) was created. Each component contained end-to-end delay as one of its QoS
parameters. These components were deployed and executed, in isolation, on a LAN of Sun SPARC machines
and average values for their end-to-end delays were computed. These values were found to be 34 ms (for the
client component), 119 ms (for the server component) and 126 ms (for the database component). Based on
these numbers, it was predicted that the integrated system will have the end-to-end delay in the range of
278 ms (which is the summation of the individual end-to-end delays). A distributed system made of these
three components was created, deployed and its average value for the end-to-end delay was computed. This
value was found to be 287 ms - which is in the same order as the predicted value (278 ms).

This simple experiment was carried to indicate that an empirical evaluation, based on the QoS catalog
and composition/decomposition rules, will enable a system integrator to not only assemble heterogeneous
components but also deploy, execute and validate the combined ensemble.

Instead of a simple empirical evaluation, indicated above, the UniFrame approach will use the notion
of event grammars (as described in the next section) for measuring and validating QoS parameters of an
integrated system.

4.3 QoS Metrics and Implementation

Dynamic QoS metrics can be expressed in a uniform manner based on the system behavior models. In [2, 3]
the use of event grammars as a basis for such models is suggested. An event is an abstraction of any
detectable action performed during run-time, for instance, execute a statement or call a procedure. An
event has beginning, end, and duration, and some other attributes, such as program states at the beginning
and end of the event, source code associated with the event, and so on. Two binary relations are defined

4Hence, these two parameters are also used in the case study of section 6.

10

•

•

•

for the events. One event may precede another event, e.g. one statement execution may precede another,
or one event may be included in another, e.g., a statement execution event may appear inside a procedure
call event. System execution may be represented as a set of events with the two basic relations between
them - event trace. An event grammar is a set of axioms that determines possible configurations of events
of different types within the event trace. For example, the axiom

execute-assignment : evaluate-expression perform-destination

specifies that the event of the type execute-assignment contains a sequence (with respect to the precedence
relation) of events of types evaluate-expression and perform-destination, correspondingly.

Different dynamic QoS metrics could be expressed as appropriate computations over event traces. For
example, if 'function-call IS A' denotes an event of the type function call with the name A, then the total
duration of this function call may be expressed as:

SUM/[X: function-call IS A FROM execute-program Duration(X)]

[...] denotes a sequence constructor which selects from the whole event trace {an event of the type
execute-program) all events that match the pattern function-call IS A, takes the Duration attribute of those
events, and sums them up. Event grammars and the notion of the computations over event traces provide a
uniform framework to define different dynamic QoS metrics. This mechanism may be a basis of automatic
instrumentation of the generated code.

As has been indicated above, static QoS parameters are processed by generation rules at generation
time according to the inference rules encoded in the domain model (see example in section 6.5). Therefore,
the event grammar and a language for event trace computations are part of the GDM.

It should be noted that the assurance of QoS (as described above) indicates that a component can
guarantee appropriate values for its QoS parameters in an 'ideal' situation. This does not guarantee that a
component will be able to either provide this QoS under failure circumstances or will automatically adjust
its QoS to hide the failures. For the failure situations, the ideas provided by QuO [5] or RAPIDware [27]
can be incorporated into the UMM and UA .

5 Formal Specification in the Unified Approach

Formal specification in UA is by means of Two-Level Grammar {TLG, also called W-grammar). TLG
was originally developed as a specification language for programming language syntax and semantics and
was used to completely specify ALGOL 68 [41]. TLG may be used as an object-oriented requirements
specification language and also serve as the basis for conversion from requirements expressed in natural
language into a formal specification [22]. This section describes the TLG language details that facilitate these
processes and elaborates on how the language may be used in formal specification of UMM specifications.

The name "two-level" in Two-Level Grammar comes from the fact that TLG consists of two context-free
grammars interacting in a manner such that their combined computing power is equivalent to that of a
Turing machine [36]. These two grammars define the set of type domains and the set of function definitions
operating on those domains. Note that while the term "domain" is used in a type-theoretic context, the
notion can be scaled up to a much larger context as in domain of "objects." These grammars may be
defined in the context of a class in which case the type domains define the instance variables of the class
and the function definitions define the methods of the class. Each of these terms are defined below.

5.1 Types

The type declarations of a TLG program define the domains of the functions and allow strong typing of
identifiers used in the function definitions. The function domains of TLG may be formally structured as
linear data structures such as lists, sets, bags, or singleton data objects, or be configured as tree-structured

11

•

•

•

data objects. The standard structured data types of product domain and sum domain may be treated as
special cases of these.

Domain declarations have the following form:

ldentifier-1, ldentifier-2, ... , ldentifier-m ::
data-object-1; data-object-2; ... ; data-object-n.

where each data-object-i is a combination of domain identifiers, singleton data objects, and lists of
data objects, which taken together as a union form the type of Identifier-1, Identifier-2, ... , Identifier-m.
Note that if n=l, then the domain is a true singleton data object, whereas if n>l, then the domain is
a set of the n objects. Syntactically, domain identifiers are capitalized, with underscores or additional
capitalizations of successive words for readability (e.g., IntegerList, SymboLTable, etc.), and singleton data
objects are finite lists of natural language words written entirely in lower case letters (e.g., sorted list).
For improved readability, the domain identifiers are represented in italics and data objects are represented
in the typewriter font.

A list, set or bag structure is denoted by a regular expression or by following a domain identifier with the
suffix List, Set, or Bag, respectively. Following conventional regular set notation, * implies a set of zero or
more elements while + denotes a set of one or more elements. As in any programming language, readability
is promoted through the use of appropriate names for identifiers. Furthermore, there exists a predefined
environment of primitive types, defining such domains as Integer, Boolean, Character, String, etc., in the
obvious ways. The main difference between list structures and tree structured domains in terms of their
declaration is whether the defining domain identifier declaration is recursive or not. Recursive domains are
more powerful in that they allow "context-free" data types to be defined, such as expression strings with
balanced parentheses.

5.2 Functions

Function definitions comprise the operational part of a TLG specification. Their syntax allows for the
semantics of the function to be expressed using a structured form of natural language. Function definitions
take the forms:

function signature.
function signature : function-call-1, function-call-2, ... , function-call-n.

where n2:1. Function signatures are a combination of natural language words and domain identifiers. For
improved readability, we will use boldface type to represent the function keywords. Domain identifiers in
the context of a function typically correspond to variables in a conventional logic program. As in logic
programs, some of these variables will typically be input variables and some will be output variables, whose
values are instantiated at the conclusion of the function call. Therefore, functions usually return values
through the output variables rather than directly, in which case the direct return value is considered as a
Boolean true or false. true means that control may pass to the next function call, while false means the
rule has failed and an alternative rule should be tried if possible. Alternative rules have the same format
as that given above. ff multiple function rules have the same signature, then the multiple left hand sides
may be combined with a; separator, as in:

function signature :
function-call-11, function-call-12, ... , function-call-lj;
function-call-21, function-call-22, ... , function-call-2k;

function-call-nl, function-call-n2, ... , function-call-nm.

12

•

•

•

where there are n alternatives, each having a varying number of function calls. Besides Boolean values,
functions may return regular values, usually the result of arithmetic calculations. In this case, only the
last function call in a series should return such a value, i. e., not function-call-I, function-call-2, ... ,
function-call-(n-1).

An important aspect about TLG is that the functions may be written at a very high level of abstraction
(e.g. compute the total mass and total cost) or embedded into a domain definition as in traditional
object-oriented programs (e.g. compute the TotalMass and TotalCost of This Part by computing the
TotalMass and TotalCost of its Subparts, which might be embedded as a method in a Part class). The use
of natural language in the function may be regarded as a form of infix notation for functions, in contrast with
the customary prefix forms of most other programming languages. It is similar to multi-argument message
selectors in Smalltalk but provides even greater flexibility, including the presence oflogical variables, denoted
by the use of domain names (capitalized). This notation provides a highly readable way of writing what is
to be done and is wide-spectrum in the sense that "what is to be done" may be expressed at multiple levels.
The functions typically return a Boolean value as the main operation is to instantiate the logical variables
as in Prolog, but simple function values such as arithmetic expressions may also be computed.

To explain the operational semantics of Two-Level Grammar function rules, note that each function call
on the right hand side of a function definition should correspond to a function signature defined within the
scope of the TLG program or be a special operation such as a Boolean comparison, assignment statement,
or if-then-else statement. The most important aspect of function definitions is that every domain identifier
with the same name is instantiated to the same value, as in Prolog. This is called consistent substitution.
If variables have the same root name but are numbered, then the numbers are used to distinguish between
variables. A numbered variable V1 will then be different from a variable V2 and the two can have different
values. However, they will be of the same type, namely type V. Note that once a variable has been assigned
a value, it may not be reassigned, unless it is an instance variable of a class, and even in this case, it would
not be usual to do so in the same function. Each function definition may therefore be thought of as a set of
logical rules. Also, as in Prolog, the function calls are executed in the order given in the function definition.
Functions may be recursive with the expected operational behavior.

Besides defined functions, TLG supports the usual arithmetic and Boolean operations. For lists, list
comprehensions are also supported as are iterators over the list. The syntax of a list comprehension is
list all Element from ElementList1 such that Element condition giving ElementList2. This returns a
list, ElementList2, of all Element values in ElementList satisfying the given condition. The syntax of an
iterator is select Element from ElementList with Element condition. This returns the first Element from
ElementList which satisfies the condition.

5.3 Classes

In order to support object-orientation, TLG domain declarations and associated functions may be structured
into a class hierarchy supporting multiple inheritance. The syntax of TLG class definitions is:

class Identifier-1 [extends Identifier-2, Identifier-3, ... Identifier-n].
instance variable and method declarations

end class [Identifier-1].

In the above syntax, square brackets are used to indicate the construct is optional. Identifier-1 is declared
to be a class which inherits from classes Identifier-2, Identifier-3, ... , Identifier-n. Note that the extends
clause is optional so a class need not inherit from any other class. The instance variables comprising the
class definition are declared using the domain declarations described earlier. In general, the scope of these
domain declarations is limited to the class in which they are defined, while the methods, corresponding to
TLG function definitions, have scope anywhere an object of the given class is referred to. These notions of
scoping correspond to private and public access respectively in object-oriented languages such as C++ and

13

•

•

•

Java, and either scope may be declared explicitly or the scope may be made protected. Methods are called
by writing a sentence or phrase containing the object. The result of the method call is to instantiate the
logical variables occurring in the method definition.

In any class for every instance variable of simple type there are get and set methods to access or modify
that variable.

TLG class declarations serve to encapsulate the TLG domain declarations and function definitions. The
class hierarchy which is resident in TLG is a small forest of built-in classes, such as integers, lists, etc. The
"main" program is nothing more than a set of object declarations using the existing class identifiers as
domain names and a "query" of the appropriate methods.

5.4 Example

As an example of a TLG specification, consider the following translation scheme for producing three address
code [1 J from simple arithmetic expressions.

class CodeGenerator.
Expression:: Term {AddingOperator Term}*.
AddingOperator :: +; -.
Term :: Factor { MultiplyingOperator Factor}*.
MultiplyingOperator :: *i /.
Factor :: (Expression) ; Identifier; Float; Integer.
Expressionidentifier, Termidentifier, Factoridentifier, Identifier:: String.
ExpressionType, TermType, FactorType, Type:: float; integer; undefined.

three address code for Expression AddingOperator Term is Identifier type Type:
three address code for Expression is Expressionidentifier type Expression Type,
three address code for Term is Termidentifier type TermType,
common type of ExpressionType and TermType is Type,
type convert Expressionidentifier type Expression Type into Identifierl type Type,
type convert Termidentifier type Term Type into Identifier2 type Type,
ThreeAddressCode generate temporary Identifier : = Identifierl AddingOperator Identifier2.

three address code for Term MultiplyingOperator Factor is Identifier type Type :
. .. similar to above ...

three address code for (Expression) is Identifier type Type:
three address code for Expression is Identifier type Type.

three address code for Identifier is Identifier type Type:
SymbolTable lookup Identifier giving Type,
Type!= undefined.

three address code for Float is Float type float.

three address code for Integer is Integer type integer.

14

•

•

•

end class.

For simplicity only two types, float and integer, are assumed. There is also a SymbolTable class assumed
with standard operations such as looking up an identifier to obtain its type, and a ThreeAddressCode class
assumed with an operation to generate a three-address code instruction in the code array, possibly including
an assignment to a temporary variable. Rules to check type compatibility and perform type conversions
are also present but not shown here. Error checking is not explicitly indicated but would occur through
failure of any rule, e.g., a syntactically ill-formed expression would not match any of the three address
code rules, an identifier not declared would cause the identifier rule to fail, and any errors in typing would
cause the type checking rules to fail.

These rules would be queried as follows:

CodeGenerator three address code for a * (b + 1) is Id type Type

This creates a code string of:

t1 := b + 1
t2 := a * t1

and returns t2 for Id and integer for Type, respectively (assuming that a and b are stored in the symbol
table as type integer variables).

This example illustrates that TLG may be used to provide for attribute evaluation and transformation,
syntax and semantics processing of languages, parsing, and code generation. All of these are required to
use TLG as a specification language for generative rules [9].

5.5 Implementation

Two-Level Grammar is implemented as part of a specification development environment which facilitates
the construction of TLG specifications from natural language, and then translates TLG specifications into
executable code. The natural language requirements are translated into TLG through Contextual Nat
ural Language Processing (CNLP) [26] which constructs a knowledge representation of the requirements
which may then be expressed using TLG [23]. The TLG is then translated into VDM++ [17], the object
oriented extension of the Vienna Development Method (VDM) specification language [21]. The IFAD VDM
Toolbox™ [18] may then be used to generate code in an object-oriented programming language such as
Java or c++.

6 A Case Study

This section presents a simple example from the account management domain to illustrate how the previous
concepts can be applied to assemble a component-based system from a developer's request. Before the
developer can make this request, experts must construct a GDM for the domain of interest and suppliers
must provide on the network any UMM components that might be necessary to meet the developer's needs.

6.1 TLG Component Specification

Two-Level Grammar is used as the formalism for both the UMM and the generative rules, which make up
part of the GDM. The UMM formalization establishes the context for which the generative rules may be
applied.

15

•

•

•

6.1.1 UMM

The basic TLG statement of the UMM specification template for components in the example is given below.
Some details are omitted for brevity. The domain experts create the UMM specification which may then
be parsed into TLG according to the template below. Any component described using UMM will be typed
according to these declarations. A supplier implements a component and then makes it available to potential
users by publishing a description of it that this TLG can parse.

UMM :: ComponentName InformalDescription FunctionList ComputationalAttributes
CooperationA ttributes A uxiliaryA ttributes QoSM etricList.

ComponentName, InformalDescription, Function :: String.
ComputationalA ttributes :: InherentA ttributes FunctionalA ttributes.
InherentAttributes :: Id Version DateDeployed.
Id :: String.
Version :: Float.
DateDeployed :: Date.
FunctionalAttributes :: TaskDescription AlgorithmAndComplexity SyntacticConstruct Technology.
TaskDescription :: String.
AlgorithmAndComplexity ::
SyntacticConstruct :: FunctionSignatureList.
FunctionSignature ::
Technology:: corba; java applet; java rmi;
CooperationA ttributes : : Preprocessing Collaborator List P ostprocessingCollaborator List.
PreprocessingCollaborator :: String.
PostprocessingCollaborator :: String .
AuxiliaryAttributes ::
QoSMetric :: Throughput; Capacity; EndToEndDelay; ParallelismConstraints; Availability;
Throughput :: Float.
Capacity :: Integer.
EndToEndDelay :: Integer ms.

ParallelismConstraints :: synchronous; asynchronous.
Availability :: Float; Integer%.

6.2 Client and Server Distributed Components

At this point in the example, suppose that suppliers have implemented and made available within UMM
three types of components that developers can use to assemble account management systems with a
client/server architecture. These include two instances of AccountServer and one instance of AccountClient.
The server components are heterogeneous - javaAccountServer adheres to the Java-RMI model; while
corbaAccountServer is developed using the CORBA model. The client, j avaAccountClient is developed
by using the Java-RMI model and is implemented as an applet. The partial UMM descriptions of these
components are presented below. One can see that the previous TLG component specification can parse
these declarations.

16

•

•

•

6.3 Component Descriptions m UMM

javaAccountServer

Informal Description: Provides an account management service. Supports three
functions: javaDeposit(), javaWithdraw() and javaBalance().

1. Computational Attributes:
a) Inherent Attributes:

a.1 id: intrepid.cs.iupui.edu/jServer

b) Functional Attributes:
b.1 Acts as an account server
b.2 Algorithm: simple addition/subtraction
b.3 Complexity: 0(1)
b.4 Syntactic Contract:

void javaDeposit(float ip);
void javaWithdraw(float ip) throws overDrawException;
float javaBalance();

b.5 Technology: Java-RMI

2. Cooperation Attributes:
2.1) Pre-processing Collaborators: AccountClient

3. Auxiliary Attributes:

4. QoS Metrics:
Availability: 90/.
End-to-End Delay < 10 ms

corbaAccountServer

Informal Description: Provides an account management service. Supports three
functions: corbaDeposit(), corbaWithdraw() and corbaBalance().

1. Computational Attributes:
a) Inherent Attributes:

a.1 id: jovis.cs.iupui.edu/coServer

b) Functional Attributes:
b.1 Acts as an account server
b.2 Algorithm: simple addition/subtraction
b.3 Complexity: 0(1)
b.4 Syntactic Contract:

void corbaDeposit(float ip);
void corbaWithdraw(float ip) throws overDrawException;
float corbaBalance();

b.5 Technology: Java-CORBA

17

•

•

•

2. Cooperation Attributes:
2.1) Pre-processing Collaborators: AccountClient

3. Auxiliary Attributes:

4. QoS Metrics:
Availability: 95/.
End-to-End Delay < 10 ms

javaAccountClient

Informal Description: Requests account services from an appropriate server and
interacts with the user -- implemented as a web-based applet. Supports
functions: depositMoney(), withdrawMoney() and checkBalance().

1. Computational Attributes:
a) Inherent Attributes:

a.1 id: galileo.cs.iupui.edu/aClient

b) Functional Attributes:
b.1 accepts user queries and presents the results using a GUI
b.2 Algorithm: Java Foundation Classes (JFC)
b.3 Complexity: 0(1)
b.4 Syntactic Contract

void depositMoney(float ip);
void withdrawMoney(float ip);
float checkBalance();

b.5 Technology: Java Applet

2. Cooperation Attributes:
2.1) Post-processing Collaborators: AccountServer

3. Auxiliary Attributes:

4. QoS Metrics:
Availability: 80/.
End-to-End Delay < 20 ms

6.4 Account Management Problem Statement

Once a GDM for an accounting management domain has been defined and appropriate UMM components
are available, a developer can pose the problem of finding and assembling the components necessary to
create an account management system. Resolving this query involves identifying in the GDM a design for
such a system (this part of the GDM is not shown here), issuing a request to the UMM headhunters for
component implementations that match the UMM component specifications of the design, and assembling
them into an implementation of a problem solution. An important part of the query statement is the

18

•

•

•

identification of the application domain in which the solution design lies.
A sample query for the present example can be informally stated as: Create an account management

system that has: availability > = 50% and end-to-end delay < 50 ms. This query specifies that a static
and a dynamic QoS parameter must be satisfied. The natural language processor of UA will infer that the
application domain is account management and, thus, conforms to the example GDM described above. In
response, the UMM headhunters will discover components for the following system assemblies:

l. Java-Java System

(a) javaAccountClient - availability>= 803, End-to-End delay< 20ms, Java Applet Technology
(b) javaAccountServer - availability>= 903, End-to-End delay< lOms, Java-RMI technology
(c) Infrastructure Needed - JVM and Appletviewer

2. Java-CORBA System

(a) javaAccountClient - availability>= 803, End-to-End delay< 20ms, Java Applet Technology
(b) corbaAccountServer - availability>= 953, End-to-End delay < lOms, Java-RMI technology
(c) Infrastructure Needed - JVM, Appletviewer, ORB, Java-CORBA bridge

6.4.1 Generation Rules

The process of parsing UMM component descriptions, as mentioned in the preceding examples, provides a
structure to the UMM that can be processed by TLG functions. These functions include generative rules
for construction of the wrapper/ glue code and the event grammar instrumentation to assure the QoS of the
accounting system.

A sampling of TLG rules that may be used to generate the appropriate glue/wrapper code to connect
the components of the accounting system are presented below. These rules are based on selecting from the
GDM of the accounting systems the appropriate system model for this two-component DCS.

ClientUMM, ServerUMM :: UMM.
Client Operations, ServerOperations :: {Interface}*.
generate system from ClientUMM and ServerUMM:

ClientOperations := ClientUMM get operations,
ServerOperations := ServerUMM get operations,
OperationMapping :=map ClientOperations into ServerOperations,
ComponentModel := ServerUMM get component model,
generate java code for OperationMapping using ComponentModel.

This rule generates Java code for two UMM models representing a client and server, respectively. For this
example, the ClientUMM would be the UMM specification of j avaAccountClient presented previously and
the ServerUMM would be the UMM specification of javaAccountServer or corbaAccountServer. The
main tasks are to map client operations onto server operations, e.g., depositMoney in javaAccountClient
maps to corbaDeposit in corbaAccountServer or to javaDeposit in javaAccountServer, and then gen
erate the code to implement this mapping. The generated code will be in Java since the client code is in
Java and must seamlessly interface with it. If the client is in C++ or other language, similar rules will be
defined and many rules will be language independent.

The actual mapping to be defined will be based upon a natural language analysis of the names of
operations. The closer the names match, the more easily the system can establish the correct mapping.
This depends upon both the care and style with which the user has written the interface method names
and so may vary widely. For this example, it can be seen that the correspondence between names, while
not exact, is relatively close .

19

•

•

•

The next rule describes the specifics of generating CORBA code in Java to implement the mapping that
arises by combining the j avaAccountClient with the corbaAccountServer.

CorbaPackageName, CorbaObjectType, CorbaObjectName :: String.
ClassName, JavaClassName :: String.
generate java code OperationMapping using corba:

CorbaPackageName := OperationMapping get corba package name,
CorbaObjectClass := OperationMapping get corba object type,
ClassName := OperationMapping get class name,
JavaClassName := Java II ClassName,
CorbaObjectName :=object II ClassName,
SetUpCode := ComponentModel generate java code,
Operations:= generate java code for OperationMapping,
return

import CorbaPackageName . *;
public class JavaClassName {

private CorbaObjectClass CorbaObjectName
II initialize CORBA client module
public void init () {

} .

Set Up Code
}

Operations

This rule generates the class structure required by the Java implementation, which consists of a function
init to set up the CORBA ORB and the operations needed in the server. This includes the code to initialize
the CORBA object so that future operations can refer to it. It is necessary to first extract the names of
the CORBA package, class of the CORBA object to be referenced within the package, and the name of
the class itself. These are all stored in the OperationMapping. The name of the Java class generated is
simply the string "Java" concatenated 5 with the name of the server class, i.e., JavaCorbaAccountServer.
The name of the CORBA object is generated in a similar way.

The rule below describes the mechanism for generating the individual methods in JavaCorbaAccountServer.
For simplicity, only the case where the class is to contain a single method is shown. Multiple methods would
be handled in a similar manner.

generate java code for OperationName1 ArgumentList1 RetumType
maps to OperationName2 ArgumentList2 ReturnType:

JavaReturnType := java type of ReturnType,
JavaArgumentList :=

list all Argument from ArgumentList1
mapped by function java argument of Argument,

JavaArgumentListDefinition := separate JavaArgumentList by , ,
OperationCall :=generate java code for OperationName2 ArgumentList1 RetumType,
return

5The TLG concatenation operation (II) differs from juxtaposition in that it does not produce a space between the operands .

20

•

•

•

public JavaReturnType OperationNamel (JavaArgumentListDefinition) {
EventTrace . setBeginTime ();
Operation Call
EventTrace setEndTime ();
EventTrace . calculateResponseTime ();

}.

This generation assumes that the methods have the same return type and so the main task is to express
the arguments of the first operation in terms of Java syntax and generate the appropriate method call.
The former is accomplished by using a TLG list comprehension to map the arguments in ArgumentListl
into corresponding Java arguments represented by JavaArgumentList. There is a subtlety here in that
JavaArgumentList is an abstract syntax representation of the desired argument list and so this must be
made into concrete syntax using the separate operation which adds the appropriate commas in between
the argument declarations. The appropriate method call is handled by the rule below.

generate java code for OperationName ArgumentList ReturnType:
IdentifierList :=

list all Argument from ArgumentList
mapped by function argument id of Argument,

IdentifierListlnCall := separate IdentifierList by , ,
return

CorbaObjectName . OperationName (IdentifierListlnCall) ; .

Again a list comprehension is used to extract' the arguments from the argument list, this time only the iden
tifier part (achieved by function argument id of Argument). Likewise, the abstract syntax representation
must be made concrete by comma separators.

Finally, the event grammar instrumentation is added to measure the time at the beginning of the server
method call and again at the end so that the actual response time can be evaluated against the required
QoS (< lOOms). The QoS metrics for "response delay" mean execution time for each method call within
the server or client, and require the instrumentation of each generated wrapper for the client/server method
call with auxiliary functions able to check the clock at the beginning and at the end of method call, calculate
the duration, and submit it to the execution monitor (also generated as a part of instrumentation). It is
assumed that these are taken care of by a class called EventTrace. Each of the two example systems will
be implemented with the code for carrying out event trace computations according to test cases which must
be supplied by the user. These test cases will be executed to verify that the bank account management
system satisfies the QoS specified in the query. H the system is not verified, it is discarded. This verifica
tion process is carried out for each of the generated bank account management system (two in the above
example). Then the one with the best QoS is chosen, in the above example the CorbaAccountServer and
JavaAccountClient combination.

For the example UMM specification, the following code for the depositMoney function would be pro
duced.

public void depositMoney (float ip) {
EventTrace . setBeginTime ();
objectCorbaAccountServer . deposit
EventTrace . setEndTime ();

(ip);

21

•

•

•

EventTrace . calculateResponseTime ();
}

6.5 QoS

Each component has two QoS parameters - 1) static - run-time availability {e.g. 903 and 953 respectively)
and 2) dynamic - end-to-end delay measured in milliseconds. The desired QoS of the assembled system
includes both of these parameters as well. For this reason the GDM will contain a rule for the static
parameter that will multiply the various availability parameters (e.g. obtaining 85.53 availability for the
assembled system in this case), assuming component availability is independent.

For the dynamic parameter, the generator will provide the necessary instrumentation for taking the clock
and calculating the end-to-end delay at run-time. The knowledge about metrics for the QoS parameter 'end
to-end delay' is represented in terms of the Duration attribute for events of the type method-call, and the
generic computation over the event trace that takes the clock and sums up those durations yielding a
measured end-to-end delay time for the accounting system.

One of the two example systems, mentioned in the section 6.4, will be implemented with the code
for carrying out event trace computations according to user supplied test cases. These test cases will be
executed to verify that the accounting system satisfies the QoS specified in the query of the section 6.4. If
the system is not verified, it is discarded. This verification process is carried out for each of the generated
accounting systems {two in the above example). Then one with satisfactory QoS is chosen; in the above
example this is the corbaAccountServer and javaAccountClient combination.

7 Conclusion

This paper has presented a framework that allows an interoperation of heterogeneous and distributed
software components. This framework incorporates the following key concepts: a) a meta-component
model, b) integration of QoS at the individual component and distributed system levels, c) validation and
assurance of QoS, based on the concept of event grammars, d) formal specification, based on Two-Level
Grammar, of each component and associated queries for integrating a distributed system, and e) generative
rules, along with their formal specifications, for assembling an ensemble of components out of available
choices. The software solutions for future DCS will require either automatic or semi-automatic integration
of software components, while abiding by the QoS constraints advertised by each component and the system
of components. The result of using UMM and the associated tools is a semi-automatic construction of a
distributed system. Although a simple case study is provided in this paper, the principles of the proposed
approach are general enough to be applied to larger cases. Experimentation with such examples is necessary
to establish the extent to which such scale up is feasible in practice.

Acknowledgments. The material presented in this paper is based upon work supported by, or in
part by, a) the U. S. Office of Naval Research under award number N00014-01-l-0746, b) the U. S. Army
Research Laboratory and the U. S. Army Research Office under contract/grant number 40473-MA, and c)
the U. S. Army Research Laboratory and the U. S. Army Research Office under contract/grant number
DAAD19-00-l-0350 .

22

•

•

•

References

(1] Aho, A. V. and Sethi, R., and Ullman, J. D. Compilers: Principles, Techniques, and Tools. Addison
Wesley, 1986.

[2] Auguston, M. Program Behavior Model Based on Event Grammar and its Application for Debug
ging Automation. In Proceedings of the 2nd International Workshop on Automated and Algorithmic
Debugging, 1995.

[3] Auguston, M. and Gates, A. and Lujan, M. Defining a Program Behavior Model for Dynamic An
alyzers. In Proceedings of the 9th International Conference on Software Engineering and Knowledge
Engineering, SEKE'97, pages 257-262, 1997.

(4] Batory, D., Chen, G. and Robertson, E., and Wang, T. Design Wizards and Visual Programming
Environments for GenVoca Generators. IEEE Transactions on Software Engineering, pages 441-452,
2000.

[5] BBN Corporation. Quality Objects {Quo) URL:-http://www.dist-systems.bbn.com/tech/QuO/, 2001.

(6] Brahnmath, G. J., Raje, R.R., Olson, A. M., Auguston, M., Bryant, B. R., and Burt, C. C.,. A Quality
of Service Catalog for Software Components. In Proceedings of the Southeastern Software Engineering
Conference (in press), 2002.

(7] Barrett R. Bryant. Object-oriented natural language requirements specification. In Proceedings of
ACSC 2000, the 23rd Australasian Computer Science Conference, pages 24-30, 2000.

(8] Bryant, B. R. and Lee, B.-S. Two-Level Grammar as an Object-Oriented Requirements Specification
Language. In Proceedings of HICSS-35, 35th Hawaii International Conference on System Sciences,
http://wwv.hicss.hawaii.edu/HICSS-35/HICSSpapers/PDFdocuments/STDSL01.pdf,2002.

(9] Bryant, B. R., Auguston, M., Raje, R. R., Burt, C. C., and Olson, A. M. Formal Specification of Gen
erative Component Assembly Using Two-Level Grammar. In Proceedings of SEKE 2002, Fourteenth
International Conference on Software Engineering and Knowledge Engineering (in press), 2002.

[10] Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A. M., and Auguston, M. Quality of Service Issues
Related to Transforming Platform Independent Models to Platform Specific Models. In Proceedings
of EDOC 2002, the 6th IEEE International Enterprise Distributed Object Computing Conference (in
press), 2002.

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Burt, C. C., Raje, R. R., Auguston, M., Bryant, B. R., and Olson, A. M. Quality of Servic;e (QoS)
Standards for Model Driven Architecture. In Proceedings of the Southeastern Software Engineering
Conference {in press), 2002.

California Institute of Technology. Caltech Infospheres On-line Documentation,
URL:- http://www.infospheres.caltech.edu/, 1998.

Czarnecki, K. and Eisenecker, U. W. Generative Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

Fox, G. The Document Object Model - Universal Access - Other Objects - CORBA, XML, Jini,
JavaScript, etc. http:j /www.npac.syr.edu/users/ gcf /msrcobjectsapril99, 1999.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements of Reusable Object
Oriented Software. Addison Wesley Publication Company, 1995.

Globus Project. Globus Website, URL:- http:j/www.globus.org/, 2000.

IFAD. The IFAD VDM++ Language. Technical report, IFAD, 1999.

IFAD. The VDM++ Toolbox User Manual. Technical report, IFAD, 2000.

Israel, B. and Kaiser, G. Coordinating Distributed Components Over the Internet. IEEE Internet
Computing, pages 83-86, 2(2), 1998 .

23

•

•

•

(20] Jurafsky, D. and Martin, J. H. Speech and Language Processing. Prentice Hall, 2000.

[21] Larsen, P. G., et al. Information Technology - Programming Languages, Their Environments and
System Software Interfaces - Vienna Development Method - Specification Language - Part I: Base
Language. Report, International Standard ISO/IEC 13817-1, December 1996.

(22] Lee, B.-S., and Bryant, B. R. Automated Conversion from Requirements Documentation to an Object
Oriented Formal Specification Language. In Proceedings of the 2002 ACM Symposium on Applied
Computing, pages 932-936, 2002.

(23] Lee, B.-S., and Bryant, B. R. Contextual Knowledge Representation for Requirements Documents
in Natural Language. In Proceedings of FLAIRS 2002, the 15th International Florida AI Research
Symposium (In Press), 2002.

(24] Luqi, Berzins, V., Ge, J., Shing, M., Auguston, M., Bryant, B. R. and Kin, B. K. DCAPS - Archi
tecture for Distributed Computer Aided Prototyping System. In Proceedings of RSP 2001, the 12th
International Workshop on Rapid System Prototyping, 2001.

(25] Manola, F. Technologies for a Web Object Model. IEEE Internet Computing, 3(1):38-47, January
February 1999.

[26] McCarthy, J. Notes on Formalizing Context. Technical report, Computer Science Department, Stanford
University, Stanford, CA, 1993.

(27] Michigan State University. RAPIDware: Component-Based Development of Adaptable and Dependable
Middleware URL:-http://www. cse. msu. edu/rapidware/, 2001.

[28] Microsoft .. NET home Page. URL:- http:j/www.microsoft.com/net/, 2002.

[29] Microsoft Corporation. DCOM Specifications, URL:- http://www.microsoft.com/oledev/olecom, 1998.

[30] Object Management Group. COREA Components. Technical report, Object Management Group TC
Document orbos/99-02-05, March 1999.

[31] Object Management Group. Model Driven Architecture: A Technical Perspective. Technical report,
Object Management Group Document No. ab/2001-02-01/04, February 2001.

[32] Orfali R, and Harkey, D. Client/Server Programming with JAVA and COREA. John Wiley & Sons,
Inc., 1997.

[33] Raje, R. UMM: Unified Meta-object Model for Open Distributed Systems. In Proceedings of the Fourth
IEEE International Conference on Algorithms and Architecture for Parallel Processing (ICA9PP 2000},
2000.

(34] Raje, R., Auguston, M., Bryant, B., Olson, A. and Burt, C. A Unified Approach for the Integration
of Distributed Heterogeneous Software Components. In Proceedings of the 2001 Monterey Workshop
on Engineering Automation for Software Intensive System Integration, pages 109-119, 2001.

(35] Rogerson, D. Inside COM. Microsoft Press, 1996.

(36] Sintzoff, M. Existence of van Wijngaarden's Syntax for Every Recursively Enumerable Set. Ann. Soc.
Sci. Bruxelles, 2:115-118, 1967.

(37] Siram, N. An Architecture for the UniFrame Resource Discovery Service. Master's thesis, Indiana
University Purdue University Indianapolis, 2002. Department of Computer and Information Science.

(38] Siram, N. N., Raje, R.R., Bryant, B. R., Olson, A. M., Augustan, M., and Burt, C. C. An Architecture

(39]

for the UniFrame Resource Discovery Service. In Proceedings of SEM 2002, the 9rd International
Workshop on Software Engineering and Middleware (in press), 2002.

Sun, C., Raje, R.· R., Olson, A. M., Bryant, B. R., Augustan, M., Burt, C. C., and Huang, z. Compo
sition and Decomposition of QoS Parameters in Distributed Component-based Systems. In Proceed-
ings of the 5th IEEE International Conference on Algorithms and Architecture for Parallel Processing
(ICA9PP 2002) (in press), 2002 .

24

•

•

•

[40] University of Virginia. Legion Project, URL:- http://www.cs.virginia.edu/ legion, 1999.

[41] van Wijngaarden, A. Revised Report on the Algorithmic Language ALGOL 68. Acta Informatica,
5:1-236, 1974.

[42] Zinky, J. A., Bakken, D. E., and Schantz, R. Overview of Quality of Service for Distributed Objects.
In Proceedings of the Fifth IEEE Dual Use Conference, 1995 .

25

•

•

•

A Quality of Service Catalog for Software Components

Girish J. Brahnmath1 Rajeev R. Raje1 Andrew M. Olson 1 Mikhail Auguston2 Barrett R. Bryant3 Carol C. Burt3

Abstract
Component-based Software Development is being recognized as the direction in which the software industry is
headed. With the proliferation of Commercial Off The Shelf (COTS) Components, this trend will continue to
emerge as a preferred technique for developing distributed software systems encompassing heterogeneous
components. In order for this approach to result in software systems with a predictable quality, the COTS
components utilized should in turn offer a guaranteed level of quality. This cans for an objective paradigm for
quantifying the quality of service of COTS components. A Quality of Service (QoS) catalog, proposed here, for
software components is a first step in quantifying the quality attributes. This catalog is a critical component of the
UniFrame project, which targets at unifying the existing and emerging distributed component models under a
common meta-model for the purpose of enabling discovery, interoperability, and collaboration of components via
generative programming techniques.
Keywords: Quality of Service, non-functional attributes, QoS catalog, Component-based development.

1. Introduction:
Component-based software development uses appropriate off the shelf software components to create software
systems. The notion of assembling complete systems out of prefabricated parts is prevalent in many branches of
science and engineering such as manufacturing. This leads to the creation of prompt and economical products. This
is possible because of the existence of standardized components that meet a manufacturer's functional and non
functional (quality) requirements. Also, the task of the manufacturer is made much easier because of the presence of
standardized component catalogs outlining their functional and non-functional attributes.

At present, a software developer who uses the component-based approach cannot enjoy the same luxury. This is
mainly because a majority of Commercial Off The Shelf (COTS) components are specified only with functional
attributes in their interfaces. Typically, no concrete notion of quality is associated with components. Hence, the
system developer has no means to objectively compare the performance characteristics of multiple components with
the same functionality. This tends to restrict the developer's options when trying to select a component with a given
functionality during the software development process. Thus, there is a need for a framework that would allow
objective measurements of a component's Quality of Service (QoS) attributes. The creation of a Quality of Service
catalog for software components would be the first step in this direction. Such a catalog should contain detailed
descriptions about QoS attributes of software components along with the appropriate metrics, evaluation
methodologies and the interrelationships with other attributes.

As a part of the UniFrame project [l], we are creating a Quality of Service-based framework for distributed
heterogeneous software components. It is expected that this framework would initiate a standardization process in
the component-based software development community. This would prove to be beneficial to the COTS component
developer (producer) and the system developer (consumer). It would enable the component developer to advertise
the quality of his components by using the QoS metrics, and allow the system developer to verify and validate the
claims of the component developer.

The rest of the paper is organized as fo11ows. The next section contains a discussion about work related to QoS in
other domains like networking and in the domain of software. In section 3, the QoS framework is described in detail,
along with a brief description of the UniFrame project. In section 4, as an application of the QoS framework, a
detailed case study is presented from the domain of banking. An outline of our future plans is presented in section 5.
Finally, we conclude in section 6.

2. Related Work:
The notion of QoS has been largely associated with the field of networking. A number of architectures have been
proposed for QoS guarantees for distributed multimedia systems. In [2], a quality of service architecture (QoS-A) to

1Department of Computer and Information Science, Indiana University Purdue University Indianapolis, { gbrahnma,
rraje, aolson}@cs.iupui.edu; 2Computer Science Department, Naval Post Graduate School (on leave from New
Mexico StateUniversity)auguston@cs.nps.navy.mil; 3Department of Computer and Information Sciences, The
University of Alabama at Birmingham, {bryant, cburt}@cis.uab.edu.

•

•

•

specify and achieve the necessary performance properties of continuous media applications over asynchronous
transfer mode (ATM) networks is proposed. In QoS-A, instead of considering the QoS in the end-system and the
network separately, a new integrated approach, which incorporates QoS interfaces, control, and management
mechanisms across all architectural layers, is used. This architecture is based on the notions of flow, service contract
and flow management. A service contract makes it possible to formalize the QoS requirements of the user and the
potential degree of service commitment of the service provider. It also enables the specification of the network
resource requirements and the necessary actions to be taken in case of a service contract violation. Flow
management is utilized to monitor and maintain the QoS specified in the service contract.

The Quality Objects (QuO) framework [3] provides QoS to distributed software applications composed of
objects. QuO is intended to bridge the gap between the socket-level QoS and the distributed object level QoS. This
work mainly emphasizes on specification, measurement, control and adaptation to changes in quality of service.
QuO extends the CORBA functional IDL with a QoS description language (QDL). QDL is a suite of quality
description languages for describing QoS contracts between clients and objects, the system resources and
mechanisms for measuring and providing QoS and adaptive behavior on the client and object side. It utilizes the
Aspect Oriented Programming paradigm [4], which provides support for incorporating the non-functional properties
of components separately from the functional properties.

QoS Modeling Language (QML) is a QoS specification Language proposed in [5]. QML is an extension of
UML. It is a general purpose QoS specification language capable of describing different QoS attributes in any
application domain. If offers three main abstraction mechanisms for QoS specification: contract type, contract and
profile. A contract type represents a specific QoS attribute like: reliability or performance and it defines dimensions
that can be used to characterize a particular QoS attribute. A contract is defined as an instance of a contract type and
it represents a particular QoS specification. Profiles are used to associate contracts with interface entities such as
operations, operation arguments and operation results. Here, the QoS specifications are syntactically separate from
interface definitions, allowing different implementations of the same service interface to have different QoS
characteristics. Thus a service specification may comprise of a functional interface and one or more QoS
specifications .

The following features of the UniFrame approach, for QoS, distinguish it from other related efforts:

1. A creation of a QoS Catalog for software components containing detailed descriptions about QoS attributes of
software components including the metrics, evaluation methodologies and the interrelationships with other
attributes.

2. An integration of QoS at the individual component and distributed system levels.
3. A formal specification, based on Two-Level Grammars (TLG) [6], of the QoS attributes of each component.
4. The validation and assurance of QoS, based on the concept of event grammars [7].
5. An investigation of the effects of component composition on QoS; involving the estimation of the QoS of an

ensemble of software components given the QoS of individual components.
6. A QoS-centric iterative component-based software development process, to ensure that the end-product matches

both the .functional and QoS specifications.

In this paper, we have addressed only the first two features. The details of the other features are discussed in [l].

3. QoS Framework for Software components:
3.1 UniFrame Project:
Our work on the QoS framework is part of the Unified Meta Component Model Framework (UniFrame) project.
The UniFrame research attempts to unify the existing and emerging distributed component models under a common
meta-model for the purpose of enabling discovery, interoperability, and co11aboration of components via generative
programming techniques. This research targets not only the dynamic assembly of distributed software systems from
components built using different component models, but also the necessary instrumentation to enable QoS features
of the component and the ensemble of components to be measured and validated. The core parts of Uniframe
project are: components, service and service guarantees and infrastructure.
Component: In UniFrame, components are autonomous entities, whose implementations are non-uniform, i.e.; each
component adheres to a distributed-component model but there is no notion of a unified implementation framework .
Each component has a state, an identity, a behavior, a well-defined interface and a private implementation.
Service and Service Guarantees: A service offered by a component could be an intensive computational effort or
an access to underlying resources. In a DCS, it is natural to expect several choices for obtaining a specific service.
Thus, each component must be able to specify the quality of service (QoS) offered. The QoS is an indication given

2

•

•

•

by a component, on behalf of its owner, about its confidence to carry out the required services. The QoS offered by
each component depends upon the computation it performs, the algorithm used, its expected computational effort,
required resources, the motivation of the developer, and the dynamics of supply and demand.
Infrastructure: The headhunter and Internet Component Broker are responsible for allowing a seamless integration
of different component models and sustaining cooperation among heterogeneous components. The tasks of
headhunters are to detect the presence of new components in the search space, register their functionalities, and
attempt matchmaking between service producers and consumers. It attempts at discovering components and
registering them. Headhunters may cooperate with each other in order to serve a large number of components. The
Internet Component Broker (ICB) acts as a translator between heterogeneous components. Adapter components
register with ICB and indicate their specializations (which component models they can bridge efficiently). During a
request from a seeker, the headhunter component not only searches for a provider, but also supplies the necessary
details of an ICB.
Automated System Generation: In general, different developers will provide on the Internet a variety of possibly
heterogeneous components oriented towards a specific problem domain. Once all the components necessary for
implementing a specified distributed system are available and specific problem is formulated, then the task is to
assemble them into a solution. UniFrame takes a pragmatic approach, based on Generative Programming [8,9], to
component-based programming. It is assumed that the generation environment will be built around a generative
domain-specific model (GDM) supporting component-based system assembly.
Further details about the UniFrame project can found in [I] [10] and [11].

3.2 Objectives of QoS Framework:
The QoS framework is a critical part of the UniFrame approach. The objectives of the QoS Framework are:
a) Identification of QoS attributes: A software component may be used in many different domains. Every domain

has its own constraints with respect to the QoS attributes of software components. Hence, it is necessary to
prepare a comprehensive compilation of different QoS attributes for many domains in which a software
component may be used. Such a compilation would act as a checklist for any component developer/user
interested in identifying the QoS attributes of interest.

b) Classification of QoS attributes based on:
i. Domain of usage: Such a classification would enable a component user to identify the attributes that

are relevant to his/her domain.
ii. Static I Dynamic behavior: Such a classification would be helpful to determine whether a value of a

QoS attribute is constant or varies according to the environment. This would in turn help in
determining whether the value of a QoS attribute can be improved by changes to the operating
environment.

iii. Nature of the attribute: The QoS attributes identified are classified according to their characteristics
into: Time-related attributes (end-to-end-delay, freshness), Importance-related attributes (priority,
precedence), Perfonnance-related attributes (throughput, capacity), Integrity-related attributes
(accuracy), Safety-related attributes (security) and Auxiliary attributes (portability, maintainability).

iv. Composability of the attributes: This kind of classification is important when different components are
integrated to form a software system. It indicates whether the value of a given QoS attribute can be
used in computing the value of the corresponding QoS attribute of the resultant system. Some of the
QoS attributes are inherently non-composable, for example, parallelism constraints, priority, ordering
constraints, etc. Hence, this classification would be valuable during the system integration phase.

c) Identification of metrics for QoS attributes: QoS metrics are the units for measuring the QoS attributes of a
software component. Quantification of the QoS attributes of software components is one of the important goals
of the proposed QoS framework. Hence, there is a need for standardized metrics to compare the QoS attributes
of different software components. This would help to ensure uniformity in the expression of the QoS attributes.

d) Creation of a QoS catalog for Software Components: The QoS Catalog would act as a comprehensive source of
information regarding the quality of software components. It would contain detailed descriptions about QoS
attributes of software components including the metrics, evaluation methodologies and the interrelationships
among the QoS attributes.

e) Creation of a QoS interface for a component with different levels of details: One of the primary objectives of
the QoS framework is to make the QoS attributes an integral part of a software component. The QoS interface is
aimed at achieving this objective. The QoS interface would contain the values for QoS attributes of a software
component.

For the sake of brevity, here, only the concepts of QoS parameters and the QoS catalog are discussed.

3

•

•

•

3.3 Catalog of QoS Parameters:
The QoS Catalog for Software components would prove to be a valuable tool for:

1. The component developer by: a) acting as a reference manual for incorporating QoS attributes into the
components being developed, b) allowing him to enhance the performance of his component in an iterative
fashion by being able to quantify their QoS attributes, and c) enabling him to advertise the Quality of his
components using the QoS metrics.

ii. The system developer by: a) enabling him to specify the QoS requirements of the components that are
incorporated into his system, b) allowing him to verify and validate the claims of the component developer, c)
allowing him to make objective comparisons of QoS of components having the same functionality, and d)
empowering him with the means to choose the best suited components for his system.

At present the following QoS parameters have been selected for inclusion in the catalog. More parameters will be
included as they are identified.

l.
2.
3.

4.
5.
6.
7.
8.
9.

10 .
11.
12.
13.
14.
15.
16.

Dependability: It is a measure of confidence that the component is free from errors.
Security: It is a measure of the ability of the component to resist an intrusion.
Adaptability: It is a measure of the ability of the component to tolerate changes in resources and user
requirements.
Maintainability: It is a measure of the ease with which a software system can be maintained.
Portability: It is a measure of the ease with which a component can be migrated to a new environment.
Throughput: It indicates the efficiency or speed of a component.
Capacity: It indicates the maximum number of concurrent requests a component can serve.
Turn-around Time: It is a measure of the time taken by the component to return the result.
Parallelism Constraints: It indicates whether a component can support synchronous or asynchronous
invocations.
Availability: It indicates the duration when a component is available to offer a particular service.
Ordering Constraints: It indicates the order of returned results and its significance.
Evolvability: It indicates how easily a component can evolve over a span of time.
Result: Indicates the quality of the results returned.
Achievability: It indicates whether the component can provide a higher degree of service than promised.
Priority: It indicates if a component is capable of providing prioritized service.
Presentation: It indicates the quality of presentation of the results returned by the component.

Detailed sample descriptions of two of the above-mentioned QoS parameters, Dependability and Turn-around Time,
are given below:

:Name:

Intent:
Description:
Motivation:

Applicability:

Model Used:
Metrics used:
Influencing Factors:

Evaluation Procedure:

It is a measure of confidence that the component is free from errors.
It is defined as the probability that the component is defect free.
1. It allows an evaluation of degree of Dependability of a given component.
2. It allows a comparison of Dependability of different components.
3. It allows for modifications to a component to increase its Dependability.
This parameter can be used in any system, which requires its components to offer a
specific level of dependability. Using this parameter, the Dependability of a given
component can be calculated before being incorporated into the system.
Dependability model by J. Voas and J. Payne [12].
Testability Score, Dependability Score.
1. Degree of testing.
2. Fault hiding ability of the code.
3. The likelihood that a statement in a component is executed.
4. The likelihood that a mutated statement will infect the component's state.
5. The likelihood that a corrupted state will propagate and cause the component

output to be mutated.
l. Perform Execution Analysis on the component.
2. Perform Propagation Analysis on the component.
3. Calculate the Testability value of the component.

4

•

•

•

Evaluation Formulae:

Result Type:
Static I Dynamic:
Composable I Non
Composable:
Consequence:

Related Parameters:
Domain of Usage:
Error Situation:

Aliases:

Name:

Intent:
Description:

Motivation:

Applicability:

Model Used:
Metrics Used:
Influencing Factors:

Evaluation Procedure:

Evaluation Formulae:

Result Type:
Static I Dynamic:
Composable I Non
Composable

4. Calculate the Dependability Score of the component.
T =E * P.
T: Testability Score (a prediction of the likelihood that a panicular statement in a
component will hide a defect during testing).
E: Execution Estimate (the likelihood of executing a given fault).
P: Propagation Estimate (the conditional probability of the corrupted data state
corrupting the software's output after the state gets infected).

D = 1-(1-T)N.
D: Dependability Score.
N: Number of successful tests.
Floating Point Value between [0,1].
Static.
Composable.

I. Greater amounts of testing and greater Testability scores result in greater
Dependability.

2. Lesser amount of testing is required to provide a fixed dependability score for
higher Testability Scores.

Availability, Error Rate, Stability.
Domain Independent.
Low dependability results in:
I. Unreliable component behavior.
2. Improper execution I termination.
3. Erroneous results.
Maturity, Fault Hiding Ability, Degree of Testing.

Tnrn-around Time

It is a measure of the time taken by the component to return the result.
It is defined as the time interval between the instant the component receives a
request until the final result is generated.
I. It indicates the delay involved in getting results from a component.
2. It is one of the measures of the performance offered by a component.
This attribute can be used in any system, which specifies bounds on the response
times of its components.
Empirical approach.
Mean Turn-around Time.
I. Implementation (algorithm used, multi-thread mechanism etc).
2. Speed of the CPU.
3. Available memory.
4. Load on the system.
5. Operating System's access policy for resources like: CPU, 1/0, memory, etc.
I. Record the time instant at which the request is received.
2. Record the time instant at which the final result is produced.
3. Repeat steps I and 2 for 'n'representative requests.
4. Calculate the Mean Turn-around Time.

MTAT= [Li=1° {t2-tl)) In.
MT AT: Mean Turn-around Time.
ti: time instant at which the request is received.
t2: time instant at which the final result is produced.
n: number ofrepresentative requests .
Floating Point Value in milliseconds.
Dynamic.
Composable.

5

""""-------------------------------------- ---------

•

•

•

Consequence: Lower the time interval between the instant the request is received and the
response is generated, lower the Mean Turn-around Time.

Related Parameters: Throughput, Capacity.
Domain of Usage: Domain Independent.
Error Situation: A high value oflnternal Response Time results in:

I. Longer delays in producing the result.
2. Higher round trip time.

Aliases: Latency, Delay.

4. Case Study:
Let us assume that a private bank is trying to build a software system to automate its day-to-day operations. The
bank has decided to utilize a Client-server Distributed computing model .The bank has also chosen to assemble the
system using COTS software components instead of building the system from scratch.
The In-house software development team in the bank has come out with the following simple design for the system:

• The system consists of two categories of components: AccountServer and AccountClient.
• There will be two instances of the AccountServer and one instance of the AccountClient.
• The two AccountServers are of type javaAccountServer, adhering to the java-RMI model and

corbaAccountServer, adhering to the CORBA model.
• The components should offer the following functionality: Deposit, Withdraw and Balance check

The system development team now needs three different components meeting the above functionality requirements.
However, the bank also expects the components to satisfy certain QoS requirements. These are listed below:

• Dependability: The components will be an integral part of the bank and be responsible for keeping track of
all transactions within the bank. Hence the component should offer some guarantees regarding error free
operation.

• Turn-around Time: The transactions within the banking system have time restrictions imposed on them.
Hence, they have to produce results within a specified time frame. This requires that the components satisfy
Turn-around time requirements .

The partial UniFrame descriptions of these components are presented below:

JavaAccountServer:
Informal Description: Provides an account management
service. Supports three functions: javaDeposit(),
java Withdraw() and javaBalance().

I. Computational Attributes:
a) Inherent Attributes:

a. I id: intrepid.cs.iupui.edu/jServer
b) Functional Attributes:

b. I Acts as an account server
b.2 Algorithm: simple addition/subtraction
b.3 Complexity: 0(1)
b.4 Syntactic Contract:
void javaDeposit(float ip);

void java Withdraw(float ip) throws
overDrawException;

float javaBalance();
b.5 Technology: Java-RMI

2. Cooperation Attributes:
2. I) Pre-processing Collaborators: AccountCiient

3. Auxiliary Attributes:

4. QoS Metrics:
Dependability= 0.98
Turn-around Time: MTAT=70

6

CorbaAccountServer:
Informal Description: Provides an account management
service. Supports three functions: corbaDeposit(),
corbaWithdraw() and corbaBalance().

I. Computational Attributes:
a) Inherent Attributes:

a.I id: jovis.cs.iupui.edu/coServer
b) Functional Attributes:

b. I Acts as an account server
b.2 Algorithm: simple addition/subtraction
b.3 Complexity: O(I)
b.4 Syntactic Contract:

void corbaDeposit(float ip);
void corbaWithdraw(float ip) throws

overDrawException;
float corbaBalance();

b.5 Technology: Java-CORBA

2. Cooperation Attributes:
2.I) Pre-processing Collaborators: AccountClient

3. Auxiliary Attributes:

4. QoS Metrics:
Dependability= 0.99
Turn-around Time: MTAT=80

•

•

•

JavaAccountClient:
Informal Description: Requests account services from an appropriate server and interacts with the user; implemented
as a web-based applet. Supports functions: depositMoney(), withdrawMoney() and checkBalance().

1. Computational Attributes:
a) Inherent Attributes:

a. I id: galileo.cs.iupui.edu/aCJient

b) Functional Attributes:
b. l accepts user queries and presents the results

using a GUI
b.2 Algorithm: Java Foundation Classes (JFC)
b.3 Complexity: 0(1)
b.4 Syntactic Contract

void depositMoney(float ip);
void withdrawMoney(float ip);
float checkBalance();

b.5 Technology: Java Applet

Query and Returned Results:

2. Cooperation Attributes:
2.1) Post-processing Collaborators: AccountServer

3. Auxiliary Attributes:

4. QoS Metrics:
Dependability= 0.99
Turn-around Time: MT AT ::::: 90

A sample query for the above example can be informally stated as: Create an account management system that has:
Dependability> 0.97 and Turn-around Time: MTAT < 100. From the query and the available knowledge in the
GDM associated with the account management systems, a formal specification of the desired system will be
formulated for a headhunter in UniFrame. In response, the headhunter will discover the following choices:

1. Java-Java System: a) javaAccountClient -- Dependability= 0.99, Turn-around Time: MTAT = 90, Java
Applet Technology b) javaAccountServer -- Dependability= 0.98, Turn-around Time: MTAT = 70, Java
RMI technology c) Infrastructure Needed -- NM and Appletviewer.

2. Java-CORBA System: a) javaAccountClient -- Dependability= 0.99,Turn-around Time: MT AT= 90, Java
Applet Technology b) corbaAccountServer - Dependability= 0.99,Turn-around Time: MTAT= 80, Java
RMI technology c) Infrastructure Needed -- NM, Appletviewer, ORB, Java-CORBA bridge.

QoS of the assembled system:
Each component has two QoS parameters: 1) static - dependability and 2) dynamic - Turn-around Time. The desired
QoS of the assembled system includes these parameters as well. For this reason the GDM will contain a rule that
will compute the value of the static parameter for the assembled system. In this example, the dependability for the
assembled system is calculated using the following formula: (1.0 - ((1.0 - D1) + (1.0 - D2)), Where, D1 and D2 are the
dependability values of the constituent components, yielding a value of 0.97 for the Java-Java System and a value of
0.98 for the Java-CORBA System.

For the dynamic parameter, the generator will provide the necessary instrumentation for taking the clock and
calculating the Turn-around Time at run-time. The knowledge about metrics for the QoS parameter ' Turnaround
Time' is represented in terms of Duration attribute for events of the type method-call, and the generic computation
over the event trace that takes the clock and sums up those durations yielding a measured Turn-around Time for the
accounting system.

One of the two example systems, mentioned in the query, wi11 be implemented with the code for carrying out event
trace computations according to user-supplied test cases. These test cases wi11 be executed to verify that the
accounting system satisfies the QoS specified in the query. If the system is not verified, it is discarded. This
verification process is carried out for each of the generated accounting systems (two in the above example). Then,
the one with the best QoS is chosen .

5. Future Plans:
Incorporation of the above-mentioned QoS parameters into the component interface is our next step. This would
involve the creation of a QoS interface of the component along the lines of a functional (or syntactical) interface of a

7

• component. This QoS interface would include all the necessary information about those QoS parameters that are
selected by the component developer for inclusion in a given component. This would be followed by a formal
specification of these QoS parameters and a mechanism for ensuring them at the individual component level and at
the system level. The issue of Quality of Service of an ensemble of software components, i.e., a software system
built out of components would also be addressed. This would involve the issues of component composition and
composability of QoS Parameters.

•

•

6. Conclusion:
This paper has presented a QoS framework for software components, which is a part of the UniFrame project [l].
The objectives of the QoS framework include: a) the creation of a QoS catalog designed to quantify the QoS
attributes of software components, b) incorporation of QoS attributes into the component interface, c) a formal
specification of these attributes, d) a mechanism for ensuring these attributes at individual component level and at
the system level, and e) a procedure to estimate the QoS of an ensemble of software components. Due to the space
restrictions, only the concepts of QoS parameters and QoS catalog are presented here. The QoS framework would
enable the component developer to advertise the quality of his components by using the QoS metrics, and allow the
system developer to verify and validate the claims of the component developer. Although a simple case study is
provided in this paper, the principles of the proposed approach are general enough to be applied to any larger
applications.

Acknowledgments: The material presented in this paper is based upon work supported by, or in part by, a) the U.S.
Office of Naval Research under award number N00014-0l-l-0746, b) the U.S. Army Research Laboratory and the
U.S. Army Research Office under contract/grant number 40473-MA.

7. References:

1) R. Raje, M. Auguston, B. Bryant, A. Olson, C. Burt. A Quality of Service - based framework for creating
distributed heterogeneous software components, Technical Report, Department of Computer and Information
Science, Indiana University Purdue University Indianapolis, 2001.

2) A. Campbell. A Quality of Service Architecture -Ph.D. Thesis, Computing Department, Lancaster University,
1996.

3) BBN Corporation, Quality Objects Project, URL: http://www.dist-systems.bbn.com/tech/QuO, 2001.

4) Communications of ACM special issue on Aspect Oriented Programming, vol.44, No 10, October 2001.

5) S. Frolund, J. Koistinen. Quality of Service specification in distributed object systems, Distributed System
Engineering Journal, Vol.5, No. 4, December, 1998

6) A. Van Wijngaarden. Orthogonal Design and Description of a formal Language. Technical Report,
Mathematisch Centrum, Amsterdam, 1965.

7) M. Auguston. Program Behavior Model Based on Event Grammar and it's Application for Debugging
Automation. In Proceedings of the 2nd International Workshop on Automated and Algorithmic Debugging,
1995.

8) Batory, D. and Chen, G. and Robertson, E. and Wang, T. Design Wizards and Visual Programming
Environments for Gen Voca Generators. IEEE Transactions on Software Engineering, pages 441-452, 2000.

9) Czarski, K., and Eisenecker, U.W. Generative Programming: Methods, Tools, and Applications. Addison -
Wesley, 2000.

10) R. Raje. "UMM: Unified Meta-object Model for Open Distributed Systems", Proceedings of the fourth IEEE
International Conference on Algorithms and Architecture for Parallel Processing pages 454-465
(ICA3PP' 2000).

11) R. Raje, M. Auguston, B. Bryant, A. Olson, C. Burt, "A Unified Approach for the Integration of Distributed
Heterogeneous Software Components", Proceedings of the 2001 Monterey Workshop (Sponsored by DARPA,
ONR, ARO and AFOSR), Monterey, California, 2001.

12) J. Voas, J. Payne, Dependability Certification of Software Components, Journal of Systems and Software, NO .
52, pp. 165-172, 2000.

8

•

•

•

Quality of Service (QoS) Standards for
Model Driven Architecture1

SESEC2002
April 2002

Carol C. Burt2
, Barrett R. Bryant2

, Rajeev R. Raje3
, Andrew Olson3

, Mikhail Auguston4

Abstract

A number of middleware technologies have evolved over the last ten years to address specific
business problems such as enabling process optimization via systems integration, rapid
development of new applications, web enabling features for customers, and mechanization of
supply chains. Software architects increasingly utilize models to represent different viewpoints
of a business solution. Separation of concerns is a key characteristic of good software design. In
an effort to facilitate the design of business systems in a platform independent matter, the Object
Management Group (OMG) is currently progressing the Model Driven Architecture (MDA)[l].
Model Driven Architecture maintains a clean separation of Platform Independent Models (PIMs)
that represent the domain from Platform Specific Models (PSMs) that expose details related to a
middleware technology. In this way a single PIM can be mapped to multiple implementation
technologies (such as OMG CORBA®, Sun J2EE, Microsoft COM+, and W3C Web Services).
While all of the component-based technologies have established a concise means for describing
functional contracts (the interface or services offered by a component in the architecture), none of
these technologies have embraced architecture or a vocabulary for specifying non-functional
Quality of Service (QoS) contracts. Non-functional contracts are necessary to analyze the ability
of a service to meet QoS constraints when used in a composition. A component may, for
example, guarantee a certain performance level (given a fixed set of constraints) or guarantee
protection of features and/or information classified as a protected resource. The UniFrame [2]
research (which includes identification and progression ofrequisite standards activities) envisions
a plug and play component environment where QoS contracts are part of a component description
and middleware bridges and quality of service instrumentation are generated by component
integration toolkits. That is, business components that utilize diverse platform technologies may
be easily integrated, and they will offer both functional and non-functional service contracts. A
difficulty in progressing this work is the lack of a standard vocabulary for software component
Quality of Service (QoS). Following this work, syntax for expressing QoS in component models
and the mappings that form the transformations from diverse viewpoints of a model must also be
explored and standardized. This research includes supporting and participating in the progression
of such standards. This paper introduces a path for standards in the area of Quality of Service
and discusses how this standardization would progress the goal of using commercial off the shelf
(COTS) components in a heterogeneous system composition.

1 This research is supported by U.S. Office ofNaval Research award N00014-0l-l-0746.
2 Department of Computer and Information Sciences, The University of Alabama at Birmingham,
Birmingham, AL 35294, USA, {cburt, bryant}@cis.uab.edu
3 Department of Computer and Information Science, Indiana University Purdue University Indianapolis,
Indianapolis, IN 46202, USA, {rraje, aolson} @cs.iupui.edu
4 Computer Science Department, New Mexico State University, Las Cruces, NM 88003, USA,
mikau@cs.nmsu.edu

•

•

•

Introduction

SESEC2002
April 2002

Enterprises are increasingly dependent upon multiple middleware technologies that enable new
business paradigms by weaving together legacy systems with advanced technology. These
technologies support core business functionality, enable distributed business systems, integrate
business processes and allow companies to communicate with customers, suppliers, and business
partners. While it is possible to construct such systems, it requires that the developer be aware of
the nuances of the diverse middleware technologies. This problem must be resolved for the
promise of software component technology (plug & play I off the shelf interoperability) can be
fully realized. In addition, the increased complexity of this environment makes it impossible to
predict the non-functional aspects of such a system until after it is constructed. That is, static
QoS relies on the design expertise of software architects and engineers and metrics and test
scenarios must be hand crafted on a case-by-case basis to determine if a composition is
acceptable. As distributed systems become omni-present with many mission-critical, the notion
of QoS-oriented software development will become essential. Such an approach is necessary to
ensure the reliability and high confidence of distributed software systems.

The Unified Component Meta Model Framework (UniFrame) [2] research project is an attempt to
unify the existing and emerging distributed component models under a common meta-model for
the purpose of enabling the discovery, interoperability, and collaboration of components via
generative software techniques. A great deal of work is underway in standards organizations
such as OMG and World Wide Web Consortium (W3C) that provides the foundation for
UniFrame. The UniFrame research builds upon work in standards organizations, targeting the
dynamic assembly of distributed software systems from components built in different component
models and the ability to express quality of service (QoS) requirements in such a way that
generative design and implementations can utilize them. This is a necessity to enable timely
(perhaps dynamic) assembly of e-business relationships (for example to select a replacement
component when a primary component fails to deliver on QoS guarantees). It is also necessary
in time and safety critical environments where failure to meet quality of service requirements
results in significant system failures.

Related Work

Although QoS parameters and associated metrics have been widely used in networking, there is
no standard vocabulary for discussing QoS as it relates to distributed computing and component
based solutions. For example, the CORBA® Components Specification only uses the term
"quality of service" with regard to events and whether or not they are transactional in nature [3].
The Java2 Enterprise Edition (J2EE) specification [4] states, "We expect J2EE products to vary
widely and compete vigorously on various aspects of quality of service. Products will provide
different levels of performance, scalability, robustness, availability, and security. In some cases
this specification requires minimal levels of service. Future versions of this specification may
allow applications to describe their requirements in these areas." Today, there is no standard
vocabulary that we can utilize to define QoS requirements for any component technology.

In the fall of2000, the OMG Analysis and Design Task Force considered a draft Request for
Proposal (RFP) for a UML profile for Modeling Quality of Service as it relates to real-time
systems [5]. This RFP called for a framework and categorization of QoS characteristics. In
January 2002, the OMG Analysis and Design task force issued an RFP for a "UML™ Profile for

2

•

•

•

SESEC2002
April 2002

Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms" [6]. This
RFP solicits proposals for a UML profile or Meta Object Facility (MOF) meta-model that defines
standard paradigms of use in modeling quality of service and fault-tolerance aspects of systems.
This is the first of a series of RFPs that have the goal of significant benefits to the UML user
community engaged in high-quality robust system development. The key mandatory
requirements of this RFP are listed in Figure I.

A General Quality of Service Framework

To ensure consistency in modeling various qualities of service, submissions shall define a standard

framework or, reference model, for QoS modeling in the context of the UML. This shall

include:

• A general categorization of different kinds of QoS; including QoS that are fixed at design time
as well as ones that are managed dynamically

• Integration of different categories of QoS for the purpose of QoS modeling of system aspects.

• Identification of the basic conceptual elements involved in QoS and their mutual relationships.
This shall include the ability to associate QoS characteristics to model elements (specification), a
generic model of the system aspects involved in QoS-associated collaboration and their
functional interactions and use cases (usage model), and a generic model of how QoS allocation
and decomposition is managed .

• A coherent set of stereotypes, tagged values, and constraints as necessary to represent the
identified QoS properties constructing a UML Profile.

A Definition of Individual QoS Characteristics

Submissions shall define QoS characteristics, particularly those important to real-time and high

confidence systems, which describe the fundamental aspects of the various specific kinds of QoS

based on the QoS categorization identified in the framework. These shall include but are not

limited to the following:

• time-related characteristics (delays, freshness)

• importance-related characteristics (priority, precedence)

• capacity-related characteristics (throughput, capacity)

• integrity related characteristics (accuracy)

• fault tolerance characteristics (mean-time between failures, mean-time to repair, number of
replicas)

A coherent set of stereotypes, tagged values, and constraints as necessary to represent the identified
QoS properties constructing a UML Profile.

Figure 1: OMG RFP- UML Profile for QoS-Mandatory Requirements

3

•

•

•

SESEC2002
April 2002

As part of the UniFrame research, we have outlined our approach to a QoS-based framework for
creating distributed heterogeneous software components [7]. The QoS-based method in
UniFrame is made up of three steps:

I. The creation of a catalog for QoS parameters (and/or metrics),
2. A formal specification of these parameters, and
3. A mechanism for ensuring these parameters, both at each individual component level and

at the entire system level

UniFrame leverages work by Zinky, Bakken & Schantz [8] with the goal of providing a catalog
of QoS parameters, indicating how parameters might be described. There are many possible QoS
parameters that a component (and its developer) can use to indicate the associated service. Some
of these parameters may be general in nature, while others may be pertain to a specific domain.
The goal of creating the QoS catalog is two fold: a) it assists the component developer (or the
system integrator) in selecting the necessary QoS parameters for the component (or system) under
construction, and b) it enables the developer (or integrator) to ensure the necessary QoS
guarantees by integrating the selected QoS parameters into the assurance process.

We have recently published the initial version of our QoS catalog [9]. At present the following
QoS parameters have been selected for inclusion in the catalog.

I. Dependability: a measure of confidence that the component is free from errors.
2. Security: a measure of the ability of the component to resist an intrusion .
3. Adaptability: a measure of the ability of the component to tolerate changes in resources

and user requirements.
4. Maintainability: a measure of the ease with which a software system can be maintained.
5. Portability: a measure of the ease with which a component can be migrated to a new

environment.
6. Throughput: indicates the efficiency or speed of a component.
7. Capacity: indicates the maximum number of concurrent requests a component can serve.
8. Turn-around Time: a measure of the time taken by the component to return the result.
9. Parallelism Constraints: indicates whether a component can support synchronous or

asynchronous invocations.
10. Availability: indicates the duration when a component is available to offer a particular

service.
11. Ordering Constraints: indicates the order ofreturned results and its significance.
12. Evolvability: indicates how easily a component can evolve over a span of time.
13. Result: indicates the quality of the results returned.
14. Achievability: indicates whether the component can provide a higher degree of service

than promised.
15. Priority: indicates if a component is capable of providing prioritized service.
16. Presentation: indicates the quality of presentation of the results returned by the

component.

Uniframe also leverages work on Quality Objects and adaptive middleware. Quality Objects [10]
is a framework for providing QoS to software applications composed of objects distributed over
wide area networks. QuO bridges the gap between socket-level QoS and distributed object level
QoS, emphasizing specification, measuring, controlling, and adapting to changes in QoS.
RAPIDware [11] is an approach to component-based development of adaptable and dependable

4

SESEC2002
April2002

• middleware. It uses rigorous software development methods to support interactive applications
executed across heterogeneous networked environments.

•

•

Frolund & Koistinen [l 2] point out that deciding which quality of service properties should be
provided by individual components is an important part of the design process. They define a
Quality-of-Service specification language (QML) and they show how the Unified Modeling
Language (UML) can be extended to support the concepts of QML. In addition, they suggest a
technique for representation of QML constructs in terms of ISO IDL [12] [13]. Frolund and
Koistinen were working with a platform specific model (CORBA). The OMG currently is
progressing an RFP for a UML profile for Quality of Service that will provide the meta-model
necessary to use UML to model QoS in a platform independent manner.

The OMG work will standardize how static (design related) and dynamic (environmentally
influenced) QoS characteristics are expressed in UML models. We are working within the OMG
community to introduce our efforts, contribute to the analysis of the submissions, and ensure that
our research is aligned with industry standard vocabulary as we progress techniques that enable
QoS-aware systems to utilize generative software tools. We will also be experimenting with
alternative syntax for representation of QoS characteristics such as event grammar [14].

Model Driven Architecture with QoS parameters

In addition to the work that OMG has done with distributed computing interoperability
(CORBA®/IIOP), the OMG has also progressed standards in the domain of modeling and meta
modeling: the Unified Modeling Language (UMUM) and Meta-Object Facility (MOF™). Some
of the analysis and design standards include the precise mappings that define the transformation
of model information into interface definitions in ISO Interface Definition Language (IDL).

The latest initiative - Model Driven Architecture (MDA ™) - is the way that the OMG will
standardize Platform Independent Models (PIMs) that can be mapped to multiple Platform
Specific Models such as CORBA®, Java2 Enterprise Edition (J2EE), and Web Services for
implementation. This approach holds promise for the standardization of components that could
be used in collaborative environments as a result of a common semantic model. To fully realize
the potential of this approach, Quality of Service (QoS) catalogs, formal parameterization of
Platform Specific Models, and ultimately instrumentation mappings must also be standardized
within the Model Driven Architecture roadmap.

Figure 2 outlines the type of models that are common in a MDA approach. Quality of Service
parameters must be introduced into each model and the transformations (or mappings) that occur
as models are refined must be standardized. The current RFP is merely the beginning - providing
a vocabulary and syntax for expressing QoS in UML. As we move beyond the QoS catalog, our
research will focus on the constraints that are placed on transformations as a result of the quality
requirements and the generative techniques for ensuring that metrics can be gathered .

5

•

•

•

The Quality of Service expressed in the
business rrodels description (natural

language) rrust be tranforrred into rrodel
annotations using a standard QoS

vocabulary. Static (design level) QoS
decisions are first considered in this

transforrretion.

QoS rrodel annotatations m.Jst be
transforrred into the specffic QoS

language for the target platform (for
exarrple for CORSA this rright be the

UM.. profile for QoS or perhaps
QM..). Static (design level) QoS

decisions rrust be rmde/refined at
this step and rmy result in factoring

of interfaces.

Utilrmtely the QoS enabled design rrust
resuH in software. The design level QoS
will be part of the irrplerrentation (having

been taken into account in inteface
design and irrplerrentation design). The

dynarric QoS requirerrents rrust result in
generated instrurrentation for varodation

purposes. This instrurrentation rmy
require corrponent and/or platform

custorrization.

{

{

{

Business M:>dels

c:
.Q
iii
E
.2
"' c:

~z-

Aatform Independent
l\bdels (AM)

c:
.Q
iii
E
.!2
"' c:
ro

<7
Aatform Specffic l\bdels

(PSM)

c:
.Q
iii
E
.!2
"' c:

:5!z
Executable Representation

(Code)

}

}

}

}

SESEC2002
April 2002

The business (or dorrein) rrodels are the
view of the business person. Typically
dorm in rrodels docurrent the business from a
logical perspective. Business rrodels often
lack details necessary for good software
design, how ever. the resulting rr rrodels rrust
be consistent w tth the business rrodel.

The Aalform Independent M::>del is the
lnforrmtion Technology Perspective. These
rrodels carve the business into software
corrponents w tth intertaces for collaboration.
These rrodels include use cases where the
system (or corrponents of the system) are
actors. They include enough detail to enable
an archttect faniliar w tth a particular
corrponent infrastruture to create a rmpping.

A Aatform Specffic M::>del is the realization of
a AM in a particular technology's definition
syntax. For exarrple, a CORSA PSM could
be expressed in the UM,_ A-orne for CORBA
or in ISO a.. A Web Services Aatform ·
Specffic M::>del rright be expressed in WSDL.
The PSM rrust account for the architecture of
the Aatform, including interface definition
language and the rressaging paradigm

Ultirmtely the model rrust be realized in
software. The extent to which the PSM
supports logic will deternine the extent to
which software can be generated. The
language that supports the PSM typically falls
short of the full capabillties of a programring
language; how ever, conceptually the
software can be considered the final PSM

Figure 2 - QoS considerations during model transformations

Quality of Service Issues related to Interlace Generation

It should be noted that there are existing standards for using generative techniques to create
interfaces from UML models. For example, the OMG Meta Object Facility (MOF) [15] allows
the generation of interfaces from Unified Modeling Language UML models. A careful analysis
of the resulting interface specifications makes it clear, however, that distribution is not a key
factor in the algorithms used. This has a direct impact on the ability to meet quality of service
requirements in a distributed solution. For example, in a distributed system, quality of service
requirements for performance, scalability and/or security would dictate the use of iterators, the
factoring of interfaces into separate query and administrative operations and the use of structure
and/or objects passed by value. The current standards in this area tend to focus on data access
with accessors and mutators and relationship traversal. This is acceptable (perhaps even
desirable) m a single machine environment, but unacceptable for highly distributed

6

•

•

•

SESEC2002
April 2002

communications and collaborations [1). It has long been accepted that systems with distributed
components require specialized design to ensure performance and ease of security administration.
That is, there is a need to take QoS parameters and use-cases into account when designing
component interfaces. For a model driven generative technique to be successful, models must be
parameterized with QoS standard parameters as defined in a catalog. In addition, use case
scenarios must also be formally expressed so that they can be used as input to an interface
generator. That is, given a parameterized domain model, semantically equivalent interfaces (and
the bridges between them) must be generated.

The OMG Architecture Board produced a paper that describes the technical details of the Model
Driven Architecture (MDA) [1]. This document outlines several areas where significant
research is required before the MDA vision can be fully realized. One of the most important
areas is directly related to the UniFrame research. It states: "It is generally agreed that the MOF
IDL mapping is in need of upgrading. [Footnote: The problem is that the generated interfaces are
not efficient in distributed systems. Firstly, the mapping predates CORBA valuetypes and thus
does not make use of them. Secondly, a class with N attributes is always mapped to a CORBA
interface with N separate getter/setter operations. Jn a distributed system one would want to
group attributes based upon use cases, cache attribute values, or implement other optimizations to
reduce the number of distributed ca11s]. Realistically we wil1 probably have to accept the fact that
for the foreseeable future, the automatically generated transformation from PIM to PSM will have
to be enhanced by humans. As we gain more experience we will be able to define various
patterns and allow them to be selected in some way."

This is recognition that a generated interface must be optimized using quality of service and
usage scenarios requires research in techniques for integrating QoS into a generative
programming model. It also recognizes that we do not currently have a way to express the quality
of service requirements in such a way that generative techniques can be trusted during the design
process.

Conclusion

The ability to provide QoS parameterization of models is recognized in the Object Management
Group community and standards in this area will lead to the ability to generate Platform Specific
Models that take quality of service characteristics into account. Since there has been very little
work on progressing Quality of Service specifications for component based architectures, this
work has the potential to impact how the Object Management Group (OMG) defines QoS
parameterization for Model Driven Architecture and the ability to more clearly specify and
measure component feasibility for a particular task. This standardization of QoS catalogs and
parameters is a pre-requisite to benchmarking and service validation instrumentation. In addition,
the Java Community Process (JCP) has a history of working with OMG to progress consistent
standards. The expectation is that any Quality of Service parameters would be applicable for
CORBA®, J2EE™, and Web Services component architectures. In addition, this standardization
provides a foundation for future standards. Quality of Service characteristics must have syntax
for expression in every artifact of the analysis, design and development process. The design
patterns must be documented and exploited in such a way that generative techniques can be
applied. In addition, formal specifications will allow instrumentation necessary for measuring
quality of service to be come an integral part of rniddleware and component implementation
frameworks.

7

•

•

SESEC2002
April 2002

The UniFrame research project is investigating techniques and patterns used when static QoS is a
consideration during refinement of models and software design, and is utilizing emerging
technology in generative programming for QoS instrumentation with a goal of progressing
standards for QoS instrumentation when the technology matures. By ensuring that software
components can be tested against standard Quality of Service feature sets we progress the goal of
using more commercial off the shelf (COTS) components in heterogeneous system compositions.

References

[1) Object Management Group. 2001. Model Driven Architecture: A Technical Perspective.
Technical Report. Document# ormsc/2001-07-01. Framingham, MA: Object Management
Group. July 2001.

[2] Rajeev R. Raje, Barrett Bryant, Mikhail Auguston, Andrew Olson, Carol Burt. "A Unified
Approach for the Integration of Distributed Heterogeneous Software Components", Proceedings
of the 2001 Monterey Workshop on Engineering Automation for Software Intensive System
Integration, pp: 109-119, Monterey, California, 2001.

[3] Object Management Group. 2001. COREA 3.0 COREA Component Model Chapters.
Document# ptc/2001-11-03. Framingham, MA: Object Management Group.

[4] Sun Microsystems. 2001. Java 2 Platform Enterprise Edition Sp€fcification vl.3, Available
via ftp from www.java.sun.com. Sun Microsystems .

[5] Object Management Group. 2000. VML Profile for Modeling Quality of Service as it relates
to real-time systems. Draft Request for Proposal. OMG document ad/00-12-07. Framington,
MA. Note: This RFP was never issued.

[6) Object Management Group. 2002. UML TM Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms. Request for Proposal. OMG document ad/02-01-07.
Framington, MA. Note: This RFP issued January 2002 with submissions due June 24, 2002.

[7] Rajeev R. Raje, Mikhail Auguston, Barrett Bryant, Andrew Olson, Carol Burt. 2001. A
Quality of Service-based Framework for Creating Distributed Heterogeneous Software
Components. Technical Report. Indiana University Purdue University Indianapolis.

[8] Zinky, J.A.,Bakken, D.E., and Schantz, R., 1995. Overview of Quality of Service for
Distributed Objects, In Proceedings of the Fifth IEEE Dual Use Conference.

[9] G. Brahnmath, R. Raje, A. Olson, M. Auguston, B. Bryant and C. Burt. 2002. Quality of
Service Catalog for Software Components. Technical Report #TR-CIS-0219-01. Indiana
University Purdue University Indianapolis.

[10] BBN Corporation, 2001. Quality Objects (QuO) Project, URL: http://www.dist
systems.bbn.com/tech/QuO.

[11] Michigan State University, 2001. RAPIDware: Component-Based Development of Adaptable
• and Dependable Middleware, URL: http://www.cse.msu.edu/rapidware/.

8

•

•

•

SESEC2002
April 2002

[12] S. Frolund, J. Koistinen. 1998. Quality of Service specification in Distributed Object
Systems, Proceedings of the 4•h USENIX Conference on Object-Oriented Technologies and
Systems (COOTS '98), Santa Fe, New Mexico, April 1998.

[13] S. Frolund, J. Koistinen. 1999. Quality of Service Aware Distributed Object Systems. 5•h
USENIX Conference on Object-Oriented Technologies and Systems (COOTS '99). May 1999.

[14] M.Auguston, 1998. Building Program Behavior Models, Proceedings of the European
Conference on Artificial Intelligence ECAI-98, Workshop on Spatial and Temporal
Reasoning, Brighton, England, August 23-28, 1998, pp.19-26.

[15] Object Management Group. 2000. Meta Object Facility. Document formal/2001-11-02.
Framingham, MA, Object Management Group.

CORBA® is a registered Trademark of the Object Management Group(OMG). CCM, UML,
MOF and MDA are trademarks ofOMG.

JAVA, J2EE, and EJB are trademarks of Sun Microsystems.

Other trademarks, which may be used in this document, are the properties of their respective
owner corporations .

9

•

•

•

An Architecture for the UniFrame Resource Discovery
Service1

Abstract

Nanditha N. Siram, Rajeev R. Raje, Andrew M. Olson
Department of Computer and Information Science

Indiana University Purdue University Indianapolis

723 W. Michigan Street, SL 280

Indianapolis, IN 46202-5132, USA

Email: {nnayani, rraje, aolson}@cs.iupui.edu

Barrett R. Bryant, Carol C. Burt
Department of Computer and Information Sciences

The University of Alabama at Birmingham

l 15A Campbell Hall, 1300 University Boulevard

Birmingham, AL 35294-1170, USA

Email: {bryant, cburt}@cis.uab.edu

Mikhail Augustan
Department of Computer Science

New Mexico State University

PO Box 30001, MCS CS

Las Cruces, NM 8803

Email: mikau@cs.nmsu.edu

Frequently, the software development for large-scale distributed systems requires
combining components that adhere to different object models. One solution for the
integration of distributed and heterogeneous software components is the UniFrame
approach. It provides a comprehensive framework unifying existing and emerging
distributed component models under a common meta-model that enables the discovery,
interoperability, and collaboration of components via generative software techniques. This
paper presents the architecture for the resource discovery aspect of this framework, called
the UniFrame Resource Discovery Service (URDS). The proposed architecture addresses
the following issues: a) dynamic discovery of heterogeneous components, and b) selection

1 This research is supported by the U.S. Office of Naval Research under the award number N00014-0I-l-
0746.

•

•

•

of components meeting the necessary requirements, including desired levels of QoS
(Quality of Service). This paper also compares the URDS architecture with other Resource
Discovery Protocols, outlining the gaps that URDS is trying to bridge.

1. Introduction

Software realizations of distributed-computing systems (DCS) are currently being based on
the notions of independently created and deployed components, with public interfaces and
private implementations, loosely integrating with one another to form a coalition of
distributed software components. Assembling such systems requires either automatic or
semi-automatic integration of software components, taking into account the quality of
service (QoS) constraints advertised by each component and the collection of components.
The UniFrame Approach (UA) [12)[13) provides a framework that a11ows an
interoperation of heterogeneous and distributed software components and incorporates the
fo11owing key concepts: a) a meta-component model (the Unified Meta Model - UMM
[11]), b) an integration of QoS at the individual component and distributed system levels,
c) the validation and assurance of QoS, based on the concept of event grammars, and e)
generative rules, along with their formal specifications, for assembling an ensemble of
components out of available choices. The UniFrame approach depends on the discovery of
independently deployed software components in a networked environment. This paper
describes an architecture, URDS (UniFrame Resource Discovery Service), for the resource
discovery aspect of UniFrame. The URDS architecture provides services for an automated
discovery and selection of components meeting the necessary QoS requirements. URDS is
designed as a Discovery Service wherein new services are dynamica11y discovered while
providing clients with a Directory style access to services. The result of using URDS, the
UA and its associated tools is a semi-automatic construction of a distributed system.

The rest of the paper is organized as fo11ows. Section 2 discusses related resource
discovery protocols. Section 3 discusses the UniFrame approach and the URDS
architecture. An example is presented in section 4. A brief comparison of URDS and other
approaches is presented in section 5. Details of an initial prototype and experimentations
are indicated in section 6 and the paper concludes in section 7.

2. Related Work

The protocols for resource discovery can be broadly categorized into: a) Lookup
(Directory) Services and Static Registries and b) Discovery Services. A few prominent
approaches are briefly discussed below.

Universal Description, Discovery and Integration (UDDI) Registry: UDDI [16]
specifications provide for distributed Web-based information registries wherein Web
services can be published and discovered. Web Services in UDDI are described using Web
Services Description Language (WSDL) [4] -- an XML grammar for describing the
capabilities and technical details of Simple Object Access Protocol (SOAP) [I] based web
services.

•

•

•

CORBA Trader Services: The CORBA Trader Service [IO] facilitates 'matchmaking'
between service providers (Exporters) and service consumers (Importers). The exporters
register their services with the trader and the importers query the trader. The trader wi11
find a match for the client based on the search criteria. Traders can be linked to form a
federation of traders, thus making the offer spaces of other traders implicitly available to
its own clients.

Service Location Protocol (SLP): SLP [6] architecture comprises of User Agents (UA),
Service Agents (SA), and Directory Agents (DA). UAs perform service discovery on behalf
of clients, SAs advertise the location and characteristics of services and DAs act as
directories which aggregate service information received from SAs in their database and
respond to service requests from UAs. Service requests may match according to service
type or by attributes.

JINI: JINI [15] is a Java-based framework for spontaneous discovery. The main
components of a JINI system are Services, Clients and Lookup Services. A service registers
a "service proxy" with the Lookup Service and clients requesting services get a handle to
the "service proxy" from the Lookup Service.

Ninja Secure Service Discovery Service (SSDS): The main components of the SSDS [5],
[9] are: Service Discovery Servers (SDS), Services and Clients. SSDS shares similarities
with other discovery protocols, with significant improvements in reliability, scalability,
and security .

3. UniFrame and UniFrame Resource Discovery Service (URDS)

The Directory and Discovery Services, described earlier, mostly do not take advantage of
the heterogeneity, local autonomy and the open architecture that are characteristics of
DCS. Also, a majority of these systems operate in one-model environment (e.g., CORBA
Trader service assumes only the presence of CORBA components). In contrast, a software
realization of a DCS will most certainly require a combination of heterogeneous
components - i.e., components developed under different models. In such a scenario, there
is a need for a discovery system that exploits the open nature, heterogeneity and local
autonomy inherent in DCS. The URDS architecture is one such solution for the discovery
of heterogeneous and distributed software components.

3.1. UniFrame Approach

3.1.1. Components, Services and QoS

Components in UniFrame are autonomous entities, whose implementations are non
uniform. Each component has a state, an identity, a behavior, well-defined public
interfaces and private implementation. In addition, each component has three aspects: a)
Computational Aspect: it reflects the task(s) carried out by each component, b)
Cooperative Aspect: it indicates the interaction with other components, and c) Auxiliary
Aspect: this addresses other important features of a component such as security and fault
tolerance .

• Services, offered by a component in UniFrame, could be an intensive computational effort
or an access to underlying resources. The QoS is an indication given by a software
component about its confidence to carry out the required services in spite of the constantly
changing execution environment and a possibility of partial failures.

3.1.2. Service Types

Components in UniFrame are specified informally in XML using a standard format. XML
[3] is selected as it is general enough to express the required concepts, it is rigorously
specified, and it is universally accepted and deployed. The UniFrame service type, which
represents the information needed to describe a service, comprises of:

JD: A unique identifier comprising of the host name on which the component is running
and the name with which this component binds itself to a registry will identify each
service.

ComponentName: The name with which the service component identifies itself

Description: A brief description of the purpose of this service component.

Function Descriptions: A brief description of each of the functions supported by the
service component.

Syntactic Contracts: A definition of the computational signature of the service interface.

• Function: Overall function of the service component.

•

Algorithm: The algorithms implemented by this component.

Complexity: The overall order of complexity of the algorithms implemented by this
component.

Technology: The technology used to implement this component (e.g., CORBA, Java RMI,
etc.).

QoS Metrics: Zero or more Quality Of Service (QoS) types. The QoS type defines the QoS
value type. Associated with a QoS type is the triple of <QoS-type-name, measure, value>
where QoS-type-name specifies the QoS metric, for example, throughput, capacity, end-to
end delay, etc. Measure indicates the quantification parameter for this type-name like
methods completed/sec, number of concurrent requests handled, time, etc. Value indicates
a numeric/string/boolean value for this parameter. We have established a catalog of
Quality of Service metrics that are used in UniFrame specifications [2].

Figure I illustrates a sample UniFrame specification. This example is for a bank account
management system with services for deposit, withdraw, and check balance. This example
assumes the presence of a Java RMI server program and a CORBA server program, which
are available to interact with the client requesting their services. We will return to this
example in detail when we describe the resource discovery service .

•

•

•

<Uni Frc:z.nu? >

<ConFponen~a7ne> AccountServer <./C'oJnponenifN.cune>
<Descri,p.tion> Provides an Account: Management System </Vescripnon>

<FuncnonDescripnon >
<Funcnon> javaDeposit </.F"unc.tion>
<Funcnon "".:i av a With draw </.F"unc.tion >
<Funcnon> javaBalance </.F"unc.tion>

</.F"uncnonDescripnon>

<ConFpula.lionaL4a:rihures>
<.TnheJ"e'n~huLes>

<ID> intrepid. cs.iupui. edu/ AccountServer </TD>
<./TnheJ"e'nLAa:rihu:Les>

<./C'oJnpu.taSion~huLes>

<FuncnonalAa:rihures>
<Funcnon> Acts as Account Server </.F"unc.tion>
<AlgoriJthJn> Simple Addition/Subtraction <./AlgoriL.hJn>
<Conple:xi:ly> 0(1) <.IC°oJnple:xi-!)1>
<SynklcncCOnitracll>

<Conilrae~> void javaDepo sit(float ip) <./C'onl!nacll>
<Conilrae~> void jav a "With draw throws Ov erD raw Exe epti on </C:'onitracll>
<Conilrae~> float javaBalance() <IC"onilract>

</.S'ynUzcticConZraell>
< Technol'ogy > J av a-RlVII <=/T'ec hnoLogy>

</.F"unc.tion~buLes>

<Coope:ra:LingA.tmhuLes>
<Pl"e'pnocessingCollahorr:zU>rs> Ace o untCli ent c:::/P1"e'p:rt0cessingColkzho~r.s>

<IC"oopencaingA~u:Les>

<Aux:illaryAtt:ributes:>
~ohi.li-!)1> No <./.lldohilny>

c:::/AuxillaryAttributes>

<QOSllefe~s>

<Availabilny xneasure="o/o"> 90 <./Avaikzhi.li~>
c:::End2.End.Dei'ay xneasure=''xns'' > 10 </End2End.Dekzy>

<./QOSllef euics>

Figure I: Sample UniFrame Specification in XML

3.2 URDS

The main components of the URDS architecture (illustrated in Figure 2) are: i) Internet
Component Broker (ICB), ii) Headhunters (HHs), iii) Meta-Repositories, iv) Active
Registries, v) Services, and vi) Clients. Other details in the figure will be explained in the
following sections. The numbers indicate the flow of activities in the URDS. These are
explained, in detail, in the context of an example in section 3.2.7. The URDS architecture
is organized as a federation in order to achieve scalability. Figure 3 illustrates the
federation aspect of URDS.

Every ICB has zero or more headhunters attached to it. The ICBs in tum are linked
together with unidirectional links to form a directed graph. The URDS discovery process is
"administratively scoped", i.e., it locates services within an administratively defined
logical domain. 'Domain' in UniFrame refers to industry specific markets such as
Financial Services, Health Care Services, Manufacturing Services, etc .

•

•

•

Figure 2: URDS Architecture

--- / - -- ------ _
/

/ -
-----=------

Figure 3: Federated Organization in URDS

3.2.1 Internet Component Broker (ICB)

The ICB acts as an all-pervasive component broker in the interconnected environment
providing a platform for the discovery and seamless integration of disparate components.
The ICB is not a single component but is a collection of services comprising of the Query
Manager (QM), the Domain Security Manager (DSM), Adapter Manager (AM), and the
Link Manager (LM). It is envisioned that there will be a fixed number ofICBs deployed at
well-known locations hosted by corporations or organizations supporting this initiative.

•

•

•

The functionality of the ICB is similar to that of an Object Request Broker. However, the
lCB has certain key features that are unique. 1t provides component mappings and
component model adapters. The ICB, in conjunction with headhunters, provides the
infrastructure necessary for scalable, reliable, and secure collaborative business using the
interconnected infrastructure. The functionalities of the ICB are:

• Authenticate the users (Headhunters and Active Registries) in the system and
enforce access control over the multicast address resources for a domain with the
help of the Domain Security Manager (DSM).

• Attempt at matchmaking between service producers and consumers with the help of
the Headhunters and Query Manager. ICBs may cooperate with each other in order
to increase the search space for matchmaking. The cooperation techniques of ICBs
are facilitated through the Link Manager (LM).

• Act as a mediator between two components adhering to different component
models. The mediation capabilities of the ICB are facilitated through the Adapter
Manager (AM).

Domain Security Manager (DSM)

The DSM handles secret key generation and distribution and enforces the group
membership and access control to multicast resources through authentication and use of
access control lists (ACL). The resources being guarded are the multicast addresses
allocated to a particular domain. The DSM serves as an authorized third party, which
maintains an inclusion list of Principals (headhunters or registries), corresponding to a
domain. DSM has an associated repository (database) of valid principals, passwords,
multicast address resources and domains. Every Headhunter or Active Registry is
associated with a domain. The Active Registries associated with a domain have
components registered with them, which belong to that domain. The Headhunter in tum
detects Registries, which belong to the same domain as itself, and hence the service
components detected by the headhunter will belong to a particular domain. The Principal
(authenticated user), is allowed access only to the multicast address mapped to the domain
with which it is associated. A Principal that wishes to participate in the discovery process
contacts the DSM with its credentials (id, password, domain). The DSM authenticates the
principal and checks its authorizations against the domain ACL. The DSM returns a secret
key and a multicast address mapped to the corresponding domain to a valid principal. In
case the principal is a Headhunter the DSM registers the contact information of the
headhunter with itself. The QM to propagate queries uses this information.

Query Manager (QM)

The QM uses a natural language parser [7] to translate a service consumer's natural
language-like query into an XML based query. The QM parses the XML based query to
generate a structured query language statement and dispatches this query to the
'appropriate' Headhunters. The QM obtains the list of registered Headhunters from the
DSM. The HH returns the list of matching service providers. The QM in conjunction with

•

•

•

the LM is also responsible for propagating the queries to other Jinked ICBs. The functions
performed by the QM are:

• Parse a service consumer's natural language-like query and extract the keywords
and phrases pertaining to various attributes of the components UniFrame
specification.

• Extract the consumer-specified constraints, preferences and policies to be applied
to the various attributes.

• Compose the extracted information into an XML based query.

• Translate the XML based query to a structured query language statement.

• Dispatch this structured query to all the headhunters associated with the domain on
which the search is being performed and also forward the query to the Link
Manager, which wi11 propagate the query to other ICBs.

• The headhunters will query the Meta-Rr!pository and return a list of components
matching the search criteria to the QM.

• QM will wait for a specified time period for results to be returned from the
headhunters/other ICBs before timing out.

• The client has the option to specify search-scoping policies to affect the time spent
on the search process.

Link Manager (LM)

ICBs are linked to form a Federation of Brokers (see Figure 3) in order to allow for an
effective utilization of the distributed offer space. ICBs propagate the search query issued
by the Clients to other ICBs to which they are linked apart from the headhunters with
which they are associated. The LM performs the functions of the ICB associated with
establishing links and propagating the queries. Links represent paths for propagation of
queries from a source ICB to a target ICB. The LM supports the following operations:

• Register: LMs register with each other to create unidirectional links from the
Source LM to the Target LM. The registration information comprises of the
location information of the LM.

• Query: The query operation is responsible for propagating the query from the
source LM to the list of Target LMs with which the Source LM is registered.

• Failure Detection: This involves keeping track of LMs that may no longer be
active due to failures. Periodically each LM sends a unicast message to all other
LMs that are registered with it. LMs receiving the message maintain a cache of the
pairs <Sender LM address, Time-stamp of receipt>. At regular time intervals the
receiving LMs note the 'freshness' of the information they hold and purge the
Sender's information, which they deem to be 'stale'. Staleness is determined by the
time elapsed between the receipt of the LM address through the unicast
communication and the current time.

•

•

•

• Link Traversal Control: The Link Traversa] Control mechanism used in the LM is
similar to that of CORBA Trader Services. The necessity for Link Traversal
Control arises due to the nature of LM linkage, which alJows arbitrary, directed
graphs of LMs to be produced. This can introduce two problems: i) a single LM
can be visited more than once, and ii) loops can occur. To ensure that a search does
not enter into an infinite loop, a hop count is used to limit the depth of Jinks to
propagate a search. The hop count is decremented by one before propagating a
query to other LMs. The search propagation terminates at the LM when the hop
count reaches zero.

Adapter Manager (AM)

The AM serves as a registry/lookup service for clients seeking adapter components. The
adapter components register with the AM and while doing so they indicate their
specialization (i.e., which heterogeneous component models they can bridge efficiently).
Clients contact the AM to search for adapter components matching their needs. The AM
utilizes adapter technology, each adapter component providing translation capabilities for
specific component architectures. The adapter components achieve interoperability using
the principles of wrap and glue technology [8].

3.2.2 Headhunters

Another critical component of URDS is a headhunter. The headhunters perform the
following tasks: a) Service Discovery: detect the presence of service providers
(Exporters), b) register the functionality of these service providers, and c) return a list of
service providers to the ICB that matches the requirements of the consumer (Importers)
requests forwarded by the QM.

The service discovery process utilizes a search technique based on multicasting. Once
deployed in the system, the headhunters periodically multicast their presence to a multicast
group. The multicast group address is obtained from the DSM. The active registries, that
also obtain a multicast group address from the DSM, listen for these multicast messages.
The active registries maintain a cache of the pairs <headhunter address, time-stamp of
receipt> and periodically send response messages to all the headhunters in their cache. The
headhunter in turn maintains a cache of the pairs <registry address, time-stamp of
receipt>. The Headhunter intermittently queries the Registries for the component
information of service providers they contain. During the registration, the headhunter
stores into the meta-repository all the details of the service providers, including the
UniFrame specifications. The headhunter uses this information during matching. A
component may be registered with multiple headhunters. The functionality of headhunters
makes it necessary for them to communicate with Active Registries belonging to any

. model, implying that the cooperative aspect of headhunters be universal. The headhunters
need to also address the issues of failures and security.

• Failure Detection: Failure detection involves keeping track of service exporters
that may no longer be active in the system for various reasons. Headhunters
achieve failure detection at the level of detecting failures of the active registries,
which hold the service exporters. The headhunter keeps track of the time at which it

•

•

•

obtains registry location information from various active registries. At regular time
intervals the headhunter notes the 'freshness' of the information it holds and purges
the registry information, which it deems to be 'stale'. 'Fresh' or 'Stale' are
determined based on the time elapsed between the receipt of the registry address
through unicast communication and the current time. This process is based on the
principle that if a registry is still active in the system, it will respond to the
headhunter with its location information and thus have a recent timestamp. A
registry which for whatever reason is unable to contact the headhunter with its
information will hold a 'stale' timestamp and it will be assumed that all service
exporter components held by this registry are no longer available for rendering their
services.

• Multicast Security: This involves securing the multicast data transmission
mechanism from security threats such as eavesdropping, and masquerading. The
headhunter uses Secret Key Encryption to ensure security of transmitted data. The
secret key used is a symmetric key wherein the sender and receiver use the same
key for purposes of encryption and decryption.

3.2.3 Meta-Repository

The Meta-Repository is a data store that serves to hold service information of exporters
adhering to different models. The service information stored by the Meta-repository
consists of: a) Service type name, b) Details of its informal specification, and c) Zero or
more QoS values for that service for each of the components. The implementation of a
Meta-Repository is database oriented. A Meta-Repository is a passive component, i.e., a
headhunter brings information to the meta-repository.

3.2.4 Active Registry

The native registries (e.g., RMI Registry or CORBA registry) are extended to have the
following features:

• Activeness: The registries are modified to be able to listen to multicast messages
from the headhunter and respond with their host IP Address.

• Introspection Capabilities: The registries are extended to not only keep a list of
component URLs of those components registered with them but also their detailed
UniFrame specifications. This is achieved by querying the components (using
principles of introspection) to obtain the URL of their XML based specifications.
The registries parse the specification and maintain the details in a memory resident
table, which is returned to the headhunter upon request.

• Failure Detection Of Headhunters: Failure detection involves keeping track of
headhunters, which may no longer be active in the system for reasons such as
network or node failure. The active registries keep track of the time at which it
obtains headhunter location information from various headhunters through
multicast. At regular intervals the active registries note the 'freshness' of the
headhunter information they hold and purge the headhunter information, which
they deem to be 'stale'. 'Fresh' or 'stale' are determined based on the time elapsed

•

•

•

between the receipt of the headhunter address through multicast communication
and the current time.

3.2.S Service Exporter Components

Service Exporter Components are implemented in different models, e.g., Java RMI,
CORBA, EJB, etc. The components are identified by their Service Offers comprising of
service type name, b) informal UniFrame specification, and c) zero or more QoS values for
that service. The component registers its interfaces with its local registry. The component
interface contains a method, which returns the URL of its informal specification. The
informal specification is stored as a XML file adhering to certain syntactic contracts to
facilitate parsing. These service exporter components will be tailored for specific domains,
such as Financial Services, and will adhere to the relevant standards in those domains.

3.2.6 Clients

Clients are Service Requesters searching for services matching certain functional and non
functional requirements.

4. An Example

Table 1 outlines the interactions between the URDS components in servicing a client query
for assembling an account management system. The rows of the table are numbered
corresponding to the flow of control shown in Figure 2. The result of this interaction will
be an ensemble of components, which may be assembled into a complete system as
described in [12].

1

2

Table l: Interactions between URDS components

This indicates the interactions between the principals (Headhunters/ Active
registries) and the DSM.

• The principals contact the DSM with their authentication credentials in
order to obtain the secret key and multicast address for group
communication (many to one interaction).
<name="headhunterln, password="secretln, domain="financial">
<name="registry2", password="secret2", domain="financial">

• The DSM authenticates the principals and returns a secret key and multicast
address to a valid principal (one to many interaction).

<secretkey = key.dat, multicast_address="224.2.2.2n>

This indicates the interactions between Service Exporter Components and active
registries.

• Service exporter components register with their respective registries (many
to one interaction) -- <id=" intrepid. cs. iupui. edu/AccountServer">

•

3

•
4

5

•

• These registries in turn query these components for their UniFrame
Specification (one to many interaction).

<introspect property = "uniFrameSpecURL">

• The components respond with the URL at which the specification is located
(any to one interaction).

<url="C:\Account System\AccountServerSpec.xml">

This indicates the interactions between Headhunters and Active Registries.

• Headhunters periodically multicast their presence to a multicast group
addresses (one to many interaction).

<headhunterlocation = phoenix.cs.iupui.edu/headhunterl>

• Active Registries, which are listening at this group address, respond to
Headhunters' messages by passing their information to Headhunters (many
to many interaction).

<registrylocation = magellan.cs.iupui.edu/registry2>

• Headhunters intermittently query the active registries to which they hold a
reference for the information of all the components registered with them
(one to many interaction). The active registries respond by passing the list of
components registered with them and the detailed UniFrame specification of
these components (many to many interaction).

This indicates the interactions between a Headhunter and a Meta-Repository.

• Headhunters persist the component information obtain ed from the active
registries onto the Meta-Repository (one to one interaction).

• Headhunters query Meta-Repository to retrieve component information (one
to one interaction).

<query="SELECT * FROM componentTable A, functionTable B WHERE
(A.ID= B.ID} AND ((description LIKE%account%} OR (description
LIKE %system%}) AND (end2endDe1ay<l0) AND (availability>90}">

• Meta-Repository returns search results to headhunter (one to one
interaction).

This indicates the interactions between the QM and clients.

• Clients contact the QM and specify the functional and non-functional search
criteria (many to one interaction) .

•

• 6

7

8

•

• The natural language-like client query is as follows:

"Create an account management system that has end-to-end delay < 10 ms
and availability> 90% preference maximum availability".

• Figure 4 shows the translated XML based query.

<Query>
<Description> Account System </Description>
<Domain> Financial </Domain>
<End2EndDelay constraint="<">10 </End2End.De/ay>
<.AvaiJaJ,ility constraint= ">" preference ="max"> 90 <IAvailahili~>

<!Query>

Figure 4: Processed XML query

• The QM returns the search results to the clients (one to many interaction).

< component 1: id=". II description="-", availability=" ... ", ... ; I

component 2: id=". II description="-", availability=" ... " ... ; I

component 3: id=". II description="-", availability=" ... ", ... ;> I

This indicates the interaction between the QM and DSM.

• QM contacts DSM for contact information of registered headhunters
belonging to the domain of client query (one to one interaction).

• DSM responds with list of registered headhunters (one to one interaction).

<phoenix.cs.iupui.edu/headhunterl

magellan.cs.iupui.edu/headhunter2>

This indicates the interactions between the QM and headhunters.

• The QM propagates Client's query to all headhunters registered with it,
which fall in the domain of the Client's search request (one to many
interaction).

• The headhunters respond to the QM query with search results matching the
criteria (many to one interaction).

This indicates the interactions between adapter components and AM.

• Adapter components register with the AM, which is running at a well
known location (many to one interaction) .

•

•

•

9 This shows the interactions between the clients and the AM.

• Clients contact the AM at the well-known location at which it is running
with requests for specific adapter components (many to one interaction).

• The AM checks against its repository for matches and returns the results to
the clients (one to many interaction).

10 This shows the interactions between QM and LM.

• The QM propagates the query to the LM (one to one interaction) .

• LM returns search results to QM (one to one interaction) .

11 This shows the interactions between the LM of one ICB and target LMs of other
ICBs with which this LM is registered.

• The LM propagates the search query issued by the QM to the target LMs
(one to many interaction).

• The source LM receives the result responses from these target LMs (many
to one interaction) .

5. Comparison between URDS and Other Resource Discovery
Protocols

A brief comparison between URDS and other approaches is provided below.

• Interoperability: The other resource discovery protocols provide services for
specific models and interoperations can be achieved only through proxies. URDS
addresses the issue of non-uniformity by providing for discovery and coordination
between components implemented using diverse models.

• Network Usage: Unlike other protocols, URDS clients and services do not
participate in active discovery thus cutting down on the periodic communication
required for the process of discovery. Instead, the active nature of the extended
native registries allows the discovery process and removes the additional burden of
developing 'active' components.

• Query Processing and Matchmaking: Unlike other approaches, which rely on Java
based or XML-based matching, the URDS supports a natural language-like query
mechanism. This provides flexibility in formatting queries and during the
matchmaking process.

• Domain of Discovery: In URDS the contextualization of the search space is logical
and dictated by the industry specific markets. In other discovery protocols the

•

•

•

notion of "administrative scope" is associated with the topology of the network
domain.

• Security: The URDS security model addresses many of the common threats, which
may occur during the discovery process. SSDS is another service notable for its
robust security model.

• QoS: UniFrame incorporates of the notion of QoS as applied to software
components and integrates this aspect into the service specification and the
matchmaking process.

6. Prototype and Experimentation

A preliminary prototype [14] of the URDS has been implemented using the J2EE version
1.4 software environment. The core architectural components {domain security manager,
query manager, link manager, headhunters and active registries) have been implemented as
Java-RMI based services.

The repositories {domain security manager's repository and meta repository) have been
implemented using Oracle version 8.0. The Web-based components {JSPs), which service
client interactions, are placed in a Tomcat 4.0 Servlet/JSP container.

The unicast communication between the core architectural components is achieved through
JRMP (Java Remote Method Protocol) and the multicast communication between the
headhunters and the active registries is achieved through Multicast sockets based on
UDP/IP. The database connections are established using the JDBC (Java Database
Connectivity) APis and the user interaction is achieved through a browser front-end using
the HTTP protocol. The security infrastructure, of URDS, is implemented by the security
and cryptography APis that form a part of Java Cryptography Architecture and Java
Cryptographic Extension frameworks.

Preliminary experiments were carried out on this prototype to observe the performance of
URDS. The experimental setup consisted of Sun SP ARC machines connected by an
Ethernet. The experiments contained one ICB, one headhunter, and one active registry
(enhanced version of Java RMI registry). A single client was used to issue query requests,
which consisted of different QoS constraints. The measurements were averaged over one
hundred trials. The following times were measured:

• Average Authentication Time: It is the average time taken by the domain security
manager to authenticate a principal (i.e., headhunter and active registry).

• Average Query Service Time: It is the average time taken to service a query.

• Average Registry Discovery Time: It is the average time taken by a headhunter to
discover an active registry.

• Average Component Information Retrieval Time: It is the average time taken by
the headhunter to retrieve component information from an active registry .

•

•

•

These initial experiments showed a value of 690 ms for the average authentication time.
The average query time and the registry discovery time showed a marginal increase with
an increasing number of registered components; while the average component retrieval
information time increased linearly with the number of components (as expected).

The current prototype is able to discover only Java-RMI components, thus making it
homogeneous. Efforts are underway to make it heterogeneous, i.e., able to discover
components created using other models (such as CORBA, .NET, etc.) also. The current
prototype also does not include the federation aspect.

7. Conclusion

The paper has presented an architecture that facilitates the semi-automatic construction of a
distributed system by providing for the dynamic discovery of heterogeneous components
and selection of components meeting the necessary requirements, including desired levels
of QoS. The URDS architecture addresses issues such as interoperability, QoS of software
components, scalability, fault tolerance, security and network usage. Interoperability is
achieved by discovering components developed in several different component models.
The discovery mechanism uses multicasting to detect native registries/lookup services of
various component models that are extended to possess 'active' and 'introspective'
capabilities. The component specification captures their computational, functional, co
operational, auxiliary attributes and QoS metrics. Flexibility in query formatting is
achieved by providing support for natural language-like client requests. As a scalability
mechanism URDS is organized in a federated hierarchical structure. Failure tolerance is
handled through periodic announcements by entities and through information caching.
Security is provided through authentication of the principals involved, access control to
multicast address resources, and encryption of data transmitted. URDS provides a directory
based discovery service which is scalable secure and fault tolerant Although, the current
prototype does not address all the features of the URDS architecture, it has created a basis
for validating the concepts behind URDS. Efforts are underway to extend the current
prototype that will enable a validation of all the features presented in this paper.

References

[1] Box, D., et al., "Simple Object Access Protocol (SOAP) 1. I", W3C, May 2000,
http://www.w3.org/TR/SOAP.

[2] Brahmnath, G., Raje, R. R., Olson, A. M., Auguston, M., Bryant, B. R., Burt, C. C., "A
Quality of Service Catalog for Software Components," to appear in Proceedings of the
2002 Southeastern Software Engineering Conference, 2002.

[3] Bray, T., Paoli, J., Sperberg-McQueen, C. M. "Extensible Markup Language (XML)
1.0 (Second Edition)," W3C, October 2000, http: //www.w3c.org/xmL

[4] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., "Web Services
Description Language (WSDL) 1.1," W3C, March 2001 http://www.w3.org/TR/wsdl.

---~~--~-- ~~

•

•

•

[5] Czerwinski, S. E., Zhao, B. Y., Hodes, T. D., Joseph, A. D., Katz, R. H., "An
Architecture for a Secure Service Discovery Service," Proceedings of Mobicom '99,
1999. http://ninja.cs.berkeley.edu/dist/papers/sds-mobicom.pdf

[6] Guttman, E., "Service Location Protocol: Automatic Discovery of IP Network
Services," IEEE Internet Computing, vol. 3, no. 4, 1999, pp. 71-80.

[7] Lee, B.-S., and Bryant, Barrett R., "Automated Conversion from Requirements
Documentation to an Object-Oriented Formal Specification Language," Proceedings of
SAC 2002, the ACM Symposium on Applied Computing, 2002, pp. 932-936.

[8] Luqi, Berzins, V., Ge, J., Shing, M., Auguston, M., Bryant, B. R., Kin, B. K., "DCAPS
- Architecture for Distributed Computer Aided Prototyping System," Proceedings of
RSP 2001, the 12th Rapid Systems Prototyping Workshop, 2001, pp. 103-108.

[9] Ninja, "The Ninja Project," http://ninja.cs.berkeley.edu, 2002.

[IO] Object Management Group, "Trading Object Service Specification," Object
Management Group 2000. ftp://ftp.omg.org/pub/docs/formal/00-06-27 .pdf.

[11] Raje, R. R., "UMM: Unified Meta-object Model for Open Distributed Systems'',
Proceedings of ICA3PP 2000, 4th IEEE Int. Conf. Algorithms and Architecture for
Parallel Processing", 2000, pp. 454-465.

[12] Raje, R., Auguston, M., Bryant, B. R., Olson, A., Burt, C., "A Unified Approach for
the Integration of Distributed Heterogeneous Software Components", Proceedings of
the Monterey Workshop on Engineering Automation for Software Intensive System
Integration, 2001, pp. I 09-119.

[13] Raje, R., Auguston, M., Bryant, B. R., Olson, A., Burt, C., "A Quality of Service
based Framework for Creating Distributed Heterogeneous Software Components",
Technical Report, Department of Computer and Information Science, Indiana
University Purdue University Indianapolis, 2002.

[14] Siram, N. N., "An Architecture for the UniFrame Resource Discovery Service'', MS
Thesis, Indiana University Purdue University Indianapolis, Spring 2002.

[15] Sun Microsystems, "Jini Architecture Specification, Version 1.2," Sun Microsystems,
December 2001, http://www.sun.com/jini/.

[16] uddi.org, "UDDI Technical White Paper", September 2000,
http://www.uddi.org/pubs/Iru _ UDDI _Technical_ White _Paper.pdf

•
EDOC 2002

Quality of Service Issues Related to Transforming
Platform Independent Models to Platform Specific Models*

Carol C. Burt
Barrett R. Bryant

University of Alabama
Birmingham

cburt, bryant@cis.uab.edu

Rajeev R. Raje
Andrew Olson

Indiana University Purdue
University Indianapolis

rraje,aolson@cs. iupui. edu

Mikhail Auguston
New Mexico State

University
mikau@cs.nmsu.edu

Abstract

The UniFrame research project is proposing a
Unified Component Meta Model Framework
(UniFrame) that includes Quality of Service (QoS)
contracts. Today it is the role of the software architect,
based on experience, to design platform specific
solutions that will meet QoS requirements. As we refine
algorithms for model transformations, we must identify
these QoS-aware design patterns and utilize them
during model transformations. Our research includes
supporting and participating in the exploration of
generative techniques as they relate to QoS

must be hand crafted on a case-by-case basis to
determine if a composition is acceptable. These
problems must be resolved for the promise of software
component technology to be fully realized.

•

requirements (both static and dynamic) and the
standardization of QoS-aware transformations. This
paper explores how QoS requirements can impact
decisions related to model transformation (using UML

The Unified Component Meta-Model Framework
(UniFrame) [I] research is an attempt to unify
distributed component models under a common meta
model for the purpose of enabling the discovery,
interoperability, and collaboration of components via
generative software techniques. This research targets
the dynamic assembly of distributed software systems
from components under different component models,
and explores how the quality of service (QoS)
requirements influences the design of components and
their compositions.

Today, software architects leverage their experience
in designing distributed systems when refining business
and information technology models to ensure the quality
of service requirements are met. To enable the use of
generative techniques as models are refined, these
experience-based design patterns must be formalized.
As a part of this research, we plan to document the effect
of design decisions on attaining quality of service
requirements and explore techniques for providing the
instrumentation necessary to measure QoS features. In
this research we are focusing on two key QoS aspects for
distributed component solutions: the security access
control and the performance.

for Platform Independent Modeling and ISO IDLfor the
Platform Specific Model). It explores a series of QoS
related design issues that must be considered as
platform independent models are refined for specific
component platforms.

1. Introduction

Enterprises are increasingly dependent upon multiple
middleware technologies that enable new business
paradigms by weaving together legacy systems with
advanced technology. This technology supports core
business functionality, enables distributed business
systems, integrates business processes and enables
companies to communicate with customers, suppliers,
and business partners. While it is possible to construct
heterogeneous component systems, it requires that the
developer be aware of the nuances of the diverse
middleware technologies. In addition, the increased
complexity of this environment makes it impossible to
predict the non-functional aspects of such a system until
after it is constructed. That is, metrics and test scenarios

• • This research was supported by the U. S. Office of Naval
Research under the award number NOOOJ4-01-1-0746.

- I -

This paper explores the experience-based design
considerations related to quality of service requirements
during the model transformations when the Model
Driven Architecture [2] techniques are used. It expands
on previous work [3] that identified standards that are in
progress as well as additional standards that are needed
for the definition of QoS-based service contracts. For
illustrative purposes, it presents design considerations

• for the security and the performance during the
transformation of a simple Platform Independent Model
(described in UML) to a CORBA model (described in
ISO IDL). The future goals of our research include the
identification and standardization of metrics necessary to
validate the patterns and a mechanism to allow QoS
related design patterns to be expressed as model
parameters.

2. Model Driven Architecture

Model driven architecture techniques are not new;
business and process modeling have been used for many
years to capture requirements of information systems.
As object-oriented analysis and design techniques
matured, the Unified Modeling Language (UML) was
standardized by OMG and became a popular technique
for expressing both domain/business models and models
of information systems.

OMG's Model Driven Architecture (MDA) [2)
initiative facilitates the standardization of Platform
Independent Model (PIMs) and the transformation of
those models to multiple Platform Specific Models for
implementation (such as CORBA, J2EE, or Web

•
Services). Jn this way a single PIM can be used as the
basis for multiple implementation technologies, and with
standardization of the transformation algorithms,
appropriate bridges can be generated. Standardizing
platform independent models is a natural extension of
existing OMG analysis and design standards for
modeling and meta-modeling services. Standardizing
multiple transformations to diverse technology platforms
is a natural extension of the OMG mission to define
interoperability standards.

Many OMG standards contain UML models to
describe the domain model and/or semantics of services.
Typically these domain models (expressed or implied)
are independent of the CORBA platform (evidenced by
the fact that they have been leveraged for use in J2EE
and other technology platforms). In the past, OMG has
only standardized the transformations to CORBA
specific model(s) expressed in ISO IDL; however, it is
expected that many of the existing services will be
standardized for alternative platform technologies.

This focus on the Model Driven Architecture is a
catalyst for the consideration of the effects of Quality of
Service (QoS) requirements on computing models. At
present, we have a limited ability to express QoS

•

requirements as model parameters and even less
definition of the algorithmic requirements to satisfy
specific quality of service demands. The Model Driven

-2-

EDOC 2002

Architectural vision, which is consistent with those of
this research, includes standards that enable the use of
generative techniques for construction of interoperability
bridges between platform technologies. While this
vision is appealing, there is a great deal of research to be
done before this is feasible. The problem lies not in
determining a single transformation from a platform
independent model to a platform specific model, but in
understanding the appropriate transformation based on
quality of service requirements. Some of the model
transformation issues related to the performance and
security access control are discussed in this paper.

3. Relevant Standards and Known Issues

OMG has standardized technologies [18) that include
a UML profile for CORBA and a UML profile for
Enterprise Distributed Object Computing (EDOC). In
addition, the Java Community Process has standardized
a UML profile for Java2 Enterprise Edition (J2EE).
These profiles, however, do not consider how to model
QoS related aspects.

The OMG Meta-Object Facility provides a standard
for generation of interfaces from MOF compliant UML
models. However, it is well known that there are issues
with this mapping for distributed solutions. The OMG
Architecture board produced a paper that describes the
technical details of the Model Driven Architecture
(MDA) [3]. This document outlines areas where
research is required before the MDA vision can be fully
realized. The paper states: "It is generally agreed that
the MOF-IDL mapping is in need of upgrading. The
problem is that the generated interfaces are not efficient
in distributed systems. Firstly, the mapping predates
CORBA valuetypes and thus does not make use of them.
Secondly, a class with N attributes is always mapped to
a CORBA interface with N separate getter/setter
operations. In a distributed system one would want to
group attributes based upon use cases, cache attribute
values, or implement other optimizations to reduce the
number of distributed calls. Realistically we will
probably have to accept the fact that for the foreseeable
future, the automatically generated transformation from
PIM to PSM will have to be enhanced by humans. As
we gain more experience we will be able to define
various patterns and allow them to be selected in some
way."

In addition, security requirements often influence the
technique utilized in transformation of a platform
independent model to a platform specific model. It is
widely accepted within the Model Driven Ar{;hitecture
community that generated interfaces must be optimized

• using the quality of service and usage scenarios. This
requires research on the appropriate techniques for
integrating QoS into the generative programming model
[4) is necessary before standards can be progressed in
this area.

4. MDA and Quality of Service

Although QoS parameters and associated metrics
have been widely used in networking, there is no
standard vocabulary for discussing the QoS as it relates
to distributed computing and component-based
solutions. For example, the CORBA® Components
Specification only uses the term "quality of service"
with regard to events and whether or not they are
transactional in nature [5]. The Java2 Enterprise
Edition (J2EE) specification [6] clearly states the
expectation that J2EE products will vary widely and
compete vigorously on various aspects of quality of
service. Such products will provide different levels of
performance, scalability, robustness, availability, and
security, although in some cases the specification
requires minimal levels of service.

A standard vocabulary is the first step toward

•
progressing Model Driven Architectures that include
QoS parameterization and/or QoS contracts. This is one
of the goals of the UniFrame research.

4.1 Previous and Related Work

As a part of the UniFrame research, we have outlined
an approach to a QoS-based framework for creating
distributed heterogeneous software components [7].
The QoS-based method in UniFrame is made up of three
steps:

I. The creation of a catalog for QoS parameters (or
metrics),

2. A formal specification of these parameters, and
3. A mechanism for ensuring these parameters,

both at each individual component level and at
the entire system level.

Our work leverages the research work by Zinky,
Bakken and Schantz [8] with a goal of providing a
catalog of QoS parameters and indicating how
parameters might be described. There are many possible
QoS parameters that a component (and its developer)
can use to indicate the associated service. Some of these
parameters may be general in nature, while others may

•
pertain to a specific domain. The goal of creating the
QoS catalog is two fold: a) it assists the component
developer (or the system integrator) in selecting the

-3-

EDOC 2002

necessary QoS parameters for the component (or
system) under construction, and b) it enables the
developer (or integrator) to ensure the necessary QoS
guarantees by integrating the selected QoS parameters
into the assurance process. We have created a
preliminary version of the QoS catalog in [15). Jn
addition to identifying and describing different QoS
parameters, this catalog also classifies them and
provides models for their compositions.

Other relevant research work in this area includes
Frolund and Koistinen [9] who point out that deciding
which quality of service properties should be provided
by individual components is an important part of the
design process. They define a Quality-of-Service
specification language (QML) and they show how the
Unified Modeling Language (UML) can be extended to
support the concepts of QML. They also show how to
represent QML constructs in terms of ISO Interface
Definition Language (IDL) [9) [I 0). There are also
case studies where Object Constraint Language (OCL) is
being used a mechanism for the annotation of UML
models for the purpose of expressing security constraints
[11). Recent work in adaptive systems extends the work
in Quality Objects (QuO) [12] with security specific
strategies that use the QuO contract definition language
(QDL)[l3].

We expect standards achv1ty in this area will
consider and leverage the experience and results of these
efforts.

4.2 Recent Standards Activity

In January 2002, the OMG Analysis and Design task
force issued a RFP (Request for Proposals) for a
"UML™ Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms" [14).
This RFP solicits proposals for a UML profile or Meta
Object Facility (MOF) meta-model that defines standard
paradigms of use in modeling quality of service and
fault-tolerance aspects of systems. This is the first of a
series of RFPs that have the goal of significant benefits
to the UML user community engaged in high-quality
robust system development. The mandatory
requirements of this RFP are listed in Figure I.

As distributed systems are becoming more omni
present with many of them handling mission-critical
applications, the notion of QoS-oriented software
development is of paramount importance. Such a
quality-oriented approach, in addition to providing
seamless access to heterogeneous components, will also
ensure the reliability and a high confidence of

•

l. A General Quality of Service Framework

To ensure consistency in modeling various qualities of
service, submissions shall define a standard framework or,
reference model, for QoS modeling in the context of the UML.
This shall include:

• A general categorization of different kinds of QoS;
including QoS that are fixed at design time as well as ones
that are managed dynamically

• Integration of different categories of QoS for the purpose
of QoS modeling of system aspects.

• A coherent set of stereotypes, tagged values, and
constraints as necessary to represent the identified QoS
properties constructing a UML Profile.

• Identification of the basic conceptual elements involved in
QoS and their mutual relationships. This shall include the
ability to associate QoS characteristics to model elements
(specification), a generic model of the system aspects
involved in QoS-associated collaboration and their
functional interactions and use cases (usage model), and a
generic model of how QoS allocation and decomposition is
managed.

2. A Definition oflndividual QoS Characteristics

Submissions shall define QoS characteristics, particularly

those important to real-time and high confidence systems,

which describe the fundamental aspects of the various specific

kinds of QoS based on the QoS categorization identified in the

framework. These shall include but are not limited to the

following:

• time-related characteristics (delays, freshness)

• importance-related characteristics (priority, precedence)

• capacity-related characteristics (throughput, capacity)

• integrity related characteristics (accuracy)

• fault tolerance characteristics (mean-time between failures,
mean-time to repair, number of replicas)

3. A coherent set of stereotypes, tagged values, and
constraints as necessary to represent the identified QoS
properties constructing a UML Profile.

Figure 1: OMG RFP
UML Profile for QoS

Mandatory Requirements

- 4 -

EDOC 2002

distributed systems software. As indicated earlier, the
need for standardization of a quality of service
vocabulary was recognized early in our research and we
are carefully tracking the work of the OMG in this area
as we continue to progress our work in the development
of a quality of service catalog [15).

5. Models Transformations

UML is a graphical notation for expressing models; it
is important to understand that many alternative
modeling syntax exist - for example, the XML Model
Interchange (XMI) fonnat leverages Extended Mark-up
Language (XML) to express Meta-Object Facility
(MOF) compliant models. While there is a standard
UML profile for CORBA, the ISO IDL continues to be
the most common notation used to define a CORBA
model. Our research is also exploring the use of two
level grammar (TLG) as a fonnal mechanism for
expressing models [16). These text notations are useful
for computers as they process textural or binary syntax
more efficiently than graphics. Mappings from one
notation to another are often produced and used for
various analysis tasks (sometimes preserving all model
infonnation, and sometimes losing infonnation which
has no equivalent in an alternative modeling syntax).
For example, IDL models may be expressed in the UML
profile for CORBA. Such mappings are not
transfonnations they are merely alternative
representations of the same model.

A model transfonnation occurs when models are
refined and details are added for the purpose of focusing
on a particular implementation technology or an aspect
of the domain model. Model transfonnations are used to
document different "levels of abstractions'',
"viewpoints" or "aspects" of an information system.
Models that comply to a specific meta-model may utilize
generative techniques for the transformations; leveraging
information that the generator knows regarding the
target implementation platform and/or parameterizations
provided by the software architect. To fully realize the
potential of the MDA, the Quality of Service (QoS)
catalogs, the formal parameterization of Platform
Independent Models, and ultimately the instrumentation
generation rules must be standardized within the Model
Driven Architecture roadmap.

EDOC2002

• The business (or domain) models are the view
of the business person. Typically domain
models document the business from a logical
perspective. Business models often lack
details necessary for good software design,
however. the resulting IT models must be
consistent with the business model.

•

•

The Quality of Service expressed in the {
business model description (natural

language) must be tranformed into model
annotations using a standard QoS

vocabulary. Static (design level) QoS
decisions are first considered in this

transformation.

QoS model annotatations must be
transformed into the specific QoS

language for the target platform (for
example for CORBA this might be the
UML profile for QoS or perhaps QML).

Static (design level) QoS decisions
must be made/refined at this step and

may result in factoring of interfaces.

Utilmately the QoS enabled design must
result in software. The design level QoS
will be part of the implementation (having

been taken into account in inteface
design and implementation design). The

dynamic QoS requirements must result in
generated instrumentation for validation

purposes. This instrumentation may
require component and/or platform

customization.

{

{

Business Models

Platform Independent
Models (PIM)

Paradigm Independent

Platform Independent
Models (PIM)

Paradigm Dependent

c
.Q
o;
E
.E
"' c
~
I-

Platform Specific Models
(PSM)

c
.Q
o;
E
.E
"' c

~

Executable Representation
(Code)

The Platform Independent Model is the
Information Technology Perspective.
These models carve the business into software
components with interfaces for collaboration.
They include use cases where the system (or
components of the system) are actors. They
explore exception conditions and quality of
service requirements as model considerations.
They include enough detail to enable an
architect familiar with a particular platform
technology to create a transformation.
It is useful to progress to PIMs that are Platform
Independent but which conform to a particular
technology paradigm (such as component
technology, distributed objects, or asynchronous
messaging)

A Platform Specific Model is the realization of
a PIM in the definition syntax of a particular
technology platform. For example, a
CORBA PSM could be expressed in the UML
Profile for CORBA or in ISO IDL A Web
Services Platform Specific Model might be
expressed in WSDL The PSM must account
for the architecture of the Platform, including
interface definition language and the
messaging paradigm.

Ultimately the model must be realized in
software. The extent to which the PSM
supports logic will determine the extent to
which software can be generated. The
language that supports the PSM typically falls
short of the full capabilities of a programming
language; however, conceptually the software
can be considered the final PSM.

Figure 2 - QoS considerations during model transformation

Figure 2 outlines the models that are commonly
progressed in a MDA approach. Quality of Service
annotations or parameters must be introduced into each
model and the transformations must consider such
parameters as models are refined. The current OMG
RFP is a beginning - standardizing a vocabulary and

- 5 -

syntax for expressing QoS in UML. As we move
beyond the QoS catalog, our research will focus on the
constraints that are placed on transformations as a result
of the quality requirements and explore generative
techniques for ensuring that metrics can be gathered. In
addition, use case scenarios must be formally expressed

• so that they can be used as an input to an in'.erface
generator. Thus, an ultimate goal is that g~ven a
parameterized domain model, semantically eq~1valent
interfaces (and the bridges between them) might be
generated. Our future work will explore mechanisms _for
expressing such parameters as annotations for design
patterns so that this vision can be progressed.

•

•

In the example described below, we will follow the
progression of a business model for a simple ba~ to a
COREA Platfonn Specific Model that uses expenenced
based design patterns to address Quality of Service
requirements. We will look at how these patterns allow
security administration to be simplified and the most
common remote services to be optimized. The final set
of interfaces will be presented as the "UniFrameBank".

6. An Example: Model Driven Architecture
with Quality of Service Considerations

Model Driven Architecture starts with the
construction of a business (or domain) model based on
the requirements analysis. Requirements are often
expressed in a natural language and UML is a popular
tool for documenting and validating the business model.
In this example, we will analyze a "simple bank" and
explore how interfaces may be organized based on the
quality of service aspects and known use case scenarios.

6.1 Simple Bank Business Model

A typical business description of a simple bank is:
The SimpleBank manages accounts. A unique account
number identifies each account. An account has items
associated with it. An item is a transaction against the
account (deposit, withdrawal or adjustment). Deposits
and withdrawals have a unique identifier, a date and an
amount. Adjustments have these attributes and an
annotation that provides the reason for the adjustment.
There is a bank identifier or bank routing number that is
used as an account prefix when interfacing with other
banks. This bank id is not, however, used internally as
part of the account number. Accounts maintain an
owner identifier, a single PIN number, and an available
balance. The SimpleBank supports the opening and
closing of accounts and update of account information
such as owner and PIN. Accounts are typically located
using the account number, but can also be located using
the owner identifier. Some business services require that
the PIN be validated before the transaction can be
completed.

Figure 3, based on the above description, indicates
the UML business model for the simple bank.

- 6 -

EDOC 2002

interface

Ban!t

id

close_ account

find_ account

tind_by_owner

open_ account

l ..•

interface I
interface Item

Account 1£1
~d i.-.

l .. oj
date

number amount

E.lli
balance

1 ~ ? withdraw

deposit interface interface

retrieve_ i.tem D'!I!_O$:lt Withdrawal

adjust

interface

Adjustment

reason

Figure 3: The simple bank business model

6.2 Simple Bank Platform Independent Model

The next step is to determine the usage scenarios that
must be supported by our SimpleBank, to fully explore
the business rules and to determine the quality of service
characteristics of the usage scenarios (or services).
This is necessary to create a Platform Independent
Information Technology (IT) model of the SimpleBank
that enables efficient information technology services to
be offered by the SimpleBank. We need to resolve
questions that arise during the development of the
business model such as:

• Can one owner have multiple accounts?
• If one owner can have multiple accounts, how do

we navigate to them?
• Is there a need to iterate through account items?
• What are the most common usage scenarios?
• How do we optimize the services to accommodate

the common usage patterns?

A use case analysis is employed to capture this
information. The Platform Independent Model
considers additional details such as exceptions and
security considerations that are not unique to a particular
platform. Abstracting away such details is typical of
business models, but those issues must be considered for

---~---------

•

•

•

an information technology system. A common initial
approach to defining the Platform Independent Model is
to add design details directly to the business model.
This is typically not sufficient as business models are
often not appropriate for expressing information
technology viewpoints. For this reason, a software
architect, drawing on their own experienced-based
design patterns and taking all aspects of the model into
consideration, transforms the business model into a PIM.
This paper discusses the transformation of model and
outlines some of these experienced-based techniques. It
is hoped that these experience-based techniques will be
formalized in the future for the purpose of using them
with generative algorithms.

During use case analysis for the SimpleBank, we
capture the following business rules that must be
supported by the information system (this is a subset
provided to aid in illustration of the QoS requirements).

• Bank customers may query account balance (via
phone) and/or withdraw funds (using a teller
machine) from an account without assistance
provided that they have their account number and
PIN.

• Merchants may request withdrawals from
accounts by providing their merchant
identification, account number and PIN
(check card services).

• Tellers may locate accounts based on owner
identification, query account balances, process
deposits and withdrawals for customer and review
ex1stmg account items. Tellers may use external
means of identifying a customer (not required to
use/know PIN).

• Bank managers may perform all the functions of a
Teller and may also open and close accounts and
create adjustments.

• Bank customers may have many accounts and will
use the same owner identifier for all these
accounts. It must be easy to locate all the
accounts for a customer.

• The bank offers a response time guarantee of three
second to merchants for services or the fees are
waived for the request. Merchant requests must
be prioritized above other system requests.
Response times for merchant requests must be
monitored.

• Account balance inquires from remote locations
are a very common business scenario that requires
less than five second response time to ensure
customer satisfaction. Response time on balance
inquires must be monitored.

- 7 -

EDOC2002

The first quality of service issue we will address is
one aspect of security: access control. We will use the
techniques outlined in Figure 4 to review the model and
use cases and apply experience-based security access
control design patterns.

Are there significant security requirements identified
for the service(s)?

If so, consider segregating administrative features into
separate interfaces from those that provide the less
restrictive non-administrative functionality

Is it expected that administrators will also be allowed
to use all the non-administrative features of a
service?

Use inheritance to clarify this in the model and simplify
the security model. That is, an administrative interface
should inherit from the non-administrative inteiface.

Can you navigate between interfaces as required
while maintaining security controls at the point of
navigation?

Review navigation patterns to ensure that given an
object reference, it will be easy to navigate to other
objects and that security rules logically apply at the
point of navigation.

Figure 4: Experience-based Security Techniques

It is much easier for security administrators to assign
policies based on roles to groups of functionality (vs.
individual users and individual functions). If
functionality can be grouped based on security patterns
(such as view access vs. administration access) then
security policy can be defined based on functional
groupings (ultimately interfaces and/or objects). This
also increases the scalability of the security model and is
more efficient at run-time.

Our analysis review indicates that there are
significant security related usage restrictions, and that
using the business model as the basis of the PIM without
refinement for security considerations would force
access control checks for each individual operation. For
example, our business rules state that the open_accountO
and close_ accountO operations can only be done by a
bank manager, but they are in the same interface as the
find_ accountO operation that locates accounts and must
be accessible to tellers. In addition, we see that bank
managers are allowed to perform all the functions of
tellers, so we can use inheritance to capture this aspect
of the access requirements. Finally, we need to review

• the navigation patterns to ensure that our Platfonn
Independent Model supports all our usage scenarios.

•

During our analysis, we notice that we have two
interfaces that are empty - that is, they provide no
additional functionality (other than typing). We may
want to simplify this in the IT model. A refined
Platfonn Independent Model (created based on the
above discussion) is shown in Figure 5.

lnterfac'°

Uni frameBank: :AccountPi.cder

•account factory :Account Factory

•bank id:strlr:!..9_

•findfaccount_number:in string) :Account

• f ind_account_by_owner rowner_id: in stri ngJ :AccountNumbe

IJ\ locates I
interface

tTn:ifra.meBa.nk: :AccountAdnUn

+open lowner_id:in string, deposit :in double, PIN: in st

•Close faccounc:_number: in string} :void

•update_ owner towner_id: in string' :void

.,update_PINfoldPIN: in string, newPIN: in string} : void

+adjustfamount:in double,reason:in string):void

\

Idministers

interface

Uni.fra.meBank: :Account

+account admin:AccountAdmin

+account finder: Account Finder

+number:string

+owner id:string

+PlN:string

+balance:double

"retrjeve_j tem (item_ jd: in stringJ: Item

"deposit (amount:in double} :void

""'j thdrawfamount :in double} :double

1

J [0niframe.Bank: :AceountllotPounJ

interface

Un1trameBank: :.ltem

~ing

+id:string

+date: string

+amount :double

+reason:strir.!.9..

Unifram.eBanJc: :Inauffieien~

ba la nee: double

[]

[Onifrau.eBanJt: :ltemKotPoun]
::J

l J

Oni frlll:De.Sank: : Invalid.Paramet

mess~e: stril'!..9__

Figure S: Simple Bank
Platform Independent Model (PIM)

• 6.3 Simple Bank Paradigm Specific Model

-8-

EDOC 2002

The next step in the Model Driven Architecture is to
find a way to use all the model infonnation that has been
captured in the use case analysis of the Platfonn
Independent Model (PIM) and define the techniques that
allow Platfonn Specific Models to be created that
leverage all aspects of the PIM. We have reached the
point where model optimizations must consider the
characteristics of the target environment and/or platfonn.

As we make this transition, we see the value of
progressing to a Platfonn Independent Model that is
optimized for a particular computing paradigm; that is,
the PIM may be used as a foundation for multiple
platfonn specific implementations provided those
platfonns share some common characteristics. The
characteristics or paradigms to consider include
distributed solutions (distributed objects, synchronous
messaging, asynchronous messaging, etc.), and local
solutions (object-oriented programming, procedural
programming, etc.). Other aspects such as embedded
and/or real-time might also be considered at this time. A
transition to a "paradigm specific model" is a useful
intennediate step that captures the analysis necessary for
a transition from a Platform Independent to Platfonn
Specific Models. As such it may be useful in the
development of algorithms that can be used with
generative techniques for Platform Specific Models.

Are there usage scenarios that require remote access
across wide area networks where network speed may
be a factor?

Evaluate carefally each high usage remote access
scenario for the following characteristics.

1. Does it require multiple network operations to
accomplish what is logically a single request to the
user?

Consider creating a service interface that offers services
that wrap the existing service and gather all required
information before responding.

2. Is it common to require and/or update multiple
attributes simultaneously?

Consider passing structures or objects by value instead
of using accessors and mutators on object attributes.

Figure 6: Experience-based remote access techniques

Continuing with our evaluation of quality of service
issues, we focus on a distributed object paradigm as our

• technology choice.
techniques that we
Independent Model
exhaustive).

Figure 6 includes some of the
can use to refine our Platform
(these are illustrative and not

•

These design principles are key features of aspect
oriented (or service oriented) architectures and are at the
heart of what must be done for secure manageable web
services. It is important to note that the business model
is typically expressed as an object-oriented view of the
business, not as a service oriented model. Therefore it is
not possible to derive the service model directly from a
business model with generative tools - that is, there is
additional information (such as patterns of usage) that is
not expressed in the business model that must be
considered. The effect of this is that the resulting
service model must be manually validated against the
business model, as effects of changes on one model are
not readily identifiable. This is a serious issue for
business systems and one that will need to be addressed
as MDA techniques and tools mature.

The analysis of our SimpleBank indicated that
remote requests for account balance are very common
and have a performance commitment associated with
them. In addition, there were merchant services that
have an impact on the revenue if performance
commitments are not met. The PIM currently requires
two independent requests across the network each time a
balance is requested - first AccountFinder::find
(account_number) to locate the account followed by
Account::balance() to retrieve the balance. A more
efficient remote operation (on some yet to be determined
interface) might be get_balance (account_number) to
allow this to be a single remote operation.

The key services of the bank are reflected in Figure 7
This is a paradigm specific model that is an addendum to
the PIM. This reflects the requirement that distribution
be considered and that key services be segmented for the
purpose of performance enhancement, prioritization, and
metrics.

inte-rface

Jtan.kS•rv1c•1 rB.nkS•rv1ce

•WJ thdr.aw(•ccount_number: in string, PIN: in :rt ring, ~rch.anc_1d:Jn string, a1110unt

.. gll!'t_bah1nce taccount_nu~rdn 11tring, PIN:in str!ngl :double

• Figure 7: Key Services Model for the SimpleBank

6.4 Simple Bank - Platform Specific Model

-9-

EDOC 2002

As we consider the technology platform that will be
utilized, an evaluation of the quality of service
requirements for the Simple Bank with regard to the
platform features are part of the final transformation into
a Platform Specific Model. These requirements (based
on the analysis of the domain and the QoS parameters
from our catalog) are:

Security: the service should be able to support dynamic
decisions regarding exporting functionality to a user.
The user should not be aware or have the ability to
attempt to invoke any update operations unless they are
authorized for update (that is, it should be possible at
runtime to determine the interface offered to individual
users).

Capacity: the system should be architected to scale to
thousands of uses doing concurrent extensive work on
hundreds of accounts. The usage is such that multiple
operations will typically be done on accounts.

Maintainability: The ability to provide administrative
services that extend the functionality must be available.
The enhancement of these administrative interfaces
should not impact the customers who are using the core
features of the bank.

Performance: This is a distributed service. The service
should be optimized for interactions across a wide area
network at midrange speed.

The UniFrameBank designed to accommodate these
requirements is defined below in ISO IDL. Note once
again, that this interface model cannot be generated from
the business model; a classic object-oriented design that
does not take into consideration any QoS characteristics.
The level of abstraction for the business model does not
support the level of detail required to factor functionality
in this way.

The UniFrameBank module defined in Figure 8 takes
these QoS requirements and the usage scenarios into
account. It introduces interfaces that respect the QoS
requirements of the SimpleBanks' service offerings
while maintaining the separation of concerns necessary
to address security, ease of administration and
maintainability.

·.---------~

•

module UniframeBank {

I typedef sequence<string> AccountNumbers;

struct Accountinfo {
string owner_id;
string number;
string PIN;
double balance;

};

struct Iteminfo {
string id;
string type;
string date;
double amount;
string reason;

} ;

exception AccountNotFound{};
exception ItemNotFound{};
exception InsufficientFunds{

double balance;
} ;
exception InvalidParameter{

string message;'
};

II Forward references
interface AccountFactory;
interface Account;
interface AccountAdmin;

II Key Services
interface BankService
{

readonly attribute string bank_id;

void withdraw(

) ;

in string account_number,
in string PIN,
in string merchant_id,
in double amount

raises (
Account Not Found,
InsufficientFunds

double get balance(
in-string account_number,
in string PIN

raises (AccountNotFound
) ;

} ;

II AccountFinder
interface AccountFinder

readonly attribute
AccountFactory account_factory;

readonly attribute string bank_id;

Account find(
in string account_number

) raises (
AccountNotFound

) ;

AccountNumbers find_account by owner(
in string owner id - -

) raises (-

) ;

} ;

AccountNotFound

- JO-

EDOC 2002

II AccountFactory
interface AccountFactory AccountFinder {

Accountinfo open(

) ;

in string owner id,
in double deposit,
in string PIN

raises (
InvalidParameter

void close(
in string account number

) raises (
AccountNotFound

} ;

) ;

} ;

II Account
interface Account

} ;

readonly attribute
AccountAdmin account_admin;

readonly attribute
AccountFinder account finder;

readonly attribute string number;
readonly attribute string owner id;
readonly attribute string PIN; -

Iteminfo retrieve item info(
in string i te'fn id -

J raises (-
ItemNotFound

) ;

void deposit (
in double amount

) raises (
InvalidParameter

) ;

double withdraw (
in double amount

raises (
InsufficientFunds

) ;

II AccountAdmin
interface AccountAdmin Account

void update owner(
in string owner id

) raises (-
InvalidParameter

) ;

void update_PIN(

) ;

in string oldPIN,
in string newPIN

raises (
InvalidParameter

void adjust (

) ;

} ;

in double amount,
in string reason

raises (
InvalidParameter

Figure 8 - UniFrameBank - Platform Specific Model

• An AccountFinder interface is responsible for
locating accounts. This eases security because none of
the operations on the Account are visible from this
interface; hence if a client is not authorized to access an
account they will be restricted from obtaining a
reference to an Account object. In addition, the
AccountFactory (which inherits from AccountFinder) is
available only to clients who are authorized to open or
close accounts. The AccountAdmin interface was
introduced to allow evolution to more sophisticated
services without affecting the interfaces of the
core account services (AccountFinder and
AccountFactory). The client must be authorized to use
an AccountAdmin object which had the ability to modify
existing account attributes or items. The Account object
offers only the core banking operations. The ability to
request all Account or Item information in a single
operation was added to the Account Interface to meet
the performance requirements and limit the number of
network interactions. The BankService interface that
was introduced in the paradigm specific PIM is retained
in the PSM.

• 7. Future Directions

The models and IDL presented in this paper will
form the basis of the additional work to validate the
experience-based design patterns presented in the paper
and to progress techniques for the model
parameterization with the goal of enabling generation of
platform specific models such as those presented in this
paper.

The next step in our research is to examine how these
experienced-based patterns can be expressed as model
parameters. We are hopeful that previous research
(including our work on the QoS Catalog and TLG) [15)
[16) and work in progress on standards for UML
Profiles for QoS [14) can be leveraged. For this reason,
we have not proposed a language for this purpose as yet.
The QoS instrumentation is a complementary research
activity. There is a need in component-based
environments to progress instrumentation that can be
utilized to determine whether a component can meet
those QoS parameters when used within a composition.
Of course, a part of the challenge is that the
instrumentation introduces an additional overhead and in
si~ations that are time sensitive or must be predictable,
this overhead may disrupt the ability to measure the QoS
parameter under observation. It is clear that a

.ubstantial amount of research needs to be done in this
area and we plan to use an approach based on event
grammars as indicated in [I] [17).

- I I -

EDOC 2002

8. Conclusion

The ability to provide the QoS parameterization of
models is recognized in the Object Management Group
community and standards in this area will lead to the
ability to generate Platform Specific Models that take
quality of service characteristics into account. However,
since there has been a very little work on progressing
Quality of Service specifications for component-based
architectures, UniFrame research has a potential to
impact how the Object Management Group (OMG)
defines QoS parameterization for Model Driven
Architecture and the ability to more clearly specify and
measure component feasibility for a particular task. The
standardization of QoS catalogs and parameters is a pre
requisite to defining algorithms for the transformation of
Platform Independent Models into Platform Specific
Models. In addition, benchmarking and service
validation via instrumentation require that such
standards exist. Our expectation is that any Quality of
Service parameters defined by OMG will be applicable
for CORBA®, J2EE™, and Web Services component
architectures .

Quality of Service characteristics must have syntax
for expression in every artifact of the analysis, design
and development process. Design patterns must be
documented and exploited in such a way that generative
techniques can be applied. In addition, formal
specifications will allow the instrumentation necessary
for measuring quality of service to be come an integral
part of middleware and component implementation
frameworks.

QoS-oriented software development is of paramount
importance to delivering robust, scalable and secure
distributed component solutions.

• 9. References

(l) Rajeev R. Raje, Barrett Bryant, Mikhail Auguston, Andrew
Olson, Carol Burt. "A Unified Approach/or the Integration of
Distributed Heterogeneous Software Components",
Proceedings of the 2001 Monterey Workshop on Engineering
Automation for Software Intensive System Integration, pp:
109-119, Monterey, California, 2001.

(2] Object Management Group. 2001. Model Driven
Architecture: A Technical Perspective. Technical Report.
Document # orrnsc/2001-07-01. Framingham, MA: Object
Management Group. July 2001.

[3] Carol C. Burt, Barrett R. Bryant, Rajeev R. Raje, Andrew
Olson. Mikhail Auguston. 2002. Quality of Service (QoS)
Standards for Model Driven Architecture. Proceedings of the
2002 Southeastern Software Engineering Conference (to
appear).

[4] K. Czarnecki, U. W. Eisenecker, 2000. Generative
Programming: Methods, Tools, and Applications. Addison
Wesley.

[SJ Object Management Group. 2001. CORRA 3.0 CORRA
Component Model Chapters. Document # ptc/2001-11-03.
Framingham, MA: Object Management Group.

•
[6] Sun Microsystems. 2001. Jav~ 2 Platf~rm Enterprise
Edition Specification vl.3, Available via ftp from
www.java.sun.com. Sun Microsystems.

[7] Rajeev R. Raje, Mikhail Auguston, Barrett Bryant, Andrew
Olson, Carol Burt. 2001. A Quality of Service-based
Framework for Creating Distributed Heterogeneous Software
Components. Technical Report. Indiana University Purdue
University Indianapolis.

[8] J. A. Zinky, D. E. Bakken, R. Schantz,, 1995. Overview of
Quality of Service for Distributed Objects, Proceedings of the
Fifth IEEE Dual Use Conference.

(9] S. Frolund, J. Koistinen. 1998. Quality of Service
specification in Distributed Object Systems, Proceedings of
the 4th USENIX Conference on Object-Oriented Technologies
and Systems (COOTS '98).

[10] S. Frolund, J. Koistinen. 1999. Quality of Service Aware
Distributed Object Systems. 5th USENIX Conference on
Object-Oriented Technologies and Systems (COOTS '99).

[1 1 J Ringo Ling, Hugo Latapie, Vu Tran, 2002. Expressing
Common Criteria Security Requirements in Domain Models in
Model-base Architecture. Technical Presentation. Distributed
Object Security Conference (DocSec 2002). Baltimore, MD.
March 2002.

a12] BBN Corporation, 2001. Quality Objects (QuO) Project,
9JRL: http://www.dist-systems.bbn.com/tech/QuO.

- 12 -

EDOC2002

[13) Chris Jones, Partha Pal, Franklin Webber, 2002. Defense
Enabling Using QuO: Experience in Building Survivable
CORRA Applications. Technical Presentation. Distributed
Object Security Conference (DocSec 2002). Baltimore, MD.
March 2002.

[14] Object Management Group. 2002. UML ™Profile for
Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms. Request for Proposal. OMG
document ad/02-01-07. Framington, MA. Note: This RFP
issued January 2002 with submissions due June 24, 2002.

(15] Girish J. Brahnmath, Rajeev R. Raje, Andrew M. Olson,
Mikhail Auguston, Barrett R. Bryant, Carol C. Burt. 2002. A
Quality of Service Catalog for Software Components.
Proceedings of the 2002 Southeastern Software Engineering
Conference (to appear).

[16] Barrett Bryant, Mikhail Auguston, Rajeev R. Raje,
Andrew M. Olson, Carol C. Burt. 2002. Formal Specification
of Generative Component Assembly using Two-Level
Grammar. Technical Report. University of Alabama
Birmingham.

[17] Mikhail Auguston. 2000. Tools for Program Dynamic
Analysis, Testing, and Debugging Based on Event Grammars.
Proceedings of the 12th International Conference on Software
Engineering and Knowledge Engineering (SEKE 2000),
pp. 159- 166 .

[18] Object Management Group. 2000-2002.0MG Adopted
Technology for UML, UML Profiles, Meta Object Facility and
Common Meta-Data Warehouse. These OMG documents are
available from OMG via
http://www.omg.org/technology/documents/modeling_ spec_ ca
talog.htm. Framingham, MA: Object Management Group.

CORBA® is a registered Trademark of the Object

Management Group(OMG). CCM, UML, MOF and MDA

are trademarks ofOMG.

JAVA, J2EE, and EJB are trademarks of Sun Microsystems.

Other trademarks, which may be used in this document, are the

properties of their respective owner corporations.

•

•

•

A Framework for Automatic Debugging

Mikhail Auguston, Clinton Jeffery, Scott Underwood
Department of Computer Science, New Mexico State University

{ mikau, Jeffery, sundenvo }@cs. nmsu. edu

Abstract

This paper presents an application framework in
which declarative specifications of debugging actions are
translated into execution monitors that can automatically
detect bugs. The approach is non-intrusive with respect to
program source code and provides a high level of
abstraction for debugging activities.

1. Motivation

Debugging is one of the most challenging, and least
developed areas of software engineering. Debugging
activities include queries regarding many aspects of target
program behavior: sequences of steps perfonned, histories
of variable values, function call hierarchies, checking of
pre- and post-conditions at specific points, and validating
other assertions about program execution. Perfonnance
testing and debugging involves a variety of profiles and
time measurements.

We are building automatic debugging tools based on
precise program execution behavior models that enable us
to employ a systematic approach. Our program behavior
models are based on events and event traces [1][2][3].

Debugging automation refers to a computation over an
event trace. Program execution monitors are programs
that load and execute a target program, obtain events at
run-time, and perform computations over the event trace.
Computations are performed during execution, post
mortem, or in any mixture of both times.

Any detectable action performed during a target
program's run time is an event. For instance, expression
evaluations, statement executions, and procedure calls are
all examples of events. An event has a beginning, an end,
and some duration; it occupies a time interval during
program execution. This leads to the introduction of two
basic binary relations on events: partial ordering and
inclusion. Those relations are determined by target
language syntax and semantics, e.g. two statement
execution events may be ordered, or an expression
evaluation event may occur inside a statement execution
event. The set of events produced at the program run time,
together with ordering and inclusion relations, is called an
event trace and represents a model of program behavior.
An event trace forms an acyclic directed graph (DAG)

with two types of edges corresponding to the basic
relations.

The language UFO (from Unicon-FORMAN)
integrates the experience accumulated in the FORMAN
[I] language and the Alamo monitoring architecture [4] to
provide a complete solution for development of an
extensive suite of automatic debugging tools. UFO is an
implementation of FORMAN for debugging programs
written in the Unicon and Icon programming languages
[5][6].

2. Unicon and Alamo

Unicon is an imperative, goal-directed, object-oriented
superset of Icon. Unicon's syntax is similar to Pascal or
Java; its semantics features built-in backtracking,
heterogeneous data structures and string scanning
facilities. Unicon extends Icon's reach with elegant object
orientation, high level networking, messaging, and
database facilities.

The reference implementation of Unicon is a virtual
machine. Virtual machines (VMs) are attractive to
language implementers because they provide portability
and a vastly simpler implementation of very high level
language features such as backtracking. As a result, event
detection is an integral part of the VM.

VMs are ideal for developing debugging tools; they
provide an appropriate level of abstraction for behavior
models that describe program executions in a processor
independent manner, as illustrated by the JPAX tool [7].

In Alamo, monitors and the target program execute as
(sets of) coroutines with separate stacks and heaps inside
a common VM. The Unicon VM is instrumented with
over I 00 kinds of atomic events, each one capable of
reporting a <code,value> pair to monitors with interest in
that event. Event reports are coroutine context switches.

Monitors are written independently from the target
program, and can be applied to any target program
without recompiling the monitor or target program.
Monitors dynamically load target programs, and can
easily query the state of arbitrary variables at each event
report. Multiple monitors can monitor a program
execution, under the direction of a monitor coordinator.

Alamo's goal was to reduce the difficulty of writing
execution monitors to be just as easy as writing other
types of application programs. UFO supports FORMAN's

•

•

more ambitious goal of reducing the task of writing
automatic debuggers to the task of specifying genenc

assertions about program behavior.

3. An Event Grammar for Unicon

Event grammars provide a model of program run time
behavior. Monitors do not have to parse events using this
grammar, since event detection is part of VM and UFO
runtime system functionality. The following description
provides a "lightweight" semantics of the Unicon
programming language tailored for specification of
debugging activities.

An event corresponds to a specific action of interest
performed during program execution. Each event has one
or more types and related attributes associated with it.

Universal attributes are found in every event. They
are frequently used to narrow assertions down to a
particular domain (function, variable, value) of interest.
Some of the universal attributes are:

source_text: in canonical form (i.e. with redundant
spaces eliminated, etc.)

line_num, col_num: source text locations
time_ at_ end, time_ at_ begin, duration: timing

attributes
value_ at_ begin (Unicon-expression),
value at end (Unicon-expression): these attributes

provide access to the program states

The event types, and type-specific attributes they provide,
are summarized in the table below.

Event UT_e Descri_mion Attributes
prog_ex whole program

execution
expr_eval expression evaluation value, operator,

.!1'£_e, failure p
func call function call name, paramlist
param actual parameter name

evaluation
func bo<h'_ function body execution
input, I/O file
outp_ut
variable variable reference
literal reference to a constant

value
!hp lefthand part, address

assignment
rhp righthand part,

assignment
clause then-, else-, or case

branch execution

test test evaluation
iteration loop iteration
return return from procedure

call

Event types form a class hierarchy, shown in Figure 1.
Subtypes inherit attributes from the parent type.

Figure I. Event Type Inheritance Hierarchy

The UFO event grammar for Unicon is a set of axioms
describing the structure of event traces with respect to two
basic relations: inclusion and precedence. The grammar
shown below is one possible abstraction of Unicon
semantics; other event grammars might be used. The
event grammar limits what kinds of bugs can be detected,
so detail is useful. The grammar uses the notation:

Notation Meani11g_
A:: (BC) B precedes A, A includes B and C
A* Zero or more A's undeT_Qrecedence
A+ One or more A's under precedence
A]B Either A or B; alternative
A? A is optional
{A ,B} Set; A and B have no precedence

prog_ex:: (expr_eval *)
expr_eval::((expr_eval) I unary op

binary op (expr _ eval expr _ eval) I
(expr _ eval+) I
(test clause) I

(iteration *) I
({ !hp, rhp}))

conditional/
case expressions

loops
assignment

•
iteration::

func call::
func _body::

/hp and rhp are not
ordered, beginning of
/hp precedes rhp; and
end of /hp follows rhp

(test expr _ eval*) I (expr _ eval* test) I
(expr_eval *)
(param* func_body)
(expr_eval* return?)

Execution of a Unicon program produces an event
trace organized by precedence and inclusion into a DAG.
The structure of the event trace (event types, precedence
and inclusion of events) is constrained by the event
grammar axioms above. The event trace models Unicon
program behavior and provides a basis to define
debugging activities (assertion checking, debugging
queries, profiles, debugging rules, behavior visualization)
as appropriate computations over the event traces.

4. FORMAN

Alamo allows efficient monitors to be constructed in
Unicon, but using a special-purpose language such as
FORMAN, with the rich behavior model described in the

•
preceding section, has compelling advantages. For
example, in FORMAN we may refer to target program
variable x, while in the Unicon monitor it is referenced as
variable("x", &eventsource).

More important than such notational conveniences are
FORMAN's control structures that support computations
over event traces, centered around the notions of event
pattern and aggregate operations over events.

The simplest event pattern comprises just an event type
and matches successfully an event of this type or an event
of a subtype of this type. Event patterns may include
event attributes and other event patterns to specify the
context of an event under consideration. For example, the
event pattern

E: expr_eval:: (R: rhp & is_an_object(R.value))
& E.operator == ":="

matches an event of assignment type where the right hand
part evaluates to an object. Temporary variables E and R
provide an access to the events under consideration within
the pattern.

The following example demonstrates the use of an
aggregate operation.

CARD[A: func_call &
AJunc_name =="read" FROM prog_ex]

yields a number of events satisfying given event pattern,
collected from the whole execution history. Expression
[...] is a list constructor and CARD is an abbreviation for

•

a reduction of '+' operation over the more general list
constructor:

+/[A: func_call & A.func_name =="read"

FROM prog_ex APPLY 1]
Quantifiers are introduced as abbreviations for

reductions of Boolean operations OR and AND. For
instance,

FOREACH Pattern FROM event_set Boolean_expr
is an abbreviation for
AND/[Pattern FROM event_ set APPLY Boolean_expr]

Debugging rules in FORMAN usually have the form:
Quantified expr SAY-clauses ONF AIL SAY-clauses

The Qu;ntified-expr is optional and defaults to TRUE.
The execution of FORMAN programs relies on the
Unicon monitors embedded in a virtual machine
environment.

5. Examples of Debugging Rules

UFO supports and improves upon the most common
application-specific debugging techniques. For example,
UFO supports traditional precondition checking, or print
statement insertion, without any modification of the target
program source code. This is useful when the
precondition check or print statement is needed in many
locations scattered throughout the code .

Example #1: Tracing. Probably the most common
debugging method is to insert output statements to
generate trace files. It is possible to request evaluation of
arbitrary Unicon expressions at the beginning or at the
end of events.

DO AT EVERY A: func_call &
A.func_name == "my_func"

FROM prog_ ex {
BEFORE A

{ write("entering my _func, value of X is:", X) }
AFTER A
{ write("leaving my_func, value of X is:", X)}

}
This debugging rule causes run time instrumentation

with calls to write() at selected points, before and after
each occurrence of event A.

Example #2: Profiling. A myriad of tools are based on a
premise of accumulating the number of times a behavior
occurs, or the amount of time spent in a particular activity
or section of code. The following debugging rule
comprises several computations over the event trace.

SAY("Total number of read() statements:"
CARD[r:input & r.filename == "xx.in"

FROM prog_ ex]
"Elapsed time for read operations is: "
+/ [r:input & r.filename=="xx.in"

FROM prog_ex APPLY r.duration]

• Another interesting prospect is the development of a
suite of generic automated debugging tools that can be
used on any Unicon program. UFO provides a level of
abstraction sufficient for specifying typical bugs and
debugging rules. So far, the automatic debugging
encyclopedia at http://www.cs.nmsu.edu/please/bugs.html
has entries for 53 common bugs.

Example #3: Detecting Use of Un-initialized Variables.
Reading an un-initialized variable is allowed in Unicon,
but often leads to errors. Therefore, in this debugging rule
all variables within the target program are checked to
ensure that they are initialized before they are used.

FOREACH E: expr_eval CONTAINS (V: variable)
FROM prog_ex

EXISTS D: lhp FROM E.prev_path
D.source_text == V.source_text AND

V.source_text BELONGS_ TO
(E.scope SCOPE_INTERSECTION D.scope)

ONFAIL SAY("Expression" E "contains the"
"uninitialized variable" V.source_text)

SCOPE_INTERSECTION is similar to a set intersection,

•

except that it takes into account scoping and visibility
rules of the source language.

Example #4: Closed Files. Failure to close files that have
been opened is an easily overlooked error. This assertion
detects this event and warns the user. The temporary
variable NumberOfClose bolds the cardinality of the
close() event set.

FOREACH a: func_call::(b:param) &
a.func_name == "open"

LET NumberOfClose =
CARD[c:func_call::(d:param) &

c.func_name =="close" &
b.source_text == d.source_text]

IN IF NumberOfClose == 0 THEN
SAY("Failed to close file" b.source text

"after opening at event" ,a)
ELSEIF NumberOfClose > 1 THEN

SAY("Attempt to close file • b.source_text
"more than once") ENDIF

6. Implementation Issues

This section describes issues that have arisen during
the implementation of UFO. The most important of these
issues is the translation model by which FORMAN

~sertions are compiled down to Unicon Alamo monitors:
.uebugging activities are written as if they have the

complete post-mortem event trace, the DAG with events,

precedence and containment relations, available for
processing. This generality is extremely powerful;
however the vast majority of assertions can be compiled
down into monitors that execute entirely at runtime.
Runtime monitoring saves enormously on memory and
l/O requirements and is the key to practical
implementation. For those assertions that require post
mortem analysis, the UFO runtime system will compute a
projection of the execution DAG necessary to perform the
analysis.

The first step in generating code under the UFO
translation model is to categorize each assertion as either
"runtime", "post-mortem", or "hybrid", denoting the
extent to which that assertion can be performed at
runtime. Runtime and hybrid categorization is determined
by constraints on FORMAN quantifier prefixes and
results in more efficient monitor code. Nested quantifiers
generally require post-mortem operation.

The UFO compiler generates Alamo Unicon monitors
from FORMAN rules. Each FORMAN statement is
translated into a combination of initialization, run-time,
and post-mortem code. Monitors are executed as
coroutines with the Unicon target program.

Implementation of Example #I: Tracing. A single
DO AT EVERY quantifier is quite typical of many UFO
debugging actions and allows computation to be
performed entirely at runtime. The events being counted
and values being accumulated are used to construct an
event mask in the initialization code that defines the
Alamo events that will be monitored.

The monitor's event processing loop implements the
filter based on procedure name within an if-expression.
The Unicon code blocks containing write() expressions
are inserted directly into the event loop for the relevant
events. The complete monitor is:

$include "evdefs.icn"
link evinit
procedure main(av)

Evlnit(av) I stop("can't monitor", av[1])

###initialization for BEFORE and AFTER func call
mask:= E_Pcall ++ E_Pret ++ E_Pfail -

while EvGet(mask) do {
if &eventcode == E Pcall &

image(&eventvalue)=="procedure my _func" then
inserted BEFORE clause
write("entering my_func, value of Xis:",

variable("X", Monitored))
if &eventcode == (E_Pret I E_Pfail) &

image(&eventvalue)=="procedure my_func" then
inserted AFTER clause
write("leaving my_func, value of Xis:",

•
variable("X", Monitored))

end

Implementation of Example #2: Profiler. This is
another typical situation, which involves an aggregate
operation and selection of events according to a given
pattern. The SAY expression is implemented by a call to
write(); it must be performed post-mortem .since it u~es
parameters whose values are constructed durmg t~e entJTe
program execution. CARD denotes a ~ounter, ~h1Je SUt:'f
denotes an accumulator +/; both reqmre a vanable that is
initialized to zero. The event subtypes and constraints are
used to generate additional conditional code in the body
of the event processing loop. Lastly, some attributes such
as r.duration require additional events and measurements
besides the initial triggering event. In the case of
r.duration, a time measurement between the function call
and its return is needed.

$include "evdefs.icn"
link evinit
procedure main(av)

•
Evlnit(av) I stop("can't monitor", av[1])

tt## initialization for CARD and SUM
cardreads := 0
sumreadtime := 0
mask := E Fcall
while EvGet(mask) do {

tt## count CARD of r:input...
if &eventcode == E Fcall &

&eventvalue === (readlreads) then
cardreads +:= 1

tt## add SUM of r.duration for r:input
if &eventcode == E Fcall &

&eventvalue === (readlreads) then {
thiscall := &time
EvGet(E_Ffail++E_Fret)
sumreadtime +:= &time - thiscall

}
}

tt## Translation of SAY
write("Total number of read() statements:",

cardreads, "\n",

end

"Elapsed time for read operations is:",
sumreadtime)

The advantage of the UFO approach is the
combination of an optimizing compiler for monitoring
code with efficient run-time event detection and reporting.
Since we know at compile time all necessary event types
and attributes required for a given FORMAN program,
the generated Unicon monitor can be very selective about

.he behavior that it observes. The compiler merges several
computations such as operation reduction or quantifiers
present in the FORMAN assertions into a single Unicon

event loop. Since the compiler processes several
assertions together, it can merge overlapping constructs
(for example, those referring to the same events).

For certain kinds of FORMAN constructs, such as
nested quantifiers, the monitor must accumulate a sizable
projection of the complete event trace and postpone
corresponding computations until all required information
is available, and schedule corresponding computations.
The most challenging and interesting remaining part of
this compilation effort is to further optimize this analysis.

UFO's goal of practical application to real-sized
programs has motivated improvements to the Alamo
instrumentation of the Unicon VM. Although UFO is not
complete enough to report conclusive results, t~e
following table illustrates the effects of certam
optimizations. The program in question is a mail message
indexing tool, which processes mail headers and builds
indices. For test purposes it is executed on a sample input
of 3MB. All results are in seconds'. The leftmost column
shows the application's normal runtime. Columns 2-5
show runtimes for Implementation Example #2 above (the
1/0 function profiler) under Alamo, and three levels of
optimization under UFO. Alamo imposed a 200%
slowdown for comprehensive VM instrumentation, plus
Jess than l 00% slowdown for monitor code. Very little of
the VM instrumentation is actually needed for this
example. UFO-IO shows the effect of instrumentation
optimization which UFO does at compile-time, optionally
generating a custom VM for a given suite of FORMAN
assertions. UFO-CO shows additional compiler
optimizations on the monitor code. UFO-VM shows the
effect of a runtime optimization called value masking on
the virtual machine instrumentation. We are working on
additional optimizations, and believe the end result will
be highly practical execution from our high-level
framework.

No monitor Alamo UFO-IO UFO-CO UFO-VM
1.35 3.64 2.82 2.30 1.87

7. Related Work

See www.cs.nrnsu.edu/TechReports/2002/004.pdf for an
expansion of this survey of related work.

The Event Based Behavioral Abstraction
(EBBA) [8] characterizes program behavior in terms of
primitive and composite events. Dalek is an event-based
debugger for C built on top of GDB [9).

FORMAN takes a more comprehensive modeling
approach than EBBA or Dalek, based on an event
grammar and a language for expressing computations

•

•

over execution histories. Event grammars make
FORMAN suitable for automatic source code
instrumentation. FORMAN's abstraction of event as a
time interval provides an appropriate level of granularity
for reasoning about behavior, in contrast with the event
notion in previous approaches where events are
considered point-wise time moments.

Monitoring frameworks such as Dalek and COCA [I 0)
use GOB to attain a necessary level of abstraction, which
UFO finds in the Unicon virtual machine. While both
approaches yield adequate source-level access and control
over the monitored program, the virtual machine approach
avoids substantial operating system overhead and offers
better performance and scalability to larger programs.

Assertion languages provide yet another
approach to debugging automation. Most approaches are
based on Boolean expressions attached to points in the
target program, like the assert() macro in C. [13, 14, 15)
give approaches to programming with assertions for C
and Ada. Even local assertions associated with particular
points within the program may be extremely useful for
program debugging. The DUEL [11) debugging language
introduces expressions for C aggregate data exploration,
for both assertions and queries.

The notion of computation over execution trace
introduced in FORMAN is a generalization of
Algorithmic Debugging [21, 22] and may be a convenient
basis for describing generic debugging strategies.

PMMS [12] receives queries about target programs
written in AP5, instruments source code, and stores data
in a database to answer the posed questions. PMMS's
domain specific query language is similar to FORMAN
but tailored for database-style query processing.

8. Conclusions

The popularity of virtual machines promises to enable
dramatic improvements in automatic debugging. These
improvements will only occur if debugging is a specific
goal of the virtual machine, e.g. as in the case of .net [13].

UFO illustrates what is possible for a broad class of
languages such as those supported by the Java VM or the
.net VM. Our approach uniformly represents many types
of debugging-related activities as computations over
traces. We have shown an approach to integrating event
trace computations into a monitoring architecture based
on a virtual machine. The end result provides a suitable
environment for the implementation of automated
debugging tools .

• Aclrnowledgements

This work has been supported in part by U.S. Office of
Naval Research Grant # N00014-0l-1-0746, by U.S. Army
Research Office Grant # 40473--MA-SP, and by the National
Library of Medicine.

References

[1] Mikhail Auguston, Program Behavior Model Based on
Event Grammar and its Application for Debugging
Automation, in Proceedings of AADEBUG'95, Saint
Malo, France, May 22-24, 1995, pp. 277-291.

[2] M. Auguston, A. Gates, M. Lujan, "Defining a program
Behavior Model for Dynamic Analyzers", in Proceedings
ofSEKE'97, Madrid, Spain, June 1997, pp. 257-262.

[3] M. Auguston, "Lightweight semantics models for program
testing and debugging automation", in Proceedings of the
7th Monterey Workshop on "Modeling Software System
Structures in a Fast Moving Scenario", Santa Margherita
Ligure, Italy, June 13-16, 2000, pp.23-31.

[4) Clinton L. Jeffery, Program Monitoring and Visualization:
an Exploratory Approach. Springer, New York, 1999.

[5] Clinton Jeffery, Shamim Mohamed, Ray Pereda, and
Robert Parlett, "Programming with Unicon",
http://unicon.sourceforge.net .

[6] Ralph E. Griswold and Madge T. Griswold, The Icon
Programming Language, 3rd edition. Peer to Peer
Communications, San Jose, 1997.

[7] K. Havelund, S. Johnson, and G. Rosu. "Specification and
Error Pattern Based Program Monitoring", European
Space Agency Workshop on On-Board Autonomy,
Noordwijk, Holland, October 200 I.

[8) P. C. Bates, J. C. Wileden, "High-Level Debugging of
Distributed Systems: The Behavioral Abstraction
Approach", The Journal of Systems and Software 3, 1983,
pp. 255-264.

[9] R. Olsson, R. Crawford, W. Wilson, "A Dataflow
Approach to Event-based Debugging", Software -
Practice and Experience, Vol.21(2), February 1991, pp.
19-31.

[IO] M. Ducasse, "COCA: An automated debugger for C", in
Proceedings ofICSE 99, Los Angeles, 1999, pp.504-513.

[I I] M. Golan, D. Hanson, "DUEL - A Very High-Level
Debugging Language", in Proceedings of the Winter
USENIX Technical Conference, San Diego, Jan. 1993.

[12] Y. Liao, D. Cohen, "A Specificational Approach to High
Level Program Monitoring and Measuring", IEEE
Transactions On Software Engineering, Vol. 18, No. 11,
November 1992, 969- 978.

[13) http://www.microsoft.com/net/.

•

•

•

Unified Approach for System-Level Generative Programming

Zhisheng Huang, Rajeev R. Raje,
Andrew M. Olson

Computer and Information Science
Indiana University Purdue University Indianapolis

Indianapolis, IN 46202, USA
{ zhuang, rraje, aolson, csun }@cs.iupui.edu,

+1317274 5246/5174/9733

Barrett R. Bryant, Carol Burt
Computer and Information Sciences

The University of Alabama at Birmingham
Birmingham, Alabama 35294-1170, USA

{bryant, cburt}@cis.uab.edu, +1205934 2213

Abstract

Today's and future distributed software systems will
certainly require combining heterogeneous software
components that are geographically dispersed so that its
realization not only meets the functional requirements,
but also satisfies the non-functional criteria such as the
desired quality of services (QoS). The Unified Approach
(UA) incorporates the concepts of product line practice
(PLP) and generative programming with the Unified
Meta-component Model (UMM) to achieve automatic
development, maximal reuse and seamless interoperation.
The creation of a software solution for a distributed
computing system (DCS), using the UA has two levels, the
component level and the system level. In this paper, the
system-level generative programming of the UA is
described.

Keywords: Distributed Computing Systems,
Heterogeneous Components, Quality of Services,
Generative Programming, Generative Domain Model,
Two-Level Grammar.

1. Introduction

As distributed computing becomes more and more
crucial for the success of today's enterprises, there is an
increasing need to develop software for a distributed
computing system (DCS) in an effective and efficient
way. A lot of distributed computing systems are still

1

Mikhail Auguston
Department of Computer Science

New Mexico State University
Las Cruces, NM 88003, USA

mikau@cs.nmsu.edu, +I 505 646 5286

Changlin Sun
Computer and Information Science

Indiana University Purdue University Indianapolis
Indianapolis, IN 46202, USA

csun@cs.iupui.edu, +1 317 274 5246

designed and built as single systems. This approach has
the problems of large investment, Jong development
cycles, difficulties in the system integration, and a Jack of
predictable quality. Generative programming [7) and
product line practice (PLP) [19) help us to move the focus
from the development of single systems to system
families. The use of components to develop software for a
DCS is consistent with the notions of generative
programming and PLP. However, another challenge arises
as component-based software development is applied to
distributed computing. This challenge is an effect of the
presence of multiple component models. Currently,
different component models have been proposed, such as
Java™ Remote Method Invocation (RMI) (13), Common
Object Request Broker Architecture (CO RB A™) [11, 13,
17), and the Distributed Component Object Model
(DCOM™) [10). There are difficulties in bridging the
components of different models, thus reducing the
component reuse. The Unified Meta-Component Model
Framework (UniFrame) research (14, 15, 16) is an
attempt to unify the existing and emerging distributed
component models under a common meta-model, the
Unified Meta-component Model (UMM), for the purpose
of enabling the discovery, interoperability and
collaboration of components via a Unified Approach
(UA). The UA is a UMM-based technique, which
incorporates some ideas from generative programming
and PLP. It replaces the manual search for, and adaptation
and assembly of, heterogeneous and distributed
components with automation. The aim is to develop a
quality-oriented and time-to-market DCS with lower

•

•

•

development and maintenance costs. The creation of a
software realization of a DCS using the UA has two
levels: a) the component level - component development
and deployment, and b) the system level - automatic or
semiautomatic system generation.

This paper describes the UA at the system level. The
principles of generative programming, PLP and the
UniFame are briefly described in the next section. Section
3 discusses, in detail, the system-level generative
programming of the UA, which is illustrated by an
example in section 4. The paper concludes in section 5.

2. Related work

2.1 Generative programming

The generative programming is concerned with
bringing automation to the software development. In (7)
the generative programming paradigm is defined as:
"Generative Programming is about manufacturing
software products out of components in an automated
way. It requires two steps: a) a design and implementation
of a generative domain model, representing a family of
software systems (development for reuse). This model
includes also a domain-specific software generator; b)
given a particular requirements specification, a highly
customized and optimized end-product can be
automatically manufactured from implementation
components by means of generation rules (development
with reuse)". The methods presented in (7) can be applied
both "in the small", i.e., at the level of classes and
procedures and "in the large", to develop families of large
systems.

2.2PLP

In 1997, the PLP initiative [19] was launched by the
Software Engineering Institute (SEI) of Carnegie Mellon
University. The intention was to help facilitate and
accelerate the transition from the traditional single system
development to sound software engineering practices
using a product line approach. A software product line is
defined to be a set of software-intensive systems sharing a
common, managed set of features that satisfy specific
needs of a selected market or mission, and that are
developed from a common set of core assets in a
prescribed way [5, 6). The SEI's PLP Framework is the
first formal attempt to codify the comprehensive
information about successful product lines. The idea
behind this framework is to identify the different issues
and practices relevant to establishing and running
successful product lines in an organization. More
information can be found on the PLP Framework website
[20).

2

2.3 UniFrame

The UniFrame provides a framework for constructing
a DCS by integrating the heterogeneous and distributed
software components. It consists of the Unified Meta
component Model (UMM) and the Unified Approach
(UA).

2.3.1 UMM. The recent shift in the focus of Object
Management Group (OMG) to Model Driven
Architecture (MDA) [12) is a recognition that bridging
components to create DCS requires standardization of not
only the infrastructure but also Business and Component
Models. The UMM provides an opportunity to bridge
gaps that currently exist in the standards arena. The core
parts of the UMM are: components, service and service
guarantees, and infrastructure. In UMM, components are
autonomous entities. All components have well-defined
interfaces and private implementation. In addition, each
component in UMM has three aspects: a) computational
aspect, b) cooperative aspect, and c) auxiliary aspect.
Each component must be able to specify and guarantee
the quality of service (QoS) offered. The headhunter [18)
and Internet Component Broker (ICB) [15, 18) of the
infrastructure are responsible for allowing a seamless
integration of different component models and sustaining
cooperation among heterogeneous components (adhering
to different models). The headhunter is responsible for
searching and managing heterogeneous and
geographically distributed components. The ICB acts as a
translator between two heterogeneous components. An
ICB itself is a component defined under the UMM. It
achieves interoperability using the principles of wrap and
glue technology [9]. An example of ICB is a Java -
CORBA bridge, which bridges a component of Java RMI
technology and a component of CORBA technology. For
a detailed description ofUMM, see [14, 15, 16].

2.3.2 UA. The UA is the UMM-based technique for the
automatic production of a DCS. The creation of a
software realization of a DCS using UA has two levels: a)
the component level - components are designed and
developed with UMM specifications (which are informal
in nature [14]), tested and validated against the
appropriate QoS, then deployed on the network, and b)
the system level - a semi-automatic or automatic
generation of a specific DCS product from a DCS family.
The concepts of generative programming are applied at
both levels in the UA. This paper describes the
application of generative programming at the system
level.

3. System-level generative programming of
the Unified Approach (UA)

•

•

•

3.1 Core activities in the UA

The UA has four core activities for building
distributed systems. These are: generative domain
engineering, component engineering, generative
application engineering, and active distributed component
management. Their relationships are depicted in Figure l.
The development process is iterative and there are
feedbacks during the first three activities. These four core
activities span both the levels of UA: the component level
and the system level. The first two activities, generative
domain engineering and component engineering,
corresponding to the domain engineering in [7], aim at
maximizing the reuse of both the components and the
software architecture. We distinguish between these two
activities because they reflect the different levels in the
UA. Generative domain engineering is a system-level
activity and the component engineering is at the
component level. Generative application engineering is
another system-level activity. Active distributed
component engineering is involved at both levels.

Generative
Domain
Engineering

t
Generative
Application
Engineering

Component ... ~ Engineering

/ ..
I •

Active ·--· Distributed
Component
Management

Iteration and feedback
Query and search

Figure 1. UA core activities

Generative domain engineering consists of activities
for identifying commonalities and variations of the
system architecture of a DCS family. It is responsible for
creating the generative domain model (GDM), which is
discussed in 3.2, to represent a configurable system
architecture. This architecture includes a set of abstract
components as the guidelines for developing reusable
concrete components during component engineen'ng
phase. Each abstract component represents one
component type and is defined with its UMM
specification. This specification is natural language-like
and includes both the functional and nonfunctional (such
as expected QoS properties) aspects of a component [14).
This ·specification is then refined into a formal
specification, based upon the theory of Two-Level
Grammar (TLG) (4) and natural language specifications

3

[3]. The GDM is the core software asset that results from
generative domain engineering.

During component engineering phase, the abstract
components are mapped to different component models to
create concrete components. The concrete components are
tested and validated against the appropriate QoS,
deployed over the network, and then are discovered by the
headhunters. It is worthwhile to note that the generative
programming is also carried out in the component
engineering phase of the UA.

Generative application engineering is the process of
building a DCS based on a GDM. It is supported by the
query processor (see explanation in section 3.4) and
active distributed component management. During
generative application engineering, a DCS is produced
out of a DCS family in three steps: a) determining the
target system and its architecture instance according to
the system specification produced by the query processor;
b) searching for concrete components for the target
system via the headhunter; and c) assembling and testing
the DCS according to the architecture instance to produce
a workable distributed system that meets both the
functional and non-functional requirements. The GDM is
used to guide the system assembly and validation. The
validation of the QoS requirements is carried out both by
QoS composition rules [21), which specify how the
system QoS or subsystem QoS can be composed from the
QoS of its parts, and by the event grammars [l, 2], which
are used as the basis for the system behavior models to
trace events like executing a statement or calling a
procedure. The example in the next section illustrates
these steps.

Active distributed component management is the
UniFrame resource discovery service (URDS) (18]. It
offers the dynamic discovery and management of the
heterogeneous software components and assists in the
finding of the required components during the phase of
the generative application engineering. These are
achieved by headhunters, which are analogous to binders
or traders in other models, with one difference - a trader is
passive, while a headhunter is active. For details, see [18].

3.2UAGDM

The key to automating the manufacturing of systems
is a GDM, which consists of a problem space, a solution
space, and the configuration knowledge mapping between
them (7). The problem space consists of the application
oriented concepts and features that application developers
can use to express their needs. UA GDM contains a
Design Space Model (DSM) to represent the common and
variable properties of a software architecture and a set of
abstract components as guidelines for creating reusable
distributed components. The DSM is an important part of
the problem space. DSM describes the configurable

•

•

•

software architecture with feature notations as described
in 17), but, additionally, classifies the architectural nodes
that are divided into five types: domain, system,
subsystem. design and abstract component. In the
graphical representation of the GDM, these node types are
represented by surrounding the name of each node with
<< >>, < >, (), { }, and [] respectively. Associated with
each node type is a standardized description, such as the
UMM description for an abstract component. With the
introduction of node types, a configurable system
architecture can be easily represented. The description
associated with a node shows information such as the
relationship between its constituents (its children in the
DSM). A simple example of a DSM is described in the
next paragraph. The solution space consists of concrete
components developed during component engineering
when abstract components are mapped to specific
component models and implemented. The configuration
knowledge includes, as stated in [7], illegal feature
combinations, default settings, default dependencies,
construction rules and optimization rules, etc. In UA, it
also includes additional important knowledge, such as,
QoS composition and decomposition rules [2 IJ, which
help ensure the assembled distributed system meets not
only the functional requirements but also the non
functional requirements.

Figure 2. UA DSM for an account
management system

Figure 2 shows a simplified example of a DSM for an
account management system. In this DSM, two kinds of
feature notations are used: mandatory and alternative. A
node is mandatory if a simple edge ends with a filled
circle touching it. This means this node is included in an
architecture instance if and only if its parent is included.
A set of nodes that is pointed to by edges connected by an
arc forms alternatives. This means that if the parent of this
set of nodes is included in an architecture instance, then
exactly one node from this set is included in the

4

I

architecture instance. The details of feature notations are
indicated in [7]. The root of the example DSM is
<Bank>, which indicates the specific type of account
management system being considered. It has two different
designs: a {Simple Design} and an {Advanced Design}.
The details of the {Advanced Design} are omitted in the
figure for simplicity. The {Simple Design} of the
<Bank> has two subsystems: the (Client Subsystem)
and the (Account Subsystem). These subsystems also
can have more than one design that have different kinds
of abstract components as shown in the Figure 2. Thus,
this architecture can be configured, based on a customer's
requirements, to create an appropriate architecture
instance. One example of the customized architecture
instance of this DSM is shown in Figure 3. Both the DSM
and the architecture instance serve as the example in
Section 4.

<Bank> I

Figure 3. Architecture instance for an
account management system

3.3 Language for ordering a DCS

Another important aspect of system level generative
programming is how to express the query to order a
concrete system out of a system family. [7} discusses the
use of a domain specific language (DSL), which is a
specialized and problem-oriented language, for placing an
order. DSL could be a separate textual language, such as
SQL, or it could be in a graphical notation. In general,
there is a need for several different DSLs to specify a
complete application. This makes the "order" complex. In
UA, the ordering of a concrete system can be expressed in
a structured form of natural language and then processed
into TLG with the help of the query processor. TLG
allows queries over the GDM to be expressed in a natural
fanguage-like manner, which is consistent with the way in
which UMM is expressed. An example of a query for
ordering a DCS is presented in Section 4.

•

•

3.4 UA generator

UA generator is a tool for realizing system-level
generative programming. This generator is for system
generation instead of component code generation. The
architecture of he UA generator is shown in Figure 4. It
consists of three functional modules: a generative domain
model knowledgebase (GDMKB) producer; a query
processor (natural language parser), which is responsible
for translating natural language like orders into system
specifications using TLG [8); and an application producer
which is responsible for assembling a DCS from a DCS
family based on the UA GDM. The application producer
implements the processing logic of the GDM. In our
design, we separate UA GDM from the processing logic
of GDM. The merit of this approach is that as a GDM
evolves, the only thing that needs to be updated and
maintained is the GDMKB. A simple generator for
prototyping purposes has been designed and implemented
with the logic of a multi-tiered architecture: client tier
(web browser, HTML pages), web tier (web server,
JSP/Servlet), business tier (application server, generator
logic) and database tier (UA GDMKB). Experiments are
underway with this prototype. The initial results indicate a
good promise in a semi-automatic construction of simple
distributed systems.

Figure 4. UA generator architecture

4. An example

In order to illustrate the process of the UA system
Ievel generative programming, along with the functions of
each of its constituents, a simple example of a bank
account management system from the finance domain is

• described below. The DSM for this example is shown in
Figure 2. This DSM constitutes four types of abstract
components, [BankClient], [AccountServer],
[AccountManager] and [AccountDatabase]. The goal

5

is to assemble an account management system from the
available concrete components of these abstract
components using the corresponding generative domain
model.

4.1 Determining the target system and its
architecture instance

The general form of a query is to request the creation
of a system that has certain QoS parameters. The name of
the system is important in identifying the application
domain. A sample query for the above example can be
informally stated as: Create a bank system for account
management that has: end-to-end delay < 15 milliseconds
and throughput > 2500 operations/second. This query is
parsed into a formal specification by the query processor.
The generator checks the specifications against the GDM
and may prompt for more information from the user, such
as design option in this case (this is an iterative process to
collect enough user requirements to determine the target
system and its architecture instance).

Assume a simple design is specified for both the
<Bank> and the {account subsystem) (certainly the UA
generator provides the specifications from the GDM
about the simple design and the advanced design so the
application programmer can decide which one to choose).
Then the generator can determine the architecture
instance for the specified system and, thus, the required
component types are also determined as seen in Figure 3.
In this case, two types of component are needed to
produce the desired system: [BankClient] and
[AccountServer].

4.2 Searching for the concrete components

During this step, from the query and the available
information in the DSM about the set of the required
abstract components, searching criteria (for both
functional and nonfunctional features) for each
component type is created. In this example, the QoS of
the two abstract components are set according to the QoS
decomposition rules in · this DSM: 1) component
throughput > system throughput; 2) component end-to
end delay < system end-to-end delay.

These decomposition rules provide the broadest range
for the component QoS based on the system QoS. Thus
the QoS criteria for both components are: a) throughput >
2500 operations/seconds; b) end-to-end delay < 15
milliseconds. Then the headhunters are contacted to
search for the concrete components. If the found
components are implemented with different technologies,
the headhunters will also return the appropriate ICB. In
this example, assume the headhunters discover the
following concrete components for each of the required

•

•

component types and the necessary ICB, Java-CORBA
bridge (also a component type as described in section
2.3. J). Suppose these concrete components are
implemented with different technologies: Java RMI or
CORBA, and have different advertised QoS.

l. [BankClient]
(a)BankCJient - id: phoenix.cs.iupui.edu, technology:

Java RMI, end-to-end delay < JO milliseconds,
throughput > 3000 operations/second

(b)BankClient id: Jalo.cs.iupui.edu, technology:
CORBA, end-to-end delay < 15 milliseconds,
throughput > 2500 operations/second

2. [AccountServer]
(a)AccountServer id: swordmaster.cs.iupui.edu,

technology: Java RMI, end-to-end delay < 5
milliseconds, throughput > 12000 operations/second

(b)AccountServer id: magellan.cs.iupui.edu,
technology: CORBA, end-to-end delay < 1
millisecond, throughput > 8000 operations/second

3. [Java-CORBA bridge]
Java-CORBA bridge - id: ericsson.cs.iupui.edu,
technology: Java RMI, end-to-end delay < I
millisecond, throughput> 10000 operations/second

4.3 System assembling and testing

Now the generator can assemble four systems
(BankCiient - AccountServer) from components found
above. These four systems .. are distinguished by the
implementation technology of its constituent components:
Java RMI - Java RMI system, Java RMI - CORBA
system, CORBA - Java RMI system and CORBA -
CORBA system. The system QoS is composed from the
QoS of the concrete components. The system QoS is used
to select the final product. Assume the following
composition rules for this example: 1) system throughput
= min (component throughput); 2) system end-to-end
delay = I component end-to-end delay.

The system QoS of the four possible systems are
listed below.
1. Java RMI - Java RMI system QoS

system end-to-end delay< 15 milliseconds
system throughput > 3000 operations/second

2. Java RMI - CORBA system QoS
(including the Java-CORBA bridge)
system end-to-end delay< 12 milliseconds
system throughput > 3000 operations/second

3. CORBA - Java RMI system QoS
(including the Java-CORBA bridge)

•
system end-to-end delay < 21 milliseconds
system throughput > 2500 operations/second

4. CORBA - CORBA system QoS
system end-to-end delay< 16 milliseconds
system throughput > 2500 operations/second

6

Based on the query and the analysis above according
to the QoS composition rules, it is obvious the second
system (Java RMI - CORBA) is the best. The first one
(Java RMI - Java RMI) also meets the QOS requirement
of the query. At this moment, the systems are chosen
according to the advertised QoS of each component by
QoS composition rules. The systems are further verified
by the event grammars [2]. During system assembly, the
code for carrying out event trace computations according
to user-supplied test cases is also assembled. These test
cases will be executed to verify that the assembled
account management system does satisfy the system QoS
specified in the query. If it does not, it is discarded. This
verification process is carried out for each of the
generated account management systems (the first two in
the above example). The one with the actual best system
QoS is chosen. If none of the systems meet the QoS
criteria (as observed by an experimental evaluation), then
the user may choose to modify the query and repeat the
entire search, assembly and verification process.

5. Conclusion

The software solutions for the future DCS will
require automatic or semi-automatic integration of
software components, while abiding by the QoS
constraints advertised by each component and the
requirements on the system of components. This paper
describes the system-level generative programming of the
UA in the UniFrame that allows an effective and efficient
assembly of heterogeneous and distributed software
components to create a DCS out of a DCS family. The
result of using the UniFrame and the associated tools
(such as the UA generator) leads to the automation of
DCS production while meeting both the functional and
non-functional requirements of the DCS. Although a
simple example is provided in this paper, the principles of
the proposed approach are general enough to be applied to
largerDCS.

6. Acknowledgement

This material is based upon work supported by the US
Office of Naval Research under award number N00014-
0l-l-0746.

References

[I) Auguston, M. Program Behavior Model Based on Event
Grammar and its Application for Debugging Automation.
In Proceedings of the 2nd /nemational Workshop on
Automated and Algorithmic Debugging, pages 277-291,
1995.

•

•

•

f2] Auguston, M., Gates. A., Lujan. M. Defining a Program
Behavior Model for Dynamic Analyzers. In Proceedings of
the 9th lnternarional Conference on Software Engineering
and Knowledge Engineering. SEKE'97, pages 257-262,
1997.

f3] Bryant, B.R. Object-Oriented Natural Language
Requirements Specification. In Proceedings of ACSC 2000,
the 23rd Ausrralasian Compurer Science Conference,
January 30-February 4, 2000, Canberra, Ausrralia, pages
24-30, January 2000.

f 4) Bryant, B. R., Lee, B.-S. Two-Level Gral11JT!ar as an
Object-Oriented Requirements Specification Language,
Proceedings (CR-ROM) of 35th Hawaii International
Conference on Sysrem Sciences, 2002, page JO.
http://www.hicss.hawaii.edu/HJCSS_35/HJCSSpapers/PDF
documents/STDSLOl .pdf.

f5] Clements. P., Donohoe. P., Kang, K., Northrop, L. Fifth
Product Line Practice Workshop Report. September, 2001.
http://www.sei.cmu.edu/publ ications/documents/O I .reports
/Oltr027.html.

(6) Cohen, S., Gallagher, B., Fisher, M., Jones, L., Krul, R.,
Northrop, L., O'Brien, W., Smith, D., Soule, A. Third DoD
Product Line Practice Workshop Report. July 2000.
http://www.sei.cmu.edu/publications/documents/OO.reports
/00tr024.html.

(7) Czarnecki, K., Eisenecker, U.W. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000 .

(8) Lee, B.-S., Bryant, B. R. Automated Conversion from
Requirements Documentation to an Object-Oriented
Formal Specification Language. Proceedings of SAC 2002,
the 2002 ACM Symposium on Applied Computing, March
I 1-14, 2002, Madrid, Spain, 2002, pp. 932-936.

(9) Luqi, V. Berzins, J. Ge, M. Shing, M. Auguston, B.R.
Bryant and B.K. Kin. DCAPS - Architecture for
Distributed Computer Aided Prototyping System. In
Proceedings of the 12th IEEE International Workshop on
Rapid System prototyping, pp.103-109, June 25-27, 2001,
Monterey Beach Resort, California, USA, IEEE Computer
Society Press, 2001.

[JO] Microsoft Corporation. DCOM Specifications, URL: -
http://www.microsoft.com/oledev/olecom, 1998.

[11] Object Management Group. CORBA Components.
Technical report, Object Management Group TC

7

Document orbos/99-02-05, March I 999.
http://www.omg.org/cgi-bin/doc?orbos/99-02-05.

[I 2) Object Management Group (OMG). Model Driven
Architecture: A Technical Perspective. Technical Report,
OMG Document No. ab/2001-02-01/04. February 2001.
ftp://ftp.omg.org/pub/docs/ab/Ol-02-04.pdf.

[13) Orfali, R., and Harkey, D. Client/Server Programming with
JAVA and CORBA. The second edition. John Wiley &
Sons, Inc., 1998.

(14] Raje, R. R., Bryant, B. R., Auguston, M., Olson, A M.,
Burt, C. C. A Unified Approach for the Integration of
Distributed Heterogeneous Software Components.
Proceedings of the 2001 Monterey Workshop on
Engineering Automation for Software Intensive Sysrem
Integration, Monterey, California, 2001, pp: 109-119.

[15] Raje, R. R., Auguston, M., Bryant, B. R., Olson A. M.,
Burt, C. C. A Quality of Service-Based Framework for
Creating Distributed Heterogeneous Software Components.
Submitted for publication to Concurrency and
Computation, 2001.

(16] Raje R. R. UMM: Unified Meta-object Model.
Proceedings of 4th IEEE International Conference on
Algorithms and Architecture for Parallel Processing,
JCA3PP'2000, pp: 454-465, Hong Kong, 2000.

[17] Seigel, J. CORBA Fundamentals and Programming. John
Wiley & Sons, Inc., 1996.

[18) Sirarn, N. N. An Architecture for the UniFrarne Resource
Discovery Service. MS thesis. Indiana University Purdue
University Indianapolis, 2002.

[19) Software Engineering Institute. The Product Line
Approach Initiative.
http://www.sei.cmu.edu/plp/plp_init.html.

[20] Software Engineering Institute. A Framework for Software
Product Line Practice-Version 3.0.
http://www.sei.cmu.edu/plp/frarnework.html.

(21] Sun, C., Raje, R.R., Olson, A. M., Auguston, M., Bryant,
B. R., Burt, C. C., Huang, Z. Composition and
Decomposition of Quality of Service Parameters in
Distributed Component-based Systems. To appear in
Prodeedings of the Fifth International Conference on
Algorithms and Architectures for Parallel Processing
(ICA3PP 2002).

•

•

•

Composition and Decomposition of Quality of Service Parameters in
Distributed Component-Based Systems

Changlin Sun, Rajeev R. Raje,
Andrew M. Olson

Computer and Information Science
Indiana University Purdue University Indianapolis

723 W. Michigan Street, SL 280
Indianapolis, IN 46202, USA

{ csun, rraje, aolson, csun}@cs.iupui.edu,
+I 317 274 5246/5174/9733

Barrett R. Bryant, Carol Burt
Computer and Information Sciences

The University of Alabama at Birmingham
1300 University Blvd.

Birmingham, Alabama 35294-1170, USA
{ bryant, cburt}@cis.uab.edu, + 1 205 934 2213

Abstract

It is becoming increasingly acceptable that the
component-based development is an effective, efficient
and promising approach to develop distributed systems.
With components as the building blcks, it is expected that
the quality of the end system can be predicted based on
the qualities of components in the system. UniFrame is
one such framework that facilitates a seamless
interoperation of heterogeneous distributed software
components. As a part of UniFrame, a catalog of quality
of service (QoS) parameters has been created to provide
a standard method for quantifying the QoS of software
components. In this paper, an approach for composition
and decomposition of these QoS parameters is proposed.
A case study from the financial domain is indicated to
validate this model.
Keywords: Distributed systems, software components,
quality of service (QoS), composition, decomposition

1. Introduction

The development of distributed systems from
reusable components is becoming increasing important
because of its potential to reduce product development
cost and time-to-market. Unfortunately, the current
component-based approaches concentrate mainly on

Mikhail Augustan
Department of Computer Science

New Mexico State University
Las Cruces, NM 88003, USA

mikau@cs.nmsu.edu
+ 1 505 646 5286

Zhisheng Huang
Computer and Information Science

Indiana University Purdue University Indianapolis
723 W. Michigan Street, SL 280

Indianapolis, IN 46202, USA
zhuang@cs.iupui.edu

+1317274 5246

functional properties, and ignore the quality of service
(non-functional) properties, which are crucial in many
application domains. A few examples of quality of service
parameters are: dependability, reliability, availability,
maintainability, adaptability, portability, evolvability,
achievability, security, presentation, throughput, result,
and turnaround time (3). In a component-based
approach, it is relatively easy to glue components together
to provide the desired system functionality, but it is
difficult to guarantee the quality of service provided by a
system made up of individual components. Hence, it is
critical to determine the distribution of a system property
into its component properties (decomposition) and how to
reason the system property from the property of its
individual components (composition). Currently, there is
no common and accepted design standard that can
facilitate such composition and decomposition.

In [I, 2] a framework, UniFrame, based on a unified
meta-component model (UMM) and a unified approach
(UA), is proposed for building distributed component
based systems. In UMM, components are autonomous
entities that provide services and guarantee their quality.
The creation of a distributed software system using UA
has two levels: a) component level - developers create
components, test and validate the appropriate QoS and
deploy the components on the network, and b) system
level - a collection of components, each with a specific
functionality and QoS, enables a semi-automatic

...-- ---------- --

•

•

•

generation of a distributed software system. The focus of
this paper is to study the mechanism of decomposition
and composition of various QoS parameters so that the
properties of the entire system can be inferred from the
QoS properties of individual parameters and vice versa.
The first step towards composition and decomposition is
to identify and classify various QoS parameters.

2. Classification of QoS parameters

In [3), sixteen QoS parameters are identified and
described in a catalog. The aim of this section is to study
these parameters from the perspective of composition and
decomposition, and classify them into different
categories. Such a classification provides the developer of
distributed systems the knowledge about how these QoS
parameters should be treated during the creation of a
software realization of a distributed system.

2.1 Static and dynamic QoS parameters

Static QoS parameters can be evaluated by examining
the internal structure of a software component. These
parameters are stable in different environments provided
the internal structure of component is unchanged. The
examples of static QoS parameters are reliability,
maintainability, portability, scalability, reusability,
presentation, usability, security, priority, and parallelism
constraints. Dynamic QoS parameters, on the other hand,
can be measured by observing the system behavior at run
time. These parameters are tightly associated with the
deployment environment. Examples of dynamic
parameters are throughput, turnaround time, capacity,
availability, and result.

Static QoS parameters may compose well as they do
not tend to change during system execution. However, the
execution environment, which is not known in advance,
influences dynamic QoS parameters and makes their
composition a difficult task.

2.2 Application dependent and independent QoS
parameters

Different application domains require the use of
different QoS parameters. For example, in the E
commerce applications, availability, turnaround time,
throughput and usability are important, while in the
visualization applications, the frame rate is critcal. Some
parameters are application dependent (e.g., throughput),
while some others are application independent (e.g.,
reusability). Obviously, the application independent
parameters are more convenient to deal with than the
application dependent parameters, because the latter need
application-specific information.

2.3 Parameters with different ranges of
decomposition

The dependence of a system level property on the
component level property leads to several special
decompositions of QoS parameters: universal, subset,
existential and component-specific decomposition. For
universal decomposition of QoS parameters, the system
level property decomposes into all of the components in
the system. Most of the QoS parameters have universal
decomposition, such as, availability, reliability, security,
etc. For subset decomposition of QoS parameters, the
system level property decomposes into a subset of
components in the system. For existential decomposition
of QoS parameters, the system level property decomposes
into any component in the system. Mobility is an example
of QoS parameters with existential decomposition. For
component-specific decomposition of QoS parameters,
the system level property decomposes into a particular
component. For example, presentation of a system is
decomposed into the presentation provided by the user
interface component of the system.

2.4 Parameters with different aggregation rules

In the physical world, some properties show different
aggregation rules. For example, the mass or the energy of
a system is the sum of the mass or the energy of
subsystems. The density or the temperature of a system is
the average of the density or the temperature of
subsystems. The strength of a system is limited by the
strength of the subsystem with the minimum value of
strength. Similarly, for systems built from software
components, different QoS parameters may abide by
different composition rules. For example, the turn-around
time of a system is the sum of the tum-around time of
each component in the system. The maintainability of a
system is an average of the maintainability of each
component in the system. The security of a system is
limited by the component with the minimum value of
security.

3. System decomposition and composition
models

In this section, a decomposition and composition
model of QoS parameters is proposed. The model
includes the decomposition process, the composition
process, and the corresponding rules.

3.1 Decomposition rules

The decomposition process factorizes the system
QoS parameters to QoS parameters of components and

•

•

•

provides a rough estimate of the values for the QoS
parameters of individual components. To decompose the
QoS parameters of systems, we identify following
properties: at-least-one property, universal property,
subset property. at most one property, at-least-one-X
property, universal-X property, subset-X property and at
most-one-X property.

A property X is an at-least-one property if, when any
system has property X, at least one component of that
system has property X. A property X is a universal
property if, when any system has property X, all
components of that system have property X. A property X
is a subset property if, when any system has property X, a
subset of components of that system have property X. A
property Xis an at-most-one property if, when any system
has property X, at most one component of that system has
property X. A property Y is an at-least-one-X property if,
when any system has property Y, at least one component
of that system has a certain property called X. A property
Y is a universal-X property if, when any system has
property Y, all components of that system have a certain
property called X. A property Y is a subset-X property if,
when any system has property Y, a subset of components
of that system have a certain property called X. A
property Y is an at-most-one-X property if, when any
system has property Y, at most one component of that
system has a certain property called X.

Each QoS parameter needs to be classified using one
of these properties. For example, from the decomposition
point of view, mobility is an at-least-one property,
security is a universal property, and frame rate is a
universal-X property, where X is throughput. Based on
the definitions of these properties, the QoS parameters for
individual components can be classified into one of these
properties. Given the value of system-level QoS
parameters, an upper or lower bound of the value of the
QoS parameters of an individual component can be
estimated. For example, for turn-around time, the
component turn-around time TAT; (i=l, 2, .. ., n) need to
satisfy 0 <TAT;< TAT, where TAT is the system turn
around time, while for security, the component security S;
(i=l, 2, .. ., n) need to satisfy S; > S, where Sis the system
security requirement.

3.2 Composition rules

During the composition process, the system QoS
parameter is reasoned from the QoS parameters of
components. Due to the causal link between the property
of the system and the properties of components in the
system, we assume the property of composed system
depends on the properties of components in the system.
The proposed equation for composition can be written as:

P = f (P1> P2, .. ., PnJ (1)

where P is the property of composed system, and p;
(i=l .2, ... ,n) is the property of component i in the system.

The equation (1) can be approximated as a weighted
sum, as indicated below:

P = W}' Pl+ W2 • P2 + ... , + Wn • Pn (2)
Where w; (i= I, 2, ... , n) is a constant coefficient (weight),
for the component I, within the range (0, I]. The
determination of w; is based both on the analysis and
experimentation.

For each QoS parameter, the equation (2) can be
simplified. For example, in the case of maintainability,
equation (2) becomes:

P = W] •Pi+ W2•P2+ ... , + Wn•Pn
LOCi

where wi = n , LOC=Lines of Code.
:LLOCj
j=I

(3)

For QoS parameters:
equation (2) becomes:

security, adaptability, capacity,

P =Min (pb p2, ... , PnJ

For the QoS parameter tum-around time, equation (2)
becomes:

P=p1+P2+, .. ., +pn

(4)

(5)

Theoretically, for each QoS parameter, a
corresponding composition rule can be derived from
equation (2) based on analysis and experimentation.

Client Bank
server

Database
server

Figure 1. Bank account system architecture

4. A case study

To illustrate the composition and decomposition of
QoS parameters in developing distributed component
based system, a simple bank account system (financial
system) is discussed below. As shown in Figure 1, the
system consists of three components: client, bank server,
and database server. For this bank account system, the
following QoS parameters, based on the functionality, are
identified: availability, turnaround time, security,
throughput, reliability, and usability. As turn-around time
is an important dynamic QoS parameter for most
applications, its composition rule is validated through
experiments as indicated below.

•

•

•

The experimental system, as shown in Figure 2,
consists of three Ultra-250, SP ARC Sun workstations.
The workstations Phoenix and Magellan are connected
using a IOOMbit Ethernet and the workstation Raleigh is .
connected via a I OMbit Ethernet. Phoenix is a file server
for the local area network.

Magellan

IOOMbit
Switch

Phoenix Raleigh

IOMbit
Huh

Figure 2. Experimental setup

The three components in the bank account system are
implemented using Java RMI. For the purpose of the
validation, each component has an instrumented code to
measure the dynamic QoS parameters during the
execution time .

Initially, the turnaround time for each component is
measured by running them (in isolation) on each of the
three workstations multiple times. These experiments
yielded the following average turnaround times for the
three components under consideration: 34 ms (client
component), 119 ms (bank server component) and 126
ms (database server component). Based on the
composition rule for turn-around time, the predicted turn
around time for the entire system is the summation of the
individual turnaround times, i.e., the turnaround time for
the system is predicted to be 278 ms. To experimentally
validate this predicated value, the three components were
deployed using two distributed configurations: a) the
client on Raleigh, bank server on Phoenix and database
server ob Magellan, and b) the client on Raleigh and both
the servers on Magellan. In both the cases, the system
level turn-around time was measured. The error between
the predicted turnaround time and the actual turnaround
time, for both the configurations, was found to be of 3.3%
and 3.1 % respectively. Hence, it can be concluded from

these simple experiments that the model presented here
allows the prediction of values for the turnaround time
with a good accuracy. Similar empirical studies for
validating the composition rules for other parameters are
being carried out. However, for the sake of brevity, and to
adhere to the space constraints, these are not reported in
this paper.

5. Conclusions

The UniFrame approach provides a framework for
the development of distributed software systems based on
components by highlighting not only the functional but
also the QoS requirements. The QoS feature of a system
can be predicted by applying the composition and
decomposition rules to QoS attributes of the individual
components. These rules are based on the classification of
different QoS parameters. A simple case study presented
here empirically validates the composition/decomposition
rules described in this paper.

6. Acknowledgement

This material is based upon work supported by the US
Office of Naval Research under award number NOOOl4-
0l-l-0746.

References

[I] R.R. Raje, M. Auguston, B. R. Bryant, A. M. Olson and C.
Burt. A Unified Approach for the Integration of Distributed
Heterogeneous Software Components. Proceedings of the
2001 Monterey Workshop, Monterey, California, June
2001, pp. I09-ll9. .

[2] R. Raje, M. Auguston, B. Bryant, A. Olson, C. Burt. A
Quality of Service-based Framework for Creating
Distributed Heterogeneous Software Components.
Technical Report, Department of Computer and
Information Science, Indiana University Purdue University
Indianapolis, 2001.

[3] G. Brahnrnath, R. Raje, A. Olson, M. Auguston, B.Bryant,
C. Burt. A Quality of Service Catalog for Software
Components. Proceedings of the Southeastern Software
Engineering Conference, Huntsville, Alabama, April 2002.

•

•

•

Automation of Software System Development
Using Natural Language Processing and

Two-Level Grammar

Beum-Seuk Lee and Barrett R. Bryant

Department of Computer and Information Sciences
The University of Alabama at Birmingham

Birmingham, AL 35294-1170 U. S. A.
{leebs, bryant}~cis.uab.edu

Abstract. In software engineering, even with recent active research on
formal methods and automated tools, users' involvement is inevitable
and crucial throughout the software development lifecycle. Automation
of these manual tasks would assist the developers throughout the devel
opment. Our project goal is to help the engineers to resolve ambiguity in
natural language (NL) using Natural Language Processing and to over
come different levels of abstraction between requirements documents and
formal specifications using Two-Level Grammar (TLG). The result is a
system that assists developers to build a formal representation from the
informal requirements for rapid prototyping and even implementation.

Keywords: Natural Language Processing, Formal Specification, Automated Soft
ware Engineering, Two-Level Grammar (TLG)

1 Problem Statement

Even the rigorous development of formal specifications and automated tool kits
in recent years hasn't eliminated the practical importance of requirements doc
uments written in natural language and the necessity of users' involvement
throughout the software development life cycle.

Even though natural language is inherently object-oriented and descriptive
with strong representation power, its syntax and semantics are not formal enough
to be used directly as a programming language. Therefore the requirements doc
umentation written in NL has to be reinterpreted into a formal specification
language by software engineers. Pohl rightly stated regarding this process that
improving an opaque system comprehension into a complete system specifica
tion and transforming informal knowledge into formal representations are the
major tasks in requirements engineering [l]. When the system is very compli
cated, which is mostly the case when one chooses to use formal specification,
this conversion, if manually done, is both non-trivial and error-prone, if not
implausible .

•

•

•

Many similar tasks of manual involvement occur and are repeated to translate
the requirements documents into a formal specification or into final executable
code regardless the type of the system under development. Some examples of
these tasks are domain-specific knowledge collection, correct interpretation of
requirements, specification update, and maintenance of consistency, to name a
few.

It is well known that as much as 60 percent of the errors that appear during
a system's life cycle have their origin in the requirements phase [2]. It is also
well known that the closer to correct an error found in the development and
later stages of system development is orders of magnitude higher than to correct
the same error found during the requirements stage [3]. Therefore ensuring the
correctness of the requirements as well as their interpretation and translation
cannot be overemphasized.

The challenge of formalizing a natural language requirements document,
which takes up major portion of human involvement in the system development,
results from many factors such as miscommunication between domain experts
and engineers. However the major bottleneck of this conversion is from the in
born characteristic of ambiguity of NL and the different level of the formalism
between the two domains of NL and formal specification.

To handle this ambiguity problem, some have argued that the requirements
document has to be written in a particular way to reduce ambiguity in the
document [4]. Others have proposed controlled natural languages (e.g., Attempto
Controlled English (ACE) [5]) which limit the syntax and semantics of NL to
avoid the ambiguity problem. Another approach to NL requirements analysis is
to search each line of the requirements document for specific words and phrases
for the purpose of quality analysis [6]. A similar project [7] focuses mainly on
the automatic indexing and reuse of the software components in the requirement
documents. However there has been no attempt to automate the conversion from
requirements documentation into a formal specification language for prototyping
as well as implementation.

In our research, Natural Language Processing (NLP) [8] is used to handle
the ambiguity problem in NL and Two Level Grammar (TLG) [9] is used to deal
with the different formalism level between NL and formal specification languages
to achieve the automated conversion from NL requirements documentation into
a formal specification (in our case VDM++ [10] - an object-oriented extension
of the Vienna Development Method [11]) and to reduce and reuse the developers
involvement.

2 Introduction

To achieve the conversion from requirements documents to a formal specification
several levels of conversions are required. First the original requirements written
in natural language is to be refined as a preprocessing of the actual conversion.
This refinement task involves checking spellings, grammatical errors, consistent
use of vocabularies, organizing the sentences into the appropriate sections, etc .

•

•

•

Next the refined requirements document is expressed in XML format. By using
XML to specify the requirements, XML attributes (meta-data) can be added
to the requirements to interpret the role of each group of the sentences during
the conversion. The information of the domain-specific knowledge is specified in
XML. The domain-specific knowledge describes the relationship between com
ponents and other constraints that are presumed in requirements documents or
too implicit to be extracted directly from the original documents.

Then a knowledge base is built from the requirements document in XML
using NLP to parse the documentation and to store the syntax, semantics, and
pragmatics information. In this phase, the ambiguity is detected and resolved, if
possible. Once the knowledge base is constructed, its content can be queried in
NL. Next the knowledge base is converted, with the information of the domain
specific knowledge, into Two Level Grammar (TLG) by removing the contex
tual dependency in the knowledge base. TLG, the most NL-like specification
language which is a unification of functional, logic, and object-oriented program
ming styles, is used as an intermediate representation to build a bridge between
the informal knowledge base and the formal VDM++ representation.

Finally the TLG code is translated into VDM++ by data and function map
pings. VDM++ is chosen as the target specification language because VDM++
has many similarities in structure to TLG and also has a good collection of tools
for analysis and code generation. Once the VDM++ representation of the speci
fication is acquired we can do prototyping of the specification using the VDM++
interpreter. Also we can convert this into a high level language such as Java™
or C++ or into a model in the Unified Modeling Language (UML) [12] using
the VDM++ Toolkit [13]. The entire system structure is shown in Figure 1.

Requirements Document in NL

Meta-data insertion

Query in NL
Decontexlualization

Two Level Grammar

Data and Function mappings

Vienna Development Method

___ _..._ __ --1 Rose-VDM Link UML

!FAD VDM++ Tool Kit Interpreter

Code Generators Java, C++

Fig.1. System Structure .

•

•

•

The translation of our system is incremental and iterative reflecting the
changes made throughout the system development. The user interaction is likely
to happen at any stage of the translation to supervise and assist the automation.
By keeping track of user's preferences and configurations for each iteration and
automating the translations accordingly, the user's involvement can be reason
ably reduced.

In the sections which follow, we will present the following simplified (thus
incomplete) Computer Assisted Resuscitation Algorithm (CARA) [14] Infusion
Pump Control System to illustrate our approach and describe the various system
components.

HOST is povered up and all softvare subsystems are available.
The pump softvare system is nov in the vait operating state. Patient
vith IV/pump running is placed onto the HOST. Pump cable is connected
to the HOST. HOST nov provides pover for pump. Pump softvare system
detects pump connection and monitors occlusion and airlock logic levels.
Pump subsystem display is automatically brought f orvard to the secondary
display. Pump softvare subsystem detects back EMF and fluid impedance
and begins to log infusion rate. Pump continues to operate on it's
hardvare setting. Pump softvare system is nov in manual operating state.
One of the blood pressure sensors is connected to the patient.
Pump softvare system detects clean blood pressure signal and activates
automatic servo-control start button. When the start button is pressed
the MAC controls the pump and begins resuscitation to the prescribed
blood pressure setpoint. The system is nov in the automatic
servo-control on operating state when the pump is infusing fluid into
a patient using the hardvare (HW) flov setting on the pump. If for any
reason (change IV bags, change or fix blood pressure sensor, etc.) it
becomes necessary to pause the MAC, the pause button on the display may
be pressed. This causes the infusion pumping to cease. The system is
nov in the automatic servo-control paused operating state. The system
maybe restarted at any time. When the patient is to be removed from
the HOST, the pump softvare system should be returned to the manual
operating state. The blood pressure sensor should be removed from the
patient and then the pump cable can be removed from the HOST.
This allovs the pump to continue operating in standalone mode or the
IV infusion to be discontinued.

3 Requirements in XML

Rearranging related information together in the requirements will ease the con
version. Specially because we are assuming that the requirements can contain
different aspects of information (functional, non-functional or even a mixture of
both) about the system. Even requirements that are functionality-oriented can
have different types of functionality. For example, they can be object-oriented,
procedural, real time-based, event-based, etc. Rearranging related information
together will ease the conversion. This can be achieved by specifying the role

•

•

•

of each paragraph using XML data structure and notations. This will help the
knowledge base to maintain the correct structure.

The CARA specification in XML is shown as follows.

<document>
<c title = "Mode" meta = "mode">

<c title = "vait state" meta = "submode">
<p meta = "pre_cond">

<s>HOST is povered up and all softvare subsystems are available</s>
<Ip>
<p meta = "pre_exec">
<s>Patient vith IV/pump running is placed onto the HOST</s>
<s>Pump cable is connected to the HOST</s>

<Ip>
<p meta = "exec">

<s>HOST nov provides pover for pump</s>
<Ip>
<p meta = "break_cond">

<s>When the pump is infusing fluid into a patient using
the hardvare (HW) flov setting on the pump the system is no longer in
the vait state</s>
<Ip>

<le>
<c title = "manual state" meta = "submode">

<p meta = "pre_exec">
<s>Pump software system detects pump connection and monitors occlusion
and airlock logic levels </s>

<s>Pump subsystem display is automatically brought forvard to the
secondary display</s>

<s>Pump software subsystem detects back EMF and fluid impedance and
begins to log infusion rate</s>

<s>Pump continues to operate on it's hardvare setting</s>
<s>One of the blood pressure sensors is connected to the patient</s>
<s>Pump software system detects clean blood pressure signal and

activates automatic servo-control start button</s>
<Ip>

<le>
<c title = "autocontrol on state" meta = "submode">

<p meta = "pre_exec">
<s>When the start button is pressed the MAC controls the pump and

begins resuscitation to the prescribed blood pressure setpoint</s>
<Ip>

<le>
<c title = "autocontrol paused state" meta = "submode">
<p meta = "pre_exec">

<s>If for any reason (change IV bags, change or fix blood pressure
sensor, etc.) it becomes necessary to pause the MAC, the pause
button on the display may be pressed</s>

<s>This causes the infusion pumping to cease</s>
<Ip>

•

•

•

<p meta = "break_cond">
<s>The system maybe restarted at any time</s>

<Ip>
<p meta = "break_exec">

<s>When the patient is to be removed from the HOST, the pump software
system should be returned to the manual operating state</s>

<s>The blood pressure sensor should be removed from the patient and
then the pump cable can be removed from the HOST</s>

<s>This allows the pump to continue operating in standalone mode or
the IV infusion to be discontinued</s>
<Ip>

<le>
<le>
</document>

The meta attribute in XML indicates the role of each paragraph. Namely
it shows if the group of the sentences describes state types (mode), execu
tion types (_exec), various conditions (_cond), etc. submode indicates the state.
In the CARA example, there are four distinctive states; wait state, manual
state, autocontrol on state, and autocontrol paused state. In a state, precon
ditions (pre_cond) have to be satisfied to enter the state. Some statements
(pre_exec) will be executed when the system enters into a state. Other state
ments (exec) will be executed while the system is in the state. If any break con
ditions (break_cond) are satisfied in the state, the system will leave the state.
There may be some cases where break conditions will execute some statements
{break_exec) before breaking out of the state. Also some default statements
(post_exec) are executed before leaving the state. We have specified these meta
attributes for various types of functionality in requirements to cover a wide range
of different requirements documents. Using a tree-like structure in XML the spec
ifications become more descriptive as the tree expands further. Organizing and
representing the requirements document in XML according to the roles of the
specifications of the system not only enhances understanding of specifications
but also helps to standardize requirements composition.

4 Domain-Specific Knowledge in XML

A requirements document usually contains specific information about how the
system should work whereas the domain knowledge describes how the system is
composed by its components and the constraints imposed on the components or
on the relations among them. The domain-specific knowledge is a world knowl
edge specific to a certain domain in which the system is defined. This is well
tied into the concept of the family or the ontology of systems. Depending on
the level of abstraction (or the details described) of the domain knowledge, the
effort to construct it can vary. By limiting the level of abstraction, the body of
the knowledge can be reduced into a reasonable size and so can the effort to
build it. Usually the domain-specific knowledge is defined informally or only for

•

•

•

a specific project, not reusable or extensible for similar systems (the systems
in the same family). By using XML to specify the domain knowledge with a
minimum semantics, not only can the specification be formally defined but also
it can be extensible gradually building up an ontology of systems.

In our research the domain knowledge specified in XML shares many simi
larities with DARPA Agent Markup Language (DAML) [15] which is a frame
based language with semantics to describe ontology. Because domain knowledge
is more than just an ontology, DAML is not expressive enough to describe the
whole aspect of the domain knowledge. However using the XML syntax a domain
knowledge can be specified in various ways leaving the interpretation of its se
mantics totally up to the system that uses it [16]. Therefore when a specification
for domain-specific knowledge in XML is to be developed, its formal semantics
as well as its expressiveness has to be considered at the same time.

The following describes an example of the domain knowledge of Car to illus
trate the use of domain-specific knowledge expressed in XML in our project.

<system name = "Car">
<component name = "Engine">
<amount type ="exactly" value = "1"/>
<unit type = "volume" value = "liter"/>
<subcomponent name="Cylinder" type = "integer">
<amount type ="one_of" value = "4,6,8"/>

</subcomponent>
<relation with = "Starter" type ="pass_to" value ="signal"/>

</component>
<component name = "Wheel"/>
<component name = "Body">
<relation with = "Frame" type ="synonym"/>

</component>
<relation with = "Vehicle" type ="inheritance" value ="parent"/>
<relation with = "Van" type ="inheritance" value ="child"/>

</system>

According to the above domain specification, Car is composed of Engine,
Wheel, Control, and Body. Vehicle is a parent of car whereas Van is a type of
Car. Car can have exactly one Engine and the unit of engine is volume expressed
in liters. Engine has Cylinder as its subcomponent. The number of Cylinders,
which is as an integer number and is representative part of the subcomponent,
can be either 2, 6, or 8. Starter passes a signal to Engine (to turn the motor).
Body of Car also can be called as Frame.

The following is Document Type Definition (DTD) for the domain knowledge
in XML, which defines the formal semantics of the domain-specific knowledge
while pertaining proper expressive power.

<!ELEMENT system (componentlrelation)•>
<!ELEMENT component (amount?, unit?, (subcomponentlrelation)•)>
<!ELEMENT subcomponent amount?>
<!ELEMENT amount EMPTY>

•

•

•

<!ELEMENT unit EMPTY>
<!ELEMENT relation EMPTY>

<!ATTLIST system name CDATA #REQUIRED>
<!ATTLIST component name CDATA #REQUIRED>
<!ATTLIST subcomponent name CDATA #REQUIRED type CDATA #IMPLIED>
<!ATTLIST amount type CDATA "exactly" value CDATA #REQUIRED>
<!ATTLIST unit name CDATA #IMPLIED type CDATA #REQUIRED>
<!ATTLIST relation with CDATA #IMPLIED type CDATA #REQUIRED value

CDATA #IMPLIED>

Note that the domain-specific knowledge in XML for the translation doesn't
have to describe the domain exhaustively. Namely most of the elements and
attributes are optional and attribute values can be any character strings. For
example, the relationship element can represent inheritance, acronyms, message
passing, etc. The minimum information required to guide the translation would
be sufficient with the possibility of adding on more information later when nec
essary.

The domain knowledge for our CARA example is shown as follows.

<system name = "CARA system">
<component name = "Computer Assisted Resuscitation Algorithm">

<subcomponent name "Display"/>
<subcomponent name = "Button"/>
<subcomponent name = "Pump Software System"/>
<subcomponent name = "MAC"/>
<relation with = "System" type = "hypernym"/>
<relation with = "Software" type = "hypernym"/>
<relation with = "Algorithm" type = "hypernym"/>
<relation with "CARA" type = "acronym"/>

</component>
<component name "Patient"/>
<component name "HOST">

<subcomponent name = "Pump"/>
</component>

</system>

The above specification describes that the whole system is composed of by
Computer Assisted Resuscitation Algorithm, Patient, and HOST. Computer
Assisted Resuscitation Algorithm is a type of Algorithm, Software, or
System that can be abbreviated as CARA.

In the natural language documents one concept can be represented by many
different ways causing the translation hard to cluster similar information to
gether. These can be acronym, synonym, and hypernym. From the CARA ex
ample, the word Computer Assisted Resuscitation Algorithm' is interchangeable
with 'Algorithm' or 'CARA'. By using a minimum set of representative words
that describes the entire components in the domain-specific knowledge, one-to
many relations between words and their various representations can be obtained
and thus provides a simpler source to translate. The full set of words in the

•

•

•

requirements documents are mapped into the minimum set of representative
words by measuring similarity among words. The hypernym and the location of
the common words are used for this estimation.

In summary, by specifying domain-specific knowledge in XML and limiting
the scope of the knowledge the effort needed to build up the domain knowledge
for the translation can be greatly reduced.

5 Conversion from XML to Knowledge Base

The raw information of the requirements document in natural language is not
in the proper form to be used directly because of the ambiguity and implicit
semantics in the document. Therefore an explicit and declarative representation
{knowledge base) is needed to represent, maintain, and manipulate knowledge
about a system domain [17]. Not only does the knowledge base have to be expres
sive enough to capture all the critical information but also it has to be precise
enough to clarify the meaning of each knowledge entity (sentence). In addition,
the knowledge base has to reflect the structure of TLG into which the knowledge
base is translated later.

The knowledge base isn't a simple list of sentences in the requirements doc
ument. The linguistic information of each sentence such as lexical, syntactic,
semantic, and most importantly discourse level information has to be stored
with proper systematic structure.

Each sentence of the requirements documents has to be represented in a way
that eases the interpretation of the sentence. In computational linguistics this is
done by constructing a parse tree of the sentence, which contains the syntactic
information of the sentence. By using this semantic information we can tell what
type of operation a certain object executes on other objects.

To build a parse tree, each sentence in the requirements document is read by
the system and tokenized into words. At the syntactical level, the part of speech
(e.g. noun, verb, adjective) and the part of sentence (e.g. subject and object)
of each word are determined by 'standard parsing techniques [8]. The corpora
of statistically ordered parts of speech (frequently used ones being listed first)
of about 85,000 words from Moby Part-of-Speech II [18] are used to resolve the
syntactic ambiguity when there is more than one valid parsing tree. The system
is able to handle elliptical compound phrases, comparative phrases, compound
nouns, and relative phrases to allow the natural language in the requirements
documents to be less controlled thus more natural.

Also the anaphoric references {pronouns) in a sentence are identified accord
ing to the current context history. A pronoun can represent a word, sentence, or
even context. It is worthwhile to mention here that the requirements documents
are easier to process than other types of textual documents in the sense that usu
ally requirements documents have well defined structures with less ambiguities
and infrequent use or narrow reference scope of pronouns.

Once the references of pronouns are determined, each sentence is stored into
the proper context in the knowledge base. The structure of the knowledge base

•

Mode

•

•

reflects the structure of the requirements in XML. The meta attribute informa
tion from XML is also stored in the knowledge base to be used for the translation
from knowledge base into TLG. If no meta attribute or data structure is specified
in the requirements in XML, the system totally relies on the linguistic informa
tion in the document to build the knowledge base according to the context. For
more information on this process, we refer the readers to [19]. A part of the
CARA knowledge base is shown in the Figure 2. The knowledge base of the

HOST be powered up

Wait state

Manual state HOST provide PurrqJ

Autocontrol on state if necessary to pause MAC Pause button be pressed

Autocontrol paused state CARA be restarted

Blood pressure sensor be removed from Patient

PurrqJ cable be removed from HOST

Fig. 2. Knowledge base for CARA.

CARA system contains the meta information from the XML requirements in its
tree-like structure as well as the linguistic knowledge.

In summary, the knowledge base stores not only the linguistic information
of each sentence but also the data structure and meta information of related
sentences as specified in the requirements in XML. Along with this process,
linguistic ambiguity is detected and resolved in parsing and construction of the
knowledge base.

6 Transition from Knowledge Base to TLG

Two-Level Grammar (TLG) may be used to achieve translation from an infor
mal NL specification into a formal specification. Even though TLG has NL-like
syntax its notation is formal enough to allow formal specifications to be con
structed using the notation. It is able not only to capture the abstraction of the
requirements but also to preserve the detailed information for implementation.
The term "two level" comes from the fact that a set of domains may be defined

•

•

•

using context-free grammar, which may then be used as arguments in predicate
functions defined using another grammar. TLG may be used to model any type
of software specification. The basic functional/logic programming model of TLG
is extended to include object-oriented programming features suitable for modern
software specification [20). The syntax of the object-oriented TLG is:

class Class_Name.
Data_Name {, Data_Name}::Data_Type {, Data_Type}.
Rule_Name : Rule_Body {, Rule_Body}.

end class [Class_Name].

where the term that is enclosed in the curly brackets is optional and can be
repeated many times, as in Extended Backus-Naur Form (EBNF). The data
types of TLG are fairly standard, including both scalar and structured types, as
well as types defined by other class definitions. The rules are expressed in NL
with the data types used as variables.

The conversion from the knowledge base to TLG flows very nicely because
the knowledge base is built with the structure taking this translation into con
sideration. The root of each context tree becomes a class. And then the body
of each class is built up with the sentence information in the sub-contexts of
the root. Combined with the specification in the domain-specific knowledge, the
knowledge base of the CARA example would be translated into the following
TLG specification.

class Mode.

main :
wait state;
manual state;
autocontrol on state;
autocontrol paused state.

wait state:
HOST is powered up,
Pump_Software_System is available,
Patient is placed onto HOST,
Pump Cable is connected to HOST,
while true then

if Pump is infusing Fluid into Patient then
break,

HOST provide Power for Pump
end while.

manual state:
Pump_Software_System detects Pump_Connection,
Pump_Software_System monitors Occlusion and Airlock_Logic_Levels,
Pump Display is brought to Secondary_Display,
Pump_Software_System detects Back_EMF and Fluid_Impedance,
Pump_Software_System begins to log Infusion_Rate,

•

•

•

Pump continue to operates on Hardvare_Setting,
Blood_Pressure_Sensor is connected to Patient,
Pump_Softvare_System detects Clean_Blood_Pressure_Signal,
Pump_Softvare_System activates Automatic_Servo-control_Start_Button.

autocontrol on state:
if Start_Button is pressed then

MAC controls Pump,
MAC begins Resuscitation to Prescribed_Blood_Pressure_Setpoint

end if.

autocontrol paused state:
if necessary to pause MAC then

Pause_Button is pressed,
cause Infusion_Pumping to cease

end if,
vhile true then

if Patient is removed from HOST then
Blood_Pressure_Sensor is removed from Patient,
Pump Cable is removed from HOST,
allov Pump to continue operating in Standalone_Mode,
allov IV_Infusion to be discontinued,
break

end if
end vhile.

end class .

The main function will execute all 4 state functions (wait state, manual
state, autocontrol on state, autocontrol paused state) in parallel. How
ever preconditions (pre_cond) in each state will be used as guarded statements
to determine which state the system is currently in. For each state function, first
the preconditions will be checked. If all the preconditions are met, pre_exec
statements are executed once. Then in the infinite while loop exec statements
are executed. If break_exec and break_cond statements are used for the system
to break out the loop. If there are any post_exec statements, they are executed
before returning from the function.

The TLG code is translated into VDM++ by data and function mappings
(for more details on this translation we refer the readers to [9]). Once we have
translated the TLG specification into a VDM++ specification we can convert
this into a high level language such as Java™ or c++, using the code generator
that the VDM++ Toolkit™ provides. Not only is this code quite efficient, but
it may be executed, thereby allowing a proxy execution of the requirements. This
allows for a rapid prototyping of the original requirements so that these may be
refined further in future iterations. Namely the inconsistencies, contradictions,
and ambiguities hidden in the informal description can be discovered in the
formal representation using the VDM ++ Toolkit. Another advantage of this
approach is that the VDM ++ Toolkit also provides for a translation into a

•

•

•

model in the Unified Modeling Language (UML) using a link with Rational
RoseTM_

7 Contribution and Conclusion

This research project is developed as an application of formal specification and
computational linguistic techniques to automate the conversion from a require:
ments document written in NL to a formal specification language while assisting
the developers with repetitive tasks. The knowledge base is built up from a NL
requirements document in XML in order to capture the contextual information
from the document while handling the ambiguity problem and to optimize the
process of its translation into a TLG specification with the aid of domain-specific
knowledge in XML. Due to its NL-like flexible syntax without losing its formal
ism, TLG is chosen as a formal specification to fill the gap between the different
level of formalisms of NL and formal specification language.

The system is working for some small examples such aS the requirements for
an Automatic Teller Machine (ATM), with associated banking system domain
knowledge. We are performing evaluations of the system for various, more com
plex, requirements documents, such as the CARA Infusion Pump Controller.
The system has been useful· in identifying problems and ambiguities with such
specifications and in identifying additional information necessary to complete
the implementation. It is expected that the technology we are developing will be
applicable to these requirements documents as well.

If successful, this will provide a very useful tool to assist software engineers in
moving from the requirements document to the formal specification. Our future
work is to continue developing the system to improve usability and robustness
with respect to its coverage of requirements documents. When finalized, it is
expected that by using the formalized context in NLP and TLG as a bridge
between the requirements document and a formal specification language, we can
achieve an executable and reusable NL specification for a rapid prototyping of
requirements, as well as development of a final implementation assisting the
developers throughout the software development life cycle.

Acknowledgements. This material is based upon work supported by, or in part by,
the U.S. Army Research Laboratory and the U. S. Army Research Office under con
tract/grant number DAAD19-00-1-0350 and by the U. S. Office of Naval Research
under award number N00014-01-1-0746. The authors would like to thank IFAD for
providing an academic license to the IFAD VDM Toolbox in order to conduct this
research.

References

1. Pohl, K.: The Three Dimensions of Requirements Engineering. Conference on
Advanced Information Systems Engineering (1993) 275-292

2. Davis, A.: Software Requirements Analysis and Specification. Prentice-Hall (1990)

•

•

•

3.

4.

5.

6.

7.

8.
9.

10.

11.

12.

13.

14.

Boehm, B.W.: Software Engineering Economics. IEEE Transactions on Software
Engineering 10 (1984) 4-21
Wilson, W.M.: Writing Effective Natural Language Requirements Specifications.
Technical report, Naval Research Laboratory (1999)
Fuchs, N.E., Schwitter, R.: Attempto Controlled English (ACE). Proc. CLAW 96,
1st Int. Workshop Controlled Language Applications (1996)
Wilson, W.M., Rosenberg, L.H., Hyatt, L.E.: Automated Quality Analysis Of
Natural Language Requirement Specifications. Technical report, Naval Research
Laboratory (1996)
Girardi, M.R.: Classification and Retrieval of Software through their Description
in Natural Language. PhD thesis, Computer Science Department University of
Geneva, Switzerland (1996)
Jurafsky, D., Martin, J.: Speech and Language Processing. Prentice-Hall (2000)
Bryant, B.R., Lee, B.S.: Two-Level Grammar as an Object-Oriented Require
ments Specification Language. Proc. 35th Hawaii Int. Conf. System Sciences (2002)
http://vvv.hicss.havaii.edu/HICSS_35/HICSSpapers/PDFdocuments/STDSL01.pdf
Durr, E., van Katwijk, J.: VDM++ - A Formal Specification Language for Object
Oriented Designs. Proc. CompEuro '92 (1992) 214-219
Bj0rner, D., Jones, C.B.: The Vienna Development Method: The Meta-Language.
Springer-Verlag (1978)
Quatrani, T.: Visual Modeling with Rational Rose 2000 and UML. Addison-Wesley
(2000)
IFAD: The VDM++ Toolbox User Manual. Technical report, IFAD (vvv.ifad.dk)
(2000)
Walter Reed Army Institute for Research (WRAIR): CARA Specification: Ro
prietary Document. Technical report, WRAIR, Dept. of Resuscitative Medicine
(2001)

15. Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein, M.C.A., Broekstra, J.,
Erdmann, M., Horrocks, I.: The semantic web: The roles of XML and RDF. IEEE
Internet Computing 4 (2000) 63-74

16. Cleaveland, J.C.: Program Generators with XML and Java. Prentice-Hall (2001)
17. Lakemeyer, G., Nebel, B.: Foundations of knowledge representation and reasoning.

Volume 810. Springer-Verlag Inc. (1994)
18. Grady, W.: Moby Part-of-Speech II (data file) (1994)
19. Lee, B.S., Bryant, B.R.: Contextual Knowledge Representation for Requirements

Documents in Natural Language. Proc. 15th International FLAIRS Conference
(2002) 370-374

20. Bryant, B.R.: Object-Oriented Natural Language Requirements Specification.
Proc. ACSC 2000, 23rd Australasian Comp. Sci. Conf. (2000) 24-30

•

•

•

Formal Specification of Non-Functional Aspects in Two-Level
Grammar*

Chunmin Yang Beum-Seuk Lee Barrett R. Bryant Carol C. Burt

Department of Computer and Information Sciences
The University of Alabama at Birmingham

Birmingham, AL 35294-1170, U. S. A.
{yangc, leebs, bryant, cburt }@cis.uab.edu

Rajeev R. Raje Andrew M. Olson

Department of Computer and Information Science
Indiana University Purdue University Indianapolis

Indianapolis, IN 46202, U. S. A.
{ rraje, aolson }@cs.iupui.edu

Abstract

Mikhail A uguston

Department of Computer Science
New Mexico State University

Las Cruces, NM 88003, U.S. A .
mikau@cs.nmsu.edu

In the UniFrame project, non-functional aspects of distributed software systems are described infor
mally in natural language based on a quality of service (QoS) parameter catalog. Then the descriptions
are automatically translated into specifications in a formal specification language, Two-Level Grammar
(TLG). The result is a formal QoS specification for rapid prototyping of non-functional aspects of a
system as well as their efficient distribution.

Keywords: Formal Specification, Non-functional properties, Quality of Service, Two-Level Grammar (TLG},
UniFrame, Vienna Development Method (VDM)

1 Introduction

With the rapid development and increased demand for software systems implemented on computer networks,
distributed computing has become the focus of research interest. Even though many techniques have been
developed for this purpose most of them focus mainly on the functional aspects of the system neglecting the
non-functional aspects. It has been more and more realized that non-functional properties are as important
as the functional ones for a successful software product.

The non-functional aspects of software systems are not so much emphasized as the functional aspects
due to several reasons:

*This material is based upon work supported by, or in part by, the U.S. Army Research Laboratory and the U. S. Army
Research Office under contract/grant number DAAD19-00-1-0350 and by the U.S. Office of Naval Research under award number
N00014-01-1-0746.

1

•

•

•

QoS Requirements Document in NL

QoS Requirements Document in XML

Natural Language Processing

Knowledge Base

Decontextualization

Two Level Grammar

Data and Function mappings

Vienna Development Method

Rnse-VDM Link UML

IF AD VDM++ Tool Kit Interpreter

Code Generators Java, C++

Figure 1: System Structure.

1. The developers are more concerned with the functionality of the software product than its quality.
Their main goal is first to make sure the software is able to provide the functionality as specified by the
users. With the move toward component-oriented development, functionality by itself is not enough
to meet the users' expectations. To develop a software with high quality, both the functional and the
non-functional aspects of the software have to be considered with care.

2. Unlike functional aspects of the specifications, non-functional aspects of the specifications are usually
described in an abstract and non-quantified way, thus making it more difficult to describe formally.

3. Non-functional aspects of the specification are complex. Some of the non-functional properties may
interact with other non-functional properties. Therefore the effect of non-functional properties of the
system does not remain the same all the time, but rather change dynamically according to other
non-functional properties.

4. Unlike functional properties, it is difficult to formally specify non-functional properties, although there
have been several research projects with this goal, e.g. Aster [1], Qedo [13], QuO [12], to name a few.

Our goal is to enable non-functional requirements to be described informally in natural language and then
automatically translated into a formal specification for use in validating component-based software system
quality. In our project, first Quality of Service (QoS) requirements in natural language (NL) are represented
using eXtensible Markup Language {XML) [3] element and attribute notations which specify the types of
non-functional properties and attributes {meta information). This XML specification is translated into a
Knowledge Base using Natural Language Processing. Knowledge Base contains the linguistic information
as well as meta information of the QoS description. This Knowledge Base is then converted into Two-Level
Grammar {TLG) [4] using the collected information in the Knowledge Base. TLG is a formal specification
language that is flexible in its natural-language like syntax without losing its formalism. The non-functional
specifications in TLG in turn can be translated into VDM ++ [7] (an object-oriented extension of the Vienna
Development Method [2]) using data and function mappings. VDM++ is chosen as the target specification
language because VDM++ has many similarities in structure to TLG and also has a good collection of tools
for analysis and code generation. Once the VDM++ representation of the specification is acquired we can
do prototyping of the specification using the VDM++ interpreter. Also we can convert this into a high level
language such as Java™ or C++ or into a model in the Unified Modeling Language (UML) [14] using the
VDM++ Toolkit [8]. The entire system structure is shown in Figure 1. In this paper, we mainly focus on
the mechanism to formally specify non-functional aspects of a system in TLG followed by brief illustration
of the conversion process from the QoS descriptions in NL into TLG.

2

•

•

•

2 Quality of Service (QoS)

Quality of Service is a concept originated in the networking area and now it has been extended to software
development, in which it is also referred to as "non-functional properties."

To describe the properties of a software product, we need to consider both the functional and non
functional aspects. The former is very straightforward and describes what the software is expected to do. The
latter describes how the functions are exhibited. Functional aspects, in practice, earn more attention than
the non-functional aspects. From the users' point of view, whether the software can provide the functions
as expected is the main issue. More over it is usually easy to prototype or to verify the functionality of
the system. On the other hand, it is not so easy to measure the non-functional properties. Functional
properties typically have localized effects in the sense that they affect only the part of software functionality
whereas non-functional properties specify global constraints that must be satisfied by the software such as
performance, fault-tolerance, availability and security.

Along with the development of software engineering techniques, the non-functional properties of a software
product become more and more important criteria in classifying a good software product from a poor one
since most of the software would successfully provide the required functionality. Therefore the product with
non-functional properties will dominate the ones without them. At the same time, there is an increasing
demand for fault-tolerance, multimedia, real-time, and other high quality applications, thus the requirement
for non-functional properties will become an essential part of software development.

To describe and analyze the non-functional properties, we divide them into three aspects: non-functional
attributes, non-functional actions, and non-functional properties. Non-functional attributes are the features
or characteristics to be described. A significant characteristic of a non-functional attribute is its decom
posability, i.e., a non-functional attribute could be decomposed into multiple more detailed non-functional
attributes. Non-functional actions are the input from the outside world which has effect on the attributes .
Non-functional properties are the constraints of non-functional actions over the non-functional properties.

This work, to formally specify the quality of components and component complexes (results of com
positions of components), is a part of the UniFrame project [16] in which the aspects of a meta-model
will be specified and verified in the context of combining heterogeneous components, and provides a QoS
management to the interactions between clients and services for distributed object systems by supporting
frameworks for multiple QoS categories.

In the project, three steps are taken to assure the QoS of a Distributed Computing System (DCS): first,
creation of a catalog for the QoS parameters, then provision of a formal specification of these parameters,
and construction of a mechanism for ensuring these parameters, both at the individual component level and
at the entire system level.

A catalog of Quality of Service parameters is proposed in [15] which contains the parameters such as
throughput, capacity, end-to-end delay, parallelism constraints, availability, ordering constraints, error rate,
security, transmission, adaptivity, evolvability, reliability, stability, result, achievability, priority, compati
bility, and presentation. The format of this catalog is based on the format of the design patterns catalog.
Each parameter is described according to the following features: name, intent, description, influencing fac
tors, measure, known usages, aliases, related parameters, consequences, levels, technologies, applications,
exceptions, and example scenario.

There are some reasons that non-functional properties are not explicitly described. First of all, non
functional parameters are more difficult than functional parameters to be dealt with in the sense that they
are far more abstract and more complex than the functional parameters. For example, the requirement
description may have a phrase like "the system should have very high level of security". But what level of
security is considered to be "high?" How can we verify if this system meets this requirement? Obviously, this
ambiguous and very inexact description is not descriptive enough to be used as the specification on which the
software is developed. In addition, non-functional aspects of the software specification are rarely supported
by computer languages, methodologies, or tools [12]. They are usually specified in an informal way and in
most cases, they are not quantified thus are more difficult to manipulate. Moreover, it is especially hard to
formulate the non-functional aspects of software at early stages of software development. It is not easy to
prototype if the system meets the non-functional requirements until the software development phase, thus
it is even harder to validate the non-functional properties of a software product. Lastly, the non-functional
attributes may conflict or interact with each other. This is called correlation among attributes. When a

3

•

•

•

non-functional action is performed on a system adjusting one non-functional attribute, it may have effects
on other non-functional attributes as well. Even though the effect may be unexpected it has to be foreseen
and controlled by the software developers.

Although QoS and its guarantees have been widely used in networking, not many attempts have been
made to incorporate QoS into component-based software systems [6]. As described above, the informal and
ambiguous natural language is not enough for this purpose, and on the other hand, by nature of specification,
a programming language is not appropriate either as it has too much detail involved. Formal specification
can overcome the problem of natural language being too ambiguous and programming language being too
detailed, also formal specification languages have a friendly interface with component based software devel
opment techniques, thus our goal is to describe the non-functional properties with such a formal language
so as to standardize the software development of systems meeting QoS properties.

3 Specification of QoS in TLG

In UniFrame, Two-Level Grammar (TLG) is used to specify the non-functional properties. TLG is a formal
specification language, originally developed as a specification language for programming language syntax
and semantics, and later used as an executable specification language and as the basis for conversion from
requirements expressed in natural language into formal specifications [4]. It is a formal notation based upon
natural language and the functional, logic, and object-oriented programming paradigms. The combination
of natural language and formalization is unique to TLG and also fits the Unified Meta-component Model
(UMM) for component description [16] used in UniFrame well.

The name "two-level" in TLG comes from the fact that TLG consists of two Context Free Languages
defining the set of type domains and the set of function definitions operating on those domains, respectively .
These grammars may be defined in the context of a class in which case type domains define instance variables
of the class and function definitions define methods of the class, and they interact with each other to achieve
the power of a Turing Machine.

The syntax of TLG class declarations is:

class Identifier-1 [extends Identifier-2, ... , Identifier-n].
instance variable and function declarations

end class [Identifier-1).

From this definition, we can see that TLG supports multiple inheritance. The instance variables (also called
as meta-rules) comprising the class definition are declared using domain declarations of the following form:

Identifier-1, ... , Identifier-m :: data-object-1; ... ; data-object-n.

where each data-object-i is a combination of domain identifiers, singleton data objects, and lists of data
objects, which taken together as a union form the type of Identifier-1, ... , Identifier-m.

The function signature (referred to as a hyper-rule as well) is defined as follows.

function signature : function-call-1, ... , function-call-n.

where n2".:1. Function signatures are a combination of NL words and domain identifiers, corresponding to
variables in a logic program. Some of these variables will typically be input variables and some will be
output variables, whose values are instantiated at the conclusion of the function call. Therefore, functions
usually return values through the output variables rather than directly, in which case the direct return value
is considered as a Boolean true or false. true means that control may pass to the next function call, while
false means the rule has failed and an alternative rule should be tried if possible. Alternative rules have
the same format as that given above. H multiple function rules have the same signature, then the multiple
left hand sides may be combined with a ; separator, as in:

function signature :
FunctionCall-11, FunctionCall-12, ... , FunctionCall-1j;"
FunctionCall-21, FunctionCall-22, ... , FunctionCall-2k;

FunctionCall-n1, FunctionCall-n2, .•. , FunctionCall-nm.

4

•

•

•

where there are n alternatives, each having a varying number of function calls. Besides Boolean values,
functions may return regular values, usually the result of arithmetic calculations. In this case, only the last
function call in a series should return such a value.

TLG is a suitable specification language to represent non-functional properties for the following reasons.
First of all, TLG has a class hierarchy which corresponds to the way we describe non-functional properties.
This class consists of instance variables and functions, just like the non-functional attributes and non
functional actions encapsulated together. Thus meta-rules of TLG can be used to represent the non-functional
attributes while hyper-rules of TLG can be used to represent the non-functional actions.

The classes in TLG may inherit from other classes and this hierarchical structure may be used to represent
the decomposability of the non-functional properties as mentioned above so as to take advantage of software
reuse, an important idea in component-based software development. Furthermore, TLG is natural language
like, and thus it is easier to translate from natural language specification to TLG than to other formal
specification languages. TLG is also appropriate for the basis of converting from requirement specifications
into other formal specification languages.

Lastly the specification with TLG has a high level of abstraction and its representation is flexible - not
all the members (variables or functions) have to be quantifiable. For example, to represent the effect of
non-functional actions over the non-functional attributes, especially in the case of correlation, we do not
have to quantify all the attributes or properties. In most cases, we only need to know if an action has effect
on an attribute or not, and how it affects the attribute if it does have effect. So we only need some variables
to describe the relationship above: "no effect," or effects in favor of, or against, respectively. These are just
variables, and do not indicate how much the action affects the attribute.

A simple ATM (Automated Teller Machine) example is used to illustrate our approach of using Two
Level Grammar to represent non-functional properties. Here is a brief description of the non-functional
requirements of ATM:

ATM's security property is as follows. The length of the encryption byte should be bigger than 3 and
the allowed attempts has to be smaller than the maximum allowed attempts. If the encryption byte
length is 6 and the maximum allowed attempts is less than 5 then the system is SOY. secure. If the account type is
a savings account or the maximum allowed connections of the bank is less than 50 or the delay level is less
than 50 then the maximum allowed attempts is limited to 4.
If the user timeout is between 10000 and 120000 milliseconds we have a good delay level. If the response
time is longer than 30000 milliseconds, the delay level drops down to 40Y..

To implement the above requirements specification, four classes are declared: Property, Bank_Capacity,
ATM-8ecuri ty, and ATM..Delay. In this simple example, only several non-functional properties are indicated.
For each class, there are non-functional attribute definitions, and non-functional action declarations, es
pecially the correlated attributes are defined. In general, not all the non-functional attributes need to be
defined exhaustively.

class Property.
Level : : int.

end class.

class Bank_Capacity extends Property.
Maximum_Connections :: Integer.

end class.

class ATM_Security extends Property.

Maximum_Allowed_Attempts :: Integer.
Encryption_Byte_Length :: Integer.
Allowed_Attempts :: Integer.
Account_Type :: String.

check satisfaction :
Encryption_Byte_Length > 3, Allowed_Attempts < Maximum_Allowed_Attempts.

update level :
Encryption_Byte_Length = 6,
Allowed_Attempts < 5,
Level := 80.

5

•

•

•

update attributes :
Account_Type = "savings", Maximum_Alloved_Attempts := 4;
Bank_Capacity Maximum_Connections < 50, Maximum_Alloved_Attempts := 4;
ATM_Delay Level < 50, Maximum_Alloved_Attempts := 4.

end class.

class ATK_Delay extends Property.

Response_Time :: Integer.
User_Timeout :: Integer.

check satisfaction :
User_Timeout > 10000, User_Timeout < 120000.

update level :
Response_Time > 30000, Level := 40.

end class.

Each property is defined as a TLG class whereas the non-functional attributes are defined as TLG instance
variables such as Level, Maximum_Connections, Maximum..Allowed..Attempts, Encryption..Byte..Length,
Allowed..Attempts, Account_Type, Response_Time, and User-Timeout. In our example, ATM has Security
and Delay properties and Bank has Capacity property which is used in update attribute operation of
ATM-8ecurity. As the above TLG specification illustrates, all the property classes extend the class Property
which has the instance variable Level. This variable is a representative value for the property, with which
the decomposability of QoS is implemented. For example ATM..Security property has several attributes such
as Encryption..Byte..Length and Allowed..Attempts. The value of Level for ATM-8ecurity represents the
overall security level after evaluating all the attributes.

Non-functional actions are represented as methods in the classes. In this example, there is a method
that checks the level of property satisfaction (check satisfaction), that updates the overall level of the
non-functional properties (update level), or that updates the individual attribute according to dynamic
changes of other attributes (update attribute).

Attributes may be updated in a method when some conditions hold. These conditions may include not
only the attributes in the same property of the same class, but also the attributes of other property or even
in other classes. This is how the correlation of non-functional actions are implemented in TLG. For example,
in the ATM..Securi ty class above, if any of the following 3 conditions holds, the maximum number of allowed
attempts (Maximum..Allowed..Attempts) is set to be 4: the account type (Account_Type) is a savings account,
or the maximum number of connection allowed by the bank at one time (Maximum_Connections) (which is
an attribute of Bank_Capacity class) is less than 50 connections, or the Level of ATM..Delay is less than 50.

Usually when a non-functional action is performed on a non-functional attribute, the non-functional
attributes may change which, in turn, may trigger other actions to take place. In the ATM example, if some
non-functional actions change Account_Type (which is an attribute of ATM..Security), Maximum_Connections
(which is an attribute of Bank_Capacity), or the Level of ATM..Delay not only they themselves will be
updated, but the value of Maximum..Allowed..Attempts will be updated as well according to the specification
in the update attributes method in ATM..Security class.

In summary, as illustrated using a simple ATM example, TLG is proven to be a powerful specification
language to formally specify non-functional aspects of a system with a mechanism to abstract the decom
posability and to express dynamic correlations among properties and attributes.

4 Conversion from Natural Language Description of QoS into
TLG

First the natural language description of QoS of the system is represented in XML to specify which role each
sentence plays as a non-functional aspect or attribute. This process is carried out by a natural language

6

•

•

•

parser as a preprocessing of the actual translation into TLG. A sample XML representation of ATM example
is shown as follows.

<document>
<c title = "ATM">
<c title = "Security">
<p meta = "satisfaction check">
<s>The length of the encryption byte should be bigger than 3 and the alloved attempts has to be smaller

than the maximum alloved attempts</s>
<Ip>
<p meta = "level update">
<s>If the encryption byte length is 6 and the alloved attempts is less than 5 then the system is SOY.

secure</s>
<Ip>
<p meta = "attribute update">
<s>If the account type is a savings account or the maximum alloved connections of the bank is less than 50

or the delay level is less than 50 then the maximum alloved attempts is limited to 4</s>
</p>
<le>
<c title = "Delay">
<p meta = "satisfaction check">
<s>If the user timeout is betveen 10000 and 120000 milliseconds ve have a good delay level</s>
<Ip>
<p meta = "level update">
<s>If the response time is longer than 30000 milliseconds the delay level drops dovn to 40%</s>
<Ip>
<le>
<le>
</document>

Titles such as Security and Delay indicates the property types whereas the meta information such as
satisfaction check, level update, and attribute update indicates the non-functional actions within
the property.

Given this XML representation of QoS, each sentence of the specification is tokenized and then by using
computational linguistic parsing techniques the system constructs its correct parsing tree. This parsing
tree contains the linguistic information about the sentence such as the part of speech (e.g. noun, verb,
adjective) and the part of sentence (e.g. subject and object) of each word in the sentence. Obtaining this
type of linguistic information is important in the later conversion into TLG because usually the subject of
the sentence is identified as the component name. The verb normally indicates what kind of action this
component takes to affect a specific QoS. Also anaphoric references (pronouns), elliptical compound phrases,
comparative phrases, compound nouns, and relative phrases are handled to allow the input natural language
description to be as less controlled as possible. The same technique has been used to automatically translate
functional requirements documents into a formal specification language as well [10].

Using this linguistic information and the meta information from XML tags, a Knowledge Base is con
structed. The Knowledge Base is an explicit and declarative representation that is used to represent, main
tain, and manipulate knowledge about QoS of the system. In addition, the knowledge base has to reflect
the structure of TLG into which the Knowledge Base is translated later. The Knowledge Base of the ATM
example is shown in Figure 2. In the figure, the blank oval indicates OR where as the black ovals indicate AND
relation. The sentences that are grayed out are the conditional statements compared with normal statements.

This Knowledge Base is converted into TLG by identifying the classes, data types, and operations. Once
TLG specifications are obtained, the specifications are translated into VDM++ (we refer the readers to [4]
for details). Using the VDM++ tool kit [9] the specifications can be in turn translated into a high level
language such as Java or C++ or into a model in UML (Figure 3).

In summary, the QoS description in NL is represented in XML to specify the meta information and the
Knowledge Base with a systematic structure can be used to capture this meta information as well as the
linguistic information to be used to convert the description into TLG.

7

•

•

•

Security

AIM

5 Conclusion

satisfaction check

update level

update attributes

satisfaction check

update level

Length of encryption byte be bigger than 3

Allowed attempts be smaller than Maximum allowed attempts

Encryption byte Jength be IS

Maximum allowed attempts be Jess than 5

System be 80% secure

Account type be a savings account

be Jess than 50

Delay level be Jess than 50

Maximum allowed attempts be limited to 4

User timeout be between 10000 and 120000 milliseconds

have Good delay level

Response time be longer than 30000 milliseconds

Delay level drop down to 40%

Figure 2: Knowledge Base for ATM example.

Non-functional aspects of the software specification are as important as functional aspects in software de
velopment. Formal representation of non-functional aspects is of great contribution to software engineering
especially in distributed component-based systems. The specification has to be expressive enough to cover all
the useful non-functional specifications while being able to describe complex decomposability and dynamic
correlations among the non-functional properties.

In our research first the non-functional specifications are described informally in natural language ac
cording to a QoS parameter catalog. Then this specification in natural language is translated into TLG,
a natural language like formal specification language. TLG is used to formally represent non-functional
aspects of requirements for rapid prototyping and optimal distribution of components. We are performing
evaluations of the system for various requirements documents. It is expected that the technology we are
developing will be applicable to these requirements documents. If successful, this will provide a very useful
tool to assist software engineers in moving from the requirements document to the formal specification.

OMG's Model Driven Architecture (MDA) [11] includes standards that enable the use of generative
techniques for construction of interoperability bridges between platform technologies. It will be a promising
and useful approach to combine Model Driven Architecture and formal methods in representing the non
functional aspects of software specifications. QoS issues in MDA have been explored in [5]. Our future
work is to express the constraints in Object Constraint Language (OCL), and to automatically generate the
OCL representation from the TLG representation of the non-functional aspects of software specification, and
implement the representation within MDA. At the same time, we will continue developing the system to
improve system usability and robustness with respect to its coverage of requirements documents.

References

[1] ASTER. Software Architectures for Distributed Systems (ASTER). Technical report,
{http://www-rocq.inria.fr/solidor/work/aster.html),2000.

[2] D. Bj0rner and C. B. Jones. The Vienna Development Method: The Meta-Language. Springer-Verlag,
1978.

8

•

•

•

Property
(from Generated class ...
~L.,..,l:int 1-c-~

~
'-.,

AlM_Delay

4 (from Generated classes)

~User_Timeout: int
~Response_ Time : int

--1 Bank_ Capacity
(from Generated classes)

~Maximum_ Connections : int

-_,.,,

/--_____ _

~dateL"""l()
-CAlM_Delay

~JttckSatisf'.action() ~~ AlM_Security
(from Generated classes)

~Attempts : int
~AccoWtt_ Type : seq of char
~Maximum_ Attempts : int
~Encryption_ Byte_ Lengtlt : int

~dateL"""l()
~dateAttributesQ
~lttckSatisf'.action()

Figure 3: UML for ATM.

(3] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible Markup Language (XML) 1.0
(Second Edition). Technical report, W3C (http://wvw.w3c.org/xml), 2000.

(4] B. R. Bryant and B.-S. Lee. Two-Level Grammar as an Object-Oriented Requirements Specification
Language. Proc. 35th Hawaii Int. Conj. System Sciences, Jan. 2002.

(5] C. C. Burt, B. R. Bryant, R. R. Raje, A. Olson, and M. Augustan. Quality of Service Issues Related
to Transforming Platform Indepent Models to Platform Specific Models. Proc. EDOC 2002, 6th IEEE
Int. Enterprise Distributed Object Computing Conj. (to appear), 2002.

(6] L. A. Campbell and B. H. C. Cheng. Integrating informal and formal approaches to requirements
modeling and analysis. Proc. IEEE International Symposium on Requirements Engineering (REOJ},
pages 294-295, 2001.

(7] E. H. Diirr and J. van Katwijk. VDM++ - A Formal Specification Language for Object-Oriented
Designs. Proc. TOOLS USA '92, 1992 Technology of Object-Oriented Languages and Systems USA
Conj., pages 63-278, 1992.

(8] IFAD. The VDM++ Toolbox User Manual. Technical report, IFAD(http://wwv.ifad.dk), 2000.

(9] IFAD. VDMTools - Java/C++ Code Generator. Technical report, IFAD, 2000.

(10] B.-S. Lee and B. R. Bryant. Automated Conversion from Requirements Documentation to an Object
Oriented Formal Specification Language. Proc. ACM 2002 Symposium on Applied Computing, pages
932-936, 2002.

(11] OMG. Model Driven Architecture (MDA). Technical report, (http://wwv.omg.org/mda/), 2000.

(12] P. Pal, J. Loyall, and R. Schantz et al. Using QDL to Specify QoS Aware Distributed (QuO) Applica
tion Configuration. Proc. 3rd IEEE International Symposium on Object-Oriented Real-time Distributed
Computing, 2000.

(13] Qedo. QoS Enabled Distributed Objects. Technical report, (http:// qedo. berlios. de) .

[14] T. Quatrani. Visual Modeling with Rational Rose 2000 and UML. Addison-Wesley, 2000.

(15) R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson, and C. Burt. A Quality of Service-based
Framework for Creating Distributed Heterogeneous Software Components. to appear in Concurrency
and Computation: Practice and Experience, 2002.

9

•

•

•

[16] R. R. Raje, B. R. Bryant, M. Auguston, A. M. Olson, and C. C. Burt. A Unified Approach for the
Integration of Distributed Heterogeneous Software Components. Proc. 2001 Monterey Workshop on
Engineering Automation for Software Intensive System Integration, pages 109-119, 2001.

10

•

•

•

Towards Fully Automatic Execution Monitoring

Clinton Jeffery, Mikhail Auguston, Scott Underwood

Department of Computer Science, New Mexico State University
{jeffery, mikau, sunderwo}@cs.nmsu.edu

Abstract. UFO is a new application framework in which programs written in
FORMAN, a declarative assertion language, are compiled into execution monitors that
run on a virtual machine with extensive monitoring capabilities provided by the Alamo
monitor architecture. FORMAN provides an event trace model in which precedence and
inclusion relations define a DAG structure that abstracts execution behavior. Compiling
FORMAN assertions into hybrid run-time/post-mortem monitors allows substantial
speed and size improvements over post-mortem analyzers. The UFO compiler generates
code that computes the minimal projection of the DAG necessary for a given set of
assertions. UFO enables fully automatic execution monitoring of real programs. The
approach is non-intrusive with respect to program source code and provides a high level
of abstraction for monitoring and debugging activities. The ability to compile suites of
debugging rules into efficient monitors, and apply them generically to different
programs, enables long-overdue breakthroughs in program debugging .

1. Motivation
Debugging is one of the most challenging and least developed areas of software

engineering. A special issue of Communications of the ACM characterized the
current state of debugging tools as a "Debugging scandal" [1]. According to the
classic "Brook's rule" [2] more than 50% of all time and effort in a software project is
spent in testing and debugging activities. Typical activities include detection and
removal of errors, profiling, and performance tuning.

Debugging activities include queries regarding many aspects of target program
behavior: sequences of steps performed, histories of variable values, function call
hierarchies, checking of pre- and post-conditions at specific points, and validating
other assertions about program execution. Performance testing and debugging
involves a variety of profiles and time measurements. Visualization is another
common debugging activity that may help locate logic or performance problems.

There is an urgent need for tools that automate the primary, labor-intensive tasks
of debugging, but progress has been slow. Debugging automation has its own system
of ideas and domain-specific programming activities. Support for these concepts and
activities is essential in order to move debugging automation forward.

We are building automatic debugging tools based on precise program execution
behavior models that enable us to employ a systematic approach. Our program
behavior models are based on events and event traces [3][4][5]. Debugging
automation refers to a computation over an event trace. Program execution monitors
are programs that load and execute a target program, obtain events at run-time, and
perform computations over the event trace. Computations are performed during
execution, post-mortem, or in any mixture of both times .

•

•

•

Any detectable action perfonned during a target program's run time is an event.
For instance, expression evaluations, statement executions, and procedure calls are all
examples of events. An event has a beginning, an end, and some duration; it occupies
a time interval during program execution. This leads to the introduction of two basic
binary relations on events: partial ordering and inclusion. Those relations are
detennined by target language syntax and semantics, e.g. two statement execution
events may be ordered, or an expression evaluation event may occur inside a
statement execution event. The set of events produced at run time, together with
ordering and inclusion relations, is called an event trace and represents a model of
program behavior. An event trace fonns an acyclic directed graph (DAG) with two
types of edges corresponding to the basic relations.

Our previous work included the FORMAN assertion language [3] and the Alamo
program execution monitoring architecture [6). FORMAN takes a top-down
approach, introducing a domain-specific syntax for expressing bug manifestations and
other behavior of interest, while Alamo takes a more bottom-up, implementation
driven approach, providing runtime system support for the development of monitors
in which efficiency and scalability to real programs are primary concerns. Alamo's
efficient source-level access and control over monitored programs has been integrated
into a production virtual machine; in the absence of such support, monitoring would
require extensive low-level instrumentation and control mechanisms.

The language UFO (Unicon-FORMAN) integrates the experience accumulated in
these previous projects to provide a complete solution for development of an
extensive suite of automatic debugging tools. UFO is an implementation of
FORMAN for debugging programs written in the Unicon and Icon programming
languages [7][8). Previous FORMAN implementations worked on subsets of Pascal,
and C languages and used post-mortem event trace processing methods that limited
their applicability. In contrast, UFO uses the Alamo monitoring architecture that
pervades the Unicon virtual machine to support debugging real programs at run time.

2. U nicon and Alamo
The Unicon language and the Alamo monitoring architecture provide the underlying
research framework for the implementation of UFO. Unicon is an imperative, goal
directed, object-oriented superset of the Icon programming language. Unicon's syntax
is similar to Pascal or Java, while its semantics are higher level, featuring built-in
backtracking and heterogeneous data structures and string scanning facilities. Icon has
influenced many scripting languages such as Python. Unicon is Icon's direct
descendant, derived from Icon's implementation. It runs regular Icon programs and
extends Icon's reach with object-orientation and packages, as well as a much richer
system interface with high level graphics, networking, and database facilities.

The reference implementation of Unicon is a virtual machine. Virtual machines
(VM) are attractive to language implementers, enhancing portability and allowing
simpler implementation of very high level language features such as backtracking.

VMs are also ideal for developing debugging tools. VMs provide an appropriate
level of abstraction for developing behavior models to describe program executions in
a processor independent manner, as illustrated by the JPAX tool [9]. VMs also
provide easy access to program state and control flow, the infonnation most needed

•

•

•

for debugging activities. Automatic instrumentation on multiple semantic levels is
greatly simplified via the use of a VM. This potential was exploited in the Unicon
VM by a framework that implements the Alamo monitoring architecture. Event
instrumentation and processing support are an integral part of the VM.

The Alamo Unicon framework is summarized in Figure 1. Execution monitors
(EM) and the target program (TP) execute as (sets of) coroutines with separate stacks
and heaps inside a common VM. The VM is instrumented with approximately 150
kinds of atomic events, each one reporting a <code,value> pair. EMs specify
categories of events by supplying an event mask when they activate the TP by
coroutine switch. The TP executes up to an event of interest.

Unicon Virtual Machine state access functions

TP

m
a
s
k

EM

VM instrumentation

Fig. 1. Alamo architecture within the Unicon VM .

The event mask is used by the VM for instrumentation selection and control. Event
reports during TP execution are coroutine context switches from the VM runtime
system back to the execution monitor. In addition to the <code, value> reported for the
event, the EM can directly access arbitrary variable values and state information from
the TP via state access functions. Monitors are written independently from the target
program, and can be applied to any target program without recompiling the monitor
or target program. Monitors dynamically load target programs, and can easily query
the state of arbitrary variables at each event report. Multiple monitors can monitor a
program execution, under the direction of a monitor coordinator.

Alamo's goal was to reduce the difficulty of writing execution monitors to be just
as easy as writing other types of application programs. UFO moves beyond Alamo to
efficiently support FORMAN's more ambitious goal of reducing the difficulty of
writing automatic debuggers to the task of specifying generic assertions about
program behavior. UFO's FORMAN language is described in Section 4 below, but
first it is necessary to present the underlying behavior model.

3. An Event Grammar for Unicon
Event grammars provide a model of program run time behavior. Monitors do not have
to parse events using this grammar, since event detection is part of VM and UFO
runtime system functionality. Monitors implement computations over event traces
supplied by the VM. An event is an abstraction of a detectable action performed at
run time and has an event type and various attributes associated with it. The following
description in fact provides a "lightweight" semantics of the Unicon programming
language tailored for specification of debugging activities. An event corresponds to

•

•

•

some specific action of interest performed during program execution. Event type is an
important part of the behavior model.

Universal attributes are found in every event. They frequently are used to narrow
assertions down to a particular domain (function, variable, value) of interest. Some of
these attributes are much easier to obtain than others, and affect the optimizations that
can be performed when generating monitor code; see Section 5 for details.

source text: in a canonical form
line_ num, col_ num:
time_ at_ end, time_ at_ begin, duration:
eval_at_ begin (Unicon-expr),
eval_at_end (Unicon-expr):
prev _path, following__path:

source text locations
timing attributes

runtime access to the program states
set of events before/after this event

Event types and their type-specific attributes are summarized in the table below.

Event T__y(!_e Descr~tion T_yp_e S_.I!_ecific Attributes
!IJro_g_ ex wholepr~am execution
expr_eval expression evaluation value, operator, type, failure __p
func call function call func name,_I>_aramlist
i~ut, ou_!£_ut IIO file
variable variable reference
literal reference to a constant value

l~ lefthand _.I!_art, ass!.g_nment address
rh_.1!_ ri_g_hthand _.Q_art, ass!.g_nment
clause then-, else-, or case branch execution
test test evaluation
iteration loop iteration

Event types form a hierarchy, shown in Figure 2. Subtypes inherit attributes from
the parent type. Expression evaluation is the central action during Unicon program
execution, this explains why the expr_eval event is on the top of the hierarchy.

I
clause

I
iteration test

expr_eval

I I
lhp func_call

I
I

input

I
rhp

I
output

I
variable

Fig 2. Event Type Inheritance Hierarchy

pa ram literal

The UFO event grammar for Unicon is a set of axioms describing the structure of
event traces with respect to the two basic relations: inclusion and precedence. The
grammar is one possible abstraction ofUnicon semantics; other event grammars with
far more (or Jess) detail might be used. The event grammar limits what kinds of bugs
can be detected, so some detail is useful. The grammar uses the following notation:

•

•

•

Notation Meanil!&_
A ::(BC) B _IJrecedes A, A includes B and C
A* Zero or more A's under_IJrecedence
A+ One or more A's under _IJrecedence
AlB Either A or B; alternative
A? A is ~ional
lA,Bl Set; A and B have no _£_recedence
x:A Let x denote event A

prog_ex:: (expr_eval *)
expr_eval:: ((expr_eval) I

)

(expr _ eval expr _ eval) I
(expr _ eval+) I
(test clause) I
(iteration *) I
({ Ihp, rhp})

unary op
binary op

conditional I case expressions
loops
assignment
/hp and rhp are not ordered, beginning of
/hp precedes rhp, and end of /hp follows rhp

iteration:: (test expr_eval*) I (expr_eval* test) I (expr_eval *)

Execution of a Unicon program produces a set of events (an event trace) organized
by precedence and inclusion into a DAG. The structure of the event trace (event
types, precedence and inclusion of events) is constrained by the event grammar
axioms above. The event trace models Unicon program behavior and provides a basis
to define different kinds of debugging activities (assertion checking, debugging
queries, profiles, debugging rules, behavior visualization) as appropriate computations
over the event traces.

4. FORMAN

Alamo allows efficient monitors to be constructed in Unicon, but using a special
purpose language such as FORMAN, with the rich behavior model described in the
preceding section, has compelling advantages. On a basic level, for example, it is
convenient to refer to target program variables directly instead of through a library
call. For example, in FORMAN we may refer to target program variable x, while in
the Unicon monitor it is referenced as variable("x", &eventsource). UFO rules are
up to an order of magnitude smaller (in terms of lines of source code) than the
equivalent imperative monitors written in Unicon, depending on the type of
quantifiers and aggregate operations used in the FORMAN rule.

More important than such conveniences are FORMAN's control structures that
directly support dynamic analysis. FORMAN supports computations over event traces
centered around event patterns and aggregate operations over events. The simplest
event pattern consists of a single event type and matches successfully an event of this
type or an event of a subtype of this type. Event patterns may include event attributes

•

•

•

and other event patterns to specify the context of an event under consideration. For
example, the event pattern

E: expr_eval & E.operator == ":="

matches an event of assignment. Temporary variable E provides an access to the
events under consideration within the pattern.

The following example demonstrates the use of an aggregate operation.

CARD[A: func_call & A.func_name == "read" FROM prog_ex]

yields a number of events satisfying the given event pattern, collected from the whole
execution history. Expression[...) is a list constructor and CARD is an abbreviation
for a reduction of'+' operation over the more general list constructor:

+/[A: func_call & A. func_name=="read" FROM prog_ex APPLY 1)

Quantifiers are introduced as abbreviations for reductions of Boolean operations
OR and AND. For instance,

FOREACH Pattern FROM event_set Boolean_expr

is an abbreviation for

AND/[Pattern FROM event_set APPLY Boolean_expr

Debugging rules in FORMAN usually have the form:
Quantified_ expression

WHEN SUCCEEDS SAY-clauses
WHEN FAILS SAY-clauses

The Quantified_expression is optional and defaults to TRUE. The execution of
FORMAN programs relies on the Unicon monitors embedded in a VM environment.
Section 5 below describes the architecture of the UFO compiler and runtime system,
which translates FORMAN to Unicon VM monitor code.

The following examples illustrate additional features of FORMAN as needed.

Application-Specific Analyses

This section presents formalizations of typical debugging rules. UFO supports and
improves upon the most common application-specific debugging techniques. For
example, UFO supports traditional precondition checking, or print statement
insertion, without any modification of the target program source code. This is
especially valuable when the precondition check or print statement is needed in not
just one location, but instead in many locations scattered throughout the code.

Example #1: Tracing. Probably the most common debugging method is to insert
output statements to generate trace files, log files, and so forth. This allows for
subsequent human analysis, and while it has its limitations, it will remain a common
technique. It is possible to request evaluation of arbitrary Unicon expressions at the
beginning or at the end of events. The VM evaluates these expressions at the indicated
time moments, allowing dynamic instrumentation of the Uni con program, whether to
print some values, or to call a visualization library subroutine .

•

•

•

FOREACH A: func call & A.func name == "my_func" FROM prog_ex
A.value at_begin(write("entering my_func, value of X is:",X))

AND
A.value_at_end(write("leaving my_func, value of Xis:", X))

This debugging rule causes calls to write () to be evaluated at selected points at
run time, just before and after each occurrence of event A.

Example #2: Profiling. A myriad of tools are based on a premise of accumulating
the number of times a behavior occurs, or the amount of time spent in a particular
activity or section of code. The following debugging rule illustrates such
computations over the event trace.

SAY("Total number of read() statements: "
CARD[r: input & r.filename == "xx.in" FROM prog_ex
"Elapsed time for read operations is: "
SUM [r: input & r.filename == "xx.in" FROM prog_ex

APPLY r.duration))

Example #3: Pre- and Post- Conditions. Typical use of assertions includes
checking pre- and post-conditions of function calls.

FOREACH A:func_call & A.func_name=="sqrt" FROM prog_ex
A.paramlist[l) >=0 AND
abs(A.value*A.value-A.paramlist[l)) <epsilon

WHEN FAILS SAY("bad sqrt(" A.pararrtlist[l) ") yields " A.value)

Generic Bug Descriptions

Another interesting prospect is the development of a suite of generic automated
debugging tools that can be used on any Unicon program. UFO provides a level of
abstraction sufficient for specifying typical bugs and debugging rules.

Example #4: Detecting Use of Un-initialized Variables. Although reading an un
initialized variable is permissible in Unicon, this practice often leads to errors.
Therefore, in this debugging rule all variables within the target program are checked
to ensure that they are initialized before they are used.

FOREACH V: variable FROM prog ex
FIND D: lhp FROM V.prev_path D.source text == V.source text

WHEN FAILS SAY(" uninitialized variable " V.source_text)

Example #5: Empty Pops. Removing an element from an empty list is
representative of many expressions that fail silently in Unicon. While this can be
convenient, it can also be a source of difficult to detect logic errors. This assertion
assures that items are not removed from empty lists.

FOREACH a:func call & a.func_name=="pop" &
a.value_at_begin(*a.paramlist[l)==O)

SAY("Popping from empty list at event " a)

•

•

•

5. Implementation Issues

The most important of implementation issues is the translation model by which
FORMAN rules are compiled into Unicon monitors. Rules are written as if they have
the complete post-mortem event trace available for processing. This generality is
powerful; however the majority of assertions can be compiled into monitors that
execute entirely at runtime. Runtime monitoring is the key to practical
implementation. For assertions that require post-mortem analysis, the UFO runtime
system computes a projection of the execution DAG needed to perform the analysis.

The UFO translation model categorizes each rule as either "runtime", "post
mortem", or "hybrid", denoting the amount of computations that can be performed at
runtime. Runtime and hybrid categories are determined by constraints on FORMAN
quantifier prefixes and result in more efficient code. Nested quantifiers and aggregate
operations generally require post-mortem operation.

Translation Examples

Each FORMAN statement is translated into a combination of initialization, run-time,
and post-mortem code. Monitors are executed as coroutines with the Unicon target
program, as explained in Section 2. The following examples give a flavor of the run
time architecture of monitors generated from the UFO high level rules.

Implementation of Example #1. A lone FOREACH quantifier is typical of many
UFO debugging actions and allows computation to be performed entirely at runtime.
The events being counted and values being accumulated determine an event mask in
the initialization code that defines the Alamo events that will be monitored. The
monitor's event processing loop implements a filter based on procedure name within
an if-expression. The Unicon code blocks containing write() expressions are inserted
directly into the event loop for the relevant events. The complete monitor is:

$include "evdefs.icn"
link evinit
procedure main(av)

Evinit(av) I stop("can't monitor", av[l])
mask := E_Pcall ++ E_Pret ++ E Pfail ++ E Prem
while EvGet(mask) do {

end

if &eventcode == E Pcall & &eventvalue === my_func then
write ("entering my_func, value of X is:", X) # BEFORE

if &eventcode == (E_Pret I E Pfail I E_Prem) &
&eventvalue=== my_func then

write("leaving my_func, value of Xis:", X) #AFTER

Implementation of Example #2. Another typical situation involves an aggregate
operation and selection of events according to a given pattern. The SAY expression is
implemented by a call to write(); it must be performed post-mortem since it uses
parameters whose values are constructed during the entire program execution. CARD
denotes a counter, while SUM denotes an accumulator +/; both require a variable that
is initialized to zero. The event subtypes and constraints are used to generate

•

•

•

additional conditional code in the body of the event processing loop. Lastly, some
attributes such as r.duration require additional events and measurements besides the
initial triggering event. In the case of r.duration, a time measurement between the
function call and its return is needed.

$include "evdefs.icn"
link evinit
procedure main(av)

Evinit(av) I stop("can't monitor", av[l))
cardreads := sumreadtime ·= 0
mask := cset(E_Fcall)
while EvGet(mask) do {

###count CARD of r:input ...
if &eventcode == E Fcall & &eventvalue

cardreads +:= 1
add SUM of r.duration for r:input

(readlreads) then

if &eventcode == E Fcall & &eventvalue===(readlreads) then {

}

thiscall := &time
EvGet(E_Ffail++E_Fret)
sumreadtime +:= &time - thiscall

Translation of SAY
write("Total number of read() statements: ", cardreads, "\n",

"Elapsed time for read operations is: ", sumreadtime)
end

Basic Generation Templates

The preceding handwritten example monitors use a single main loop that implements
traditional event-driven processing. Monitors generated by the UFO compiler reduce
complex assertions to this same single event loop. Keeping event detection in a single
loop allows uniform processing of multiple event types used by multiple monitors.
The code generated by the UFO compiler integrates event detection, attribute
collection, and aggregate operation accumulation in the main event loop.

Assertions in UFO that use nested quantifiers entail two nested loops. Code
generation flattens this loop structure, and postpones assertion processing until
required information is available. A hybrid code generation strategy performs runtime
processing whenever possible, delaying analyses until post-mortem time when
necessary. Different assertions require different degrees of trace projection storage;
code responsible for trace projection collection is also arranged within the main loop.

Each UFO rule falls in one of the following categories which determines its code
generation template in the current implementation. We have not found a use for
assertions requiring more than two nested quantifiers.

T__Yl!_e FORMAN tem__p_late Pseudocode
Single quantifier. Rule applies to See examples in Section 4.1.

I whole trace(prog_ex); evaluates at
runtime .

•

•

•

II

III

IV

FORMAN tem_p_late
Nested quantifiers of the form
Quantifier A: Pattern_A

Quantifier B: Pattern_B FROM A
Body

This requires accumulation of a trace
projection for B-events and causes a
mild overhead at runtime.

Nested quantifiers of the form

Quantifier A: Pattern_A
Quantifier B: Pattern_B

FROM A .prev_path
Body

Accumulates a trace projection for B
events and may cause a heavy
overhead at runtime. The B-list can
not be deleted till the end of session.
Nested quantifiers of the form

Quantifier A: Pattern_A
Quantifier B: Pattern_B

FROM A .following_path
(or FROM prog_ex)

Body
Accumulates trace projections for
both A and B events and causes a
v~ heav_y_ overhead at runtime.

Compiler-Based Optimizations

Pseudocode
Main Loop

Maintain stack of nested A
events

Accumulate events B in a B-list
If end of event A

Loop over B-list
Do Body

Endif
If stack of A is empty

Destroy B-list
End of Main Loo_Q_
Main Loop

Maintain stack of nested A
events

Accumulate events B in a B-list
If end of event A

Loop over B-list
If B precedes A

Do Body
Endif

End of Main Loop

Main Loop
Accumulate events A in A-list
Accumulate events B in B-list

End of Main Loop
#Postmortem Loop
Loop over A-list

Loop over B-list
Do Body

End of Postmortem Loop

The advantage of the UFO approach is the combination of an optimizing compiler for
monitoring code with efficient run-time event detection and reporting. Since we know
at compile time all necessary event types and attributes required for a given UFO
program, the generated monitor is very selective about the behavior that it observes.

For certain UFO constructs, such as nested quantifiers, monitors accumulate a
sizable projection of the complete event trace and postpone corresponding
computations until required information is available. The use of the previous_path
and following_path attributes in UFO assertions facilitates this kind of optimization.

For further optimization, especially in the case of programs containing a
significant number of modules, the following FORMAN construct limits event
processing to events generated within the bodies of functions Fl, F2, ... , Fn.

WITHIN Fl, F2, ... , Fn DO
Rules

END WITHIN

•

•

•

This provides for monitoring only selected segments of the event trace.
Unicon expressions included in the value_at_begin and value_at_end attributes are

evaluated at run time. Some other optimizations implemented in this version are:
• only attributes used in the UFO rule are collected in the generated monitor;
• an efficient mechanism for event trace projection management, which

disposes from the stored trace projection those events that will not be used
after a certain time (for example, see Category II);

• event types and context conditions are used to filter events for the processing.
UFO's goal of practical application to real-sized programs has motivated several

improvements to the already-carefully-tuned Alamo instrumentation of the Unicon
VM. We are working on additional optimizations.

6. Results of Sample Assertion Execution

Table 1 gives results from executing rules written in UFO on a sample target program,
a 1,100 line version of egrep. Tests were run on a 700 MHz Solaris machine with
5 l 2MB of RAM. The results reported are number of events generated by the VM and
execution time averaged over several runs. Execution time is reported as
minutes:seconds.tenths. The second row contains the time for program execution
without monitoring. Each program/input file combination was monitored by 8
different assertions corresponding to the basic generation templates.

Cases 1-4 are examples of a Category I template. Case 5 is a Category II rule.
Case 6 is a Category III rule. It uses PREV _PATH and accumulates a trace projection
over part of the program execution. Cases 7 and 8 contain nested quantifiers that
belong to Category IV. These assertions require the accumulation of two trace
projections over the entire program execution, and complete post-mortem processing.
Case 9 is composed of all the previous assertions to yield a monitor that combines
multiple assertions on a single execution of the target program.

Table 1. Results for igrep.icn.

Input Size (lines) 4000 16000 64000

No monitoring 0.5 1.6 6.4

Events Time Events Time Events Time

Case 1 184208 4.1 736208 16.2 2944208 1:04.9

Case2 284123 4.6 1136123 18.I 4544123 1:12.9

Case3 184208 3.4 736208 13.5 2944208 54.0

Case4 184208 3.5 736208 13.6 2944208 54.0

Cases 276306 6.3 1104306 28.0 4416306 2:09.3

Case6 276306 6.5 1104306 28.4 4416306 2:11.8

Case7 276306 6.5 1104306 29.1 4416306 2:11.3

Case8 276306 6.5 1104306 29.4 4416306 2:12.6

Case9 340306 45.9 1360306 3:57.8 5440306 20:38.6

•

•

•

The results depicted in this table allow several observations. Average monitoring
speeds on simple assertions in the test environment were in the range of 2-3 million
events per minute. Monitoring realistic assertions on real-size programs with real-size
input data is feasible with this system. Most assertions impose about one order of
magnitude execution slowdown compared with the unmonitored program execution.

The execution time required by the combination of all assertions (Case 9) is longer
than the sums of separate monitor executions. Combined assertion executions have
greater memory requirements in the current implementation, because separately
collected trace projections compete for available cache and virtual memory resources.
Multi-assertion optimizations are not yet implemented in the current UFO compiler.

7. Related Work

What follows is a very brief survey of basic ideas known in Debugging Automation to
provide the background for the approach advocated in this paper.

The Event Based Behavioral Abstraction (EBBA) [IO] characterizes the behavior
of programs in terms of primitive and composite events. Context conditions involving
event attributes are used to distinguish events. EBBA defines two higher-level means
for modeling system behavior -- clustering and filtering. Clustering is used to express
behavior as composite events, i.e. aggregates of previously defined events. Filtering
serves to eliminate from consideration events, which are not relevant to the model
being investigated. Both event recognition and filtering can be performed at run-time.

Event-based debuggers for the C programming language built on top of GDB
include Dalek [I I] and COCA [12]. Dalek supports user-defined events that typically
are points within a program execution trace. A target program has to be manually
instrumented in order to collect values of event attributes. Composite events can be
recognized at run-time as collections of primitive events. COCA uses GDB for tracing
and PROLOG for the execution of debugging queries. It provides an event grammar
for C and event patterns based on attributes for event search. The query language is
designed around special primitives built into the PROLOG query evaluator.

Assertion languages provide another approach to debugging automation. Boolean
expressions are attached to points in the target program, like the assert() macro in C.
[13] advocates a practical approach to programming with assertions for the C
language, and demonstrates that even local assertions associated with particular points
within the program may be extremely useful for program debugging

The ANNA [14] annotation language for the Ada language supports assertions on
variable and type declarations. The TSL [15], [16) annotation language for Ada uses
events to describe the behavior of Tasks. Patterns can be written which involve
parameter values of Task entry calls. Assertions are written in Ada using a number of
special pre-defined predicates. Assertion-checking is performed at run-time. RAPIDE
[l 7] provides an event-based assertion language for software architecture description.
Temporal Rover is a commercial tool for dynamic analysis based on temporal logics
[18). The DUEL [19] debugging language introduces expressions for C aggregate
data exploration, for both assertions and queries .

•

•

•

Algorithmic debugging was introduced in [20] for the Prolog language. In [21] and
[22] this paradigm is applied to a subset of PASCAL. The debugger executes the
program and builds a trace execution tree at the procedure level while saving some
useful trace information such as procedure names and input/output parameter values.
The debugger traverses the execution tree, asking the user about the intended behavior
of each procedure. The search finally ends and a bug is localized within a procedure p
when one of the following holds: procedure p contains no procedure calls, or all
procedure calls performed from the body of procedure p fulfill the user's expectations.
The notion of computation over execution trace introduced in FORMAN is a
generalization of Algorithmic Debugging and is a convenient basis for describing
such generic debugging strategies.

PMMS [23] is a high level program monitoring and measuring system. This system
works by receiving queries from the user about target programs written in the AP5
high level programming language. PMMS instruments the source code of the target
program in order to gather data necessary to answer the posed questions. This data is
collected during run time by the monitoring facilities of PMMS and stored in a
database for subsequent analysis. Their domain specific query language is similar to
FORMAN but tailored for database-style query processing.

JPAX [9], the Java Path Explorer, provides a means to check execution events
within a program based on a user provided specification written in Maude, a high
level logic language. Like UFO, JPAX supports monitoring based on a VM (JVM).
JPAX supports both black box (based on automatic byte-code instrumentation) and
white box (based on hand instrumentation) runtime verification.

Dynascope [24] is a system for directing programs written in vanilla C. A director
monitors and controls the actions of the program, while an interpreter controls the
flow of event streams to and from the director in addition to interpreting the program.
Dynascope can test and debug programs without altering their source code.

YODA [25] uses a preprocessor to attach statements to a target Ada program.
These statements activate a monitor creates a trace database and a symbol table to aid
in debugging. The trace database will contain the program's history regarding variable
declaration and use, task synchronization, and change in task status. Prolog queries
can be issued by the user in order to confirm or reject hypotheses about program
behavior. YODA represents a classical post-mortem trace processing paradigm.

8. Conclusions and Future Work

The rising popularity of virtual machine architectures enables dramatic improvements
in automatic debugging. These improvements will only occur if debugging is one of
the objectives of the VM design, e.g. as in the case of .net [26].

The architecture employed in UFO could be adapted for a broad class of languages
such as those supported by the Java VM or the .net VM. Our approach to debugging
automation uniformly represents many types of debugging-related activities as
computations over traces, including assertion checking, profiling and performance
measurements, and the detection of typical errors. We have integrated event trace

•

•

•

computations into a monitoring architecture based on a VM. Preliminary experiments
demonstrate that this architecture is scalable to real-world programs.

One of our next steps is to build a repository of formalized knowledge about
typical bugs in the form of UFO rules, and gather experience by applying this
collection of assertions to additional real-world applications. There remain many
optimizations that will improve the monitor code generated by the UFO compiler, for
example, merging common code used by multiple assertions in a single monitor, and
generating specialized VMs adjusted to the generated monitor.

Acknowledgements
This work has been supported in part by U.S. Office of Naval Research Grant #
N00014-0l-l-0746, by U.S. Army Research Office Grant# 40473--MA-SP, by the
NSF Grant# EIA 02-20590, and by the National Library of Medicine.

References

[I] Communications of the ACM, Vol.4, 1997.
[2] F. Brooks, The Mythical Man-Month. Addison-Wesley, Reading, MA, 1975.
[3] Mikhail Auguston, Program Behavior Model Based on Event Grammar and its

Application for Debugging Automation, Proceedings of the 2nd Int'! Workshop on
Automated and Algorithmic Debugging, Saint-Malo, France, May 1995, pp. 277-291.

[4] M. Auguston, A. Gates, M. Lujan, "Defining a Program Behavior Model for Dynamic
Analyzers", in Proceedings of the 9th International Conference on Software Engineering
and Knowledge Engineering, SEKE'97, Madrid, Spain, June 1997, pp. 257-262.

[5] M. Auguston, "Lightweight semantics models for program testing and debugging
automation'', Proceedings of the 7th Monterey Workshop, June 2000, pp.23-31.

[6] Clinton L. Jeffery, Program Monitoring and Visualization: an Exploratory Approach.
Springer, New York, 1999.

[7] Clinton Jeffery, Shamim Mohamed, Ray Pereda, and Robert Parlett, "Programming with
Unicon", http://unicon.sourceforge.net.

[8] Ralph E. Griswold and Madge T. Griswold, The Icon Programming Language, 3rd edition.
Peer to Peer Communications, San Jose, 1997.

[9] K. Havelund, S. Johnson, G. Rosu. "Specification and Error Pattern Based Program
Monitoring'', ESA Workshop on On-Board Autonomy, Noordwijk, Holland, Oct. 200 I.

[IO] P. C. Bates, J. C. Wileden, "High-Level Debugging of Distributed Systems: The Behav
ioral Abstraction Approach", Journal of Systems and Software 3, 1983, pp. 255-264.

[11] R. Olsson, R. Crawford, W. Wilson, "A Dataflow Approach to Event-based Debugging",
Software -- Practice and Experience, Vol.21(2), February 1991, pp. 19-31.

[12] M. Ducasse, "COCA: An automated debugger for C", in Proceedings of the 1999
International Conference on Software Engineering, Los Angeles, 1999, pp. 504-513.

[13] D. Rosenblum, "A Practical Approach to Programming with Assertions", IEEE
Transactions on Software Engineering, Vol. 21, No 1, January 1995, pp. 19-31.

[14] D. C. Luckham, S. Sankar, S. Takahashi, "Two-Dimensional Pinpointing: Debugging with
Formal Specifications'', IEEE Software, Vol. 8, No I, January 1991, pp.74-84.

[15] D. C. Luckham, D. Bryan, W. Mann, S. Melda!, D. P. Helmbold, "An Introduction to Task
Sequencing Language, TSL version 1.5", Stanford University, Feb. 1990, pp. 1-68.

[16] D. Rosenblum, "Specifying Concurrent Systems with TSL", IEEE Software, Vol. 8, No 3,
May 1991, 52-61.

[17] D. Luckham, J. Vera, "An Event-Based Architecture Definition Language", IEEE
Transactions on Software Engineering, Vol.21, No. 9, 1995, pp. 717-734 .

•

•

•

[18] D. Drusinsky, The Temporal Rover and the ATG Rover, LNCS #1885, pp.323-330,
Springer, 2000.

[19] M. Golan, D. Hanson, "DUEL - A Very High-Level Debugging Language'', in
Proceedings of the Winter USENIX Technical Conference, San Diego, Jan. 1993.

[20] E. Shapiro, "Algorithmic Program Debugging", MIT Press, May 1982.
[21] P. Fritzson, N. Shahmehri, M. Kamkar, T. Gyimothy, "Generalized Algorithmic

Debugging and Testing", ACM LOPLAS, Vol I (4), Dec 1992.
[22] N. Shahmehri, "Generalized Algorithmic Debugging", Ph.D. Thesis No. 260, Dept. of

Computer and Information Science, Linkoping University, S-581 83 Linkoping, 1991.
[23] Y. Liao, D. Cohen, "A Specificational Approach to High Level Program Monitoring and

Measuring", IEEE Transactions on Software Engineering, Vol 18, No 11, Nov 1992,
pp.969 - 978.

[24] R. Sosic, "Dynascope: a Tool for Program Directing", Sigplan Notices 27(7), pp.12-21,
1992.

[25] LeDoux, Carol H. and Parker, D., "Saving Traces for Ada Debugging. Ada in Use'', Proc.
of the Ada International Conference, ACM Ada Letters, 5(2), pp.97-108, Sep 1985.

[26] http://www.microsoft.com/net/

Appendix. Syntax for UFO rules

Rules::= ((Rule I Within_group) ';') +
Within_group::= 'WITHIN' Procedure_name (',' Procedure_name) *

'DO' (Rule';')+ 'END_WITHIN'
Rule::= [Label':']

[('FOREACH' I 'FIND') Pattern ['FROM' 'PROG_EX']]
[('FOREACH' I 'FIND') Pattern ['FROM' ('PROG_EX' I

Metavariable ['.' ('PREV_PATH' I 'FOLLOWING_PATH')])]
['SUCH' 'THAT'] Bool_expr
[rWHEN' 'SUCCEEDS'] Say_clause +] ['WHEN' 'FAILS' Say_ clause+]

Say_clause ::='SAY''(' (Expression I Metavariable I Aggregate_op) * ')'
Bool_expr::= Bool_expr1 ('OR' Bool_expr1)*
Bool_expr1 ::= Bool_expr2 ('AND' Bool_expr2)*
Bool_expr2::= Expr [('='I'==' I'>' I'<' I'>=' I'<=' I 'I=') Expr] I 'NOT' Bool_expr2 I

'(' Bool_expr ')'
Pattern::= Metavariable ':' Event_ type ['&' Bool_expr]
Aggregate_op::= [('CARD' I 'SUM')] T Pattern

rFROM' ('PROG_EX' 1 Metavariable ['.' ('PREV_PATHTFOLLOWING_PATH')])]
['APPLY' (Bool_ expr I Expression)] 1'

Expression::= Expr1 (* ('+' I '-') Expr1 *)
Expr1::= Simple_expr (('*'I 'DIV' I 'MOD') Simple_expr)*
Simple_expr::= '-' Simple_expr I integer I Aggregate_op I

Metavariable '.' Attribute I string I '(' Expr ')'
Attribute::= (SOURCE_ TEXT I LINE_NUM I COL_NUM I TIME_AT_END I

TIME_AT_BEGIN I COUNTER_AT_END I COUNTER_AT_BEGIN I
DURATION I VALUE I OPERATOR I TYPE I FAILURE I FUNC_NAME I
(PARAM_NAMES T integer T) I FILE_NAME I ADDRESS I
(VALUE_AT_BEGIN I VALUE_AT_END) '(' Unicon_expr ')')

Event_type::= (func_call I expr_eval I input I output I variable I literal I
lhp I rhp I clause I iteration I test)

•

•

•

A Component Assembly Architecture with Two-Level Grammar
Infrastructure 1

Wei Zhao2 Barrett R. Bryant2 Fei Cao2

Andrew M. Olson3

1. Introduction

Rajeev R. Raje3

Carol C. Burt2
Mikhail Auguston4

Being able to generate a concrete software product from domain specifications, upon an order
requirement5

, still remains a mirage using most modem software engineering techniques. To
provide a systematic way to automate software engineering process, formal models should be
constructed beforehand to capture the various aspects of engineering knowledge for any
predictable software solutions for a particular domain; an infrastructure should be available to
support the automation of any specific product generation by intelligently using the established
engineering knowledge models.

Engineering knowledge involves the decisions made about a software product along its
production line, which includes the policies from domain business executives, expertise from
domain experts, experiences from software managers and engineers, and the techniques from
software developers and programmers. During the software production process, these engineering
knowledge will contribute respectively towards service specifications of the system and the
Quality of Services (QoS), detailed business logic of the system, specifications of software
architecture and role assignments for developers, concrete software development by applying
different programming languages and component-based technologies.

Using current software engineering practices, the investments of engineering knowledge are
all encapsulated in one business organization, making engineering knowledge implicit, vague and
intertwined. However, the latter two aspects are from technology prospective other than business
prospective, and can be most possibly reused across all the business domains. To construct formal
models that capture various aspects of engineering knowledge, and to organize them in such a
way that separation of concern and maximized reuse of engineering knowledge can be achieved,
we categorize this synergy of engineering knowledge into three-dimensional domains:

I) Business domains are associated with the natural categorization of business sectors and the
natural hierarchical structure of business organizations;

2) Functionality domains are based on the functionality and the role of different parts of
software, and their collaboration means and patterns; and

3) Technology domains address the issues related to software implementation technologies
such as component models, programming languages, hardware platforms, and so on.

Different group of people or organizations are expected to be responsible for each domain.
The successful construction of the Generative Domain Model (GDM) [CzaOO] (for each domain

1 This material is based upon work supported by, or in part by, the U.S. Army Research Laboratory and the U.S. Army
Research Office under contract/grant numbers DAAD19-00-l-0350 and 40473-MA, and by the U.S. Office of Naval
Research under award number NOOO 14-01-1-07 46.
2 Department of Computer and Information Sciences, University of Alabama at Birmingham, Birmingham, AL
35294-1170, U.S. A., {zhaow, bryant, caof, cburt}@cis.uab.edu.
3 Department of Computer and Information Science, Indiana University Purdue University Indianapolis,
Indianapolis, IN 46202, U.S. A., {rraje, aolson}@cs.iupui.edu.
4 Computer Science Department, New Mexico State University, Las Cruces, NM 88003, U. S. A.,
mikau@cs.nmsu.edu.
5 By "order requirement", we mean either a requirement document written in natural language by human or a system
construction request from another computer program.

•

•

•
L __ _

mentioned above), would assist in automating the development of software products under the
guidance of model transformations and refinements from the highest model (GDM) to more
specific intermediate models. This would finally lead to the end software products. This paper
describes the UniFrame project that aims at this goal.

2. Related Work

Toward the goal of automatic production of software, there have been many attempts in
domain engineering, system generation and model transformations. We describe a few prominent
ones here.

Generative Programming [CzaOO] is well known for providing a vision of automatically
generating products from a GDM, a specification of the product domain. However, the examples
provided for elementary components envisioned by the authors are limited to C++ structs and
classes with templates, which may not be sufficient to solve problems on the scale of distributed
and component-oriented computing. Many problems like universal interoperability should be
solved during system integration and generation. Widely known efforts such as CORBA [Corba],
Web Services [W3C] and Model Driven Architecture (MDA) [OMGOI], an initiative of the
Object Management Group (OMG), arose as possible solutions for the interoperability problem.

MDA sketches out a model transformation series, which transforms a business model to a
Platform Independent Model (PIM), then to a Platform Specific Model (PSM), and finally gets to
the executable code. Steps of model transformations certainly contribute to the automated product
generation from the high level specifications. Nevertheless, MDA currently appears to be only
concentrating on the model transformation for a single system. It also does not specify the
assembly of a system out of many available components .

FORM [Kan98] provides methods to construct feature models for a domain during the
domain engineering phase and to generate concrete systems by applying feature selection during
the application engineering phase. FORM defines domain features in terms of services, domain
technologies, operating environments and implementation techniques. We do consider it to be
inappropriate that the feature models for a business domain should include the latter two, as it is
not a good practice of separation of concerns, and can be a further obstacle for system flexibility
evolvability and engineering knowledge reuse. The architecture defined in FORM from three
different viewpoints (subsystem, process and module) does not capture the multi-dimensions of
engineering knowledge during a product manufacturing process.

3. UniFrame Architecture Overview

The UniFrame project6 is a framework for:

1) Providing an architecture for automated software product generation, upon an order
requirement, based on the assembly of a selection from an ensemble of searched
components (with which we believe we can overcome limitations mentioned in section
2);

2) Providing a practical technique based on the formalism of Two-Level Grammar {TLG)
[Bry02], which serves as the infrastructure enabling the automation of software
production by steps of model transformations.

UniFrame has two levels:

6 This project goal statement is phased according to our newly developed ideas and is different from the
original official one, which is "Seamless integration of heterogeneous and distributed software
components" [UniFr].

•

•

•

• GDMs for business domain, functionality domain and technology domain jointly
comprise the core part of the system level of UniFrame. The GDM for the business
domain mainly contains: domain feature models, standardized elementary domain
service7 specifications uniquely identified by their Universal Resource Identifiers (URis),
associated Quality of Service (QoS) parameters, service collaboration patterns, typical
computing algorithms for this business domain, domain specific language, etc. Some
preamble of a business GDM may be a standardized Stack class provided by J2SE
[J2SE] for the domain of the object "stack", or OpenGL [OpenG] for the domain of
graphics and images processing. The functionality domain GDM is essentially a reference
architecture model that identifies the functionality, the role and the collaboration patterns
among different parts of software. The GDM for technology domain deals with the
interoperability across heterogeneous implementation technologies and programming
languages. The UniFrame system level sets the context for developing a family of

. 8
products. We propose an Internet Component Exchange and Assembly (ICEA) center
for each business domain for developing and maintaining the business GDM.

• The UniFrame component level gives the view of the single system development.
Component developers have the freedom of choosing any implementation technology,
underlying hardware platform, or programming language to implement any standardized
service or a group of services confining to the service specifications in the business
GDM. The developer even has the freedom to name services as long as a DNS server
(specialized in this context) can perform the correct translation to the one with
standardized semantics and unique URI in the business GDM. Upon the accomplishment
of the individual component development, developers need to fill out a Unified Meta
Component Model (UMM) [RajO I] form to formally describe the components. UMM
identifies the niches of this component in various GDMs, provides the QoS of this
component and the address of the native component registry (e.g. RMI registry if this
component is developed in RMI). Then the developers need to register the UMM to its
respective ICEA. Hopefully, in the future, this process can be further facilitated by MDA
techniques: the developers pick up the business model for any business services, and
apply the model transformations to get to the executable code.

TLG is used to represent the three GDMs and the UMM. Because the domain services are
standardized and factored, it is feasible for the users to explicitly identify the service semantics in
their order requirements. The automatic production is carried out by the joint-effort among the
feature models in the three GDMs, feature selection from order requirements, and feature
identification and concretization in the UMM. At the system generation time, we need apply the
service interaction patterns from the feature models in business GDM for homogeneous
components; if the components are heterogeneous, we need apply the component interaction
patterns from the functionality GDM, and then use the mapping and translation rules stored in the
technology GDM for building interoperability. More precisely for interoperation, the UMM
specification (in TLG) will be translated into WSDL [W3C][Cao02), making Web Services the
underlying communication technique. The model transformation computation supporting product
automation is performed by the TLG interpreter that computes steps of substitution (the first level
context-free grammar) between two models (grammar's left and right hand side) guided by the
transformation rules (the second-level context-free grammar). Different levels of models will be

7 The "service" is not an executable entity. It is a concept of a slot of domain businesses. The "component"
defined under a component model can be executed within a component framework. The component
developers build software components by concretizing services. The "component" is a technologic carrier
for "services".
8 It is our notion of a group of people or organizations for this purpose.

•

•

•

represented by groups of TLG classes, e.g. Class Withdraw is a service description in the bank
domainGDM.

class Withdraw.
Passin :: AccountNumber, Amount.

end class.

A lower level model could further define AccountNumber as:
class AccountNumber.

Or as:

Type : : Integer.
Language:: c++.

end class.

class AccountNumber.
Type :: String.
Language:: java.
Lexeme:: letter (letter I number)*.

end class.

Please refer to [Bry02] for more details on TLG, and refer to [Zha02] for our current definition
and examples of TLG as an executable code generator.

4. Engineering Principles Employed in Designing UniFrame

Various engineering principles are observed in designing UniFrame architecture to fulfill its goal:
• Modularity is the fundamental consideration in designing UniFrame. In UniFrame, the

final system {product) is built from components, which in tum are built around one or
more services. The atomic and factored services (or features) is the truth that the system
can be generated on demand from requirements, in another word, across all the products
of a product family, what can really be reused and re-structured are the elementary
services. Given all the possible elementary services for a business domain, a wide
spectrum of systems can be generated by various combinations of services. Service
composition rules (e.g. domain feature models) are embedded in the business GDM, and
the component composition rules [Sun02] are embedded in the functionality GDM.

• The principle of autonomy and separation of concerns naturally separates the
multidimensional engineering knowledge into three GDMs maintained by different
groups of people, respectively. On the maturity of UniFrame, we hope the stabilized
infrastructure will have three sets of APis that will enable the creation/maintenance of
these three GDMs. The experts in different domains have the freedom of controlling their
domains; the component developers have their own choice about the implementation
details. This makes UniFrame flexible, dynamically re-configurable and evolvable.

• UniFrame also supports a transparent communication channel. The business GDM with
standardized services and their QoS is the communication media among the users, the
system and the component developers, which ensures what the component developer
supplies and what the system produces is exactly what the users want. It also suggests
that the automated production could start from as early as order requirements.

•

•

•

• Reflection and intelligent reasoning of model transformations with mm1mum human
interaction is also a key attribute of Uniframe. UMM, a reflection of a component,
together with three GDMs provide the ILG-facilitated infrastructure enough knowledge
to pursue intelligent reasoning in the process of system assembly, e.g. automatically
reason about component properties and relationships.

5. Two-Level Grammar

As UniFrame maturates, the infrastructure is not intended for frequent human manipulations.
It is reasonable to choose TLG (textual with functional and logic programming language style) as
the machine-understandable infrastructure and use UML as the human-system interface (e.g., for
representing GDMs and transformation rules externally). Tools will be constructed to perform the
translation between internal and external representations.

With natural language-like syntax, a TLG specification is self-descriptive and very
understandable. Therefore, TLG has more potential to be mastered by software engineers than
other formal methods such as Z [Spi89].

XML is very suitable for data exchange and description, but not for code generation or even
more complicated tasks like model transformations. In a pure sense, XML carries no more
semantic meaning than HTML. XML itself does not perform a computation, but relies on the
intelligence of non-reusable XML processing engines. On the other hand, TLG is Turing
complete with very nice logic and functional language style reasoning. Regarding readability, the
frequent use of angle bracket templates in Xpath and XSLT [CleOl] makes the readability of the
generator poor. TLG offers improvements in readability, as well.

TLG is Object-Oriented (00), making it a good candidate for formal specification of 00
computing entities. Additionally, TLG goes beyond 00 programming languages with its unique
syntax and semantics. A simple rule such as:

NewObject:: {Object!}* Object2, Object3; Object4.

states a rather complicated feature selection and federated construction of the NewObject: the
NewObject could be constructed by zero or more instances from domain Object I followed by an
instance from domain Object2, and an instance from domain Object3; or the NewObject could be
constructed by an instance from domain Object4. It would require a large block of statements in
an object-oriented programming language to represent the same intent. In TLG, it is very easy to
combine objects and flat entities (literals) together as features because both terminals and
nonterminals are allowed on the right hand side of meta-rules.

TLG has two levels. The meta level computation can be viewed as model/pattern
transformations. More abstract patterns on the left hand side can be substituted by many
combinations and alternatives of more specific patterns on the right hand side of the grammar.
The hyper level context-free grammar (together with the consistent substitution) sets the context
for the first one: rules and logic for applying patterns, very suitable for plug-and-play component
composition. Also for each context-free grammar, we can automate the feature configuration
validation and constraint checking [Jon02], leveraging widely available open parser and type
checker generator facilities such as CUP [CUP99].

6. Conclusion

This extended abstract provides the overview of the UniFrame architecture, considerations in
designing UniFrame and the issues of infrastructure implementations. The novel contribution of
UniFrame is to bridge the gap between the vision of Generative Programming and the existing

--

•

•

•

MDA framework: we provide a practical architecture and a infrastructure technique using the
MDA model transformation idea to fulfill the goal of Generative Programming.

7. References

[Bry02] B. R. Bryant, B.-S. Lee, 'Two-Level Grammar as an Object-Oriented Requirements Specification
Language," Proc. 35'h Hawaii Int. Conj System Sciences, 2002.

(Cao02] Fei Cao, Barrett Bryant, Carol Burt, Rajeev Raje, Mikhail Auguston, Andrew Olson. "A
Translation Approach to Component Specification," (poster), OOPSLA'02,2002.

[CleOl] J.C. Cleaveland. Program Generators with XML and JAVA. Prentice Hall 2001.

(Corba) Common Object Request Broker Architecture (CORBA), http://www.corba.org/

[CUP99)CUP parser generator for Java. http://www.cs.princeton.edu/-appel/modem/java/CUP/

[CzaOO] Czarnecki, K., Eisenecker, U. W., Generative Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

[J2SE) Javarn 2 Platform, Standard Edition, http://java.sun.com/docs/index.html

[Jon02] M. D. Jonge, J. Visser "Grammars as Feature Diagrams" Proceedings of Workshop on Generative
Programming, April 2002. http://www.cwi.nl/events/2002/GP2002/papers/dejonge.pdf

[Kan98) Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, Moonhang Huh, "FORM: A
Feature-Oriented Reuse Method with Domain-Specific Reference Architectures," Annals of
Software Engineering 5, pp. 143-168, 1998.

[OMGOJ) Object Management Group. Model Driven Architecture: A Technical Perspective. Technical
Report. Document #ormsc/2001-07-01. Framingham, MA: Object Management Group. July 2001 .

[OpenG)OpenGL. http://www.opengl.org/

[RajOl) R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson, C. C. Burt, "A Unified Approach for the
Integration of Distributed Heterogeneous Software Components," Proc. 2001 Monterey Workshop
Engineering Automation for Software Intensive System Integration, 2001, pp. I 09-119.

[Sun02) C. Sun, R. R. Raje, A. M. Olson, B. R. Bryant, M. Auguston, C. C. Burt, Z. Huang, "Composition
and Decomposition of Quality of Service Parameters in Distributed Component-Based Systems,"
to appear in Proc. Fifth IEEE Int. Conj Algorithms and Architectures for Parallel Processing,
2002.

(Spi89) J.M. Spivey, The Z notation: a reference manual. Prentice Hall, New York, 1989.

[UniFr) UniFrame http://www.cs.iupui.edu/uniFrame/

[W3C) World Wide Web Consortium, Web Services, http://www.w3.org/2002/ws/

[Zha02) W. Zhao. "Two-Level Grammar as the Formalism for Middleware Generation in Internet
Component Broker Organizations." Proceedings of GCSEISAIG Young Researchers Workshop,
held in conjunction with the First ACM SJGPLAN Conference on Generative Programming and
Component Engineering, 2002. http://www.cs.uni
essen.de/dawis/conferences/GCSE _ SAIG _ YRW2002/submissions/final/Zhao.pdf

•
Some Axioms and Issues in the UFO Dynamic Analysis Framework

Clinton Jeffery
Department of Computer Science

New Mexico State University
jeffery@cs. nmsu. edu

Abstract
UFO is a framework for constructing dynamic analysis

tools that require varying degrees of access and control
over program executions. UFO combines run time and
post-mortem techniques to perform required analyses.
Declarative and imperative notations are provided for
constructing monitors at appropriate semantic levels.
Multiple analyses can be bundled into a given monitor,
and multiple monitors can be applied to a given target
program execution. This paper presents the central tenets
of UFO, along with our current set of research
challenges.

l. Motivation

•
Automatic debugging and program visualization are

two of the most promising application areas of dynamic
analysis, with potential to impact on crucial areas of
software development and maintenance. We believe the
slow rate of advancement in these areas is due to the high
cost of developing new tools. We have previously focused
on a language (FORMAN) and an architecture (Alamo)
that reduce these costs [1}[2)[4]. FORMAN is a special
purpose language for expressing dynamic analyses; it has
been implemented previously for subsets of Pascal and C.
Alamo is a lightweight architecture for program execution
monitoring; it has been implemented for a subset of C and
for the virtual machine used by the Icon and Unicon
programming languages. The virtual machine
implementation of Alamo is attractive for research
because it provides high performance and superior ease of
use for a full-size "real" programming language, allowing
testing on large programs and the possibility of deploying
successful tools to a user community.

We recently merged the FORMAN and Alamo efforts
to produce UFO (Unicon-FORMAN), a framework for
rapidly constructing dynamic analyzers [3)[4]. We have
used UFO to construct a variety of simple automatic
debuggers and visualization tools that run well on small
and medium sized applications. Our next efforts must
walk the tightrope of scaling up to production tools for
large applications, while retaining the power and ease of

•
se that are characteristic of the current research UFO

system. With that in mind, this paper presents the central
tenets of the UFO system, and concludes with an

Mikhail Auguston
Department of Computer Science

Naval Postgraduate School
maugusto@nps.navy.mil

exploration of the current research problems and our plans
to address them.

2. Axioms

UFO is primarily an implementation of FORMAN
built on top of the Alamo monitor architecture. Early
experiments showed the marriage to improve FORMAN
speed by two orders of magnitude and shorten the lines of
code necessary to write Alamo monitors by one order of
magnitude. This section sketches the primary
characteristics of UFO.

• A precise program behavior model, in which
semantics of the monitored language are mapped
to directed acyclic graphs of events. These graphs
are defined using an event grammar, a notation
that approximates the semantics of the language to
be monitored. The behavior model is essential to
provide general purpose capabilities for a wide
range of tools.

• A declarative special-purpose monitoring
language, tailored specifically for dynamic
analyses expressed in terms of patterns within the
graphs of events. This component is necessary to
reduce the cost of developing new tools. Section 4
provides some examples; shorthand refinements to
improve the syntax could be explored after the
main semantics and performance issues are
resolved.

• An hybrid execution model, in which most
analysis work is performed at run-time, and more
complex analyses transparently combine run-time
collection and partial analysis with more extensive
post-mortem analysis. This element is necessary
but not sufficient by itself to achieve acceptably
high performance for large scale production
systems. This important element is new in UFO,
compared with previous FORMAN and Alamo
efforts. It provides high performance.

• Automatic instrumentation provided by special
purpose virtual machine support; static or dynamic
configuration of VM instrumentation; no
recompilation, relinking, or alteration of target
program executables to be monitored. This
provides substantial ease of use.

•

•

3. Some Research Issues and Challenges

UFO's chief design goals revolve around notational
power and ease of use. The current prototype
implementation of UFO [5][5] processes millions of
events per minute. But, for large programs higher
performance is needed. This goal motivates several open
problems we are pursuing.

Minimizing the number of context switches. UFO's
run-time execution model is based on lightweight
coroutine switches between monitors and the program
being observed. This separation is a compromise between
intrusive in-line single-thread execution used in low-cost
analysis tools such as profilers, and the complete
separation imposed by high-cost analysis tools such as
debuggers. One research goal is to retain the abstraction
and low-intrusion benefits of the coroutine model without
having to pay (so much) for it.

Virtual machine configuration and customization. The
VM instrumentation can be turned off at multiple levels,
including compile-time via #ifdef and run-time via a
dynamic filter that controls whether instrumented or
uninstrumented versions of functions are called, and
whether an event report (via lightweight context switch) is
performed for a given instrumentation site. This
configuration can be further exploited by having the UFO
compiler generate a custom VM with exactly the
instrumentation it needs for a particular monitoring
application. The central VM interpreter function (interp())
can benefit from a finer granularity of customization than
the current instrumented-versus-uninstrumented options;
it is critical to performance and contains 30 of the 119
types of events instrumented in the VM. Generating a
custom VM may greatly improve monitoring performance
within this VM interpreter loop. The VM generation
system needs to make it easy and convenient for the UFO
compiler to generate custom VM's and associate them
with generated analyzers in a persistent manner. Custom
VM's should be shareable by monitors that use the same
events.

Inter-monitor optimizations. When multiple analyses
are compiled together, substantial cost savings might be
obtained by factoring common tasks such as event data
collection. For example, a profiler that computes
summaries and a visualizer that shows run-time details
might operate on the same information, and might even
share some common analysis structures.

• Meta-events and analysis hierarchies. UFO's event
model composes higher level events from lower level
ones, but analysis tools create additional information

which may constitute the input for higher level analyses.
This facilitates the sharing of analysis information among
tools, reducing the cost of running multiple tools.

4. Examples of debugging rules

Alamo's goal was to reduce the difficulty of wntmg
execution monitors to be just as easy as writing other
types of application programs. UFO supports FORMAN's
more ambitious goal of reducing the difficulty of writing
automatic debuggers to the task of specifying generic
assertions about program behavior.

This section presents formalizations of typical
debugging rules. UFO supports traditional precondition
checking, or print statement insertion, without any
modification of the target program source code. This is
especially valuable when the precondition check or print
statement is needed in many locations scattered
throughout the code.

Example #1: Tracing. Probably the most common
debugging method is to insert output statements to
generate trace files, log files, and so forth. It is possible to
request evaluation of arbitrary Unicon expressions at the
beginning or at the end of events. The virtual machine
evaluates these expressions at the indicated time
moments.

FOREACH A: func_call &
A.tune_ name== "my_func"

FROM prog_ ex
A.value_at_begin(

write("entering my_func, value of Xis:", X)) AND
A.value_at_end(

write("leaving my_func, value of X is:", X))

This debugging rule causes calls to write() to be
evaluated at selected points at run time, just before and
after each occurrence of event A.

Example #2: Profiling. A myriad of tools are based on a
premise of accumulating the number of times a behavior
occurs, or the amount of time spent in a particular activity
or section of code. The following debugging rule
illustrates such computations over the event trace.

SAY("Total number of read() statements:"
CARD[r: input & rJilename == "xx.in"

FROM prog_ex]
"Elapsed time for read operations is: "
SUM [r: input & r.filename == "xx.in"

FROM prog_ex APPLY r.duration))

• Example #3: Pre- and Post- Conditions. Typical use of
assertions includes checking pre- and post-conditions of
function calls.

FOREACH A:func_call & A.func_name=="sqrt"
FROM prog_ex

A.paramlist[1) >=O AND
abs(A.value* A.value-A.paramlist[1)) <epsilon

WHEN FAILS SAY("bad sqrt(" A.paramlist[1)
")yields" A.value)

4.1 Generic Bug Descriptions

Another prospect is the development of a suite of
generic automated debugging tools that can be used on
any Unicon program. UFO provides a level of abstraction
sufficient for specifying typical bugs and debugging rules.

Example #4: Detecting Use of Un-initialized Variables.
Reading an un-initialized variable is permissible in
Unicon, but often leads to errors. In this debugging rule
all variables in the target program are checked to ensure
that they are initialized before they are used.

FOREACH V: variable FROM prog_ex

•
FIND D: lhp FROM V.prev__path

D.source_text == V.source_text
WHEN FAILS SAY(" uninitialized variable"

V.source_text)

Example #5: Empty Pops. Removing an element from
an empty list is typical of expressions that fail silently in
Unicon. While this can be convenient, it can also be a
source of difficult to detect logic errors. This assertion
assures that items are not removed from empty lists.

FOREACH a: func_call &
a.func_name =="pop" AND
a.value_at_begin(*a.paramlist[1] == 0)

SAY("Popping from empty list at event" a)

5. Implementation Issues

The most important of these issues is the translation
model by which FORMAN assertions are compiled down
to Unicon Alamo monitors. Debugging activities are
written as if they have the complete post-mortem event
trace, the DAG with events, event attributes, and
precedence and containment relations, available for
processing. This generality is extremely powerful;
however, for most practical uses we have seen, assertions
can be compiled down into monitors that execute entirely

..:_ runtime. Runtime monitoring saves enormously on
-~emory and I/O requirements and is the key to practical

implementation. For those assertions that require post-

mortem analysis, the UFO runtime system computes a
projection of the execution DAG necessary to perform the
analysis.
The UFO compiler generates Alamo Unicon monitors
from FORMAN rules. Each FORMAN statement is
translated into a combination of initialization, run-time,
and post-mortem code. Monitors are executed as
coroutines with the Unicon target program.

Monitors generated by the UFO compiler reduce
complex assertions to the single event loop. Keeping
event detection in a single loop allows uniform processing
of multiple event types used by multiple monitors. The
code generated by the UFO compiler integrates event
detection, attribute collection, and aggregate operation
accumulation in the main event loop.

Assertions in UFO may use nested quantifiers
implying two nested loops, so code generation addresses
this issue by flattening the main loop structure, and
postponing assertion processing until required
information is available. An hybrid code generation
strategy performs runtime processing whenever possible,
delaying analyses until post-mortem time when necessary.
Different assertions require different degrees of trace
projection storage; code responsible for trace projection
collection is also arranged within the main loop. The
following generation template gives a flavor of the UFO
trace projection mechanism.

Rules with two nested quantifiers of the form

Quantifier A: Pattern_A
Quantifier B: Pattern_B FROM A

Body

utilize a monitor whose main loop follows the pattern:

Main Loop
Maintain stack of nested A events
Accumulate events B in a B-list
If end of event A

Loop over B-list
Do Body

Endif
If stack of A is empty
· Destroy B-list

End of Main Loop

This requires accumulation of a trace projection for B
events and may cause a mild overhead at the run time.

5.1 Optimization Issues

The UFO approach combines an optimizing compiler
for monitoring code with efficient run-time event
detection and reporting. Since we know at compile time

•
all necessary event types and attributes required for a
given UFO rule, the generated Unicon monitor can be
very selective about the behavior that it observes.

For certain kinds of UFO constructs, such as nested
quantifiers, the monitor must accumulate a sizable
projection of the complete event trace and postpone
corresponding computations until all required inforrnation
is available. The presence of the previous_path and
following_path attributes in UFO rules triggers this kind
of optimization; previous _path and following_path are
used in rules which specify preceding or following
contexts for events of interest.

For further optimization, especially in the case of
programs containing a significant number of modules, the
following FORMAN construct limits event processing to
events generated within the bodies of functions
Fl, F2, ... , Fn.

WITHIN F1, F2, ... , Fn DO
Rules

END_WITHIN
This provides for monitoring only selected segments of
the event trace.

Unicon expressions included in the value_at_begin
and value at end attributes are evaluated at run time.

•
Some ~th~r optimizations implemented in this version

are:
• only attributes explicitly used in the UFO rule are

collected in the generated monitor;
• an efficient mechanism for event trace projection

management, which disposes from the stored
trace projection those events that are no longer
used after a certain rule has been fully evaluated;

• both event types and context conditions are used
to filter events for the processing.

UFO's goal of practical application to real-sized
programs has motivated several improvements to the
already carefully-tuned Alamo instrumentation of the
Unicon virtual machine. We are working on additional
optimizations.

We expect that the most promising optimizations are
within the generation of instances of Virtual Machine
tailored for a particular monitoring task.

6. Conclusions

The architecture employed in UFO could be adapted
for a broad class of languages such as those supported by
the Java VM or the .net VM. Our approach to dynamic
analysis uniformly represents many types of debugging
related activities as computations over traces, including
assertion checking, profiling and perforrnance

a.measurements, and the detection of typical errors. We
~ave integrated event trace computations into a

monitoring architecture based on a virtual machine.

Preliminary experiments demonstrate that this
architecture is scalable to real-world programs.

One of our next steps is to build a repository of
formalized knowledge about typical bugs in the form of
UFO rules, and gather experience by applying this
collection of assertions to additional real-world
applications. There remain many optimizations that can
improve the monitor code generated by the UFO
compiler; for example, merging common code used by
multiple assertions in a single monitor, and generating
specialized VMs adjusted to the generated monitor.

Acknowledgements

This work has been supported in part by U.S. Office of
Naval Research Grant # NOOOI4-0l-l-0746, by U.S.
Army Research Office Grant # 40473--MA-SP, and by
the National Library of Medicine.

References

[I] M. Auguston, Program Behavior Model Based on Event
Grammar and its Application for Debugging Automation,
in the Proceedings of the 2nd International Workshop on
Automated and Algorithmic Debugging, AADEBUG'95,
Saint-Malo, France, May 22-24, 1995, pp. 277-291.

[2] Clinton L. Jeffery, Program Monitoring and Visualization:
an Exploratory Approach. Springer, New York, 1999.

[3] M. Auguston, A. Gates, M. Lujan, "Defining a Program
Behavior Model for Dynamic Analyzers", in the
Proceedings of the 9th International Conference on
Software Engineering and Knowledge Engineering,
SEKE'97, Madrid, Spain, June 1997, pp. 257-262.

[4] M. Auguston, "Lightweight semantics models for program
testing and debugging automation'', in Proceedings of the
7th Monterey Workshop on "Modeling Software System
Structures in a Fast Moving Scenario", Santa Margherita
Ligure, Italy, June 13-16, 2000, pp.23-31.

[5] M. Auguston, C. Jeffery, and S. Underwood. "A
Framework for Automatic Debugging", IEEE 17th Intl.
Conf. on Automated Software Engineering, Edinburgh,
September 2002, IEEE Computer Society Press, pp.217-
222

[6] C. Jeffery and M. Auguston. "Towards Fully Automatic
Execution Monitoring". Monterey Workshop 2002,
Venice, October 2002, sponsored by US Army Research
Office and NSF, pp.232-243

[7] Clinton Jeffery, Shamim Mohamed, Ray Pereda, and
Robert Parlett, "Programming with Unicon",
http://unicon.sourceforge.net.

[8] Ralph E. Griswold and Ma?,f e T. Griswold, The Jeon
Programming Language, 3 edition. Peer to Peer
Communications, San Jose, 1997.

•

•

•

Automating Feature-Oriented Domain Analysis

Fei Cao, Barrett R. Bryant, Carol C. Burt
Department of Computer and Information Sciences

University of Alabama at Birmingham
{ caof, bryant, cburt }@cis.uab.edu

Zhisheng Huang, Rajeev R. Raje, Andrew M. Olson
Department of Computer and Information Science

Indiana University Purdue University at Indianapolis
{ zhuang, rraje, aolson }@cs.iupui.edu

Mikhail Auguston
Computer Science Department

Naval Postgraduate School
auguston@cs.nps.navy .mil

Abstract

Feature modeling is commonly used to
capture the commonalities and variabilities of
systems in a domain during Domain Analysis.
The output of feature modeling will be some
reusable assets (components, patterns, domain
specific language, etc.) to be fed into the
application engineering phase for ultimate
software products. But current practice lacks an
automatic approach for seamless generation of
reusable assets from feature models. This paper
presents an algorithm for generating sets of
instance descriptions (feature instances) from
feature models of a domain and applies this
algorithm in creating a Generic Feature
Modeling Environment for automating Feature
Oriented Domain Analysis.

Keywords: Feature Modeling, Domain Analysis,
Generative Programming

1. Introduction

Generative Programming (GP) [CzarOO] has
emerged as a software development paradigm for
automatic generation of software products based
on modeling of software system families. The
distinct property of GP is it is not only about a
development for reuse in terms of building a
Generative Domain Model (GDM) for software
system families, but also about a development
with reuse in terms of using GDM to generate
concrete systems. To build a GDM, domain

analysis has to be applied to scope a system
family and to identify the commonalities,
variabilities and dependencies among family
members. A crucial outcome of the domain
analysis phase is a feature model, which is
usually represented as a feature diagram.
However, the application of feature diagrams is
quite limited, due to the fact that current practice
is not fully automated, while the size of the set of
feature instances may be expanded exponentially
(which we will see later in this paper), thus it is
difficult to apply constraint checking and other
types of computing. In order to align with the
goal of GP for the highest level of automation, to
cope with family system processing (which is
usually of a large scale), feature modeling should
be carried out in an automatic fashion to
seamlessly generate reusable assets to be used in
application engineering for constructing a family
of applications. This paper presents an algorithm
for generating the set of all feature instances
from a feature diagram and applies this algorithm
in creating a Generic Feature Modeling
Environment (GFME) for automating Feature
~riented :°omain Analysis (FODA). This paper
is organized as follows: Section 2 briefly
describes major related research efforts. Section
3 gives the algorithm for computing feature
models. Section 4 presents the GFME created
with the Generic Modeling Environment (GME)
2000 [GMEOl]. Section 5 draws the conclusion
of this paper.

•

•

•

2. Related Work

Feature models were initially introduced by
the FODA method [Kang90]. In the FODA
method a feature is defined as an end-user
visible 'characteristic of a system. This model
uses a feature diagram to represent a hierarchical
decomposition of features, which include
mandatory, alternative or optional f~atures.
Feature constraints, stakeholders and rat10nales
are also incorporated in this feature model.
Czarnecki and Eisenecker [CzarOO] give a more
detailed account of feature diagrams including
diagram normalization.

The FODA method uses Prolog in a prototype
tool for doing checking over some sets of feature
values. However, features have to be stored in
the Prolog fact base first, rather than being
analyzed directly over the feature diagra~, thus
the tool is not seamlessly integrated with the
visual diagram setting. Czarnecki and Eisenecker
[CzarOO] also explore the possi?le
implementation of feature diagrams by mappmg
into UML, which in tum may be used to generate
some implementation codes using such CASE
tools as Rational Rose'. The mapping process,
however, is again a manual process. Also, what
Rational Rose can generate are just some
skeleton codes, which are far from being
complete implementations.

Feature models can be represented not only in
graphical form using feature diagrams, but also
in textual form. Van Deursen and Klint [Deur02]
propose a Feature Description Languag~ (FDL)
for textual representation of feature diagrams.
Manipulation of features is achieved by Feature
Diagram Algebra (FDA), which consists ?f ~~ur
sets of rules: normalization rules, vanab1hty
rules, expansion rules and satisfaction rules. The
FDL can be fed into the a tool named
"ASF+SDF Meta-Environment" [Brano 1] for
direct execution as a basis for prototype tool
support, which again is not seamlessly integrated
with graphical representations of feature
diagrams; the capacity of constraint checking is
quite limited; the FDA is separated from, rather
than integrated as part of the feature diagram; the
generation of reusable assets from FDL is not
flexible.

Obviously for the related work mentioned in
this section, there is a gap between using feature
diagrams for feature modeling and a seamless,

1 www.rational.com

efficient generation of reusable assets. This paper
presents an approach toward bridging this gap.

3. An Algorithm for Feature Diagram
Computing

In contrast to computing features by
transforming feature diagrams to some other
representation forms (such as UML or FDL)
first, we are going to apply th: proposed
algorithm directly over the feature diagram. "W_e
first briefly describe the representations used m
[CzarOO] illustrated in Figure I. The mandatory
feature is represented by being attached to an
edge ending with a filled circle. So the feature F
consists of both C 1 and C2 in this case, and the
feature instances here are { F, CI, C2}. The
optional feature is represented by be!ng attached
to an edge ending with an unfilled circle. So the
feature F may or may not contain CI. The
optional feature instances here are {F, C2} an.d
{F, CJ, C2}. The alternative feature 1s
represented by connecting edges with an ~rch. ~o
the feature F consists of exactly one of its child
features. The alternative feature instances here
are {F, Cl} and {F, C2}. Note that if Cl is
optional while C2 is mandatory, then the
alternative feature instances here are {F}, {F,
Cl} and {F, C2}, because the child feature
instances derived from the Cl side contain an
empty feature. The Or feature is represented by
connecting edges with a filled arch. The Or
feature instances here are {F, Cl}, {F, C2} and
{F, Cl, C2}. If there is an optional child f~ature,
then the Or representation is actually eqmvalent
to the situation that all the child features are
optional, i.e., the Or feature instances will be
{F}, {F, Cl}, {F, C2} and {F, Cl, C2}. .

These representations can also be intermmgled
in feature diagrams, such as in Figure 2. These
mixture forms can be normalized so that it is
easier to be processed. e.g., Figure 2 can be
normalized into Figure 3.

This normalization can be performed
iteratively over all such "mixture relation" nodes
in the feature diagram. In this way, the father
feature in the feature diagram will only be either
XOR (corresponding to alternative), or OR, or
AND in relationship to child-features.
Meanwhile, each child-feature may be either
optional or mandatory. Obviously, the
normalization process described here is fulfilled
by adding hierarchy into the original feature tree

•

•

•

F F

CJ

Mandatory feature Optional Feature (for CI) Alternative feature Or Feature

Figure 1: Feature Diagram Representation

Cl

Figure 2: Mixture of Feature Representation

without loss of any commonality and variability
representations. After such normalization is
performed, the feature diagram will be in the
structure as in Figure 4. The proposed algorithm
will be applied over such normalized feature
diagrams thereafter.

F
<<feature
relation>>

Figure 4: Variation of Feature Diagram

Suppose each feature node is represented as
the following data structure (note that without
loss of generality, the following data structure
may not be strictly consistent with a specific
C++ programming environment):

struct FeatureNode{
String featurenarne;

c4

Figure 3: Normalized Feature Representation

enum {XOR, OR, AND} feature-relation;
/*denotes the father-child relation */

ChildConnectionList *edges;
/*list of connections associated with
its child-feature nodes */

}

struct ChildConnectionList {
bool isMandatory ;

/*is a mandatory/optional feature*/
FeatureNode * aFeature;

/*point to a feature node*/
}

From the data structure above we can see that
we can get access to the child-nodes of a feature
node by traversing its associated edges.

Currently, the result of the algorithm to
compute the feature diagram is just the set of all
feature instances of a feature diagram. The result
will be represented as a list. Each element of the
list corresponds to a feature instance. Each
feature instance in turn is represented as a list,
which consists of the list of pointers to the
related feature node. The result is represented as
follows:

typedef List<Featureinstance *> Result;
typedef List<FeatureNode *>

Featureinstance;

Below is the pseudo code for the algorithm.
The input parameter to the algorithm is the
pointer to the root node of a feature diagram. The
output will be all feature instances derived from
the feature diagram. Note the variables are in
italicized font while the types are in bold font.

•

•

•

Result • processFeatureDiagram (
FeatureNode •node-root)

create a templ:Featureinstance with
only node-root in it;

create a temp2: Result with only one
Featureinstance templ in it;

if(node-root has no child nodes)
then return temp2;

else
if (node-root->feature-relation==AND)

recursively call processFeatureDiagram
over each of node-root's child-nodes,
each returning a child result;

if corresponding child node is
"Optional",
add an empty Featureinstance into the
corresponding child result;

calculate the production of all the
returned child results as tempJ:Result;

return the production of temp2 and
temp3;
}

else
if(node-root->feature-relation==XOR)

(
recursively call processFeatureDiagram
over each of node-root's child-nodes,
each returning a child result;

calculate the union of those returned
child results as tempJ:Result;

if there is a child node that is
"Optional",
add an empty Featureinstance.into
temp3;

return temp3;
)

else
if(node-root->feature-relation==OR)

(
recursively call processFeatureDiagram
over each of node-root's child-nodes,
each returning a child result;

for each of the child result returned
in the above call,
add an empty Featurernstance into it;

get the production of all the child
results as tempJ:Result;

If all child features are mandatory,
remove the empty Featureinstance from
temp3;

return the production of temp2 and
temp3;
}

Beware that a Result is actually a two
dimension data structure. If Result A has m
Featurelnstances while Result B has n
Featurelnstances, then the union of A and B has
m+n Featurelnstances while the production of
A and B has m*n Featurelnstances. To

exemplify the above algorithm, we use E to
represent an empty Result, x for production, u
for union operation in Figures 5-7, which
correspond to three types of cases for computing
the set of feature instances. Also from Figure 7
we can easily see the size of feature set may
grow exponentially {as to the extreme case where
all feature-relations are OR , the size will be 2",
where n is the amount of leaf nodes).

Here we put the non-leaf node {like F here)
into the feature instances in order to facilitate
constraint checking. If one non-leaf feature F is
supposed to be excluded in the final feature
instance, then its child-features should not be
included correspondingly, and we can eliminate
those feature instances from the final result by
identifying which feature instance contains
feature F, rather than by tracking down all its
child-features laboriously.

4. A Generic Feature Modeling
Environment (GFME)

We use the Generic Modeling Environment
{GME) [GMEOI] to build GFME. GME is a
configurable toolkit for creating domain-specific
modeling and program synthesis environments.
The configuration is accomplished through
metamodels specifying the modeling paradigm
(modeling language) of the application domain.
The modeling paradigm defines the family of
models that can be created using the resultant
modeling environment. The metamodels
specifying the modeling paradigm are used to
automatically generate the target domain-specific
environment. GME provides the Builder Object
Network (BON) framework for building
interpreters to interpret domain models built in
the domain-specific environment. The
interpretation process can be used to generate
reusable assets for the domain engineering phase.
The BON API provides leverages for access to
the domain models, which makes the above
algorithm implementable. With all those
facilities of GME, we believe it has the best tool
support for feature modeling.

GFME provides the modeling environment
for building feature diagrams with the structure
as described in Figure 4. Figure 8 provides the
screenshot of the GFME. Note at the lower-right
comer is the interface to specify such attributes
as the relationship with its child-nodes for a node
under focus (here "TransactionSubsystem") in
the environment. In the same way, we can
specify the attributes for those connections

•

•

•

CI:
((mil. ml2.mll)
(m21))

F
<<AND>>

C2:
((nl I. nl2. nJJ. nl4)
(n21.n22)

(nJ I. n32. nJJ))

result=((F)) xCJ x (C2 u £)
=l(f. ml I. ml2. m!J. nl I. nl2. nl3. nl4).
If.mil. ml2.ml3.n21.n22).

If. ml I. ml2. m!J. nJI. n32. nJJ).
(f.m21. nil. nl2. n!J. nl4).
(f. m21. n21.n22).
(f, m21, nJI, n32, nJJ).
(f, mil, m12, mlJ).
(f, m21))

Figure 5: Computing AND result

F
<<XOR>>

Cl:
((mil,
ml2,
m!J)
(m21))

C2:
((nil, nl2,
nJJ, nl4)
(n21,n22)
(nl I, n32,
nJJ))

result=((F))
x(Cl uC2u£)

easy to calculate,
omitted ...

F
<<OR>>

Cl:
((mil,
ml2,ml3)
(m21))

C2:
((nil, nl2,
nl3,nl4)
(n21,n22)

(n31, n32,
n33))

result==((F)) x(CI
u £) x (C2 u £)
=((F)) u((F)) xCI
u((F)) xC2u((F))
xCixC2=
easy to calculate,
omitted ...

Figure 6: Computing XOR result Figure 7: Computing OR result

1~1

tern

Figure 8: Generic Feature Modeling Environment

=·===-'·
--1..!.l!..I
I 3

~::' • AMHF _8.
$ T Aocl

'
"" 0 A 8
AC
AC

l· AC
AD

;-- A 0

c.: ~:
>··AT
1 ·AT
i· AT
> AU•
I ·Au'

•

•

•

between feature nodes. The dashed lines denote
the various kinds of dependencies or constraints
to be enforced between feature nodes. Currently
we just generate the set of feature instances from
feature diagram satisfying all specified
constraints. With full control of the interpretation
process (i.e., writing interpreter code via BON
APl), we can generate application code from
feature diagrams on demand.

5. Conclusion

Feature Modeling is the core part of FODA.
Our ongoing UniFrame project [Raje02) requires
feature modeling for building a generative
domain model. The reusable assets generated
from feature modeling after normalization,
expansion and constraint checking will be
output into XML files. The reusable assets serve
two purposes: I) for clients to initiate natural
Ja~guage-like queries [Lee02] in the problem
space [CzarOO); 2) to provide a guideline
for component providers to produce component
families in the solution space [CzarOO). The
current practice of feature modeling remains at
the manual or semi-automatic level, which
hinders it from becoming widely applied. This
paper applies normalization over the traditional
feature diagram and presents an algorithm to
generate complete feature instances from a
feature diagram under constraints. The algorithm
is adopted in GFME, which provides an
efficient, automatic FODA environment.

Acknowledgements. This research is
supported by the U. S. Office of Naval Research
under the award number NOOO 14-01-1-07 46.

References

[BranOI] M.G.J. van den Brand, J. Heering, H.
A. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju,
E. Visser, J. Visser. The ASF+SDF Meta
Environment: a Component-Based Language
Development Environment. Compiler
Construction (CC '01), vol. 2027, Lecture Notes
in Computer Science, pp. 365-370, Springer
Verlag, 2001.

[CzarOO] K. Czarnecki, U.W. Eisenecker.
Generative Programming: Methods, Tools, and
Applications. Addison Wesley, 2000.

[Deur02] A. van Deursen and P. Klint. Domain
specific Language Design Requires Feature
Descriptions. Journal of Computing and
Information Technology I 0(I), pp. 1-17, 2002.

[GMEOJ] GME 2000 User's Manual, Version
2.0. ISIS, Vanderbilt University, 2001.

[Kang90] K.C. Kang, S. G. Cohen, J. A. Hess,
W. E. Novak, and A. S. Peterson. Feature
oriented Domain Analysis (FODA) Feasibility
Study. Technical Report, CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon
University, 1990.

[Lee02] B.-S. Lee, B. R. Bryant. Contextual
Processing and DAML for
Understanding Software Requirements
Specifications. Proceedings of COLING 2002,
the 19th International Conference on
Computational Linguistics, pp. 516-522, 2002.

[Raje02] R. R. Raje, M. Auguston, B. R. Bryant,
A. M. Olson, C. C. Burt. A Quality of Service
Based Framework for Creating Distributed
Heterogeneous Software Components.
Concurrency and Computation: Practice and
Experience 14, pp. 1009-1034, 2002.

•
EDOC 2003

Model Driven Security:
Unification of Authorization Models for Fine-Grain Access Control*

Carol C. Burt
Barrett R. Bryant

University of Alabama
Birmingham

cburt, bryant@cis.uab.edu

Abstract

Rajeev R. Raje
Andrew Olson

Indiana University Purdue
University Indianapolis

rraje, aolson@cs. iupui. edu

Mikhail Auguston
Naval Post Graduate

School
auguston@cs.nps.navy.mil

The research vision of the Unified Component Meta
Model Framework (UniFrame) is to develop an
infrastructure for components that enables a plug and
play component environment where the security
contracts are a part of the component description and
the security aware middleware is generated by the
component integration toolkits. That is, the components
providers will define security contracts in addition to
the functional contracts. These security contracts will
be used to analyze the ability of a service to meet the
security constraints when used in a composition of

•
components. A difficulty in progressing the security
related aspects of this infrastructure is the lack of a
unified access control model that can be leveraged to

component models under a common meta-model for the
purpose of enabling the discovery, interoperability, and
collaboration of components via generative software
techniques. This research targets the dynamic assembly
of distributed software systems from components
developed using different component models, and
explores how the quality of service (QoS) requirements,
such as security, influence the design of components and
their compositions. The inherent complexity of such
integrations introduces significant challenges for
controlling access to application resources (business,
customer and personal information as well as product
and application features). This paper expands on our
previous work [2, 3) to explore how Model Driven
Architecture techniques may be used for an integration
of the access control solutions in heterogeneous
environments. identify protected resources and access control points at

the model level. Existing component technologies utilize
various mechanisms for specifying security constraints.
This paper will explore issues related to expressing
access control requirements of components and the
resources they manage. It proposes a platform
independent model (PIM) for the access control that can
be leveraged to parameterize domain models. It also
outlines the analysis necessary to progress a standard
transformation from this PIM to three existing Platform
Specific Models (PSMs).

I. Introduction

Enterprises are increasingly dependent upon multiple
middleware technologies that enable new business
paradigms by weaving together legacy systems with
advanced technology. Component-based system
integration supports core business functionality,
integrates business processes and enables companies to
communicate with customers, suppliers, and business
partners. The Unified Component Meta-Model

• Framework (UniFrame) [I] attempts to unify distributed

• This research was supported by the U. S. Office of Naval
Research under the award number NOOOJ4-0J-J-0746.

- I -

OMG's Model Driven Architecture (MDA) [4]
initiative facilitates the standardization of Platform
Independent Models (PIMs) and the transformation of
those models to multiple Platform Specific Models for
implementation. One of the challenges of Model Driven
Architecture is the existence of Platform Specific
Models that do not adhere to a unified Platform
Independent Model. In such cases, bridging is, at best,
hand crafted and at worse, impossible. Today this is the
case for the access control models. What is needed is a
Platform Independent Model for access control that
forms the foundation of end-to-end access controls in
heterogeneous computing environments. This model
must accommodate existing Platform Specific Models
while providing the flexibility for innovation in access
control technology.

This paper proposes a Platform Independent Model
for access control (AC-PIM) that provides a clear
architectural separation between the access policy (the
management and expression of access rules), the access

• decision (evaluating policy at a given point in time), and
the access control (the enforcement of access decisions).
The paper also explores access control models adopted
via different standards organizations and outlines the
transformations to their access control Platform Specific
Models.

2. Relevant Research and Standards

The ITU-T recommendation X.812 (ISO/IEC 10181-
3) [5] provides a reference model for the access control
that is consistent with the model proposed in this paper.
There are also several consortium and de facto standards
that are relevant for this work. They are outlined below.
The detailed work will select three of these models for
analysis.

2.1 Globus GRID Research

Globus [6] is a research project that focuses not only
on the issues associated with the building of
computational grid infrastructures, but also on the
problems that arise in designing and developing
applications that use grid services. Globus is developing
basic security algorithms for secure group

•
communications, management of trust relationships, and
developing new mechanisms for fine-grained access
control. Globus authorization requirements and the
issues that arise with current authorization technologies
in GRJD are outlined in [7].

2.2 OASIS

OASIS [8] is a not-for-profit global consortium that
drives the development, convergence and adoption of e
business standards. There are two OASIS specifications
that are of interest. They are the eXtensible Access
Control Markup Language (XACML) [9] and the
Security Assertion Markup Language (SAML) [10].
XACML is an XML specification for expressing policies
for information access over the Internet. SAML is an
XML-based security standard for exchanging the
authentication and authorization information.

2.3 Object Management Group (OMG)

The Object Management Group (OMG) [11] is an
open membership, not-for-profit consortium that
produces and maintains computer industry specifications
for interoperable enterprise applications. The OMG
Resource Access Decision Facility (RAD) [12] provides

•
a uniform way for application systems to implement a
fine-grain access control where the protected resources

-2-

EDOC 2003

may be physical, logical, or conceptual or understood
only within the context of the business application.

2.3 Java and the Java Community Process

Java provides a Javarn Authentication and
Authorization Service (JAAS) [I 3] package that enables
services to authenticate and enforce access controls upon
users. J2EE and Java Connectors are required to utilize
this model. The Java Community Process (JCP) [14] is
an open organization of international Java developers
and licensees whose charter is to develop and revise
Java technology specifications, reference
implementations, and technology compatibility kits.
Java Specification Request 115 (JSR-115) [15] is
progressing a Java Authorization Contract for
Containers (JACC). The Java Authorization Contract
for Containers (JACC) seeks to define a contract
between containers and authorization service providers
that will result in the implementation of providers for
use by containers.

2.4 Microsoft ASP .NET

ASP.NET [16] supports the traditional methods of
performing the access control (file based) and also
provides an URL authorization, which allows
administrators to provide an XML configuration that
allows or denies an access to URLs based on the current
user or the role [17]. Developers can explicitly code
authorization checks in their application or can take
advantage of the common language run time's support for
declarative security. ASP.NET offers an extensible
security architecture that allows the developer to write a
custom authentication or authorization server.

2.5 NIST Role-Based Access Control

The National Institute of Standards has proposed a
voluntary consensus standard for the Role-Based Access
Control [18]. The role based access control (RBAC) is a
technology that is attracting an increasing attention,
particularly for the commercial applications, because of
its potential for reducing the complexity and cost of
security administration in large networked applications.
Since the publication of the Ferraiolo-Kuhn model [19]

for RBAC in 1992, most information technology
vendors have incorporated RBAC into their product line,
and the technology is finding applications in areas
ranging from health care to defense, in addition to the
mainstream commerce systems for which it was
designed. The RBAC has become the de facto standard
for access control in component and web environments.
This work is the result of the significant NIST research

• and patents that they hold on the access control
technologies [20]. It is our goal for the access control
platform independent model to accommodate (but not
require) the NIST RBAC model.

3. Access Control Unification Issues

The first step toward Model Driven Architectures that
include access control parameterization and/or
authorization contracts is the establishment of a common
vocabulary. Although generalized frameworks for the
access control have established a common vocabulary
for operating system enforced access control models [5,
21], there is no standard vocabulary (or several
depending on the perspective!) for discussing the
modeling elements of the access control across
heterogeneous distributed computing and component
based platforms. This is immediately evident after
examining the "standards" that have been progressed to
enable a fine-grain access control in these platforms.
For example, the OMG Resource Access Decision
Facility has an "AccessDecision" object (ADO) that
provides the "access decisions" based on the "security
attributes of a principal", a "named resource" and an
"operation" on the resource [22]. The OASIS

•

SAML/XACML access control model defines an
"AuthorizationAuthority" which provides the
"authorization decisions" based on "attributes of a
subject" and an "action" [9, IO]. The Java2 Enterprise
Edition (J2EE) model defines a SecurityManager which
enforces the access controls and consults with an
AccessController that provides the access decisions
based on the permissions granted to a Principal (in
native Java this is the same model except the
permissions are granted to a Codebase) [13).

Fortunately these models contain many
architecturally consistent elements; for example, an
AccessDecision object, an AuthorizationAuthority, and
an AccessController represent the same architectural
element in access control architecture. They do not
share a common reference model, however, so it is
difficult to determine without a significant analysis if
they provide equivalent semantics or not. The interface
definition languages are also different. The OMG
standardizes the data formats and interfaces for
requesting access decisions via ISO IDL [23); the
OASIS specification uses XML schemas [24] and the
J2EE model uses native Java [13] defined interfaces and
data structures. As a result, a business architect and/or
developer must be familiar with a variety of access

•

control technologies and platform languages in order to
defi.ne the end-to-end access control in a heterogeneous
environment.

-3-

EDOC 2003

In addition to the diverse vocabulary and
specification languages utilized by the existing access
control implementations, every layer of technology has
an access control model. There are operating system
models, database and messaging infrastructure models,
and component technology models. The role-based
access control (RBAC) has become popular as the
access control model for component platforms. RBAC
has enjoyed success because it is much more flexible
and scalable than the user or group based models and is
implemented in most of the available component
platforms. It is not, however, sufficient to support many
complex business scenarios. For example, the access
control policies may require an assessment of additional
environmental factors such as time, location,
relationships or credit limits which may supplement an
RBAC policy. For this reason, RBAC does not provide
a complete unification model, rather a specific instance
ofa model.

There is also an issue related to expressing the access
control rules. Unfortunately even when the access
control is considered during analysis and design, the
requirements are typically expressed in a natural
language as business rules. That is, the focus is often to
identify the access policy, not to architect the system so
that it can accommodate dynamic policy changes. If
(when) access policy changes, it becomes a part of the
application project to modify the software to update the
rules. This adds to the complexity of the access control
architecture and makes it impossible to change the
access policy without software changes. There are
products which support model driven techniques,
however, the access control mechanisms are typically
expressed only in the platform specific manner (via
application code, servlet filters, IIOP interceptors, J2EE
deployment descriptors or product specific mechanisms
such as graphical interfaces and proprietary APl's).
Thus, there is no standard way to define the access
decision points and/or policy in a platform independent
model such that it could be applied consistently across
multiple technologies.

The end result is that the task of protecting business
resources is increasingly being pushed to the business
application developer. Of course, each level of access
control still exists and must be administered. A single
"application" typically has many "userids" (perhaps the
same, perhaps different)" that are utilized in providing
the access control across the application. As an example,
the JAVA Blueprints Pet Store [25] has multiple userids
that must be defined at different infrastructure levels
before the application will execute successfully. This
sample explores the "best practices" in a system

•

•

integration architecture utilizing Web Services, Java
Components (EJBs), Messaging (JAX/RPC, JIOP, and
JMS) and Connectors (JDBC). In addition to multiple
userids defined in deployment descriptors, the Pet Store
application also supports self-registration of userids that
are application specific and completely unknown to
J2EE, the web server or the operating system. This
"best practices" blueprint architecture documentation
suggests that e-business applications must manage
userids and the access control [26]. This is an example
of the trend of pushing the access control into the
application layer. That is, application architects and
developers are being forced to include user management,
access policies, and programmatic access control logic
within their business software. This forces the
expenditure of precious business developer resources on
building application specific access control
infrastructure for managing user information and access
control policies, thereby, increasing the cost and time
required to create the application.

A component infrastructure that requires exposing
knowledge of the underlying access control model to the
business developer (via programmatic API's such as
isCallerlnRole or isUserlnRole) has made it difficult to
hide the diversity inherent in the access control models
when more complex access control policies are required.
Although vendor products may extend the RBAC model
and/or implement proprietary mechanisms to support
more sophisticated access policy, in the absence of an
AC-PIM as a reference model for access control, the
task of understanding and comparing product features
becomes difficult. The task of creating and maintaining
consistent policies is also very difficult while a
consolidated auditing is near impossible.

Access policies may often change and/or be governed
by the legislation that differs from location to location.
Business developers should not be required to
understand those policies but unfortunately this is what
happens during today's application development
process. These issues limit the ability of a developer to
use components in dynamic system compositions where
the access control policy may be significantly different
from what was provided in the original usage of that
component. We will explore how the proposed model
shifts the majority of this work to the provider of the
infrastructure authorization service software and discuss
how future component infrastructure could assist in
assuming more of this responsibility.

• 4. Goals for Model Driven Access Control

-4-

EDOC 2003

To fully realize the potential of Model Driven
Architecture for the access control, an access control
platform independent model and the mechanism for the
parameterization of domain platform independent
models with access control points must be standardized
within the OMG Model Driven Architecture roadmap.
The goal of the access control platform independent
model (AC-PIM) is to provide an abstract view of the
access control that can be utilized at the modeling level
for the parameterization of domain models. This will
enable transformations to access control platform
specific models (AC-PSM) that incorporate access
control points.

The paper begins the analysis necessary for the
unification of the access control models by identifying
the vocabulary and abstractions that can be standardized
for the purpose of model parameterization (thus enabling
a transformation to existing access control models) and
the common feature support to ease the secure
interoperability. Thus, the goal of the proposed research
is the creation of a unifying AC-PIM from which
existing security models can be mapped and/or bridged.
This will simplify the task of the middleware when
cooperation is required to meet the underlying security
constraints (such as the delegation of credentials and/or
requesting access control decisions based on a local
policy). For the UniFrame project, a goal is to identify
the work necessary for enabling the generation of access
control bridges for heterogeneous system compositions.
That is, we wish to provide the foundation for new
research projects in using the generative techniques for
access control and secure interoperability.

An additional goal is to define a PIM that is simple
enough for the business people to understand. This will
enable meaningful communications between the
business system architects and the security architects by
providing appropriate abstractions and a vocabulary.
Thus, a person should not need to be a security domain
expert to understand the concepts of the Access Control
Platform Independent Model. For this reason, if the
security community uses multiple terms for similar
concepts, the choice of this work is to use the one that is
most likely to be familiar to a business person, or to
introduce a new term that can be mapped to the more
technical security term during transformation.

It is also a goal of this work to unify existing access
control mechanisms while providing abstractions that
enable future innovation. Hence, the proposed model
should be flexible enough to support the authorization
requirements of the future infrastructures such as the
Grid. To do this, a Model Driven Access Control must
support an architecture where access decisions are

• architecturally separate from business logic. Theref~re,
this paper challenges the ~urrent trend of pushing
knowledge of the underlying access control model into
application logic when programmatic access control is
required.

5. Model Driven Access Control

A model transformation occurs when models are
refined and details are added for the purpose of focusing
on a particular implementation technology or an aspect
of the domain model. Model transformations are used to
document different "levels of abstractions",
"viewpoints" or "aspects" of an information system.
Models that comply with a specific meta-model may
utilize generative techniques for the transformations;
leveraging information that the generator knows
regarding the target implementation platform and/or
parameterizations provided by the software architect (4].

If Model Driven architecture is to reach it's full
potential, the quality of service issues must have
Platform Independent Models. For the security access
control models, that means that an AC-PIM must be
explored from which JAAS, RAD and SAML/XACML

•

(and others) can be derived. This ensures that business
people and software architects could utilize common
vocabulary and syntax to define the access control

•

architectures. This paper supports the development of
an access control PIM expressed in UML that can be the
catalyst for the unification of the existing access control
PSMs.

The definition of this model is critical to support the
development of MDA tools that generate security access
control points as a part of the infrastructure that bridges
technology platforms and hopefully will provide a
catalyst for innovations in the access control standards
that push much of the application level access control
down into infrastructure containers and/or
communications layers. Finally, the adoption of a
common model will enable the migration of existing
access control implementations to a more consistent
access control infrastructure. Thus, it should be
possible to standardize using the experience-based

- 5 -

EDOC 2003

design patterns and the mappings that enable true
Enterprise Security Services to be integrated at all levels
of computing infrastructure (Security related design
patterns for scalability which can be utilized as part of
model transformation were discussed in earlier work
[2)). Model Driven Security means allowing the
security contracts to be modeled as a part of the
component contract, thus enabling the security context
to be managed end-to-end by the UniFrame
infrastructure. This will enable manageable access
control and auditing regardless of whether the system
composition was statically or dynamically generated.

6. Proposed Platform Independent Model

There are five principles that this model provides in
support of Model Driven Access Control:

I) Access Control Points should be identifiable
via parameterization of the domain PI Ms with a
single model element.

2) Protected Resources should be identifiable via
the parameterization of the domain PIMs with a
single model element.

3) An access policy should be defined, developed
and managed separately from the application
business logic. Access policy rules and access
policy models must be able to evolve without
any modification of the business software.

4) The policy model (role-based, user-based,
code-based ...) should not be exposed to the
business application developers. That is, the
business logic should have absolutely no
knowledge of the access control model utilized
to make access decisions.

5) The access control platform independent model
(AC-PIM) must provide abstractions that are
(as much as possible) consistent with the
existing commonly used Platform Specific
Models for access control. If not, it will not be
acceptable to the user or vendor community
and the work to produce it will be purely
academic with no long-term impact.

•

•

•

Guard

1 consults

1 advises l

LoginManager

AccessManger " J
Lo91nMar:.ager

local to Guard

l .l

1 consults

1 advises 1 ..

Acce•sManager

The Gt.ard is responsible for

enforcing access decisions

(,:1ccess cont rel l.

The Guard may ccnsult .,.;ith a

Login~anager to authenticate

the User and/or an AccessManager

EDOC 2003

to get decisions regarding allowing

access to the protected rescurce

Guard elements are used to

parameter1 ze

business models

+authenticate() : boolean +accessAllowed() :boolean

1.

Authentica tionServ

I

l
.Authentication Model b
is omitted;

The access control

model assumes

the Guard has

authenticated the

User

,_ .r l..

l..

AttributeServer

+secattr() :SecAttributes

+userlnRole I) :boolean

Dynam..icContextServ!_~

T
Optionally used ~
to annotate

business

models with

sophisticated

securitv context

Resource Id

1.. -URL: String

AutborizationServer

consul ts appropriate

Decision.Authority

1 consults appropriate

1. .~

AccessPolicyKvaluator

evaluates

SecurityContext

l has

0 ..

A Resourceld

represents any

physical, logical,

or conceptual

resource that may

need to be protected.

Examples are:

files, databases,

field in a database,

medical record.

launch button .

Resource Id

elements are

used to annotate

business models

AccessPolicy

-Name:String

ActionRule

~-~n~a~m~e~'~S~t~r~i~ngl!_ ____________________ _..j~o_._·1---i-action:String

-enum:ruletype

DynamicProperti~ Accessld Role Group
0 .. 1--------1

has
ConstrainedActionRule

0 .. o .. 0 ..

J 1 has belongs to 1 has
AuthenticationTo~

User

-type:String o .. • 1 -Id:String
-token:Opaque r---------......::.::.:.::..:::.::.:::_ __________________ _.

Figure 1 - Platform Independent Model for Access Control (AC-PIM)

- 6 -

• To support these principles, we must explore the
minimal knowledge that must be provided vrn
parameterization during modeling. This includes:

l. Identification of Resources that might
require protection (note - the architect may
not know if a resource is protected and is
only giving it an identifier so that the
security policy can be defined at some future
time).

2. Identification of the points within the
application architecture where the access
control checks should be made.

3. Identification of the application specific
context /attribute information that might be
needed at the point where an access control
check is made (for example, withdrawal
amount or credit limit or a relationship
between a requestor and the information
being requested).

The proposed AC-PIM model is shown in Figure 1.
Although additional details related to the semantics and
division of responsibility will need to be finalized in
future work, this paper presents the initial design for the

•

Access Control Platform Independent Model that will be
used by the UniFrame team to progress unification of
heterogeneous access control solutions. This model will
evolve with that work. The modeling elements that
represent the information that must be defined as
parameterization of the domain model as discussed
above are:

I. The PIM modeling element (object) that
represents the resource and manages the
identity is Resourceld. Note that there is
not a model element for the protected
resource as it is outside the scope of the AC
PIM. It is only present "by reference" in the
model.

2. The PIM modeling element (object) that
represents the access control points is a
Guard.

3. The PIM modeling element (object) that
supports a dynamic use of the context
information in making the access decisions
is a DynamicContextServer.

A Resourceid may represent any physical, logical or
conceptual resource or a group of resources. For
example, a Resourceid may represent a panel or button
on a GUI, a feature of a cell phone, an operating system,

.n individual machine, an instance of a field in a file or
database, an entire file or database, a C method
invocation, an RMI or CORBA operation on an object, a

-7-

EDOC 2003

process or application, or a concept such as "emergency
room patient" or "psychiatric record". It is this "id"
that represents the resource and is the target when
requesting access decisions. The actual "resource" is
stewarded by an application (or a real person in the case
where it is a physical resource such as an x-ray film).

A Guard is inserted at every point within the
application (or infrastructure) architecture where access
control checks should be made and enforced. The
decision regarding where to insert one or more Guard(s)
will be made during the parameterization of the domain
model prior to transformation to a platform specific
technology for the components or system composition.
Some technology platforms will provide Guards as part
of the infrastructure (thus their meta-models already
include one or more Guards). Others will require that
Guards be manually added. Guards may be implemented
by the operating system(s), messaging systems,
infrastructure services, middleware, component
containers, software components or applications. The
Guard is responsible for ensuring that the user is
authentic - that they are indeed who they claim to be
(the authentication process is not covered by this paper -
it is expected that any well accepted and popular
methods of authentication would suffice) and that the
user is authorized to access the protected resource. A
Guard is typically a software piece protecting an
electronic resource, but could also be a person who acts
on the advice of software. The most important fact to
understand is that it is the Guard and not the
authorization service that is responsible for enforcement
of the access control.

The Resourceid and Guard are the objects that will
always be required to parameterize both domain models
as developed by the business system architect, and the
infrastructure component models used in the model
transformation. The domain models must identify the
resources that need to be protected and they must
identify the points within the domain model where
Guards should be activated. This parameterization will
be utilized as a part of the model transformation to
ensure that the access control checks are placed into the
system at the appropriate points. In a similar way,
infrastructure that enables dynamic system compositions
(via the Web for example) must also support the
dynamic identification of the protected resources and the
insertion of Guards to protect them.

It is also anticipated that that some sophisticated
business applications will require the ability to plug-in
custom context servers that augment the infrastructure
provided security services with an application specific
security context. This plug-in ability is a requirement of

• an implementation of a compliant access control system.
The DynamicContextServer provides the interface to
support this feature. Architecturally this context server
remains separate from the business logic and could be
developed independently.

For the purposes of enabling Model Driven Access
Control (via MDA tools), the remainder of the access
control PIM shown in Figure I does not need to be
exposed. We are, however, suggesting that the full
model should be progressed as a mechanism for
understanding and unifying the behavior of existing
access control models and providing a consistent model
that can be used as a basis of a reference model and
vocabulary for future access control model evolution.
For that reason, we define the full model in this paper.
Now we will explore the architecture of the Access
Control Platform Independent Model and how it
supports the principles we outlined.

Consistent with most of the access control systems of
today, a User may be either a person or a software
component. The User is simply the requestor of access
to a protected resource. When a user makes such a
request, a Guard makes and enforces an access decision

•

regarding whether to allow the User to access the
protected resource that may be information or
application feature(s). A Resourceld represents this
protected resource.

The Guard has access to a local LoginManager and
AccessManager for consultation purposes. The
LoginManager and AccessManager are inserted into the
model as locality constrained objects that provide an
architectural support for location transparency and to
address the need for high performance access control
solutions; for example an implementation may support
caching of the information stored in shared repositories
and consolidation of multiple sources of the security
information. These objects also support a unified
application-programming interface (API) for requesting
security authentication and authorization. This provides
a plug-in point for vendors to integrate their solutions
into heterogeneous environments.

The LoginManager's responsibility is to provide
advice to the Guard on whether or not the requestor is
who they claim to be. To do this, it uses an
Authentication Service. Authentication Services may
utilize diverse authentication technology including
userid/password, X509 certificates, ticket-based

•

(Kerberos), or token-based authentication. We will not
explore a common authentication model in this paper
except to note that this technology is significantly more
mature m terms of allowing pluggable authenticators

- 8 -

EDOC 2003

than authorization servers. The LoginManager has
access to SecurityContextServer(s) for obtaining
additional security context information if required
during the process of authentication.

The AccessManager's primary responsibility is to
provide advice to the Guard on whether or not the User
should be should be allowed access to the resource(s)
identified by the Resourceld. The AccessManager has
access to one or more AttributeServer(s) and one or
more AuthorizationService(s).

For a typical initial access request, the Guard will
consult with the LoginManager to get advice on whether
or not to trust the identity of the requester and then
consult with the AccessManager to determine if an
access should be allowed to the requested resource(s).
Subsequent requests for the resources from the same
resource (typically within the scope of a session) would
result in consultation only with the AccessManager. The
Guard may also decide to trust an authentication token
obtained by another Guard, which has been made
available to it, and omit the consultation process with the
local LoginManager. In this case, it would only consult
with a local AccessManager. It is also possible that the
Guard may determine that the resource is not protected
at all and simply allows access to the resource without
further consultation with either manager. Of course, a
Guard may be disabled or removed which will allow
access to all users, or may be inserted with a policy that
causes it to deny access to all users.

It is important to understand that a Guard has the
authority to accept or reject the advice of LoginManager
and/or AccessManager(s) - although in practice this is
typically not a good idea. This provides the flexibility to
insert custom Guards in locations where normal
application access control mechanisms must be disabled
(such as emergency rooms where the information
normally required to make decisions may not be readily
available) or to temporarily deny access to everyone
without any modification of the access policy. It is also
important to note that the Guard does not have any
knowledge of the access policy model. For example, if
the underlying policy is role based access control
(RBAC), the guard is not aware of the roles that may be
required to access a resource. The Guard simply asks if
an access is allowed or not by consulting with the
AuthorizationService. A single implementation of a
guard may therefore be used with multiple underlying
access control models. This also supports our principle
that the policy model· (role-based, user-based, code
based, etc.) should not be exposed to the business
application developers (as Guards will be provided by
the application developers in environments where tools

- ----- - - --

• are not yet available to generate them). This is in
contrast with current J2EE/EJB and Web Server
programmatic security facilities which expose the role
based access control model by forcing a Guard to know
the roles that are required and call
"EJBContext::isUserlnRole" or "HTTPServletRequest::
isCallerlnRole" to make access decisions. The
insertion of a local AccessManager into these
architectures removes this requirement by allowing the
Guard to call "AccessManager::access _allowed".

The AuthorizationServer, DecisionAuthority or
AccessPolicyEvaluator(s) requires the security context
information. The AccessManager must have this context
information before consulting with an
AuthorizationServer. Examples of the security context
are security attributes such as groups, roles or access ids.
Other examples of the security context are dynamic
properties (such as the current balance on a checking
account) that may be necessary to make an authorization
decision. Such dynamic properties would be provided
via a DynamicContextServer. By placing this in the
access control architecture, a common design pattern is
created that maintains the separation of the application
logic and the access control logic and allows access

•

policy to be evolved separate from the underlying
business logic.

The AuthorizationServer consults an Access
DecisionAuthority whose role is to combine the access
decisions made by the PolicyEvaluators where multiple
policies are in effect. For example, there may be a legal
policy and an administrative policy that disagree. I!.
would be the AccessDecisionAuthority that would be
responsible for resolving any such conflicts. Simple
AccessDecisonAuthority's would require consensus;
more complex authorities might understand precedence
rules. A PolicyEvaluator is responsible for evaluation of
access policy. A PolicyEvaluator typically can evaluate
any policy that follows a particular policy model (for
example, role-based, access control lists or clearance
based). Alternatively there may be PolicyEvaluators
created for particular domains such as legal policy or
administrative policy.

•
- 9 -

EDOC 2003

Jn the AC-PIM, the concept of AccessPolicy is
abstract. An AccessPolicy consists of one or more Rules
that are constructed using the SecurityContext. An
AccessPolicy is associated (by name) with a Resourceld.
The reason for requiring that AccessPolicy is associated
"by name" to the Resourceld is to enable maximum
scalability. By using this indirection, a policy can be
managed independently and associated with many
different resources. This is an expansion of the design
pattern that enabled RBAC to scale (which creates
"roles" that are assigned to Users and creating policy
based on roles instead of individual users). This is
more scalable than current deployment descriptors that
require a redefinition of access policy rules in the
deployment descriptor for each protected resource.

7. Transformation of the AC-PIM to
Existing Platform Models

Figure 2 provides an overview of the models and
aspects that must be considered as we look at the
transformation of the AC-PSM to an AC-PSM for three
existing Platform Specific Models.

I. The OASIS Access control model as defined in
Security Assertion Markup Language (SAML)
and eXtensible Access Control Markup
Language (XACML).

2. The OMG access control model as utilized by
the Resource Access Decision Facility (RAD).

3. The Java access control model as defined in the
Java Authentication and Authorization Service
(JAAS).

XACML is an XML specification for expressing
policies. This specification defines an XML schema for
an extensible access control policy language. As a
result, it defines a standard vocabulary for the domain of
access control policy. SAML is an XML-based security
standard for a protocol to exchange the authenticat.ion
and authorization information. This specification also
defines the syntax and semantics for the XML-encoded
SAML assertions about authentication, attributes and
authorization .

EDOC 2003

AC-PIM JAVA I J2EE JAAS OMGRAD OASIS SAML/
(JAAS PSM) (RAD PSM) XACML

_(XACML PSM_l

Access Control Policy Based Principal Based Access Policy Based Access Policy Based Access

Model Control Control Control

Model Lang_ua_g_e UML Java Interfaces ISO IDL W3CXML

Description of An AccessManager An AccessController An A Policy Decision

Access Decision uses a determines if the Subject AccessDecisionObjec Point (PDP) uses
Model supported DecisionAuthority to associated with the t is passed the AuthorizationPolicy

make a decisions based AccessControlContext ResourceName, the (gathered via
on input from has the required requested operation PolicyRetrievalPoint)
AccessPolicyEvaluator perm1ss1on. on the resource, and and evaluates it
s that may evaluate SecurityAttributes. It and makes an access
multiple policies. Principals associated locates the decision which is

with the subject are PolicyEvaluators and provided via an
Named Policy is matched against an DecisionCombinator. AuthorizationAssertio
associated with application's required One or more policies n
Resource Ids roles and permissions may be evaluated and

for the action are combined by the
checked. combinator. Named

Policy is associated
with Resoucelds.

Policy Format Not defined - Policy is XML - Policy is defined Not defined - Policy Policy is expressed via
standard named and associated via grant statements in is named and XACML statements as

with resources "by deployment descriptors associated with AuthorizationAssertio
name". Policy format that grant Permissions resources "by name". ns XACML provides a
is encapsulated and is for actions to Security Policy format is policy exchange
not standardized Principals (user/role) encapsulated and is language (in XML)

not standardized
Access Decision The Guard calls The client sets The client (serving as
API provided AccessManager:: AccessControlContext a Guard) calls

access_ allowed() by invoking operation AccessDecision::
via Subject.doAs access allowed

Alternative A ttributeServer:: EJBContext:: Http Request::
native API userlnRole IsUserlnRole isCallerlnRole
Infrastructure Inserted via business J2EE Web and EJB CORBA Security Web Container and
Guards (access model parameterization Containers and J2EE Service I CSiv2 may Servlet container is a
control points) and generated by MDA Connectors use JAAS offer guard via SAML

tools Subject.doAs api interceptors. PolicyEnforcementPoi
ntJPEP_l

Application Guard may be inserted Developer may insert Developer may create Developer may insert
Guards (access by developers at access decision point a guard that uses the SAML PEP in Valves
control points) identified access via Subject.doAs - java AccessDecisionObjec or Filters or

decision points runtime then is used as t:: access_allowed to application code.
_g_uard _g_et decisions.

What the Guard insertion points, References to external ResourceNames; References to external
application Resourcelds; actions resources accessed actions on Resource; resources accessed
components must on Resource; References to inter- Optionally: custom References to inter-
identify Optionally a custom component calls made Dynamic A ttributeSer component calls made

SecurityContextService Ids of all role names if vice and/or custom Ids of all role names
isUserlnRole is used Poli9'._Evaluator used in isCallerlnRole

• Figure 2 - Contrasting the AC-PIM with existing Platform Specific Model

- JO -

•

•

Table 1 indicates the conceptually similar modeling
elements that need to be explored in an AC-PIM to
XACML Platform Specific Model transformation:

AC-PIM XACML-PSM
Guard Policy Enforcement Point
AccessMan~er (PEP)
LoginManager
AuthenticationServer AuthenticationAuthori.!Y_
AttributeServer AttributeAuthori.!Y_
AuthorizationServer AuthorizationAuthori.!Y_
DynamicContextServer Polic:ylnformationPoint
DecisionAuthori!}'_ Polic:Y_ Decision Pointl_PDPl
Resourceld URI reference
Table l: Transformation to Key XACML Elements

Java and OMG CORBA share a security specification
for secure interoperability. Common Secure
Interoperability Specification, Version 2 (CSiv2) [27)
supports the protocol necessary for infrastructure and
applications to obtain the security context information
necessary to leverage the Resource Access Decision
Facility (RAD) for fine-grain access control. RAD
provides a uniform service to assist in implementing
infrastructure or application level access control where
the protected resources may be physical, logical, or
conceptual or understood only within the context of the
business application. RAD was designed for use in
multiple technology environments and addresses the
problems of enterprises who have access control policy
that is defined by privacy and confidentiality legislation
(such as healthcare, telecommunications, and finance)
These domains demand more sophisticated access
control policies than what can be provided by
infrastructure security.

Table 2 indicates the conceptually similar modeling
elements that need to be explored in an AC-PIM to RAD
Platform Specific Model transformation:

AC-PIM RAD-PSM
Guard RAD client
AccessMan~er

LoginMan~er

AuthenticationServer AuthenticationService
Attribute Server Securi!Y_Context
AuthorizationServer AccessDecisionOhlect
D_Y!!_amicContextServer D_Y!!_amicAttributeService
DecisionAuthori_!y_ DecisionCombinator
Resourceld Resource Name

• Table 2: Transformation to Key RAD Elements

- II -

EDOC 2003

The Java1
" Authentication and Authorization Service

(JAAS) is a package that enables services to authenticate
and enforce access controls upon users. JAAS
authorization extends the ex1stmg Java security
architecture that uses a security policy to specify what
access rights are granted to executing code. JAAS
authorization augments the existing code-centric access
controls with new user-centric access controls.
Permissions can be granted based not just on what code
is running but also on who is running it. Permissions
can be granted in the policy to specific Principals.

Table 3 indicates the conceptually similar modeling
elements that need to be explored in an AC-PIM to
JAAS Platform Specific Model transformation:

AC-PIM JAAS-PSM

Guard er

AuthenticationServer
Attribute Server

AccessController

Resource Id Resource-ref
Table 3: Transformation to Key JAAS Elements

8. Conclusion

This paper proposes that access control patterns (in
the form of a platform independent model) be utilized as
a part of the component architectures to simplify the task
of generating middleware that assumes the responsibility
for the access control decisions that previously were
tedious (or near impossible) to protect without the
involvement of the application logic and the application
developer. It proposes a Platform Independent Model
that can be leveraged in a Model Driven Approach.
While the full definition and standardization of such a
security model is beyond the scope of this research
project, this initial investigation indicates that the
development of such a model is feasible. We are
hopeful that this research will lead to the standardization
of an Access Control Platform Independent Model (AC
PIM) under the OMG MDA process.

9. Future Work

Future work is planned to examine the problems
associated with the protection of the fine-grain features
and information resources of a typical Web-enabled
business application. The case study, to be created for

• this purpose, will examine a Web-enabled business
application architecture including a Web tier, an
application logic tier, and an enterprise resource tier.
Since an application may require that access to a
resource in the enterprise resource tier be controlled
based on the credentials of the Web user, it will explore
the authorization and access control issues related to
managing the security context across a multi-tier
environment. A model-based solution will be proposed
for the UniFrame project.

This case study will be used to validate the AC-PIM
by completing the semantics of the models and the
transformation to existing models. The proof of concept
will take a well-known application (the Java Blueprints
Pet Store), expressing the Pet Store domain model in
UML and parameterizing it with the AC-PIM by
identifying Resourceids and inserting Guards that
conform to the AC-PIM. A transformation of the model
to the associated PSM that includes access control will
then be progressed. An analysis of this manual
transformation will serve as the foundation of code
generators that mechanize the process, A final goal is
to progress a standard Platform Independent Model for
Access Control within the OMG community that can be

• leveraged by Model Driven Architecture tools.

•

We are currently involved in research in the use of
formal methods for quality of service analysis in
component-based distributed computing [28] and would
like to investigate how formal methods might be
leveraged in the access control domain. In addition, we
hope to define future research projects that collaborate
with groups doing natural language research and
experiment with natural language processing of the
access control requirements [29]. We also hope to
collaborate with research groups that are using Aspect
Oriented computing in Model Driven Architecture
projects to determine if weaving techniques can be used
to introduce access control logic during model
transformation and at system composition time.

10. References

[I] Rajeev R. Raje, Barrett Bryant, Mikhail Auguston, Andrew
Olson, Carol Burt. 2001. A Unified Approach for the
Integration of Distributed Heterogeneous Software
Components, Proceedings of the 2001 Monterey Workshop on
Engineering Automation for Software Intensive System
Integration, pp: 109-119.

[2] Carol C. Burt, Barrett R. Bryant, Rajeev R. Raje, Andrew
Olson. Mikhail Auguston. 2002. Quality of Service (QoS)
Standards for Model Driven Architecture. Proceedings of the

-12-

EDOC 2003

2002 Southeastern Software Engineering Conference, pp. 521-
529.

{3] Carol C. Burt, Barrett R. Bryant, Rajeev R. Raje, Andrew
Olson, Mikhail Auguston. 2002. Quality of Service Issues
Related to Transforming Platform Independent Models to
Platform Specific Models. Proceedings ofEDOC 2002, the 6'h
IEEE International Enterprise Distributed Object Computing
Conference, pp 212-223.

[4) Object Management Group. Model Driven Architecture
Guide. Technical Report. Document# omg/2003-05-01.
Framingham, MA: Object Management Group. May 2003.

[5] ITU-T Recommendation X.812 (1995) I ISO/IEC 10181-3:
1995, Information Technology -- Open Systems
Interconnection -- Security Frameworks for Open Systems -
Access Control.

[6)http:://www.globus.org.

[7] K. Keahey, V.Welch. 2002. Fine-grain Authorization for
Resource Management in the Grid Environment. Proceedings
ofGrid2002 Workshop.

[8] http://www.oasis-open.org.

[9] OASIS. 2003. The XACML 1.0 Specification Set,
available via http://www.oasis-open.org.

[JO] OASIS. 2002. Security Assertion Markup Language
version 1.0, available via http://www.oasis-open.org.

[11] http://www.omg.org.

[12] Object Management Group. 2001. Resource Access
Decision Facility. formal/2001-04-01 (full specification)
formal/2001-04-02 (OMG IDL). Available via
http://www.omg.org/technology/documents/formal/
omg_ security.htm.

[13] Sun Microsystems. 2002. Java™ Authentication and
Authorization Service (JAAS) is part of Java 2 Platform
Enterprise Edition Specification vl.4, Available via ftp from
www.java.sun.com. Sun Microsystems.

[14] http://www.jcp.org.

[15] Java Community Process. 2002. JSR 115- Java™
Authorization Contract for Containers. Available for
download from http://www.jcp.org.

[16] http://www.microsoft.com.

[17] http://www.gotdotnet.com/team/clr/about_security.aspx.

[18] D. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, R.
Chandramouli, 2001. A Proposed Standard for Role Based
Access Control, ACM Transactions on Information and
System Security, vol. 4, no. 3.

•

•

•

[19] D.F. Ferraiolo and D.R. Kuhn 1992. Role Based Access
Conrrof. 15th National Computer Security Conference

(20] Numerous references are available at
http://csrc.ni st. gov/rbac/].

(2 I) M. Abrams, J. Heaney, 0. King, L. J. LaPadula, M.
Lazear, and I. Olson. 199 I. A Generalized Framework for
Access Control: Towards Prototyping the Orgcon Policy, In
Proceedings of National Computer Security Conference, pp.
257-266.

(22] Beznosov, Deng, Blakley, Burt, Barkley. 1999. A
Resource Access Decision Service for COREA-based
Distributed Systems. ACSAC (Annual Computer Security
Applications Conference).

(23) International Standards Organization (ISO). ISO-IEC
14772-2. IDL as standardized by the Object Management
Group.

(24) World Wide Web Consortium (w3c). Extensible Markup
Language (XML) is text format derived from SGML (ISO
8879). Available from www.w3c.org/XML.

(25) Sun Microsystems Blueprints program. Pet Store version
1.3. 1_01 available for download from
http://java.sun.com/blueprints .

(26) Sun Microsystems. Designing Enterprise Applications
with the J2EE Platform. Chapter on Pet Store Security
Architecture. available online from
http://java.sun.com/blueprints

(27) Object Management Group. 2001. Common Secure
Interoperability version2 - Chapter 24 of CORBA!llOP
specification. forrnal/2002-12-06. available via
http://www.omg.org/technology/documents/formal/omg_secur
ity.htm.

[28) Chunmin Yang, Barrett R. Bryant, Carol C. Burt,
Rajeev R. Raje, Andrew M. Olson, and Mikhail Auguston,
2003. Fonnal Methods for Quality of Service Analysis in
Component-Based Distributed Computing to appear in
Proceedings ofIDPT 2003, the Seventh World Congress on
lntegratedDesign and Process Technology.

(29) Chunmin Yang, Beum-Seuk Lee, Barrett R. Bryant, Carol
C. Burt, Rajeev R. Raje, Andrew M. Olson, Mikhail
Auguston. 2002. Fonnal Specification of Non-Functional
Aspects in Two-Level Grammar, Proceedings of the UML
2002 Workshop on Component-Based Software Engineering
and Modeling Non-Functional Aspects (SIVOES-MONA),
http://www-verirnag.imag.fr/SIVOES-MONNuniframe.pdf.

- 13 -

EDOC 2003

CORBA® is a registered Trademark of the Object
Management Group(OMG). CCM, UML, MOF and MDA
are trademarks ofOMG.

JAVA, J2EE, and EJB are trademarks of Sun Microsystems.

.NET is a trademark of Microsoft Corporation.

Other trademarks, which may be used in this document, are the
properties of their respective owner corporations.

•

•

•

From Natural Language Requirements to
Executable Models of Software Components

Barrett R. Bryant, Beum-Seuk Lee, Fei Cao,
Wei Zhao, Jeffrey G. Gray, Carol C. Burt

University of Alabama at Birmingham
{bryant, leebs, caof, zhaow, gray, cburt}

@cis.uab.edu

Rajeev R. Raje, Andrew M. Olson
Indiana University-Purdue University

Indianapolis
{rraje, aolson)@cs.iupui.edu

Mikhail Augustan
Naval Postgraduate School
auguston@cs.nps.navy.mil

Abstract

The UniFrame approach to component-based
software development assumes that concrete
components are developed from a meta-model, called
the Unified Meta-component Model, according to
standardized domain models. Implicit in this
development is the existence of a Platform Independent
Model (PIM) that is transformed into a Platform
Specific Model (PSM) under the principles of Mode/
Driven Architecture (MDA). This position paper
advocates natural language as the starting point for
developing the meta-model and representative domain
models. The paper illustrates how natural language is
mapped through the PIM to PSM using a formal system
of rules expressed in a Two-Level Grammar (TLG).
This allows software requirements to be progressed
from domain logic to the implementation of
components. The approach provides sufficient
automation such that components may be modified at
the model level, or even the natural language
requirements level, as opposed to the code level.

1. Introduction

Model-Driven Architecture (MDA) [12] is an
approach that separates the essence of an :pplication
from the specific middleware platform to which it is
deployed. The basic approach is to define Platform
Independent Models (PIMs) that express the application
logic of components conforming to some domain (e.g.,
mission-computing avionics, safety-critical medical
devices) and then to derive Platform Specific Models
(PSMs) using a specific component technology (e.g.
CORBA 1, J2EE 2, and .NET 3).

1 CORBA - Conunon Object Request Broker Architecture,
http://www.corba.org

Domain logic is typically expressed in natural
language before a model is developed. Standardization
of domains and their associated components is being
undertaken by the Object Management Group (OMG) 4

•

To facilitate the MDA approach to be used in practice,
automated tools are needed to develop the domain -
specifications from their requirements in natural
language as well as to enable transformation from PIMs
into PSMs. Furthermore, if MDA is to be used for
constructing distributed real-time embedded (DRE)
software systems, then the models must consider not
only functional aspects of domain logic, but also non
functional properties, such as Quality-of-Service (QoS)
requirements (e.g., latency and bandwidth requirements
on a distributed video streaming system [23)). QoS
attributes are not currently considered in the MDA
framework.

UniFrame [31] is an approach for assembling
heterogeneous distributed components, developed
according to MDA principles, into a distributed
software system with strict QoS requirements.
Components are deployed on a network with an
associated requirements specification, expressed as a
Unified Meta-component Model (UMM) [30] in the
Two-Level Grammar (TLG) specification language [4].
The UMM is integrated with generative domain models
and generative rules for system assembly [IO], which
may be automatically translated into an imp le men ta ti on
that realizes an integration of components via
generation of glue and wrapper code. Furthermore, the
glue/wrapper code is instrumented to enable· validation
of the QoS requirements [32].

This paper describes a unified method of expressing
domain models in natural language, translating these
into associated logic rules for that domain, application

2 J2EE- Java 2 Enterprise Edition, http://java.sun.com/j2ee
3 http://www.microsoft.com/net
4 http://www.omg.org

•

•

•

of the logic rules in building MDA PlMs, and
maintaining these rules through development of PSMs.
The complete mapping takes place using a formal
system of rules expressed in TLG. This allows software
requirements to be progressed from domain logic to
implementation of components. lt also provides
sufficient automation such that components may be
modified at the model level, or even the natural
language requirements level, as opposed to the code
level. Section 2 describes our previous work with TLG
and its use as a specification language. The application
of this to MDA is discussed in section 3. Finally, we
conclude in section 4.

2. From Natural Language Requirements
to Formal Models

To achieve the conversion from requirements
documents to formal models requires several levels of
conversion, as shown in Figure I. First, the original
requirements written in natural language are refined as
a preprocessing of the actual conversion. This
refinement task involves checking spellings,
grammatical errors, consistent use of vocabularies, and
organizing the sentences into the appropriate sections.
The requirements are expected to be organized in a
well-structured way, e.g. as laid out in [36] or as a
collection of use-cases [I 6], and be part of an
ontological domain [21]. Once they are structured in
this way via human preprocessing, the remainder of the
conversion occurs automatically. lf modifications to
requirements are needed, these modifications should be
made to the requirements already preprocessed, not the
original ones. Since we are allowing for specification of
components that will be deployed in a distributed
environment, Quality-of-Service attributes are also
specified [38].

An example requirements specification from [19] is
given below. This is a small piece of the Computer
Assisted Resuscitation Algorithm (CARA) Infusion
Pump Control System [37].

The host is powered up and all
software subsystems are available.
The pump software system is now in
the wait operating state. The patient
with IV /pump running is placed onto
the host. The pump cable is connected
to the host. The host now provides
power for the pump.

Next, the refined requirements document is
automatically converted into XML5 format. By using

5 XML- eXtensible Markup Language - http://www.w3c.org/xml

XML to specify the requirements, XML attributes
(meta-data) can be added to the requirements to
interpret the role of each group of the sentences during
the conversion. The information of the domain-specific
knowledge is specified in XML. The domain-specific
knowledge describes the relationship between
components and other constraints that are presumed to
exist in requirements documents or too implicit to be
extracted directly from the original documents [22].
The XML representation produced for the above
specification is:

<class title = "Mode" meta = "mode">
<class title = "wait state" meta

= "submode">
<paragraph meta = "pre cond">

<sentence>
Host is powered up and all
software subsystems are
available

</sentence>
</paragraph>
<paragraph meta = "pre exec">

<sentence>
Patient with IV/pump
running is placed onto the
host

</sentence>
<sentence>

Pump cable is connected to
the host

</sentence>
</paragraph>
<paragraph meta = "exec">

<sentence>
HOST now provides power for
pump

</sentence>
</paragraph>

</class>

</class>

A knowledge base is built from the requirements
document in XML using natural language processing
(NLP) to parse the documentation and to store the
syntax, semantics, and pragmatics information. Each
sentence is read by the system and each sentence is
parsed into words. At the syntactical level, the part of
speech (e.g. noun, verb, adjective) of each word is
determined by bottom-up parsing, whereas the part of
sentence (e.g. subject, object, complement) of each
word is determined by top-down parsing [17]. The
corpora of statistically ordered parts of speech
(frequently used ones being listed first) of about 85,000

•

•

•

Preprocessing

Ontology, Formal restrictions

Informal

Formal

Figure 1. Natural Language Requirements Translation into Executable Models

words from [34) are used to resolve syntactic
ambiguities in this phase. Also, elliptical compound
phrases, comparative phrases, compound nouns, and
relative phrases are handled in this phase as well. The
knowledge base for the above example is shown in
Figure 2.

Once the knowledge base is constructed, its
content can be queried in NL. Next, the knowledge
base is converted, with the domain-specific
knowledge, into TLG by removing contextual
dependencies in the knowledge base ·[20). TLG is
used as an intermediate representation to build a
bridge between the informal knowledge base and the
formal specification language representation. The
name "two-level" in TLG comes from the fact that
TLG consists of two context-free grammars
interacting in a manner such that their combined
computing power is equivalent to that of a Turing

Wait state

Figure 2: Knowledge Representation

•

•

•

machine. Our work has refined this notion into a set
of domain definitions and the set of function
definitions operating on those domains. In order to
support object-orientation, TLG domain declarations
and associated functions may be structured into a
class hierarchy supporting multiple inheritance. The
TLG specification produced for this example is:

class Mode.
wait state

Host is powered up,
Pump SoftwareSystem is

available,
Patient with IVPump running

is placed onto Host,
Pump Cable is connected to Host,

Host provides Power for Pump.

end class Mode.

Host, Pump, SoftwareSystem (an attribute of
Pump), Patient, IVPump (an attribute of Patient),
Cable (an attribute of Pump), and Power have all
been identified as objects in the analysis. In TLG,
object and class names are denoted by being
capitalized (and are in fact not distinguished, i.e., an
object may be denoted using the corresponding class
name, as an implicit declaration). Verbs and other
words are included in TLG to make up functions, e.g.
"is powered up," "is available," etc.

As a final step in this process, the TLG code is
translated into VDM++, an object-oriented extension
of the Vienna Development Method [11], by data and
function mappings. VDM++ is chosen as the target
specification language because VDM++ has many
similarities in structure to TLG and also has a good
collection of tools for analysis and code generation.
Once the VDM++ representation of the specification
is acquired, prototyping can be performed on the
specification using the VDM++ interpreter to validate
the generated formal specification against the original
requirements. Also, the formal VDM++
representation can be converted into a high level
language such as Java or C++, or into a Rational
Rose model in UML6 [29] using the VDM++ Toolkit
[15]. The VDM++ specification created for the above
TLG is:

6 UML- Unified Modeling Language, http://www.omg.org/uml

class Mode

instance variables
private host : Host
private pump : Pump
private patient : Patient
private power : Power

operations

public waitState
waitState () == (

() => ()

) ;

host . poweredUp ();
pump . softwareSystem ()

. available ();
patient . ivPump ()

. running ();
patient . placedOnto (host);
pump . cable ()

. connectedTo (host);
host . provides (power, pump);

end class Mode

The VDM++ class uses one instance variable to
represent each object in the TLG specification. This
VDM++ specification may be converted into the
UML model shown in Figure 3. Using the XMI7

format, not only the class framework but also its
detailed functionalities can be specified and
translated into OCL (Object Constraint Language)
[35].

3. Integration with Model-Driven
Architecture

The method of translating requirements in
natural language into UML models and/or executable
code (as described in the previous section) may be
used to translate domain logic into formal rules.
Experts from various application domains may
express their specification in natural language and
then use UniFrame to translate this into TLG rules
via natural language processing. These rules are
encapsulated in a TLG class hierarchy defining a
knowledge base with the domain ontology, domain
feature models (specifying the commonality and
variability among the product instances in that
domain), feature configuration constraints, feature
interdependencies, operational rules, and temporal

7 XMI - XML Metadata Interchange,
http://www.omg.org/technology/documents/formal/xmi.htm

•

•

•

Pump

&_\!software System() : Software System
fi.1!cable() : Cable

~ l +pump

Mode

Patient
~host : Host

1 1 ~pump : Pump +pow~ rPower -""' ~ mpatient: Patient
+-patient 1 1/

~J!ivPump() : IVPump
[1I~placed0nto(host : Host)

~power : Power

~:fwaitState()

+hos--;r-1

Host

~powered Up()
l'l!provides(power : Power, pump : Pump)

Figure 3: UML Representation of Requirements

concerns. TLG specifies the complete feature model
including the structural syntax and various kinds of
semantic concerns [39]. For example, assume that our
application domain is for unmanned aerial vehicles
(UA V's). The business domain will then include a
feature model of a UA V, which includes specification
of the various attributes and operations a UA V will
have, such as responding to external commands and
streaming video back to a satellite receiver [23). In
related work [8), we have investigated the construction
of Generative Domain Models [10) using the Generic
Modeling Environment [14). This tool may also be
extended with a natural language processor as a front
end, i.e., by applying natural language processing to the
domain model (represented in natural language), which
can then extract feature model representation rules and
then interpret those rules to generate a graphical feature
diagram.

Platform Independent Models (PIM's) in MDA are
based upon the domains and associated logic for the
given application. TLG allows these relationships to be
expressed via inheritance. If a software engineer wants
to design a server component to be used in a distributed
video streaming application, then he/she should write a
natural language requirements specification in the form
of a UMM (Unified Meta-component Model)
describing the characteristics of that component. Our
natural language requirements processing system will
use the UMM and domain knowledge base to generate
platform independent and platform specific UMM
specifications expressed in TLG (which we will refer to
as UMM-PI and UMM-PS, respectively). UMM-PI
describes the bulk of the information needed to progress

to component implementation. UMM-PS merely
indicates the technology of choice (e.g. CORBA).
These effectively customize the component model by
inheriting from the TLG classes representing the
domain with new functionality added as desired. In
addition to new functionality, we also impose end-to
end Quality-of-Service expectations for our
components (e.g., a specification of the minimum
frame-rate in a distributed video streaming application).
Both the added functionality and QoS requirements are
expressed in TLG so there is a unified notation for
expressing all the needed information about
components. The translation tool described in the
previous section may be used to translate UMM-PI into
a PIM represented by a combination of UML and TLG.
Note that TLG is needed as an augmentation ofUML to
define domain logic and other rules that may not be
convenient to express in UML directly.

A Platform Specific Model (PSM) 5 an integration
of the PIM with technology domain-specific operations
(e.g. in CO RB A, J2EE, or .NET). These technology
domain classes also are expressed in TLG. Each
domain contains rules that are specific to that
technology, including how to construct glue/wrapper
code for components implemented with that
technology. Architectural considerations are also
specified, such as how to distinguish client code from
server code. We express PSMs in TLG as an
inheritance from PIM TLG classes and technology
domain TLG classes. This means that PSMs will then
contain not only the application-domain-specific rules,
but also the technology-domain-specific rules. The
PSM will also maintain the QoS characteristics

•

•

•

expressed at the PIM level (a related paper [6] explores
the rules for this maintenance in more detail and [7)
explores this issue for the QoS aspect of access control
in particular). Because the model is expressed in TLG,
it is executable in the sense that it may be translated
into executable code in a high-level language (e.g.
Java). Furthermore, it supports changes at the model
level, or even requirements level if the model is not
refined following its derivation from the requirements,
because the code generation itself is automated.

Video server UMM
(in NL)

Video server UMMPs
(in TLG)

Video server UMMP1
(in TLG)

Tool support

Figure 4 shows the overall view of the model
driven development from natural language
requirements into executable code for the previously
described distributed video streaming application.

4. Related Work and Discussion

The idea of using natural language as the basis for
developing software dates back at least 20 years.
Abbott [1] pointed out that nouns correspond to the

Video domain knowledge
(in NL)

Video domain knowledge
(in TLG)

r------ --------------- --------------------------------------

.
I
I
I

UML

PIM
Technology Domain
knowledge (in TLQ)

PSM (in UML and TLG)

Video server implementation (in Java)

: Model Driven Architecture
I

~---~

Figure 4. Integration of Two-Level Grammar with Model Driven Architecture

•

•

•

notion of a class in object-oriented programming
terminology, direct references correspond to objects,
while verb and attributes correspond to class operations,
and the control flow within those operations is also
often present in the action description. Rolland and
Proix [33) developed an automated tool called OlCSI 8

,

which facilitated the elicitation of requirements from
natural language text and accompanying domain
knowledge. Luisa Mich and her colleagues ([24), [25),
[26)) have used a natural language processing system
called NL-OOPS to analyze natural language
requirements for the purpose of determining objects and
their inter-relationships and construction of a
corresponding object-oriented model. Nanduri and
Rugaber [27) implemented a similar system for the
purpose of validating an object-oriented model against
the natural language requirements fom which it was
derived. Ambriola and Gervasi [2) extended this idea to
incorporate modeling and model checking to achieve a
more formal validation (the authors use the term "semi
formal" to describe the validation approach, which
eventually evolved into "lightweight formal methods"
[13)). LIDA (Linguistic Assistant for Domain Analysis)
[28) appears to be the most comprehensive system to
date for assisting a software engineer to construct an
object-oriented model from natural language
descriptions, the emp basis being on domain models.
Daniel Berry and his colleagues (e.g., see [3)) have also
worked with the problem of analyzing natural language
specifications and have identified a number of difficult
problems in correctly implementing requirements based
upon natural language.

Our work has focused on conversion of natural
language to formal specifications in VDM++, which in
tum may be converted into UML models or executable
code. This paper has described an approach for unifying
the ideas of expressing requirements in natural
language, constructing Platform Independent Models
for software components, and implementing the
components via Platform Specific Models. The
approach is specifically targeted at the construction of
heterogeneous distributed software systems where
interoperability is critical. This interoperability is
achieved by the formalization of technology domains
with rules describing how those technologies may be
integrated together via the generation of glue and
wrapper code. The processing of software requirements,
construction of PIMs and PSMs, and specification of
technology domain rules are all expressed in TLG,
thereby achieving a unification of natural language
requirements with MDA.

For future work, we will investigate aspect-oriented
technology [I 8) as a mechanism for specifying

8 French acronym for intelligent tool for information system design,"
also called ALECSI [33)

crosscutting relationships across components and hence
improving reusability of components and reasoning
about a collection of components. Such aspects of
components as functional pre/post conditions and QoS
properties crosscut component modules and
specification of these aspects spread across component
modules. Preliminary work in defining an aspect
oriented specification language is very promising [9).

5. Acknowledgements

This material is based upon work supported by, or in
part by, the U.S. Army Research Laboratory and the
U. S. Army Research Office under contract/grant
number DAADJ9-00-1-0350, and by the U.S. Office
of Naval Research under award number N00014-01-1-
0746.

6. References

[I) Abbott, R. J., "Program Design by Informal English
Descriptions," Commun. ACM 26, 11 (Nov. 1983), 882-
894.

[2] Ambriola, V. and Gervasi, V., "Processing Natural
Language Requirements," Proc. ASE '97, I 2'h Int. Conj
Automated Software Engineering, 1997, pp. 36-45 .

[3] Berry, D. M. and Kamsties, E., "Ambiguity in
Requirements Specification," Perspectives on Software
Requirements, eds. J. C. Sampaio do Prado Leite and J.
H. Doom, Kluwer Academic, 2003, pp. 191-194.

[4) Bryant, B. R. and Lee, B.-S., "Two-Level Grammar as
an Object-Oriented Requirements Specification
Language," Proc. HICSS-35, 351h Hawaii Int. Conj.
System Sciences, 2002, http://www.hicss.hawaii.edu/
HICSS _35/HICSSpapers/ PDFdocuments/STDSLOl .pdf.

[5) Bryant, B. R., Auguston, M., Raje, R. R., Burt, C. C,
and Olson, A. M., "Formal Specification of Generative
Component Assembly Using Two-Level Grammar,"
Proc. SEKE 2002, 14th Int. Conj Software Engineering
Knowledge Engineering, 2002, pp. 209-212.

[6] Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A. M.,
Auguston, M., 'Quality of Service Issues Related to
Transforming Platform Independent Models to Platform
Specific Models," Proc. EDOC 2002, 6th IEEE Int.
Enterprise Distributed Object Computing Conj, 2002,
pp. 212-223.

[7) Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A. M.,
Auguston, M., "Model Driven Security: Unification of
Authorization Models for Fine-Grain Access Control,"
Proc. EDOC 2003, 7th IEEE Int. Enterprise Distributed
Object Computing Conj., 2003, pp. 159-171.

[8] Cao, F., Bryant, B. R., Burt, C. C., Huang, Z., Raje, R.
R., Olson, A. M., Auguston, M., "Automating Feature
Oriented Domain Analysis," Proc. SERP 2003, 2003 Int.
Conj Software Engineering Research and Practice,
2003 , pp. 944-949 .

•

•

•

(9) Cao, F., Bryant, B. R., Raje, R.R., Auguston, M., Olson,
A. M., Burt, C. C., "Assembling Components with
Aspect-Oriented Modeling/Specification," Proc. WiSME
2003, UML 2003 Workshop Software Model
Engineering, 2003, http://www.metamodel.com/wisme-
2003/12.pdf.

[I OJ Czarnecki, K., Eisenecker, U. W., Generative
Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

[11) Durr, E. H., van Katwijk, J., "VDM++ - A Formal
Specification Language for Object-Oriented Designs,"
Proc. TOOLS USA '92, 1992 Technology of Object
Oriented Languages and Systems USA Conj., 1992, pp.
263-278.

[12) Frankel, D.S., Model Driven Architecture: Applying
MDA to Enterprise Computing, Wiley Publishing, Inc.,
2003.

(13) Gervasi, V. and Nuseibeh, B., "Lightweight Validation
of Natural Language Requirements," Softw. Pract.
Exper. 32 (2002), 113-133.

(14) GME 2000 User's Manual, Version 2.0. ISIS, Vanderbilt
University, 2001, http://www.isis.vanderbilt.edu/
publications/archive/Ledeczi _A_ 12 _I 8 _2001_GME_200
O_U.pdf.

[I 5) IF AD, The VDM++ Toolbox User Manual, 2000,
http://www.ifad.dk.

(16) Jacobson, I., Booch, G., Rumbaugh, J., The Unified
Software Development Process, Addison-Wesley, 1999.

(17] Jurafsky, D., Martin, J., Speech and Language
Processing, Prentice-Hall, 2000.

[18] Kiczales, G., et al., "Aspect-Oriented Programming,"
Proc. ECOOP '97, 1997 European Conj. Object
Oriented Programming, 1997, pp. 220-242.

(19] Lee, B.-S. and Bryant, B. R., "Automation of Software
System Development Using Natural Language
Processing and Two-Level Grammar," Proc. 2002
Monterey Workshop Radical Innovations of Software
and Systems Engineering in the Future, 2002, pp. 244-
257.

(20] Lee, B.-S. and Bryant, B. R., "Contextual Knowledge
Representation for Requirements Documents in Natural
Language," Proc. FLAIRS 2002, I 5th Int. Florida AI
Research Symp., 2002, pp. 370-374.

(21] Lee, B.-S. and Bryant, B. R., "Contextual Processing and
DAML for Understanding Software Requirements
Specifications," Proc. COL/NG 2002, I9'h Int. Conj.
Computational Linguistics, 2002, pp. 516-522.

[22] Lee, B.-S. and Bryant, B. R., "Applying XML
Technology for Implementation of Natural Language
Specifications," Comput. Syst., Sci. & Eng. 5 (September
2003), 3-24.

[23] Loyall, J., Schantz, R., Atighetchi, M., and Pal, P.,
"Packaging Quality of Service Control Behaviors for
Reuse," Proc. ISORC 2002, 5th IEEE Int. Symp.Object
Oriented Real-time Distributed Computing, 2002, pp.
375-385.

[24] Mich, L., "NL-OOPS: From Natural
Object-Oriented Requirements using
Language Processing Sy stem LO LIT A,"
Eng. 2, 2 (1996), 161-187.

Language to
the Natural
J. Nat. Lang .

(25] Mich, L. and Garigliano, R., "The NL-OOPS Project:
00 Modeling using the NI.PS LOLITA," Proc. NLDB
'99, 4h Int. Con/ Applications of Natural Language to
Information Systems, 1999, pp. 215-218.

[26] Mich, L., Mylopoulos, J., and Zeni, N., "Improving the
Quality of Conceptual Models with NLP Tools: An
Experiment," Technical Report, Department of
Information and Communication Technologies,
University of Trento, Italy, 2002,
http://eprints.biblio.unitn.it/archive/OOOOO 127 /0 I/ 47.pdf.

(27] Nanduri, S. and Rugaber, S., "Requirements Validation
via Automated Natural Language Parsing," J. Manage.
Inf Syst. 12, 2 (1996), 9-19.

[28] Overmyer, S. P., Lavoie, B., and Rambow, 0.,
"Conceptual Modeling through Linguistic Analysis using
LIDA," Proc. /CSE 200I, 23'd Int. Conj. Software
Engineering, 2001, pp. 401-410.

(29] Quatrani, T., Visual Modeling with Rational Rose 2000
and UML, Addison-Wesley, Reading, MA, 2000.

(30] Raje, R. R., "UMM: Unified Meta-object Model for
Open Distributed Systems," Proc. /CA3PP, 4'h IEEE Int.
Conj Algorithms and Architecture for Parallel
Processing, 2000, pp. 454-465.

(31] Raje, R.R., Auguston, M., Bryant, B. R., Olson, A. M.,
and Burt, C. C., "A Unified Approach for the Integration
of Distributed Heterogeneous Software Components,"
Proc. 2001 Monterey Workshop Engineering Automation
for Software Intensive System Integration, 200 I, pp. 109-
119 .

[32] Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M.,
Burt, C. C., "A Quality of Service-based Framework for
Creating Distributed Heterogeneous Software
Components," Concurrency Comput.: Pract. Exp. 14, 12
(2002), I 009-1034.

[33] Rolland, C. and Proix, C., "A Natural Language
Approach for Requirements Engineering," Proc CAiSE
'92, 4th Int. Conj Advanced Information Systems, 1992.

[34] Ward, G., "Moby Part-of-Speech II (data file)," 1994,
http ://www.gutenberg.net/extext02/mposp I 0 .zip.

[35] Warmer, J., Kleppe, A., The Object Constraint
Language: Precise Modeling with UML, Addison
Wesley, 1999.

(36] Wilson, W. M., "Writing Effective Natural Language
Requirements Specifications," Naval Research
Laboratory, 1999.

(37] Walter Reed Anny Institute for Research (WRAIR),
"CARA Specification: Proprietary Document," WRAIR,
Dept. of Resuscitative Medicine, 200 l.

[38] Yang, C., Lee, B.-S., Bryant, B. R., Burt, C. C., Raje, R.
R., Olson, A. M., Auguston, M., "Formal Specification
of Non-Functional Aspects in Two-Level Grammar,"
Proc. UML 2002 Workshop Component-Based Software
Engineering and Modeling Non-Functional Aspects
(SIVOES-MONA), 2002, http://www-verimag.imag.fr/
SIVOES-MONA/uniframe.pdf.

[39] Zhao, W., Bryant, B. R., Burt, C. C., Gray, J. G., Raje, R.
R., Olson, A. M., Auguston, M. "A Generative and
Model Driven Framework for Automated Software
Product Generation," Proc. CBSE 6, (/h Workshop
Component-Based Software Engineering, 2003,
http://www.csse.monash.edu.au/-hws/cgi-bin/CBSE6/
Proceedings/papersfinal/p3 l .pdf.

•

•

•

Assembling Components with Aspect-Oriented Modeling/Specification*

Fei Cao1
, Barrett R. Bryant1

, Rajeev R. Raje2
, Mikhail Auguston3

, Andrew M. Olson2
,

Carol C. Burt 1

Abstract:

1Department of Computer and Information Sciences
University of Alabama at Birmingham

{caof, bryant, cburt}@cis.uab.edu

2Department of Computer and Information Science
Indiana University Purdue University at Indianapolis

{rraje, aolson}@cs.iupui.edu

3Computer Science Department
Naval Postgraduate School
auguston@cs.nps.navy.mil

Component-Based Software Development (CBSD) offers a cost-effective means of software production
with reduced time-to-market. Integration of heterogeneous components poses a non-trivial challenge in
realizing this vision, which is further complicated in a distributed environment as a result of blurred
functional and non-functional aspect1 representation and management. We propose a two-level approach,
i.e., to apply aspect-oriented component modeling/specification to handle the problem.

Keywords:
Aspect Orientation, Component Modeling/Specification, UniFrame, Weaving

1. Introduction

1.1 Background

Recent development in software component technology enables the production of complex software
systems by assembling off-the-shelf components. This not only boosts productivity attributed to the
reusability of components, but also improves cost-control and maintenance of software systems.
Meanwhile, another hallmark of current software components is the heterogeneity in environment,
language and application over distributed systems.

UniFrame [RajeOI] is a framework for seamless interoperation of heterogeneous distributed software
components. It is based on the Unified Meta-component Model (UMM) [RajeOO] for describing
components. A Generative Domain Model (GDM) [CzarOO] is used to describe the properties of domain
specific components and to elicit the rules for component assembly. Systems constructed by component
composition should meet both functional and non-functional requirements such as the Quality of Service
(QoS) [Brah02]. Towards the realization of the vision of the UniFrame project, an appropriate means for
component modeling/specification is needed, which should be capable of:

•This research is supported by the U.S. Office of Naval Research under the award number N00014-0l-l-
0746.

1 In this paper, "non-functional aspect", "non-functional-property" and "Quality of Service (QoS)" may be
used interchangeably.

•

•

•

• representing the functional properties (including not only syntactic strncture but also semantic
behaviors) and requirements (pre/post condition, dependency, temporal constraints, etc.).

• representing the non-functional properties and requirements [Brah02).
• specifying the heterogeneity in terms of representing domain knowledge, e.g., technology domain.

business domain, etc.

1.2 Current Issues

Assembly of heterogeneous distributed components will require glue/wrapper code to fuse them together.
General practice leverages vendor-specific bridging products or applies hard coding, and both the
functional and non-functional aspects of the assembled system tend to be blurred by this ad hoc treatment.
We have applied Two-Level Grammar (TLG) as a formalism to specify various aspects of components
[Brya02] based on UMM. Meanwhile, it has been brought to our attention such aspects of components as
functional pre/post conditions and non-functional properties crosscut component modules and handling of
these aspects spread across component modules. This poses some problems:

• reduced reusability of components. Component behavior may change in different contexts. The
inter-relationship between components may also change under different business rules. The "Hard
coded" modeling/specification will be inadequate to capture the dynamics of components and
component representations may have to be revised upon different environments

• blurred representation and management of functional and non-functional aspects of components.
As those aspects are entangled with other aspects of components, reasoning for the integrated
system based on those aspects will be hard to be carried out.

Aspect Orientation [Kicz97] provides a means to capture crosscutting aspects in a modular way with new
language constructs. This makes us believe that augmenting our existent specification approach with aspect
orientation can separate those crosscutting aspects intervening components, loosen the coupling between
components, which will contribute to not only the reusability and evolution of component without changing
the component itself, but also the manageability of component assembly. On the other hand, by using
weaving technology, dynamic concerns can be "glued" into the composition of components. This paper
will investigate the application of aspect orientation in the modeling/specification of components, in
particular, the handling of their exported service and QoS of heterogeneous distributed components in the
context of the UniFrame project.

This paper is organized as follows: Section 2 first gives an analysis of component assembly models.
Section 3 presents our two-level, model-based, aspect-oriented approach for heterogeneous distributed
component representation. Section 4 draws the conclusion.

2 Component Assembly Model Analysis

In [Shaw97], component and connector are proposed as building blocks of software architecture. The
examples of component include clients, servers, databases; the examples of connector include procedure
call, event broadcast, database protocols. The various kinds of combination patterns of component and
connector form the collection of architecture styles.

From the perspective of component assembly, we use the connector concept as an abstraction for
glue/wrapper codes necessary for component assembly, and analyze how the use of this abstraction makes
the assembly process scalable. The approach of removing assembly logic from the component into the
connector can increase the reusability of the component, reduce the complexity and boost maintainability.
Meanwhile, assembly model analysis will contribute to the automation of this process. Based on the
hierarchical relationship between component and connector in the assembly process, the assembly models
can be categorized as follows:

1) the connector and component reside at the same level (Figure 1) .
This is the most common and simple assembly model, and conforms to most architecture styles
listed in [Shaw97], such as pipes and jilter, and event system. The connector here may be remote

•

•

•

method call, or event/message based communication for client/server architecture. This model is
mostly seen in distributed component assembly.

Figure I: Component & Connector: Same Level

2) the components are contained in the connector. Figure 2 provides a COM2 model.

• component

························· Connector
interface

0

binding

Figure 2: Connector as a Container

The connector acts as an infrastructure in the form of framework, which assembles components
via inversion of control, such as in EJB3

, CCM4
; or a package, using such way as manifest file to

package components, such as in JavaBeans5
• Also such connector in some cases plays the role as a

container providing extra services for the components to leverage, such as security, transaction,
life cycle management, persistence.

3) mixed form of the above two cases.
In this case, component assembly is comprised of a hierarchical process, the father assembly is
derived from the assembly of the output of each child assembly process, in the form as described
in either (I) or (2). Each child assembly process further is derived from their own child assembly
process in either (1) or (2).

3. Two-level Component Modeling/Specification with Aspect Orientation

In light of prior assembly analysis, we propose a two-level approach toward an effort of component
assembly by handling the modeling of the component and the specification of their interaction (aka.
connector) separately: the first level is the modeling of heterogeneous components (their functional as well
as non-functional properties [Brah02)) in graphical forms using some advanced CASE tools such as the
Generic Modeling Environment (GME) [GMEOI); the specification of inter-relationships between
components and manipulations of the component model are included in the second level, which constitutes
the connector module. The assembly of components for the production of the final system will be in an
automatic fashion using an aspect weaver based on the modeling and specification. Figure 3 illustrates the
process .

2 COM: Component Object Model, http:!lwww.microsoft.com/com.
3 EJB: Enterprise Java Beans, http://java.sun.com!productslejb
4 CCM: CORBA ®Component Model, http:l/www.omg.org/cgi-bin/doc?orbos/99-07-0l
5 http://java.sun.com/beans/

• 3.J Level 1: Component Modeling

•

•

One of the Object Management Group (OMG) 6 initiatives is Model Driven Architecture (MDA ~)
(OMGO I], i.e., by reverse engineering legacy systems and Commercial-Off-The-Shelf (COTS)
components, software can be transformed into Platform Independent Models (PIMs). PIMs, in turn, will be
mapped to Platform Specific Models (PSMs), such as CORBA7

, EJB, SOAP8 and .NET9
• In this way,

legacy systems

---,--.
I

·.J··: .• •·

-·--

:.- .. =~
·'

M,< Account

Servir~ Oflering

Level I :model

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

--------------·---------------·-·---·----------------------------~---
~-Sy_n_rh-e-si-ze_d_C_o_m_p_on_e_n_I D-es-cr-ip_t_,io'-n-L-an_g_u-ag-e-~ Functional and Non-Functional Level 2:s,:.i pecification

Aspect Specification

·-·-·-------------------------·---~----

Simulation

Code Generation

Figure 3: Process of Aspect-Oriented Component Modeling/Specification

and COTS can be reintegrated into new platforms efficiently and cost-effectively. We embrace the same
vision here by representing the software components with a model-based approach. However, such PIM
model envisioned here is derived by creating meta-models specific to component modeling. In other words,
we need to formulate the building blocks for describing component models. This includes the meta-model
for business and technology domains [Zhao03]. But these are out of our scope here, which are actually the
concerns of some organization such as OMG. Additionally, there should be a means in the component
modeling level to represent the join point [Kicz97] in a component, which denotes the points that are
affected by a particular crosscutting concern. In an AOP language such as AspectJ [KiczO 1],join points are
represented by referring to the syntactical constructs of the base program source. [Stei02] explores the
representation of join points in UML models by marking affected model elements using UML tags. Here
we may denote the join points by referring to the meta-information of model constructs. In that sense the

6 http://www.omg.org
7 http://www.CORBA.org
8 SOAP: Simple Object Access Protocol,http://www.w3.org!TRISOAP
9 http://www.microsoft.com/net

•

•

•

join points here also represent domain knowledge and can serve as query parameters in search of specific
components.

As is illustrated in the diagram, the first-level model will be transformed into the second level using a
model-based approach consistent with the vision of MDA. This can be achieved easily using the meta
model information of the component models. In GME [GMEOl], this is realized by using the Builder
Object Network (BON) framework for building interpreters, which traverses objects in the model tree by
calling methods within the BON API and generates the Component Description Language (CDL), which
also includes associated meta-model information to be used as the anchor of the join point.

3.2 Level 2: Component Specification

This level involves the creation of an Aspect Specification Language (ASL10
) for describing crosscutting

concerns in a separate way. Also a weaver is built to weave the ASL with CDL to generate targeted
executable specification of components.

3.2.1 Constructs of ASL
In AspectJ [KiczO 1], the aspect specification includes three elements: pointcuts to pinpoint the affected
location of applications; advice to describe the actions that are applied to the pointcuts; the condition which
governs how/when to apply advice to pointcuts using "before", "after", etc. To generalize for ASL, we
need a means to specify:

I) join points.
2) behavior specification describing the actions to be performed.
3) policy on how the behavior is applied to join points.

(I) is as mentioned in 3.1, and is supposed to be specified in CDL. (2) and (3) will be provided in ASL.

3.2.2 Concerns Involved
This part will eventually evolve into a catalog of concerns to be handled in heterogeneous distributed
component specification. For now the most distinct concerns involved will be:

I) gluing/wrapping of components.
The gluing/wrapping of components is generally influenced by such aspects as platform and
distribution. The component assembly process will be subject to evolution if components are
deployed on a different platform/location. This dynamism can be well embraced by policy description
in ASL. The pre/post condition as well as other constraint checking necessitated for the components
to perform interaction (here, assembly) can be represented in the behavior specification under the
corresponding policy. Obviously here the join points are contained in the involved components to be
assembled.

2) QoS measurement.
We also embed the non-functional aspects such as QoS measurement at the higher level specification
of ASL, which will contribute to the measurement of QoS of the generated system at run-time. This is
especially desired in a dynamic distributed environment, where a large amount of existent
components may be exported for use, overall system QoS serving as the criteria to the filtering of
service offerings among peer components. In [Augu95], event grammar is proposed to perform the
system testing. We believe the introduction of the aspect-oriented approach will provide support to
this effort, i.e., we can treat the QoS probing code as a behavior specification; the policy will govern
how the probing code will be called at join points for dynamic measuring of QoS. The probing code
will not be manually embedded in the points of interest, but rather using the weaver for dynamic
instrumentation.

3.2.3 Simple Assembly Example using Aspect Orientation
To help clarify the aforementioned concepts, we give a simple example demonstrating how aspect
orientation can be applied to component assembly. The ideas are adapted from aspectual components
[Lieb99), in which aspects are decoupled from the base program by being defined as a generic aspectual

10 Note this is nothing to do with the Action Semantics Language ofOMG.

•

•

•

component, which is instantiated later over a concrete data-model. In this way, an aspect definition can be
reused. Here we define aspectual component by capturing join points at the meta-model level of
components.

Assume the component A is a banking domain client component hosted on Java RMI requesting some
banking service from some server side. Below is the partial specification of its CDL:

A.0 Component A
A.1 Bankoperation:: Service.
A.2 Bank: :BusinessDomain.
A.3 Platform: :TechDomain.
A.4 Platform= "RMI".
A.5 Requires Bankoperations
A.6 end Component A.

Note that right hand side of"::" denotes the meta-type of the left hand side. Line A.4 and A.5 are hyper
rules. Meta-type and hyper-rule are Two-Level Grammar notations. For more details ofTLG, see [Brya02].

The above specification will be translated into a corresponding aspectual component:

B. O aspect A
B.1 Bankoperation:: Service.
B.2 Bank::BusinessDomain.
B.3 expect Bankoperations.
B.4 expect wrap Argument. //usage interface
B.5 replace Bankoperation: //modification interface
B.6 if expected() .getComponent() .getPlatform()== "COREA"
B. 7 then return expected () . wrap ("RMI") .
B.8 end aspect A

Note those lines prefixed by expect denote operation signatures that are expected to be supplied with
advice. In that sense the operation signatures here correspond to the join points in AOP. In the proposed
approach here we only use meta-level types for the operation signature definition. Also the above expected
keyword denotes something to be bound to join points. In line B.3, Bankoperation itself is meta-type in the
banking business domain. Expected operations are either used (usage interface) or modified (modification
interface, preceded with replace) in the aspectual component definition. For details please see [Lieb99].
Also lines B.6-B.7 provide advice (reimplementation) for the associated operations to be specified in the
connector part below.

Assume the component B is a banking domain server component implemented in CORBA providing some
banking services.

C.O Component B.
C.1 Withdraw, Deposit:: Service;Port.
C.2 Bank::Domain.
C.3 Platform::TechDomain
C.4 Platform= "COREA".
C.5 end Component B.

Note in line C. I, the two types denoted in the right hand side of"::" means both withdraw and deposit are
not Services, but also Ports, which means they are component services offered to external components.

The following is an ASL specification for component assembly.

D.O
D.1
D.2
D.3
D.4

connector A-B
Bankoperation=Withdraw, Deposit. //join points
wrap(Argurnent): if (Argurnent.getname=="RMI")

{
//provide wrapping specification for

•

•

•

D. 5
D. 6
D.7 end connector A-B

//RMI-COREA inter-operation

Note that lines D.2-D.6 further implement the advice part for the join points (here, Withdraw and Deposit
operation). The body of wrap is ignored without loss of generality.

from the example illustrated in this section, we can see the interactions of two components can be
separated by being handled in a module (here in the aspectual component definition, i.e. the "aspect A"
module). Consequently the assembly process can be implemented by using a weaver to weave advice
together with component specifications. As we can see in the body of "aspect A", it is straightforward for
us to apply other concerns in between, e.g., we can call expected().precondition() wherever applicable in
the replace function body to enforce some preconditions.

3.3 System-Level Simulation

We are investigating such program transformation tool as DMS11 for building a weaver to weave CDL and
ASL together, the output of which will be fed into the simulation phase to validate the functional system
behavior against requirements before implementation code is generated and deployed. This simulation may
be carried out by building a component virtual machine [Ducl02], which serves as an interpreter to interpret
the weaved specifications; or by building rule sets based on requirement and then use some inference
engine to validate the functional requirements. In this way, the assembled system will be functionally sound
at an early phase. On the other hand, the generated applications, as they are probed with non-functional
aspect related codes, are amenable to be benchmarked over the specific QoS parameters [Brah02] in the
system deployment time .

4. Summary and Future Work

We have presented a two-level approach for handling the crosscutting concerns of functional/non
functional concerns in integrating heterogeneous distributed components. This approach has a close tie to
MDA in the sense that we leverage component modeling at the first level and then map the component
models into the CDL in the second level. The CDL and ASL will be weaved together to generate the
executable specification for system simulation. The approach also applies to model weaving in MDA.

We have applied modeling techniques for enriching semantics of Web Services and to generate
semantically enriched Web Service Description Language (WSDL) [Cao03]. We have also prototyped
CDL for component assembly [Cao02]. Future efforts will be to apply modeling experiences to describing
the semantics of component cases of some specific domain, and to build ASL together with its associated
weaver for the synthesis of executable specifications.

References:

[Augu95] M. Auguston. Program Behavior Model Based on Event Grammar and its Application for
Debugging Automation. Proceedings of the 2nd International Workshop on Automated and Algorithmic
Debugging, pp. 277-291, 1995.

[Brah02] G. J. Brahnmath, R. R. Raje, A. M. Olson, M. Auguston, B. R. Bryant, and C. C. Burt. A Quality
of Service Catalog for Software Components. Proceedings of (SE/ 2002, the Southeastern Software
Engineering Conference, pp. 513-520, 2002 .

11DMS: Design Maintain System™, http://www.semdesigns.com/

•

•

•

[Brya02] B. R. Bryant, B.-S. Lee. Two-Level Grammar as an Object-Oriented Requirements Specification
Language. Proceedings of 35th Hawaii Int. Conj System Sciences, 2002,
http://www.hicss.hawaii.edu/HICSS _ 3 5/HI CSSpapers/PDF documents/STDSLO 1. pdf.

[Cao02] F. Cao, B. R. Bryant, R. R. Raje, M. Augustan, A. M. Olson, C. C. Burt. Component
Specification and Wrapper/Glue Code Generation with Two-Level Grammar using Domain Specific
Knowledge. Proceedings of 4th International Conference on Formal Engineering Methods (JCFEM'02),
LNCS 2495, Springer-Verlag, pp. 103-107, 2002.

[Cao03] F. Cao, B. R. Bryant, C. C. Burt, J. G. Gray, R.R. Raje, A. M. Olson, M. Auguston. Modeling
Web Services: Toward System Integration in UniFrame, to appear in Proceedings of 7th World Conference
on Integrated Design and Process Technology (IDPT'03), 2003.

[CzarOO] K. Czarnecki, U.W. Eisenecker. Generative Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

[Ducl02] F. Duclos, J. Estublier, P. Morat. Describing and Using Non Functional Aspects in Component
Based Applications. Proceedings of Second International Conference on Aspect-Oriented Software
Development, AOSD'02, 2002.

(GMEOl] GME 2000 User's Manual, Version 2.0, ISIS, Vanderbilt University, 2001.

[Kicz97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. Proceedings of European Conference on Object-Oriented Programming
(ECOOP), LNCS 1241, Springer-Verlag, pp. 220-242, 1997 .

[KiczOl] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold An Overview of
AspectJ. Proceedings of European Conference on Object-Oriented Programming (ECOOP), LNCS 2072,
Springer-Verlag, pp.327-353, 2001.

[Lieb99) K. Lieberherr, D. Lorenz, M. Mezini. Programming with Aspectual Components. Technical
Report, NU-CCS-99-01, 1999, http://www.ccs.neu.edu/research/demeter/papers/aspectual
comps/ aspectual. ps.

[OMGOl) Object Management Group (OMG). Model Driven Architecture: A Technical Perspective.
Technical Report. Document# ormsc/2001-070-1, Framingham, MA, Object Management Group, 2001.

[RajeOO) R. R. Raje. UMM: Unified Meta-object Model for Open Distributed Systems. Proceedings of
ICA3PP, 4th IEEE Int. Conj Algorithms and Architecture for Parallel Processing, pp. 454-465, 200 I.

[RajeOl) R.R. Raje, B. R. Bryant, M. Augustan, A. M. Olson, C. C. Burt. A Unified Approach for the
Integration of Distributed Heterogeneous Software Components. Proceedings of Monterey Workshop
Engineering Automation for Software Intensive System Integration, pp. 109-119, 2001.

[Shaw96] M. Shaw, D. Garlan. Software Architecture: Perspectives on an Emerging Discipline, Prentice
Hall, 1996.

(Stei02] D. Stein, S. Hanenberg and R. Unland. On Representing Join Points in the UML. Aspect
Modeling with UML Workshop at the Fifth International Conference on the Unified Modeling Language
and its Applications, 2002, http://www-stud.uni-essen.de/-sw0136/wissensArbeiten/
UML02Workshop.pdf.

[Zhao03) W. Zhao, B. R. Bryant, C. C. Burt, J. G. Gray, R. R. Raje, A. M. Olson, M. Augustan. A
Generative and Model Driven Framework for Automated Software Product Generation. Proceedings of
CBSE 6, the 61

h Workshop on Component-Based Software Engineering: Automated Reasoning and
Prediction, 2003, http://www.csse.monash.edu.au/-hws/cgi-bin/CBSE6/Proceedings/papersfinal/p3 l .pdf.

.--

Integrated Design and Process Technology, IDPT-2003
Printed in the United States of America, June, 2003

©2003 Society for Design and Process Science

• MODELING WEB SERVICES: TOWARD SYSTEM INTEGRATION IN UNIFRAME

•

•

Fei Cao, Barrett R. Bryant, Carol C. Burt, Jeffrey G. Gray
Department of Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, AL 35294, USA

{caof, bryant, cburt, gray}@cis.uab.edu

Rajeev R. Raje, Andrew M. Olson
Department of Computer and Information Science

Indiana University Purdue University at Indianapolis
{rraje, aolson}@cs.iupui.edu

Mikhail Auguston
Computer Science Department

Naval Postgraduate School
auguston@cs.nps.navy.mil

ABSTRACT

Web Services offer a platform independent solution
for system integration in a distributed environment. But
Web Services are weak in representing the business
semantics of application domains. This paper presents
a model-driven approach for specifying domain
specific component models in an effort to complement
the current Web Services technology in terms of
enriching the semantics representation. Web Services
Description Language (WSDL) can then be generated
automatically from the models with generators. The
modeling of domain-specific components serves as a
front-end to represent the semantics of components as
well as for formalizing components while the
generated artifacts facilitate component service
synthesis.

I. Introduction

The integration and reuse of legacy software
systems offer a promising direction for boosting
productivity by dramatically reducing both cost and
time-to-market expenses. One of the Object
Management Group (OMG) initiatives is Model Driven
Architecture (MDA)1

, in which legacy systems and
Commercial-Off-The-Shelf (COTS) software can be
transformed by reverse engineering into Platform
Independent Models (PIMs) representing business
functionality with underlying technical details
presented abstractly. If this effort is successful, legacy
systems and COTS software can be reintegrated into
new platforms efficiently and cost-effectively. But for
legacy systems and COTS software, the business logic
and the software structures are usually encapsulated as
black boxes, which makes it difficult to be reverse
engineered. Hence, it is necessary to include the

1 http://www.omg.org/mda/

design artifacts (such as models, high-level
specifications, etc.) in the business components. To
that end, the vision of MDA also includes packaging
models together with parameterized generators. The
application generator will produce customized
components according to the configuration parameters.
In that way, not only can the footprint of business
systems be minimized, but also various kinds of
artifacts of business system can be generated on
demand for system synthesis.

On the other hand, Web Services (WS)2 technology
offers a platform-independent solution for Enterprise
Application Integration (EA!) by wrapping legacy
systems as WS [Grah02]. Combining the model-driven
approach with WS technology, software systems can
be produced by synthesizing distributed models using
generator technology.

UniFrame [RajeOl] is a framework for seamless
integration of heterogeneous distributed software
components to assemble a complete distributed
software system. The assembly process involves the
generation of glue/wrapper code [Brya02], which is a
challenging ad-hoc task considering the heterogeneous
nature of distributed components. Because WS are
based on open industry standards working across
different platforms, wrapping heterogeneous
components with WS for integration will transform the
assembly task from n*m to n* 1 processes (see Figure
1). The contribution of this paper is to propose the use
of WS as a potential vehicle for system integration in
UniFrame by enhancing semantic expressive power of
WS using the model-driven approach. The related
process is described herein.

In this paper, we present an approach based upon
the principle of Model-Integrated Computing (MIC)
[LedeO 1] to model the business domain-specific UMM
component models. This involves a graphical modeling

2 http://www.w3.org/2002/ws/

• -----~

0

o--------L • /vc~rviccs
I 'o

0

Figure I. Reducing Gluing/Wrapping Process

environment for customizing a domain system based
on domain-specific meta-models. An interpreter is built
to generate WS Description Language (WSDL) 1 for
business service integration. A generator can also be
created to directly synthesize the implementation code.
Figure 2 gives an overview of the approach.

This paper is organized as follows. Section 2
introduces the background knowledge of the UniFrame
project, for which the proper meta-model development
is imperative. Section 3 introduces the modeling
environment and modeling targets with regard to the
UMM model and WS. Section 4 describes the
interpreter that generates the WSDL. A banking
example is given in Section 5 illustrating the proposed
approach. This paper ends with the conclusions and
outlook in Section 6.

• 2. UniFrame

•

Uniframe is based on the Unified Meta-Component
Model (UMM) [RajeOO] for describing components.
Systems constructed by component composition should
meet both functional and non-functional requirements
such as Quality of Service (QoS) requirements
[Raje02). UniFrame includes a specification of
appropriate QoS parameters, which provide metrics of
service at both the component level and system level,
so that the software system produced by assembling
heterogeneous components can be benchmarked over
not only functional requirements, but also non
functional criteria. A Generative Domain Model
(GDM) [CzarOO] is used to describe the properties of
domain- specific components and to elicit the rules for
component assembly.

2.1 UMM

In the Unified Meta-Component Model (UMM),
we are concerned about the following three aspects:

a) Component:

In [Medv97], components are described as being
composed of the following aspects: interface, types,
semantics, constraints and evolutions. But, this view
does not reflect the collaborative features of distributed
components. We believe that a component, as a

1 http://www.w3.org/2002/ws/

2

provider for computational functionality and a gateway
for further resource offerings, has not only
computational aspects, but also cooperative aspects in
distributed environments, as well as other auxiliary
aspects like mobility and security.

b) Service and Service Guarantees.

Here we are focusing on providing metrics for
quantifying the services provided by components as a
criteria for making choices from multiple service
providers, as well as criteria of judging assembled
system by composing components. Once a component
does not satisfy the expected QoS, it is a candidate for
substitution. By modeling QoS aspects in the meta
model, we can weave the QoS instrumentation into
generated code for QoS measurements at deployment
time.

c) Infrastructure

In UniFrame, the Internet Component Broker (ICB)
and Headhunters [Sira02) are proposed as two faciliti€s
in an effort to seamlessly integrate heterogeneous
components. ICB provides translation capacity in terms
of adapter technology for achieving interoperability,
while Headhunters actively detect the presence of new
components in the search space, register their
functionality and attempt match-making between client
components (service requesters) and server
components (service providers). By generating such
component specifications in XML, a component can be
exposed for external querying, e.g., using XQuery2

•

Also, a pre-built meta-model, from which the domain
specific mo<lel is created, represents the domain
ontology [Grub93] and provides the leverage for the
ICB and Headhunter.

The aforementioned three concerns necessitate a
proper methodology of creating a meta-model to
modeling the following categories:

Table 1. Component Description in UMM

Inherent ID
Computational Attn"butes Attributes

Functional Description
Attributes Algorithm

Complexity

Syntactic
Contract
Technology

...
Cooperation Attributes Precondition

Postcondition

Auxiliary Attributes Security

Mobility

....
QoS Metrics Availabil.i.!r_

End-to-End de!~

......

2 http://www.w3.org/XML/Query

•

•

•

Domain-Specific Meta Model
(Business Ontology)

MDA Meta Level
(MO-M2)

Domain-Soecific Model

·-·-·-·-·-·-·-·1
I 2. i Generator ~
-·-·-·-·-·-·-·-'

Legacy System

I
I

·-·-·-*·-·-·-·1 i Generator1 !
-·-·-·-·-·-·-·-'

WSDL --> -- -,,
wrapping

Figure 2. Overview of Approach

wsdl ~ PortAttribute I: BindingAttribute l op parameter parttype
<<Model>> <<Connection>> <<Connection>> <<Connection>>

17 <<Connection>> flo .. •
••• .--·----~ 11-----: t • - -

.__

....____

0 .. • src O .. •]o. .. dst o .. • D .. •
dst o .. •

O .• •
Seivice port type

<<Model>> '-o:: <<:Atom>> binding porttype message
<<Atom>>

~ <<Atom>> src O •. • <<Atom>> re
O .• • o .. • to::- d'i!_ <<Atom>> src O .. • o .. •

0 . ."

Figure 3. Meta-Model of WSDL

Obviously, a pure textual specification ofUMM, while
still a viable choice, will be error prone and hard to be
processed and reused. The widely used Rational Rose
[QuatOO) toolkits, however, can only be used for non
executable modeling, in the sense that you have no
control over generation of complete applications,
which is not adequate enough for modeling UMM.
This problem will be addressed using tool support
introduced in the next section.

3. Modeling as the Front End of Web Services

3.1 Generic Modeling Environment (GME)

Model Integrated Computing (MIC) employs meta
modeling to define the domain modeling language and
model integrity constraints. It uses these meta-models

3

to automatically compose a domain-specific design
environment and generate input to some analysis tools
such as Matlab Simulink/Stateflow [Neem02]. MIC
includes the Generic Modeling Environment (GME)
for creation of domain-specific models, a Model
Database for model storage, and a Model Interpretation
technology for building model interpreters. In GME,
the meta-models use Unified Modeling Language
(UML) class diagrams to model the system
information. Figure 3 gives the WSDL meta-model
using GME. Also MCL (MGA1 Constraint Language)
[GMEOO), which is a subset of UML OCL2 with some
MGA specific extension, is used to enforce some

1 MultiGraph Architecture [Szti95]
2 http://www-3.ibm.com/software/ad/library/standards/
ocl.html

-- - --

•

•

•

semantic rules in MGA modeling paradigms. This adds
some fonnalism to the modeling, which can be used to
enrich the semantic expressiveness of WSDL, as is
explained later in section 5

WSDL is not convenient to be manually coded.
Many tools such as AXJS1, and the Microsoft .Net
framework provide the function of generating WSDL
from implementation code (such as Java and C#) and
vice versa. Such tools leverage compiler technology to
generate WSDL from some other programming
languages. Jn contrast, by generating WSDL from a
high-level language-independent model, we can avoid
the need for language-specific compilers. This pennits
easier maneuvering of the generated WSDL at a higher
level. Also, by standardizing the meta-model and the
associated generator, the domain ontology will be
unifonnly embodied in generated WSDL This will
facilitate program-to-program interoperation bearing
the intelligence of software agents, such as autonomy
and knowledge [GrisOI).

3.2 Enriching and Modeling WS Semantics

Current WS standards mainly embody the
semantics of processes at the collaborating syntactic
interface level. WSDL only exposes distributed object
services, while such process behavior aspects as
ordering, and dependency are not well specified in the
existing WSDL standard. Figure 4 gives the meta
model of a Finite State Machine (FSM), which can be
used to model the dynamic behavior of WS, in
particular, the sequence of states that the WS behavior
goes through in its lifetime. We will illustrate this point
in detail in a later example.

non-end-stare
<c:FCO>>

strState : field
sre o .. •

0 .. 1

Star!Slate
<<Atom>>

lransition
<<Connection>>

condition field

O .. •

lnterState
<<Atom>>

StateDiagram
<<Model>>

o .. •

EndState
<<Atom>>

slTStale : field

Figure 4. Finite State Machine (FSM) Meta-mode)

1 http://ws.apache.org/axis/

4

4. Web Services Generator

A key aspect of MDA is the generator technology.
By generating implementation code from a high-level
specification language, software systems can be
produced with high efficiency while the scale of
software reuse will be reduced at the specification
level. GME provides the Builder Object Network
(BON) framework [GMEOOJ for building interpreters
by instantiating each object in the model tree with a
C++ object. The objects in the model tree can be
traversed by calling methods within the BON APL In
order to precisely generate target code from the models
using a generator, a special atom can be added in the
GME environment denoting specific meaning so as to
enrich the semantics of modeling. e.g., in feature
modeling [CzarOO], there are mandatory features,
optional features and alternative features for some
concept. We can add a Require atom, an Or atom, an
XOR atom to denote the three relationships between
other atoms. Figure 5 illustrates the strategy. In this
way, the designated semantics can be captured when
traversing the model tree. This strategy can also be
applied to model UML relationships such as
Dependency, Generalization, and Association. In this
way, the built-in class diagram facilities of GME itself
can be extended.

5. Putting it Together

This section will use GME to create a meta-model
embracing both UMM and WS, and an interpreter is
built based on this meta-model for generating WSDL
in an effort to facilitate component service synthesis m
UniFrame.

5.1 Creating Banking Domain Meta-Model

Below is a simple banking domain specification:

A bank provides the service for users to
set up accounts. Account information
includes personal data including Name,
SSN, phone number, address, and account
data including Account Number, PIN,
Transaction Record, Balance. There are
two types of accounts: checking account
and savings account.

For the bank side, it provides such
services as: Account Validation (to
ensure legal access of account), Account
Verification (to double check the account
after each transaction, including
transaction history, transaction
description, etc), Account Query (balance
checking), Deposit, Withdraw, and
Transfer. There is order restriction for
those operations. Both Transfer and
Withdraw have to be preceded by a Query
operation. The Account Verification comes
after each of the other operations.

•

•

•

c c

Require XOR

Cl

(1) Concept C requires all the three
fearures: C 1. C2, CJ

(2) Concept C contains some of the three
fearures: Cl. C2, CJ

(J) Concept C contains exactly one of the three
fearures: Cl. C2, CJ

Figure 5. Representing Semantics of Feature Modeling with Atom-to-Atom Connection

8anking0omain O .. •

c:c:Model>> o .. • --------. J.o • .I qos l -~ [blndln~] : .[Input J :-- c:cConnection>>
cc Connection>> ~ ~- [«Connection» J 1 l]

PersonaJAccount []i
<<Model>> 0 .. 1 ------- ----- ------

o':r SSN: field r por!Type 1.,.,
Account phone field <<Model>> J[;.e, : UMM_Attributes

address: field r -i.:, c:c:fCO>> <oef'CO>>
dsl

~ :J : 0 .. 1 DateDeployed · field AccountNumber: field 1
ID: field Pin: field
Version: field Balance· field

~=- --------------------------- -- - -----------------------

0 .1
0 l ~ sa~ng _I

~

Chee ccAfom>> :-J .. , ••Atom>>
J I [lnterest_rote : field] '-- u Corba _I [J2EE l QoSParameters o. cc:Atom>> c:c:Atom>>

r «FCO» k ccAtom>>
11] [l Adaptability: field

(output: ne1dJ . Availability : field u RMI J 31 Capacity: field ccAtom>:a
Maintainability: field

0 .. [J 0 .. Portability: field
I~ :::Io:: 0 .. 1 .. l withdra.,;.: J U tran~fer Security: field

Throughput: field
[que~ J verification]

<cAJom>> deposH J <<Atom>> <<Atom>> Turn-around-time field

r 1
.ft<Alom>> <<Atom>>

J Dependability: field

J L J r
Figure 6. Meta-model of Banking Domain

Deposit and withdraw can only be applied
to checking account (this is not the
generic case, though). The aforementioned
services are optional so long as the
above rules are observed.

The banking service may leverage such
technology as RMI, J2EE, and CORBA. Also
it will enforce some QoS concerns such as
Availability, Dependability, Capacity,
etc. (For more QoS parameters see
[Raje02)).

Directly expressing the above specification in
WSDL will tend to blur the 4+ l view' of the software

1
which includes functional requirements, software module

organization, run-time implementation structure of the system, etc.
For details see [Kruc95)

5

architecture. Thus it is hard to represent the intended
requirements precisely and the constraints can not be
warranted. Model-based WSDL generation will be
able to solve the ambiguity problem by clearly
modeling the specification in a graphical fashion to
capture all the involved relationships. The meta-model
in Figure 6 represents the banking domain knowledge.
It's derived from WSDL elements and banking domain
knowledge. portType in WSDL denotes the WS
abstract interface definition. It is represented as a
model in Figure 6, which contains the following
banking-domain specific operations: query, deposit,
withdraw, transfer, verification. binding in WSDL
denotes how the elements in an abstract interface
(portType) are converted into a concrete representation
in a particular combination of data formats and
protocols (here, platform specific implementation in

•

•

•

COREA, J2EE, RMI, etc). Consequently, binding is
represented as a connection between portType and
UMM_Attibutes. which is the parent of the COREA,
J2EE and RMI atoms.

The left part of Figure 6 (Persona/Account,
Account, checking, saving) is basically about a
simplified version of the feature modeling [CzarOOJ of
the banking domain, which is treated as input
(represented as connection here) into operations of
portType. Also QoS parameters, by being associated
with portType, will be embedded into the generated
WSDL as extended attributes. WSDL itself is XML
based, so a query expressed in XQuery can make use
of extended WSDL attributes to refine the query in
selecting targeted WSDL. Here, the listed QoS
parameters are treated as of static type. For dynamic
parameters, we can apply aspect weaving [Kicz97]
technology in the code generation phase for performing
dynamic measurements.

The specified constraints over withdraw and deposit
operations can be enforced in GME using the following
MCL (refer back to section 3.1) expression:

connectedFCOs("src")->forAll(
cjc. kind.Name() ="checking")

Those constraints apply to both the withdraw atom and
the deposit atom in Figure 6, which means those First
Class Objects (FCO: referring to both entities and
relations in GME) that are connected with
withdraw/deposit atoms are all of kind "checking";

i····--············--···@i.1 .. 1
OoSParameters

RMI

mm mm mm
Corba J2EE QoSParameters

PersonalAccount

mm
RMI

1.e., those services can only be applied to checking
account .

But, when it comes to the handling of order
constraints as specified in the banking domain
example, obviously MCL is not adequate enough to
capture such dynamic behaviors. Such modeling
techniques as using the Finite State Machine will
provide modeling capacity for advanced behavior,
which is detailed in the next section.

5.2 A Banking Model and WS-based Integration

Figure 7 is an example of the banking model. For
this model, "My Account" is the name for the
"PersonalAccount" model. lt has two kinds of account:
both checking (c) and savings (s). "Service Offering"
represents the "portType". lt offers 4 types of service
(without transfer in this case): d: deposit, q: query, w:
withdraw, v: verification. From the connections
between the ports we can see for this banking model,
the query can only be applied to the savings account,
while verification can be carried out over both types of
account. Withdraw and deposit only applies to
checking account. Otherwise the modeling
environment will give warnings when modeling, which
is consistent with the MCL specification. Also, notice
for this banking model, RMI technology is adopted and
some QoS parameters are specified here, as shown in
the lower-right comer attribute list. The attribute list
associated with RMI will also be shown in the comer if
the RMI atom is under focus.

~~ .. Jo.79000l ,., .
r~~ ..) ... ~-~""'(_;...,~'~=?=;_~=;;;;~-~··~···-· -.J7,-_; •

. . . . ~ , ':' j~~··.· J 1:;:.=-'1 __ ... ,~~·~~:fm_·~:.·=·,=· ======-·-.:.r .. ,.'.:.~ ... P ! ,

-~~· jri~, ·p
.--------p_o_rtT_yp_e ______________ ,.=i 5......_ n•, · · j~~ r ·..:!.f

Figure 7. "My Account": a Banking Mode)

6

•

•

•

From the model in Figure 7 the interpreter will
generate two sets of codes: the WSDL code for the
banking service embedded with QoS parameter
extension, and the WS wrapping code for the
underlying RMI implementation. Because the
generated WSDL is quite lengthy, we will just show
some model-specific contents as shown in the
following paragraph. Notice the bold-font part of the
following WSDL represents the QoS extension of
WSDL, which may be used for WS filtering if QoS
requirements are submitted in the query expression.

<definition narne="my bank">

<types>
<xsd:schema

targetedNarnespace="http://localhost/bank"
xmlns:xsd="http://www.w3

.org/2001/XMLSchema">
<xsd:complexType narne="Account">

<xsd:sequence>
<xsd:element narne="AccountNumber•

type="xsd:string"/>
<xsd:element name="Pin"

type="xsd:string"/>
<xsd:element name="Balance•

type="xsd:decimal"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="checking">

<xsd:complexContent>
<xsd:extension base="Account">

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="savings">

<xsd:complexContent>
<xsd:extension base="Account">

<xsd:attribute name="interest rate•
type="xsd:decimal"/>

</xsd:complexContent>
</xsd:complexType>

< /xsd: schema>
</types>

<message name="checking">
<part name="pl" type="checking"/>

</message>
<message name="savings">

<part name="pl" type="savings"/>
</message>
<message name="checking_savings">
<part name="pl" type="checking"/>
<part name="p2" type="savings"/>

</message>

<portType name="bankPortType">
<operation name="withdraw">

<input message="checking"/>
<output message=""/>

</operation>
<operation narne="deposit">

<input message="checking"/>
<output message=""/>

</operation>
<operation narne="verification">

<input message="checking_savings"/>
<output message=""/>

</operation>
<operation name="query">

<input message="savings"/>
<output message=""/>

</operation>
</portType>

7

<binding>

</binding>

<service narne="My Bank" Portability="0.544400"
Dependability="0.780000" Turn-around
time="l2.000000"/>

<port>

</port>
</service>

</definition>

Now we tum to the handling of the order restriction
requirement in the banking domain specification. We
will use the FSM meta-model (Figure 4) to build the
banking service state model as shown in Figure 8 and
the associated interpreter. Because every service
corresponds to the child node (atom) of portType
model in Figure 6, we can use BON API (refer back to
Section 4) to traverse those child atoms of portType in
the banking model one by one while retrieving the
connection information of each atom. The generated
WSDL extension describing the state transition process
is as follows:
<state>

<state name= "Login" >
<state name="Validation" >
<state name="Query• >
<state name="Deposit" >
<state name="Transfer" >
<state narne="Withdraw" >
<state name="Verification" >

</state>
<transition>

<transition src="StartState"
dst="Login" condition="">

<transition src="Login" dst="Login"
condition="">

<transition src="Login"
dst="Validation" condition="">

<transition src="Validation"
dst="Deposit" condition="">

<transition src="Validation"
dst="Query• condition="">

<transition src="Deposit" dst="Deposit"
condition="">

<transition src="Deposit"
dst="Verification" condition="">

<transition src="Query" dst="Transfer'
condition="">

<transition src="Query• dst="Query"
condition="">

<transition src="Query" dst="Withdraw•
condition="">

<transition src="Query•
dst="Verification• condition="">

<transition src="Transfer"
dst="Transfer• condition="">

<transition src="Transfer•
dst="Verification• condition="">

<transition src="Verification"
dst="StartState• condition="">

<transition src="Verification"
dst="Verification" condition="">

<transition src="Verification•
dst="EndState" condition="">

<transition src="WithDraw"
dst="WithDraw• condition="">

<transition src="WithDraw"
dst="Verification• condition="">

</transition>

•

•

•

l

'-- r· __)

•J.

lnre-rSt01it?

Figure 8. Banking behavior model based on FSM meta-model

Note in the generated state transition code, the
"condition" attributes are supposed to be customized in
the specific banking behavior model before code
generation, which for the sake of brevity are left blank
here. The state transition specification generated here
may be used in guiding the WS consumption and
composition.

6. Conclusions and Future Research

This paper applies the model driven approach to
WS technology. By modeling service behavior at a
higher level, the system semantics can captured at a
finer grain. Meanwhile, different artifacts can be
derived from models using a generator, which will not
only refine the service presentation, but also facilitate
system integration. In particular, this approach is
applied in the context of the UniFrame project for
system integration. So far, we have implemented a
prototype with the function of WSDL generation from
a specific component model and FSM modeling for
component services.

Because the meta-model is the starting point and
cornerstone of system integration, we will need to
refine the meta-model leveraging domain knowledge
until it can be standardized. To enhance the semantics
expressing capability of WS, future research will
involve not only state machine modeling, but also the
modeling of other behavior concerns, such as
interaction, activity, process/thread and temporal
relationship. Also, technology and QoS modeling in
the above banking example are still quite primitive,
both of which need further exploration for the ultimate

8

model-based glue/wrapper code generation between
WS and other component models.

Acknowledgements. This research is supported by the
U. S. Office of Naval Research under the award
number NOOO 14-01-1-0746.

REFERENCES

[Brya02] Bryant, B. R., Auguston, M., Raje , R. R.,
Burt, C. C., Olson , A. M., 2002, "Formal
Specification of Generative Component
Assembly Using Two-Level Grammar,"
Proc. SEKE, 14'h Int. Conj Software
Engineering and Knowledge Engineering,
pp. 209-212.

[CzarOO] Czarnecki, K., Eisenecker, U.W., 2000,
Generative Programming: Methods, Tools,
and Applications, Addison-Wesley.

[GMEOO] "GME 2000 User's Manual, Version 2.0,"
2001, ISIS, Vanderbilt University.

[Grah02] Graham, S., Simeonov, S., Boubez, T.,
Davis, D., Daniels, G., Nakamura,Y.,
Neyama, R., 2002, Building Web Services
with Java, SAMS.

[GrisOl] Griss, M., 2001, "Software Agents as Next
Generation Software Components",
Component-Based Software Engineering, ed.
Heineman, G. T., Councill, W. T., Addison
Wesley, pp. 641-657.

[Grub93] Gruber, T. R., 1993, "A translation approach
to portable ontology specifications,"
Knowledge Acquisition, Vol. 5, No. 2, pp.

199-220.

•
[Kicz97] Kiczales, G., Lamping, J., Mendhekar, A.,

Maeda, C., Lopes, C. V., Loingtier, J.-M.,
and Irwin, J., 1997, "Aspect-Oriented
Programming," Proc. £COOP, European
Conference on Object-Oriented
Programming, Springer-Verlag LNCS Vol.
1241, pp. 220-242.

[Kruc95) Kruchten, P.B., 1995, "The 4+ I Views
Model of Architecture", IEEE Software, Vol.
12, No. 6, pp. 42-50.

(LedeOJ] Ledeczi, A., Bakay, A., Maroti, M.,
Volgyesi, P., Nordstrom, G., Sprinkle, J. and.
Karsai, G., 2001, "Composing Domain
Specific Design Environments," IEEE
Computer, Vol. 34, No. 11, pp. 44-51.

[Medv97)Medvidovic, N., Taylor, R.N., 1997, "A
Framework for Classifying and Comparing
Software Architecture Description
Languages, " Proc. ESECIFSE '9, European
Software Engineering Conj/f)1h Conj
Foundations of Software Engineering,
Springer-Verlag LNCS Vol. 1301.

[Neem02) Neema, S., Bapty, T., Gray, J., Gokhale, A.,
2002, "Generators for Synthesis of QoS

Adaptation in Distributed Real-Time
Embedded Systems," Proc. GPCE, First

•

ACM SIGPLANISIGSOFT Conj Generative
Programming and Component Engineering,
Springer-Verlag LNCS Vol. 2487, pp. 236-
251.

•

[QuatOOJ Quatrani, T., 2000, Visual Modeling with
Rational Rose 2000 and UML, Addison
Wesley.

[RajeOO] Raje, R., 2000, "UMM: Unified Meta-object
Model for Open Distributed Systems," Proc.
ICAJPP, 4'h IEEE Int. Conj Algorithms and
Architecture for Parallel Processing, pp.
454-465.

[RajeOl) Raje, R., Bryant, B., Auguston, M., Olson,
A., Burt, C., 2001, "A Unified Approach for
the Integration of Distributed Heterogeneous
Software Components," Proc. Monterey
Workshop Engineering Automation for
Software Intensive System Integration, pp.
109-119.

[Raje02] Raje, R. R., Auguston, M., Bryant, B. R.,
Olson, A. M., Burt, C. C., 2002, "A Quality
of Service-Based Framework for Creating
Distributed Heterogeneous Software
Components," Concurrency and
Computation: Practice and Experience, Vol.
14, No. 2, pp. 1009-1034.

[Sira02] Siram, N. N., Raje, R. R., Olson, A. M.,
Bryant, B. R., Burt, C. C., Auguston, M.,
2002, "An Architecture for the UniFrame
Resource Discovery Service," Proc. SEM,
3rd Int. Workshop Software Engineering and
Middleware, Springer-Verlag LNCS Vol.
2596.

9

[Szti95) Sztipanovits, J., Karsai, G., Biegl, C., Bapty,
T., Ledeczi, A., Misra, A., 1995,
"MULTI GRAPH: An Architecture for
Model-Integrated Computing," Proc. IEEE
ICECCS, International Conference on
Engineering of Complex Computer Systems,
pp. 361-368.

• Automated Glue/Wrapper Code Generation in Integration of Distributed and
Heterogeneous Software Components

•

•

Wei Zhao, Barrett R. Bryant,
Fei Cao, Carol C. Burt

Computer and Information
Sciences Department

University of Alabama at
Birmingham

Birmingham, AL 35294-1170,
U.S.A.

{zhaow,bryant,cburt}
@cis.uab.edu

Rajeev R. Raje,
Andrew M. Olson

Computer and Information
Science Department

Indiana University Purdue
University Indianapolis

Indianapolis, JN 46202, U.S.A.
{rraje, aolson}@cs.iupui.edu

Mkhail AUgllSton
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943, USA
auguston@cs.nps.navy.mil

Abstract

UniFrame is a framework to help organizations to
build interoperable distributed computing systems. Using
UniFrame, a new system is built by assembling pre
developed heterogeneous and distributed software
components. UniFrame solves the heterogeneity problem
by explicitly modeling the domain knowledge of various
technology domains (component model domains,
programming language domains, operating system
platform domains, etc.), from which the Interoperation
Generative Domain Model (IGDM) straddling the
technology domains can be constructed. The
glue/wrapper code that realizes the interoperation
among the distributed and heterogeneous software
components can be generated from the IGDM In this
paper, an informal implementation in Java of
glue/wrapper code generator is given, followed by a
discussion on a formalization of IGDM The formalism
comes from the fact that if the family of glue/wrapper
code can be modeled formally, an instance glue/wrapper
code can be generated automatically. In this
formalization, the IGDM is formally modeled as a
language definition using a grammar; the code that
realizes the interoperation is a valid sentence derivable
from the grammar, and will be generated automatically
from the IGDM during the assembly time.

1. Introduction

Jn today's world, distributed computing systems (DCS)
are omnipresent. The successes of organizations will
largely depend upon their abilities to create robust and
effective software for DCS. Despite the achievements of

component-based software engineering in distributed
computing environments, the inherent complexity, de
centralization and heterogeneity of DCS still remain risks
and challenges. Achieving a seamless interoperation
among heterogeneous distributed components would be
the most critical task of building a successful DCS.
UniFrame [RajOl], [Raj02] is such a framework to help
organizations to build interoperable DCS.

To meet the challenges, UniFrame has the following
three specific goals:

I. The genetic diversity and complexity of the world (a
plethora of component models, programming languages,
operating systems, communication protocols) causes
separation and isolation among the technology islands.
UniFrame provides a unified interoperation among the
collaborating components.

2. The rapid technology evolution makes the application
integration a real challenge. With the interoperability,
the legacy features can be integrated into the system
developed in new technologies.

3. The advances in the processor and networking
technologies have changed the computing paradigm
from a centralized to a distributed one. "The network is
the computer." The ability to deal with distribution is
essential to develop large scale DCS.

In short, UniFrame aims at the distribution and
interoperation. Using UniFrame, a new system is built by
assembling pre-developed heterogeneous and distributed
software components. This paper will discuss the
interoperation framework in UniFrame.

The paper is organized as follows. Section 2 distills
some aspects of UniFrame that are relevant to the

• discussion of the interoperation framework. The
interoperation framework is presented in section 3 with
two alternative implementations (infonnal and fonnal).
Some representative related work is given in section 4. The
paper concludes in section 5.

•

•

2. Overview of UniFrame

Before we detail the interoperation framework, we first
introduce the basics of the UniFrame.

2.1. Fundamental Theses of this Framework

Modularity and component-based software
engineering. Component-based Software Engineering
(CBSE) and related technologies have demonstrated their
strength in recent years by increasing development
productivity and parts reuse. The implementation of
UniFrame is built upon the maturity of component-based
software engineering [Szy02]. In our framework, features
are standardized domain services. They are the smallest
and the most abstract units for reuse and re-construction.
One or more services are developed as a single
component. Given all the possible elementary services for
a business domain, a wide spectrum of systems can be
generated by various combinations of services.
Components are registered to the native registry in their
domain for later discovery, composition and trading.
Components are alive on the Internet, offering their
services, QoS assurance and associated price. The
separation of reusable feature (asset) development in the
domain engineering and the product configuration using
those assets in application engineering reflect the
fundamental discipline of the separation of component
development and component composition.

Software development paradigm shift: from single
application development to system family development.
System family engineering is also called Generative
Programming [CzaOO] and Product-line Engineering
[CleOI], [SEI02], [Wei99] with the goal to automatically
generate concrete software products from a domain
specification and reusable components. System family
engineering has two levels: domain engineering and
application engineering [Kan98]. Domain Engineering is
the activity of collecting, organizing, and storing past
experience in building systems or parts of systems in a
particular domain in the fonn of reusable assets.
Application engineering is the process of producing
concrete systems using the reusable assets developed
during domain engineering. In GP, a model of a family of
products is called the Generative Domain Model (GDM).
The major constitutes of a GDM are a feature model for

modeling the commonality and variability among the
products, a generator to generate a specific product based
on the feature model specification, and the implementation
of reusable components from which the product can be
generated. This concept of paradigm shift is the core
design of UniFrame as well as the interoperation
framework in UniFrame.

Capture, formalize, model and reuse engineering
knowledge. Any software system has domain-specific
concepts and logic, a structure, and an implementation in
concrete technologies. Decisions made on how to produce
the software using those concepts comprise the
engineering knowledge. In current software engineering
practice (single system development), the engineering
knowledge is scattered among: I) the business executives,
2) the domain experts, 3) the software managers and
engineers, and 4) the software developers. During the
software production process, the decisions made by all
these participants contribute respectively towards: I) the
goal of the system, 2) detailed business logic of the
system, 3) specifications of software architecture and
developers' role assignments, and 4) concrete software
development by applying different programming
languages and component-based technologies .

However, when we move the development paradigm
to the product-line assembly, with the goal of
manufacturing the concrete software products from the
GDM automatically, the engineering knowledge specific to
that end product must be captured, modeled and formally
defined in a domain model to guide the automated
manufacturing in the application-engineering phase.

The applicability of a domain is flexible. A domain is a
set of current and future applications that share a set of
common capabilities and data [Kan90]. Based on the
principle of separation of concerns, we have encountered
different categories of domains in the process of
automated product generation [Zha02]:

l. Business domain: ontology for business concepts, logic
and hierarchical structure.

2.Architecture domain: ontology for software architectural
patterns, software parts' functionality, role and
collaborations.

3.Technology domain: ontology for implementation
technologies, such as component models, programming
languages, security methods, and hardware platforms.

The principle of autonomy and separation of concerns
naturally shapes the categorization of those three
domains. Different dimensions of engineering knowledge
are built and maintained by different group of people with
different education background and talent set. This gives
them the opportunity to be more productive and

•

•

•
L

concentrate on the essence of their job. For example,
architecture and technology domain builders are more
likely to have computer science education than business
domain developers.

2.2. The Structure of the UniFrame Framework

As shown in figure I, there are two phases in
Uniframe: domain-engineering and application
engineering. The domain-engineering phase simulates the
domain development of three-dimensional domains
(business domains [Zha04], architecture domains and
technology domains). As part of the activity in business
domains, designated programmers implement business

Product order form

domain features as software components with facilities of
Model Driven Architecture (MDA) [Fra03]. Components
are registered to native component model registries (e.g.,
RMI registry, CORBA naming services registry). Along
with a natural hierarchy of business organizations, a set of
available components for an application are not limited to
reside on one computer, one network or one organization.
They will be dispersed over the Internet. So, component
searching is one of the major concerns in Uniframe. The
Uniframe Resource Discovery Service (URDS) [Sir02]
searches federated native component registries in the
business domain for matched components. Domain level
development provides the meta-data and reusable assets
for the application engineering.

architecture
f ea tu re model

technology
Feature model

Figure 1. An Overview of the UniFrame Framework

The application-engineering phase is the process of
manufacturing concrete products from the business
domains. An order of a product is placed by using a user
friendly form such as HTML form, a GUI builder, a UML1

model, a Generic Modeling Environment (GME) [GME]
model or natural language. This order is translated into the
internal representation that can be used for validation and
initiating a search. We chose the XML for the internal
representation. Then, the order is first validated according
to the feature model in the busiless domain (no business
logic violation [Zha04]). If this validation succeeds, URDS
is invoked for searching the implementation components
over the business domain space. When the URDS returns,

1 Unified Modeling Language, http://www.uml.org/

a dummy composition of a set of candidate components is
validated according to the feature model in the
architecture domain (no architectural violation) with any
necessary architectural instrumentation code generated
automatically. Finally, if there are any incompatibilities in
the component implementation technologies, the
glue/wrapper code should be generated for the
interoperation.

This paper will focus on the Uniframe interoperation
framework that is called the Internet Component Broker
(ICB), which is analogous to an Object Request Broker
(ORB). As opposed to providing the capability to generate
the glue and wrapper necessary for objects written in
different programming languages to communicate
transparently, the ICB provides the interoperation for

• components implemented in diverse component models
and thus presents a collaboration vision one level above
the ORB. For the interoperation of heterogeneous
software components, ICB gives a vision of unified
middleware.

•

•

2.3. Unified Meta-component Model (UMM)

Because of the separation of component
implementation and corrponent assembly, a unified
component introspective mechanism is needed for the
integration of components developed in diverse
technologies. The Unified Meta-component Model
(UMM) [RajOO] is such a mechanism that provides an
abstraction for each component.

Our study has discovered that any individual feature
implementation (component) reveals four aspects of
knowledge in regards to the assembly process:
computational, cooperative, deployment and economic
aspects. As the domain grows, feature development would
span multi-organization, multi-region/country, multi-time
period, and multi-technology, which lends them a
distributed and heterogeneous nature. UMM can formally
and uniformly represent four aspects:

I. UMM computational aspects indicate implemented
services, algorithms used, complexity, service contracts
(component interface), service usage patterns.
Parameters in UMM computational aspects identify
features in the business domain.

2. Components are developed for reuse. UMM
cooperative aspects take care of the interrelationship
among the components, the individual functionality role
contributing to the whole system, etc. Parameters in
UMM cooperative aspects identify the entity and entity
relationship in the architecture domain.

3. Some deployment issues such as component model and
programming language used, operating system
platforms, underlying network quality, CPU and memory
usage, etc., constitute the deployment aspect of the
UMM. UMM deployment aspects present the
technology domain features for generating
interoperation and deployment instrumentation code.

4. UMM economic aspects straddle business, architecture
and technology domains, identifying the QoS
parameters in each domain.

If the system assembly succeeds, a new UMM
specification will be generated as well by composing
component UMMs so that the new product can act as a
reusable component for subsequent system generations.

There are several ways to develop UMM:

l. UMM is first documented in natural language, and then
transformations can be applied to transform the informal
UMM specification to formal models, and finally to the
implementation software components (Bry03), [Lee02a],
[Lee02b).

2. UMM is developed as a design model (e.g., UML) or a
domain-specific model (e.g., GME), then a MDA
approach is adopted to transform a business model to a
Platform Specific Model (PSM) [Fra03], which will
generate APis, which will then be fine-tuned with
concrete implementations.

3. Components are developed first, and then UMMs are
generated from the implementation via some tool
support.

Currently in our prototype, UMM is in a mix of natural
language and XML, and can be generated from a Platform
Independent Model (PIM) developed in GME [Cao03].
The components are developed manually by the
programmer conforming to the feature specifications.

2.4. Quality of Service (QoS)

During component assembly, QoS is an important
concern to ensure that the generated product meets the
quality of service in the product order requirements. The
QoS requirements are expressed by selecting an
appropriate set of parameters from a catalog of QoS
parameters [Bra02], [Raj02]. We have summarized and
published 18 QoS parameters. QoS is business related
(speed of the car, the aliveness of a supply chain),
architecture related (structure integrity) or technology
related (security level, turnaround time). QoS parameters
are divided into two categories: a) static (the value can be
obtained from UMM, such as encryption level), b)
dynamic (the value can only be obtained from composition
run-time, such as turnaround time). By using event
grammar [Aug97], the dynamic QoS provides dynamic
metrics that can be generated during the assembly time
and be weaved into the glue/wrapper code. For example,
we can use AspectJ2 to weave in the turnaround time
testing probe into the glue/wrapper code.

It is always possible that URDS will find multiple
components with compatible static QoS, and so the
dynamic QoS metrics will further refine the candidate set
to generate a system that meets the user's QoS
expectation of the final system.

2 AspectJ project, Eclipse.org,

http://www.eclipse.org/aspectj/index.html

•

•

•

3. Interoperation Framework in UniFrame

In this section, a detailed discussion of the
interoperation framework in Uniframe is given followed by
two alternative ways of implementation.

3.1. UniFrame Interoperation Framework

Potentially, there are several ways to establish the
interoperation among the heterogeneous and distributed
software components:

I. Source-to-source transformation: completely translate a
component into the technology of its communicator.
One example would be to use program transformation
for legacy component migration [Bax04]. This type of
technology is usually used during the reengineering
[Ben87] of legacy systems. But source-to-source
transformation can not be used as a general solution for
the interoperation of heterogeneous software
components because the complexity involved in
establishing interoperation is O(n 2

). Considering there
are n components, n(n-1)/2 transformations are needed
for a full connected interoperation among n
components. Despite the complexity, the source-to
source transformation is generally considered hard, and
normally has to depend on a sophisticated commercial
tool such as the Design Maintenance System [Bax04].

2. Transforming communicating components into a
common technology for interoperation will significantly
lower the interoperation complexity to O(n) since only n
transformations are needed to transform n components
into a common technology. An obvious example is
using XML as an exchangeable technology for
interoperation among different data forms.

3. Meta-interoperation is a specialization of the second
item above. The common entity in meta-interoperation is
not (or not only) the common technology used, but
(also) is the meta-data for the transformation.
Apparently, XML Meta-data Interchange (XMI) [Gro02]
falls in this category, e.g., XMI defines a standard
schema for object-XML mapping so that different
objects can be mapped to a unified XML. MDA for the
purpose of interoperation among different technologies
is another example. MDA defines the standard mapping
from a common Platform Independent Model (PIM) to
different Platform Specific Models (PSMs) so that
components in one PSM can interoperate with
components in another PSM. CORBA [Vin97], [Corba)
for interoperation among distributed components that
are written in different programming languages also

belongs to this category because the IDL can be
considered as a PIM.

4. Three items listed above are all targeting translating the
communicators. However, source-to-source semantic
translation of software components, model (in the case
of MDA), or AP!s (in the case of CORBA), is laborious
and error prone. The last possibility for interoperation is
translating the communications instead of
communicators. In terms of the size of the entity to be
translated, the communication in general is magnitudes
smaller than the communicators themselves. As a result,
translating communication is the lightest way of
establishing interoperation, which is usually realized by
messaging. Uniframe has subscribed to this approach.

Before detailing the Uniframe interoperation framework,
we first introduce the hypothesis we adopted. In the
vision ofUniFrame, components are autonomous and live
in their own technology territory. In such territory, there is
a central registry where components can be registered and
be invoked from. Components, after being manufactured,
should be registered to the registry. By autonomy,
components are totally blind to any other component
technologies. If a component is aware of its collaborators,
it is expecting its collaborators are of the same technology
as itself. Each component offers some services that are
identifiable in terms of business domain features.

Thus, the interoperation means the communication
across the territory boundaries. There are two main tasks
in this communication: first, where is the component;
second, how do components communicate. URDS [Sir02]
takes care of the first task by searching federated
registries in the business domain for expected components
and returning with the registry and the component ID.
This paper specifically addresses the second task. The
interoperation is achieved by generating proxies
dynamically for invoking the components from the registry
and for replaying communications. Shown in the figure 2,
the communication between the component and the proxy
falls in the same territory. The essential aspect of
interoperation in this picture is to establish a common
message protocol so that proxies can talk to each other
across the technology boundaries. In UniFrame, we use
Simple Object Access Protocol (SOAP)3 for encoding and
decoding parameters, data types and exceptions. The code
that actually realizes the interoperation is called the
glue/wrapper code, which includes two proxies.

3 SOAP Messaging Framework, W3C,
http://www.w3.org/TRJ2003/REC-soap 12-part 1-20030624/

•

•

•

Figure 2. The Interoperation Framework

To be specific, the fundamentals of the UniFrame
interoperation framework are as follows:

I. The glue/wrapper establishes a binary connection for
any two heterogeneous components. Between these
two components, one must be the service requester, and
the other one must be the service provider. From this
perspective, no matter what is the underlying
architecture of the whole distributed system, client
server is a general framework for a binary relationship of
a pair of communicating components. For the
communication between the two components we need a
proxy server for the service requester, and a proxy client
for the service provider. The proxy server registers itself
to its component registry listening for the request
coming from the service requester, and then translates
this request through the SOAP channel to the proxy
client who decodes the SOAP message and invokes the
ultimate service provider with the redirected service
request. Two proxies also take the responsibility of
managing the communication session. The use of
proxies attacks the problem of the heterogeneity of
component models; and SOAP/HTTP solves the
language heterogeneity and distribution.

2. The glue/wrapper code realizes the interoperation at run
time, i.e., the existing component should not be modified
or recompiled. The glue/wrapper can be generated,
compiled and bound dynamically during the
composition run time.

3. Because the semantics of business domain features are
standardized and shared by all the feature
implementation developers, each implementation can
have slightly customized interfaces including different
naming strategies of parameters and methods, and the
variations on the parameters (only to a degree that the
translations can be done automatically for solving the
variations).

The main challenge in realizing interoperation among
heterogeneous components is not the issue of
constructing glue/wrapper code for a particular pair of

components, but to construct a generator that can
automatically generate glu el wrapper code for different
pairs of components on demand. To achieve that, the
generator needs to access both the knowledge for the
technology domains at the domain level and the
knowledge for a particular component implementation at
the component level. For the technology domain, the
generator has to know how many kinds of technology
domains (component model domains, programming
language domains, operating system platform domains,
etc.) and what information in a particular technology
domain (e.g. Java programming language domain) for the
interoperation purpose. At the component level, the
generator needs to know from the deployment aspect of
UMM what technologies are employed in a component
implementation.

Jn the next section, we will review an informal
implementation of the glue/wrapper code generator.

3.2. An Informal Implementation of
Glue/Wrapper Code Generator

Jn this informal implementation, both the generator and
the technology domain knowledge are written in Java.
Domain knowledge is embedded in the java classes in the
form of printing statements. Shown in figure 3, there are 4
different kinds of technology domains that the generator
directly accesses: proxy client, proxy server, programming
languages, and operating systems. The proxy server and
the proxy client inherit the architecture knowledge from
the architecture domain server and client respectively.
There can be federated hierarchies in each technology
domain. For example, for a specific component model, say
Remote Method Invocation (RMI)4, there is an RMJServer
that implements ProxyServer and extends RMI, also there
is an RMIClient (although not shown in figure 3) that
implements ProxyClient and extends RMI. Then we will be
able to generate both proxy server and proxy client for a
RMI conponent. A component model is usually abstract
and should be concretized by different vendor-specific
technologies. For example, TAO [Har98] is a concretization
ofCORBA, and JavaRMJ is a concretization of RMI.

There are some benefits in developing the generator in
Java.

I. By taking advantages of polymorphism, the generator is
generic to any specific technology as it only deals with
interfaces.

2. By using Java reflection, we can dynamically load a
specific technology domain class as needed based on

Java Remote Method Invocation (Java RMI),
http://java.sun.com/products/jdk/rmi/

• the parameters in the component UMM. For example, if
the UMM indicates the language used for two
components are Java and C++, then only the Java and
C ++ classes in programming language domains are
loaded into the Java runtime environment. This will
drastically improve the performance of the generator
considering technology domains contain a wide variety
of classes.

3. The generator framework is extensible. We can extend
the framework with any programming languages,
operating systems and component models. In the case
of new technologies (a new component model, a new
vendor-specific product for an existing component
model, etc.), we only need to modify the framework by
adding the new technology domain subclass, and the
generator should remain unchanged.

•

•

0
Client

C orbaCl1entJava

UMM
(from UMM) 0

RmiServer

JavaRmi

Figure. 3 The Glue/Wrapper Code Generator in Java

By constructing a technology domain knowledge
base, we do not mean constructing a complete
specification for a particular technology. For the
interoperation under the hypothesis mentioned earlier,
only some specific information is needed. Such
information indudes: how to register and invoke a server
from a registry in a specific component model; how to
process SOAP messages in a specific language; how to
compile and invoke a program in a specific programming
language and operating system platform; what are the
component model product specific class path and
compilation options.

Besides generating interoperation code, the generator
has other responsibilities such as dynamic QoS testing,
system monitoring, and session management probe
generation. As an example, we can use AspectJ [Kic97]
to weave turnaround time testing code into the
generated proxies (shown in figure 4 as QoSWeaver
class).

3.3. Towards the Formalization of Automated
Glue/Wrapper Code Generation

In the previous section, we have sketched out some
benefits of implementation in Java. However, embedding
the technology domain knowledge into a programming
language using printing statements tends to blur the

technology domain specific information. Consequently,
it will be an obstacle for domain evolution and reuse, and
further prevent the generator from evolving.

To solve this problem, we have applied the Generative
Programming (GP) [CzaOO] and Product-line Architecture
[Cle01], [SEI02], [Wei99]. Both ofthesetechnologies aim
at defining and modeling a family of products so that a
product instance can be generated automatically from
this family. As mentioned in section 2.1, the system
family development is the core design of UniFrame, and
as well as the interoperation framework in UniFrame. The
rationale for the applicability of GP is that the
glue/wrapper code for a pair of components of particular
technologies is one product instance; the glue/wrapper
code for the pairs of components of all possible
technologies form a family of glue/wrapper code. If this
family can be well modeled, one particular glue/wrapper
code instance can be generated from the family
automatically.

The GDM for the family of glue/wrapper code is
called the Interoperation GDM (IGDM, see figure 4).
IGDM straddles different technology domains including
different component model domains, different
programming language domains, different operating
system domains, and different security method domains.
The feature model in the IGDM explicitly models the
domain-specific features of different technology

• domains, which direct the variations among sentence of this language. The generator for the
glue/wrapper code is the interpreter for the grammar that
is used to define the feature model. The terminal symbols
of the grammar are code fragments. The glue/wrapper
code is a string of code fragments.

•

•

glue/wrapper code instances. The generation of
glue/wrapper code for components in different
technologies depends on the domain-specific features of
technology domains. In the IGDM, the reusable
components. from which the glue/wrapper code can be
generated, are the code fragments of potential
glue/wrapper code.

In order to support the automated glue/wrapper code
generation from the IGDM, we have adopted a fmnal
modeling theory on feature modeling in the IGDM. The
feature model in the IGDM is defined as a language; the
glue/wrapper code generated from the IGDM is a valid

To apply successfully this theory and the
programming-language-oriented techniques to feature
modeling, the first question to be answered is whether
there exist concepts in feature models that are the
counterparts of syntax and semantics in programming
languages. The fact is these concepts do exist in the
feature models, and are discussed below.

Technology cbmains

~~
~

Figure. 4 The Formalization of Automated Glue/Wrapper Code Generation

l. The composition syntax is the structure of the
interoperable framework. The following context-free
derivations show part of the structure of the
glue/wrapper code to be generated. Currently, the
grammar we use to define IGDM feature model is called
TLG++ [Zha04]. The following code is in TLG++. For the
notational syntax, the"," is for "and'', and the";" is for
"or,,.

glueWrapper code : proxyServer,
proxyClient.

proxyClient : technologyimports,
componentimports, invokeServer,
clientCompilation, clientinvocation.

invokeServer : findRegistry,
getServerObject, initiateServer,
serverinvocationExceptions.

2. Static semantics constrains types of glue/wrapper code
to be generated. In particular, the component model is
modeled as the type of the component; and

programming languages, operating systems, message's
signature and type, security methods, and digital
signatures are modeled as the attributes of the
components. Based on the different value of component
type and its parameters, different glue/wrapper should
be generated. In the following code fragments, the
codes in bold are the parameters that indicate the
different features of technology domains. TLG++
distinguishes itself from context -fee grammars is this
feature of parameterization. The parameters are
evaluated while the syntax tree is built. The codes
underlined are the glue/wrapper code fragments
enclosed in the double quotation mark. The code
fragments are the terminals of the grammar.

findRegistry:
where ComponentModel= corba,
ftorb= org.omg.CORBA.ORB .init(args,

null);"
ProductTraderPackage

fttrading=TradingHelper.narrow

• (orb.resolve initial references("LCBT

•

•

rading")) ; " ;
where ComponentModel rmi,

where ComponentModel = j 2ee

3. Dynamic semantics models the component composition
QoS that are affected by the component technologies. If
the components are implemented in different
technologies, they will present different QoS values.
The generated glue/wrapper code will also affect the
QoS, and should be part of dynamic semantics. Event
grammars (Aug97] are used to generate an event trace,
which acts as the QoS metric to be inserted into the
generated glue/wrapper code.

4. Related Work

There have been some attempts towards achieving
interoperability among different technologies emerging
out of industry and research organizations. Some
prominent examples, besides the work mentioned in
section 3.1, are described below.

Middleware technologies such as CORBA [Corba] and
DCOM [Ses97] provide a communication infrastructure for
a heterogeneous and distributed collection of objects.
Based on this infrastructure, objects can interoperate
across networks regardless of the language in which they
are written or the platform on which they are deployed.
However such middleware or component models exclude
the presence of others. UniFrame gives a vision of unified
middleware providing the interoperation not only among
the programming languages and platforms but also among
the component models. The proxies in this paper are
similar to the stubs/skeletons in CORBA. However, the
concept of IDL in CORBA is elevated to the business
feature model of this paper. The feature model in a
business domain defines the semantics of features and
their interactions, and is shared by the feature
implementation developers.

Some ad hoc approaches for interoperation between
component models come out from the industry that are
targeting specific component model pairs. RMI is a
language centric approach using JRMP (Java Remote
Method Protocol) for interactions between distributed
objects. RMI requires that the entire distributed
application be programmed in pure Java. Sun5 and IBM 6

5 Sun Microsystems, Java RMI-HOP Documentation url:
http://java.sun.com/j2sell.3/docslguidelrmi-iioplindex.html

have jointly developed RMI-II OP, a new version of RMI
that runs over IJOP and interoperates with CORBA ORBs
and CORBA objects programmed in other languages. To
bridge CORBA and DCOM, the Object Management
Group (OMG) provides the interworking architecture
specifications regarding the mappings between DCOM
and CORBA which includes: Interface Mapping, Interface
Composition Mapping and Identity Mapping, etc. [RapOI].

Web services [New02] claims to be a means of
interoperation among component models. Nevertheless,
web services achieve the interoperation by introducing
yet more standards such as Web Service Definition
Language (WSDL), Universal Description, Discovery, and
Integration (UDDI), and SOAP. This does not completely
solve the problem due to the inherited local autonomy and
the difficulty of the adoption of standards, whereas
UniFrame approaches the problem in a different way by
modeling existing technology domains.

As mentioned in section 3.1, MDA [Fra03] has
subscribed to the meta-interoperation approach. For
example, for the interoperation between the web service
and Java, the system has to know the following three
things: the platform-independent UML class model, the
UML-java mapping, the UML-SOAP/WSDL mapping. As
with web services, MDA forces UML or MOF to be the
standards for the interoperation.

5. Conclusions

Jn this paper, we have discussed an interoperation
framework for integration of heterogeneous and
distributed software components. The target goal of this
framework is the automated glue/wrapper code generation
during the component assembly time. This framework
incorporates the following key concepts: 1) an
introspective meta model (UMM) for the autonomous
components; 2) an explicit modeling of domain knowledge
of various technology domains instead of introducing new
standards for interoperation; 3) introducing the JGDM that
models a family of glue/wrapper code to provide a formal
foundation for automated glue/wrapper code generation;
4) a language-oriented way to formalize the IGDM so that
the glue/wrapper code generated from UDM is a valid
sentence that can be generated from a grammar. The initial
experiments have been carried out to integrate
components written in RMI and CORBA, and the
glue/wrapper code can be automatically generated for their

6 IBM developer Works, Java technology Standards RMI-IIOP,
url: htm:llwww-106. ibm.comldeve/perworksljava/rmi
iiop/summary.html

• interoperation based on the informal implementation

approach. Future work will be to design and extend our

grammar notation to formalize lGDM. Experiments are also

done on applying this framework to other component

models such as .Net, DCOM, J2EE, Web Services, mobile

agents, and as well as wireless component models [Sha03].

6. Acknowledgement

This research is supported in part by the U. S. Office

of Naval Research under the award number N00014-0l-l-

0746.

7. References

[Aug97] M. Auguston, A. Gates, M. Lujan, "Defining a Program

Behavior Model for Dynamic Analyzers," Proc.
SEKE '97, 9th Int. Conf Software Eng. Knowledge

Eng., pp. 257-262, 1997.

[Bax04] I. Baxter, C. Pidgeon, M. Mehlich, "DMS: Program

Transformations for Practical Scalable Software

Evolution", to appear in the Proc. of 2004

International Conference on Software Engineering

•

(!CSE), 2004.

[Ben87] S. Bendifallah and W. Scacci, "Understanding Software

•

Maintenance Work", IEEE Transactions on Software
Engineering, Vol. 13, No. 3, 1987.

[Bra02] G. J. Brahnmath, R. R. Raje, A. M. Olson, M.

Auguston, B. R. Bryant, C. C. Burt, "A Quality of

Service Catalog for Software Components," Proc.
Southeastern Software Engineering Conf, pp. 513-

521, 2002.

[Bry03] B. Bryant, B-S. Lee, F. Cao, W. Zhao, C. Burt, J.

Gray, R. Raje, A. Olson, M. Auguston, "From Natural

Language Requirements to Executable Models of

Software Components", Proc. of the Monterey
Workshop on Software Engineering for Embedded
Systems: From Requirements to Implementation, pp.

51-58, 2003.

[Cao03] F. Cao, Z. Huang, B. Bryant, C. Burt, R. Raje, A.

Olson, M. Auguston. "Automating Feature-Oriented

Domain Analysis," Proc. of the 2003 International

Conference on Software Engineering Research and

Practice (SERP'03), CSREA Press, pp. 944-949, 2003.

[CleOl] P. Clements, L. Northrop, Software Product Lines:
Practice and Patterns, Addison-Wesley, 2001.

[Corba] Common Object Request Broker Architecture

(CORBA), http:l/www.corba.org/

[CzaOO] K. Czarnecki, U. W. Eisenecker, Generative

Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

[Gro02] T. Grose, G. Doney, S. Brodsky, Mastering XMI,
John Wiley & Sons, Inc., 2002.

[Fra03] D. S. Frankel, Model Driven Architecture: Applying
MDA to Enterprise Computing. Wiley Publishing, Inc.,

2003.

[GME] GME User's Manual. The Institute for Software

Integrated Systems, Vanderbilt University.

ht1p://v.n.vw.isis.vanderbilt.edu/Projects/gme/Doc.html

[Har98] T. Harrison, D. Levine, D. Schmidt, "The Design and

Performance of a Real-time CORBA Event Service",

Computer Communications, Vol. 21, No. 4, 1998

[Kan90] K. C. Kang, S, G. Cohen, J. A. Hess, W. E. Novak, A.

S. Peterson, "Feature-Oriente~ Domain Analysis

(FODA) Feasibility Study", Technical Report,

CMU/SEI-90-TR-2 I, 1990.

[Kan98) K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh,

"FORM: A Feature-Oriented Reuse Method with

Domain-Specific Reference Architectures," Annals of
Software Engineering 5, pp. 143-168, 1998.

[Kic97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Videira Lopes, J. M. Loingtier, J. Irwin, "Aspect

Oriented Programming", Proc. of European Conference
for Object-Oriented Programming (ECOOP}, pp. 220-

242, Springer-Verlag, 1997.

[Lee02a] B.-S. Lee, B. R. Bryant, "Automated Conversion from

Requirements Documentation to an Object-Oriented

Formal Specification Language", Proc. of ACM
Symposium on Applied Computing (SAC), pp. 932-

936, 2002.

[Lee02b] Lee, B.-S. and Bryant, B. R., "Automation of Software

System Development Using Natural Language

Processing and Two-Level Grammar," Proc. 2002

Monterey Workshop Radical Innovations of Software
and Systems Engineering in the Future, 2002, pp. 244-

257.
[New02] E. Newcomer, Understanding Web Services: XML,

WSDL, SOAP, and UDDI, Addison-Wesle'y, 2002.

[RajOO] R. R. Raje, "UMM: Unified Meta-object Model for

Open Distributed Systems." Proc. ICA3PP 2000, 4th
IEEE Int. Conj Algorithms and Architecture for

Parallel Processing, 2000, pp. 454-465.

[RajOI] R.R. Raje, M. Auguston, B. R. Bryant, A. M. Olson,

C. C Burt, "A Unified Approach for the Integration

of Distributed Heterogeneous Software Components,"

Proc. Monterey Workshop Engineering Automation for
Software Intensive System Integration, pp. 109-119,

2001.

[Raj02] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson,

C. C. Burt, "A Quality of Service-Based Framework

for Creating Distributed Heterogeneous Software

•

•

•

Components," Concurrency and
Pracrice and Experience, Vol. 14, No.

1034, 2002.

Computation:
I 2, pp. I 009-

[RapOI) Raptis, K., Spinellis, D., Katsikas, S. "Multi
Technology Distributed Objects and their Integration,"
Computer Standards & Interfaces, Vol. 23, 157-168,

2001.

[Sha03) P. V. Shah, B. R. Bryant, C. C. Burt, R. R. Raje, A
M. Olson, M. Auguston, "Interoperability between
Mobile Distributed Components using the UniFrame
Approach," Proc. of the 41st Annual ACM Southeast
Conference, pp. 30-35, 2003.

(SEI02) Software Engineering Institute, A framework for
software product line practice -version 3.0, 2002,

http://www.sei.cmu.edu/plp/framework.html

[Ses97) R. Sessions, COM and DCOM: Microsoft's Vision for

Disrributed Objects, New York, NY: John Wiley &

Sons, 1997.

(Sir02) N. N. Siram, R. R. Raje, B. R. Bryant, A. M. Olson,
M. Auguston, C. C. Burt, "An Architecture for the
UniFrame Resource Discovery Service," Proc. SEM
2002, .r1 Int. Workshop Software Engineering and
Middleware, Springer-Verlag LNCS, Vol. 2596, pp .
20-35, 2002.

[Szy02) C. Szyperski, Component Software: Beyond Object
Oriented Programming, 2"d edition, Addison-Wesley
Longman, 2002.

[Vin97) S. Vinoski, "CORBA: Integration Diverse
Applications Within Distributed Heterogeneous
Environments", IEEE Communications, Vol. 14, No. 2,
1997.

[Wei99) D. M. Weiss, C. T. R. Lei, Software Product-line
Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.

[Zha02] W. Zhao, B. R. Bryant, F. Cao, R. R. Raje, M.
Auguston, A. M. Olson, C. C. Burt. "A Component
Assembly Architecture with Two-Level Grammar
Infrastructure", Proc. of OOPSLA '2002 Workshop
Generative Techniques in the Context of Model Driven
Architecture, 2002.
http://www.softmetaware.com/oopsla2002/zhaow.pdf

[Zha04) W. Zhao, B. R. Bryant, R. R. Raje, M. Auguston, C.
C. Burt, A. M. Olson, "Grammatically Interpreting
Feature Compositions", to appear in the proceedings
of the 16th International Conference on Software
Engineering and Knowledge Engineering (SEKE'04),
2004 .

e Formal Specification of Generative Component Assembly
Using Two-Level Grammar *

•

•

Barrett R. Bryant Mikhail Augustan Rajeev R. Raje
Andrew M. Olson

Computer/Information Sci.
Indiana Univ. Purdue Univ.

Carol C. Burt
Computer/Information Sci.

Univ. Alabama-Birmingham
Birmingham, AL 35294, USA

Computer Science
New Mexico State University
Las Cruces, NM 88003, USA Indianapolis, IN 46202, USA

bryant@cis.uab.edu
cburt@cis.uab.edu

mikau@cs.nmsu.edu rraje@cs.iupui.edu
aolson@cs.iupui.edu

ABSTRACT
Two-Level Grammar (TLG) is proposed as a formal spec
ification language for generative assembly of components.
Both generative domain models and generative rules may
be expressed in TLG and these specifications may be auto
matically translated into an implementation which realizes
an integration of components according to the principles of
the Unified Meta-component Model (UMM) and Unified Ap
proach (UA) to component integration. Furthermore, this
implementation realizes Quality of Service (QoS) guarantees
by means of static QoS verification at the time of system as
sembly, and dynamic QoS validation on a set of test cases.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications
languages, tools; D.2.11 [Software Engineering]: Soft
ware Architectures-languages; D.2.12 [Software Engineer
ing]: Interoperability-distributed objects

General Terms
Languages

Keywords
Component-based software, formal specification, generative
programming, Two-Level Grammar

*This material is based upon work supported by, or in part
by, the U.S. Army Research Laboratory and the U.S. Army
Research Office under contract/grant numbers DAAD19-00-
1-0350 and 40473-MA, and by the U. S. Office of Naval Re
search under award number N00014-01-1-0746.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEKE '02, July 15-19, 2002, Ischia, Italy.
Copyright 2002 ACM 1-58113-556-4/02/0700 ... $5.00.

1. INTRODUCTION
The recent shift in the focus of OMG (Object Manage

ment Group) to "Model Driven Architecture" (MDA) [10] is
a recognition that to create mechanized software and bridg
ing of component architectures requires standardization not
only of infrastructure but also Business and Component
Meta-Models. This emphasizes the fact that a compre
hensive meta-model, that seamlessly encompasses hetero
geneous components by capturing their necessary aspects
including Quality of Service (QoS) and associated guaran
tees, is needed for creating future generation of distributed
systems. The UniFrame project proposes a Unified Meta
component Model (UMM) [11] for distributed component
based systems, and a Unified Approach (UA) [11] for in
tegrating these components. Component development and
deployment starts with a UMM requirements specification of
a component from a particular domain. This specification
is natural language-like and indicates the functional (i.e.,
computational) and non-functional (i.e., QoS parameters)
features of the component. This specification is then refined
into a formal specification, based upon the theory of Two
Level Grammar (TLG) (5]. Generative domain models and
generative rules for system assembly [6] may be expressed in
TLG and these specifications may be automatically trans
lated into an implementation which realizes an integration
of components.

2. THE UNIFIED APPROACH
The distinctive features of the Unified Approach are:

• The developer of the desired distributed system presents
to this process a system query, in a structured form
of natural language, that describes the required char
acteristics of the distributed system. The query is
processed using the domain knowledge (such as key
concepts from a domain) and a knowledge-base con
taining the UMM description of the components for
that domain. From this query a set of search param
eters is generated which guides "head-hunter" agents
for a component search in the distributed environment.
Head-hunters serve to locate the components which are
needed to complete the requested system [12].

• A set of potential components is collected for that do-

- SEKE '02 - 209 -

•

•

•

Natural Language Query
(Function and Non-functional Requirements)

Application GDM ~ Query ~ocessor

User-provided Test Cases

Component Search Parameters

Headhunters

A Set of Se leered Components for Application

System Assembly

A Possible System instrumented with
Event Grammars

System Execution and Validation

Final System

of Heterogeneous
Components

{inTLG)

Figure 1: System Assembly in UniFrame

main, each of which meets the Quality of Service (QoS)
requirements specified by the developer. QoS require
ments are expressed in terms of a catalog of parameters
established for this purpose (4]. After the components
are fetched, the system is assembled according to the
generation rules embedded in the generative domain
model. Essentially, the generated code constitutes the
glue/wrapper interface between the components.

• Along with the generated system will be a formal UMM
specification of the generated system so that it may
be used in subsequent assemblies. This formal UMM
specification will also be a basis for generating a set
of test cases to determine whether or not an assembly
satisfies the desired QoS.

• Static QoS parameters (e.g. dependability of the com
ponent) are processed during generation time. Dy
namic QoS parameters (e.g. response time of the com
ponent) result in instrumentation of generated target
code based on event grammars (1, 2], which at run
time produce the corresponding QoS dynamic metrics
which may be measured and validated.

QoS parameters require instrumentation necessary for the
run-time QoS metrics evaluation. Based on the query or
informal requirements, the user has to come up with a rep
resentative set of test cases. Next the implementation is
tested using the set of test cases to verify that it meets the
desired QoS criteria. If it does not, it is discarded. After
that, another implementation is chosen from the component
collection. This process is repeated until an optimal (with
respect to the QoS) implementation is found, or until the
collection is exhausted. In the latter case, the process may
request additional components or it may attempt to refine
the query by adding more information about the desired so
lution from the problem domain. If a satisfactory implemen
tation is found, it is ready for deployment. The complete
view of this system is shown in Figure 1.

A few attempts have been made to incorporate QoS into
component-based software systems. The Aster project (7]
uses architectural descriptions of components and their in
teractions, including non-functional properties, to customize
middleware. Quality Objects (QuO) (3], a framework for
providing QoS to software applications composed of objects

distributed over wide area networks, bridges the gap be
tween socket-level QoS and distributed object level QoS, em
phasizing specification, measuring, controlling, and adapt
ing to changes in QoS. RAPIDware (8], an approach to
component-based development of adaptable and dependable
middleware, uses rigorous software development methods to
support interactive applications executed across heteroge
neous networked environments. ProcessNFL [9] is a language
for describing non-functional properties of software, which
may include QoS properties. The Unified Approach is con
cerned not only with specifying QoS properties of compo
nents, but also to assure satisfaction of these properties in
an implementation resulting from assembling the compo
nents. It should be noted that the assurance of QoS (as
described above) indicates that a component can guarantee
appropriate values for its QoS parameters in an 'ideal' sit
uation. This does not guarantee that a component will be
able to either provide this QoS under failure circumstances
or will automatically adjust its QoS to hide the failures. For
the failure situations, the ideas provided by Aster, QuO, or
RAPIDware can be incorporated.

3. TWO-LEVEL GRAMMAR SPECIFICA
TION

Two-Level Grammar (TLG) is a formal notation based
upon natural language and the functional, logic, and object
oriented programming paradigms. The "two levels" are two
context-free grammars defining the set of type domains and
the set of function definitions operating on those domains,
respectively. These grammars may be defined in the context
of a class in which case type domains define instance vari
ables of the class and function definitions define methods of
the class. The TLG formalism is used to specify the gener
ative rules needed for component assembly and the output
of the TLG will provide the desired target code (e.g., glue
and wrappers for components and necessary infrastructure
for distributed run-time architecture). All of this is imple
mented according to the process for translating TLG speci
fications into executable code (5].

We illustrate the formal specification of generative rules
using TLG by means of a simple bank account manage
ment system. The specification of a bank account should
include its attributes and the operations it should perform,
such as check balance, deposit, or vithdrav. Assume that
the GDM in this example contains a rule for system assem
bly that specifies that a Bank Account Management Sys
tem consists of one of each of the two component types,
AccountServer and AccountClient, each of which follows the
bank account feature model. Further, let there be two in
stances of AccountServer and one instance of AccountClient.
Server components are heterogeneous - JavaAccountServer
adheres to the Java-RMI model and has methods javaDeposit,
javaWithdrav, and javaBalance, and QoS parameters
Availability ;?: 85% and Response Delay < 30 ms; while
Corba!ccountServer uses the CORBA model and has meth
ods corbaDeposit, corbaWithdrav, and corbaBalance, and
QoS parameters Availability ;?: 90% and Response Delay <
10 ms. The client, JavaAccountClient, is developed by us
ing the Java-RMI model, with calls to server depositMoney,
vithdravMoney, and checkBalance, and QoS parameters
Availability ;?: 90% and Response Delay < 50 ms. The
goal is to assemble a bank account management system from

- SEKE '02 - 210-

these available components.

•
Queries are stated in a structured form of natural lan

guage. The general form of a query is to request creation
of a system that has certain QoS parameters. The name of

•

•

the system is important in identifying the application do
main and the QoS parameters should also follow the cata
log standards. A sample query for the above example can
be informally stated as: Create a bank account management
system that has availability? 50% and response delay< 100
ms. This query requires the satisfaction of one static and
one dynamic QoS parameter. From the query and the avail
able knowledge in the GDM associated with bank account
management systems, a query will be formulated for a head
hunter in the UMM. In response, the headhunter will dis
cover the three components and their QoS properties. Note
that the availability QoS parameter is used to screen poten
tial components at the time they are retrieved. The catalog
specification for this parameter suggests that the availabil
ity criteria should be multiplied, so the availability of the
Java-Java system is 76.53 and for the Java-CORBA system
813, both meeting the stated criteria.

TLG is used as the formalism for both the UMM and
generative rules. The UMM formalization establishes the
context for which the generative rules may be applied. TLG
functions include generative rules for construction of wrap
per/ glue code and event grammar instrumentation to assure
the QoS of the bank account record management system.
The GDM for bank account management systems will be
described according to this template, including both gener-
ation rules and QoS parameter processing.

A sampling of TLG rules which may be used to generate
the appropriate glue/wrapper code to connect the compo
nents of the bank account management system is presented
below. These rules are based on selecting from the GDM
for bank account management systems the appropriate sys
tem model for this two-component DCS. The generation rule
to produce Java code for two UMM models representing a
client and server, respectively, is expressed using a TLG
function which has a signature followed by a set of sub
functions to be executed when the main function is called.
Function keywords are indicated in bold while class/object
names are italicized.

generate system from ClientUMM and ServerUMM:
ClientOperations := ClientUMM get operations,
ServerOperations := ServerUMM get operations,
OperationMapping :=

map ClientOperations into ServerOperations,
ComponentM odel :=

ServerUMM get component model,
generate java code for OperationM apping

using ComponentModel.

The main tasks are to map client operations onto server op
erations, e.g., depositMoney in JavaAccountClient maps to
corbaDeposit in CorbaAccountServer or to javaDeposit in
JavaAccountServer, and then generate the code to imple
ment this mapping. The next set of rules describes the
specifics of generating CORBA code in Java to implement
the mapping that arises by integrating the JavaAccountClient
with the CorbaAccountServer, including the mechanism for
generating individual methods. The generated code is dis
tinguished from types (variables) and function keywords by
using a typewriter font.

generate java code OperationMapping using corba:
CorbaPackageName :=

OperationMapping get corba package name,
CorbaObjectClass :=

OperationMapping get corba object type,
ClassName := OperationMapping get class name,
JavaClassName := Java II ClassName,
CorbaObjectName := object II ClassName,
SetUpCode := ComponentModel generate java code,
Operations :=

generate java code for OperationMapping,
return

import CorbaPackageName . •;
public class JavaClassName {

}.

private CorbaObjectClass CorbaObjectName
II initialize CORBA client module
public void init () {

SetUpCode
}

Operations

The class structure required by the Java implementation
consists of a function ini t to set up the CO RB A ORB
and the operations needed in the server. This includes the
code to initialize the CORBA object so that future oper
ations can refer to it. It is necessary to first extract the
names of the CORBA package, class of the CORBA object
to be referenced within the package, and the name of the
class itself. These are all stored in the OperationMapping .
The name of the Java class generated is simply the string
"Java" concatenated 1 with the name of the server class,
i.e., JavaCorbaAccountServer. The name of the CORBA
object is generated in a similar way. For simplicity, only the
case where the class is to contain a single method is shown.
Multiple methods are handled similarly.

generate java code for
OperationNamel ArgumentListl ReturnType
maps to
OperationName2 ArgumentList2 ReturnType :

JavaReturnType := java type of Return Type,
JavaArgumentList :=

list all Argument from ArgumentListl
mapped to JavaArgument

by function java argument of
Argument is JavaArgument,

JavaArgumentListDefinition :=
separate JavaArgumentList by , ,

OperationCall := generate java code for
OperationName2 ArgumentListl ReturnType,

return
public JavaReturnType OperationNamel

}.

(JavaArgumentListDefinition) {
EventTrace . setBeginTime ();
Operation Call
EventTrace setEndTime ();
EventTrace . calculateResponseTime ();

1The TLG concatenation operation (II) differs from juxta
position in that it does not produce a space between the
operands.

- SEKE '02 - 211 -

This generation assumes that the methods have the same re-

•
turn type and so the main task is to express the arguments
of the first operation in terms of Java syntax, generate the
appropriate method call, and instrument the code with the

•

•

event grammar mechanism to measure the response time.
The former is accomplished by using a TLG list compre
hension to map the arguments in A rgumentListl into corre
sponding Java arguments represented by JavaArgumentList.
Each Argument from ArgumentListl is mapped into a JavaAr
gument using the function java argument of Argument is
JavaArgument. There is a subtlety here in that JavaArgu
mentList is an abstract syntax representation of the desired
argument list and so this must be made into concrete syntax
using the separate operation which adds the appropriate
commas in between the argument declarations. The appro
priate method call is handled by the rule below.

generate java code for
OperationName ArgumentList RetumType :

IdList := list all Argument from ArgumentList
mapped to Id by

function argument id of Argument is Id,
IdListlnCall := separate IdList by , ,
return CorbaObjectName . OperationName

(IdListlnCall) ; .

Again a list comprehension is used to extract the arguments
from the argument list, this time only the identifier part
(achieved by function argument id of Argument is Id).
Likewise, the abstract syntax representation must be made
concrete by comma separators .

Finally, the event grammar instrumentation is added to
measure the time at the beginning of the server method call
and again at the end so that the actual response time can
be evaluated against the required QoS (< lOOms). The QoS
metrics for "response delay" mean execution time for each
method call within the server or client, and require the in
strumentation of each generated wrapper for the client/server
method call with auxiliary functions able to check the clock
at the beginning and at the end of method call, calculate
the duration, and submit it to the execution monitor (also
generated as a part of instrumentation). We assume that
these are taken care of by a class called EventTrace. Each
of the two example systems will be implemented with the
code for carrying out event trace computations according to
test cases which must be supplied by the user. These test
cases will be executed to verify that the bank account man
agement system satisfies the QoS specified in the query. If
the system is not verified, it is discarded. This verification
process is carried out for each of the generated bank account
management system (two in the above example). Then the
one with the best QoS is chosen, in the above example the
CorbaAccountServer and JavaAccountClient combination.

For the example, the following code for the depositMoney
function would be produced.

public void depositMoney (float ip) {
EventTrace . setBeginTime ();
objectCorbaAccountServer . deposit (ip);
EventTrace setEndTime ();
EventTrace . calculateResponseTime ();

}

In the future, the efficient generation and update of a
distributed computing system will require at least a semi-

automatic integration of software components, based on their
advertised QoS, in such a way that it meets the QoS con
straints specified by the user. UniFrame facilitates semi
automatic construction of such a system. A simple case
study is provided in this paper for illustration, but the prin
ciples of the proposed approach can be applied to larger
applications.

4. REFERENCES
[I] M. Auguston. Program behavior model based on

Event Grammar and its application for debugging
automation. In Proc. 2nd Int. Workshop Automated
and Algorithmic Debugging, pages 277-291, 1995.

[2] M. Auguston. Tools for program dynamic analysis,
testing, and debugging based on event grammars. In
Proc. SEKE 2000, 12th Int. Conj. Software
Engineering Knowledge Engineering, pages 159-166,
2000.

[3] BBN Corporation. Quality Objects (Quo),
http://www. dist-systems. bbn. com/tech/Quo, 2001.

[4] G. J. Brahnmath, R. R. Raje, A. M. Olson,
M. Auguston, B. R. Bryant, and C. C. Burt. A quality
of service catalog for software components. In Proc.
(SE)2 2002, Southeastern Software Engineering Conj.
(to appear}, 2002.

[5] B. R. Bryant and B.-S. Lee. Two-Level Grammar as
an object-oriented requirements specification
language. In Proc. 35th Hawaii Int. Conj. System
Sciences, 2002.

[6] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[7] INRIA-Rocquencourt. ASTER: Software Architectures
for Distributed Systems, http://www-rocq.inria.fr/
solidor/work/aster. html, 2001.

[8] Michigan State University. RAPIDware:
Component-Based Development of Adaptable and
Dependable Middleware,
http://www. cse.msu. edu/rapidware, 2001.

[9] N. S. Rosa and P.R. F. Cunha and G. R.R. Justo.
processn11

: A language for describing non-functional
properties. In Proc. 35th Hawaii Int. Conj. System
Sciences, 2002.

[10] Object Management Group (OMG). Model Driven
Architecture: A technical perspective. Technical
report, OMG Document No. ab/2001-02-01/04,
February 2001.

(11] R.R. Raje, M. Auguston, B. R. Bryant, A. M. Olson,
and C. C. Burt. A unified approach for the integration
of distributed heterogeneous software components. In
Proc. Monterey Workshop Engineering Automation
for Software Intensive Systems, pages 109-119, 2001.

(12] N. N. Siram, R. R. Raje, B. R. Bryant, A. M. Olson,
M. Auguston, and C. C. Burt. An architecture for the
UniFrame Resource Discovery Service. In Proc. SEM
2002, 3rd Int. Workshop Software Engineering
Middleware (to appear}, 2002.

- SEKE '02 - 212 -

•

•

•

Analyzing the Web Services and UniFrame Paradigms1

Natasha Gupta2 Rajeev R. Raje2 Andrew Olson2 Barrett R. Bryant 3 Mikhail Auguston4 Carol Burt3

Abstract
The software realization of today's distributed systems often require combining of heterogeneous software
components, each offering a specialized service. This heterogeneity necessitates a paradigm for the interoperation of
different components. Various models and approaches have been proposed to facilitate a smooth interoperation.
Web Services and Uniframe are two such paradigms. This paper presents analyses of these two alternatives,
thereby, indicating their similarities and differences.

1 Introduction
The evolution in the field of computing has shifted its paradigm from a centralized one to a distributed one. Hence,
the target environment is no more a centrally managed, but concerned with collaboration, data sharing, and other
new modes of interactions involving distributed resources. This necessitates the availability of technologies and
solutions that can effectively and efficiently integrate services across disparate systems. This integration can be
challenging because of the need to achieve various qualities of services when running on top of different native
platforms [I]. Innovations in this field have led to developments of many paradigms including Web Services (WS's)
[2], and Uniframe [3]. Each of these approaches has associated pros and cons. Web Services have emerged as a new
"Web Development Tool" which enables a web application to become more interactive, by providing means to
make it communicate at the middle-tier lever (business logic level) and provide a new platform to build software for
a distributed environment. Uniframe is a research project that aims to provide a framework that allows a seamless
interoperation of heterogeneous components. The purpose of this paper is to compare and contrast the Web Services
framework and the Uniframe .

2 Related Work

2.1.1 Enterprise Application Integration (EAi) Solutions
The EAi [4] solutions provide the infrastructures for an organization that take the integration technology from the
traditional point-to-point connections to a level that links multiple applications and databases internal to the
organization to share information and business processes. EAi typically uses middleware to connect to different
applications. A custom interface is built to link each separate application in the EAi system. Most EAi systems use
adaptors to connect applications. Several types of EAi exist, including data integration, business process integration
and method integration. However,. the integration that EAi solutions provide tends to be complex and expensive,
despite improving the overall communication. In addition, the EAi interfaces are not reusable and cannot be used by
a company to connect to their business partners whose applications fall outside the boundaries of the organization.
Web Services overcome this limitation by providing a set of reusable interfaces to applications, which enables them
to interoperate with any other application (Web Service) using SOAP.

2.1.2 Business-To-Business (B2B) Solutions
The Internet has given birth to a "digital economy'' [5]. In such an economy, B2B e-commerce provides a company
with an effective and efficient end-to-end process communication to buy and sell services in an economical way.
B2B relationships are often characterized by stringent requirements for security, auditability, availability, service
level agreements and complex transaction processing flows [I] in addition to the large technical differences that
arise between different organizations. B2B Integration has long been accomplished with the use of technologies like
Enterprise Data Interchange (EDI). EDI is a relatively arcane technology that requires substantial overhead on the

1
This material is based upon the work supported by the U.S. Office of Naval Research under award number NOOl 4-01-1 -0746.

2
Department of Computer and Information Science, Indiana University Purdue University Indianapolis, 723 W. Michigan St., SL280,

Indianapolis, IN 46202, USA, {nsgupta, rraje, aolson}@cs.iupui.edu.
3 Department of Computer and Information Sciences, University of Alabama at Birmingham, 1300 University Blvd., CH I 15A, Birmingham, AL
35294, USA, {bryant, cburt}@cis.uab.edu.
4

Computer Science Department, Naval Postgraduate School, 833 Dyer Rd., SP517, Monterey, CA 93943, USA, maugusto@nps.navy.mil.

-- ---

•

•

•

part of the part1c1pants, and a clear understanding of the semantics of the messages exchanged. EDI
implementations, despite their "standardized" nature vary dramatically from business to business [6].

2.1.3 Open Grid Services Architecture (OGSA) for Distributed Systems Integration
OGSA builds upon the concepts and technologies from the Grid and Web Services communities. It [l) defines
standard mechanisms for creating, naming, and discovering transient Grid service instances; provides location
transparency and multiple protocol bindings for service instances; and supports integration with underlying native
platform facilities. It aligns the Grid technologies with the WS technologies, in particular the WSDL, to provide
mechanisms required for creating and composing sophisticated distributed systems, including lifetime management,
change management, and notification. OGSA has adopted Globus Toolkit as the underlying Grid technology
solution.
Each of these· above mentioned approaches have specific objectives and are, aimed typically at particular application
domains. In the next section, two other approaches, Web Services and UniFrame that are generic in nature are
discussed.

3 The UniFrame and Web Services Nexus

3.1 UniFrame Overview
The main focus of UniFrame is to provide a comprehensive framework for the software realization of distributed
computing systems. It consists of (a) a meta-model for components and associated hierarchical set-up for indicating
contracts and constraints of the component, (b) an automatic generation of glue and wrappers, based on designer's
specifications to achieve interoperability, (c) a formal mechanism for precisely describing the meta-model, and (d)
the formalization of the notion of the quality of service of each component and an ensemble of components.

3.2 Web Services (WS) Overview
WS are based on existing protocols and technologies and provide a greater flexibility with respect to the
interoperability, the reuse and the development of applications in a distributed environment. The underlying idea
behind WS is to promote the "software as a service" paradigm. The use of open standards enables interoperability
between components. These standards are based on XML, which enables WS to communicate with other
applications in a programming language-, programming model-, and system software-neutral manner. XML forms
the basis of the three standards: SOAP (Simple Object Access Protocol), WSDL (Web Services Description
Language) and UDDI (Universal Description, Discovery and Integration) [5].

The next section indicates a comparison between the architectural aspects of the two frameworks, i.e., UniFrame and
Web Services, and then the section 4 describes a model-based comparison.

3.3 Architectural Comparison

The following table shows the architectural comparison between the two paradigms:

OBJECTIVE

WEB SERVICES FRAMEWORK

To provide a set of related standards which
allow building of dynamic, loosely coupled
systems composed of services, not bounded to
any implementation and can be published,
described, located and invoked over a
network, more generally World Wide Web

UNIFRAME

To create a comprehensive framework that
unifies the existing and emerging distributed
component/service models under a common
meta-model that enables the discovery,
interoperability, and collaboration of
components via generative software techniques
[3,7)

•

•

•

GENERAL
ARCHITECTURE

BASIC TASKS/
PROCEDURES
INVOLVED

SERVICE/
COMPONENT
DEVELOPMET
DEPLOYMENT

DESCRIPTION OF
SERVICES/
COMPONENTS

DISCOVERY

INTER
OPERABILITY OF
SERVICES/COMP
ONENTS

SYSTEM
INTEGRATION

Universal Description, Discovery
and Integration (UDDI) Registry

Service provider
business

application

Service consumer
business application

Simple Object Access
Protocol (SOAP) Messages

• Service Development and Deployment
(leveraging different platforms to one
standard of web services using different
Web Services development tools and
software provided by vendors)

• Formal description of services (WSDL)
• Registration of services with UDDI

(publish)
• Discovery of services (Find)
• Binding with the Service (Bind)

• Development using frameworks that
support them (e.g .. NET) .or using different
object models, which are then leveraged as
services using the toolkits that support the
technology

• Registering Services with the UDDI
ublic/ rivate re istry

Web Service Description Language
Document (WSDL file - XML)

Discovery through the UDDI Business or
private registries (static registries)

XML (standard for data exchange) and SOAP
(Simple Object Access Protocol)

• A hand-crafted approach wherein the
responsibility of integration lies with the
application developer by means of APis
oftheWS

• NPPil tn inl'nrnnr:ltP we;: intPrfal'P<: :lncl

UMM
Spec

EJ
System
Builder

URDS:
UniF rame esource
Discovery Service
GDMKB:
Generative Domain
Model Knowledge Base

• Developing components using different
current and future object models, such as,
Java-RMI/CORBA/.Net/Web Services

• Informal and formal UMM (Unified Meta
Component Model) specifications of each
component

• Querying the UniFrame for the system with
desired Quality of Service parameters

• Creation of an integrated system made out of
discovered components

• Incorporation of necessary glue and wrappers
for QoS measurements and interoperation

• Checking to see if the test results of the
integrated system satisfy criteria or not

• Refine Query or select alternate components
to re-build and retest the inte ated system

• Components are developed using different
standard object models

• Deployment also under the same model with
extra infrastructure provided by UniFrame to
support seamless interoperation and system
generation

UniFrame Meta-Component Model Description
(UMM Specifications - informal text and XML)

Discovery through an search process involving
active entities - headhunters and active
registries [UniFrame Resource Discovery
Service (URDS) Framework]

Automatic generation of glues and wrappers

A comprehensive model-based approach forms
the backbone of the system integration process
right from the initial stages. The model follows
an architecture-centric, domain-based and a
tP<'hnnlncrv-inclPnPnrlPnt :lnnrn:ll'.h ThP nr()('P<:<:

•

•

•

RELIABILITY OF
THE COMPOSED
SYSTEM

ADVANTAGES

ADVANTAGES
(Contd ••)

LIMITATIONS

integration capabilities within the
existing "application integrating" tools
and products

Reliance on a third party (Web Service
Auditors) which guarantees the reliability ofa
web service on basis of testing and
certification during its creation as well as
~erational stage

• Builds upon open text-based standards
(XML), thus aiding in interoperability

• Less additional cost involved in adoption,
since employs existing infrastructure
(Internet) and applications can be
repackaged as Web Services

• Relatively new; standardization in
progress, hence, Web Services created
with current tools will not be compatible
with the future technologies

• Use of text-based standards, XML, for
communication may affect performance in
some critical applications

• No standardized methods devised for
assuring and validating Quality of Service;
Use ofthird_p_arty "web service auditors"

may be manual, completely automatic or a mix
of both

Reliability based on test cases and formalism
and a strong mathematical foundation of event
traces and two level grammar

• No requirement of additional software tool to
build components

• Automatic generation of glues and wrappers
• Quality of Service validation and assurance

through event traces and formal domain
knowledge; backed by a mathematical
foundation

• Use of aspect-oriented programming to
weave m the notion of QoS into the
framework distinguishes UniFrame

• Active search process involving the notion of
"headhunters"

• No standardization reached yet
• Experimentation and performance evaluation

at a large scale and in a realistic domain not
complete

Some of the important points tabulated above are described in detail in the next few sections.

3.3.1 Discovery Services
Web Services Discovery Process: The term discovery refers to the process oflocating "Web Services" by means of
registries. This process is carried out by businesses searching for services offering specific functionalities. WS
Registries and Brokerages facilitate the discovery process and enable interactions between the service providers and
requesters. The discovery process is classified into two categories [4]:

• Direct Discovery: This involves obtaining data from a registry, which is maintained by the service provider
itself.

• Indirect Discovery: This involves obtaining data about a Web Service from a registry, which is maintained
by a third party.

A service provider publishes the WSDL document containing the description of its Web Service, with the UDDI,
which makes locations of such WSDL files available to a service requester. The Service Requester searches the
UDDI based on certain criterion, such as functionality or a Quality of Service (QoS) attribute. Once it discovers a
service, meeting its needs, it knows the method of accessing the Web Service by means of the WSDL file. It can
now communicate with the Web Service directly via SOAP messages.
There are a few other discovery technologies, which support the discovery of Web Services apart from the UDDI
specifications - ebXML and WS-Inspection for example. A Service developer/organization can combine these
technologies with UDDI in order to take advantage of the features of both. For example, UDDI currently does not
support a security model whereas ebXML does and so an organization can advertise its services through UDDI, on
the other hand store its trading agreements and contracts through ebXML.

•

•

•

UniFrame Resource Discovery Service (URDS) Framework: The URDS architecture (8] provides a mechanism for
an automated discovery and the selection of components meeting necessary QoS requirements. URDS is designed to
act as a Discovery Service wherein new services are dynamically discovered while providing clients with a directory
style access to services. The discovery process in URDS is "administratively scoped", i.e., it locates services within
an administratively defined logical domain - in UniFrame a domain refers to industry specific markets such as
Financial Services, Medical domain and Manufacturing Services, etc. The URDS infrastructure consists of two
parts: (a) the Internet Component Broker (ICB) and (b) Headhunters.
The ICB, in addition to performing the functions of a conventional broker, also ensures the authentication of the
principals of the system (Headhunters and Active Registries); cooperates with other ICB's deployed on the network
to provide matchmaking between service producers and consumers; and acts as a mediator between two components
adhering to different component models. A Headhunter is equivalent to a binder or trader in other models. However,
unlike the trader, here the onus of registering components lies with the headhunter and not on the components
themselves. Hence, the headhunter is capable of detecting the presence of service providers on the network, register
the functionality of these service providers and return a list of service providers, which matches the requirements of
the consumer requests forwarded by the Query Manager, to the ICB. The services are discovered by means of
Active Registries (discussed later), with which the services are registered. The discovery process employed could
vary from standard search techniques to broadcasts and multicasts to specific machines.

3.3.2 Service Descriptions
Web Service Description Language (WSDL) Document: It is an XML document for describing WS as a set of
endpoints operating on messages containing either document-oriented (messaging) or RPC-payloads. Service
interfaces are defined abstractly in terms of message structures and sequences of simple message exchanges and
then bound to a concrete network protocol and data-encoding format to define an end-point. Related concrete end
points are bundled to define abstract end-points (services). The WSDL is extensible to allow description of end
points and the concrete representation of their messages for a variety of different message formats and network
protocols [4].
UniFrame Meta-Component Model (UMM) Description: In UniFrame, components are autonomous entities. The
UniFrame description of a component is more comprehensive and specified in a natural language-like manner. It
indicates the functional (i.e., computational, cooperative and auxiliary aspects) and non-functional (i.e., QoS
constraints) features of the component. These specifications are then refined into a formal specification based on the
theory of Two-Level Grammar (TLG) and natural language specifications [9]. TLG specifications allow for a multi
level interface for the component. These levels are: Syntactic, Behavioral, Synchronization and QoS.

3.3.3 Registries/Repositories
Web Services Registries: The Web Services framework supports two kinds of repositories - UDDI and WS
Brokerages.
UDD/: The UDDI standardization provides for "searchable Web Services Registries" which facilitate the storage,
discovery and exchange of information about businesses and their Web Services. UDDI is implemented in two
forms:
UDDI Business Registry: publicly accessible and maintained by Microsoft, IBM, Hewlett Packard and SAP.
UDDI Private Registry: accessible only to authorized users.
The various entities involved during the utilization ofUBR (UDDI Business Registry) [4] are:

Operator Nodes: The organizations tllat host the implementation of the UDDI Business Registry are
Microsoft, IBM, SAP, and Hewlett Packard. UBR operates on the principle of "register once and publish
everywhere". This in turn implies a replication of the data within the operator nodes so that all instances ofrecords
are identical with each node. Operator nodes synchronize their information at least every 12 hours.

Custodian: The custodian for a company is the operator node with which it publishes its web services. A
company can register and update its information only through its custodian. This prevents multiple versions of the
data from entering in the four different operator nodes.

Registrar: These organizations do not host implementations of the UDDI but act as assistants for
organizations in creating data (such as business and service descriptions) and publishing in the UBR.

'
Structure and Information Model of UDDI: XML forms the basis of the overall information structure of UDDI
which can be broadly divided into following information levels:

White Pages: General information about the provider, such as its name, contact information and identifiers.
Yellow Pages: Categorization of the providers' information based on their services.

•

•

•

Green Pages: Technical information about the provider's services or products. Usually contains references
to the WSDL documents of the services enabling the client to know as to how to interact with the Web
Service.

UDDI supports certain APis for the clients to use the registry. These include:
Publishing AP! - It supports the publish operation on the UDDI Registry. The access to this API is restricted to
authorized users only. Operator nodes implement a form of Authentication protocol to allow legal organizations to
access this APL By means of publishing API, an organization is able to execute commands to create and update
information in its operator node.
Inquiry AP!: Supports the find operation in three different patters (browse, drill-down and invocation). This API is
accessible to any individual on the UBR who wishes to locate a service or a kind of service.

WS Brokerages: The WS brokerages are web sites that house information about the available WS in the form of a
list, along with their web addresses. These brokerages can also supply additional services, which can include
advanced search capabilities based on category, organization name or schema type, service monitoring and service
support, which can include services-related resources such as a tool that validates WSDL documents. Examples of
some of the current Web Services Brokerages are: Allesta Web Service Agency, Sa!Central Service, Xmethods and
serviceFORGE.

UniFrame Registries: In the case of UniFrame, the entity that houses the information about components developed
using a particular model is local to that component model. This entity is named "Active Registry", and is an
enhanced version of the native registry of the corresponding object model. It has features such as Activeness (an
ability to listen to multicast messages), Introspection and a Capability to detect failures of the Headhunters.

The conceptual difference that exists between registries of the two frameworks is in the way the registries participate
in the discovery process of the components. In the case of the WS :framework, the onus of locating components lies
in the hands of the service requesters. While in UniFrame, the emphasis is on the automated discovery process
provided by means of the URDS. Whether an organization needs to deploy one active registry per machine or one
per many, is not decided and could vary depending on the size and necessity of the organization. While a service
requester and publisher has to confirm to the underlying implementation of the UDDI registry as preferred by the
company hosting it, the Active Registry is not as rigid and constraint since it builds upon the same native technology
used for the development of components registered with it.

3.3.4 Quality of Service Assurances
Quality of Service Assurances in Web Services: Currently, service providers typically employ third parties to audit
their web services during the creation stage as well as for reevaluation of the service on regular basis. An auditor
achieves this in the form of testing and certification. Auditors may also be employed by the service requestors in
order to gain a kind of guarantee about the level of service offered by the Web Service. The entire scenario employs
"Service Level Agreements (SLA)" [4]. These are "legal contracts in which a service provider outlines the level of
service it guarantees for a specific Web Service". When customers purchase the Web services subscription, they
receive the services according to the quality-related contents specified by the SLAs. The service developer may
maintain the SLAs. As the contents of the SLA are determined by the participating entities, there are no formal
guidelines to specify the level of service a particular Web Service provides. The QoS requirements, which SLAs of
WS's outline, include availability, accessibility, integrity, performance, reliability, conformance to standards and
security.
Quality of Service framework of UniFrame: The approach followed by UniFrame can be stated as: building a
precise model of the system's behavior (based on event traces) and then providing a programming formalism to
describe the computations over these event traces. These are then applied in order to define different kinds of QoS
metrics. UniFrame's iterative approach to system assembly from components meeting user's query specifications is
based on constructive calculations of QoS metrics on representative set oftest cases.
Quantifying the quality of service of the individual Commercial Off The Shelf(COTS) components, which compose
to form an integrated system with a predictable quality, is one of the critical part of the UniFrame Approach.
UniFrame provides a QoS Framework [5] for selecting, specifying and validating the QoS of components. The
features of the UniFrame QoS framework are:
• An existence of a QoS catalog [l O] containing detailed descriptions about QoS attributes, their classifications,

their evaluation methodologies and the interrelationships with the other attributes.

•

•

•

• An integration of QoS at the individual component and distributed system levels.
• The validation and assurance of QoS, based on the concept of event grammars [11).
• An investigation of the effects of component composition on QoS; involving the estimation of the QoS of an

ensemble of software components given the QoS of individual components.
• A QoS-centric iterative component-based software development process to ensure that the end product matches

both the functional and QoS specifications.
UniFrame takes a domain-based approach in the classification and the discovery of components. Since every domain
has its own constraints with respect to the QoS attributes, the QoS catalog aims to act as a checklist for any
component developer/user interested in identifying and validating QoS attributes.

3.4 Model-based Comparison
• WS are all about XML and it being a text-based standard implies delays involved in parsing it, which may

prove vital in performance-critical applications. XML uses two sets of redundant tags to mark up every piece of
information it represents. The tags are usually written to be humanly readable, which makes the actual tags a lot
longer than they need to be. Also, one character in a Unicode document can be up to four bytes. Four bytes in
some other proprietary binary format used by technologies such as DCOM or RMI can hold a lot more
information than just one character. The ability to serialize the data over a connection, parse it quickly and
efficiently is what plays a vital role in applications interacting over the network [12]. UniFrame, on the other
hand, leverages the components in a way so that they are a part of an application while remaining within their
own object-model. This allows for more efficient ways of electronic communication.

• HTTP is the preeminent protocol to transfer WS content and is allowed a free access through firewalls. HTTP,
although used almost everywhere because of its reliability and ubiquity, is also not the most efficient transport
protocol [12). HTTP relies on a constant connection between the client and server when a request is made. This
constant connection causes an overhead in cases when the data that needs to be transferred is quite small.
However, in the WS's universe, many transactions are essentially asynchronous. This in turn implies that the
response of a web service request is not guaranteed. HTTP was not meant to deal with this kind of
asynchronicity. It also relies on only one side initiating communication and the other side only responding to the
request. This approach inhibits true peer-to-peer exchanges through Web services. A newer version of HTTP
aims to fasten communications by making use of compression, but some of the previous issues still need to be
pondered upon. Other protocols such as SMTP, over which Web Services can be implemented, still do not
provide a major breakthrough in this respect. As UniFrame does not attach itself to a specific protocol, it avoids
some of the drawbacks related to the usage of HTTP.

• The only guarantee that a service requester has about a Web Service is through its SLA. No other explicit
mechanisms are mandatory in the WS world. Thus, the user of WS may or may not have a mechanism to
validate the QoS claims made by the creator of WS. Hence, a requester can terminate its contract if the WS 's
fail to deliver what it claimed in its SLA. In contrast, UniFrame makes the notion of quality explicit during the
creation of components. It also provides the user means (by the use of event grammars, glues and wrappers) to
validate the QoS of any component made available by a supplier.

• In the world of B2B, Web Services prove to be a major benefit since they provide the needed flexibility and
ability to operate across the Internet on completely disparate systems owned by completely independent entities.
However, in EAi solutions, the major drivers are not only interoperability but also speed and efficiency, and
with those requirements, Web services don't really seem to meet the need. Organizations globally are becoming
aware of the importance and need of integration across disparate platforms. An organization with numerous
applications needs EAi solution and corporations that are extending their processes with partners need B2B.
The future holds potential for a solution set that provides the functionality for both the requirements
frameworks. The UniFrame with its unbiased approach is an attempt in this direction.

• Although UDDI registries, both public and private, offer a great deal of advantage in terms of an application
integration of the participating companies, they have their own set of limitations too. Firstly, because UDDI is
fairly new, it has not reached standardization in a complete way, which holds true for UniFrame as well.
Secondly, the UDDI Business Registry poses the question of data reliability. UniFrame does not involve the
notion of publicly accessible registries. The Active Registries only allow authorized entities to publish
components and interacts with the headhunter, thereby reducing the threats of data compromise. The discovery
mechanism of the UMM Framework involves the headhunter storing the data about the components after it
retrieves it from the Active Registries. The duration of the time interval after which this process repeats itself
can be controlled so as to guarantee the freshness of the data within the meta-repository of the headhunters.

•

•

•

UDDI registries, although describe web services, do not evaluate them [4]. It does not house the Quality-of
Service information about a web service and requires an extensive search on the service-consumers part to do
so. UniFrame on he other hand, provides an extensive Quality-of-Service framework to do so.

3.5 Integrating Web Services into UniFrame
As outlined above, the WS and UniFrame differ in their approaches and associated implementation techniques.
However, they can complement each other to provide solutions for future distributed systems. UniFrame uses the
Generative Domain Model [13] to describe the properties of domain-specific components and to elicit rules for
assembling heterogeneous components. One possible approach to integrate WS in UniFrame could be to use WS as
a mechanism to wrap heterogeneous components. Due to the open nature ofWS, such an approach will ease the task
of assembling heterogeneous components adhering to existing and new object models. Furthermore, since WS are
weak in representing the business semantics of application domains, this will also lead to the enrichment of WS
technology in terms of semantic representation by following a model driven approach for specific domain-specific
component models. UniFrame can then automatically generate WSDL from the models with the help of generators.

4 Conclusion
Developing component-based software solutions for distributed systems is an inherently complex task. Any
approach to tame these complexities must account for disparities that exist due to the existence of different object
models. Web Services and UniFrame are two approaches that propose effective solutions for future component
based distributed systems. In this paper, an analysis of these two approaches has been presented. Although these two
approaches differ from each other, they can also complement each other and provide a comprehensive solution for
the creation of distributed systems. The proposed approach to integrate Web Services into UniFrame needs further
investigation and is being currently explored.

5 References
[l] Foster, I., Kesselman, C., Nick, J., Tuecke, S., The Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration, Open Grid Service Infrastructure WG, Global Grid Forum, 2002.
[2] World-Wide Web Consortium (W3C), "Web Services Activity", 2002, http://www.w3.org/2002/ws.
[3] Raje R., Bryant B., Auguston M., Olson A., Burt C., 2001, "A Unified Approach for Integration of Distributed
Heterogeneous Software Components," Proceedings of the 2001 Monterey Workshop Engineering Automation for
Software Intensive System Integration, pp. 109-119.
[4] Dietel, H., Dietel, P., DuWaldt, B., Trees, L., Web Services - A Technical Introduction, 2003, Prentice Hall,
Upper Saddle River, New Jersey 07458
[5] Dhingra, V., "Business-to-Business Ecommerce," http://projects.bus.Isu.edu/independent study/vdhingl/b2b.
[6] A Darwin Partners and ZapThink Insight, "Using Web Services for Integration",
http://www.xml.org/xml/wsi.pdf
[7] Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M., Burt, C. C., 2002, A Quality of Service-based
Framework for Creating Distributed Heterogeneous Software Components, Concurrency and Computation: Practice
and Experience, vol. 14, pp. 1009-1034.
[8] Siram, N. N., Raje, R. R., Olson, A. M., Bryant, B. R., Burt, C. C., and Auguston, M., An Architecture for the
UniFrame Resource Discovery Service, Proceedings of the 3n1 Int. Workshop Software Engineering and
Middleware, Springer-Verlag Lecture Notes in Computer Science, Vol. 2596, 2002.
[9] Bryant, B. R. and Lee, B.-S., "Two-Level Grammar as an Object-Oriented Requirements Specification
Language," Proceedings of the 35th Hawaii International Conference on System Sciences, 2002,
http://www.hicss.hawaii.edu/HICSS 35/HICSSpapers/PDFdocuments/STDSLOl .pdf
[10] Brahnmath, G. J., Raje, R. R., Olson, A. M., Auguston, M., Bryant, B. R., Burt, C. C., A Quality of Service
Catalog for Software Components, Proceedings of the 2002 Southeastern Software Engineering Conference, pp.
513-520.
[11) Auguston, M., Tools for Program Dynamic Analysis, Testing, and Debugging Based on Event Grammars,
Proceedings of the 121

h International Conference on Software Engineering and Knowledge Engineering, 2000, pp.
159-166.
[12] Hudson, M. J., The Web Services Placebo,
http://www.intelligententerprise.com/0209 I 7 /515e business I 1.shtrnl
[13) Czarnecki, K., Eisenecker, U.W., Generative Programming: Methods, Tools, and Applications, Addison
Wesley, 2000.

•

•

•

SC 2004 Preliminary Version

A Component Assembly Approach Based On
Aspect -Oriented Generative Domain Modeling

Abstract

Fei Cao, Barrett R. Bryant, Carol C. Burt 1

Department of Computer and Information Sciences
University of Alabama at Birmingham

Birmingham, AL, USA

Rajeev R. Raje, Andrew M. Olson 2

Department of Computer and Information Science
Indiana University Purdue University at Indianapolis

Indianapolis, IN, USA

Mikhail A uguston 3

Computer Science Department
Naval Postgraduate School

Monterey, CA, USA

We present an approach towards automatic component assembly based on aspect
oriented generative domain modeling. It involves the lifecycle covering the compo
nent specification generation, and subsequent assembly of implementation compo
nents to produce the final software system. Aspect-oriented techniques are applied
to capture the crosscutting concerns that emerge during the assembly process. Sub
sequently, those concerns are woven to generate glue/wrapper code for assembling
heterogeneous components to construct a single integrated system.

Key words: Component Assembly, Generative Programming,
Generative Domain Model, Component Specification, Aspect
Orientation, UniFrame, Two-Level Grammar.

1 Email: { caof, bryant, cburt }©cis. uab. edu
2 Email: { rraj e, aolson }©cs. iupui. edu
3 Email: auguston©cs. nps. navy. mil

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL:'ll>IV.elsevier.nl/locate/entcs

•

•

•

CAO

1 Introduction

As software component development technology becomes more mature, the
notion of developing software systems by assembling Commercial-Off-The
Shelf (COTS) components (implemented in models such as COM 4

, DCOM 5
,

EJB 6 , CCM 7) becomes not only theoretically rational, but also practically
sound. Component-Based Software Composition offers a development paradigm
with reduced time-to-market and cost while achieving enhanced productivity,
quality and maintainability [3).

But component assembly remains mainly either a handcrafting effort or
proprietary approach [28). It is becoming an even harder problem when com
ponents are delivered in binary form which may need binary code adaptation
[17), or when the underlying implementation language, deployment environ
ment are heterogeneous. For the latter case, what's commonly seen is a mid
dleware approach such as CORBA, that allows the components to work co
operatively across language and platform boundaries. However, this approach
may also add extra complexity that makes the construction of a distributed
system more difficult [9).

UniFrame 8 is a framework for seamless interoperation of heterogeneous
distributed components. It aims to automate the process of integrating het
erogeneous components to create distributed systems that conform to quality
requirements. By automatic generation of glue/wrapper code based on the
developer's functional and non-functional specification ([2), [26)), the system
generated will be tailored to specific requirements as opposed to being a mono
lithic end product, and reliability is also enhanced. In this paper, we present
an approach to support the automatic component assembly in UniFrame by
applying aspect-oriented generative domain modeling. In Section 2, we intro
duce the background information of UniFrame. Section 3 and 4 present our
approach of using aspect-oriented generative domain modeling for component
assembly. Section 5 presents some discussion, followed by the description of
related work together with the conclusion in Section 6.

2 Background

2.1 Generative Programming

As is introduced in [10), Generative Programming {GP} is a software engineer
ing paradigm based on modeling software families such that, given a particu-

4 Component Object Model, http://www.microsoft.com/com
5 Distributed Component Object Model, http://www.microsoft.com/com/tech/dcom.asp
6 Enterprise Java Beans, http://java.sun.com/products/ejb
7 CORBA® (Common Object Request Broker Architecture, http://www.omg.org/corba)
Component Model, http://www.omg.org/cgi-bin/doc?orbos/99-07-01
8 Unified Framework for Seamless Integration of Heterogeneous Distributed Software Com
ponents - http://www.cs.iupui.edu/uniFrame

2

.---

•

•

•

CAO

Zar requirement specification, a highly customized and optimized intermediate
or end-product can be automatically manufactured on demand from elemen
tary, reusable implementation components by means of configuration knowl
edge. The requirement specification is sometimes referred to as ordering of
products; the terminology used to specify family members is referred to as
the problem space; the implementation components with their possible con
figurations form the solution space. The problem space and solution space,
together with the associated configuration knowledge, constitute the Genera
tive Domain Model (GDM) [10]. The distinct property of GP is that it is not
only about a development for reuse in terms of building a GDM for software
system families, but also about a development with reuse in terms of using
GDM to generate concrete systems; it focuses on generation of system families
rather than a one-of-a-kind system.

2. 2 UniFrame

With advances in network technology, software systems are shifting from a
closed, centralized architecture to being open and distributed; from being
homogeneous in implementation to adopting heterogeneous components for
constructing the whole system. To harness the omnipresent components in a
distributed system while having to address the inherent complexity of such a
paradigm, the functional and non-functional properties of components must
be formally captured, and there needs a means to assure the specified QoS
(Quality of Service) 9 for the system assembled from components. Uni Frame is
a framework to address those concerns [26]. It uses a Unified Meta-component
Model (UMM) [25] to encode the meta-information of a component such
as functional properties, implementation technologies, and cooperative at
tributes.

In UniFrame, a GDM is also used to capture the domain knowledge and
to elicit assembly rules. But the use of a GDM doesn't include the implemen
tation components: this part is assumed to be offered in a distributed system
environment by different vendors observing the stipulated specifications in the
problem space of the GDM; those implementation components are exposed by
vendors and are subject to location by a distributed resource discovery service
[27]. In addition, the GDM in UniFrame is used to capture the assembly rules
for the discovered components.

Figure 1 illustrates the big picture of UniFrame. The annotated number
represents the processing order. Starting from domain experts, a GDM will
be created (1.1) and will be used together with some domain standards (1.2)
as guidelines (2.1, 2.2) for component developers to implement components
in solution space. Those implementation components, after being quantified
with some QoS parameters (3), will be exposed to a distributed resource dis-

9 In this paper, "non-functional aspect", "nori-functional-property" and "Quality of Service
(QoS)" may be used interchangeably.

3

•

•

•

CAO

j,!f'" 4 -~-- iJ-rn
Distributed Resource Component ---

Discovery Deployment Component

8 5

. A 3~
7 Modified , .:.,._C:;.; ~ · t

Quality Measures

Query ~~ 2.2

lt 6 Query [f;~CE17, ~,. ~..:.. ~~~~j
;s.,,,::lr ••• ;"i!, --.i:>;~ ·y [?;f , . 7'/ · Component Developer I

~~/
" Generative Domain Model

Li·~
~~

- Yes JO

No

Quality Validation

~-~):'
·-·)

.

.
Deploy
(End)

G.
,.-:--'"'"\ , .

\~--~·:?'
Domain Expert

(Start)

Fig. 1. the Process of UniFrame .

Standards

covery service (5). Thereafter, a system integrator will query into the problem
space of the GDM for available/deployed component information (6), and then
command the resource discovery service (7) to fetch the required components
(5,8) for assembly. The component assembly is subject to validation (9) based
on specified QoS requirements. If it is not validated (11), then the integrator
has to initiate the query and integration process iteratively. As it can be seen
from above, the GDM stands as a crucial part of UniFrame, and how GDM is
represented so as to facilitate the component assembly is of vital importance.
We call the means to represent GDM generative domain modeling, which is
further detailed in the next section.

3 Overview of the Approach

3.1 Specification of Components in the Solution Space of the UniFrame GDM

Components in UniFrame are specified using the formalism of Two-Level
Grammar (TLG) [4]. The specification in TLG provides flexibility in trans
lating TLG specifications to other representations, such as other formal spec-.
ification languages like the Vienna Development Method [21], or application
code [6]. TLG contains two context-free grammars, one describing type do
mains and the other describing rules and operations on those domains. Note
it is not required to have both levels. Below is a template TLG specification.

4

•

•

•

CAO

class Identifier-1
Identifier-1, Identifier-ml

DataType-n1.
DataType1; DataType2; ... ;

Function-signature-1, ... Function-signature-m2 :
function-call-1,function-call-2, ... , function-call-n2.

end class Identifier-1.

The line containing "::" denotes the first-level type domain definition, for
which the right hand side of"::" provides the type (which is called a meta-type)
while the left hand side provides the variable name. Note the right hand side
may specify multiple types at the same time, which are delimited by ";". The
left hand side may also have multiple variables separated by ",", which are of
the same meta-type as defined on the right hand side. Also note the meta-type
may form a hierarchy (meta-type hierarchy). For example, BankOperation
may be the meta-type of the Withdraw operation, while Service may be the
meta-type of the BankOperation. Consequently, Service is also regarded as
the meta-type of Withdraw.

The line containing ":" denotes the definition of the second-level rule/operation
(also called hyper-rule) over the first-level type domains. ';'can be used in the
right hand side of ":" to delimit multiple rules which share the same function
signature on the left hand side. Note both first-level and second-level may
contain multiple (including zero) sentences as opposed to just one sentence of
each in the above description.

3.2 Separation of Concerns in Generative Domain Modeling

Consider the following two component specifications in the GDM problem
space (note this simple example serves for the motivation purpose only-full
definition of a component description language is provided in Section 4.2).

Component BankServer
provides AccountManagement:

applies AccessControl
end Component

Component BankClient
requires AccountManagement:

uses RMI Server applying QoSMoni tor
end Component

In the BankServer specification, the provided service AccountManage
ment uses AccessControl. But as business rules are subject to change, the
BankServer may lift the AccessControl or enforce other type of controls, either

5

•

•

•

CAO

Functional Business rule enforcement

Specific technology instrumentation

Pre/post condition

...

Non-Functional Profiling

QoS Validation

QoS Instrumentation

...

Table 1
Assembly Related Aspects

of which will reduce the reusability of the original BankServer implementation
component. In the BankClient specification, the "RMIServer" and "QoSMon
itor" that are required for a server-side AccountManagement service represent
the glue/wrapping logic needed to integrate the client and server components.
This tangles the BankClient component and also reduces its reusability as
glue/wrapping requirements change.

Aspect-Oriented Programming (AOP) [18] provides a means to capture
crosscutting aspects in a modular way with new language constructs, and also
provides a join point model to "hook" the aspects with the base program. This
is the basis of augmenting the component specification approach with aspect
orientation in order to separate those crosscutting assembly-related aspects of
components. Those aspects do not need to be implemented by vendors. The '
separation will refine the granularity of GDM, and contribute to the maximal
combination, minimal redundancy, and maximum reuse, which are the desired
properties of implementation components (10] in the solution space of GDM.
Consequently, the component assembly process evolves into an aspect weaving
process. Table 1 provides the tentative catalog of assembly related concerns.

Figure 2 illustrates the aforementioned idea. The arrow ending with a
diamond figure represents the include relationship as in the standard UML 10

notation. Separation of concerns (23] is introduced into the domain analysis
phase, the output of which is the GDM. The GDM includes the concerns
identified at the domain analysis phase (which are also called early aspects 11) ,

and those aspects are collectively stored into a repository called the aspect
library. This aspect library corresponds to the configuration knowledge as
indicated in Section 2.1. The GDM also includes Component Description
Language (CDL, the actual definition to be provided in Section 4.2) in its
problem space part; the CDL is also used as a guideline for implementation

10 Unified Modeling Language, http://www.omg.org/uml
11 http://early-aspects.net/

6

-- ---------------- ----------------------------------

•

•

•

. ~e CDL
• o,e\'V.

~~
~~ . I
I I
! Compone It Select/

CAO

Domain Analysis!

GDM

~! I .

I Aspect Librarj
~

Weaved Specification i Repository Referenc
: i '--~~~~~~~~~----'

~~~___,) 

Glue/Wrapper cod 

Fig. 2. Aspect-Oriented Generative Domain Modeling 

of components by different vendors. Upon an ordering request over the GDM 
problem space, the CDL in the problem space will be weaved with involved 
assembly aspects into the specifications for glue/wrapper code generation, 
which by referencing the implementation components, will be used to generate 
final glue/wrapper code to connect the components. 

4 Multi-Stage Component Assembly 

Before we detail the component assembly process in Section 4.3, we provide 
the related specification definitions in Section 4.1 and 4.2. 

4-1 Definition and Use of Aspect 

In such AOP languages as AspectJ [19], aspects are defined in a way that is 
closely bound to the base program (the join point is specified syntactically 
based on the base program). In contrast, in Figure 2, aspects are separately 
stored as a library. Thus, a join point model is required to hook the aspects to 
the targeted program so as to apply the related advice provided in the aspect. 

Aspect Description Language (ADL)is defined as follows: 

aspect <aspectname> 
advises: <Meta-type>. 

7 



.-------------------------------------- -- ----------

• 

• 

• 

[before: <advice>.] 
[after: <advice>.] 

end aspect <aspectname> 

CAO 

The name enclosed in "<>" represents a grammar variable, which will be 
exemplified in Section 4.3. The "[]" is used to delimit a part that is optional. 
Those notations apply to the following Aspect Usage Language (AUL) and 
CDL as well. The <Meta-type>, which is defined as in Section 3.1, is used 
to specify the types of domain services that this aspect can be applied. The 
advice following the directive before/after provides the pre/post actions to 
be performed or pre/post conditions to be enforced before/after the domain 
services, which can be used for temporal dependency specification and trac
ing/QoS code instrumentation. For example, in [30], before/after advice is 
used to specify rules for model checking. Consequently, the aspect library 
represents a collection of assembly rules. 

A UL is defined as follows: 

apply <aspectname> on <type> [when <relational-expression>] 

<aspectname> corresponds to an assembly-related aspect, which already pro
vides a means to specify assembly rules as described in the preceding para
graph. The <type> has to be consistent with the applicable <metatype> in 
the ADL of <aspectname>. By consistent we mean the <metatype> as in the 
ADL of <aspectname> should reside at the root position of some meta-type 
hierarchy (see Section 3.1 for definition), where <type> is part of the hierar
chy. The when directive in AUL further specifies the scenarios using relational 
expressions, under which this aspect can be applied; in addition to the base
program oriented weaving such as in AspectJ [18], the advice quantification 
[12] here is also user-case oriented. It's quite straightforward that AUL can 
be used in product ordering specification as indicated in Section 2.1. Note 
the definitions of ADL and AUL are inspired by [11], where non-functional 
aspects are separated from components themselves to increase the component 
(and non-functional aspect) reuse, and the non-functional aspects are handled 
with similar language constructs as ADL and AUL described here. 

4.2 Component Description Language (CDL) 

CDL is used in the problem space of GDM to specify the components, their 
required and/ or provided services in a way to achieve maximal combination, 
minimal redundancy, and maximum reuse (as mentioned in Section 3.2) as 
the result of aspect-oriented generative domain modeling. CDL is defined in 
TLG as described in Section 3.1 . 

8 



• 

• 

• 

CAO 

component <componentname> 
<DomainVariable1>, .. <DomainVariable-m> 

<DomainType-1>; <DomainType-2>;; <DomainType-n>. 
[requires <Domain-Specific-Service>: 

function-call-11, function-call-12,, function-call-in.] 
[provides <Domain-Specific-Service>: 

function-call-21, function-call- 22,, function-call-n.] 
end component <componentname> 

The first level of CDL provides the type-hierarchy of domain variables. The 
requires/provides specification constitutes the second level. For the requires 
specification, the right-hand side details the requirements; for the provides 
specification, the right-hand specification further specifies the semantics of 
the provided services. 

4.3 Aspectual Component as a Paradigm of Component Assembly 

The Aspect Library as shown in Figure 2 captures the general business and 
technology requirements in terms of assembly-related concerns, and a single 
AUL expression addresses a single concern. In contrast, a component captures 
groups of behaviors and component assembly captures groups of concerns with 
mixed scenarios. Aspectual Component is used here to address the group of 
concerns occurring in the component assembly scenario . 

The concept of aspectual component 12 is firstly proposed in [22], for which 
aspects are decoupled from the base program by being defined as a generic as
pectual component, which is instantiated later over a concrete data-model us
ing a connector construct. Examples of aspectual components and connector 
specifications will be provided in the following section. The concept of aspec
tual component fosters the integration between AOSD (Aspect-Oriented Soft
ware Development) and Component-Based Software Development (CBSD) 
([8], [29]). The aspectual component model will also be used here for com
ponent assembly. However, the original aspectual component is in Java, while 
here it is a language-independent specification in TLG. The connector spec
ification classifies server components' related services into a category based 
on meta-type. The connector specification also includes related operations 
associated with the meta-type. The meta-type can be regarded as one kind of 
join point in AOP, while the related operations in the connector specification 
provides advice. The meta-type in an aspectual component is the basis upon 
which client and server component get hooked up; the join point model to be 
used is again type-based as in Section 4.1. 

We integrate the ideas into an process diagram in Section 4.3.1, which is 
reified by an example in Section 4.3.2. 

12 Note in our own context, the definition of aspectual component is subject to adjustment 
over its original definition in [22]. 

9 



• 

• 

• 

CAO 

4. 3.1 The Overall Picture 
Figure 3 provides the multi-stage component assembly process. Stage 1 is 
mainly about the introduction of the GDM (from domain analysis), which in
cludes CDL in problem space and Aspect Library as configuration knowledge. 
Stage 2 involves the weaving of the aspect specification into the component 
specification for each component involved in the assembly process. Stage 3 il
lustrates the process of the component assembly specification generation based 
on the aspectual component model. This stage involves a connector repository, 
where the connector specifications will be registered, and the aspectual com
ponent will initiate a query into the connector repository to find the matching 
connector specification based on meta-type consistency, and to apply the as
sociated advice thereafter. The connector specification is translated from the 
CD Ls of the server component (service provider) and the aspectual component 
specification is translated from the client component (service consumer). Af
ter the full assembly specification is generated, by referencing the component 
repository (which stores the set of component UMM specifications retrieved 
by the discovery service in UniFrame), glue/wrapper code will be generated 
in the final step. 

4.3.2 An Example 
To help clarify the aforementioned process, a simple example is provided be
low, demonstrating how the aspectual component approach can be adapted to 
the component assembly process. Assume that the component A is a banking 
domain client component written in Java RMI requesting some banking ser
vice from a server. Below is the partial specification of A's CDL: 

A.O Component A 
A.1 BankOperation:: Service. 
A.2 Bank: :BusinessDomain. 
A.3 Platform: :TechDomain. 
A. 4 requires BankOperat ion: Platform= ' 'RMI' ' . 
A. 5 end Component A. 

Below is an AD L for a QoS measurement aspect stored in the Aspect Li
brary and AUL to use that aspect. 

aspect QoSMeter 
advises: BankOperation. 
before: Event Trace. setBeginTime (). 
after: EventTrace. setEndTime (). 

end aspect QoSMeter 

apply QoSMeter on A. BankOperation . 

10 



• 

• 

• 

GDMI 
«client» 

CAO 

Stage I: gen ration of 
GDM (from omain 

~--'-----, analysis) 

Stage 2: weaving 
aspects into component 
specification 

[~ 

Component 
Repository 

Register 

Query 
Connector Repository 

Select/ 
.ie--,,R,-e""""fe-re_n_ce---1 Assembly Specification 

Glue/Wrapper Code 

Stage 3: gene ion of 
component ass mbly 
specification vi 
aspectual-com onent 
weaving 

Stage 4: generati n of 
glue/wrapper cod 

Fig. 3. Multi-Stage Gluing/Wrapping 

The above specification of component A weaved with QoSMeter aspects 
will be translated into the following aspectual component specification: 

B. 0 AspectualCom A 

B.1 Bankoperation:: Service. 
B.2 Bank: :BusinessDomain . 
B. 3 expect Bankoperation. 

11 



• 

• 

• 

CAO 

B. 4 expect wrap Argument. I /usage interface 
B.5 replace Bankoperation://modification interface 
B.6 EventTrace.setBeginTime(), 
B.7 expected{).wrap(<<Platform=ccRMI''>>), 

//each<< ... >> corresponds to each 
II expression in right hand side of cc·'' of A4 

B.8 EventTrace.setEndTime(). 
B. 9 end AspectualCom A 

B.6 and B.8 are weaved from the QoSMeter aspect representing client
side concerns. Note those lines prefixed by expect denote operation signatures 
that are expected to be supplied with advice (which actually corresponds to 
server-side services requested), and the expect-directive corresponds to the 
join points in AOP. Expected operations are either used (usage interface) 
or modified (modification interface, preceded with replace) in the aspectual 
component definition. This process is similar to that described in [22]. 

Assume the component B is a banking domain server component imple
mented in CORBA providing some banking services. 

C. 0 Component B. 
C.1 Withdraw, Deposit:: Port;Bankoperation. 
C.2 Bank: :Domain. 
C.3 Platform: :TechDomain 
C.4 provides Bankoperation: Platform= c ccORBA''. 
C. 5 end Component B. 

Note in line C.1, the two types denoted in the right hand side of "··" 
means both withdraw and deposit are not only Port(s) (which means they are 
banking services offered to external components), but also Bankoperation(s). 

Below is an ADL for an Access Control aspect [5] from the Aspect Library. 

aspect AccessControl 
advises: Service. 
before: Log. Check(). 

end aspect AccessControl 

This aspect can be applied to any Service (meta-type, thus applicable to 
Withdraw). Consequently, before each call to Service, Log. Check() will be 
called to verify the credentials. 

The following specification will be translated from the component B spec
ification with the AUL of the preceding aspect AccessControl. 

D. O connector A-B 
D. 1 {B. Withdraw, B. Deposit} is BankOperation. //join points 

12 



• 

• 

• 

CAO 

D.2 wrap(Argument): 
D. 3 apply AccessControl on B. Wi thDraw, B. Deposit, 
D. 4 apply RMI Aspect on BankOperation when 
D. 5 Argument. getname ( ' 'Platform' ') ==' 'RMI' ' 
D. 6 end connector A-B 

Note that lines D.2-D.5 further implement the advice part for the join 
points (here, Withdraw and Deposit operations). The body of wrap is to wrap 
the BankOperation with RMI specific code. This is similar to [24), in which 
CORBA related operations are modularized as aspects and then woven into 
application code to derive a CORBA implementation. The difference here is 
that, those RMI or CORBA related aspects are pre-built and retrieved from 
the aspect library, and they are represented with high-level specifications (in 
ADL) rather than at the application code level. Upon weaving in Stage 4, the 
wrap routine in the connector specification will be weaved into the aspectual 
component specification. 

The example illustrated in this section shows that assembly-related con
cerns (functional and non-functional) of two components can be handled in 
separate modules (here in the aspectual component definition and connector 
specification) from the component specification itself. ADL and AUL provide 
leverage for the assembly process itself to be easily specified and managed. 
Consequently the assembly can be implemented by using a weaver to weave 
assembly-specific advice together with component specifications . 

5 Discussion 

UniFrame, the motivating project of the component assembly approach pre
sented here, aims at automating the process of integrating heterogeneous com
ponents to create distributed systems that conform to quality requirements. 
Generative Programming (GP) is the underpinning solution to fulfill this vi
sion. In order to realize the vision of GP for the highest level of automation, 
during the domain engineering phase, the creation of the domain model may 
be applied using Model Integrating Computing (MIC) [20], which is a tech
nology for using domain-specific modeling and a model based generator to 
compose systems of various forms. MIC has been applied to create a Generic 
Feature Modeling Environment (GFME) [7] to model system families and 
generate reusable assets automatically. Based on the component assembly ap
proach presented in this paper, Table 2 describes generative programming in 
UniFrame. 

Also note the assembly paradigm described in Section 4.3 follows a client/server 
architecture, whereby the client component (service consumer) specification 
is translated into the aspectual component specification. In the event the 
components to be assembled are not following that kind of architecture, the 
ordering specification itself may be translated into an aspectual component 

13 



r---------------------------------------------

• 

• 

• 

CAO 

Generative Programming 

Feature modeling 

Components are generated 
in domain implementation 
phase 

Configuration Knowledge 

Mapping of problem space 
to solution space 

UniFrame 

GFME 

Components are imple
mented by vendors. Gener
ation only occurs at system 
level 

Aspect Library 

Resource Discovery Service 
to search components based 
on component specification 

Domain Specific Language CDL, AUL, ADL 
(DSL) 

Generator Aspect Weaver 

Table 2 
Generative Programming in UniFrame 

specification, and then the assembly process as shown in Figure 3 can be 
applied . 

6 Related Work and Conclusion 

Recently, there has been work on the application of AOSD to CBSD. One 
notable work is the aspectual component [22] as described in Section 4.3, 
which provides a language approach to the effort of reusing aspects. The 
aspectual component model is adjusted and used here for component assem
bly. Grundy further introduces the notion of Aspect-Oriented Component 
Engineering (AOCE) ([13], [14], [15], [16]). The aspects in AOCE have a 
broad definition, which include user interfaces, collaborative work, distribu
tion, persistency, memory management, transaction processing, security, data 
management, component inter-relationships, and configuration characteris
tics. AOCE, as an engineering approach, covers the lifecycle of component 
engineering, from component requirements and specification, to implementa
tion, deployment, and testing. In contrast to AOP, which highly relies on code 
weaving, AOCE aims to use aspect-codified capacities to support component 
provisions and requiring of aspect-related services in a general way. In this 
sense, AOCE can be applied for building the aspect library. None of the re
lated work ever considers applying AOSD to assist the component assembly, 
however. 

This paper presents an approach to apply aspect orientation in the gen
erative domain modeling phase and then leverage the aspect weaver to help 

14 



• 

• 

• 

CAO 

component assembly, in particular, for assembling components of client/server 
architecture. Two repositories (aspect library, connector repository) are used, 
which aligns with the distributed component assembly style. A type-based 
join point model is used which can efficiently decouple the aspect definition 
and aspect usage to promote the reuse of aspects. Compared with the inva
sive composition approach as described in [1], we weave the assembly-related 
concerns toward ultimately generating stub/skeleton code for gluing/wrapping 
components, while the original components (which represent the business logic 
core), together with their references to stub/skeleton code, will not be affected. 
This is necessary for black-box components which do not allow invasive meth
ods. 

Future work includes the evolution of the aspect library, the application 
of MIC to domain engineering to automatically generate CDL, and the de
velopment of the weaver to weave CDL and ADL. The implementation of 
glue/wrapper code generation based on the generated assembly specification 
using the UMM specifications of discovered components must also be inte
grated into this process. 

7 Acknowledgements 

We'd like to acknowledge the anonymous reviewers for their helpful sugges
tions. This research is supported by the U. S. Office of Naval Research under 
the award number N00014-0l-1-0746 . 

References 

[1] ABmann, U., "Invasive Software Composition," Springer-Verlag, 2003. 

[2] Brahnmath, G. J., Raje, R.R., Olson, A. M., Auguston, M., Bryant, B. R., Burt, 
C. C., A Quality of Service Catalog for Software Components, Proceedings of 
the Southeastern Software Engineering Conference ((SE) 2 2002), pp. 513-520, 
April, 2002. 

[3] Brown, A. W., "Large-Scale Component-Based Development," Prentice Hall, 
2000. 

[4] Bryant, B. R., Lee, B.-S., Two-Level Grammar as an Object-Oriented 
Requirements Specification Language, Proceedings of 35th Hawaii International 
Conference on System Sciences, 2002, 
http:/ /www.hicss.hawaii.edu/HICSS_35/HICSSpapers/PDFdocuments/STDSL 
01.pdf. 

[5] Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A. M., Auguston, M., Model 
Driven Security: Unification of Authorization Models for Fine-Grain Access 
Control, Proceedings of 7th IEEE International Enterprise Distributed Object 
Computing Conference (EDOC 2003), pp. 159-171, September, 2003. 

15 



• 

• 

• 

CAO 

[6] Cao, F., Bryant, B. R., Burt, C. C., Raje, R. R., Auguston, M, Olson, A. M., 
A Translation Approach to Component Specification, OOPSLA '02 Companion, 
pp. 54-55, November, 2002. 

[7] Cao, F., Bryant, B. R., Burt, C. C., Huang, Z., Raje, R. R., Olson, A. M., 
Auguston, M., Automating Feature-Oriented Domain Analysis, Proceedings of 
2003 International Conference of Software Engineering Research and Practice 
(SERP 2003), pp. 944-949, June, 2003. 

[8] Choi, J. P., Aspect-Oriented Programming with Enterprise JavaBeans, 
Proceedings of 4th IEEE International Enterprise Distributed Object 
Computing Conference (EDOC 2000), pp. 252-261, September, 2000. 

[9] Colyer, A., Blair, G., Rashid, A., Managing Complexity in Middleware, 
Proceedings of the 2nd AOSD Workshop on Aspects, Components, and Patterns 
for Infrastructure Software (ACP4IS), March, 2003. 

[10] Czarnecki, K., Eisenecker, U. W., "Generative Programming: Methods, Tools, 
and Applications," Addison Wesley, 2000. 

[11] Duclos, F., Estublier, J., Morat, P, Describing and Using Non Functional 
Aspects in Component Based Applications, Proceedings of 1st International 
Conference on Aspect-Oriented Software Development (AOSD 2002), pp. 65-75, 
2002. 

[12] Filman, G., Friedman, D., Aspect-Oriented Programming is Quantification and 
Obliviousness, Proceedings of OOPSLA Workshop on Advanced Separation of 
Concerns, pp. 168-177, October, 2000. 

[13] Grundy, J. C., Multi-perspective Specification, Design and Implementation of 
Components using Aspects, International Journal of Software Engineering and 
Knowledge Engineering, 10(6):713-734, December 2000. 

[14] Grundy, J.C., An Implementation Architecture for Aspect-oriented Component 
Engineering, Proceedings of the 2000 International Conference on Parallel and 
Distributed Processing Techniques and Applications, pp. 249-256, June, 2000. 

[15] Grundy, J., Patel, R., Developing Software Components with the UML, 
Enterprise Java Beans and Aspects, Proceedings of the 2001 Australian 
Software Engineering Conference, pp. 127-136, August 2001. 

[16] Grundy, J. C., Ding, G., Automatic Validation of Deployed J2EE Components 
Using Aspects, Proceedings of the 17th IEEE International Conference on 
Automated Software Engineering (ASE 2002), pp. 47-58, September 2002. 

[17] Keller, R., Holzle, U., Binary Component Adaptation, Proceedings of European 
Conference on Object-Oriented Programming (ECOOP'98), Springer-Verlag, 
LNCS 1445, pp. 307-329, 1998. 

[18] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, 
J.-M., Irwin, J., Aspect-Oriented Programming, Proceedings of European 
Conference on Object-Oriented Programming (ECOOP'97), Springer-Verlag, 
LNCS 1241, pp. 220-242, 1997. 

16 



• 

• 

• 

CAO 

[19] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W., An 
Overview of AspectJ, Proceedings of European Conference on Object-Oriented 
Programming (ECOOP'Ol), Springer-Verlag, LNCS 2072, pp.327-353, 2001. 

[20] Ladeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J. and. 
Karsai, G., Composing Domain-Specific Design Environments, IEEE Computer, 
34(11):44-51, 2001. 

[21] Lee, B.-S., Bryant. B. R., Automated Conversion from Requirements 
Documentation to an Object-Oriented Formal Specification Language, 
Proceedings of ACM Symposium on Applied Computing (SAC 2002), pp. 932-
936, 2002. 

[22] Lieberherr, K., Lorenz, D., Mezini, M., Programming with Aspectual 
Components, Technical Report, NU-CCS-99-01, 1999, 
http:/ /www.ccs.neu.edu/research/ demeter /papers/ aspectual-comps/ aspectual 
.ps. 

[23] Parnas, D., On the Criteria To Be Used in Decomposing Systems into Modules, 
Communications of the ACM, 15(12): 1053-1058, December 1972. 

[24] Pulvermuller, E., Klaeren, H., Speck, A., Aspects in Distributed Environments, 
Proceedings of Generative Component-based Software Engineering (GCSE 99), 
Spinger-Verlag, LNCS 1799, pp. 37-48, September 1999. 

[25] Raje, R., UMM: Unified Meta-object Model for Open Distributed Systems, 
Proceedings of 4th IEEE International Conference of Algorithms and 
Architecture for Parallel Processing (ICA3PP 2000), pp. 454-465, 2000. 

[26] Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M., Burt, C. C., A Quality 
of Service-Based Framework for Creating Distributed Heterogeneous Software 
Components, Concurrency and Computation: Practice and Experience, 
14(12):1009-1034, 2002. 

[27] Siram, N. N., Raje, R.R., Auguston, M., Bryant, B. R., Olson, Burt, C. C., A. 
M., An Architecture for the UniFrame Resource Discovery Service, Proceedings 
of 3rd International Workshop on Software Engineering and Middleware (SEM 
2002), Springer-Verlag, LNCS 2596, pp. 22-38, 2002. 

(28] Sutherland, J., Heuvel, W.-J. v. d., Enterprise Application Integration and 
Complex Adaptive Systems, Communications of the ACM, 45(10):59-64, 
October, 2002. 

(29] Suvae, D., Vanderperren, W., and Jonckers, V., JAsCo: an Aspect-Oriented 
approach tailored for Component-based Software Development, Proceedings. of 
the 2nd International Conference on Aspect-Oriented Software Development 
(AOSD 2003), pp. 21-29, March, 2003. 

(30] Ubayashi, N., Tamai, T., Aspect-Oriented Programming with Model Checking, 
Proceedings of the 1st International Conference on Aspect-Oriented Software 
Development (AOSD 2002), pp. 148-154, April, 2002 . 

17 



• 

• 

• 

QoS-UniFrame: A Petri Net-based Modeling Approach to Assure QoS 
Requirements of Distributed Real-time and Embedded Systems1 

Shih-Hsi Liu 
Barrett R. Bryant 
Jeffrey G. Gray 

Univ. of Alabama at Birmingham 
Birmingham, AL 35294, USA 

{liush,bryant,gray }@cis.uab.edu 

Rajeev R. Raje 
Andrew M. Olson 

Indiana Univ. Purdue 
Univ. Indianapolis 

Indianapolis, IN 46202, USA 
{ rraje,aolson }@cs.iupui.edu 

Mikhail Auguston 
Na val Postgraduate School 
Monterey, CA 93934, USA 

maugusto@nps.navy.mil 

Abstract 
Assuring quality of service (QoS) requirements is crit

ical when assembling a distributed real-time and embed
ded (DRE) system from a repository of existing components. 
This paper presents a two-level approach for assuring sat
isfaction of QoS requirements in the context of a reduced 
design space for DRE systems. A dynamic and parallel 
approach is introduced to prune off the infeasible design 
spaces at the first level. Evolutionary algorithms cooperat
ing with a domain-specific scripting language then discard 
less probable design spaces using statistics. These tech
niques fulfill the collective objectives of pruning and assur
ing the design space at system assembly time. 

1. Introduction 

Distributed real-time and embedded (DRE) systems are 
widely used in military, manufacturing, and control systems 
[ 17]. Many of these systems consist of legacy components. 
From the perspective of software engineering, there is an 
urgent demand to fulfill the need of the development, evo
lution and integration of DRE systems from existing com
ponents. This is in the vision of the UniFrame project [16]. 
During the synthesis of a DRE system, various appropriate 
components can be selected from a repository. However, 
numerous design and deployment decisions for the selected 
components usually generate a tremendous number of pos
sible alternatives for constructing a DRE system. The de
sign information (i.e., specific design and deployment deci- · 
sions and information of involved components) required for 
synthesizing a DRE system is called a design space [13]. 
Among the huge number of possible design spaces, many 
of them, in fact, do not satisfy the requirements of the DRE 
system (i.e., constraint satisfaction). In addition, construct-

1 This research was supported in part by U. S. Office of Naval Research 
award NOOOl4-01-J-0746. 

ing a DRE system (e.g., an avionics system) is naturally 
expensive and less modifiable. In order to decrease the pos
sibility of errors occuring after construction of a DRE sys
tem, validating a DRE system in advance is also necessary 
to conserve the future potential costs. Therefore, it is neces
sary to have a formal, manageable, scalable and automatic 
design space exploration approach to prune unsatisfactory 
design spaces (i.e., unsatisfactory assembled cases), and to 
validate the rest of the assembled cases of a DRE system 
from its requirements at system assembly time. 

In addition to functional requirements, quality of service 
(QoS) that pertains to the usage of resources is an impor
tant requirement of DRE systems. QoS parameters are used 
to evaluate the degree of performance of QoS using util
ity functions, which is the mathematical formulas that show 
the utility of QoS. For example, timeliness is a quantifiable 
QoS parameter that estimates whether the deadline is met by 
the addition of the execution time of involved components. 
Security, however, is a non-quantifiable QoS parameter 
that evaluates the level of security of a DRE system being 
achieved with a user-defined function. This paper presents 
a two-level assurance technique, called "QoS-UniFrame," 
for QoS of DRE systems assembled from components. This 
technique, based on artificial intelligence and statistics, re
duces the design space and validates QoS requirements at 
system assembly time. Consequently, we believe that dis
carding infeasible and less probable cases at system assem
bly time will require less runtime validation. In addition 
to assurance and validation, QoS-UniFrame concentrates 
on observing and adapting non-orthogonal QoS parameters 
(e.g., CPU usage and throughput) seldom addressed by re
searchers. QoS-UniFrame also exploits AspectJ [8] to pro
mote reusability and modularity by separating the source 
code to analyze constraints from that to construct design 
spaces. The modification of the constraint analysis code is 
convenient and isolated from the rest of the source code . 



• 

• 

• 

This paper is organized as follows: in the next section, 
background and related work are addressed; section 3 in
troduces the framework and techniques of QoS-UniFrame; 
section 4 provides a case study; finally, we conclude and 
point out the future work of the paper in section 5. 

2. Background and Related Work 

2.1 Background of QoS-UniFrame 

The implementation of QoS-UniFrame is based on two 
techniques described in the following subsections. 

2.1.1 Petri Nets 

System engineers need to make various decisions while 
constructing a DRE system. Different decisions may re
quire cooperation with different components. For one deci
sion, there may be diverse execution orders, execution time, 
and events to trigger execution among the chosen compo
nents. Therefore, there are a huge number of possible as
sembled cases generated based on different decisions and 
components with the consideration of various orders, time, 
and events. QoS-UniFrame reduces the complexity of ex
ploring all possible assembled cases for building a DRE sys
tem by evaluating their QoS requirements. The evaluation 
of QoS of a specific assembled case depends on when, what, 
and how the components request QoS requirements. When 
expresses the specific time or before/after a specific event 
a component has effect on a QoS parameter; what speci
fies which QoS parameter is inspected; how represents the 
relationship of data access among the components. 

In most QoS research (e.g., [13]), dataflow analysis is 
applied to explore possible solutions for assurance of QoS 
requirements. A segment of a dataflow is a directed arrow 
between two (sets of) components generated by a single de
cision. The directed arrow means that two (sets of) compo
nents have requests to access a QoS parameter from one to 
another, or have effect on a QoS parameter by cooperation 
between each other. For multiple decisions after a specific 
segment of a dataflow, multiple segments will be generated 
and flow to corresponding (sets of) components. Finally, 
various dataflows (also called QoS systemic paths), and the 
sequences of the segments of dataflows, will be generated 
as a tree structure by different decisions. Namely, the leaves 
of the tree are all possible assembled cases created based on 
different decisions. However, the dataflow analysis is not 
sufficient for analyzing DRE systems, because some QoS 
analyses require additional information. For example, in 
some DRE systems, the performance of the systems relies 
on the levels of QoS to be achieved. Different levels of 
QoS will trigger corresponding events, and vice versa. Fur
thermore, time and priority constraints also influence QoS. 
All of these characteristics show the difficulty for dataflow 
analysis to assure QoS requirements of DRE systems . 

A Petri Net is a formalism similar to dataflow analysis, 
but has additional abstractions beneficial in modeling con
current and asynchronous systems [14]. It is expressed by 
a Petri Net graph, which is a visual representation that can 
model a DRE system. A Petri Net graph consists of abstrac
tions adequate to analyze QoS requirements of possible as
sembled cases of a DRE system. Tokens represent QoS pa
rameters with the identifiers, and the types and ranges of the 
parameters. Places, (sets of) components in a DRE system, 
are the same as the starting and end points of a segment of a 
dataflow in the dataflow analysis. Flows, same as dataflows, 
control the flowing direction of the QoS parameters. Transi
tions embody associated predicates and functions for time, 
priorities and event triggers to determine what, when and 
how QoS parameters are to be processed [14]: only when 
specific conditions are satisfied can the QoS parameter be 
processed by descendent components. 

co C1 C2 C3 
11110000 

~ 
00001001 1001~110 2 00111000 

C4 cs cs C7 0 3 

(a) PetriNet Graph (b) Reachability Tree 

Figure 1. The Petri Net graph and its reacha
bility tree example. 

To explore various possible assembled cases, the reacha
bility tree is exploited to diagnose a Petri Net graph. Figure 
1 (a) is a simple Petri Net that shows the formalism to model 
a DRE system with various design decisions and time and 
event concerns described below. Assume that eight com
ponents (CO to C7) constitute a simple DRE system. Both 
Cl and C2 have two decisions such that Cl can either work 
with CO or C2, and C2 can cooperate with Cl or C3. A 
QoS parameter (black token) that processes Cl and C2 will 
be accessed by both C5 and C6. C4, C5 and C6, and C7 
can deal with the QoS parameter at time ti, t2 and t3, re
spectively. Cl and C2 with two flows means the token will 
stream to one of two transitions without preference (i.e., al
ternative decisions). Finally, transition B and C verify if 
C2 has an event (gray token) execution that triggers C5 and 
C6 to access the QoS parameter. For B, three conditions 
cause the black token stream to CS and C6: the black to
kens in Cl and C2 are both flowing in; the gray token in 
C2 is flowing in, and is verified by B; and timer is at time 
t2. Consequently, one assembled case is made, and branch 
1 of Figure 1 (b) is constructed correspondingly. Figure 1 
(b) is the reachability tree of Figure 1 (a) generated by the 
construction principles stated above. The purpose of a Petri 
Net is to explore and generate possible assembled cases by 
its reachability tree based on the design decisions, selected 



• 

• 

• 

components considering priorities, events, and time. 
There are several advantages to modeling DRE systems 

using Petri Nets. First, as stated before, Petri Nets' abstrac
tions and characteristics are appropriate to simulate DRE 
systems, either for functional or nonfunctional require
ments. They overcome the insufficiency of the dataftow 
analysis. In addition, the transitions regarding priority, time, 
and events infer the concept of dynamic decision making 
such that only when a specific transition is persuaded can 
an assembled case by the decision be generated. 

2.1.2 AspectJ 
Aspect} [8] is an aspect-oriented programming (AOP) lan
guage [9] for Java. It provides a modular mechanism to 
avoid the error-prone, fragile and tedious modification work 
for constraint analysis. An aspect recognizes the points of 
the method crosscutting Java's classes using pointcuts, and 
then defines how the modification should be made using ad
vice. The aspect code is weaved into the Java base code 
with good modularity such that any change of the modifi
cation is isolated in the aspect. Hence, AspectJ promotes 
a better means to modularize and reuse the source code. 
QoS-UniFrame exploits AspectJ to recognize the methods 
of the reachability tree construction, and insert the con
straint analysis method code. 

2.2 Related Work 

An Ordered Binary Decision Diagram (OBDD) [2] ap
plies symbolic representations (i.e., binary encodings) to 
prune off the unsatisfactory design spaces [13]. It encodes 
mode space (i.e., functional behaviors that QoS-UniFrame 
does not cover), configuration space (i.e., dataftow), and 
constraints into binary representations. Binary operations 
are used to compute the fulfillment of constraints. How
ever, the OBDD method suffers from the following disad
vantages. First, binary operations for addition and multi
plication are rigid and not user-friendly. It is not easy for 
system analysts to adjust the evaluation of pruning design 
spaces adaptively. In addition, this binary method requires 
sufficient temporary variables for computation. Second, 
many of the QoS parameters are non-orthogonal such that 
adjustment of one QoS parameter may substantially affect 
other QoS parameters. It is hard to specify a composite non
orthogonal constraint by means of conjunction and disjunc
tion. A quantitative expression (e.g., a linear or nonlinear 
function) would be a better alternative. Third, the OBDD 
representation is not mature enough to solve system-level 
constraint problems and "the scalability of the method be
comes susceptible and results in an exponential blow-up in 
OBDD representation" (13]. Most importantly, OBDD is a 
static design space pruning approach such that the computa
tion can be processed when a dataftow with corresponding 
constraints is entirely constructed. All of these disadvan
tages motivate the development of QoS-UniFrame. 

There has been considerable research to validate 
scheduling requirements of DRE systems. In [3], the timing 
constraint is validated by a symbolic model checking ap
proach. Symbolic model checking is an extension of model 
checking such that analysis is based on symbolic transition 
representation and propositional logic with the extension of 
time operators. In [4] and [6], specialized Petri Nets were 
applied to verify time behaviors of DRE systems. All assur
ance by either model checking or Petri Nets has an inherent 
problem that validation does not always guarantee that the 
actual synthesized DRE systems are perfectly satisfactory: 
unpredictable behaviors that sometimes occur in DRE sys
tems degrade the confidence of validation. Therefore, sup
portive statistical references utilized by QoS-UniFrame will 
be valuable as unpredictable behaviors occur. 

3 QoS-UniFrame 

Before the details of QoS-UniFrame are addressed, a 
brief example is given to illustrate why and how QoS
UniFrame solves the design space exploration problem with 
the constraint satisfaction: 

A water treatment plant requires deploying new treat
ment units (TVs) to two new water treatment pools. Under 
the limit of the budget, the system and deployment engineers 
would like to ascertain the best performance of collective 
TVs from the blueprint. During the system design stage, 
different design and deployment decisions are made such as 
the order and the priority of the TVs, and the locations of 
the specialized TVs. In addition, the deployment of the TVs 
has various restrictions such as the bandwidth and the sig
nal strength of the wireless network, the life of a battery in 
each TU, and the processing speed of the CPU in each TU. 

Numerous decisions and constraints require concentra
tions in this project, and many of them have mutual effects. 
Hence, a manual procedure to construct and manage this 
project is error-prone and tedious. QoS-UniFrame answers 
these requests to ease the workload of the design decisions 
with constraints of the project. Starting from functional and 
nonfunctional requirements, a use case scenario is analyzed 
to determine the static and dynamic QoS requirements. Sys
tem engineers construct a visual Petri Net model according 
to their design and deployment decisions. The system engi
neers depict the mutual behaviors of each component based 
on their QoS parameters in the Petri Net model. System an
alysts write the AspectJ codes with respect to the evaluation 
of strict or orthogonal static constraints (defined later), such 
as the total capacity of the batteries of TUs. These aspects 
are weaved into a dynamic and parallel approach to gen
erate a tree abstraction including all feasible cases. Back
tracking and branch-and-bound algorithms are employed to 
prune off infeasible assembled cases based on strict or or
thogonal static QoS requirements at the first level. System 



• 

• 

• 

analysts then write a domain-specific scripting code of evo
lutionary algorithms. The source code takes non-orthogonal 
or non-strict static, and dynamic QoS (defined later) into ac
count with specific mathematical functions. The evolution
ary algorithms will generate statistical results automatically. 
The less probable cases will be eliminated according to the 
discarding policies written in the domain-specific scripting 
code. The survival cases will be stored back to the knowl
edge base with their statistical information. Figure 2 shows 
the framework of QoS-UniFrame. 

Discard. Strict 
Static QoS 

Requirements Do 
Not Meet 

Statistical 
Results of 
Non·strlct 

Static QoS of 
Design Spaces 

Statlstlcal 
Results of 

Dynamic QoS of 
Design Spaces 

Figure 2. The framework of QoS-UniFrame. 

3.1 Classification of QoS Parameters 

QoS-UniFrame currently concentrates on those QoS re
quirements that can be quantified. Namely, non-quantifiable 
QoS requirements (e.g., security and reliability) are out of 
our scope. QoS-UniFrame further classifies quantifiable 
QoS requirements into static and dynamic. Static QoS is 
design-related, and dynamic QoS is substantially influenced 
by the deployment environment. Many of the static QoS re
quirements can be evaluated at component assembly time, 
yet dynamic QoS requirements need either simulators or 
virtual machines to monitor, predict, and adapt the QoS con
cerns. However, several dynamic QoS requirements can be 
assessed by referring to a component's previous state and 
observations, as stored in a knowledge base at assembly 
time. Static and dynamic QoS parameters may be further 
subclassified into strict and non-strict, and orthogonal and 
non-orthogonal QoS. Strict QoS requirements (e.g., hard 
deadlines) force DRE systems to meet the requirements. 
Otherwise, the system will be incorrect because it cannot 
meet its QoS. Non-strict QoS requirements (e.g., soft dead-

lines) allow margins of error when meeting QoS require
ments. The performance of the system will be degraded ac
cording to the magnitude that non-strict QoS requirements 
are not assured. Orthogonal QoS implies that its adaptation 
will not influence other QoS, yet non-orthogonal QoS sub
stantially affects other QoS directly or indirectly. According 
to the hierarchy of classification, QoS-UniFrame separates 
static and dynamic QoS into a two-level assurance process. 

3.2 Petri Net-based QoS Modeling 

In order to explore design spaces efficiently and assure 
QoS requirements manageably, a formal approach to model 
and analyze the components of a DRE system with respect 
to its QoS is necessary: a Petri Net-based QoS modeling 
language has been created in the Generic Modeling Envi
ronment (GME) [IO]. 

public aspect Analysis ( 
pointcut Monitor (QosPar par) 

call (public void. * .createNode ( .. )) && arga (par); 
after (QosPar parl) : Mani tor (par!) 
( double temp=O; 

} 

if (parl.getName() .equals ( "MPC")) 
I /MPC stands for •Maximum Flow Processing Capacity• 
temp=parl .getValue (); 
I /evaluate MPC' s QoS requirement ) 

after (QosPar par2) : Mani tor (par2 l 
( double temp=O; 

if (par2.getName() .equals("BL")) 
//BL stands for •Battery Life• 
temp=parl .getValue (); 
//evaluate BL' s QoS requirement 

Figure 3. Constraint analysis method code for 
QoS parameters written in AspectJ. 

As stated before, a Petri Net can explore and produce de
sign spaces using the reachability tree. QoS-UniFrame eval
uates strict or orthogonal static QoS requirements as a child 
node of a reachability tree is generated, and remove infeasi
ble child nodes. Thus, strict or orthogonal static constraint 
analysis methods crosscut the source code of the child node 
construction of the reachability tree. The source code that 
analyzes constraints is written in AspectJ [8] as shown in 
Figure 3, and is weaved into the source code of the child 
node construction. In Figure 3, pointcut "Monitor" recog
nizes the method that generates a child node of the reach
ability tree. The first after advice statement evaluates the 
maximum flow processing capacity (MPC). It shows that 
after the "createNode" method is called, the QoS parameter 
is accessed, and then is evaluated by bounding and criterion 
functions (defined later). The second after advice statement 
evaluates the battery life (BL) using different bounding and 
criterion functions after the "createNode" method is called. 

Implementing Petri Nets with GME and AspectJ con
tributes several merits. Because GME is a metaconfigurable 
modeling tool that permits customization [10], Petri Net 
models (i.e., simulation of DRE systems) can extend new 



• 

• 

• 

features easily. Clear and appropriate syntactical and se
mantic design constraints supported in GME moderate the 
possibility of the errors occuring at the design phase. The 
visual modeling environment of GME also provides a user 
friendly and easily manageable environment for system en
gineers. In addition, separation of concerns of construction 
of QoS systemic paths and constraint analysis methods pro
motes reusability and modularity of source code. Various 
orthogonal QoS parameters can be evaluated concurrently 
by writing different advice in the analysis aspect (Figure 3). 
In this context, concurrency means that all of the constraint 
analysis codes are embedded in a child node construction 
method; namely, all advice crosscuts the same pointcut. 
Thus, it is necessary to define the advice precedence (i.e., 
weaving order of the advice) to avoid conflicts. 

3.3 Backtracking and Branch-and-bound 

In order to decrease the design spaces dynamically, the 
reachability tree construction code arid its analysis aspect 
(Figure 3) are embedded into backtracking or branch-and
bound (BIB) algorithms (7). The BIB algorithm that QoS
UniFrame exploits is the first level assurance to evaluate sta
tic QoS parameters that are strict and orthogonal, as in [ 13). 
The backtracking algorithm employs a depth-first search on 
the reachability tree structure with bounding and criterion 
functions. Bounding functions are the constraints of strict 
and orthogonal static QoS requirements, and criterion func
tions (i.e., QoS utility functions) are used to determine the 
optimal solutions of a QoS systemic path, either maximal or 
minimal. The backtracking algorithm constructs the reach
ability tree from the root by depth-first search. It evaluates 
the bounding and criterion functions at every intermediate 
node. If the criterion applied to certain nodes does not meet 
the bounding function, the backtracking algorithm will stop 
generating all descendant nodes. Alternatively, the branch
and-bound algorithm operates with the reachability tree us
ing various search algorithms. LC-search [7] is an improved 
search algorithm with a ranking function QoS-UniFrame 
chooses to implement. Similarly, the branch-and-bound al
gorithm traces from the root of a reachability tree. The rank
ing function determines the next node (i.e., live node) to 
be evaluated. LC-search intelligently ranks the live nodes 
to avoid the fixed order searches. Bounding and criterion 
functions in the backtracking algorithm play the same roles 
to stop constructing unsatisfactory child nodes. Therefore, 
the BIB algorithm dynamically eliminates the unsatisfactory 
design spaces based on strict and orthogonal static QoS re
quirements. Unlike most pruning design space approaches, 
such as [ 13), that evaluate one design space at a time, the 
BIB algorithm introduces a "parallel pruning concept" that 
cuts infeasible descendant leaves concurrently; namely, all 
the child nodes of an unsatisfactory intermediate node are 
discarded at the same time, which means infeasible design 

spaces are eliminated simultaneously. 

3.4 Evolutionary Algorithms 

In the DRE domain, it is tedious and time-consuming 
to validate one QoS requirement at a time. The BIB al
gorithm processes various strict and orthogonal static QoS 
parameters simultaneously writing different advice in an as
pect. For non-strict or non-orthogonal static QoS require
ments, and dynamic QoS requirements, QoS-UniFrame uti
lizes evolutionary algorithms (EAs) [12] as the second level 
assurance. An EA is a search and optimization technique 
based on the principles of natural selection and survival of 
the fittest [ 12). The decision of the fittest (i.e., maximum, 
minimum or average) comes from the results of linear or 
nonlinear fitness functions in EAs. The fitness functions 
solve the tedious and time-consuming problem of non-strict 
static QoS, and the side effect problem of non-orthogonal 
(static and dynamic) QoS by combining all of the associated 
QoS requirements into a mathematical formula. Because 
dynamic QoS requirements need to comply with the deploy
ment environment, QoS-UniFrame processes static and dy
namic QoS requirements in separate steps. QoS-UniFrame 
has developed a domain-specific scripting language, called 
PPCEA [11), to make EAs expeditious and adaptable. PPCEA 
and AspectJ express the assurance of QoS requirements by 
means of linear or nonlinear functions. These representa
tions make the assurance process easier to scale than the 
OBDD approach at system assembly time . 

3.4.1 Static QoS Requirements 
The BIB algorithm is, in fact, able to evaluate non
strict/non-orthogonal static QoS requirements by AspectJ. 
However, the unique purpose of the BIB algorithm is to re
move infeasible design spaces with the dynamic and paral
lel concept. Hence; we postpone computing non-strict/non
orthogonal static QoS until the second level assurance. An 
EA evaluates the best results of non-strict/non-orthogonal 
static QoS parameters by a user-defined fitness function. 
For example, a DRE system constructed by a set of PDAs 
that meets battery maximum capacity may estimate the op
timal solution of the lifetime, the disposal fee, and the pur
chase cost of the batteries by a fitness function. Therefore, 
a user-defined fitness function can satisfy this demand. 

3.4.2 Dynamic QoS Requirements 
Evaluating dynamic QoS requires the cooperation of the de
ployment environment. However, the statistical results of 
dynamic QoS by EAs at component assembly time may 
serve as excellent estimates and as substitutions as unpre
dictable behaviors occur later at runtime. EA solves the 
best, worst, and average fitness values and their standard 
deviations of a user-defined fitness function. Dynamic QoS 
requirement validation, such as deadlines for real-time sys
tems, uses the previous state information of a component in 



• 

• 

• 

the knowledge base to obtain the statistical results. Some 
assembled cases of these statistical results can be the refer
ences of runtime validation evaluation, and others may be 
eliminated by discarding policies invented based on PPCEA. 
User-defined discarding policies determine how and which 
assembled cases are rejected. More details will be explained 
in the next subsection. 

3.4.3 PPCEA 
To obtain the statistical outputs from EAs efficiently and to 
discard less probable assembled cases flexibly, a domain
specific scripting language, Programmable Parameter Con
trol for Evolutionary Algorithms (PPCEA) [11], has been 
developed. PPCEA keeps the evolution process simple and 
raises the control parameter settings up to a high abstrac
tion level in a programming fashion. In PPCEA, a configu
ration mechanism is provided to embed the parameters of 
EAs (e.g., crossover, mutation and discard rate, and popu
lation size) and its fitness function into the computation of 
EAs. The modification of these parameters is by a program
ming fashion, i.e., assignment statement. This mechanism 
provides the flexibility for users to find the optimal solution 
by different kinds of parameter settings [ 11]. 

genetic 
Discard := 1.1; //discard rate by parameter tuning 
while (t <= 10) do 

init; //initialize population 
call_EA;//evaluate fitness value for a population 
Temp :=Temp+ Worst;//Temp is temporary variable 
t := t + l 

end; 
Temp := Temp I t; 
if (Temp > QoS*Discard) 

//Avg of Worst value far from requirement 
delete_gene //delete test cases not satisfied 

fi; 
end genetic 

Figure 4. Parameter tuning discarding policy 
written in PPCEA. 

After defining the fitness function and parameters, 
PPCEA decides which genotypes (i.e., assembled cases) 
should be deleted from the population by the discarding 
policies with their discard rates. Users can apply parameter 
tuning, deterministic, or adaptive [5] discarding policies to 
the discard rate. Parameter tuning determines the value of 
the discard rate by assigning a constant value before each 
EA run. The deterministic method assigns the discard rate 
before the evaluation by a deterministic rule based on linear 
algebra [11]. Finally, the adaptive method adjusts the dis
card rate during the run of evaluation [11]. Figure 4 shows 
the example of parameter tuning discarding policy that op
erates with the discard rate. "t" is the counter for the while 
loop; "Discard" is the discard rate for discarding policy; 
"QoS" is a dynamic QoS requirement; "Worst" is the worst 
fitness value; "Temp" is the temporary variable for the con
venience of computation; "calLEA" evaluates the values of 
fitness function of each genotype; and "delete_gene" dis
cards those genotypes that do not meet the requirements. In 

Figure 4, if the average of ten worst cases is greater than 
1.1 (i.e., user-defined discard rate) times the strict dynamic 
QoS requirement, the test case can be rejected. 

4 A DRE System Case Study 

This section presents a Petri Net-based QoS model of an 
example DRE system representing the water treatment plant 
described in section 3. The system engineers would like to 
examine the best performance of the water treatment ability 
under certain constraints: 

(a) Due to the budget constraint, only three and two treat
ment units can be chosen for pools one and two for the 
water treatment process, respectively. 

(b) the total maximum flow processing capacity is at least 
50 million gallons per day. 

(c) the battery life of each TU has at least 15 hours left. 

(d) total CPU usage is at most 70 percent. 

(e) total water treatment volume of selected TUs is at least 
35 million gallons per day. 

(f) Pipeline A must pump water into Pool Two at time ti; 
Pipeline B and C must pump water into Tower X and Y 
at time t2, respectively. 

Table 1. The values of QoS parameters of the 
water treatment plant example 

TU MPC BL CPU usage WTV 

Cll 10 20 (20,23) (5,8) 

C12 15 14 (10,12) (10,12) 

C13 13 17 (15,18) (10,12) 

Cl4 15 22 (5,7) (8,10) 

C21 16 28 (10,15) (5,9) 

C22 18 33 (15, 18) (4,7) 

C23 20 20 (20,22) (7,10) 

Constraint (a) is a restriction of the design decision. Con
straints (b) and (c) are the strict and orthogonal static QoS 
parameters. Constraints (d) and (e) are the dynamic QoS 
parameters. Constraint (f) is the time constraint. Table 1 
includes all of the values of the QoS parameters requested 
from the knowledge base. Column 1 shows the identity of 
each treatment unit (TU), column 2 contains the maximum 
flow processing capacity (MPC) of each TU (million gal
lons/day), column 3 shows the current battery life (BL) of 
each unit (voltage), column 4 is the CPU usage of each TU 
(%), and the last column contains the water treatment vol
ume (WTV) of each TU (million gallons/day). Figure 5 
shows the Petri Net model of the project under constraints 
(a) and (f). The bars (i.e., transitions) at the same level of 
tO, ti and t2 horizontally have the mechanism of the timing 
control. 

QoS-UniFrame generates a reachability tree of the 
project based on strict and orthogonal static QoS. During 



• 

• 

• 

Water pumped 
from the River 

Choose 3 
Components from· 

4 Choices in Pool 
One 

4 Design Options 
Go through 
Pipeline A 

~Choose 2~-! 
Components from 

3 Choices in Pool 1 

Two ' 

; Clean Water goes 
' to Tower X and 

TowerY 
L------·--~ 

Time 
Line 

10 

Figure 5. The example of the Petri Net model 
representing the water treatment plant. 

Table 2. The experimental results of the water 
treatment plant project 

Case 1 Case 2 Case 3 

CPU Average 69.8223 73.9332 77.4793 

CPU Worst 64.1087 75.0327 78.4904 

WTV Average 40.7911 43.25 42.107 

WTV Worst 36.2826 39.4127 37.1191 

NO Best 11.8349 10.4933 11.215 

NO Average 11.3491 10.1158 10.6731 

NO Worst 9.483 8.4471 8.9652 

the first level assurance, two after advice statements from 
Figure 3 are written and weaved into the source code of 
the tree construction. The first advice examines the sat
isfaction of the constraint (b ), and the second advice as
sures the constraint (c). From the experimental result, QoS
UniFrame shows that Cl2 does not meet the constraint (c). 
Thus, only Cll, Cl3, Cl4, C21, C22 and C23 will be 
chosen for pool one and pool two. At this stage, three 
assembled cases have survived: {Cll,Cl3,Cl4,C21,C22}, 
{Cll,Cl3,Cl4,C21,C23}, and {Cll,Cl3,Cl4,C22,C23}. 
Subsequently, the CPU usage and water treatment volume 
(WTV) require the previous states and observations stored 
in the knowledge base. Table I contains the boundaries 
of the dynamic QoS requirements. At the second level, 
the parameter tuning approach written in PPCEA code is 
involved (Figure 4). First, two dynamic QoS constraints 
are examined independently by using addition. The prede
fined discard rate is 1.1, which means if the worst case is 
greater than 1.1 times this strict dynamic QoS requirement, 
the evaluated case is deleted. All of the predefined values 
of parameters needed for EAs are in Table 2. "Discard" 

is defined in section 3.4.3. "Maxgen" is the maximum 
number of generations ( l 00) an EA can run. "Popsize" 
is the size of a population (value 100), "Pxover" is the 
crossover rate (0.5), and "Pmutation" is the mutation rate 
(0.7) [12]. Please note that, for brevity, only one parame
ter setting is represented in the paper. To obtain the best 
statistical results, a fitness function can be evaluated with 
various parameter settings in a programmable fashion dur
ing the execution of PPCEA code [II]. Table 2 contains 
the average results of each case after ten iterations at the 
second level. Case I represents {Cl l,C13,Cl4,C21,C22}, 
case 2 expresses {Cll,Cl3,Cl4,C21,C23}, and case 3 
is {Cl l,Cl3,Cl4,C22,C23}. "NO" stands for the non
orthogonal fitness function described below. Table 2 shows 
that {Cl l,Cl3,Cl4,C22,C23} 's average of ten worst cases 
is bigger than 1.1 times the constraint (d). Therefore, QoS
UniFrame tends to discard this design space. Case 3 does 
not meet the discarding policy, so QoS-UniFrame keeps its 
information for future use. Because CPU usage and water 
treatment volume are non-orthogonal dynamic QoS para
meters, we defined a fitness function to address the mutual 
effect of CPU usage and water treatment volume. The fit
ness function is defined as below: 

f(x) =(CPU Usage)/(Water Treatment Volume) 

This function is treated as the statistical references for 
future investigation instead of a constraint. Finally, 
{Cll,Cl3,Cl4,C21,C23} and {Cll,Cl3,Cl4,C21,C22} 
are two survival cases statistically based on Figure 4. 

The 
assembled 
caselhot 
vfolate1 

constraint 
(c) 

Figure 6. The Petri Net reachability tree of the 
water treatment plant example. 

These experimental results show that QoS-UniFrame 
outperforms the OBDD approach [13) in the example of 
the water treatment plant project. At the first level, QoS
UniFrame cuts off 3 intermediate nodes, as shown in Figure 
6. Each of these intermediate nodes have three more child 
nodes. Therefore, 9 more design spaces are eliminated be
fore the end of reachability tree construction. The OBDD 
method, however, requires generating all 12 cases which 
is less efficient than QoS-UniFrame. In addition, by using 
the discarding policy at the second level, PPCEA statistically 
discards one more case. Therefore, QoS-UniFrame has bet
ter performance than the OBDD approach for this specific 
example. 



• 

• 

• 

5 Conclusion and the Future Work 
The earlier that an error is detected in the software life

cycle, the Jess costly it is to fix [ 1 ]. QoS-UniFrame obeys 
this golden rule to reduce the design space at system assem
bly time. At the first level, the dynamic and parallel pruning 
approach is applied to expedite the pruning process. Only 
the feasible QoS systemic paths are generated by back
tracking or branch-and-bound algorithms. At the second 
level, a fine-grained statistical approach is employed to fur
ther eliminate less probable QoS systemic paths. PPCEA 
also provides auxiliary statistical results as the reference 
at runtime. In addition, constructing Petri Net-based QoS 
modeling in the GME in collaboration with AspectJ facili
tates customization, extensibility, flexibility, modularity and 
reusability. In conclusion, QoS-UniFrame provides a for
mal, manageable, scalable and semi-automatic approach to 
prune off unsatisfactory design spaces, and to validate a 
DRE system from its requirements at system assembly time. 
The design complexity of building DRE systems complying 
with numerous decisions, ordered components, events, and 
time can be further reduced than the OBDD method. For 
more details regarding QoS-UniFrame, please refer to [15]. 

QoS-UniFrame introduces a mathematical method (i.e., 
a fitness function) to solve the non-orthogonal QoS side 
effect problem. However, this approach is still not com
prehensive and further research is necessary. For exam
ple, the priorities of the non-orthogonal QoS and the de
gree of the affectations among these QoS must be defined. 
Finally, QoS-UniFrame is a semi-automatic toolkit to ex
plore, decrease and then assure the design spaces with con
straints. System analysts would be required to have the ba
sic knowledge of programming skills in AspectJ and PPCEA. 
A comprehensive automatic toolkit of design space explo
ration and assurance that eases system analysts and system 
engineers' workload is also the future direction of QoS
UniFrame. 

References 

[1] B. W. Boehm. Software Engineering Economics. 
Prentice-Hall, 1981. 

[2] R. E. Bryant. Symbolic manipulation with ordered 
binary-decision diagrams. ACM Computing Surveys, 
24(3):293-318, 1992. 

[3] L.A. Cortes, P. Eles, and Z. Peng. Formal coverifi
cation of embedded systems using model checking. 
In Proc. 2&-h EUROMICRO Conf, pages 106-113, 
2000. 

[4] L.A. Cortes, P. Eles, and Z. Peng. Verification of em
bedded systems using a petri net based representation. 
In Proc. 13th Intl. Symp. on System Synthesis, pages 
149-155, 2000. 

[5] A. E. Eiben, R. Hintering, and Z. Michalewicz. Para
meter control in evolutionary algorithms. IEEE Trans. 
on Evolutionary Computation, 3(2):124-141, 1999. 

[6] Z. Gu and K. G. Shin. An integrated approach to 
modeling and analysis of embedded real-time systems 
based on timed petri nets. In Proc. 23rd Intl. Conf 
on Distributed Computing Systems (ICDCS'03), pages 
350--359, 2003. 

[7] E. Horowitz, S. Sahni, and S. Rajasekaran. Computer 
Algorithms. Computer Science Press, 1998. 

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, 
J. Palm, and W. G. Griswold. Getting started with As
pectJ. Commun. of the ACM, 44(10):59-65, 2001. 

[9] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, 
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect
oriented programming. In Proc. European Conf on 
Object-Oriented Programming (ECOOP'97), LNCS 
1241, pages 220--242, 1997. 

[ 10] A. Ledeczi, A. Bakay, M. Mar6ti, P. Volgyesi, 
G. Nordstrom, J. Sprinkle, and G. Karsai. Compos
ing domain-specific design environments. Computer, 
34(11):44-51, November 2001. 

[11] S.-H. Liu, M. Memik, and B. R. Bryant. Parameter 
control in evolutionary algorithms by domain-specific 
scripting language PPCEA. In Proc. Intl. Conf Bioin
spired Optimization Methods and Their Applications 
(BIOMA'04), pages 41-50, 2004. 

(12] Z. Michalewicz. Genetic Algorithms + Data Struc
tures= Evolution Programs. Springer-Verlag, 1996. 

[13] S. Neema, J. Sztipanovits, G. Karsai, and K. Butts. 
Constraint-based design space exploration and model 
synthesis. In Proc. 3rd Intl. Conf Embedded Software 
(EMSOFT'03), Springer-Verlag LNCS, volume 2855, 
pages 290--305, 2003. 

(14] J. L. Peterson. Petri nets. ACM Computing Surveys, 
9(3):223-252, September 1977. 

(15] QoS-UniFrame. 
http://www.cis.uab.edu/liush/QosUniFrame.htm. 

[16] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Ol
son, and C. C. Burt. A quality of service-based frame
work for creating distributed heterogeneous software 
components. Concurrency and Computation: Prac
tice and Experience, 14(12):1009-1034, 2000. 

[17] D. C. Schmidt. R&D advances in middleware for dis
tributed real-time and embedded systems. Communi
cations of the ACM, 45(12):43-48, 2002. 



• 

• 

• 

Quality of Service-Driven Requirements Analyses for Component Composition: 
A Two-Level Grammar++ Approach 1 

Shih-Hsi Liu2 , Fei Cao2 , Barrett R. Bryant2 , Jeff Gray2
, Rajeev R. Raje3

, Andrew M. Olson3
, 

and Mikhail Auguston4 

Abstract 

Component-based software engineering offers the op
portunity to assemble entire systems from components. 
When applied to Distributed Real-Time and Embedded 
(DRE) systems, which components to assemble and how to 
assemble them are determined not only from functional cor
rectness criteria but also assurance of the system's quality 
of service (QoS). This paper presents a grammatical QoS
driven approach to optimize component assembly by reduc
ing the search space of assembly alternatives by eliminating 
infeasible components, with feasible components selected 
based on reasoning about non-functional requirements. The 
reasoning is realized by a rule engine with a knowledge 
base derived from the requirements phase of the software 
lifecycle. In addition, the grammatical approach introduces 
well-defined semantics among the components being com
posed. The semantics assist in precisely and efficiently eval
uating the individual component QoS, as well as system
wide QoS in a programmable fashion. The result is to facil
itate straightforward and manageable component composi
tion analyses from the perspective of QoS requirements. 

1 Introduction 
Distributed Real-Time and Embedded (DRE) software 

systems are becoming increasingly complex. Such com
plexity can only be managed by Component-Based Soft
ware Engineering (CBSE), that is, building such systems 
from a collection of standardized and customized compo
nents. The integration of such components into a software 
system is the major effort in constructing such systems. An
other dimension of such systems is the notion of Quality 
of Service (QoS), which transcends functional properties 

1Tbis research is supported in part by U. S. Office of Naval Research 
award NOOOl4-0l-1-0746. 

2Department of Computer and Information Sciences, University of Al
abama at Birmingham, Birmingham, AL 35294-1170, USA, {liush, caof, 
bryant, gray }@cis.uab.edu 

3Department of Computer and Information Science, Indiana 
University-Purdue University-Indianapolis, Indianapolis, IN 46202-
5132, USA {rraje, aloson}@cs.iupui.edu 

4 Department of Computer Science, Naval Postgraduate School, Mon
terey, CA 93943-5193, USA {maugusto}@nps.navy.mil 

to include non-functional properties such as real-time and 
security issues. When DRE systems are constructed, QoS 
plays a critical role in determining the quality of the sys
tem. Along with functional specifications and models of 
the components, QoS attributes must also be specified and 
validated. The vision of the UniFrame project [9] is the de
velopment of techniques and tools that will enable software 
engineers to construct a DRE system by locating software 
components scattered about an organization or from third 
parties, evaluating the compatibility of heterogeneous com
ponents, generating connectors for the dissimilar pieces and 
validating a system composed from them. 

This paper presents a grammatical QoS-driven approach 
to solve the challenges of black box component compo
sition based on QoS. This approach expresses the system 
requirements in terms of QoS parameters and manipulates 
the QoS requirements using grammar rules which assure the 
correctness of the composition with respect to QoS and pre
conditions and post-conditions of each composition. This 
verification assists in eliminating the infeasible alternatives 
for any pre-condition or post-condition that does not satisfy 
the corresponding QoS constraints (i.e., facts) stored in the 
knowledge base. The knowledge base consists of specific 
composition rules for inferring the applicability of compo
nent composition. If all conditions are verified, the compo
sition is assured. The systematic optimal solution of all QoS 
parameters can be evaluated by defining a specific QoS util
ity function of various QoS parameters. The specification 
of QoS requirements using grammar and rules facilitates 
the straightforward and manageable component composi
tion analyses from the perspective of QoS parameters. 

The paper is organized as follows: the next section pro
vides background; section 3 proposes the concepts and an 
example; section 4 concludes the paper. 

2 Background 

The evolution of new techniques for software develop
ment is driven by the requirements of scalability within 
the growing complexity and size of modern software. To 
avoid developing scalable complex systems from scratch, 
CBSE enables the composition of commercial off-the-shelf 
(COTS) components, thereby benefitting software develop-



• 

• 

ment by reusing and replacing components as needed. Soft
ware product lines (4] enrich the merits of CBSE by ana
lyzing and constructing a set of software systems that share 
commonality and variability under specific considerations. 
The integration of CBSE and software product lines expe
dites the pace of software development, and proliferates the 
productivity of software products. The integration poses the 
following challenges for QoS-sensitive systems: 

The Component Perspective Problem 
Functional requirements define the functionality that sys
tems should perform, and non-functional requirements 
specify constraints on system resources. Most systematic 
requirements analyses are component-driven [8], i.e., the 
analyses are based on the perspective of components and 
their functional requirements rather than non-functional re
quirements. The primary insufficiency of the component
driven analyses for QoS-sensitive system is that non
functional requirements are often tangled with functional 
ones. As numerous QoS characteristics require evaluation, 
separation of requirements concerns assists in manageably 
evaluating functional and non-functional requirements. 

The Abundant Alternatives Problem 
Hundreds of alternatives are generated based on the require
ments of different composition decisions and permutations 
of selected components. The evaluation and management 
of abundant alternatives result in intensive workloads in the 
requirements phase . 

The Composition Semantics Problem 
Because component-driven analyses concentrate on the 
component units. the correlative composition semantics are 
not rich enough to state the composition influences on the 
QoS parameters. For example, the description of degrada
tion and upgrade of certain QoS parameters is difficult by 
the component-driven composition semantics. Therefore, 
the evaluation of QoS parameters may not be performed in 
isolation, especially for some QoS parameters which mutu
ally influence one another. 

3 A Grammatical QoS-Driven Approach 

Two-Level Grammar++ (TLG++) [3] is an object
oriented formal specification language, which consists of 
two Context-Free Grammars (CFGs) defining the set of pa
rameters and the set of function definitions over the parame
ters, respectively. Originally, TLG++ was used for defin
ing the syntax and semantics of programming languages: 
the first level consists of the production rules of the syn
tax and the second level interprets the semantics of these 
rules. TLG++ has been used for both specification of rules 
for component assembly [2] and for composing features to 
describe the characteristics of components [ 10]. In addition, 
TLG++ code can be automatically converted into Java us-

• ing T-Clipse [7], an Integrated Development Environment 

for TLG++. In our approach, every QoS parameter is repre
sented by a class of TLG++: the first CFG shows the com
ponents of alternatives and the necessary parameters used 
for the function definitions. The second CFG describes the 
function definitions, which include the reasoning operations 
and computational operations (i.e., composition semantics) 
regarding QoS parameters. The reasoning operations are 
used for analyzing and verifying pre-conditions and post
conditions of each composition. For the pre-conditions, pre
liminary queries verify that the components own the appro
priate functions operating the QoS. Analytic queries then re
quest the QoS information of specific components. For the 
post-conditions, the conclusive queries send back the com
posed "pattern" (i.e., the selected components and the QoS 
dataflow among these components) to avoid any conflict 
with respect to the constraints; namely, verification of post
conditions. If preliminary, analytic or conclusive queries 
return false, the alternative is infeasible and discarded. 

We use Jess [5] as the underlying rule inference engine 
for reasoning about alternatives' feasibility regarding QoS 
requirements. Jess is a forward and backward chaining rule 
engine for the Java platform, which bridges Java and the 
rule-based language. Jess includes a Java library for defin
ing rules, facts and queries, and for invoking the rule en
gine. The knowledge base accumulates the facts and rules 
regarding the components and QoS parameters. Queries re
quest answers inferred from the facts and rules stored in the 
knowledge base. The querying results obtained from the 
rule engine are converted into interpretable Java objects for 
further processing tasks written in Java. 

The primary concepts and motivations of applying 
TLG++ to a QoS requirements analyses approach in the 
context of CBSE and software product lines assume the fol
lowing: (a) the components, having functions computing a 
QoS parameter, are like the operands of an expression; (b) 
composition semantics are treated as the operator of two 
(sets of) components; (c) production rules5 are the counter
parts of composition decisions, which imply the dataflow 
of the QoS parameters among components. Constructing 
a system is actually the same as defining a programming 
language with syntax and semantics. Under such a con
cept, Extended Backus-Naur Form (EBNF) [I] can repre
sent mandatory, alternative (i.e., one of), optional and "OR" 
(i.e., more of) features of components involved in a soft
ware product line, as in Feature-Oriented Domain Analysis 
[6]. The syntax trees generated by applying different sets of 
production rules can be treated as the counterparts of the al
ternatives of a software product line. TLG++, consisting of 
two tightly coupled CFGs, is appropriate for the grammati
cal QoS-driven approach to define customized and compre
hensive semantics for component composition. 

5Production rules may have ambiguity, left recursion and left factoring 
problems. Analyzers should avoid these grammatical problems. 



• 

• 

Figure I shows the procedures for analyzing systematic 
QoS requirements. First, analyzers write all QoS parameter 
classes in TLG++, which define the involved components 
and the composition semantics among the components re
garding the QoS parameter. T-Clipse transforms TLG++ 
into Java. Second, the strict QoS parameters are evalu
ated, because they are the strict feasibility criteria for the 
alternatives. Third, all orthogonal QoS parameters are in
dividually evaluated, and every set of non-orthogonal QoS 
is collectively estimated. Orthogonal QoS parameters im
ply that adaptation will not influence other QoS parameters, 
yet non-orthogonal QoS parameters substantially influence 
other QoS parameters. After all sets of non-orthogonal QoS 
are assured, the cumulative goals, the final selection criteria 
of alternatives, can be computed by a user-defined algebraic 
function over all assured QoS parameters. All of the fulfill
ing patterns of the software product lines will be stored in 
the knowledge base for the future queries. In the situations 
that strict, orthogonal or non-orthogonal QoS are not satis
fied, a new (set of) component(s) will be selected as a new 
alternative to be evaluated. 

Query QoS information 
of new component(s) 

.. --lllltf Write TLG classes tor OoS Parameters 

The Jess 
Rule 

Engine 
and the 

Knowledge 
Base 

and convert them Into Java by T·Cllpse 

Evaluate All Strict QoS Parameters 

YES 

Evaluate All Orthogonal OoS Parameters 

YES 

Evaluate All Sets of Non·orthogonal QoS 
Parameters 

YES 

Evaluate Cumulative Goals of the 
AltemaUves 

YES 

Save the assured pattern back as a new tact 

Figure 1. The procedures of the approach. 

Figure 2 shows the user-defined grammars for each QoS 
parameter: the Ci are the terminals that represent compo
nents, and D1, Eb and F1 are nonterminals that describe the 
composition decision and the QoS dataflow. The left box, 
the middle box, and the right box, are the grammars for 
Security, Signal, and a set of non-orthogonal QoS (Tzme, 
CPU Usage, and Battery Life), respectively. Please note 
that some production rules have left factoring, which may 
be eliminated as described in [1]. 

I Security 7 Cl C2 DI I Signal 7 Cl C2 El I CPU7CIFlfC2F2 
2 DI 7C3D2fC4D3 2 El 7 C3 E2 IC4E3 2 Fl 7C2C4F3IC3C4F4 
3 D2 7 C4 CS I CS C6 ICSE4 3 F2 7 C5C6FS ICS IC6F6 
4 D37CSD4ICSC7 3 E27C6C7 4 F37C7C6 
S D47C3C7 4 E3 7 C3 CS E5 f C3 C6 S F47C2CS 

S E47C4C6C7 6FS7C3C7 
6 E57C7 7 F6 7 Cl C4 

Figure 2. Grammars for QoS parameters 

The cascading scenario is introduced to evaluate orthog
• onal QoS parameters. A set of components is chosen as the 

starting point of a QoS dataflow. The consequent compo
nents are opted by specific decisions such as AND and OR. 
AND means the dataflow streams into a set of components, 
and OR implies the new alternatives of the software prod
uct line are generated. As a QoS dataflow requires a new 
composition decision, a new TLG++ class is written: the 
parameters include the new components being selected, and 
the functions define the composition semantics between its 
ascendant and itself with respect to the QoS dataflow. 

The upper box of Figure 3 represents the TLG++ class 
for the first production rule in Figure 2, the starting point 
of the Security QoS dataflow. In the upper box, line 2 
comprises the first CFG that defines the selected compo
nents for the second CFG. Lines 3 to 29 comprise the sec
ond CFG that describes the semantics for composition. in
cluding computational and reasoning operations. Lines 3 
and 4 verify the pre-conditions of Components Comp_l and 
Comp.2. In "queryComponent" (lines 12 to 27), the func
tions of the Java API for the Jess rule engine (e.g., exe
cuteCommand) are invoked. Lines 13 to 15 define the query 
for searching the facts of QoS parameters. Lines 18 to 21 
define where the querying results should be stored. Lines 
23 to 25 comprise the semantics that define how to fetch the 
elements of the facts of the QoS parameter. After verify
ing the pre-conditions, lines 5 to 6 compute the QoS value 
based on the composition semantics defined in line 28. Fi
nally, line 9 verifies the post-condition of the composition 
by checking if the composed QoS value is out of range. The 
lower box of Figure 3 is the Security .2 class for compos
ing Security_! using the second production rule based on 
the cascading scenario. In the lower box, the semicolon 
in line 2 means there are optional components for the soft
ware product line (i.e., the counterpart of "I" in the EBNF). 
Therefore, this box contains two composition semantics for 
components Comp-3 and Comp-4, respectively. Signal is 
defined in the similar way using its grammar in Figure 2. 

For non-orthogonal QoS analyses, it is difficult to find 
the optimal balance when one non-orthogonal QoS para
meter increases and the other one decreases. The coarse
grained scenario extends the cascading scenario for non
orthogonal analyses. All sets of non-orthogonal QoS pa
rameters are written in TLG++ classes using the cascading 
scenario. A TLG++ class defines a weighted algebra func
tion over each set of non-orthogonal QoS parameters (in this 
paper, Time, CPU Usage, and Battery Life) to discover the 
maximum value. Figure 4 shows the decision trees of five 
QoS parameters, expressing every composition decision as 
a branch of the tree. If any component in a QoS dataflow vi
olates strict QoS (i.e., gray nodes), the following nodes (i.e., 
stripe nodes) are eliminated. The cumulative goal is com
puted by a user-defined algebraic function over all feasible 
goals of QoS parameters. 



• 

• 

• 

da\-, Security_ I implt•nu•nN Serializable 
2 Product_Line : : Comp_ I Cornp_2. //All other parameter declarations ignored 

Query_ I := semantics of 4ueryComponent with Comp_ I ://verify pre-cond. of Comp_l 
Query_2 := semantics of 4ueryComponent with Comp_2;//verify pre-coml of Comp_2 

5 Query_3 :=if Query_ I && Query_2, thc:n semantics of minimum with 
6 Comp_ I and Comp_2~ d<K: False. rnr1 ff: 
7 //if both Query_l and Query_2 are true, compute the composition semantics of 
8 //Comp_ I and Comp_2. Otherwise, stop analyzing the ahenrntive 
9 Qut::ry_ 4 := St:mantics of queryPanem with QoSValuej//verifies JX>St-cond. check ran!?e 
JO if Query_ 4, thtn MyRete semantics of UpdatePattem. tht> "False''. end if. 
11 //if Query_ 4 is true. the composed pattern is assured. Update the pattern to KB 
12 semantics of queryComponl:'nt with ComponetH : 
I 3 MyRete semantics of t=xecuteCommand with "(def query QoSSearch (declar~ 
14 (vuriahles ·!comp)) (qos (mycomponent ·!comp) (myfwu: '?func) (qoslow '!low} 
15 (4osup '!up)))": 
16 //define tht= Jess query for the QoS parameter, which has the fields of comp::menls, 
17 //functions. lower bound and upper bound. 
If) ValueVector_l :=Value Vector semantics of addAll with Value_ I: 
19 //Store the:: fields into Value Vector, an API provided by Jess' Java library 
20 MyRete semantics of store with "RESULT' and MyRete semantics of RunQuery 
21 with "QoSSearch" and ValueVector_I; 
22 //Store the result of the query into the RESULT varia.ble 
23 MyRete sema:nrics of necuteCommand with "(run-query QoSSearch "+ 
24 component+")" .. ; //Run the query component is the variable of the query 
25 Iterator_] := MyRete semantics of fetch with "RESULT';//R.ESULT saved to Iterator 
26 if Iterator_ I !=null. then return TRUE. t-ISt- return FALSE, rncf if. 
27 //if the first field has no component defined, the pre-condition is not verified 
28 semantics of minimum with Comrxmentl and Component2 :// ... ignored 
29 //semantics of query Pattern, and UpdatePattem are ignored. 
t•nrlcla.s'> 

t'l~'i~ Security_2 implements Setia!izable. //All other parameter dec1arations ignored 
2 Product_Line :: Comp_J; Comp_ 4. //Comp_J OR Comp_ 4 as alternatives 
3 semantics of Pro<luctLine_l with Component) : //semantics for Comp_3 OR Comp_ 4 
4 Query_ I := semantics of queryComponent with Component 1 ://verify pre<ond. 
5 //queryCom1xment has same semantics in Figure 3 
6 if Query_I, then semantics of addition with Security_! and Component I. 
7 cht' False, l"llrl if: 
8 Query_2 := Rete semantics of queryPattem with QoSValue; 
9 if Query _2. thl."11 Rete semantics of UpdateFact. Rete semantics of UpdatePattem, rlw 
10 .. Composition False~·. end if. //verify the post-condition 
11 semantics of addition with Component I and Component2: // ... ignored 
12 //semantics of queryPattern, UpDateFact and UpdatePattern are ignored here. 
t'nrl clas!i 

Figure 3. Security_ 1 and Security..2 in TLG++ 

4 Conclusions 
The grammatical QoS-driven approach defines the syn

tax of software product lines, and the semantics of the com
ponent composition from the QoS parameter perspective. 
The approach eases the burden of management and evalu
ation of QoS that the con'iponent-driven approaches suffer 
from. It also achieves three goals: reducing the infeasi
ble alternatives, assuring the feasible ones, and manageably 
evaluating orthogonal QoS and mutually-influenced QoS. 
Finally, a stand-alone inference engine separates the infer
ence concern for component composition. 

References 

[l] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers 
Principles, Techniques, and Tools. Addison-Wesley, 
1986. 

[2] B. R. Bryant, M. Auguston, R. R. Raje, C. C. Burt, 
and A. M. Olson. Formal specification of generative 
component assembly using Two-Level Grammar. In 
Proc. of 14th Intl. Conf on Software Engineering and 
Knowledge Engineering, pages 209-212, 2002. 

[3] B. R. Bryant and B.-S. Lee. Two-Level 
Grammar as an object-oriented requirements 

~ 
g 
iJ 
i1 
b 
0 
E! 

' a 
: 
~ • 

~ ~ ag> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
m !!'. 

~ "' "' ~ ~ ~TI ?; g g_ ~ ~ tl tl tl ~ 0 ~ TI ~ ~ tl tl tl ~ ~ ~ h h <O~ g 
iJ b 0 ~ 1? 0 t1 ~ 0 h 0 t1 ~ 0 h h h }1 0 \1 11 '" _.., 

'" _.., -"' ·'"' i1 \1 bl " 0 
11 0 ' 0 i1 11 0 . ~ }1 i1 t1 _11 bl t1 t1 0 

~ -"' -"' b lJ 0 
h £) 

0 :g 0 h 0 i :g }1 z g ~ 1? 2 _.., 
~ ~ ~ '"' bl ~ :G g 

~ ·o . ~ :G ~ ~ b " " ll " ' ; " £ a :::! 

i ::;: i 
0 

~ i " " " ' ' " " " • " " §! !;l a a 0 m 
a 0 i i 0 a; m a a m ~ ~ t t: ; l';l ~ " ' ~ : • "' t m a l 0 ~ • .. ff 
~ ff ff 5: le ~ • • • • • l • • 
Figure 4. Decision trees of QoS parameters 

specification language. In Proc. of the 35th 
Hawaii Intl. Conf on System Sciences, 2002. 
http://www.hicss.hawaii.edu/HICSS-35/HICSS 
papers/PDFdocuments/STDSLO l .pdf. 

[4] P. Clements and L. M. Northrop. Software Product 
Lines: Practices and Patterns. Addison-Wesley, 2001. 

[5] E. J. Friedman-Hill. Jess 7.0, The Rule Engine for the 
Java Platform. Sandia National Laboratories, 2005. 

[6] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter
son. Feature-Oriented Domain Analysis (FODA) Fea
sibility Study. Technical Report CMU/SEI-90-TR-21, 
Software Engineering Institute, Carnegie Mellon Uni
versity, 1990. 

[7] B.-S. Lee, X. Wu, F. Cao, S.-H. Liu, W. Zhao, 
C. Yang, B. R. Bryant, and J. G. Gray. T-Clipse: An 
integrated development environment for Two-Level 
Grammar. In The OOPSLA '03 Eclipse Technology Ex
change Workshop, pages 91-95, 2003. 

[8] M. Matinlassi. Comparison of software product line 
architecture design methods: COPA, FAST, FORM, 
KorbA and QADA. In Proc. of the 26th Intl. Conf 
Software Engineering, pages 127-136, 2004. 

[9] R.R. Raje, B. R. Bryant, M. Auguston, A. M. Olson, 
and C. C. Burt. A QoS-based framework for creating 
distributed and heterogeneous software components. 
Concurrency and Computation: Practice and Experi
ence, 14:1009-1034, 2002. 

[10] W. Zhao, B. R. Bryant, F. Cao, R.R. Raje, M. Au
guston, C. C. Burt, and A. M. Olson. Grammatically 
interpreting feature composition. In Proc. of ](jlh Intl. 
Conf on Software Engineering and Knowledge Engi
neering, pages 185-191, 2004. 



• Marshaling and Unmarshaling Models Using 
the Entity-Relationship Model* 

Fei Cao, Barrett R. Bryant, 
Wei Zhao, Carol C. Burt 

Department of Computer and Information Sciences 
University of Alabama at Birmingham 

1300 University Boulevard, Birmingham, AL 35294, USA 

{caof, bryant, zhaow, cburt} @cis.uab.edu 

Rajeev R. Raje, Andrew M. Olson 
Department of Computer and Information Science 
Indiana University-Purdue University-Indianapolis 

723 W. Michigan Street SL 280, Indianapolis, IN 46202, USA 
{rraje, aolson}@cs.iupui.edu 

Mikhail Augustan 
Computer Science Department 

Naval Postgraduate School 
l University Circle, Monterey, CA 93943, USA 

maugusto@nps.edu 

ABSTRACT 
Software systems are usually designed and documented with the aid 
of visual modeling notations. Visual modeling notations keep 
evolving over the years in tandem with visual modeling tools, and 
the tight binding in between impedes the exchanging of modeling 
assets, which causes a spatial isolation of the models. Another 
problem with legacy software models is that they are isolated 
temporally in the early phases of the software engineering life cycle 

•

ithout reaching out to the later phases. This paper presents an 
pproach for breaking both spatial and temporal isolation of 

· software models by marshaling and unmarshaling models using the 
Entity-Relationship (ER) model, thus providing a promising way for 
evolving model-driven software development. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques 

Keywords 
Marshaling and unmarshaling models, Modeling and meta
modeling, Entity-Relationship model 

1. INTRODUCTION 
Software systems are usually designed and documented with the aid 
of visual modeling notations. Visual modeling notations keep 
evolving over the years in tandem with visual modeling tools, and 
the tight binding in between impedes the exchanging of modeling 
assets. Above all UML 1 stands out as the de facto standard modeling 

* This research is supported by the U. S. Office of Naval Research 
under the award number NOOOJ4-0l-l-0746. 

Pennission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page. To copy otherwise, or 

blish, to post on servers or to redistribute to lists, requires prior specific 
ission and/or a fee. 
'05, March 13-17, 2005, Santa Fe, New Mexico, USA. 

Copyright 2005 ACM 1-58113-964-0/05/0003 ... $5.00. 

language. But other non-UML based modeling notations abound as 
evidenced in ~uch publications as NLC2

• Meanwhile, a lot of work 
has been done to converge the diagram notations in the new version 
of modeling notations, as is mentioned in the recent interview with 
Keith Short3

• But to converge all the legacy software modeling 
assets by reengineering into new generation notations and totally 
discarding old legacy modeling notations is not only time
consuming, but also not cost-effective. Depending on different usage 
scenarios, there is a need for marshaling models across different 
modeling facilities to take advantages of the leverages provided by 
existent modeling facilities. 

The term Marshaling comes from the distributed computing area 
where heterogenous data types are always translated into some 
common data type over the network so as to be consumed at the 
other end of the distributed environment, where the common data 
type is unmarshaled again into another environment-specific data 
type. Here we use the ER model [2] to represent the "common data 
type", i.e., the intermediate model when exchanging and evolving 
models. The rationales are as follows: 
- Sufficiency. Even though UML is widely adopted in software 
modeling, which seems to justify the use of UML as a common 
model for exchanging model assets across modeling facilities, UML 
is not convenient for model serialization, thus not fit for modeling 
asset exchange and evolution. In fact, the object diagram [I], for 
which UML is used to capture and store the snapshot of software 
system state, is represented virtually in an Entity (object) and 
Relationship (links) model. Moreover, the UML modeling language 
has its roots in the ER model, and the latter is already widely used as 
the foundation for CASE tools in software engineering and 
repository systems in databases4

• 

- Necessity. Not only models, but also meta-models are in need of 
exchanging and evolution; the justification for the latter is obviously 
the same as the former. Therefore, the intermediate model should be 

1 Unified Modeling Language-http://www.omg.org/uml 
2 Journal of Visual Languages and Computing-http://www.elsevier. 
corn/locate/jvlc 
3 Interview with Keith Short, http://www.theserverside.net/talks/ 
library. tss#KeithShort. 
4 http://bit.csc.lsu.edu/-chen/chen.html 



.expressive enough to be at the meta-meta model level in the meta
level stack [3]. The meta-meta-model is described by the Meta 
Object Facility (MOF)5, which is a set of constructs used to define 
meta-models. The MOF constructs are the MOF class, the MOF 
attributes and the MOF association. These constructs correspond to 
an ER representation (by using an Entity to represent a MOF class), 
which indicates that the ER representation is semantically equivalent 
to MOF fundamentally. Therefore, we believe the ER representation 
is the right vehicle to play the dual roles of marshaling both models 
and meta-models to break the spatial isolation of software models. 
Also, other non-UML based languages, even though not as popular, 
are abundantly present, for which UML is not an omnipotent cure. 

Recent years have seen the emergence of the Model Integrated 
Computing (MIC) [7] paradigm, which moves a step further to break 
the isolation of models from implementation and the subsequent 
phases in the software engineering life cycle. In MIC, a meta-model 
is created to define a model construction language, and a generator 
is also to be created based on the meta-model to synthesize the 
constructed models by traversing the model tree. In this way, a 
model can be more accurately interpreted for code generation than 
the direct mapping-based approach such as using profiler or 
stereotype in Rational Rose [3]. Toward that end, this paper presents 
an approach for marshaling software models to ER models, which, 
by taking advantage of the dual roles of ER models, are unmarshaled 
into an environment-specific meta-model to be integrated into MIC. 
Consequently, not only the spatial isolation, but also the temporal 
isolation of software models can be broken. 

•

is paper is organized as follows: Section 2 briefly provides an 
era II picture of this approach. Section 3 uses Web Services (WS) 

[5] modeling as a proof-of-concept example to illustrate the whole 
process. Section 4 describes the related work. We conclude in 
section 5 with a brief description of future work included. 

2.0VERVIEW 
Figure I shows the process of marshaling and unmarshaling models. 
Generic Modeling Environment (GME) [4] is the tool for MIC 
paradigm, and we use it as the targeted tool environment for 
describing destination meta-models, whereupon the domain-specific 
modeling environment can be constructed. Through the process flow 
as is directed by the arrows, meta-models can be elicited from 
models with an automatable process as opposed to traditional 
practice, for which the meta-model is constructed in an error-prone, 
ad-hoc way. Consequently, models oflegacy systems can be evolved 
toward the MIC paradigm for model-driven software development. 

M3: ER Model 

M2: 

Ml: Model domain specific model 

• Fi~ure 1. ~arshaling and unmarshaling models 

Meta-Object Fac1hty - http://www.om:g.org/technology/documents/ 
formal/mof.htm 

3. THE APPROACH 
3.1 A Web Services Modeling Example 
Modeling Web Services (WS) is a promising way for service 
description and orchestration at a higher level. As the scope of this 
paper is about marshaling and unmarshaling models, the elicitation 
of models from requirements is skipped here. 
One of the characteristics of a meta-model is that it treats not only 
the models, but also the inter-relationships among models as first
class entities. We derive meta-models by abstracting models and 
their inter-relationships. Therefore, for the models, even though they 
are represented as UML diagrams here as the starting point of the 
marshaling/unmarshaling process, they will not compromise the 
generality of the approach as is described in the remainder of the 
paper. To be specific, our approach of marshaling and unmarshaling 
WS models consists of two steps: 

I) Marshal models by converting the 00 class diagram to an 
ER-based meta-model, for which the relationship 
corresponds to aggregation, association, generalization, 
and dependency, while the entity corresponds to class. 

2) Unmarshal models by mapping the ER-based meta-model 
to the tool-specific (here GME in particular) meta-model 
to create a WS modeling environment. 

The UML class diagram ofWSDL elements is shown in Figure 2. 

service 

po rt 
1 .. • 1 

type in put OU tput 

Fi~ure 2. The architecture of WS description elements 

The WS messages, which are either input or output messages, are 
composed of parts, each of which corresponds to a specific data 
type. The portType is an abstract WS interface definition, where 
each contained element, i.e., the operation, defines an abstract 
method signature. The operation uses messages as its parameters. 
Binding represents an instantiation to the abstract portType with 
concrete protocol and data type. Service is a collection of ports, 
denoting a deployment of a binding at a specific network location. 

3.2 Marshaling the WSDL Model 
Figure 3 gives the meta-model of WSDL in ER form (without 
considering the extension part enclosed with the dashed lines), 
which is derived by representing the links (association, 
generalization, dependency) in the class diagram in Figure 2 as a 
relationship in Figure 3, as well as representing those classes as an 
entity accordingly. Note we ignore type in the meta-model of Figure 
3, because we can put type directly as the attribute of the part 
element. Also note we will not annotate the attributes to the entities 
and relationships in the ER representation as the focus here is about 
the model marshaling and unmarshaling; the attributes will be 
annotated in the GME meta-model as shown later. 

When modeling WSDL for real business domain services 
implemented with specific technology, we use the generalization 
relationship to extend those WSDL elements in Figure 3 rather than 
embedding the business domain service information as attributes to 
those WSDL elements. This avoids obfuscation of business and 



• 

• 

~ aggregation generalization 

ext41 
- ....J 

Figure 3. The ER-based meta-model of banking Service WSDL: the three parts enclosed with 
dashed line represent the extended part to the WSDL meta-model. 

Root 
•<Model>> 

PersonalAccount 
<<Atom>> 

address : field 
phone: field 
SSN: field 

checking 
c..:Atom,.> 

case 1 case 2 case 3 

• aggregation • generalization • association 

Figure 4. The cases of mapping from ER-based Meta-model to GME· 
based meta-model based on the relationship in ER representation. 

WebServtce 
••Model>> 

Banl<Account 
ccFCO>> 

AccountNumber: 

O .. • 

binding 
cc Connection>> 

OoSParameters 
c•Alom>> 

Adaptability: field 
Avallabllity: field 
Capacity: 11eld si 

Malntalnablllty: field 
Portability: field 
Security: field 
Throughput: field 
Turn-around-time : field 
Oependablllty: field 

A 

o .. 

bindlnQTech 
<<FCO>> 

DateDeployed : field 
10: field 

field 

Pin: J2EE 
<<Atom>> 

transfer verification 
<<Atom>> ccAtom,.,. 

lnterest_rate : 

Figure 5. The meta-model of banking domain WSDL in GME 

O .. • 

port 
<..cAtom>> 

o .. • 
blnding_port 

<<Connection>> 



• technology domain structure (meta-models of business/technology 
domain applications) with WSDL elements, and provides a 
separation of concerns toward domain-specific model refinement. 
The business domain infonnation applies a generalization 
relationship to the operation entity, and technology domain 
infonnation applies a generalization relationship to the binding 
entity. To exemplify, below is a simple banking domain service 
specification: 

A bank provides the service for users to 
set up accounts. Account information includes 
personal data including Name, SSN, phone 
number, address, and account data including 
Account Number, PIN, Transaction Record, 
Balance. There are two types of accounts: 
checking account and savings account. 

For the bank side, it provides such 
services as: Account Verification, Account 
Query, Deposit, Withdraw, and Transfer. 

The banking service implementation may use 
such technology as RMI, J2EE, and CORBA. Also 
it will enforce some Quality of Service (QoS) 
requirements such as Availability, 
Dependability, Capacity. 

Figure 3 shows the ER-based meta-model of this banking service 
WSDL (including those parts enclosed by dashed line). The 
elicitation of models from natural language requirements is beyond 
the scope of this paper. As can be seen from the figure, a typical 
business domain service represented as WSDL involves the 

•

xtension of ER elements, which is associated to almost all the 
lements of WSDL. Nevertheless, by using the ER-based meta

model, such extension still keeps the original WSDL meta-model as 
shown in Figure 3 without being restructured. 

3.3 Unmarshaling the WSDL Model 
In GME, the containment relationship is represented by using a 
model element (tagged with <<model>>), which, in contrast to an 
atom element (tagged with <<atom>>), can contain other modeling 
elements. Also the contained elements can be promoted as ports of 
the model to have direct connections with external modeling 
elements. GME uses a root model as an entry point of access to all 
the modeling elements. Also, the relationship of ER is represented 
in GME as a first-class modeling element, connection (tagged with 
<<connection>>), with a connector in the form of a dot to associate 
this relationship with two modeling elements (entities). 

The mapping from the ER-based meta-model to the counterpart 
in GME is based on the relationships in the ER representation. Three 
cases are involved as is shown in Figure 4: 

1) A contains B 
In this case, A can be modeled as a model element m GME 
containing B. 

2) B is associated to A 
In this case, a connection can be added to be associated with the A 
and B representations in GME. The connection element can be 
named with respect to A's or B's properties as a kind of tag, e.g., the 
tag can be named as the combination of both A's name and B's 

•

me. Note when the situation as described in case 3 applies, then 
s tag should be named as in case 3. 

3) B is specialized from A 
In this case, A is rendered by an abstract FCO (First Class Object, 
tagged with <<FCO>>, represents an abstract generalization of 
other modeling constructs), a modeling element to be used as an 
abstract interface in GME, and B is represented as an inherited class 
to that FCO. Note there are two special treatments here: firstly, for 
the input/output elements of Figure 3, they are only used to tag the 
connection (named either "input" or "output") between message 
entities and its interconnecting entities in GME; secondly, the 
generalization relationship between binding and portType is actually 
treated as an association when modeling in GME, because the 
binding entity actually attaches values of the chosen protocol to the 
portType in WSDL rather than in the real sense of inheritance. 

Figure 5 shows the meta-model created by mapping from the WSDL 
meta-model of the banking domain with ER representation to that in 
the GME strictly observing the above mapping rules. The model 
WebService corresponds to the service entity in Figure 3. The boxed 
part of the models in Figure 5 are attributes for the related models to 
be instantiated in the modeling phase, described in the next section. 

3.4 The Domain Specific Modeling Environment 
After a meta-model is derived by marshaling and unmarshaling 
models, a domain specific modeling environment (which is also a 
crucial part of MIC) can be created based upon the meta-model. To 
complete the description of the model evolution process shown in 
Figure I, Figure 6 shows the screenshot of the banking-domain WS 
modeling environment based on the meta-model illustrated in Figure 
5. The lower-left comer provides the modeling elements that can be 
dragged and dropped in the upper-left pane for constructing a 
banking service model. The names of the models in the lower-left 
pane represent the meta-model names (kind names); when those 
models are dragged to the above pane, the model name can be 
changed to reflect the meaning of the model in the domain-specific 
context, which we call a context name. Furthennore, the domain
specific model can be traversed and interpreted in tenns of code 
generation using the GME Builder Object Network (BON) 
framework [4]. 

4. RELATED WORK 
The ER model, because of its powerful modeling capacity, can be 
used as an intennediate form for model-to-model and meta-model
to-meta-model exchange. Because of the dual role that the ER model 
can play, it is treated as an intermediate form for model-to-meta
model elicitation, which is the theme of this paper. This idea is very 
similar to grammar inference [6], where a grammar can be inferred 
from language examples. But the two approaches are applied at 
different abstraction levels. XMI6 provides a standard mapping 
from MOF-based nodels to XML, which can be exchanged between 
software applications and tools. In comparison, ER-based model 
marshaling and unmarshaling represents a design-level approach for 
evolving design assets, without being restricted to low-level data 
representation specifics. Also, note that the XMI-based approach 
uses top-down mapping, while the ER-based approach uses bottom
up mapping as is illustrated in Figure 1, which offers a means for 
meta-model recovery for evolving legacy software models into 
Model Integrated Computing. 

6 XML Metadata Interchange - http://www.omg.org/technology/ 
documents/formal/xmi.htm 



• 

l><I 
messaoe 

-
Figure 6. The banking domain-specific WS modeling environment. 

Model Driven Architecture (MDA)7 is about mapping Platfonn 
Independent Models (PIM) to Platfonn Specific Models (PSM) for 
engineering legacy software systems so as to be integrated into new 
platform. However, the core part of mapping technology for MDA is 
either ad-hoc or pre-mature before MDA can be fully adopted in 
industry. ER-based model marshaling and unmarshaling offers a 
potential solution to address this problem systematically. It has been 

Aibserved that ER representation has been adopted in defining 
W<nowledge Discove7 Meta-Model (KDM)8 and Ontology Definition 

Meta-Model (ODM) in OMG, which underscores the role that ER 
plays for model marshaling and unmarhaling. 

5. CONCLUSION AND FUTURE WORK 
Legacy software models are widely existent and heterogeneous in 
their own graph syntax, and there are two types of isolation in its 
application: Spatially, models are isolated from being exchangeable 
over software applications and tools; Temporally, models are isolated 
in the early phases of the software engineering life cycle. These two 
types of isolation status of software models restrict their usability and 
capacity. Toward that end, a model marshaling and unmarshaling 
approach is presented based on the ER model, a simple, yet powerful 
modeling notation. This approach offers a promising way to break not 
only spatial isolations, but also temporal isolation by evolving legacy 
software models toward MIC for fully exploiting models throughout 
the software engineering life cycle. In particular, this paper uses a WS 
modeling example to illustrate an automatable process on how legacy 
software models can be migrated toward a MIC-oriented 
environment. 

To ultimately automate the marshalling and unmarshaling process, 
future work will involve representing various models as well as ER 
models in the form of proper XML specifications, whereupon the 
automation process can be applied by XML transformation 

-ttp://www.omg.org/mda/ 
.ttp://www.omg.org/cgi-bin/doc?lt/2003-11-4 

http://codip.grci.com/odm/draft/submission _ text/ODMPrelimSubAu 
g04Rl.pdf 

technology such as XSL T10
. The ER model is easy to be represented 

in XML because of its simple structure. An Eclipse-based ER 
modeling tool such as [8] that can generate XML specifications from 
ER models will be helpful in this regard. The models in GME can be 
exported and imported as XML. Therefore, an XML specification for 
an ER-model can be directly transformed to the expected XML 
specification for destination meta-models and loaded into GME 
consequently. Note that the simple structure of ER models does not 
require an XMI-based data representation. Moreover, such existent 
tool as GME does not use XMI for model serialization and 
deserialization, for which a simpler and more flexible XML schema is 
desired for marshaling and unmarshaling models. 

6. REFERENCES 
[I] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling 

Language User Guide. Addison-Wesley, 1999. 
[2] P. P. Chen. The Entity-Relationship Model: Toward a Unified 

View of Data. ACM Trans. Database Systems, I (I), 1976, 9-36. 
[3] D. S. Frankel. Model Driven Architecture: Applying MDA to 

Enterprise Computing. Wiley, 2003. 
[4] GME 2000 User's Manual, Version 2.0. ISIS, Vanderbilt 

University, 2001. 
[5] S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels, Y. 

Nakamura, R. Neyam. Building Web Services with Java. SAMS, 
2002. 

[6] C. de la Higuera. Current Trends in Grammatical Inference. In 
Proc. Joint !APR Int. Workshops SSPR & SPR 2000, 2001, 28-
31. 

[7] A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. 
Sprinkle, and G. Karsai. Composing Domain-Specific Design 
Environments. IEEE Computer, 34(11), 2001, 44-51. 

[8] S. Zhou, C. Xu, H. Wu, J. Zhang, Y. Lin, J. Wang, J. Gray, B. 
R. Bryant. E-R Modeler: A Database Modeling Toolkit for 
Eclipse. In Proc. 42th ACM Southeast Conj, 2004, 160-165. 

10 http://www.w3.org/TR/xslt 



• 

• 

• 

A Meta-Modeling Approach to Web Services 

Fei Cao, Barrett R. Bryant, Wei Zhao, Carol C. 
Burt 

University of Alabama at Birmingham 
{caof, bryant, zhaow, cburt}@cis.uab.edu 

Rajeev R. Raje, Andrew M. Olson 
Indiana University-Purdue University

Jndianapolis 
{rraje, aolson}@cs.iupui.edu 

Mikhail Augustan 
Naval Postgraduate School 
auguston@cs. nps. nary.mil 

Abstract 

Web Services (WS) technology is becoming pervasive in 
the development of distributed systems and is an 
appealing vehicle for service presentation and 
horizontal integration. On the other hand, Model 
Integrated Computing (MIC) offers a means of system 
integration in the vertical direction by using domain
specijic modeling, and then synthesizing the software 
system from the high-level model using a model-specific 
generator. This paper presents a meta-modeling 
approach to WS to explore the application of MIC in 
WS development and its contribution. 

1. Introduction 

Web Services (WS) technology emerges as a 
Service Oriented Computing (SOC) ([8], [9]) paradigm 
to provide a platform-independent solution for system 
integration horizontally: WS is built upon open 
standard XML and HTML for service description and 
transportation, and software systems can be presented 
as WS so as to be exported and consumed by 
heterogeneous peers in the distributed environment. 

For service description in Web Services Description 
Language (WSDL), though its XML-based 
representation is easy for machine processing using 
widely existent XML parsers, such specification is not 
straightforward for human comprehension, with service 
architecture lost in the pure textual form, and hand
crafting service description with WSDL is error-prone. 
To overcome this problem, there are tools on the 
horizon such as AXIS1, and the Microsoft .Net 
framework that provide the capacity of automatically 
generating WSDL by parsing implementation code 
(such as Java and C#), and vice versa. However, WSDL 
represents the design level knowledge, and the process 
of generating WSDL from implementation is in 

1 http://ws.apache.org/axis/ 

contradiction to the general practice of software 
engineering, for which the design phase precedes the 
implementation phase. We believe generating WSDL 
from the design-level model directly offers an 
appropriate solution. 

In this paper we present a meta-modeling approach 
to WS based on the principles of Model Integrated 
Computing (MIC) [5]. In MIC, meta-models can be 
used to define modeling language. Consequently, WS 
artifacts (WSDL) can be automatically generated from 
the WS model with generators. The Generic Modeling 
Environment (GME) [4] is a tool realizing MIC for 
creation of domain-specific models. 

As is shown above, meta-modeling constitutes the 
comer stone In MIC. This paper is not intended to 
demonstrate the meta-modeling approach to all aspects 
of WS (e.g., discovery and orchestration) exhaustively, 
which is not possible because of the space limitation, 
but rather to focus on the elicitation of a tool
independent meta-model from WS requirements 
specifications, and then to map the too-independent 
meta-model to a tool-specific meta-model (here GME 
meta-model in particular), which is to be used 
throughout the main phases of MIC. This paper is 
organized as follows: Section 2 details the meta
modeling approach. Section 3 describes the related 
work. Section 4 draws the conclusion. 

2. Meta-Modeling of WS 

2.1 Meta-modeling WSDL using Entity 
Relationship (ER) representation 

Object-Oriented class diagrams are often used to 
document software system architecture. The 
architecture of WSDL elements can be described as in 
Figure I. Figure 2 gives the meta-model of WSDL (by 
removing the extension part enclosed with a dashed 
line), which is derived by representing the Jinks 
(association, generalization, dependency) in the class 



• 

• 

• 

service portType operation 

port 1 .. • 

1 . .* 1 
message 

1." 

type input output 

Fi2ure 1: the An;hitecture of WS Description Elements 

diagram in Figure l as a relationship in Figure 2, as 
well as representing those classes as an entity 
accordingly. 

Note we ignore type in the meta-model of Figure 2, 
because we can put type directly as the attribute of 
the part element. Also note we will not annotate the 
attributes to the entities and relationships in the ER 
representation as the focus here is about the meta-model 
evolution; the attributes will be annotated in the GME 
meta-model as shown later. 

The meta-model is represented by the ER 
representation [2] rather than by UML. The justification 
of using ER representation as an intermediate meta
model is as follows: 
Different meta-modeling tools such as GME may adopt 
its own meta-model paradigm. Thus, there is a need for 
a tool-independent meta-model representation as an 
intermediate form for meta-model transformation, so 
that tool-dependent meta-models can be evolved into 
each other and used across different meta-modeling 
tools. This intermediate meta-model representation 
should be generic enough to describe a meta-meta
model, which resides at the top level (M3 level) of 
Model Driven Architecture (MDA)2 metalevel stack 
[3). The meta-meta-model used to define UML meta
models is described by the Meta Object Facility 
(MOF)3

, which is a set of constructs used to define 
meta-models. The MOF constructs include MOF class, 
MOF attributes, MOF association. These constructs 
literally constitute an ER representation (by using an 
Entity to represent a MOF class). Therefore, we believe 
ER representation is the right vehicle for representing 
intermediate meta-model. Moreover, meta-model using 
ER representation is easy to be described and serialized 
using XML [IO]. This facilitates the meta-model 
exchange and processing using widely existent XML 
parsers. 

2 http://www.omg.org/mda/ 
3 http://www.omg.org/cgi-bin/doc?formal/00-04-03 

When modeling a WSDL for real business domain 
services implemented with a specific technology, we 
use the generalization relationship to extend those 
WSDL elements in Figure 2 rather than embedding the 
business domain service information as attributes to 
those WSDL elements. This avoids obfuscation of 
business and technology domain structure (actually 
meta-models of business/technology domain 
applications) with WSDL elements. The business 
domain information applies a generalization 
relationship to the operation entity, and technology 
domain information applies a generalization 
relationship to the binding entity. To exemplify, Figure 
3 is a simple banking domain service specification. 

Figure 2 shows the ER-based meta-model of this 
banking service WSDL. As can be seen from the figure, 
a typical business domain service represented as WSDL 
involves the extension of ER elements, which is 
associated to almost all the elements of WSDL. 
Nevertheless, by using the ER-based meta-model, such 
extension still keeps the original WSDL meta-model as 
shown in Figure 2 without being restructured, which 
helps generating WSDL from models with consistency. 

2.2 The Mapping from ER based Meta-model 
to Other Forms of Meta-model 

In GME, the containment relationship is represented 
by using a model element (tagged with <<model>>), 
which, in contrast to an atom element (tagged with 
<<atom>>), can contain other modeling elements. 
Also the contained elements can be promoted as ports 
of the model to have direct connections with 
external modeling elements. GME uses a root model as 
an entry point of access to all the modeling elements. 
Also, the relationship of ER is represented in GME as a 
first-class modeling element, connection (tagged with 
<<connection>>), with a connector in the form of a 
dot to associate this relationship with two modeling 
elements (entities). 

The mapping from the ER-based meta-model to the 
counterpart in GME is based on the relationships in the 
ER representation. Three cases are involved as is shown 
in Figure 4. For the sake of limited space, below we 
only describe the mapping rules for case 3, i.e., B is 
specialized from A. In this case, A is rendered by an 
abstract FCO (First Class Object, tagged with 
< <FCO> >, represents an abstract generalization of 
other modeling constructs), a modeling element to be 
used as an abstract interface in GME, and B is 
represented as an inherited class of that FCO. Note 
there are two special treatments here: firstly, for the 
input/output elements of Figure 2, they are only used to 
tag the connection (named either "input" or "output") 
between message entities and its interconnecting 
entities in GME; secondly, the generalization 



• 

• 

• 

-, 
verification I 

I 
I 

ext 3 I 
r 
I 
I 
I 
L 

I 
I 
I 
I 

- _•.!..!_f_J 

~ aggregation ~ generalization 

Figure 2: the ER-based Meta-model of Banking Service WSDL: the three parts 
enclosed with dashed line represent the extended part to the WSDL meta-model 

ext4 
- _J 

A bank provides the service for users to set up accounts. Account information includes personal data including Name, SSN, phone number, address, 
and account data including Account Number, PIN. Transaction Record. Balance. There are. two types of accounts: checking account and savings 
account. 

For the bank side, it provides such services as: Account Verification, Account Query, Deposit, Withdraw, and Transfer. 

The banking service i1Y1)1ementation may use such technology as RMI, J2EE. and CORBA. Also it will enforce some Quality of Service (QoS) 
requirements such as Availability, Dependability, Capacity . 

Root 
ccModel>> 

PersonatAccount 
cc.A.tom•• 

address : field 
phone: field 
SSN: fleld 

checking 
••Atom>• 

Figure 3: the Banking Domain Service Description 

case1 case2 case3 

~ aggregation -<>- generalization -<>- association 

Figure 4: the Cases of Mapping from ER-based Meta-model to GME 
based Meta-model Based on the Relationship in ER Representation 

BankAccount 
ccFCO>• 

AccountNumber: fleld 
Pin: field 
Balance: fteld 

savtng 
ccAtom>• 

lnterest_rate : fleld 

porfType 
c""MOdel>> 

binding 
ccConnectlon>::w. 

QoSParameters 
ccAtom>> 

Adaptablllty: field 
Avallablllty: field 
Capacity: fteld ,, 
Malntalnablllty: neld 
Portability: field 
Security: fteld 
Throughput: fteld 
Turn~around-tlme: field 
Oependablllty: field 

bindlngTech 
,, ccFCO>> 

•.. 1--------1 
no OateOeployed : nerd 

ID: field 
version : neld 

transfer verfflcatlon 
c.cAtorn>> c.cAtom>> 

Fi2ure 5: the Meta-model of Bankin2 Domain WSDL in GME 

J2EE 
••Atom>> 

D .• • 

blndln!;LPOrt 
ccConnectlon>> 



• 

• 

• 

relationship between binding and portType is actually 
treated as an association when modeling in GME, 
because the binding entity actually attaches values of 
the chosen protocol to the portType in WSDL rather 
than in the real sense of inheritance. 

Figure 5 shows the meta-model created by mapping 
from the WSDL meta-model of the banking domain 
with ER representation to that in the GME strictly 
observing the above mapping rules. Note the model 
WebService corresponds to the service entity in Figure 
2. The lower part of the models in Figure 5 are 
attributes for the related models to be instantiated in the 
modeling phase as described in the next section. 

Based on this meta-model, a WS modeling 
environment can be constructed, and a generator based 
on this meta-model can be created to interpret WS 
models to generate WSDL. The WS modeling 
environment as well as generated WSDL is described in 
[ 1]. 

3. Related Work 

In [6), MDA is used together with workflow 
technology for modeling and composing WS. But the 
authors do not provide a guideline as to how to create 
the meta-models. Also the mapping from PIM to PSM 
is not detailed. In contrast, we focus on meta-modeling 
WSDL only, while the meta-modeling approach is more 
complete and general. In [7], an MDA approach is used 
for BPEL code generation from a UML design. This 
approach uses XMI4 processing technology for UML 
model exchange. Comparatively the XML 
representation for the ER model is much simplified and 
easy to process in our approach. Code generation in [7] 
is based on the UML profile mapping, which is not as 
flexible as a generator-based approach in our case. 

4. Conclusion 

WS domain-specific modeling environment provides 
a user-friendly environment to build WS with 
underlying WS-specific details abstracted. This paper 
presents a general meta-modeling approach to WS, 
which is used for the construction of WS domain
specific modeling environment In particular, we 
showed the merits of using the ER representation as an 
intermediate form for deriving and evolving meta
models to avoid the ad-hoc nature of constructing meta
models, which is an problem that is often not addressed 
(such as in [ 1 ]), particularly in constructing large-scale 
meta-models. 

4 XML Metadata Interchange - http://www.omg.org/ 
technology/documents/formal/xmi.htm 

Meta-modeling of WSDL is a static structural 
modeling. Future work will include meta-modeling of 
WS behavior such as WS orchestration. 

5. Acknowledgements 

This research is supported by the U. S. Office of Naval 
Research under the award number N00014-0l-l-0746. 

6. References 

[I] Cao, F., Bryant, B. R., Burt, C. C., Gray, J. G., 
Raje, R. R., Olson, A. M., Auguston, M., 
"Modeling Web Services: Toward System 
Integration in UniFrame," Proc. 7'h World 
Conference on Integrated Design and Process 
Technology (IDPT'03), December, 2003, pp. 83-
91. 

[2] Chen, P. P., "The Entity-Relationship Model: 
toward a Unified View of Data," ACM Trans. 
Database Systems, March, 1976, pp. 9-36. 

[3) Frankel, D. S., Model Driven Architecture: 
Applying MDA to Enterprise Computing, Wiley, 
2003. 

[4] GME 2000 User's Manual, Version 2.0, ISIS, 
Vanderbilt University. 2001. 

[5] Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., 
Nordstrom, G., Sprinkle, J. and. Karsai, G., 
"Composing Domain-Specific Design 
Environments," IEEE Computer, November, 2001, 
pp. 44-51. 

[6] Lopes, D., Hammoudi, S., "Web Service in the 
Context of MDA," Proc. International Conference 
on Web Services (ICWS'03), June, 2003, pp 424-
427. 

[7] Mantell, K., "From UML to BPEL: Model Driven 
Architecture in a Web Services World," 
http://www-l 06.ibm.corn/developerworks/ 
webservices/library /ws-uml2bpel/. 

[8] Olson, A. M., Raje , R. R., Bryant, B. R., Burt, C. 
C., Auguston, M., "UniFrame-A Unified 
Framework For Developing Service-oriented, 
Component-based, Distributed Software Systems," 
to appear in Service-Oriented Software System 
Engineering: Challenges and Practices, ed. Zoran 
Stojanovic and Ajantha Dahanayake, 2004. 

[9] Papazoglou, M. P., Georgakopoulos, D., "Service
Oriented Computing," Commun. ACM, October, 
2003, pp. 25-28. 

[IO) Zhou, S., Xu., C., Wu, H., Zhang, J., Lin, Y., 
Wang, J., Gray, J. G., Bryant, B. R., "E-R Modeler: 
A Database Modeling Toolkit for Eclipse," Proc. 
Annual ACM Southeast Conference, April, 2004, 
pp.160-165. 



• 

• 

• 

Model-Driven Reengineering Legacy Software Systems to Web Services 

ABSTRACT 

The advancement of internet technology enables legacy software systems to be reused 

across geographical boundaries. Web Services (WS) have emerged as a new component-based 

software development paradigm in a network-centric environment based on the Service Oriented 

Architecture (SOA), the open standard description language XML and transportation protocol 

HTML. Therefore, legacy software systems can incorporate WS technology in order to be reused 

and integrated in a distributed environment across heterogeneous platforms. In this paper, we 

present a comprehensive, systematic, automatable approach toward reengineering legacy 

software systems to WS applications, rather than rewriting the whole legacy software system 

from scratch in an ad-hoc manner . 

Keywords: software system reengineering; Web Services; Model-Integrated Computing; meta
model; model; model marshaling and unmarshaling; Entity-Relationship model 

INTRODUCTION 

Web Services as a Presentation Layer for Legacy Software Reuse and Integration 

With the rapid advancement of software technology, more and more software systems 

developed with the state-of-the-art technologies of yesterday are becoming legacy software 

systems of today. Specifically, we define legacy software in a comparative manner, i.e., the 

software systems are legacy if the lan~ages, models or platforms they are developed with can be 

replaced with new languages, models or platforms of advanced features and improved 

capabilities. The reuse and integration of legacy software systems off er a promising direction for 

boosting productivity by dramatically reducing both cost and time-to-market expenses (Devanbu 

et al., 1996). With the emergence and advancement oflnternet technology, the power of legacy 



• software systems is being unleashed toward a broader scope. Particularly, Web Services (WS) 

have emerged as a new component-based software development paradigm in a network-centric 

environment based on the Service Oriented Architecture (SOA) (Colan, 2004) as is illustrated in 

Figure 1. By using standard XML as the description language and HTTP as the transport 

protocol, WS can be used to wrap legacy software systems for integration beyond the enterprise 

boundary across heterogeneous platforms. To be specific, WS uses the XML based XML-based 

Web Services Description Language (WSDL) for specifying services, SOAP (Simple Object 

Access Protocol) messages for service invocation, and UDDI (Universal Description, Discovery 

and Integration) registry for service discovery (Colan, 2004). With the wrapping by WS, the 

integration of legacy software systems is simplified, from one to one interoperation to 

interoperate on the one common ground (WS). 

Figure I. Service Oriented Architecture (SOA) 

• Service Registration 
(UDDI) 

Publish 

Approaches for Using Web Services as a Wrapper 

There are several options for reengineering legacy software to WS: 

• Manually port original software source code to WS applications. This is an expensive 

solution. Also WS code, such as WSDL, is verbose, and coding WSDL manually is error 

prone . 

• 
- - ------------------------------------------



• • Language tool based-in which the legacy software package is recompiled to generate 

WSDL. Many tools such as AXISi, and the Microsoft .Net framework provide the 

function of generating WSDL from implementation code (such as Java and C#) and vice 

versa. Such tools leverage compiler technology to generate WSDL from other 

programming languages. The WSDL in turn can be used to generate client side stub code 

for the client to call the services exposed by legacy software systems (Graham, 2002). 

However, this language tool based solution remains to be language-dependent. With the 

variety of legacy software systems, a language neutral solution is required in order to 

sufficiently handle the reengineering of legacy software systems to WS. 

Cao, et al. (2004) used a model-driven approach to WS development. We build upon this 

work by presenting a model-driven approach for reengineering legacy software systems to the 

WS applications, in which a model plays a central role for migrating legacy software systems to 

• WS implementations. A model is usually represented in UMLii, or any other abundant domain 

specific visual language (as can be seen in NLCiii), which represents the structural and contextual 

information of a legacy software system in a language neutral style without being tied to 

implementation specifics. The model-driven reengineering approach is also based on the 

'observation that legacy software systems are usually documented in a visual modeling language; 

models can also be used as first-class assets in SOA (e.g., model as the basis for service discovery 

in Hausmann, et al., 2004). 

To apply the model-driven approach for reengineering legacy software systems to WS, a 

model should play a role beyond the conventional design and documentation capacity, i.e., a role 

for WS code generation directly to resolve the manual porting problem as described above. 

Usually UML-based code generation is based on a static mapping from the UML profile (Frankel, 

2003), which lacks flexibility during code generation process. As such, we use Model 

• IntegratedComputing (MIC) (Ledeczi et al., 2001) for building a WS modeling environment and 

consequently for WS code generation. MIC is essentially a development paradigm that offers a 

- -------------------------------------------------



• means for creating a modeling language (meta-model), its associated modeling language 

interpreter (generator). Then any domain-specific model built based on the modeling language 

can be interpreted by traversing the model tree. The result of the interpretation process is the code 

synthesized from the model. MIC has been widely used in middleware (Gokhale et al., 2004; 

Edwards et al., 2004) and embedded systems (Karsai et al., 2003; Ledeczi et al., 2003). 

• 

• 

Table 1. Comparison between MIC and prof4ramminR lanf4Uaf4e 

MIC Programming Language 

meta-model grammar 

generator compiler/interpreter 

application developed using the corresponding 
domain-specific model 

language 

code synthesized in any chosen language intermediate code or native code 

To ease the understanding of MIC, Table 1 provides an analog between MIC and 

conventional programming language elements. Figure 2 provides an example of a meta-model of 

Finite State Machine (FSM) and the corresponding model based on it. 

While the meta-model (and in the later part the domain-specific modeling environment) 

described in this paper is based on the notation of the Generic Modeling Environment (GME) 

(ISIS, 2001) (as it is the only tool for the MIC paradigm so far), the same principle as shown in 

this paper can be applied to other MIC-compliant modeling tools as well . 



• 

• 

• 

FiR;ure 2. A simple example of meta-model and model 

non-end-slate 
<<FCO>> dst 

1-----1"·" 
strState: field 

src O .. • 

0 .. 1 

StartState 
<<Atom::.> 

transition 
co:Connection>> o. • 

condition· field 

a .. • 
Interstate 
<<Atom>> 

StateDiagram 
<<Model» 

a .. • 

EndS1ate 
<<Atom>> 

strS1ate · field 

Finite State Machine (FSM) Meta-model 

State2 

II 
Finite State Machine Model 

Problems for Applying Model Integrated Computing (MIC) 

to Reengineering Legacy Software to WS 

While MIC offers an automatable and language neutral approach for reengineering legacy 

software to WS, the starting point of MIC - the construction of the meta-model has to be a manual 

process. Previous work on WS modeling (Cao et al., 2003) has revealed that with the increasing 

complexity of the modeling target, the construction of the meta-model is subject to being ad-hoc 

and error-prone. With the modeling assets (UML or other domain specific visual modeling 

language) already abundantly available as part of the legacy software (which we term legacy 

model), it is desirable to derive the meta-model from the legacy model in a systematic, 

automatable process as opposed to being ad-hoc and error-prone. However, the current meta-

modeling languages lack adequate modularity support for large scale meta-model construction, 

which nevertheless is widely existing in general programming languages. As a result, the 

construction of a meta-model remains an art rather than a science . 



• Therefore, this paper is composed of two major parts, each corresponding to the primary 

contributions of this paper: 

I) the elicitation of a meta-model from a legacy model in a systematic, automatable process, 

which is addressed in Section 2 and Section 3, and consequently 

2) the creation of a domain-specific WS modeling environment for WS code generation in 

Section 4, as well as the treatment of WS semantic concerns from a model-driven 

perspective in Section 5. 

Related work is described in Section 6, followed by the conclusion and future work in Section 7. 

MARSHALING AND UNMARSHALING MODELS USING THE ENTITY-

RELATIONSHIP (ER) MODEL 

The elicitation of a meta-model from UML or other domain-specific modeling notations can 

• be done on a per source model basis. However, with the constant emergence of new modeling 

notations, the elicitation approaches will become ad-hoc and not reusable. Moreover, there is a 

need to converge the diversified modeling assets for modeling tool integrationiv. Therefore, we 

need to encode the diversified models with a common representation, such that different 

modeling notations can transfer to and from it, thus modeling assets can be exchanged and used 

across different modeling tools. Cao et al. (2005) have referred to these modeling notation 

transferals as marshaling and unmarshaling, respectively. The term marshaling comes from the 

distributed computing scenario where heterogeneous data types are always translated into some 

common data type over the network so as to be consumed at another end of the distributed 

environment, where the common data type is unmarshaled again into another environment

specific data type. Comparatively, the concept of marshaling and unmarshaling models refers to 

transform a model to an intermediate common semantic form, which is reinterpreted in another 

• modeling environment/tool. This intermediate common semantic form is in a similar vein to 



• 

• 

• 

ACME (Garlan et al., 2000), which is an intermediate form for exchanging software architecture 

description languages across different software architecture design tools. Moreover, with the 

heterogeneity of models at different meta-level (not only model level but also meta-model level) 

(Frankel, 2003), marshaling and unmarshaling of models can be performed at different levels: 

horizontally, meta-model level and model-level; vertically, meta-model to/from model as is 

illustrated in Figure 3. 

Figure 3. Marshaling and unmarshaling models at different levels: the arrow represents 
marshalinglunmarshaling process 

mode I 

Here we use the ER model (Chen, 1976) as the intermediate common semantic form for 

marshaling and unmarshaling modelsv. The rationales are as follows: 

- Sufficiency. Even though UML is widely adopted in software modeling, which seems to justify 

the use of UML as a common model for exchanging model assets across modeling facilities, 

UML is not convenient for model serialization, thus not fit for modeling asset exchange, reuse 

and evolution. In fact, the object diagram (Booch et al., 1999), for which UML is used to capture 

and store the snapshot of software system state, is represented virtually in an Entity (object) and 

Relationship (links) model. Moreover, the UML modeling language has its roots in the ER model, 

and the latter is already widely used as the foundation for CASE tools in software engineering 

and repository systems in databasesvi. 

- Necessity. As is illustrated in Figure 3, not only models, but also meta-models are in need of 

marshaling and unmarshaling. Therefore, the intermediate model should be expressive enough to 

be at the meta-meta model level in the meta-level stack (Frankel, 2003). The meta-meta-model is 



• described by the Meta Object Facility (MOFr;;' which is a set of constructs used to define meta-

models. The MOF constructs are the MOF class, the MOF attributes and the MOF association. 

These constructs correspond to an ER representation (by using an Entity to represent a MOF 

class), which indicates that the ER representation is semantically equivalent to MOF 

fundamentally. Therefore, the ER representation is the right vehicle to play the dual roles of 

marshaling both models and meta-models. Also, other non-UML based languages, even though 

not as popular, are abundantly present, for which UML is not an omnipotent cure. 

The scope of this paper is on vertical direction which is further illustrated in Figure 4, i.e., 

marshaling models to ER model, then unrnarshaling ER model to the GME meta-model. The gray 

area in Figure 4 represents the MIC paradigm. To be specific, in the following section, we will 

marshal a UML class diagram for Web Services Description Language (WSDL) to the GME 

meta-model, then create a WS modeling environment based on the meta-model for WS code 

• generation. Therefore, legacy software systems can be reengineered to the WS application 

• 

automatically with a language neutral approach. We also show the generality of this approach: 

even though the scope is within the vertical direction, the approach can also be applied for 

horizontal marshaling/unmarshaling using ER model; even though the source model is the UML 

object-oriented model, it is not tied to this single kind of source model and can be applied to other 

domain-specific visual modeling languages as well. 

Figure 4. Eliciting Meta-models from model via marshaling and unmarshaling models using ER model 

M3: ER Model 

M2: 
1. marshal 

Ml: 

,"'\ "' /1 

--------:~' \ \> ... / ~ i>'\ \"!""~ -----.......... ~ ,-----
/" " reengineer ~'..;.''.'-: __ _ 

Legacy 
software 



• REENGINEERING LEGACY SOFTWARE TO WEB SERVICES (WS) 

• 

• 

In order to reengineer legacy software to WS, we need to capture 1) the WS technology 

domain knowledge; 2) the original legacy software business domain knowledge; and 3) original 

implementation technology information. This categorization of technology domain knowledge 

and business domain knowledge has been described by Zhao, et al. (2003). 

Figure 5 is the class diagram of WSDL. The WS messages, which are either input or 

output messages, are composed of parts, each of which corresponds to a specific data type. The 

portType is an abstract WS interface definition, where each contained element, i.e., the operation, 

defines an abstract method signature. The operation uses messages as its parameters. Binding 

represents an instantiation to the abstract portType with concrete protocol and data type. Service 

is a collection of ports, denoting a deployment of a binding at a specific network location. 

Figure 5. The architecture of WS description elements 

service p ortT ype operation 

port 1 .. • 

1 .. • 1 
message 

type input output 

Figure 6 describes the legacy banking application information, including its business 

domain knowledge (the first two paragraphs) and its original technology domain knowledge (the 

last paragraph). Note as WS is used as wrapper for original technology domain knowledge 

together with the business domain knowledge, rather than replacing the original technology, we 

treat the original domain knowledge as the part of business domain knowledge in the remaining 

part of the paper for simplicity purpose . 



• Figure 6. A banking example 

A bank provides the service for users to set up accounts. 

Account information includes personal data including Name, SSN, 
phone number, address, and account data including Account Number, 

PIN, Transaction Record, Balance. There are two types of 
accounts: checking account and savings account. 

For the bank side, it provides such services as: Account 

Verification, Account Query, Deposit, Withdraw, and Transfer. 

The banking service implementation may use such technology as 
RMriii, J2EEix, and CORBAx. Also it will enforce some Quality of 

Service (QoS) requirements such as Availability, Dependability, 
Capacity. 

Marshaling Legacy Software Model to ER Model 

In order to elicit the banking domain WS meta-model, we need to first merge the WS 

• technology domain information with the business domain information. To that end, we treat the 

WS technology domain as the dominant domain during the merge process, with the business 

• 

domain knowledge as the adjunct domain being appended to the marshaled model from the 

technology domain model. As such, the marshaling process as illustrated in Figure 4 can be 

decomposed into the marshaling type A for dominant domain and type B for adjunct domain 

together with a merge step as is illustrated in Figure 7. 

Figure 7. Stepwise marshaling 

Complete ER 
Mode I 

Merge 

Technology M ode I 

Marshal B 

Business Domain 
.s------~~ Knowledge 



• Table 2. Marshaling rules 

• 

• 

Type Rule 

• aggregation, association, generalization, 

Marshal A and dependency => Relationship 

• class=> Entity 

Marshal B domain analysis and mapping 

Table 2 illustrates the marshaling rules based on different marshaling types. Note that one of 

the essential characteristics of a meta-model is that it treats not only the models, but also the inter

relationships among models as first-class entities. Therefore, for marshal type A, the different 

type of relationships between classes will be mapped to the Relationship construct in the ER 

model, while each class is represented as an Entity. Figure 8 illustrates the resultant ER model 

after marshaling the WS class diagram based on this rule. Each diamond represents a type of 

relationship in the original class diagram. Note we ignore type in the ER model of Figure 5, 

FiRure 8. MarshalinR WSDL model to ER model 

service operation 

1 ..• 

port binding 

part 

~ aggregation O generalization <::):> association 



• because we can put the type directly as the attribute of the part element. However we will not 

include the attributes to the entities and relationships in the ER representation here, as the focus 

of this paper is about the model of marshaling and unmarshaling structurally; the attributes will 

be annotated in the GME meta-model and are shown later. 

For marshal type B, a domain analysis phase (Czarnecki & Eisenecker, 2000) is needed to 

associate the business domain information to the technology domain information. Specifically, 

the different banking services described in Figure 6 can be treated as different types of 

operations in WSDL, while different banking service implementation technology and QoS 

requirements can be associated to bindings in WSDL as a reification of operations. Account 

information and account type information can be treated as messages in WSDL. Figure 9 

illustrates in detail the resultant ER model after annotating the business domain knowledge (using 

either generation relationship or association relationship) to the WSDL ER model illustrated in 

• Figure 8. By using the ER model as the intermediate form for marshaling, different types of 

• 

Figure 9. The ER model of Banking Service WSDL: the three parts enclosed with dashed line represent the 
extended part to the WSDL model. 

operation 

r --, 
I ....-----...... .---~-_, I 
I I 

input 
__.___,I I 

oo~ I ~~I 
I ext 4 checking saving I 
~----------l 

~ aggregation o generalization $ association 



• 

• 

• 

domain knowledge can be merged incrementally without obfuscating each other, which provides 

a separation of concerns toward domain-specific model refinement. Also with the non-invasive 

merge process, the business domain semantics are reified with technology semantics while the 

business domain semantics are kept unchanged. 

Just as the compiler can apply code optimization when compiling application code, the 

marshaling process can be used to apply optimization (e.g., reduce redundant models or 

relationships) for the original modeling language (either UML or domain specific), the detailed 

discussion of which is out of the scope of this paper. 

Unmarshaling ER Model to GME Meta-model 

In the GME meta-model, the containment relationship is represented by using a model 

element (stereotyped with <<model>>), which, in contrast to an atom element (stereotyped with 

<<atom>>), can contain other modeling elements. Also the contained elements can be promoted 

as ports of the model to have direct connections with external modeling elements. 

Additionally, GME uses a root model as an entry point of access to all the modeling elements. 

Also, the relationship of ER is represented in GME as a first-class modeling element, connection 

(stereotyped with <<connection>>), with a connector in the form of a dot to associate this 

relationship with two modeling elements (entities). 

The unmarshaling from the ER model to the GME meta-model is based on the relationships in 

the ER representation, as is illustrated in Table 3. 

1) A contains B. In this case, A can be modeled as a model element in GME containing B. 

2) B is specialized from A. In this case, A is rendered by an abstract FCO (First Class Object, 

tagged with < <FCO> >, represents an abstract generalization of other modeling constructs), a 

modeling element to be used as an abstract interface in GME, and B is represented as an inherited 

class of that FCO. Note there are two special treatments here: first, for the input/output elements 



• 

• 

• 

Table 3. The Unmarshaling Rules: the relation notation is consistent with that in Figure 8 

Rule Number Relationship type 

1 A B 

2 A B 

3 

GME Metamodel element 

A 
c..cAtom>:-o 

·~ o .. • 

dst o .. • 
8 

ccAtom•> 

A 
<cModel::i->-

0 .... 

B 
<<Atom>> 

A 
c<FCO>:. 

Connection 
c•Connectlon>:.. 

of Figure 9, they are only used to tag the connection (named either "input" or "output") between 

message entities and its interconnecting entities in GME; second, the generalization relationship 

between binding and portType is actually treated as an association when modeling in GME, 

because the binding entity actually attaches values of the chosen protocol to the portType in 

WSDL rather than in the real sense of inheritance. 

3) B is associated to A. In this case, a connection can be added to be associated with the A and B 

representations in GME. The connection element can be named with respect to A's or B's 

properties as a kind of tag, e.g., the tag can be named as the combination of both A's name and 

B's name. Note when the situation as described in case 2 applies, then this tag should be named 

as in case 2 . 



• 

• 

• 

Fi1<ure JO. The meta-model of bankinf< domain WSDL in GME 

«:0~0:1., irv:~:~~~~~:~1~~c;)~~~~ii~~~LJ~F.~~:i...~·~:~~~~1= rr=-=-=-~~~··-=-=-=~]l1Lr~1~0·:··11nll J portType I bi~ding....... .•••• . .• L «Con~~~tion» «~~~> LI 
~--~ 11.-~~ .. !""I"- «Model» ·' «Connection» .. : [ J [ :{] 

I message 
«Model» 

I 

-- ---- - - -~0-;-. 
part 

<<FCO>> re 

' •• • • ,f1. ....• 2 _.,Jo .• 

.1' ', . 
, 'QoSParameters'. •l-l'-••~Q.,,..11."•••• ; 

• I I : 
~ «Atom» • 1 bindingTech 1 

Adaptability: field I o~ «FCO» I 

t '~ •1 Availability: field : sn: DateDeployed: field : o .. • 

1 ·· •1 Capacity: field "' 'lf.:'1 ID . field I -l _I : binding_port 

~ O .. • 

: r input 
:~{<<Connection>> 

L 

-z; ~ operations 1o Mamtalnab1hty field Version· field I · 
1 

0' «FCO» I : Portab1!1ty field d ': '··· ·· «Connection» 
1 

• • • •, field I 1 Security field~ [ J 
1
,.-----' ~ 1 

output: I 1 Throughput: field • • • .~.-.---~ 
Banl<Account 1 , : I Turn-around-time: fie!~ I 

PersonalACcount «FCO» 1 I 1 ~ependability: fielf J : 
«Atom» AccountNumber: field 

1 
: : ', # I 

address: field Pin: field : I ~ , ' RMI J Corba J J2EE J I 
phone: field Balance. field 1 I ~ 

111 

1
•, '•. •'' «Atom» «Atom» «Atom» : 

~s_s_N_: __ ne_ld~----__,7\ ,,~'( 1 '•,, • .., ••• ] ____ _J _____ _J_J 
.----'~----c' i .______, l ~-~----~ -----· 

[
checking saving I query [ deposit ][withdraw II transfer verificationl: 
<<Atom>> <<Atom>> J<Atom>> <<Atom>> <<Atom>> <<Atom>> .:<Atom>> J 1 

[ J interest_rate · field t!_ [ J [ J I J : 
------------------ ·--------------------------· 

Figure 10 shows the meta-model created by unmarshaling the ER model in Figure 9 strictly 

observing the above unmarshaling rules. The seven boxes with bold borders correspond to the 

seven WSDL entities in Figure 8 and 9, with WebService corresponds to the service entity. The 

boxes in Figure 10 also contain attributes for the related models to be instantiated in the modeling 

phase. The four areas designated by four bold dashed circular lines correspond (from right to left) 

to the extension parts 1-4 in Figure 10. It can be seen from Figure 10 that the meta-modeling 

language lacks the modularity that programming languages have, thus the construction process of 

a complex meta-model is error-prone without a systematic, automatable treatment. 

THE WS MODELING ENVIRONMENT 

After a meta-model is derived by marshaling and unmarshaling models, a domain specific 

modeling environment (which is also a crucial part of MIC) can be created based upon the meta-

model, as is indicated in Table 1. Figure 11 shows the screenshot of the banking-domain WS 

modeling environment based on the meta-model illustrated in Figure 10. The lower-left corner 

provides the modeling elements that can be dragged and dropped in the upper-left pane for 



• Figure 11. The banking domain-specific WS modeling environment 

El ~ ICW$2 
GT Rool , 

!E T B.vbig[)ot 

~_x·-~ 

~ 
~ p3 

~ 
RMI 

OoSParameters 

constructing a banking service model. The names of the models in the lower-left pane represent 

• the meta-model names (kind names); when those models are dragged to the above pane, the 

model name can be changed to reflect the meaning of the model in the domain-specific context, 

which we call a context name. Furthermore, the domain-specific model can be traversed based on 

the meta-model and interpreted in terms of code generation using the GME Builder Object 

Network (BON) framework (ISIS, 2001), which is illustrated in Figure 12. For saving space, 

Figure 12 only shows the interpreter code for generating message and portType ofWSDL. Other 

part of WSDL can be generated in a similar way. The WSDL code generated for the banking 

service embedded with QoS parameter extension is shown in Figure 13. Because of the limited 

space, only a snippet of the generated WSDL code is shown in Figure 13. Notice the bold-font 

part of the following WSDL code includes the QoS and ontology attributes ofWSDL, which may 

be used for WS filtering if QoS requirements or domain specific requirements are include for 

service discovery . 

• 



• 

• 

• 

Figure 12. WSDL code synthesis using GME BON API 

canst CBuilderModelList •root= builder.GetRootFolder()->GetRootModels(); 
POSITION pas= root->GetHeadPosition(); 
ASSERT(pos->GetCount()==l); //to ensure this model is representing just one WSDL 

CBuilderModel •webserv = pos->GetHead(); //get the handle to the WebService model 
ASSERT(webserv->GetKindName()=="WebService"); 

//WSDL message part 
canst CBuilderAtomList *messages 
pos=messages->GetHeadPosition(); 
CBuilderAtom •oneMessage; 
while(pos) 

webserv->GetModels("message") 

{ 

/* 
traverse each message model and generating code 
<message> ... </message> 
for each message model 

*/ 

oneMessage=messages->GetNext(pos); 
canst CBuilderAtomList *accounts =oneMessage->GetAtoms("PersonalAccount"); 

//WSDL portType part 
canst CBuilderAtomList •portType = webserv->GetModels("portType"); 
pos=portType->GetHeadPosition(); 
ASSERT{pos->GetCount()==l); //to ensure only one portType element in WSDL 
CBuilderAtom •oneportType; 
oneportType=portType->GetNext(pos); 

Figure 13. The WSDL for a banking WS 

<message name=''checking''> 
<part name="user_ident" type="identity"/> 
<part name="pl" type="checking"/> 

</message> 
<message name="savings"> 

<part name=''user_ident" type="identity"/> 
<part name="pl" type=''savings"/> 

</message> 
<message name="checking savings"> 

<part name="user_ident; type="identity"/> 
<part name="pl" type="checking"/> 
<part name="p2" type="savings"/> 

</message> 

<portType name="BankingServices"> 
<operation name="w" 

on toloqy=" Banking: withdraw"> 
<input message="checking"/> 
<output message=""/> 

</operation> 
<operation name="d" 

on toloqy= "Banking: deposit"> 
<input message="checking"/> 
<output message=""/> 

</operation> 
<operation name="v" 

ontoloqy="Banking: deposit"> 
<input message="checking_savings"/> 
<output message=""/> 

</operation> 

<operation name="q" ontology="Banking:query"> 
<input message="savings"/> 

<output message=""/> 
</operation> 

</port Type> 
(lo be continued in the right pane 

<binding name="J2EE_Banking" 
type="BankingServices"> 

<soap:binding style="J2EE" transport="http" 
QoS:portability="0.544400"> 

</binding> 
<binding name="CORBA_Banking" 

type="BankingServices"> 
<soap:binding style="CORBA" transport="IIOP" 

QoS:turn-around-time="l0.35"> 

</binding> 
<binding name="RMI_Banking" 

type="BankingServices"> 
<soap:binding style="RMI" transport="http" 

QoS:dependability="0.34"> 

</binding> 

<service name="My Bank"> 
<port name="pl" binding="J2EE_Banking"> 

<soap:address location="URLl"/> 
</port> 
<port name="p2" binding="CORBA_Banking"> 

<soap:address location="URL2"/> 
</port> 
<port name="p3" binding="RMI Banking"> 

<soap:address location="iiRL3"/> 
</port> 

</service> 



• MODEL-DRIVEN APPROACH TO ENRICH WS SEMANTICS 

• 

• 

Current WS standards mainly embrace the semantics of processes at the collaborating 

syntactic interface level. WSDL only exposes distributed object services, while such process 

behavior aspects as ordering, and dependency are not well specified in the existing WSDL 

standard. The model-driven approach can play a unique role in enriching the WS semantics: 

• OCL (Object Constraint Language)'i to enrich WS semantics at a high level 

• 

• 

OCL is used to complement the semantic representation for UML. Likewise, when the 

model is used to represent WS, OCL can be used to enrich WS semantics indirectly at a 

higher level. For example, if we add into the banking case in Figure 6 such requirement 

that "deposit and withdraw can only be applied to checking account", the specified 

constraints over withdraw and deposit operations can be enforced in GME using the 

following MCL expression (ISIS, 2001), an OCL implementation in GME: 

connectedFCOs("src"}->forAll(clc. kindName(}="checking"} 

Those constraints apply to both the withdraw atom and the deposit atom in Figure I 0, 

which means those First Class Objects (referring to both entities and relations in GME) 

that are connected with withdraw/deposit atoms are all of kind "checking". 

Therefore, in the WS modeling environment as shown in Figure 11, once a modeling 

entity of type other than "checking" is connected to withdraw/deposit, an error message 

window will pop up. 

Meta-model as Ontology 

A valid meta-model is an ontology, but not all ontologies are modeled explicitly as meta

models (Ernst, 2002). This ideal has already been used in (Hausmann et al., 2004) for 

WS discovery. Comparatively, here we just output the meta-model information into the 

generated WSDL as ontology annotation to enrich the WSDL semantic representation . 

Creating modeling language for enriching WS semantics 



• 

• 

• 

Assume there is order restriction for those banking operations described in Figure 6: both 

transfer and withdraw have to be preceded by a query operation; the account verification 

comes after each of the other operations. Such models as Finite State Machine (FSM) can 

be used to enrich WS semantics. Based on the FSM meta-model in Figure 2, a FSM 

modeling environment can be created in addition to the WS modeling environment that is 

described in Section 4, which can be used to generate operation ordering constraint code 

to be embedded in WSDL. We skip the details here due to space limitations. 

RELATED WORK 

This paper presents both a novel model-driven approach in general and its novel application 

to WS in particular. Specifically: 

1) For the model-driven approach aspect, we use ER model for marshaling and unmarshaling 

models. The related work in this regard includes: 

• MDA 

MDAxii is an initiative from OMGxiii for capturing the essence of a software system in a 

manner that is independent of the underlying implementation platform. MDA can assist 

in reengineering legacy software systems into Platform Independent Models (PIMs). A 

PIM can be mapped to software components on Platform Specific Models (PSMs), such 

as CORBA, J2EE or .NET. In this way, legacy systems can be reintegrated into new 

platforms efficiently and cost-effectively (Frankel, 2003). However, the core part of 

mapping technology for MDA is either ad-hoc or pre-mature before MDA can be fully 

adopted in industry. ER-based model marshaling and umnarshaling offers a potential 

solution to address this problem systematically. Another difference is that in MDA, the 

PIM is treated as dominant model while here we treat the technology domain as dominant 

model, with business domain knowledge (PIM) as adjunct model in Section 3. 

~---------------------------------------



• It has been observed that the ER representation has been adopted in defining the 

Knowledge Discovery Meta-Model (KDMriv and Ontology Definition Meta-Model 

(ODMyv in OMG, which underscores the role that ER plays for model marshaling and 

unmarshaling. 

• Grammar Inference 

The ER model, because of its powerful modeling capacity, can be used as an intermediate 

form for model-to-model and meta-model-to-meta-model exchange. Because of the dual 

role that the ER model can play, it is treated as an intermediate form for model-to-meta

model elicitation, which is the theme of this paper. This idea is very similar to grammar 

inference (Higuera, 200 I), where a grammar can be inferred from language examples. 

But the two approaches are applied at different abstraction levels. 

• XMI 

• XMrvi provides a standard mapping from MOF-based models to XML, which can be 

exchanged between software applications and tools, and the XMI specification is difficult 

to read by humans. In contrast, ER-based model marshaling and unmarshaling represents 

a design-level approach for evolving design assets, without being restricted to low-level 

syntactical data representation specifics, and the ER representation is much more human 

comprehensible. Also, the XMI-based approach uses top-down mapping, and is coupled 

to the meta-model of the targeted language; interchange format cannot be changed 

without changing the meta-model. In contrast, the ER-based approach represents either 

horizontal mapping or bottom-up mapping as is illustrated in Figure 3, without being tied 

to any meta-model. 

2) We applied the model-driven approach to WS, specifically, MIC for WS code generation 

automatically; Model-driven approaches for enriching WS semantics are also identified. The 

• related work in this regard is as follows: 



--------------------------------------------- ----

• In Lopes and Hammoudi (2003), MDA is used together with workflow technology for 

modeling and composing WS. But the authors do not provide a guideline as to how to create the 

meta-models. Also the mapping from PIM to PSM is not detailed. In contrast, our meta-modeling 

approach is sufficiently complete and general as to be applicable to other aspects of WS such as WS 

orchestration code generation. Sivashanmugam (2003) describes an approach of adding semantics 

to WS by adding ontology attributes to both WSDL and UDDI, which includes pre-condition and 

effect specification. We applied ontology annotation to WS as well, and we put the pre-condition 

and other effect specification at the meta-model level. In Mantell (2003), an MDA approach is 

used for BPEL4WSxvii code generation from a UML design. This approach uses XMI processing 

technology for UML model exchange. Comparatively, the XML representation for the ER model is 

much simpler and easier to process in our approach. Code generation in Mantell (2003) is based on 

the UML profile mapping, which is not as flexible as a generator-based approach in our case. 

• The UniFrame project (Raje et al., 2002; Olson et al., 2004), has a more comprehensive 

application of the model-driven approach. UniFrame aims at creating a framework for seamless 

integration of distributed heterogeneous components. In UniFrame, the model-driven approach is 

applied for domain engineering, and for creation of Generative Domain Models (GDMs) 

(Czarnecki and Eisenecker, 2000), which are used for eliciting rules to generate glue/wrapper code 

for assembling distributed heterogeneous components. In contrast, the scope of glue/wrapper code 

generated here is specific to WS code, which has not been addressed by UniFrame. 

CONCLUSION AND FUTURE WORK 

With Web Services (WS) as a wrapper, legacy software systems can be reused and 

integrated beyond enterprise boundaries across heterogeneous platforms. This paper explores in 

detail a model-driven approach to reengineer legacy software system to WS applications using a 

• systematic, automatable process, which includes: I) the meta-modeling process using ER-based 

marshaling and unmarshalirig, 2) the construction of a WS modeling environment for generating 



• WS code and enriching WS semantics. To our best knowledge, there is no peer work that 

addresses either systematic meta-model construction, or sufficient model-based WS code 

generation, while our work represents a comprehensive solution to both issues. Even though the 

work presented in this paper is specific to WS development, the approach can be applied to other 

web system engineering by reengineering to a different meta-model other than the WS meta-

model. 

Future work will be to provide tool support for part I in the preceding paragraph to 

automate the model marshaling and unmarshaling process for seamlessly integrating the 

reengineering process to MIC paradigm. For part 2, we will enrich the WS modeling environment 

by providing modeling and code generation support to other behavior concerns of WS such as 

interaction, activity, and temporal relationship, as well as WS orchestration and adaptation. 

• ACKNOWLEDGEMENTS 

• 

This research is supported in part by the U.S. Office of Naval Research under the award number 

NOOOl 4-01-1-0746. 

REFERENCES 

Booch, G., Rumbaugh, J. & Jacobson, I.(1999). The Unified Modeling Language User Guide. 
Addison-Wesley. 

Cao, F., Bryant, B. R., Burt, C., Gray, J., Raje, R., Olson, A., & Auguston, M. (2003). Modeling 
Web Services: toward system integration in UniFrame. Proceedings of 1h World Conference 
on Integrated Design and Process Technology (IDPT'03). 

Cao, F., Bryant, B. R., Zhao, W., Burt, C., Gray, J., Raje, R., Olson, A., & Auguston, M. (2004). 
A Meta-modeling approach to Web Services. Proceedings of 2004 IEEE International 
Conference on Web Services (/CWS 2004). 

Cao, F., Bryant, B. R., Zhao, W., Burt, C., Gray, J., Raje, R., Olson, A., & Auguston, M. (2005). 
Marshaling and unmarshaling models using Entity-Relationship model. Proceedings of the 20th 
Annual ACM Symposium on Applied Computing (SAC 2005) . 



• 

• 

• 

Chen, P. P. (1976). The Entity-Relationship model: toward a unified view of data. ACM 
Transactions on Database Systems, I (1 ), 9-36. 

Colan, M. (2004) Service-oriented architecture expands the vision of Web Services. http://www
I06.ibm.com/developerworks/webservices/library/ws-soaintro.html. 

Czarnecki, K., & Eisenecker, U.W. (2000). Generative Programming: Methods, Tools, and 
Applications. Addison Wesley. 

Devanbu, P., Karstu, S., Melo, W., & Thomas, W. (1996). Analytical and empirical evaluation of 
software reuse metrics. Proceedings of 18th International Conference on Software Engineering 
(/CSE'96). 

Edwards, G. T., Deng, G., Schmidt, D. C., Gokhale, A. S., & Natarajan, B. (2004). Model-driven 
configuration and deployment of component middleware publish/subscribe services. 
Proceedings of 3rd international Conference on Generative Programming and Component 
Engineering (GPCE 2004). 

Ernst, J. (2002). What are the differences between a vocabulary, a taxonomy, a thesaurus, an 
ontology, and a meta-model? 
http://www.metamodel.com/article.php?story=20030115211223271. 

Frankel , D. S. (2003). Model Driven Architecture: Applying MDA to Enterprise Computing. 
Wiley . 

Garlan, D., Monroe,R. T., & Wile, D. (2000). Acme: architectural description of component
based Systems. Foundations of Component-Based Systems, ed. Leavens, G. T. and Sitaraman, 
M., Cambridge University Press, 47-68. 

Gokhale, A., Schmidt, D. C., Natarajan, B., Gray, J., & Wang, N. (2004) Model driven 
middleware. Middleware for Communications, ed. Mahmoud, Q., John Wiley and Sons, 163-
187. 

Graham, S., Simeonov, S., Boubez, T., Davis, D., Daniels, G., Nakamura, Y. & Neyama, R. 
(2002). Building Web Services with Java. SAMS. 

Hausmann, J. H., Heckel, R., & Lohmann, M. (2004). Model-based discovery of Web Services. 
Proceedings of International Conference on Web Services (JCWS 2004). 

Higuera, C. d. I. (2000). Current trends in grammatical inference. Proceedings of Joint /APR Int. 
Workshops SSPR & SPR 2000. 

ISIS.(2001). GME 2000 User's Manual, Version 2.0. Vanderbilt University. 

Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T. (2003). Model-integrated development of 
embedded software. IEEE. 91(1), 145-164. 

Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., & Karsai, G. (2001). 
Composing domain-specific design environments. IEEE Computer, 34(11 ), 44-51. 



• 

• 

• 

Ledeczi, A., Davis, J., Neema, S., Agrawal, A. (2003). Modeling methodology for Integrated 
simulation of embedded systems, ACM Transactions on Modeling and Computer Simulation. 
13(1 ), 82-103. 

Lopes, D., & Hammoudi, S. (2003). Web service in the context of MDA. Proceedings of 
International Conference on Web Services (ICWS'03). 

Mantell, K. (2003). From UML to BPEL: model driven architecture in a Web Services world. 
http://www-l06.ibm.com/developerworks/webservices/library/ws-uml2bpel/. 

Olson, A. M., Raje, R. R., Bryant, B. R., Burt, C. C., & Auguston, M. (2004). UniFrame-a unified 
framework for developing service-oriented, component-based, distributed software systems. 
Service-Oriented Software System Engineering: Challenges and Practices, ed. Stojanovic, Z. and 
Dahanayake, A., Idea Group, 68-87. 

Raje, R. R., Auguston, M, Bryant, B. R., Olson, A. M., Burt, & C. C. (2002). A quality of service
based framework for creating distributed heterogeneous software components. Concurrency and 
Computation: Practice and Experience, 14(12), 1009-1034. 

Sivashanmugam, K., Verma, K., Sheth, A., & Miller, J. (2003). Adding Semantics to Web Services 
Standards. Proceedings of International Conference on Web Services (ICWS'03). 

Zhao, W., Bryant, B. R., Burt , C. C., Gray, J. G., Raje, R. R., Olson, A. M., & Auguston, 
M.(2003). A generative and model driven framework for automated software product 
generation. Proceedings of CBSE 6, the 61

h Workshop on Component-Based Software 
Engineering: Automated Reasoning and Prediction. 

i http://ws.apache.org/axis/ 
ii UML™ - Unified Modeling Language - http://www.omg.org/uml 
iii JVLC - Journal of Visual Languages andComputing-http://www.elsevier.com/locate/jvlc 
iv Interview with Keith Short, http://www.theserverside.net/talks/ library.tss#KeithShort 
v Note that the ER model is not intended to replace the existing modeling language such as UML or Petri 

Nets - those modeling languages have their own advanced features for a specific domain to model. Here 
the ER model is chosen as an intennediate fonn only for exchanging models of a close type or serving a 

. close purpose but with variant notations across different modeling tools and environments. 
vi http ://bit.csc.lsu.edu/-chen/chen.html 
vii Meta-Object Facility - http://www.omg.org/technology/documents/formal/mo(htm 
~iii RMI - Remote Method Invocation: http://java.sun.com/products/jdk/rmi/index.jsp 
•x J2EE - Java 2 Enterprise Edition: http://java.sun.com/j2ee/ 
x_CORBA® - Common Object Request Broker Architecture: http://www.omg.org/corba/ 
x•_http://www-3.ibm.com/software/ad/library/standards/ocl.htrnl 
x'.'..MDA - Model-Driven Architecture - http://www.omg.org/mda 
x'." OMG - Object Management Group-http://www.omg.org/ 
xiv http://www.omg.org/cgi-bin/doc?lt/2003-I I-4 
xv. http://codip.grci .corn/ odrn/draft/submission _ tex t/ODMPrelimSubAug04 R l .pdf 
xv'._XMI - XML Metadata Interchange - http://www.omg.org/technology/ documents/formal/xmi.htm 
xvn BPEL4WS - Business Process Execution Language for Web Services - http://www-128.ibm.com/ 

developerworks/library/specification/ws-bpel 



• 

• 

• 

A Non-Invasive Approach to Assertive and Autonomous 
Dynamic Component Composition in Service-Oriented 

Paradigm 

Fei Cao 
(University of Alabama at Birmingham, Birmingham, AL, USA 

caof@cis.uab.edu) 

Barrett R. Bryant 
(University of Alabama at Birmingham, Birmingham, AL, USA 

bryant@cis.uab.edu) 

Rajeev R. Raje 
(Indiana University Purdue University, Indianapolis, JN, USA 

rraje@cs.iupui.edu) 

Andrew M. Olson 
(Indiana University Purdue University, Indianapolis, JN, USA 

aolson@cs.iupui.edu) 

Mikhail Auguston 
(Naval Postgraduate School, Monterey, CA, USA 

auguston@cs.nps.navy.mil) 

Wei Zhao 
(University of Alabama at Birmingham, Birmingham, AL, USA 

zhaow@cis.uab.edu) 

Carol C. Burt 
(University of Alabama at Birmingham, Birmingham, AL, USA 

cburt@cis.uab.edu) 

Abstract: Component-based software compos1t10n offers a development paradigm with 
reduced time-to-market and cost while achieving enhanced productivity, quality and 
maintainability. Existent work on the composition paradigm are of a static composition 
paradigm, which is not sufficient in distributed environment, in which both constituent 
components and assembled distributed system are subject to dynamic adaptation. This paper 
presents two types of dynamic composition for distributed components: assertive and 
autonomous over .NET based Web Services environment. Two case studies are provided: the 
first one illustrates at a low level how the underlying infrastructure enables the dynamic 
composition; the second one illustrates at a high level how dynamic compositions are specified. 

Keywords: dynamic component composition, Service Oriented Architecture, Web Services, 
assertive composition, autonomous composition, intermediate code manipulation, aspect
oriented programming, aspect weaving, .NET, Common Language Runtime 
Categories: D.2.3, D.2.12, D.2.13, D.2.7, D.3.3, H.3.5, I.2.8 



• 

• 

• 

l Introduction 

With the increasing demand for scalability, reasonability and correctness of software 
systems, software development has evolved into a process of composing existing 
software components, as opposed to constructing a new software system completely 
from scratch [Heineman, 0 I]. Economically, by reducing time-to-market, this 
approach has improved the economic and productivity factors of software production 
[Devanbu, 96]; Technically, by separating overall functionality into small units, 
component-based software development also offers a means for better manageability 

, [Brown, 00] and predictability [Hissam, 03] of the constructed software system. 

Features of Distributed Components 
With the advancement of internet technology, component-based software 

development has unleashed its impact into the distributed environment, while 
exhibiting such new features as follows: 

a. The scope of component selection and reuse is extended. Consequently, 
component composition requires a prerequisite discovery process for 
identifying a matching component. 

b. Distributed components are usually heterogeneous with respect to 
implementation languages, and host platforms. With different type systems 
or component models, interoperation between components will not be 
possible without leveraging proper bridging technology. 

c. Because of the unpredictability of network transport, not only functional 
properties, but also non-functional properties (e.g., Quality of Service [Raje, 
02], economical properties such as pricing of service) are of critical concern 
to guarantee the proper delivery of services offered by the assembled 
distributed software systems. QoS includes availability, throughput, and 
access control, to name a few. 

d. The coupling between components is loose. A deployed component in a 
distributed system is subject to frequent adaptation 1 or replacement with a 
new version to accommodate ever-changing business requirements 
externally as well as the computing resource status internally. Those 
requirements can be either functional or non-functional. 

WS as a New Paradigm for Distributed Component Composition 
Those new features pose new problems for developing software systems based on 

distributed components. Recent years have seen the emergence of Web Services (WS) 
technology as a new component-based software development paradigm in a network
centric environment based on the Service Oriented Architecture (SOA) [Colan, 04], 
the open standard description language XML and transportation protocol HTTP. 
Consequently, distributed component composition can be achieved by wrapping 
heterogeneous components with a WS layer for interoperation. Using WS as a 
common communication vehicle, component interoperation is greatly simplified 

1 
Here adaptation is defined as component compositon and decomposition; 

component composition and decomposition are the means to realize adaptation . 

- -----------------------------------------------------



• 

• 

• 

compared with such bridging technology as CORBA2
, where different interoperation 

implementations are needed for each pair of components contingent on their 
underlying implementation technologies. In the remaining part of this paper, the term 
component in a distributed environment is equivalent to a WS: we use it to correlate 
the canonical concept of a software component [Szyperski, 02]. 

The Need of a Dynamic Component Composition Paradigm in WS 
Jn addition to offering an interoperability infrastructure for distributed 

components, WS also incorporates service discovery infrastructure in accordance with 
SOA. With problem (a) and (b) being embraced, current WS technology is yet to 
address the concerns as set forth in (c) and (d). Specifically, 
1 ). in mission critical scenarios such as finance or military, there is a need for 

guarantee of service availability continuously, rather than shutting down the 
system for services adaptation; 

2). in distributed environments, service consumption experiences are dynamic and 
desirable to be seamless, thus the customizability of service dynamically is of 
vital importance in a service-oriented environment. 

As such, static component composition is not adequate, and both functional and non
functional property adaptation need to be applied in a dynamic fashion. Along this 
line, this paper presents a dynamic component composition paradigm in WS 
environment for adapting WS functionally and non-functionally while maintaining the 
availability ofWS. 

This paper presents a dynamic component composition paradigm based on the, 
.NET Common Language Runtime (CLR) [Gough, 02]. We chose .NET because it is 
a thorough, fundamental re-architecting of a distributed computing platform based on 
WS, while other application server support for Web Services tend to be designed 
more as another client, or presentation tier for the back-end systems, with 
communication tier based on RMI or RMl/IIOP rather than a strictly XML protocol 
based such as .NET [Newcomer, 02]. 

This paper is organized as follows: Section 2 describes background 
information. Section 3 provides an overview of the approach, as well as salient 
features. Section 4 describes design and implementation. Section 5 provides two case 
studies. Section 6 provides the benchmarking for the approach. Section 7 describes 
related work. We conclude in Section 8 together with the description of future work. 

2 Background 

The .NET framework is a platform for software integration, with Common Language 
Runtime (CLR) for integrating software at the single operating system process scale, 
and with XML WS for integration at the internet scale. CLR is the .NET equivalent to 
the Java virtual machine, but offers more features such as using Common 
Intermediate Language (CIL) based on the Common Type System (CTS) [Gough, 02) 
to translate .NET languages before execution, thereby offering cross-language 
interoperability for .NET languages based on CIL. The code to be translated into CIL 

2 CORBA® - Common Object Request Broker Architecture: 
http://www.omg.org/corba/ 



• 

• 

• 

and then to be executed by CLR is also called managed code. Also CIL includes rich 
metadata information for describing software module contracts to achieve managed 
execution, with the benefits of security and scalability. 

The scope of this paper is not to at provide a full description of .NET CLR and 
XML WS, but rather to present our approach on capturing WS at the CLR level, then 
applying in-memory CIL code manipulation at runtime to realize dynamic component 
composition. 

3 Overview of the Approach 

3.1 Runtime Code Manipulation Through Assertive and Autonomous 
Composition Rules 

Figure I provides an overview of the dynamic composition approach. In the left pane 
of the execution unit, the .NET XML WS, which is specified with Web Service 
Description Language (WSDL), is a layer built on top of .NET applications (I), which 
in tum runs over CLR (2). Consequently, .NET based XML WS can leverage the 
benefits of managed execution, where the .NET application is captured in the form of 
CIL (2), which is to be Just-In-Time (JIT) compiled into native code and executed (3). 
Therefore, by manipulating CIL derived from the XML WS implementation 
language, WS components can be composed at runtime. 

c 
0 
;:; -
0 Q) 

~ > 
..... Q) 
(/) -
.0 
<! 

WS/WSDL 

.NET Application 

2 

CLR/CIL 

3 

Native Code 

Execution Unit 

/"//~~\ 
i1 · / a ' . . . I \ 

i2 \-----, b 

I~\ 

! c : 

Composition Rule 

d 

Configuration Unit 

Figure 1: Overview of the dynamic composition approach 

s: 
(1) 

ii) ;:;o 
' c r-ro ro 
< 
(1) 



• 

• 

• 

The manipulation of CIL is illustrated in the right pane of the configuration unit, 
which is comprised of a stack of composition rules with a meta-level hierarchy. 
Composition rules are specifications for component composition (d). Meta-rules are 
specifications of triggering conditions for applying the composition rules, and the 
firing of the composition rules is enabled through a rule execution engine 
automatically ( c ). The use of rule engine for applying composition rules is useful for 
implementing autonomous compositions based on the runtime status quo. The actor 
icon represents a configuration console in a manual manner for both meta-rules (a) 
and composition rules (b). While the composition enabled through path (a->c->d) 
represents autonomous composition, the composition path of (b->d) represents the 
assertive composition. The configuration decision is based on WSDL exposed by WS 
(ii); WS itself can in tum assume the configuration role for specifying component 
composition reactively (i2). 

3.2 Salient Features 

The dynamic component composition approach also includes the following salient 
features: 

I). Non-invasive 
• Non-invasive to application code for separation of composition concerns 
The WS composition is realized through in-memory IL manipulation as 
opposed to off-line invasive code change. The non-invasive change is often 
desirable as a WS vendor may deliver the software package in binary form. 
Also even though it is possible to derive CIL from a .NET executable using 
some de-compilation tools, invasively changing either original source code 
or derived CIL code will require unloading, recompiling and redeployment 
of the original WS application, which compromises the availability of WS. 
Moreover, the invasive change of WS code will pollute the original 
application such that recovering it will become difficult, which introduces 
the common version control problems for software systems. 
• Non-invasive to platform for portability. The composition through 
manipulation of CIL at runtime (Figure 1-d) requires the interception of the 
managed execution. Instead of re-implementing the CLR such as rewriting 
open source CLR Rotor [Stutz, 03) to invasively add a listener for execution 
interception at the compromise of portability of CLR, we use a pluggable, 
configurable CLR profiling interface to achieve this goal, which can be 
enabled and disabled based on composition needs with ease to reduce 
unnecessary overhead. 

2). Language neutral for cross-language component composition 
By specifying composition rules based on WSDL, which in tum is based on 
alanguage neutral XML schema3

, and code manipulation at the intermediate 
code (CIL) level based on language neutral CTS, WS components 
implemented in different .NET languages can be composed across language 
boundaries. 

3). Adaptable composition. 

3 http://www.w3c.org/2001/XMLSchema 



• 

• 

• 

With the configuration unit as a separate entity applied to runtime as shown 
in Figure I, not only is the composition concern separated, but also it can be 
updated to realize adaptable composition at runtime. 

The following section presents in detail the design and implementation of the 
dynamic component composition in Peer-to-Peer (P2P) scenarios, particularly, how 
the composition rules are specified to facilitate assertive and autonomous 
configuration. 

4. The Design and Implementation of Dynamic Component 
Composition 

4.1 Peer-to-Peer (P2P) Component Composition 

Figure 2 illustrates the architecture for the dynamic component composition based on 
.NET WS environment. In our work, each component is hosted in an infrastructure 
DynaCom, which is essentially a profiler-enabled CLR to be detailed in Section 4.2. 
DynaCom is used as a proxy to for components to interoperate with components in 
other locations through WS. Meanwhile, DynaCom can intercept the execution of the 
hosting components and change the behaviour of the executing components 
dynamically. DynaCom is based on our prior work on using a profiling approach for 
dynamic service provisioning [Cao-a, 05), but here it is tailored to component 
composition . 

component I profiler-enabled C LR 

DynaCom 

Figure 2: The P2P component compositions in .NET WS environment 



• 

• 

• 

The component composition model shown in Figure 2 represents a P2P paradigm, 
which is the primary composition model to be addressed in this paper. This choice is 
based on the observations that P2P and dynamic composition are tightly associated: 
I). P2P as an agile mode to accommodate dynamic features. While WS 

orchestration by executing BPEL4WS4 in the execution engine represents a 
centralized composition model, it has been observed that such a composition 
model compromises scalability, availability, and security for the server [Chen, 
01). With the highly dynamic features in distributed environment, P2P 
component composition paradigm will be more widely used. 

2). Dynamic composition is the necessary means for realizing P2P computation in a 
distributed environment. While component composition usually requires the 
generation of glue/wrapper code [Cao, 02], the physical location for hosting the 
generated glue/wrapper code is a hard problem in P2P mode without central 
management and storage units. Dynamic composition, with glue/wrapper code 
generated in memory and JIT compiled and executed at runtime, provides a 
solution for P2P component composition without the physical code placement 
issues. 

4.2 DynaCom Exposed 

Figure 3 provides an anatomy of Dyna Com. The part enclosed by the big square 
represents the enabling mechanism for dynamic composition, which is transparent to 
the components to be composed above the big square. 

Our work is built upon the ASP.NET5
, a WS implementation package based on 

the .NET framework. In ASP.NET, Internet Information Service (IIS)6 is used to 
accept the incoming WS SOAP (Simple Object Access Protocol) [Newcomer, 02] 
message transported over HTTP (I). Upon acceptance of the WS request encoded as a 
SOAP message, an IIS filter will launch a work process (aspnet_ wp.exe), which in 
tum will launch CLR (2) to run the WS application in the mode of managed 
execution. At this point, the WS application is rendered as in CIL subject to be 
JITcompiled into native code and executed (6). In order to adapt WS, it is needed to 
intercept the WS call at the CIL level before it is compiled. While it is reasonable to 
implement the expected functionalities in the CLR open source of millions of lines of 
code such as Rotor [Stutz, 03], we feel it too expensive an effort. Instead, we use the 
CLR profiling API to implement a Profiler as event handlers, and register them as 
listeners for the events generated from the CLR (3). In contrast to the conventional 
publisher/listener model, which is often of a client-server relationship, the profiler 
here will be mapped into the same address space for the profiled application as an in
process server. 

4 BPEL4WS - Business Process Execution Language for Web Services - http://www-
128.ibm.com/developerworks /library /specification/ws-bpel 
5 http://asp.net 
6 http://www.microsoft.com/WindowsServer2003/iis/default.mspx 



• 

• 

• 

I 

Component 1 

Q Component 2 

/ 

'---~---'...._10.1 //12 ...... / 
\ ::::::'""_"'- ....... 

1.1 \/ 

\ .................... 
......... ~~ .................. 

Internet Information Server (llSJ· 
aspnet_wp.exe 

2 

install 
Just-In-Time Compilation 

5 

Common Language Runtime 

6 

Native Code Execution 

...... 

Rule Base 

Inference Engine 

11 

Figure 3: The Architecture of DynaCom: Dynamic Component composition enabling 
unit, which includes the part enclosed by a bold-border rectangular and the JIS.facts. 
The parts of JJS and facts are accessible to the remote components, while the enclosed 
part of DynaCom are only accessible locally. The dashed line of 1 and JO represents 
remote access, while all the remaining solid lines represent local access. The laptop 
icon represents the local configuration unit to DynaCom. 

The events generated from the CLR are the result of managed execution, 
including but not limited to garbage collection, class loading/unloading, CLR 
startup/shutdown and JIT compilation. The event of our interest is· JIT compilation, 
for which we implement in-memory CIL manipulation for the event handler. The 
adapted CIL will then be JIT compiled and executed resulting in changed WS 
behavior. A one-shot change to CIL will reduce the traceability of adaptation, impede 
the removal of the imposed adaptation (thus incapable of dynamic decomposition), 
and restrict the flexibility of further adaptation. Therefore, we interpose a Hook code 
(4,5) in the WS application to be adapted, which will check the Adaptation Advice 
Repository (AAR) for applicable adaptation advice. The term "advice" is further 
explained in the next section. AAR is located in a shared memory for fast access 
during in-memory CIL manipulation. The AAR includes an Advice Library storing 
predefined reusable advice in the compiled managed code form, as well as an Aspect 
Usage Specification (AUS) component to indicate applicable advice for WS. The 
Profiler and the AAR are subject to external configuration (7-11): for 7, the 



• 

• 

• 

configuration is used to narrow down the scope of profiling; for 8- I I, the 
configuration is used to dynamically specify adaptation rules, among which 8 
corresponds to a direct manipulation of adaptation rules, while 9-1 I corresponds to 
indirect manipulation of adaptation rules through a rule inference engine. The 
inference engine can dynamically inject AUS into AAR based on the rule 
specification, which is to be detailed in Section 5.2. The laptop icon in the upper-right 
comer represents the local configuration unit. The configuration unit for DynaCom 
can adopt a GUI interface or an API interface. In our work, we use a simple console 
for the local configuration unit handling configuration 7-9, while configuration 10-11 
is realized through an API interface. 

4.3 Dynamic Component Composition Through Dynamic Aspect Weaving 

4.3.1 Modularized Component Composition 

In Figure 2, each DynaCom only hosts 2 components, which is for simplicity purpose 
in illustration. In reality, a DynaCom may be hosting multiple components. 
Consequently, a component handling a crosscutting concern may be expected to be 
composed with multiple other components. Thereafter, it is not possible to specify 
adaptation for every individual component upon changing of requirements. Instead, 
there needs to be a means to abstract the adaptation in a modularized way. Aspect
Oriented Programming (AOP) [Kiczales, 97] offers a means to abstract cross-cutting 
concerns in a modularized way called an aspect, and the concerns can be weaved 
using weaver technology into the base program based on the join point model, which 
specifies the destination to weave concerns. In the same vein, we specify the 
adaptation advice in the AAR in a modularized way following AOP style7

• To weave 
and unweave the specified advice, we instrument the hooks at both the entry (pre
hook) and exit point (post-hook) of the WS method to be adapted, which are used to 
check into the AAR to see if corresponding before advice and after advice is 
applicable: the former performing some pre-processing before the actual WS method 
execution, while the latter performs some post-processing immediately before the WS 
method execution returns. Such pre- and post- processing capacity can be used to 
instrument codes for addressing non-functional concerns, such as applying access 
control upon the entry into the WS method, or applying state persistency service for 
the executed WS application upon the end of the WS call. Also included in the pre
hook are the instructions to check if an around advice is specified or not, and a jump 
instruction to redirect the execution to the exit point of the WS application. The jump 
instruction is to be activated if an around advice is found valid in the AAR. With 
around advice, the original WS will be replaced with new behaviour specified in that 
around advice. Consequently, not only the original WS can be decorated, it can also 
be overridden completely, which is necessary when a buggy WS is identified and 

7 AOP also offers a means for separating composition specification from components 
to be composed, with the underlying weaver realize the composition. As such, in case 
the components to be composed do not involve crosscutting concerns, the component 
composition is still specified in the same way as an aspect weaving specification with 
AUS . 



• 

• 

• 

needs to be removed, or an old service module need to be updated. The around advice 
sufficiently offers a delegation and wrapping approach for component composition 
which is exemplified in Section 5. By using a hook for weaving, advice can be 
applied dynamically and proactively. Meanwhile, unweaving advice can be realized 
by dis-activation of the corresponding AUS in AAR. Figure 4 is the CIL manipulation 
template for adapting a WS method. 

IL 0000: ldstr "classname/method _name/parameter_ name_ list/retumtype/before" J 
IL=OOOS: call void dynaweave.hook::advising(string) //to check & apply before-advice 
IL_OOOa: pop //to maintain the original stack 
IL OOOb: ldstr "classname/method name/parameter name list/retumtype/around" 
IL_ 00 I 0: call void dynaweave.hook: :advising( string) //to check & apply around-advice 
IL_0015: brtrue IL_020b 
IL_OOla: <Original Method body in JL> 

IL_ 0200: Ids tr "classname/method _name/parameter_ name _list/retumtype/after" j 
IL_ 0205: call boo! dynaweave.hooker::advising(string) /Ito check & apply a.fter-advic'.:_J 
IL_ 020a: pop /Ito recover the original stack after original method is executed 
IL_ 020b: return 

Figure 4: Instrumentation of IL code of a WS method 

4.3.2 Specifying Component Composition via Aspect Usage Specification 

pre-hook 

post-hook 

The AOP weaving specification in AspectJ [Kiczales, 01] can be adapted for 
component composition specification in terms of aspect weaving as illustrated in 
Table I. 

Component Com_..1>_osition A~ect Weaving S_1>_ecification 
after (a) 

a precedes b {b; 

Sequential 
} 

before (a) 
a follows b {b· » 

around (a) 

a is wrapped by b at the 
{b; 

Wrapping 
beginning and c at the end 

proceed(); 
c· » 

around (a) 
Overiding a is overriden by b {b; 

} 

Table 1: Composition specification in the form of aspect weaving 



• 

• 

• 

The aspect weaving specification is represented in AUS. The type system used in the 
AUS in AAR can be based on the object-oriented CTS of CIL, for which each CLR 
hosted language is translated to before being JIT compiled. Therefore, such 
specification is applicable to all WS applications running in CLR, which provides a 
language-neutral way for AUS. However, writing adaptation AUS based on low level 
CTS is error-prone and not necessary for high-level AUS. As a result, AUS is written 
in XML rather than in CTS, which is based on the following observations: 

I) Necessity 
• Components delivered may be in binary form with source code being 

unavailable, thus AUS at the application code level is not feasible. On the 
other hand, components in the .NET WS environment are exposed through 
the WSDL interface, which offers a reference point for specifying WS 
component adaptation. 

• AUS, as the specification reflecting the business requirement adjustment (by 
composing and decomposing related components), should have an 
abstraction level close to business requirements, rather than being tied to 
underlying implementation details. 

• XML-based specification for AUS can be directly serialized and queried by 
hooks using XML manipulation APis such as DOM or SAX or XQuery8. 

2) Sufficiency 
• Web Service Description Language (WSDL) is based on the XML Schema, 

which is another language neutral type system that can be mapped to the 
language-neutral CTS. The XML Schema based specification is parsed and 
translated to CTS to be matched against the string provided by the hook 
such as described in IL_OOOO, IL_OOOb, IL_0200 in Figure 4. The AUS in 
AAR accords with XML schema as illustrated in Figure 5 . 

<wsdl:operation name="apply _advice"> 
<wsdl:input message="tns:advicetype"/> 
<wsdl:input message="tns:retum _type"/> 
<wsdl:input message="tns:classname"/> 
<wsdl:input message="tns:methodname"/> 
<wsdl:input message="tns:parameter _list"/> 
<wsdl:input message="tns:advicename"/> 

</wsdl:operation> 

Figure 5: The A US schema 

Associated with each advicename is the path information for actual advice in the 
form of managed code stored in the AAR. All the advice code is defined as a template 
with the tuple <Classname, Methodname, Parameter_List> as parameters, which 
offers reusability of advice. Such advice can be pre-built in any .NET language and 
compiled into managed code. If a matching advice is found, then the advice code will 
be loaded from the corresponding path and called. In our work, the wild-card 
characters are also supported for AUS. 

8 http://www.w3c.org 



• 

• 

• 

4.3.3 Autonomous Component Composition Using Rule Inference Engine 

Functionality for the composed distributed software systems can be predicted based 
on the constituent components [Hissam, 03), thus a component composition based on 
functional requirements can be specified assertively. In contrast, non-functional 
properties such as pricing based on end-to-end delay (service consumption duration) 
for composed distributed software systems can only be reasoned about at runtime 
because of their dynamic characteristics. As such, a distributed software system needs 
to self-adapt itself by composing and decomposing components autonomously to 
achieve the expected QoS. The self-adaptation decisions can be collectively built 
into a knowledge base proactively and retroactively. Therefore, the complete dynamic 
component specification in terms of dynamic, autonomous aspect weaving takes the 
following rule: 

apply [aspect name) when [logical condition) 

The when clause represents the condition under which the action apply 
[aspect_ name] need to be performed. Consequently, the AUS schema in Figure 
5 will be augmented with an attribute when for the wsdl :operation element. 
The use of rule inference provides a means for not only separation of concerns 
between business rules and the underlying technical implementations for component 
compositions, but also autonomous composition at runtime. 

In our work, we use Jess [Friedman-Hill, 05) as the underlying inference engine, 
which is a forward and backward chaining rule engine for the Java platform. 
Associated with the inference engine are the fact bases and the rule base as shown in 
Figure 3. The rule base is only accessible to the local hosting site, and represents local 
autonomous composition policies; comparatively, the fact base is exposed to both the 
local and remote site, which can be manipulated by either the local configuration unit, 
local components, or remote components. The fact bases of different DynaCom are 
federated, and a local rule engine can query remote fact base for triggering an action. 
This is useful when a local composition rule is dependent on remote component status 
(which is reflected in the remote fact base). For example, the unavailability of a 
remote components during a certain period of time will trigger the local component to 
connect to an alternative component, which offers a means of fault tolerance. 

Jess offers a hybrid programming paradigm between the Java language and 
declarative rule specification: the Java code can invoke the Jess rule engine while the 
Jess rules invoke Java code. In order for Jess fact base to interoperate with remote 
components, as well as to enable the Java-based inference engine interoperable with 
.NET environment, we wrap the Java-based Jess API with a WS layer using Java 
WSDP9

• 

9 Java WSDP - Java Web Services Developer Pack - http://java.sun.com/ 
webservices/jwsdp/index.jsp 



• 

• 

• 

5 Case Study 

In this section we present two case studies. The first one is an assertive dynamic 
composition example which is also intended to illustrate how every part shown in 
Figure 3 works together. The second one showcases a dynamic composition paradigm 
of autonomous composition. 

5.1 Composition Crosscutting Credit Authorization Components 

Figure 6 provides an example of a college student credit authorization WS to 
demonstrate the assertive dynamic component composition for a non-functional 
concern: access control. Figure 6-A provides a simple WS application written in C#, 
which provides a WS method for authorizing credit card application based on the 
Social Security Number (SSN 1°) and the expected credit line. The corresponding 
WSDL in Figure 6-B can be automatically generated from the source code in Figure 
6-A based in ASP.NET, which in turn is to be exported and used as the basis for AUS 
as well. Figure 6-C is an AUS with an around advice to apply credit history checking 
before any credit card application request is processed. The AUS represents a 
sequential composition specification for a component encapsulating crosscutting 
concerns (here HistoryChecking). The wild card specification in credit_* represents 
all credit application with the request name preceded with "credit_". Figure 6-D is the 
source code for the pre-built credit history checking advice, which can be written in 
any .NET language (here C#) and is compiled and persisted in the managed code 
form. The type systems in Figure 6-A, Figure 6-C, Figure 6-D are translated into CIL 
and matched up in CLR. Once a match holds, the advice in Figure 6-D will be called 
by the hook instrumented at runtime. The WS application source code level detail is 
transparent to AUS in Figure 6-C, as well as to the HistoryChecking component in 
Figure 6-D. By instrumentation of intermediate code, component composition can be 
realized across language boundaries without invasively changing application source 
code. 

5.2 Composing Travel Planning Components 

The former section demonstrates how each part in DynaCom is integrated together for 
assertive dynamic component composition, particularly how the intermediate code 
manipulation enables the component composition across language boundaries without 
invasively accessing the application source code. This section will further explore the 
dynamic composition for multiple components for travel planning, which not only 
includes assertive dynamic composition, but also autonomous dynamic composition 
using the Jess rule inference engine. Complementing the previous case, this case 
focus on the user level component composition specification as opposed to dwelling 
on the low level intermediate code manipulation. 

In Figure 7, the boxed part contains the WS components for travel planning, with 
those above the box representing the types used in the WS components. Each 
customer plans the travel through a travel agent Travel_Agent (TA). The travel agent 

10 An identification number used to identify income earners in the United States . 



• 

• 

• 

I 
I 
I 
I 
i: 

q: :elerrert •· .. - .. creCit._cr::·~lei:;:est.t:dent "> 
< s :-:::crrpiexType-> 
<s: ~eqt:er.i:-E:> 

<:: :e le:n:r.t -
".S: e-lerr.l:'r.t • 

..... :; .. - ._,. .. ].. -."•"SSN" '!'-~'"s:string'" /> 
: .... ].. ·,="cred1:.l1ne":. ~..:::•"s:i:i:" /> 

< .: s: seq·Je:i~e> 
< ·s:-:crrpli:-:-o.7ypt) 
<,s:eler.-P~o:.> 

< ~: E-lerrf::'r.l . a"r:rer::i '. 
.-:c.r.-p.iE:"'T:1PE> 
: ::equer.ce:... 

col le-;e:=t 1.:c!E-rotRes;x:-nse"> 

·elerr,er.t =": .. · , ..... ·. ·. ··=-"]" ....... '"cred1t ccllegestud~nt'Rest:lt..'' 

-''s:bc.JlE:.;;r." /> 

<Is: seq..1ence> 
<;s:ccrrplex'T1Pf>> 
</s:elerre:-a:.> 
</s:s-:t.ema> 
< /w::d.1: lYJX:-5> 

"wsdl:messa~H? ... ,."c:red.i: ccllegestucentS0apln'"> 
<"'•sCl: part ··"··c ... "p.:ua.,.eters" - "tns :ccedi t_ col legestudent" /> 
<1w!dl :rr.es:;a~E-> 
<'..:5cl :mess<sge ·..,-·'-'"Credi: ccllegestuCent.Soap01.:f"> 
<.,..sC.l :part · .· .. "rara:reter~" ~-:.<::'.:-...:.·· ~"tns:credit_colle<Je::tudentJlesponse" /> 
< /w:;dJ :rressa9e> 
<...,scl :pert Type ,.1 ... ( - "!".ninAppSoap"> 
<1o·::Cl :ope!"ation :-.t-~ .. •"Credi:.. eel legesludenl "> 
<wsCJ:j:ip·Jt-: · -;·····-"tns:c=edit. col1ege.studentSoapin" /> 
<-..·sC:l :outpi;t ... ,, ·,; ·: ::-'·"'"'.ns:credi l_cc1 le9estudentSoapOi.;t" I> 
... /wsdJ :cpera:...lon> 
</w.sdl :por!.Type> 

class MalnApp: WebSelvice ( 

public \/Cid processrequest(string SSN, inl aeditline) 

(WebMethod} 
public bool credtt_colfegestudenl(string SSN, inl aedlline) { 

prncessrequest(SSN, aeditline ): 

reb.Jmbue; 
) 

A 

B 

<wsdJ:opention namt:=""apply_advice"> C 
<wsdJ:inpui: messagc-"arouncf'f> 
<wsdhnpur nxssag..-"bool"I> 
<wsdhnpur messag<-"MainApp"I> 
<wsdl:inpul mes.ugt-<"credit_ •"f> 

<wsdlinpul messagt'"'"string. int"f> 

I----~· <wsdVinpur m:ssag.,."lristorycheckm[!"I> 
<Jwsdl:operation> 

ptblic class historydlecking D 
( 
public slalic void applying(string ssn, inl amount) 
{ 

bool ck= docredithisloryd1ecldng(ssn, 
amount); 

W(ok) 
i:roceedO; 

else retum false; 
) 

CIUCLR l 
Figure 6: Composing credit authorization component assertively(A+D) 



-----------------------------------------------------------------

• 

• 

• 

Itinerary Fligh!lnto 

•totatprice noal flight .+name stnng 

•lotalmiles int IC~-------------J:sper·~'.cltloaass1 stnng 1--
•sfop_over stnng ..... 

( 0 hotel 

1tave1er L 
' ' ' 1 

' 

------------------ '1------i 

Hotellnfo 

•name-siring 
~ 1 •starinl 

1- - - - - - - -~•locahcm:string 
J •roomsrequested 1nl 

1 1 •price·noat 

L Traveler1nfo J ! : 
r-fcompamonnum int]S-- ------:---1-- -- - -----1 
~r y---1 : I I 
'\./ 'i' I 1 I I 
MemberAccounf ~--- __ .!---~---'--- __ I 

I o I I I 
• membemumber· int 
+frequenl airline·string 
+membe~talus int 
+memberclub:slring 

: : : : : 
: : : : : 
I : I I I 
I : I I l_ 

~ Tnplnfo 

t--L-+---1 ') •slarting_dale:int 
; V +returning_ dale int 

•origin·string 
•destination·s1nng 

Travel ~nt (TA) ~ • : O • i [ HghlBoolUng (FB) J 
o.:..-l-_.'..'.~~:.'.'..:!.--L-~ .. :__---i~~·.o:_· Ll, r---------iJ 

members 

+BookPackage (Itinerary): Itinerary 
+BookFlighl(ltinerary):Fltghtlnfo 
+BooJ!Hotel(ltinerary): Hotellnfo 

'1 

" - - - - -~ - - - ! rgetFl)ghl (Traveler1nfo, Flightlnfo): Flightlnfo] 

_J_ ' 

[ HotelBooking (HB) ] 

0 -~ Fge!Holel ( Trave1erfnfo, Holellnfo): Hotelinto] 
MembersMp_Managemenl (MM) 
< 

J J 

(+creditpoints(ltinerary):bool 
f""getpoinls(membemum:int. frequent_airtine:slring):int 
f+validate(membemum:inl. frequent_air1ine:string):bool 

Travef planning WS components 

Figure 7: Class diagram for travel planning WS components 

will handle both the booking of flight, FlightBooking (FB) and hotel, Hate/Booking 
(HB). Every traveler can credit his mileage into his own frequent flier number through 
Membership_Management (MM). He can book the travel package including both 
hotel and flight, or just book one of them. He can also book for group travelers. The 
result of the travel booking process is the itinerary information (Itinerary), which 
incJudes the total cost of the trip. All those WS components in the box are loosely 
coupled and dynamically bound based on their partnership, service charge, and QoS. 
Figure 8 illustrates the travelling components composition process with sequence 
diagram. The italicized part represents the dynamically composed components; the 
TA and its associated methods represents the static front end travel agent components 
to the customers with back end components dynamically composed on demand. 

5.2.l Static Front End 
During travel planning, the customer starts from TA WS method BookPackage, 

with the backend components dynamically composed to fulfill the travel planning 
purpose. The TA serves as front end components to the customers to be dynamically 
bound to backend WS components, and the BookTravel method is implemented as 
shown below: 

Itinerary BookPackage (Itinerary it) 
{ 

Flightinfo fi; 



• 

• 

• 

Hotelinfo hi; 
fi=BookFlight (it); 
hi=BookHotel(it); 
return combine(itl,it2); 

5.2.2 Dynamic Backend 

While the front end code as shown above is static to the customer side, there are some 
dynamic component composition concerns in the backend that is transparent to the 
customers: 
• Dynamic partnership 
The front end TA component may have dynamic partnership with back end FB and 
HB (we assume membership management is centralized and statically bound in this 
case in accordance to the real world examples, where membership such as Social 
Security Account is centrally administrated by the appropriate government agency) 
based on their mutual contract, service charge (if the service charge is exceeding the 
budget, the partnership will be cancelled and a new partner will be identified), or QoS 
(if the service of the current partner is down, an alternative partner need to be 
identified). As such, the partnership should be established dynamically, which is also 
subject to dynamic change consequently. Figure 8 illustrates the dynamic partnership 
establishment by using two <<create>> messages before the call of BookPackage, 

:TA :MM 

BookPackage 

I 

1 «create» ... , :FB I 
! <<create>> 

1 

... , :HB I 
1 

: validate : l I I I ... 0 
~~~~--~';E·-------------1-----------~-----------------. 

I I
I I
I I

i'--4i..,-"---"'--~~...,_~ :

getHotel

I
I
I
I
I
I

II> I

----~------~----------
' I

creditpoints :
I
I

I
~------- ______________ J ___________________________ _

I I
I I

Figure 8: Dynamic composing travel planning WS components

I
I
I

•

•

•

which can be translated into the following dynamic composition specification
using before advice 11

•

before(Itinerary *.BookPackage (Itinerary it))
{

this. fb= new FB (...); I /the " ... "part provides the
I /information referencing the actual FB component that
//the instantiated object is bound to

this. hb= new HB (...);
}

Furthermore, the front end BookFlight and Book.Hotel code is dynamically overridden
to delegate to the actual methods of FB and HB respectively. This is achieved using
around advice as shown below:

around (Flightinfo *.Bookflight (Itinerary it))
{

return fb.getflight (it.traveler, it.flight);

around (Hotelinfo *.BookHotel (Itinerary it))

return fb.getHotel (it.traveler, it.hotel);

• Dynamic membership management
With the tightening security measures, the customer's background is subject to be

checked by the central member management (MM) unit upon designated period of
time. As such, a rule is added in Jess that for a given duration, the membership will be
validated (e.g., background checking, passport verification) for each BookPackage
call. Assume during the period July I, 2005, to September 20, 2005, all traveller's
membership will be validated by MM. To enable the Jess rule engine to trigger the
dynamic composition of validation behavior, we need to:

!)capture the execution of BookPackage and relay the values into Jess fact bases;
2)have a bridge from Jess to .NET for rules to directly manipulate AAR in Figure

3.
As is mentioned in Section 4.3.3, we use WS to wrap a Java class, which in turn can
interoperate with Jess. Thus, a .NET based WS component can interoperate with Jess
rules. Specifically, to achieve 1), we add into the "before advice" for BookPackage
the following code:

11 For illustrative purpose, we use the syntax resembling AspectJ to specify the
component composition, which in turn will be translated into XML representation as
described in Section 4.3.2 .

•

•

•

before(Itinerary *.BookPackage (Itinerary it))
{

//above are other advice code which are ignored
//here for clarity

WS Jess.assert("membernumber",
it.traveler.membernumber);

WS Jess.assert("airline",
it.traveler.frequent airline);

Date date=getdate();
WS_Jess.assert("date",date);
//the above three lines add three
//facts to the Jess fact base through WS-Jess bridge
}

To achieve 2), we define a Java class which is used as a relay between Jess and .NET
platform, so that whenever the rule fires, AAR in .NET can be manipulated from Jess.
The Java class is defined as follows:

class Jess_WS{
public static void

apply(string advicetype, String returntype,
String classname, String methodname,
String parameterlist, String advicename)

//code to interoperate with .NET to update AAR;

The parameter list is consistent with the XML elements as shown in Figure 5. The
Jess rule is specified as follows, which calls into the Java class Jess_ WS:

(bind ?a us (new Jess_WS)) ; ; aus_wrapper is the Java
;;wrapper for writing AUS
; ; into the AAR through Java-WS bridge using
;;Java WSDP as ;;described in Section 4.3.3

(bind ?para (str-cat ?membernumber "/"?airline))
;;the values of ?membernumber and ?airline
; ; are fed into the fact base by the before
;;advice for BookPackage

(defrule security_control
(date ?d & : (>= ?d 20050701) & : (< ?d 20050920))

=> (? aus apply "before", "", "TA", "BookFligh t",
?para, "MM.validate"))

•

•

•

The last line defines a Jess rule specifying once the booking date is between July I,
2005 and September 20, 2005, the membership validation advice will be applied
through Jess-Java-WS interoperation before the call of * .Bookflight in .NET
environment. Once the condition is satisfied during runtime, the corresponding rule
will be applied autonomously for dynamic composition. Furthermore, as the Jess rule
exists as a separate entity for configuration from the execution logic, the composition
rule can be adapted as needed at runtime as well.

Likewise, dynamic composition can be applied to credit travel points after the
travel reservation, using after advice:

after(Itinerary *.BookPackage (Itinerary it))
{ MM.creditpoints(it);
}

Furthermore, dynamic composition can be applied either assertively or autonomously
as shown above for other non-functional property guarantees including but not limited
to budgeting (if the cost of the requested service exceeds the budget, either to choose
a cheaper service or to remove subcomponents for reducing cost), and load balancing
(if current load is over capacity, the service requests are to be delegated to alternative
components). As those composition specifications overlap the aforementioned
dynamic composition specifications in principle, details are omitted here.

6 Performance Evaluation

Using the profiler to handle all the events generated from all managed execution in
CLR is expensive and will degrade system performance significantly. Therefore, we
apply optimization at three levels through configuring the profiler as indicated in (7)
in Figure 3:
1). As the CLR can be launched from a shell, Internet Explorer, ASP.NET, and other

customizable CLR hosts for managed execution, we configure the profiler to
skip profiling for all non-ASP.NET modules hosted in CLR, which can be
filtered easily based on the name of the module that launches the CLR.

2). We could further trim unnecessary profilings based on class name, or CIL
method. This is possible because all managed code is translated to CIL, and the
CIL level information can be derived from the corresponding WSDL for the WS;
this is also necessary to avoid profiling system classes and methods.

3). We mask all unnecessary events except JIT compilation events, which is needed
for handling CIL manipulation.

To evaluate the influence of CLR profiling-based WS adaptation on performance,
we implemented a simple WS server application with 100 loops for calling a method,
which contains only a single plus calculation in its body. We host this WS application
on a Dell Workstation with Intel XEON CPU 2.2GHx, l.OOGB RAM, which is
installed with Win XP professional version 2002 with IIS 5.1, .NET framework
version 1.1.4322. We configured the profiler so that the method is to be profiled and
adapted with Jog advice to write to a file a line of strings. A WS stub is generated by
compiling the corresponding WSDL for this simple WS application. The WS stub is

•

•

•

instrumented together with a simple client application for the client application to call
the server-side WS. The client side is hosted on a Dell PC with Intel Pentium 4 CPU
1.80 GHz, 512 MB RAM which resides on the same LAN environment as the server
so as to minimize the network influence during the server side performance
benchmarking.

Note that the CLR profiling-based approach only applies to managed code to be
loaded and JIT compiled. Therefore, we run ASP.NET in the managed mode for
profiling WS to realize dynamic adaptation. ASP.NET can load one worker process to
handle a pool of WS requests. Once the worker process is launched to serve the first
WS requests in the pool, it continues to serve other WS requests in the same pool until
the end of its lifecyle without itself being reloaded into CLR, thus it fails to profile the
other WS applications in the same pool. Therefor.e, we adjust the setting for ASP.NET
so that a new worker process will be created for each WS request so that each WS call
can be captured by the Profiler and thus is adaptable. The goal of our tests is to
evaluate how the adjustment of worker process lifetimes (Figure 9-a), and the
enactment of profiling-based dynamic adaptation (Figure 9-b) affect the performance
of WS provisioning in the peer-to-peer composition model.

For the case in Figure 9-a, we did not provide any adaptation advice when
adjusting the worker process life between zero life (a new worker process is created
for each WS request) and infinite life (the same worker class is used for multiple WS
requests). The absence of advice execution will help clarify the influence of the
changing life of a worker process on the system performance.

There are significant differences between the first call and the remaining calls for
an infinite life case as the first call involves the creation of a new worker class, thus
incurring more overhead than the remaining WS calls which reuse the original worker
process. Also the presence of profiling does not affect performance much in the case
of infinite life, as the worker process is no longer to be reloaded for new WS requests,
thus the new WS will not be adapted, and the event handler in the profiling API is
ignored. In comparison, the worker process with zero life will incur a performance
degradation of I. 7 times slower with profiling on than with profiling off. With the
absence of the profiler, the overhead incurred by adjusting from infinite life to zero
life will be 3.0 times. With the absence of advice, the overall performance
degradation (with profiling on, zero life for worker class) against the conventional
WS provisioning scenario (with profiling off, infinite life for worker class) for this
WS provisioning is 3.0* 1.7=5.I. Figure 10 illustrates the performance degradation.

In Figure 9-b, we focus on evaluating the influence of active advice on the overall
performance. Therefore, the worker process is set with zero life. We found the
number of active advice will not affect the performance linearly, as the AUS are
stored in the paging file to be shared by hooks, which constitutes a minor overhead in
comparison to that incurred by hook instrumentation and calling of advice. The
weaving of a matching advice in the case of zero life in Figure 9-b incurs a
performance degrade of 2.2 times. Therefore, the overall performance degradation
(with profiling on, zero life for worker class) against the conventional WS
provisioning scenario (with profiling off, infinite life for worker class), by
synthesizing the result descibed in the preceding paragraph, will be 2.2*5.1=11.2.

4000
"Cl c
0 3000 u
GI

~ 2000
:§.
GI 1000
:§

0

Without Adaptation Advice

2 3 4

number of tests
(a)

5

-+-Infinite Life
Profiler On

-W- Infinite Life
Profiler Off

Zero Life Profiler
On

Zero Life Profiler
Off

•

•

•

8000
"C
c:
0 6000 u
Cll

~ 4000
1
Cll 2000
:E

0

With Adaptation Advice

... :A: J~·
...!!!. ~ ~ -

~.'-- ... -.~_'-------J_\

2 3 4 5

number of tests
(b)

-+---0 match in 1 ·
advice

:--1 matchin1
advice

0 match in 5 ! .
advice

1 match in 5 ' :
advice

Figure 9: Benchmarking dynamic WS adaptation

In the real world deployment, we can reduce the overhead by setting the worker
class to zero life at the adaptation time, then resetting it to infinite time after
adaptation is done. Of course this assumes a predicable adaptation process.

Perfonnance Degradation
(without adaptation advice)

l!Jprofileroff

•profileron

Figure 10: Performance degradation with 0 adaptation advice

7 Related Work

Component composition can be enacted at design level (e.g., [Clarke, 02), [Keller,
98)), and application code level (e.g., [Holzle, 93], [Mezini, 98], [Seiter, 99]). In
contrast, our work on component composition is enacted at intermediate code level
without introducing new language constructs. With a lower-level of abstraction, our
work enables cross-language component composition, while the above work restrict
the component composition to a specific language. Also, none of the aforementioned
work on component composition is applied at runtime, which is however necessary in
distributed computing environment.

•

•

•

The Composition pattern has been proposed in [Clarke, OJ], which uses a UML
template for specifying composition of crosscutting concerns at a high level and maps
sequence diagrams into Aspect] code. Our composition pattern is represented with a
comprehensive framework rather than just a design-level pattern. Also a sequence
diagram is used here for illustrating the dynamic partnership, with each object in the
sequence diagram corresponding to a partner when mapped to dynamic composition
specification. In contrast, each object in a sequence diagram ia synthesized to an
aspect construct in AspectJ in [Clarke, 01]. While AOP has been applied to
distributed systems for resolving crosscutting concerns ([Pulvermuller, 99], [Zhang,
03]), here we dedicate AOP to the composition purpose: for composing components
handling cross-cutting concerns in a modularized way, and for separating composition
from components. Moreover, we use the Jess inference engine to autonomously apply
aspect weaving for component composition. While the work described in [Yang, 02]
also aims at applying an aspect-oriented approach to dynamic adaptation, they only
offer a means for making the AOP-based adaptation ready, without presenting any
solution on how to use rule engines to trigger the adaptation. Additionally, [Duzan,
04] presents a prototype implementation in the QuO toolkit for an aspect-based
approach to programming QoS-adaptive applications. In contrast, our work is targeted
on loosely coupled service oriented computing as opposed to tightly coupled
distributed object computing in QuO, where adaptation rules are triggered by
exceptions thrown from runtime.

Our work also incorporates non-functional concerns into WS component
composition. Prior work such as IBM's Web Services Level Agreement (WSLA)
[Dan, 02] and HP's Web Service Management Language (WSML) [Sahai, 02]
incorporate the notion at higher-level presentation, rather than address it at a lower
level platform layer. We believe a treatment at a platform layer is necessary toward
thoroughly addressing non-functional concerns for WS.

Our work is rooted in the UniFrame project ([Raje, 02], [Olson, 05]), which aims
at creating a framework for seamless integration of distributed heterogeneous
components. In UniFrame, componen"t composition is also following the peer-to-peer
paradigm, which is enabled through a discovery services in search of a matching
component. Once a searched component does not match the requirement functionally
or non-functionally, the search process will be launched again, which exhibits the
autonomous features similar to that described in the work presented here. While the
work presented here is scoped at the service-oriented computing paradigm for
component composition, the principles can be integrated into UniFrame as well.

8 Conclusion and Future Work

This paper presents a dynamic component composition approach under service
oriented paradigm in the .NET environment. By using intermediate code
manipulation, component composition is 1) possible to cross language boundaries so
long as they are CLR-compliant; 2) achieved in a non-invasive manner; 3)
implemented not only in an assertive manner, but also in autonomous manner using a
rule inference engine; 4) specified using the AOP paradigm for separating
composition specification from components to be composed, and for modularized

•

•

•

compos1!Jon of components handling cross-cutting concerns, with hooks used to
weave and unweave advice at runtime proactively and retroactively. Moreover, as the
WS components can be exposed with XML-based WSDL, the component
composition can be specified with language neutral XML, which is further mapped to
language-neutral type system CTS, with low-level CTS transparent to upper level
composition decision makers. The experimental results show the profiling-based
dynamic composition approach is encouraging with the appropriate control over the
profiling scope in the WS scenario. Even though the approach presented in this paper
is .NET based, the principle also applies to other platforms with adequate software
vendor support.

With the different abstraction levels involved as shown in Figure I, one future
direction is to investigate the model-driven approach ([Cao-b, 05], [Frankel , 03],
[Ledeczi, 0 I]) for modeling component composition concerns, so that component
composition can be represented in high-level models which reduces the gaps between
business requirements and underlying implementation, with AAR and rules as shown
in Figure 3 automatically synthesized from models. We would also like to explore the
use of mobile agents in the peer-to-peer component composition scenario where
composition decisions can be federated and communicated seamlessly, for which
security is also of vital concern in the future research.

Acknowledgements

This research is supported in part by the U. S. Office of Naval Research under the
award number NOOO 14-01-1-0746 .

References

[Brown, 00] A. W. Brown, Large-Scale Component-Based Development, Prentice Hall, 2000.

[Cao, 02] F. Cao, B. Bryant, R. Raje, M. Auguston, A. Olson, C. Burt, Component
Specification and Wrapper/Glue Code Generation with Two-Level Grammar Using Domain
Specific Knowledge, In Proc. Int. Conf. on Formal Engineering Methods, October 2002, 103-
107.

[Cao-a, 05] F. Cao, B. R. Bryant, S.-H. Liu, W. Zhao, A Non-Invasive Approach to Dynamic
Web Service Provisioning, In Proc. IEEE Int. Conf. on Web Services, July 2005, (to appear).

[Cao-b, 05] F. Cao, B. R. Bryant, W. Zhao, C. C. Burt, R. R. Raje, A. M. Olson, M. Auguston.
Model-Driven Reengineering Legacy Software Systems to Web Services, 2005 (submitted) .

[Chen, 01] Q. Chen, M. Hsu, Inter-Enterprise Collaborative Business Process Management, In
Proc. Int. Conf. on Data Engineering, April 2001, 253-260.

[Clarke, 01] S. Clarke, R. J. Walker, Composition Patterns: An Approach to Designing
Reusable Aspects, In Proc. Int. Conf. on Software Engineering, IEEE Computer Society, May
2001, 5-14.

[Clarke, 02] S. Clarke, Extending Standard UML with Model Composition Semantics, Sci.
Comput. Program, 44(1), 2002, 71-100 .

•

•

•

[Colan, 04) M. Colan, Service-oriented architecture expands the vision of Web Services, 2004,
hnp://www-106.ibm.com/developerworks/webservicesllibrary/ws-soaintro.html.

[Dan, 02) A. Dan, A. R. Franck, A. Keller. R. King, H. Ludwig, Web Service Level Agreement
(WSLA) Language Specification, 2002, http://dwdemos.alphaworks.ibm.com/wstk/common
/wstkdoc/services/utilities/wslaauthoring/WebServiceLevelAgreementLanguage.html.

[Devanbu, 96) P. Devanbu, S. Karstu, W. Melo, W. Thomas, Analytical and Empirical
Evaluation of Software Reuse Metrics, In Proc. Int. Conf. on Software Engineering, IEEE
Computer Society, March 1996, 189-199.

[Duzan, 04) G. Duzan, J. P. Loyall, R. E. Schantz, R. Shapiro, J. A. Zinky, Building Adaptive
Distributed Applications with Middleware and Aspects, In Proc. Int. Conf. on Aspect-Oriented
Software Development, March 2004, 66-73.

[Frankel , 03) D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing, Wiley, 2003.

[Friedman-Hill, 05) E. J. Friedman-Hill, Jess 7.0, The Rule Engine for the Java Platform,
Sandia National Laboratories, 2005.

[Gough, 02) J. Gough, Compiling for the .NET Common Language Runtime (CLR), Prentice
Hall PTR, 2002.

(Heineman, 01) G. T. Heineman, W. T. Councill, Component Based Software Engineering:
Putting the Pieces Together, Addison-Wesley, 2001.

[Hissam, 03) S. A. Hissam, G. A. Moreno, J. A. Stafford, K. C. Wallnau, Enabling predictable
assembly, Journal of Systems and Software, 65(3), 2003, 185-198.

[Holzle, 93) U. Holzle, Integrating Independently-Developed Components in Object-Oriented
Languages, In Proc. European Conference on Object-Oriented Programming, July 1993, 36-56

[Keller, 98) R. K. Keller, R. Schauer, Design Components: Towards Software Composition at
the Design Level, In Proc. Int. Conf. on Software Engineering, April 1998, 302-311.

[Kiczales, 97) G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.-M. Loingtier,
J. Irwin, Aspect-Oriented Programming, In Proc. European Conference on Object-Oriented
Programming, June 1997, 220-242.

[Kiczales, 01) G. Kiczales, E. Hilsdale, 1. Hugunin, M. Kersten, J. Palm, W. G. Griswold, An
Overview of AspectJ, In Proc. European Conference on Object-Oriented Programming, June
2001, 327-353.

[Ledeczi, 2001) A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprinkle, G.
Karsai, Composing Domain-Specific Design Environments, IEEE Computer, 34(11), 2001, 44-
51.

[Mezini, 98) M. Mezini, K. J. Lieberherr, Adaptive Plug-and-Play Components for
Evolutionary Software Development. In Proc. Conf. on Object-Oriented Programming
Systems, Languages, and Applications, October 1998, 97-116.

[Newcomer, 02) E. Newcomer, Understanding Web Services, Addison Wesley, 2002.

[Olson, 05) A. M. Olson, R. R. Raje, B. R. Bryant, C. C. Burt, M. Auguston, UniFrame-a Unified
Framework for Developing Service-Oriented, Component-Based, Distributed Software Systems,
Service-Oriented Software System Engineering: Challenges and Practices, Idea Group, 2005, 68-
87 .

•

•

•

[Pulvermuller, 99] E. Pulvermuller, H. Klaeren, A. Speck, Aspects in Distributed
Environments, In Proc. Generative Component-based Software Engineering, September 1999,
37-48.

[Raje, 02] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson, C. C. Burt, A Quality of
Service-based Framework for Creating Distributed Heterogeneous Software Components,
Concurrency and Computation: Practice and Experience, 14{ 12), 2002, I 009-1034.

[Sahai, 02] A. Sahai, V. Machiraju, M. Sayal, L. J. Jin, F. Casati, Automated SLA Monitoring
for Web Services, 2002, http://www.hpl.hp.com/techreports/2002/HPL-2002-191.pdf

[Seiter, 99] L. M. Seiter, M. Mezini, K. J. Lieberherr, Dynamic Component Gluing, In Proc.
Int. Symposium on Generative Programming and Component-Based Software Engineering,
September 1999, 134-164

[Stutz, 03] D. Stutz, T. Neward, G. Shilling, Shared Source CL! - Essentials, O'Reilly Press, 2003.

[Szyperski, 02] C. Szyperski, D. Gruntz, S. Murer, Component Software: Beyond Object
Oriented Programming, 2nd ed., Addison-Wesley/ACM, 2002.

[Yang, 02] Z. Yang, B. H. C. Cheng, R. E. K. Stirewalt, J. Sowell, S. M. Sadjadi, P. K.
McKinley, An Aspect-Oriented Approach to Dynamic Adaptation, In Proc. The First
Workshop on Self-healing Systems, November, 2002, 85-92.

[Zhang, 03] C. Zhang, H.-A. Jacobsen, Refactoring Middleware with Aspects, IEEE Trans.
Parallel Distrib. Syst. 14(11), 2003, 1058-1073 .

•

•

•

GridFrame - A Framework for Building Quality
Aware Component-based Grid Systems
Pradeep J. Mysore, Rajeev R. Raje, Purushotham V. Bangalore1 and Barrett R. Bryant1

Department of Computer and Information Science,
Indiana, University Purdue University Indianapolis,

723 W. Michigan, St, SL 280H, Indianapolis, IN 46202,
USA.

pmysore@cs.iupui.edu, rraje@cs.iupui.edu

Abstract-Predominantly, the Grid world has focused on
discovering and using hardware solutions for executing scientific
and mainstream applications. The applications for Grid are
typically handcrafted and also assume the presence of an expert
user, thus, making this process error-prone. This paper presents
a framework, called GridFrame, whose vision is to reduce the
complexity of the applications for · Grid systems. GridFrame
achieves this goal by providing an approach for semi
automatically discovering independently developed components
and constructing quality-aware Grid applications JJSing these
components.

I. INTRODUCTION

Software Component Frameworks [1] have been established
as a standardized way of building commercial distributed
applications from independently developed sub-units.
However, the Grid world, which is predominantly scientific,
has been slow in embracing these concepts [l, 2]. With
increasing mainstream usage of Grid Computing, software
component composition and reuse through service oriented
Grids have become an increasing need for current and future
Grid projects.

Despite the popularity of service oriented Grid, several
interesting challenges, such as creating applications from pre
existing components, masking their heterogeneity, and
reducing the manual involvement in the development phase,
have yet to be tackled adequately. The current software
development process for Grid applications consists of an
initial application development, testing, and validation that is
done on local resources with a subset of the program. After the
initial validation, these applications are migrated to larger
systems. All the necessary pieces for integration are hand
crafted and weaved manually to achieve a software realization
of any application, thus, achieving little reuse. Also, there is
no mature application development environment for the Grid -
ad hoc approaches that are prevalent in the high-performance
computing domain are used to develop Grid applications.
Although, there are a few tools such as graphical modelers [3]
that are available for aiding this process, it still requires a
significant amount of manual intervention .

This paper describes a framework, GridFrame, for the
creation and composition of distributed Grid components.
Using GridFrame, programmers can reason about quality of

1Department of Computer and Information Sciences,
University of Alabama at Birmingham,

Birmingham, AL 35294
U.S.A.

puri@cis.uab.edu, bryant@cis.uab.edu

service (QoS) for individual Grid services as well as a
constructed Distributed Computing System (DCS) out of these
Grid services. The ability to compose and deploy grid-enabled
applications from pre-existing components will enable the
rapid design and development of next generation distributed
applications while promoting better software reuse with the
creation of domain-specific component repositories.

II. RELATED APPROACHES

A Grid experience is defined as the Grid utilization process,
which runs from the Grid application creation to the final
deployment and execution of the application. Most of the
existing approaches, such as [4, 5] are targeted at the latter,
i.e., deployment and execution of the application, and tackle
challenges such as requirements analysis, selecting ha:dware
resources and providing middleware facilities for enabling a
user to deploy a Grid application(s). Typically, these
approaches assume that the Grid application has already beeri
designed and pre-customized to the Grid deployment phase.
Only a few approaches (e.g., [3, 6, 7, and 8]) address the
challenges of providing a software component framework for
creating component-based Grid applications using pre-built
components.

Before elaborating on any of the current Grid software
component framework approaches, it is necessary to first
identify the requirements and constraints that the Grid places
on such a framework. In the current Grid scenario (and for
purposes of this paper), components are defined to be Open
Grid Services Architecture (OGSA) [2] Services deployed in
OGSA containers with associated service data indicating their
characteristics. These components are characterized by their
dynamic nature, implying that they might be available for
varying intervals of time, with frequent changes of their
availability status. Also, the components tend to be
heterogeneous and are distributed in nature. Hence, a software
component framework [I] for Grid must fulfil the following
requirements; a) Should be able to tackle heterogeneity in
language, model, technology and architecture, etc., b) Allow a
way of dynamic discovery of components, c) Provide a means
for ascertaining non-functional attributes such as QoS of
individual components as well as the integrated system, and d)
Provide a user friendly mechanism for the system integration.

•

•

•

24 AOCOM-2004

In the current Grid scenario. a user developing a Grid
application from pre-built components has to either vmte
scripts in a XML representation [6], v.'fite scripts in a domain
specific language (7. 9], or employ application workflow
diagrams and graphical modelers [3, 8].

Conforming to the fust approach, ICENI [6] provides a
component based framework for creating Grid applications
from pre-built components, discovered from private as well as
public meta-repositories. Whenever a new component is
developed, a component specification is created in terms of a
CXML (Component - eXtensible Markup Language) (10]
document, describing the component's behaviour and
interface. Implementations of the specification are placed in
meta-repositories, with meta-data describing their performance
characteristics and resource requirements. Based on a problem
definition, composition of these implementations to form a
Grid application is describ.ed in terms of an application
description document, which is a CXML specification of the
complete component composition. At runtime, the application
description document is converted into an active Java
representation by utilizing the component specification meta
data within the repository. The run-time representation is used
to map the applicc:tion requirements into available resources,
based on requirements' and implementations' meta-data.
While this approach does attempt to provide a component
based Grid framework, for satisfying a few of the
aforementioned requirements for a Grid framework, it does
not succeed on several fronts. Firstly, it does not tackle
heterogeneity at the component model level, only at the
language level. The component CXML document does not
provide a comprehensive enough QoS catalogue for
comparing and matching components attributes, or for
prediction at the component and system level. Since CXML
does not accord the flexibility to express a application in terms
of a hierarchy of possible subsystems, even a small change in
the problem definition implies that the application CXML has
to rewritten .

. One script based approach incorporated in GRADS [9] aims
at providing domain specific high-level programming systems
for problem solving environments, by which end users can
rapidly develop new applications using standard notations of
their problem domains. Here, the pre-built components are
organized into optimized libraries, using a set of library design
and specification strategies. Also, the application library is
annotated with the following details; a) program
transformation specifications detailing how program
sequences can be replaced with equivalent, but more efficient
sequences and b) sample calling programs illustrating typical
usage patterns. In a separate step, mappings from scripting
languages to library implementation language are provided.
The scripting languages enable the usage of components as
primitive objects and define operations on them. A translator·
generator processes the enhanced library for hours or days and
produces an executable. Using any of the allowed scripting
languages, the user has to write an application script involving
operations, initiation and configurations of the primitive .
objects. to construct a Grid application. The scripts are then

translated and compiled using the above domain specific
translator. Vv'hile the approach promises significant
improvement in perfonnance issues, it does not provide a
software component framework (as in [I]) per se. As a result
there are no facilities for discovery of components, predictio~
of QoS of individual components and integrated system. Even
though end users can develop new applications using therr
domain specific notations, there is a significant amount of
latency curve associated with learning a new scripting
language. The developed applications are invariably
individualistic handcrafted solutions.

XCA T3 [7] is another script based framework that
emphasizes distributed computing and provides Grid and Web
Services connectivity to CCA (Common Component
Architecture) [11] based on the OGSA. It provides a
component based framework by which components (CCA
components and/or Grid services based on OGSA) can be
instantiated and connected together. Each component contains
provides-ports indicating the functionality the component
provides to other components and uses-ports indicating the
needed functionality from other components that the
component needs to function. As a result, each component in
the XCA T3 framework consists of port interfaces, port
implementations and an implementation. Builder services
APis in Java are provided, by which instances of components
can be created and composed together to form a distributed
application. Also, APis for querying services of components,
destroying component instances, and invoking methods on
instantiated components are provided. While this approach is
promising, the resulting applications are again handcrafted
solutions. Further details of XCA T3 and OGSA in particular,
are presented in the Section IV.

In an application workflow approach, for example in
CrossGrid [8), the user supplies an initial application
workflow document, detailing the components, their
interactions and the workflow. Here, components are CCA
based, are developed independently, and are registered with
OGSA registries. A flow composer parses the user workflow
diagram, perfonns component lookups based on Port type or
ID attributes and builds different final workflow documents
with every distinct set of matched components. Finally, the
user can choose a final workflow document corresponding to
his view of the integrated system. This approach has intrinsic
limitations similar to the script based approaches in that it
places undue importance on the expertise of the user, does not
offer any QoS testing and finally results in handcrafted,
individualistic solutions with restricted reusability. In Triana
[3), graphical modelers and toolkits are employed, which
provide the user a higher level of abstraction than application
workflows. A user creates an application by dragging,
dropping and deleting components and associated
relationships in a graphical window. Here, though a greater
level of convenience than the application workflow approach
is accorded to the user, the other workflow limitations still
remain. Other approaches like ECSF [12) provide a distributed
computing paradigm suitable for multidisciplinary Grid
applications, but are also limited by the same problems since

•

•

GridFrame - A Framework for Building Qualify Aware Component-based Grid Systems 25

51!/eCll!d

Componenf.f

l

. t
-~

C ompo111!11f

• Search •

Distributed Resource
Discovery

i t Modified
Query

Component
Deployment Component

'-1 Quality Measures

.- --- . } _..JI'
~~
~ ,, la Query

Component Developer
I

System Integrator

~.uemhled 11
Sptt•m J

Generative Doma'I /Standards

/) " .

•
Nn ~ •

Yes
Quality Validation

System Deployment
{End)"

Domain Expert
{Start)

Fig. I. GridFrame Process

their underlying principles are not based on the component
paradigm. GridLab [13] does not provide a component
creation framework, but focuses on providing high level
application toolkits that interface between user applications
and Grid middleware packages like Globus (2].

To summarize the related approaches, many challenges such
as heterogeneity of components, their resource discovery and
QoS prediction etc., associated with creating a component
based Grid framework have currently not been addressed
satisfactorily. If Grid has to become omni-present, in both
scientific and commercial domains, these challenges need to
be effectively addressed. One possible approach to addressing
these challenges is by creating a comprehensive framework,
incorporating solutions to the indicated problems.

III. GRIDFRAME APPROACH

semi-automated Component Based Grid System (CBGS)
development process involving the dynamic discovery of
distributed Grid components, generation of the composed
system and validation of quality requirements

As a part of a related effort called UniFrame (14], the
prmctples behind addressing some of the aforementioned
challenges have been developed. UniFrame is a component
b~sed framework for interoperation of heterogeneous
dt~tri?uted components. In this paper, a symbiosis of the

.pn~ctples of UniFrame and Grid to form a component based
Gnd framework knovm as GridFrame is proposed. The key
research issue that GridFrame addresses is the conception of a

Grid.Frame differs significantly from current Grid
approaches by relying on an expert created generative domain
model (GDM) (15]. Experts from the particular domain create
the GDM containing the details of the distributed Grid
application under consideration. The GDM contains details of
the software architecture of families of possible systems in
terms of the constituent software components, descriptions of
the component characteristics and interactions, rules for the
prediction and monitoring of quality of the constituent
components as well as the integrated system A reliance on a
GDM has many advantages; a) it is created by domain experts,
thus, end users are abstracted from domain knowledge
expertise and required skills, b) model for component
developers to create individual components, and c) it provides
rules for the composition and decomposition of components
with associated quality of service. A component developer for
an application consults the GDM and creates component
implementations using the listed specifications. It is
anticipated that many such components for a particular
application with possibly different QoS, will be developed and
deployed over a network.

.26 ADCOM-2004

A domain expert creating a GDM for a Grid application has
to follow the GDM development process as outlined in [16].
The GDM development process consists of tluee phases; i)
domain analysis - establishing domain scope, identification of
functional and QoS requirements and mapping of relevant
domain concepts, ii) domain design - development of common
layered architecture for a family of possible systems and QoS
related models, and iii) ordering design - design of ordering
schemes for ordering a component-based system from the
family of possible systems. Using this process, a GDM for the
domain is developed. The GDM consists of three parts:
general information, which includes a description for the
modelled domain; a problem space, used by an application
programmer to specify the needs; and a solution space, which
contains various models including configuration knowledge to
provide solutions for a CBGS family. Further details of the
GDM are given in the case study section.

Component specifications are described by an associated
Unified Meta-component Model (UMM) [17]. UMM has three
parts: a) components, b) service and its guarantees, and c)
infrastructure. A component in UMM is considered to be a
tuple consisting of: a) inherent attributes - bookkeeping
information such as name, description, etc_, b) functional

• attributes - interface, pre-post conditions, algorithms, etc., c)
non-functional attributes - supported QoS parameters and
values with corresponding deployment environments, d)
cooperative attributes - details of the collaborations of systems
in which the component participates, e) auxiliary attributes -
special features such as mobility, security, fault-tolerance,
etc., and f) deployment attributes - configuration, initialization
information.

The second part of the UMM is the service and associated
guarantee of delivering that service. While realizing a CBGS
from a set of independently created components, it is
necessary to reason about the quality of the integrated CBGS.
The quality of the integrated system translates into the quality
of service offered by each component and of their interactions.
Hence, it is necessary that a component provide a pre
determined level of quality of both its functional and non
functional features. For doing so, the UMM requires a
component developer to specify the QoS parameters that are
applicable to a particular component and the ranges that the
component can guarantee when operating under a certain
execution environment [17].

The third part of the UMM is the infrastructure that supports
the creation, publication, deployment, and location of the
components and their services. This infrastructure is provided

•

by _Grid_ Resourc~ Discovery System (GROS) based on [18],
which 1s the infrastructure that supports the creation,
publication, deployment, and location of the components and
their services. The discovery process in GROS is scoped
administratively implying that it locates services within an

administratively defined logical domain_ A domain is defined
as industry specific markets such as Information Filtering
Services, Health Care Services, and Financial Services, etc.
The GROS architecture consists of the following entities: a)
head-hunters for discovering component specifications, b)
containers for component registration, and c) components.
Components are implemented in accordance with component
models such as Microsoft .NET, Java RMI, CORBA, etc., and
are registered with the binding service of that model. The
binding services are modified Grid containers such as Globus
J2EE container, .NET container etc. Headhunters periodically
communicate with these Grid containers and retrieve and store
specifications (service data) of registered components into
their local meta repositories. For more details about UMM
components, service and infrastructure, please refer to (14],
[19] and [18) respectively.

Components offer services, indicate and guarantee the
quality of their services, and hence, it is necessary to facilitate
the publication, selection, measurement and validation of the
component and system QoS values. The Grid Quality of
Service Framework (GQoS) based on [17) provides the
necessary guidelines for the component developers and system
developer using GridFrame. The GQoS is made up of three
parts: a) QoS catalogue - collection of possible QoS
parameters such as end-to-end delay, tluoughput etc., b)
specification and measurement of QoS and c)
composition/decomposition models for QoS parameters. For
further details, please refer to [14] and (18).

Fig. I gives an illustration of the GridFrame process. In the
beginning of the process, a Grid system developer, developing
a CBGS, for a specific application issues a query containing
the requirements for the CBGS. The query can comprise of
functional requirements as well as non-functional QoS
requirements such as end-to-end delay, throughput, etc. The
query processing consults the GDM for the design of an
appropriate CBGS and may divide the query into many sub
queries, each corresponding to a single component UMM
specification. These sub-queries are passed to the GROS
which searches for appropriate matching components. If
components are found, they are displayed to the system
developer. The system developer decides on the components
to be included in building the system, based on various criteria
such as offered QoS. Also, each component provides an
associated testing mechanism, which can be used to
dynamically test the QoS characteristics of the component.
These dynamic test values can be judged against the
component developer's specifications of the component After
the system developer selects his choice of components, the
generation of the integrated system is carried out by the
GridFrame System Integrator (16] using the selected
C\lmponents.

• GndFrame -A Framework for Building Quality Aware Component-based Grid Systems 27

•

•

2)Find

Community
registry

3)

Handles
fur each
of the
marched
services

4) Create
rt>pr esentor
service
Vl.ith
lifetime
moo

Sen ice Pr<>< id er

dassi fier,
representor,
data, interiace
fuderntor
~·ice

other sen-ires
v.ith
lifetimes.

Represent or

5) Cceate
Instance

Senice Pradder

Ap plication
programs
usine
obtained
handles.

Fig. 2. Creating DIFS using OGSA Grid Services 11128104

The system developer uses the principles of
two-level granunar and event grammars [14] to generate the
necessary glue for the creation of the integrated system. The
composition models present in the GDM can be used by the
system developer to predict the quality features of the
integrated system. Also, the instrumentation code present in
the glue, that is created based on event grammars, allows a
dynamic measurement of quality features of the integrated
system. These dynamic values are compared against the static
predictions and if there is a match, the assembled Grid system
is deployed and is ready to use.

IV. CASE STUDY

Out of approaches described in Section II, using OGSA
services to leverage existing services to form complex
distributed solutions is the popular option now. To contrast the
OGSA based approach with the Grid.Frame approach, a case
study from the domain of distributed infonnation filtering is
considered. Typically, a distributed infonnation filtering
service (DIFS) reduces information overload by supporting
personalization of long term information needs of a particular
user or group of users with similar needs. Here, a DIFS based
on DSIITER [20] is considered, in which one of the authors
was involved. Using user profiles and periodic feedback, the
DIFS rank-orders documents and performs a mapping from

the space of documents to the space of user relevance values.
Typically, in a DIFS, more often than not, documents exist at
diverse sites and are received by the user through disparate,
independent channels. The task of storing such documents,
before filtering is handled by a data acquisition service (DAS).
A representation service (RS) converts these stored documents
into structures, which can be efficiently parsed without the
loss of vital content. A classifying service (CS) classifies these
stored structures using clustering algorithms on the basis of
user interests specified in a user profile service (UPS). The
UPS is continuously updated using reinforcement learning
algorithms to reflect current user interests. A user interface
service (UIS) displays the ranked documents and collects user
feedback for user profile learning. A federation service (FS)
enables interconnection ofDIFS systems.

A. Creating a DIFS system using OGSA Grid Services

I. Assuming a complete DIFS service is not available, a
Grid user has to decompose his requirements to form
a list of the previously identified Grid services that
would aggregate to form a DIFS Grid service. Fig. 2
illustrates an example of the process by which a user
can build a DIFS system using Grid services. It
contains the following steps:

• 28 ADCOM-2004

:Display Module :Retrieval Module :Classifier

Enter new file
location

Fil~ stored.

Enter search

j""('--:_1~_s_s1_· fi_e_o_fi_le_s_....,]~

fileID = storeFile()

search files()

Fig. 3. Partial Sequence Diagram for Search

• 2 .

3.

4_

'The user contacts a known registry to identify service
providers who can provide the required serVices and
presents a list of requirements including cost and
performance.
The handles for needed service factories that match
user requirements are returned to the user.
The user supplies instantiation details such as needed
operations, etc., and initial lifetimes for the service
instances.

5. If agreeable, the service providers create service
instances with user supplied details.

6. Using the service handles, the user writes application
programs for aggregating the services to form a DIFS
system

Visions of enterprises using Grid Services approach to
dynamically compose new applications such as above to
address the specific needs of the business at any point in time
have been painted. But there are several limitations with this
approach, particularly in regard enterprise applications. The
resulting new applications are basically handcrafted solutions
with limited reuse. Any slight change in the problem
definition, for instance using a .NET display component, if a
previously used Java component is not available, will entail a
complete rewrite of the previous solution. Also, users do not
have options for any preliminary testing of the integrated
application, implying that they cannot make any informed
decisions about the QoS of the integrated application before

•
the actual deployment. In addition, most of the techniques for
discovery of components assume that the components are
homogeneous in nature and rely on simple interface matching
and component context dependencies, which is not sufficient
enough for a process, which is a precursor for composing high

confidence Grid systems. Also, the approach assumes a high
level of programming slcill of users, which is typically not the
case with mainstream Grid users. These are serious
drawbacks, particularly considering that mainstream domains
such as enterprise applications have stringent requirements
about quality and reusability of applications.

B. Creating a DJFS system with GridFrame

For the sake of brevity, the focus is mainly on the overall
outline of carrying out the development of a partial GDM as
well as the discovery mechanisms of GridFrame possibly
resulting in the omission of in depth details, which can be
referred to, using the associated references.

l) GDM process: Due to space constraints, only some of the
aspects of GDM like feature diagrams and use-cases depicting
the configuration knowledge of the integrated system are
shown here. In the GDM, the components making up the DIFS
system are identified along with their functional characteristics
such as required interfaces, provided interfaces, etc., and non
f •nctional characteristics such as QoS metrics. In addition to
the feature diagram, the GDM contains sequence diagrams,
which capture the behavioural aspects of the system Sequence
diagrams, such as Fig. 3 illustrate the interaction of
components in the system with each other as well as with
users. Fig. 5 shows a feature diagram illustrating the DIFS
family of sub-systems which can be possibly built with the
identified components.

The details about the concept of features and the notation
used for describing a feature diagram are proposed in [16].
The given feature diagram indicates possible architectural
alternatives for a DIFS. For example, two possible alternatives

•

GridFrame - A Framework for Building Quality Aware Component-based Grid Systems 29

•

•

for a DTFS could be: version (a) made up of RM, TM, RP. CL,
SP, TI and version (b) made up of \VM, RM, TM, RP, CG,
CL, CP, DM, SM, EM, GM, ECM, CM. As indicated earlier,
depending upon the input query presented by the system
integrator, an appropriate alternative will be selected during
the system development process. Each node in the feature
diagram indicates an abstract component, which will be
described by its corresponding UMM specification. The
component specification in UMM is a multi-level contract [19)
with bookkeeping information such as component id, domain
name, and algorithmic, technological information such as
function name, algorithm name etc. For example, a partial
UMM-specification for a typical classifier could be:

I. Component Name: Classifier
2. Domain Name: Information Filtration
3. System Name: InformationFilter
4. Informal Description: Provide classification service

for documents.
5. Computational Attributes:
5. 1 Inherent Attributes:

NIA
5. l.l id: NI A 5.1.2 Version: version 1.0 5.1.3 Author:

5.1.4 Date: NIA 5.1.5 Validity: NIA 5.1.6 Atomicity: Yes
5.J.7 Registration: NIA 5.1.8 Model: NIA

Legend:

SP - Simple Profiler

5.2 Functional Attributes:
5.2. I Function description: Act as classification server for

documents in system
5.2.2 Algorithm: NIA 5.2.3 Complexity: NIA
5.2.4 Syntactic Contract

5.2.4.1 Provided Interface: !Classification
5.2.4.2 Required Interface: NONE

5.2.5 Technology: NIA
5.2.6 Expected Resources: NIA
5.2. 7 Design Patterns: NONE
5.2.8 Known Usage: Classification of documents
5.2.9 Alias: NONE

6. Cooperation Attributes:
6.1 Preprocessing Collaborators: Representor
6.2 Postprocessing Collaborators: NONE

7. Auxiliary Attributes:
7.1 Mobility: No 7.2 Security: LO 7.3 Fault tolerance: LO

8. Quality of Service Attributes
8. 1 QoS Metrics: throughput, end-to-end delay
8.2 QoS Level: NIA 8.3 Cost: NIA 8.4 Quality Level: NIA
8.5 Effect of Environment: NIA 8.6 Effect of Usage
Pattern: NIA

9. Deployment Attributes: NIA

CL- Classilier DAS- Data Acquisition Service
WM - Wrapper Module
RM- Rttrieval Modull'
RS - Repnsenter Service

CP- Complex Profiler
UIS- User lntl'rface Service
Tl - Text Interface

UPS - User Profile System
GM - Group Manager
EM - Editing Module
FS- Federation Systl'm
EC:\1- Economic .Module
C!\f - Common Module

TM - Th~aurus !\1odule
CS - Classifying Sen·ice
CG - Crntroid Grner.1tor

CUI - Graphical lnterfacl'
OM - Display Module
SM - Statistical '.\fodule

Fig. 5. Feature Diagram ofDIFS

•

•

•

30 ADCOM-2004

Once the GDM has been developed, component developers
are free to de\'clop and deploy components using their choices
of technol~gy, language, etc., according to the specifications
in the GDM. The developed concrete components have to
strictly adhere to the GDM abstract specifications, but can be
implemented in different technologies, algorithms etc. with
corresponding QoS values. For example, one Representor
Module (RM) can be implemented in .NET technology using a
vector space model (20) with 340 ms turnaround time while
another RM can be implemented in Java RMI using a different
model with 320 ms turnaround time, with corresponding QoS
attributes.

2) Discovery of components and Integration of the system:
After the creation of the GDM and deployment of
components, a system developer can query for an instance of a
system using a tabular graphic a I interface [16J, containing
different options for the different possible systems. For
example, the options could be a basic DIFS with minimal
functionality incorporating instances of RM, TM, RP, CL, SP,
TI and GM or an advanced DIFS with increased functionality
incorporating instances of WM, RM, TM, RP, CG, CL, CP,
DM, SM, ECM, GM. For example, the system developer
might query for a simple DIFS with QoS values such as the
maximum pennissible end-to-end delay and nnrumum
throughput for the system specified as 1800 ms and 400 op/s
respectively. Using the decomposition model in [22J, the given
QoS requirements for the whole system are decomposed into
the QoS requirements for each of the constituent components.
By means of the GDM and the QoS requirements, for each of
the components making up the chosen system, a query is
created. These queries are presented to GRDS for discovering
concrete instances of the components, which can match the
requirements.

When the GRDS receives the requests, a subset of
headhunters in the specified domain (in this case, distributed
information filtering) is contacted for concrete instances of the
components. These headhunters search their local meta
repositories and perform syntax, semantic and QoS matching
of the stored specifications with the queries. Each query has an
associated timestamp, depending on which the queries can be
propagated to other headhunters. For details about selection,
propagation and matching algorithms of headhunters, see [18].
As explained in the Gridframe process, the system developer
chooses from among the listed components on basis of QoS
values, (available from the service data), and uses the
Gridframe System Integrator to test ar.d build the integrated
system.

A brief comparison of the two approaches suggests the
following:

J. As opposed to handcrafting, the use of a GDM in
GridFrame enables the creation of standardized
solutions by which the reusability of individual
components as well as the integrated system is
improved.

2. Quality of service theme is maintained throughout the
GridFrame process, as a result of which predicting

3.

4.

and monitoring -of component performance at the
component level as well as system level is possible.
Grid.Frame accommodates heterogeneity by which
components can be implemented in different models
and technologies.
By providing a semi-automated framework for
composing services, Gridframe ensures that user
intervention is minimized, enabling novice end users
to integrate systems.

Y. CONCLUSION

The proposed framework provides a semi automated
approach for building Grid systems from pre-built Grid
services using concepts of software engineering. Using the
framework, it is possible for end users to both predict and
reason about the quality of the integrated system as well as the
individual services. Although a simple example is provided
here, the principles are general enough to be applicable for
both mainstream and research Grid projects. The development
of Grid systems involves both construction and deployment of
the system. Here, only the construction issues of a component
based Grid system using a GDM were discussed. Utilizing the
GDM for deployment issues such as assessing hardware
resource requirements, selecting ideal resources, etc., is the
focus for current research. The GridFrame process has been
investigated using the Globus toolkit and the current
Uniframe infrastructure by means of trivial examples. While
the results are promising and show that such a process is
plausible, validation on ·a realistic, large scale scientific or
mainstream Grid application is one of the key research goals
for current and future efforts.

REFERENCES

(I J C. Szyperski, D. Gruntz,, S. Murer, Component Software - Beyond
Object-Oriented Programming, Second Edition. Boston: Addison
Wesley/ ACM Press, 2002.

(2} I. Foster, C. Kesselman, J. Nick, S. Tuecke, "The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems
Integration," Open Grid Service Infrastructure WG, Global Grid Forum,
June 22, 2002.

(3) I. Taylor, M. Shields, J. Wang, and R. Philp, wDistributed P2P
computing within triana: A galaxy visualization test case," IPDPS. 2003.

(4) G. Allen, W. Benger, T. Goodale, H. Hege, G. Lanfermann et al, "The
Cactus Code - A Problem Solving Environment for the Grid,"
Proceedings of the 9 th IEEE Int'/. Symposium on High Performance
Distributed Computing, Pittsburgh. 2000.

[51 D. Thain, T. Tannenbaum, and M. Livny, "Condor and the Grid", Grid
Computing: Making The Global Infrastructure a Reality, John Wiley,
2003.

(6} N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field and J.
Darlington, "An Integrated Grid Environment for Component
Applications," Second International Workshop on Grid Computing
2001, pp. 26-37, November 2001.

(7) [7] S. Krishnan, and D. Gannon, "XCAT3: A Framework for CCA
Components as OGSA Services," Proceedings of Hf PS 2004, April
2004.

[8} M. Bubak, K. Gorka, T. Gubala, M. Malawski, K. Zajac, "Automatic
Flow Building for Component Grid Applications,"' Fifth International
Conference on Parallel Processing and Applied Mathematics, 2003, in
press.

•

GridFrame -A Framework for Building Quality Aware Component-based Grid Systems 31
a---------------

19] K. Kennedy, B. Broom, K. Cooper, J Dongarra, R. Fowler, D. Gannon
et al, "Telescoping Languages: A Strategy for Automatic Generation of
Scienti c Problem-Solving Systems from Annotated Libraries," JPDC,
Vol.61,No.12,pp.1803-1826,Dec 1,2002.

pOJ N. Funnento, A. Mayer, S. McGough, S. Newhouse, T. Field and J.
Darling1on, ''Optimisation of Component-based Applications within a
Grid Environment," SupetComputing 2001, Nov 2001.

111] D. Gannon, S. Krishnan, L. Fang, G. Kandaswamy, Y. Sirrunhan, and A.
Slominski, "On Building Parallel and Grid Applications: Component
Technology and Distributed Services," CUDE, 2004. [12] P. Bangalore,
''An Open Framework For Developing Distributed Computing
Environmrnts For Multidisciplinary Computational Simulations,'' PhD
thesis, Mississippi State University, May 2003.

(12] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser et al, "The Grid
Application Toolkit: Towards Generic and Easy Application
Programming Interfaces for the Grid," Unpublished.

(13] R.. Raje, M. Augustan, B. Bryant, A. Olson, C. Burt, "A Unified
Approach for the Integration of Distributed Heterogeneous Software
Components," Proceedings of the ZOO/ Monterey Workshop, pp. 109-
119, Monterey, California, 200 I .

•

•

114] K. Czarnecki. and U. Eiseneckcr, Generati"e Programming: Methods.
Tools. and Applications. Addison-Wesley, 2000.

(15) Z Huang. The UniFrame System-level Generative Programming
Framework. MS thesis, IUPUI, ClS Department, 2003.

(16] G Brahnmath, R. Raje, A. Olson, B. Bryant, M. Augustan. C. Burt,
[17) "A Quality of Service Catalog for Software Components," Proceedings

of the Southeastern Software Engineering Conference. Huntsville,
Alabama, 2002.

(18) N. Siram, "An Architecture for the Uniframe Resource Discovery
Service,'' MS thesis, fUPUI, CIS Department, 2002.

(19) A. Beugnard., J. Jezequel, N. Plouzeau. and D. Watkins, Making
Components Contract Aware./£££ Computer, 32(7):38-45, July 1999.

(20] R. Raje, M. Qiao, S. Mukhopadhyay, M. Palakal, J. Mostafa, "SIFTER-
11: A Heterogeneous Agent Society for Information Filtering,"
Proceedings of ACM Symposium on Applied Computing, SAC'OI, pp:
121-123, Las Vegas, Nevada, 2001.

(21] C. Sun, "QoS Composition and Decomposition Model in Uniframe,"
MS thesis, fUPUI, CIS Department. 2003.

••

•

·~
..

•

•

•

68 Olson, Aaje, Bryant, Burt and Auguston

Chapter IV

UniFrame:
A Unified FraIDework for

Developing
Service-Oriented,

CoIDponent-Based Distributed
Software SysteIDs

Andrew M. Olson
Indiana University Purdue University,

USA

Barrett R. Bryant
University of Alabama at Birmingham,

USA

Rajeev R. Raje
Indiana University Purdue University,

USA

Carol C. Burt
University of Alabama at Birmingham,

USA

Mikhail Auguston
Naval Postgraduate School, USA

Abstract

This chapter introduces the UniFrame approach to creating high quality computing
systems from heterogeneous components distributed over a network. It describes how
this approach employs a unifying framework for specifying such systems to unite the
concepts of service-oriented architectures, a component-based software engineering
methodology and a mechanism for automatically finding components on a network in
order to assemble a specified system. UniF rame employs a formal specification language
to define the components and serve as a basis for generating glue/wrapper code that
connects heterogeneous components. It also provides a high level language for the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
oermission of Idea Group Inc. is prohibited_

•

•

•

UniFrame 69

system developer to use for inserting code in a created system to validate it empirically
and estimate the quality of service it supports_ The chapter demonstrates how a
comprehensive approach, which involves the practicing community as well as technical
experts, can lead to solutions of many of the difficulties inherent in constructing
distributed computing systems_

Introduction

The architecture of a computing system family can be represented by a business model
comprising a set of standard, platform independent models residing in a service layer,
each of which is related to a platform specific model that corresponds to one or more
specific realizations of the service. A system is realized by assembling the realizations
according to the specified architecture. This Service-Oriented Architecture offers many
advantages, such as flexibility, in constructing and modifying a computing system.
Because business requirements can change rapidly, both the services making up a
business model and their platform specific realizations may need to change rapidly in
response. With an agile mechanism to trace out an appropriate architecture, the devel
opment engineer can react quickly by building a modified realization of the system.
Nevertheless, there are many practical issues that make effecting this process difficult.
For example, an environment in which this approach has greatest appeal is typically
distributed and heterogeneous. This makes the mapping of a system's platform indepen
dent model to a platform specific model (Object Management Group, 2002) quite complex
and subject to variation.

This chapter describes the basic principles of the UniFrame Project, which defines a
process, based on Service-Oriented Architecture, for rapidly constructing a distributed
computing system that confronts many of these inherent difficulties. UniFrame's basic
objective is to create a unified framework to facilitate the interoperation ofheterogeneous
distributed components as well as the construction of high quality computing systems
based on them. Uniframe combines the principles of distributed, component-based
computing, Model-Driven Architecture, service and quality of service guarantees, and
generative techniques.

Though better than handcrafting distributed computing systems, developing them by
composing existing components stiJJ poses many challenges. A comprehensive treat
ment of these and the corresponding solutions that Uniframe proposes exceeds the
scope of this chapter, so it sketches the features ofUniFrame that are most related to the
book's service-oriented engineering theme along with references to further reading.

Background

Despite the achievements in software engineering, development of large-scale, decen
tralized systems still poses major issues. Recent experience has demonstrated that the

Copyright © 2005, Idea Group Inc_ Copying or distributing in print or electronic forms without written
permission of Idea Group Inc_ is prohibited_

•

•

•

70 Olson, Raje, Bryant, Burt and Auguston

principles of distributed, component-based engineering are effective in dealing with
them. Weck (1997), Lumpe, Schneider, Nierstrasz, and Achermann (1997), and the works
of Batory et al., for example, Batory and Geraci (1997), concern the composition of
components. The approach of Griss (200 I) to developing software product lines is similar
to UniFrame's, except that Uni Frame avoids descending to code-fragment-sized compo
nents. Brown (1999) surveys component-based system development, whereas Heineman
and Councill (200 l) and Szyperski, Gruntz, and Murer (2002) provide extensive discus
sions of different aspects.

Heineman and Councill (200 l) provide a general definition ofa component model. Many
different models for distributed, component-based computing have been proposed and
implemented. Among these, J2EE™ (Java 2 Enterprise Edition) and its associated
distributed computing model (Java-RMI), CORBA® (Common Object Request Broker
Architecture), and .NET® have achieved the greatest acceptance. Typically, each
prevalent model assumes the presence of homogeneous environments; that is, compo
nents created using a particular model assume that any other components present adhere
to the same model. For example, the white paper on Java Remote Method Invocation
(2003) describes RMI as an extension of Java's basic model to achieve distributed
computation, assuming, thus, an environment consisting of components developed
using Java and communicating with each other using method calls. Schmidt (2003)
provides an overview of CORBA, which indicates that CORBA does provide a limited
independence from the components' development language and deployment platform by
specifying components with an interface definition language. This permits implementa
tion in any languages for which mappings with the interface definition language exist.
Again, an implicit assumption is that, typically, a CORBA component will communicate
with another CO RB A component. Microsoft's .NET is intended as a programming model
for building XML™-based Web services and associated applications. It provides
language independence with an interface language and a common language runtime
(Microsoft .NET Framework, 2003). The implicit assumption of homogeneity still holds.

UniFrame

Current approaches for tackling heterogeneity are ad hoc in nature, requiring handcrafted
software bridges, so have many drawbacks. It is difficult to make components of different
models interoperate, and handcrafting is known to be error prone. Moreover, depen
dence on a single model meshes poorly with the grand notion of a component (or services)
bazaar over a distributed infrastructure, as the success of such a bazaar requires local
autonomy for deciding various policies, including the choice of the underlying model.
Thus, there is a need for a framework, such as UniFrame, that will support seamless
interoperation of heterogeneous, distributed components. UniFrame consists of:

• the creation of a standards-based meta-model for components and associated
hierarchical setup for indicating the contracts and constraints of the components;

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic fonns without written
pennission of Idea Group Inc. is prohibited.

•

•

•

•

•

•

UniFrame 71

an automatic generation of glue and wrappers for achieving interoperability;

guidelines for specifying and verifying the quality of individual components;

a mechanism for automatically discovering appropriate components on a net
work;

• a methodology for developing distributed, component-based systems with ser
vice-oriented architectures; and

• mechanisms for evaluating the quality of the resulting component assem
blages.

UniFrame creates more general distributed systems than the point-to-point interactions
of current Web services and also emphasizes determining the Quality of Service (QoS)
during system assembly. For pragmatic reasons, Uni Frame provides an iterative, incre
mental process for assembling a distributed computing system (DCS) from services
available on the network that permit selecting among alternative components during
system construction. In order to increase the assurance of a DCS, Uni Frame employs
automation, to the extent feasible, in the processes of locating and assembling compo
nents, and of component and system integration testing. The ICSE 6th Workshop on
Component-Based Software Engineering: Automated Reasoning and Prediction (Cmkovic,
Schmidt, Stafford & Wallnau, 2003) focused on automated composition theories in
constructing a DCS. A !though automation is a goal ofUniFrame, it presently focuses on
the more practical, implementation aspects.

Unified Meta-Component Model (UMM)

Because future service-oriented systems will consist of independently developed
components adhering to various models, a meta-model that abstracts the features of
different models, enhances them and incorporates innovative concepts, is necessary in
order to facilitate their creation. Raje (2000) and Raje, Auguston, Bryant, Olson, and Burt
(200 I) describe a central concept ofUniFrame, the Unified Meta-component Model, that
does this. It consists of three parts: (a) components, (b) service and its guarantees, and
(c) infrastructure. These are not novel separately, but their structure, integration, and
interactions form the UMM's distinguishing features. Components in the UMM have
public interfaces and private implementations, which may be heterogeneous. Each
interface comprises multiple levels. In addition to emphasizing a component's functional
responsibilities (or the services it offers), the UMM requires component developers to
advertise and guarantee a QoS rating for each component. The UMM's infrastructure
supplies the environment necessary for developing, deploying, publishing, locating,
assembling, and validating individual components and systems of components. The
following subsections expand upon these concepts .

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited

•

•

•

72 Olson, Raje, Bryant, Burt and Augustan

Component

The UMM defines a component as a sextuple consisting of the attributes (inherent,
functional, nonfunctional, cooperative, auxiliary, deployment). This view of a compo
nent conforms to the definition of Szyperski, Gruntz, and Murer (2002). The inherent
attributes contain the bookkeeping information about a component, such as the author,
the version, and its validity period. The functional attributes of a component contain its
interface, along with the necessary pre- and post-conditions, and component model of
any associated implementation. They also indicate related details, such as algorithms
used, underlying design patterns and technology, and known usages. The nonfunc
tional attributes represent the QoS parameters supported by the component, along with
their values that the component developer guarantees in a specific deployment environ
ment. These attributes may also indicate the effects of the deployment environment and
usage patterns on the QoS values. The cooperative attributes describe how components
actively collaborate, exchanging services. The auxiliary attributes exhibit other charac
teristics, such as mobility, various security features, and fault tolerance that the
components may possess. A component needs deployment rules, specified in the
deployment attributes so that it can be configured, initialized, and made available on a
network .

Service

As described by Raje (2000), this part of the UMM consists of the computational tasks
and guarantees that a component performs. To realize a DCS from a set of independently
created components, the system integrator needs to reason from the service assurance
of each component to obtain the assurance of the integrated DCS. Hence, a component
must provide a predetermined level of assurance of both its functional and nonfunctional
features. Various techniques, such as formal verification, have been proposed for
reasoning about the functional assurance of a DCS. Therefore, the UMM assumes the
use of an appropriate mechanism for functional assurance. The UniFrame research
focuses on assuring the nonfunctional features of components and the integrated
system because many existing application domains (multimedia, critical systems, and so
forth) depend not only on correct functionality but also on how well it is achieved.
UniFrame provides a mechanism for the component provider to specify the QoS
parameters that are applicable to a provided component and determine the ranges that
the component can guarantee. ·

Table l shows the UMM type specification of a component, Validation Server, for
validating user accesses within the application domain of document management. In the
advertised description of a corresponding implementation, the component provider
would supply the actual values for various fields (such as NI A in Table l). For example,
the specification of a component that implements Validation Server would contain
details, such as the URL where the component is deployed (id), the guaranteed values
for the throughput and end-to-end delay, and the required deployment environment. The

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic fonns without written
permission of Idea Group Inc. is prohibited.

•

•

•

Table J. UMM type specification of a component

Abstract Component Type: ValidationServer

I. Component Name· ValidationServer
2. Domain Name: Document Management
3. System Name. DocumentManager
4. Informal Description: Provide the user validation service.
5. Computational Attributes:

5.1 Inherent Attributes·
5 I I id NIA
5.1.2 Version: version 1.0
5.1.3 Author: NIA
5.1.4 Date: NIA
5.1.5 Validity: NIA
5.1.6 Atomicity: Yes
5.1.7 Registration: NIA
5.1.8 Model NIA

5.2 Functional Attributes:

UniFrarne 73

5.2.1 Function description: Act as validation server for users in the system.
5.2.2 Algorithm: NIA
5.2.3 Complexity: NIA
5.2.4 Syntactic Contract
5.2.4.1 Provided Interface: /Validation
5.2.4.2 Required Interface: NONE
5.2.5 Technology: NIA
5.2.6 Expected Resources: NIA
5.2.7 Design Patterns: NONE
5.2.8 Known Usage· Validation of user access
5.2.9 Alias: NONE

6. Cooperation Attributes:
6.1 Preprocessing Collaborators: Users 'Terminal
6.2 Postprocessing Collaborators: NONE

7. Auxiliary Attributes
7.1 Mobility: No
7.2 Security: LO
7.3 Fault tolerance: LO

8. Quality of Service Attributes
8.1 QoS Metrics: throughput, end-to-end delay
8.2 QoS Level: NIA
8.3 Cost: NIA
8.4 Quality Level: NIA
8.5 Effect of Environment: NIA
8.6 Effect of Usage Pattern: NIA

9. Deployment Attributes: NIA

specification associated with each implemented component is published when it is
deployed on the network. The UMM specification of a component enhances the concept
of a multilevel contract for components proposed by Beugnard, Jezequel, Plouzeau, and
Watkins (1999) because it includes other details, such as bookkeeping, collaborative,
algorithmic and technological information, and possible levels of service with associated
costs and effects of different environmental factors on the QoS parameters.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

•

•

•

74 Olson, Raje, Bryant, Burt and Auguston

Infrastructure

Uni Frame assumes the presence of a publicly accepted knowledgebase that contains
information, such as the component types needed for a specific application domain, the
interconnections and constraints that make up the design specification of each compo
nent system in a domain, and rules for QoS calculations. Experts, such as standards
organizations' task forces, create the UMM specifications for the components of each
application domain of the knowledgebase. The UMM specifications of the component
types are publicly distributed so that component developers can supply implementa
tions that adhere to them.

UniFrame's Infrastructure consists of the System Generation Process, Resource Discov
ery Service (URDS), and Glue and Wrapper Generator. The first employs the
knowledgebase to carry out the steps in creating a component system. It invokes the
URDS to locate the components in the network the system requires and validates the
product using an iterative process. The URDS provides mechanisms for components to
publish their UMM specifications and for hosting the services on distributed machines,
receives appropriate queries for locating the deployed services, and performs the
selection of necessary components based upon specified criteria. It invokes the Glue and
Wrapper Generator, which accommodates the heterogeneity across components, incor
porates the mechanisms necessary to measure the QoS, and configures the selected
services. Subsequent sections will provide more details about these.

Service-Oriented Architecture

In order to provide flexible, efficient support to the process of creating a DCS, Uniframe
organizes its knowledgebase according to the concepts of Model-Driven Architecture
proposed by the Object Management Group (2002) and Business Line Architecture
proposed by the Enterprise Architecture SIG (2003a). Uniframe's UMM provides an
underlying framework for this organization. The domain elements in the top tier of the
architecture correspond to different business contexts, or lines. A context consists of
a class of related business practice domains (such as, retail grocery, retail hardware,
construction supply, wholesaler), which are located in the next tier down. Conceptually,
elements on one level can share an element on another(healthcare and construction can
share inventory), which differs in how it performs similar operations in different contexts
(that is, the element comprises a set of variants). The various, hierarchically organized
elements that contribute detail to the definition of a business context constitute its
Business Reference Model, discussed in Succeeding with Component-Based Architec
ture by the Enterprise Architecture SIG (2003b). This takes the form ofa tree, whose root
represents the context in the architecture under consideration. Business domain experts
perform requirements analysis and model the business contexts for which it is desired
to construct DCSs. The Business Reference Models they derive and place in the
knowledgebase define the space of problems UniFrame can solve.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

•

•

•

UniFrame 75

For each Business Reference Model, software engineers construct design models in
various ways to implement DCSs that satisfy its requirements. A design model' is
expressed, frequently in Unified Modeling Language (UML®) (Rumbaugh, Jacobson &
Booch, J 999), in terms of tiered layers of components, each component offering a defined
set of services. Several Business Reference Models can share components. A compo
nent in one tier can be composed (or use of the services) of components on a lower tier.
Thus, a component has two definition forms in the knowledgebase:

• a specification of its abstract properties as a type, as in Table I, or

• a design specification, following UMM standards, which directly references the
components and refined design specifications that it uses.

The former is called an abstract component, which the Uniframe System Generation
Process considers to be available with no construction necessary. The second fonn is
called a compound component. The process will attempt to construct it from its design.
A design specification that defines a realization of a Business Reference Model forms
a Service Reference Model for it. It provides a vehicle for realizing the Model-Driven
Architecture's mapping from a platform-independent model to a platform-specific model.
The Service Reference Models also form part of UniFrame's knowledgebase.

In order to construct DCS solutions fora significant space of problems, the knowledgebase
must contain matching (Business Reference Model, Service Reference Model) pairs for
each problem variation anticipated. These can be organized efficiently by structuring
related Business Reference Models in feature models according to the optional features
that they exhibit and related Service Reference Models according to variation point
archetypes that show which design variants are available. The experts create a domain
specific language based on the distinguishing features and variation points in the
models. Then, users of the System Generation Process employ the language to specify
their requirements. The following example illustrates the knowledge base's organization.

Case Study

Suppose domain experts want to create a knowledgebase that includes the business
context consisting of users who manage documents. The users' contact with the
supporting system is via the use case Manage Documents, which includes Validate
User. The use cases Create Document, Delete Document, List Documents, Store
Document, and Get Document all extend Manage Documents. The last in this list includes
Lock Document, whereas the others include Unlock Document. From the requirements
these express, the domain experts identify three subsystems comprising the system: one
for user validation, one for managing the documents themselves, and one for user
interaction. The experts write a domain model for this system containing these three
subsystems .

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

•

•

•

76 Olson, Raje, Bryant. Burt and Augustan

Suppose the experts decide the users may want to choose between two types of
document manager systems: a standard document manager and a deluxe one that
provides extended persistence support. They represent these options in a simplified
feature diagram for the document manager, as shown in Figure I. Clear small circles
indicate optional features, whereas an arc indicates an exclusive OR choice. In more
general feature diagrams (Griss, 200 I), options of a node can be chosen as any
combination of elements of a subset oft he node's children. A feature diagram carries no
information about how its alternatives might be associated with elements in the domain
model of their parent node. It is an efficient mechanism for representing alternatives; the
domain models are essential for representing the associations among elements in the
models and the constraints on them. The domain model for the standard document
manager consists of only one domain element, Document Server. The domain model for
the deluxe document manager consists of two domain elements, Deluxe Document Server
and its associated Document Database for persistence. Because there are just two
alternatives in the feature diagram, there are just two Business Reference Models in this
example. More generally, there will be as many as there are combinations permitted by
the various feature diagrams present in the knowledgebase.

Software engineers experienced in the domain of the business context (document
management here) develop design models for these two Business Reference Models.
They create a service-oriented architecture of abstract components so that domain
models map to component-based design models. Figure 2 shows the Service Reference
Model, Standard Document System, for the Business Reference Model of the Standard
Document Manager for this example. The Service Reference Model, Deluxe Document
System, for the Deluxe Document Manager is identical, with the addition of a Database
component associated with the Document Server, where the cardinality allows an
arbitrary, positive number of Database units to be present. The Service Reference
Models include the details defining the associations among the components. These
might be views consisting of UML collaboration diagrams. This information is used to
determine the entries in the UMM abstract component specifications and the interrela
tions of the components' interfaces. The specification for the abstract component,
Validation Server, appeared in Table I. ·

Suppose that the software engineers decide that two implementations of the standard
document manager are possible, one in which the components adhere to .NET and the

Figure 1. Feature diagram for the document management system

SDM

OF

Legend:
OF: Other Features
DM: Document Manager
SDM: Standard Document Manager
DDM: Deluxe Document Manager

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

•

•

•

Figure 2. Service reference model for the standard document system

UT Legend:
UT: Users' Terminal
VS: Validation Server
DS: Document Server

UniFrame 77

other to CORBA. They indicate this choice by a design model, labeled Standard
Document System, augmented by variation point information that specifies the choice
of one of these two technologies for the associations in Figure 2, such as in OCL (Warmer
& Kleppe, 2003), as shown:

context Standard Document System

inv: technology = '.NET' or technology = 'CORBA '

Because the system consists of more than two components, the engineers have other
combinations possible. For example, the Users' Terminal/Validation Server association
may be in .NET technology, and the Document Server may be in CORBA technology,
implying the need for an appropriate bridge.

UniFrame System Generation Process

The essential steps in UniFrame's process of constructing a DCS to solve a problem
appear in Table 2. Once the UniFrame knowledgebase is available, a system developer
can pose a statement of requirements for a DCS that solves a problem within its
application domain. This analysis task forms step (I) in Table 2. For the case study in
the previous section, the statement of requirements might be:

Create a Document Management System having a Standard Document Manager.

In step (2), the term Document Management System of the example requirements
statement identifies the business context, so the stated problem lies within the domain
the knowledgebase represents. The corresponding system model shows there are two
alternatives for the Document Manager, which the feature model displays in Figure I.
The qualifying requirement, Standard, resolves this ambiguity, which completes step (2).
The resulting Business Reference Model maps directly in the knowledgebase to the two
alternative platform-specific Service Reference Models for the entire system shown in

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

•

•

•

78 Olson, Raje, Bryant, Burt and Auguston

Table 2. Steps in the UniFrame System Generation Process

Steps Activities

I State the requirements the DCS must satisfy in the knowledgebase's
terminology.

2 Identify a Business Reference Model that represents these.
3 Identify each Service Reference Model specifying a system of

abstract components that satisfies the Business Reference Model.
4 Obtain concrete implementations of the abstract components.
5 Assemble the concrete components into a DCS according to each

Service Reference Model, so that it meets the specified
requirements.

6 Test the DCS against the requirements and exit if satisfactory;
otherwise, return to step (I) to modify the requirements.

Figure 2, in which the components are either all .NET or all CORBA. This completes
step (3).

Continuing to step (4), the System Generation Process collects the UMM type specifi
cations of all the abstract components involved in each of the two Service Reference
Models and sends them in a query to the Uniframe Resource Discovery Service. This
searches the network for implemented compon~nts whose UMM descriptions satisfy the
type specifications.

Step (5) employs the design information in a Service Reference Model to construct a DCS
with the components found. If the appropriate implementations are available on the
network, the request for a Standard Document Manager in the example will yield two
DCSs, one with. NET technology and one with CO RB A technology. lfno .NET implemen
tation of a Validation Server is found, then only the CORBA DCS will be constructed.

Typically, a developer understands the requirements poorly at the initiation of the
System Generation Process. Therefore, it is imperative to evaluate empirically the
consistency of the characteristics of a generated DCS with the perceived requirements
and make modifications as necessary. This motivates having step (6) in Table 2. Such
iterative development provides a mechanism for the developer to validate the outcome
of the process and determine empirically the ranges within which its QoS attributes vary.
This helps to assure a higher quality product. The process allows two levels of testing.
The simplest is black box (or acceptance) testing of the DCS based on only the stated
requirements. The developer supplies a test harness and plan for this. The other is white
box (or integration) testing, again based on the developer's test plan. In this case, the
design of the DCS serves as a guide for inserting instrumentation code between the
components in the DCS. At runtime, this code reports the behavior of the DCS, giving
the developer a view into its internal operation. The section on the measurement of QoS
discusses a mechanism for inserting this instrumentation easily .

In case there are several Business or Service Reference Models in the knowledgebase
that satisfy the developer's requirements if step (2) or (3) of the process provides

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic fonns without written
pennission of Idea Group Inc. is prohibited.

•

•

•

UniFrame 79

feedback, allowing the developer to introduce requirements incrementally so as to reduce
these alternatives, then the process becomes an efficient way to construct the needed
type of DCS. Thus, the System Generation Process supports the iterative, incremental
development paradigm that modem software engineering practices have found produc
tive.

UniFrame Resource
Discovery Service (URDS)

Once components and their UMM descriptions have been deployed on the network, they
are ready for discovery in the Unif rame System Generation Process. The URDS executes
this process. Siram et al. (2002) discuss its architecture, shown in Figure 3.

The URDS architecture comprises: HeadHunters (HHs), Internet Component Broker
(ICB), Meta-repositories (MRs), and components.

Components are implemented according to some component model, as described earlier,
and registered with the model's binding service. For example, the Java-RMI components
are registered with the Naming service provided by the Java-RMI framework. An

Figure 3. Uni Frame Resource Discovery System (URDS)

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

•

•

•

80 Olson, Raje, Bryant, Burt and Auguston

advantage of this is that it does not burden the component providers because, to deploy
their implementations, they must register them anyway_ The HHs have the sole respon
sibility of perfonning matchmaking operations between registered components and
requested specifications_ Each HH has an MR, which serves as a local store_ An HH is
constantly discovering newly implemented components and storing their UMM speci
fications in its MR- Anytime an HH receives a query for a component type, it first searches
its MR. Ifit finds a match, it returns the corresponding component as a result. If not, it
propagates the query to other HHs in the system.

The ICB is analogous to the object request broker (ORB) in other architectures_ Unlike
the ORB, which only allows interoperation between components having heterogeneous
implementations, the Internet component broker allows interoperation between compo
nents with different component models. As Figure 3 shows, the Internet component
broker consists of domain security manager (DSM), query manager (QM), link manager
(LM), and adapter manager (AM). The DSM is responsible for enforcing a security
structure on the URDS_ It authenticates the HHs and allows them to communicate with
different binding mechanisms (registries)_ The QM interfaces with the System Generation
Process_ It receives a query consisting of a collection ofUMM component types, passes
it to the HHs, and returns the results_ The LM allows a federation ofURDSs to be created
in order to increase the component search space_ The AM locates adapter components,
such as bridges that allow interoperation of different component models, and passes
them to the Glue and Wrapper Generator_

A prototype ofURDS has been implemented using the Java-RMI and _NET technologies_
Many experiments have been perfonned to measure its performance (Siram et aL, 2002)_
These demonstrate that URDS scales upward, but the details extend beyond this
chapter's scope_

Industry and academia have proposed and implemented many distributed resource
discovery and directory services_ Examples that Siram et aL (2002) describe include
WAIS, Archie, Gopher, UDDI, CO RB A Trader, LDAP, Jini, SLP, Ninf, and NetSolve_ Each
has its own characteristics and exhibits some similarity with URDS_ The distinguishing
features of URDS are its treatment of heterogeneity and its purpose to support creating
heterogeneous integrated systems, not just to discover services.

UniFrame Quality of
Service Framework (UQoS)

Components offer services and indicate and guarantee the quality of their services_
Therefore, it is necessary to facilitate the publication, selection, measurement, and
validation of component and DCS QoS values_ The UniFrame Quality of Service
Framework, described by Brahnmath (2002); Sun (2003); and Raje, Bryant, Olson,
Auguston, and Burt (2002), provides necessary guidelines for the component developers
and system integrators using Uniframe_ The UQoS consists of three parts: QoS catalog,

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

•

•

•

UniFrame 81

composition/decomposition models for QoS parameters, and specification and measure
ment of QoS. The reader is referred to the references above for the first two because the
details are extensive.

To prepare the UMM description of a component to be publicized, the component
developer must measure empirically the QoS parameters in the corresponding UMM type
specification. The QoS catalog provides model definitions and formulas to assist in this.
Some parameters are static in nature (like reliability), while some are dynamic (like end
to-end delay). If the parameter is static and characterizes a system of components, then
its value can be determined from the components' parameter values. Otherwise, its value
must be determined empirically.

Evaluation of QoS Parameters

UniFrame uses the principles of event grammars for measuring parameters empirically.
Event grammar, as described by Auguston (1995), forms the basis for system behavior
models. An event represents any detectable action during execution, such as a statement
execution, expression evaluation, procedure call, and receiving a message. It has a
beginning, end, and duration (a time interval corresponding to the action of interest).
Actions (or events) evolve in time, and system behavior represents the temporal
relationship among actions. This implies a partial ordering relation for events, as Lamport
(1978) discussed.

System execution can be modeled as a set of events (event trace) with two basic relations:
partial ordering and inclusion. The event trace actually is a model of the system's
temporal behavior. In order to specify meaningful system behavior properties, events
must be enriched with attributes. An event may have a type and other attributes, such
as duration, source code related to the event, associated state (that is, variable values
at the event's beginning and end), and function name and returned value for function
call events.

A special programming language, FORMAN, for computations over event traces greatly
facilitates measuring parameters empirically. As described by Fritzson, Auguston, and
Shahmehri (1994) and Auguston (1995), it is based on the notions of the functional
paradigm, event patterns, and aggregate operations over events.

The execution model of a component (or a system of integrated components) is defined
by an event grammar, which is a set of axioms that describes possible patterns of basic
relations between events of different types in a program execution trace. It is not intended
to be used for parsing actual event traces. If an event is compound, the grammar describes
how it splits into other event sequences or sets. For example, the event execute
assignment-statement contains a sequence of events evaluate-right-hand-part and
execute-destination.

The rule A:: (BC) establishes that, if an event a of the type A occurs in the trace ofa
program, it is necessary that events band c of types Band C, also exist, such that the
relations b IN a, c IN a, b PRECEDES c hold. For example, the event grammar describing

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

•

•

•

82 Olson. Raje, Bryant, Burt and Auguston

the semantics of an imperative programming language may contain the following rule (the
names, such as execute-program and ex-stmt in the grammar denote event types):

execute-program : : (ex-st mt •)

This means that each event of the type execute-program contains an ordered (w .r.t.
relation PRECEDES) sequence of zero or more events of the type ex-stmt. For the function
call event, the event grammar may provide the following rule:

func_call:: (param •) (ex-stmt •)

This event may contain zero or more parameter evaluation events followed by statement
executions.

Example of Evaluating Turn-Around Time

If the event type component_ call corresponds to the whole component call event and
request denotes the event for a single request (the time interval from the request's
beginning to its completion), then the following FORMAN formula specifies the mea
surement of the turn-around time:

FOREACH a: session FROM execute_program

SAY ('Turn-around Time for a session is '

SUM[b: request FROM a APPLY b.duration]

I CARD[request FROM a])

Similar rules can be specified for any other dynamic QoS parameters or related compu
tations. Thus, the principles of event traces provide a mechanism to validate empirically
the QoS values for a component and for an integrated system of components.

Interoperability Using the
Glue and Wrapper Generator

For interoperation of heterogeneous distributed components, it is necessary to con
struct glue and wrapper code to interconnect the components. Because a project
objective is to achieve high quality systems, a goal is to automatically generate the glue/
wrapper code. In order to achieve this, there should be formal rules for interconnecting

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

•

•

•

UniFrame 83

components from a specific application domain as well as integration of multiple
technology domains, that is, component models. UniFrame uses the Two-Level Grammar
(TLG, also called W-grammar) formal specification language (Bryant & Lee, 2002) to
specify both types of rules. The TLG formalism is used to specify the components
deployed under Uniframe and also the generative rules needed for system assembly. The
output of the TLG will provide the desired target code (for example, glue and wrappers
for components and necessary infrastructure for the distributed runtime architecture).
The UMM formalization establishes the context for which the generative rules may be
applied. Bryant, Auguston, Raje, Burt, and Olson (2002) provide further details about the
glue/wrapper code generation rules, including a discussion of how the Quality of Service
validation code is inserted into the glue code. The general principle is that for each QoS
parameter to be dynamically verified, the glue code is instrumented according to the
event grammar rules described earlier.

Future Trends

The concept of Business Reference Models "is meant to provide the foundation for
common understanding of business processes across the Federal government in a
service-oriented manner," enabling an agency to define an enterprise architecture as
mandated by law (Enterprise Architecture SIG, 2003). A significant sector of industry is
involved in establishing standards and guidelines on how to enable successful enter
prise architecture. The component-based architecture of UniFrame's knowledgebase
closely follows these guidelines, incorporating the concepts of Object Management
Group's (2002) Model-Driven Architecture as an integral part. Consequently, Uni Frame
is working toward the realization of an operational framework for enterprise architecture
and is a source of feedback into the activities necessary.

Many existing component models provide the necessary mechanisms for describing the
functional aspects of components but not for the QoS aspects. Standards organizations
have recently started to address this weakness. For example, in the fall of2000, the OMG
began issuing a number of Requests for Proposals for UML profiles for modeling QoS
in several contexts. Uniframe is addressing some of these QoS issues and is making
efforts (via presentations to different OMG task forces) to ensure that its research is
aligned with emerging industry standards.

The creation of the Business Line and Service-Oriented knowledgebase will largely
continue to be a human endeavor aided by CASE tools because humans determine what
constitutes the problems they must solve. However, the System Generation Process
could be accomplished mostly automatically for any problem in a given know ledgebase.
The person who formulates the requirements for the DCS will need to do so in the
knowledgebase' s terminology. The degree to which this can be made to match the typical
user's terminology remains a research area.

Huang (2003) implemented a prototype of the Uniframe System Generation Process with
the Uniframe Resource Discovery Service. Because of the labor involved in constructing
the knowledgebase, it was limited to a small banking case study. Experimental studies

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

•

•

•

84 Olson, Raje, Bryant, Burt and Auguston

proved efficient, user communication issues were easily managed, and QoS values were
calculated_ The automated creation of bridges and glue/wrapper code and using FORMAN
to insert the code into them for the QoS ~omputations remain to be incorporated into the
implementation.

Conclusion

This chapter has described the Uni Frame process for constructing distributed comput
ing systems and has shown how it facilitates achieving the current goals of government
and industry in rapidly creating high quality computing systems. Uniframe provides a
framework within which a diverse array of technologies can be brought to achieve these
ends. These include software engineering practices, such as rapid, iterative, and
incremental development. Its business line, service-oriented, model-driven architecture
based on components is a realization of the movement to provide mutability, quick
development, and conservation of resources_ A knowledge base of component-based,
predefined and tested designs for distributed computing systems, event traces for
empirical testing, and quality of service prediction and calculation are tools it utilizes for
increasing quality assurance. Uniframe decouples the requirements analysis and system
assembly activities from the problem of collecting appropriate components published on
the network. Its novel resource discovery service facilitates the efficient acquisition of
components meeting stated specifications. It provides a mechanism for seamlessly
bridging components of different models, such as RMI and CORBA, to support the
construction of heterogeneous, distributed computing systems having platform-inde
pendent definitions_ The Uniframe project is also investigating techniques and patterns
related to using quality of service parameters during the design of components and
integrated systems to create high assurance distributed computing systems.

Acknowledgments

This work was supported in part by the U.S. OfficeofNaval Research, grant NOOO 14-01-
1-0746_

References

Auguston, M. (1995). Program behavior model based on event grammar and its
application for debugging automaton_ In M. Ducasse (Ed.), Proceedings of the
2nd International Workshop on Automated and Algorithmic Debugging
(AADEBUG '95) (pp. 277-291), Renn es: Universite de Rennes.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic fonns without written
permission of Idea Group Inc. is prohibited.

•

•

•

UniFrame 85

Batory, D., & Geraci, B. (1997). Component validation and subjectivity in GenVoca
generators./£££ Transactions on Software Engineering, 23(2), 67-82.

Beugnard, A., Jezequel, J., Plouzeau, N., & Watkins, D. (1999). Making components
contract aware. IEEE Computer, 32(7), 38-45.

Brahnmath, G. (2002). The UniFrame Quality of Service Framework. Unpublished
master's thesis, Indiana University Purdue University, Indianapolis, IN, United
States. Retrieved August 8, 2004: http://www.cs.iupui.edu/uniFramel

Brown, A. (1999). Building systems from pieces with component-based software engi
neering. In P. Clements (Ed.), Constructing superior software (Chapter 6). India
napolis, IN: MacMillan Technical.

Bryant, B. R., Auguston, M., Raje, R.R., Burt, C. C., & Olson, A. M. (2002). Formal
specification of generative component assembly using two-level grammar. Pro
ceedings ofSEKE 2002, 14th International Conference on Software Engineering
and Knowledge Engineering (pp. 209-212). Los Alamitos: IEEE Press.

Bryant, B. R., & Lee, B.-S. (2002). Two-Level grammar as an object-oriented require
ments specification language. Proceedings of HICSS-35, the 35th Hawaii Interna
tional Conference on System Sciences (p. 280). Los Alamitos, CA: IEEE Press.
Retrieved August 8, 2004: http://www. hicss. hawaii. edu!H lCSS _ 35/H ICSSpapersl
PDFdocuments!STDSLOI.pdf

Cmkovic, I., Schmidt, H., Stafford, J., & Wallnau, K. (Eds.). (2003). Proceedings of the
6th Workshop on Component-Based Software Engineering: Automated Reason
ing and Prediction. The 25th International Conference on Software Engineering
(ICSE). Retrieved August 8, 2004: http://www.csse.monash.edu. aul-hwslcgi-binl
CBSE6

Enterprise Architecture SIG, Industrial Advisor Council (IAC). (2003a, March). Business
line architecture and integration. Retrieved August 8, 2004: http.-/1216.2 I 9. 201. 971
documents _presentations/index. htm

Enterprise Architecture SIG, Industrial Advisor Council. (2003b, March). (IAC). Suc
ceeding with component-based architecture in e-government. Retrieved August 8,
2004: http://2I6.219.201.97/documents _presentations/index.him

Fritzson, P., Augustan, M., & Shahmehri, N. (1994). Using assertions in declarative and
operational models for automated debugging. The Journal of Systems and Soft
ware, 25, 223-239.

Griss, M. L. (200 l). Product line architectures. In G. T. Heineman, & W. T. Councill (Eds.),
Component-based software engineering: Putting the pieces together (pp. 405-
420). Boston: Addison-Wesley.

Heineman, G. T., & Councill, W. T. (Eds.). (200 l). Component-based software engineer
ing: Putting the pieces together. Boston: Addisori-Wesley.

Huang, Z. (2003). The Uni Frame system-level generative programming framework.
Unpublished master's thesis, Indiana University Purdue University, Indianapolis,
IN, United States. Retrieved August 8, 2004: http://www.cs.iupui.edu/uniFrame

Java Remote Method Invocation - Distributed computing for Java. (2003, October 2).
Retrieved August 8, 2004: http://java.sun. comlmarketinglcollateral!javarmi. html

Copyright © 2005. Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

•

•

•

86 Olson, Raje, Bryant, Burt and Augustan

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7), 558-565.

Lumpe, M., Schneider, J., Nierstrasz, 0., & Achermann, F. (1997). Towards aformal
composition language. In G. T. Leavens & M. Sitamaran (Eds.), Proceedings of the
I st ESEC Workshop on Foundations of Component-Based Systems (pp. 178-187).
Heidelberg: Springer-Verlag.

Microsoft .Net Framework: Technology overview. (2003, October2). Retrieved August
8, 2004: hllp:l/msdn. micros oft. comlnetframework/technologyinfoloverviewl

Object Management Group. Model-Driven Architecture™, the architecture of choice for
a changing world. (2002, March 12). Retrieved August 8, 2004: http://www.omg.org/
mda

Raje, R. (2000). UMM: Unified Meta-object Mode/for open distributed systems. Proceed
ings of the Fourth IEEE International Conference on Algorithms and Architecture
for Parallel Processing (ICA3PP2000)(pp. 454-465). Los Alamitos, CA: IEEE Press.

Raje, R., Augustan, M., Bryant, B., Olson, A.,& Burt, C. (200 I). A unified approach for
integration of distributed heterogeneous software components. Proceedings of
the Monterey Workshop on Engineering Automation for Software Intensive
System Integration, SEAC technical report (pp. 109-119). Monterey, CA: U.S.
Naval Postgraduate School. Retrieved August 8, 2004: hllp:/lwww.cs.iupui.edu/
uni Frame!

Raje, R., Bryant, B., Olson, A., Auguston, M., & Burt, C. (2002). A quality-of-service
based framework for creating distributed heterogeneous software components.
Concurrency and Computation: Practice and Experience, J 4, I 009-1034.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The Unified Modeling Language
reference manual. Reading, MA: Addison Wesley.

Schmidt, D. (2003, October 2). Overview of CO RB A. Retrieved August 8, 2004: http:!!
www.cs. wustl. edul-schmidtlcorba-overview. html

Siram, N., Raje, R., Olson, A., Bryant, B., Burt, C., & Augustan, M. (2002). An architecture
for the UniFrame Resource Discovery Service. Proceedings of the 3rd Interna
tional Workshop of Software Engineering and Middleware: Vol. 2596. Lecture
Notes in Computer Science (pp. 20-35). Heidelberg: Springer-Verlag.

Sun, C. (2003). QoS composition and decomposition models in Uni Frame. Unpublished
master's thesis, Indiana University Purdue University, Indianapolis, IN, United
States. Retrieved August 8, 2004: www.cs.iupui.edu/uniFrame

Szyperski, C., Gruntz, D., & Murer, S. (2002). Component software - Beyond object
oriented programming. (2nd ed.). Boston: Addison-Wesley/ACM Press.

Warmer, J., & Kleppe, A. (2003). The Object Constraint Language. (2nd ed.). Boston:
Addison-Wesley.

Weck, W. (1997, June). Independently extensible component frameworks. In M.
Miihlhauser (Ed.}, Proceedings oft he I st International Workshop on Component-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic fonns without written
pennission of Idea Group Inc. is prohibited.

------------- --------------------------------------

•

•

•

UniFrame 87

Oriented Programming (European Conference on Object-Oriented Program
ming, Jyvaskyla, Finland), Special Issues in Object-Oriented Programming (pp.
177-188). Heidelberg: Springer-Verlag .

Copyright 0 2005. Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

