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ABSTRACT 

 As naval warfighting capabilities evolve, the need for innovative communication 

techniques for tactics and command and control increases. Using Navy sonar systems 

normally reserved for conventional communication in the underwater channel between 

vessels to transmit a hidden message disguised as ambient ocean noises or biological 

noise is a possible way to communicate with a low probability of interception or 

detection. 

 This research applies information hiding via steganography in order to embed and 

extract bits from an audio file after transmission through a simulated underwater acoustic 

channel. Specifically, we explore a technique that allows us to communicate such that the 

transmission appears native to the operating environment. We do this by embedding 

symbols in an audio source in the frequency domain. We demonstrate the success of our 

technique via traditional steganography metrics and describe its performance limitations. 

We find that our scheme can be both imperceptible and robust provided that proper 

embedding and transmission parameters can be determined. 
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CHAPTER 1:
Introduction

The ability for friendly forces to reliably communicate with one another is a critical com-

ponent of modern military tactics and operations. The capability to provide command and

control as well as situational awareness enables decisive action in meeting our nation's

objectives. Conversely, an adversary who seeks to obtain an advantage need only intercept

or deny these vital communications in order to signi�cantly disrupt the friendly unit.

Given its existing challenges and limitations, availability of communications in the undersea

domain is at increased risk of denial. For this reason, it is advantageous to develop

innovative communication methods that have a Low Probability of Detection (LPD) and/or

Low Probability of Interception (LPI), thereby allowing us to communicate freely without

fear of counter-detection.

This thesis explores the application of steganography to Underwater Acoustic Communi-

cations (UAC) such that two nodes could communicate with one another in plain sight

unbeknownst to a third party. Jean-Michel Passerieux of Thales Underwater Systems devel-

oped an early technique based on this principle which modi�es previously recorded noise in

order to embed hidden data [1], [2]. We seek to expand upon his work by implementing his

concepts in the frequency domain as well as with a di�erent channel simulation technique.

Furthermore, we conduct experimentation to better understand the technique's capabilities

and limitations.

In this chapter, we state the bene�t of our research to the Department of Defense (DoD),

state our research objectives, de�ne the scope of research, explain our signi�cant �ndings,

and explain the organization of this thesis.

1.1 Bene�t to the Department of Defense
UAC has direct applications to the United States Navy (USN), and are employed by

submarines, surface vessels, underwater acoustic modems, Unmanned Underwater Vehi-

cles (UUVs) and underwater sensor nodes. Applying an innovative method for covert UAC
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would further enhance the �exibility and capability of tactical communications. UAC is an

important topic for military research, as the undersea domain is one of the few remaining

natural frontiers.

1.2 Research Questions
The primary research question is whether a steganography based covert UAC technique

such as Passerieux's can be e�ectively demonstrated in the frequency domain, along with

how well it performs when applied to a signal whose transmission will be modeled by an

accurate underwater acoustic channel model.

Secondary research questions include:

ˆ How well does the algorithm embed data while remaining undetectable (i.e., preserv-

ing the original signal's audible and spectral characteristics)?

ˆ What nominal data rates are feasible?

ˆ At what ranges can data be reasonably recovered from the signal?

ˆ How do di�erent inputs to the algorithm a�ect algorithm performance?

ˆ How well does the algorithm perform in deep vs. shallow water?

1.3 Scope
The primary scope of this research is to provide a proof-of-concept for �exible and robust

algorithm for embedding data in existing ambient noise, and to demonstrate data extraction

under simulated underwater acoustic conditions. At the conclusion of this study, we provide

a framework for follow on research and applications.

Though valuable the following will not be speci�cally addressed and are beyond the scope

of this thesis:

ˆ The e�ect of Doppler on symbol recovery.

ˆ Receiver and transmitter characteristics, construction, and design.

ˆ Application of di�erent modulation techniques.

ˆ Real-time symbol recovery and receiver synchronization.

ˆ Performance evaluation via at sea testing.
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ˆ Use of di�erent frequency bands.

ˆ Compatibility with speci�c equipment, software, and hardware.

ˆ Resistance to traditional and statistical steganography attacks.

1.4 Approach and Signi�cant Findings
1. This research implemented an audio steganography by cover modi�cation technique

based on a scheme �rst developed by Passerieux, whose goal is to utilize existing

background noise in order to appear inconspicuous. Our work builds on his approach

by performing data embedding and recovery completely in the frequency domain.

2. We implement our scheme in a 2048 Hz bandwidth centered around 2500 Hz to

balance transmission distance with reasonable transmitter power. This band is also

representative of many low frequency sonar systems. Our implementation is adaptable

to other bandwidths.

3. We show the e�ects of embedding data on the cover signal, including how these

e�ects can be minimized while balancing the ability to recover data.

4. We model the e�ects of transmission through two underwater acoustic channels

generated by the well-documented Monterey-Miami Parabolic Equation (MMPE).

We simulate a generic deep water channel and a challenging shallow water channel.

5. We demonstrate proof of concept for algorithm success for a variety of operating

parameters

6. A key challenge to algorithm success is correctly accounting for time delay in order

to correctly align symbol periods. Multipath e�ects contribute to this and can further

cause unpredictable results.

7. Background noise signi�cantly degrades performance as range increases. As a result,

adequate Source Level (SL) must be chosen in order to balance symbol recovery with

detectability.

1.5 Organization
The remainder of this thesis is structured as follows:
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Chapter 2: Background

Chapter 2 describes a short history of underwater acoustics research, including applications

over time and acoustic modeling. Following that is a description of the important terms

and concepts for both UAC and steganography. Next, we describe the existing applica-

tions of audio steganography, concluding with present work applying audio steganography

techniques to UAC.

Chapter 3: Methodology

In Chapter 3, we begin by outlining the theory behind Passerieux's technique, as well as the

theory of our implementation, including how data is embedded and extracted. The second

portion describes the modules which constitute our implementation, as well as a description

of the input �les used to generate the simulated channel.

Chapter 4: Results and Analysis

Chapter 4 includes the parameters for experimentation, details the environment of our

simulated channels, and describes evaluated metrics. It also includes relevant plots and a

discussion of the results.

Chapter 5: Conclusions and Future Work

Chapter 5 presents the �nal conclusions of this research and provides recommendations for

future work based on those conclusions.
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CHAPTER 2:
Background

The study of UAC and steganography are disparate, with few existing applications. To

understand the foundation of our research, an overview of concepts and terminology is war-

ranted. In this chapter, we provide pertinent background information and detail the extent

of existing work from which to position our research. Section 2.1 describes the history and

broad theory of UAC, including the sonar equations and modeling methods. Section 2.2

explains steganography theory, terminology, and critical concepts, while Section 2.3 de-

scribes steganography's application to digital audio. Finally, Section 2.4 explains the nature

of existing work with regards to audio steganography and UAC.

2.1 Underwater Acoustic Communication
Sound travels through water much more e�ectively than radio waves and other forms of

radiation useful for transmission and reception. Leveraging acoustic wave propagation

has enabled humanity to exploit the undersea domain for military, engineering, scienti�c,

commercial, and communications applications.

2.1.1 History
In his widely known workPrinciples of Underwater Sound, Robert Urick presents a concise

historical survey of sonar and UAC [3].

First Uses

The submarine bell, used in conjunction with a foghorn for o�shore navigation, was the �rst

practical application of underwater sound, and led to the development of echo ranging in

the early 20th century. These applications were limited to detecting icebergs and submarine

signaling in the years leading up to World War I, after which military applications began

to drive innovation. Quartz-steel sandwich projectors using the piezoelectric e�ect and

vacuum-tube ampli�ers began to replace older condenser projectors, and constituted the �rst

use of electronics in underwater equipment. By 1918, submarines were receiving echoes at
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range and determining target bearings, and surface vessels were towing hydrophone arrays

to passively listen while avoiding self-noise.

Wartime

In the years between World War I and World War II, the scienti�c community gained

a greater understanding of underwater sound by exploring the refraction of sound rays

produced by temperature, pressure, and salinity changes in the ocean. Better understanding

of underwater sound propagation, including how to calculate absorption coe�cients were

the most signi�cant discoveries of this era. Further advances in electronics improved sonar

in terms of power and utility, enabling increased directionality with hydrophones and better

performance in listening and echo ranging.

As in World War I, World War II saw increased devotion to the study of underwater

sound. Some of the most notable wartime developments were the acoustic homing torpedo,

acoustic mines, underwater telephones, and scanning sonar. Further advancements in our

understanding of target strength and noise laid the foundation for the sonar equations.

Quantitative measures for sound recognition by the human ear, for classifying platforms by

frequencies and speeds, and for describing reverberation in the sea laid the framework for

the way we understand underwater acoustics today.

Postwar Era

In the postwar years, larger and more powerful equipment has allowed active and passive

sonar to operate at lower frequencies and over longer ranges. Arrays placed on the ocean

bottom exploit the quiet environment and propagation conditions at these lower frequencies,

and the discovery of deep-sea sound channels and the convergence zone expanded the range

of UAC applications. This era also saw a much larger focus on non-military applications,

some of which include communications, telemetry, beacons, transponders, speedometers,

�sh �nders, wave-height sensors, and fathometers.

Today, researchers continue to develop innovative uses of underwater sound. Underwater

acoustic modems and sensor networks have expanded our capability to conduct at sea

experimentation, area monitoring, and data collection. Maritime industries and the military

have each placed a considerable emphasis on developing UUVs, which extend the length
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and breadth of research beyond the normal human reach. As digital signal processing and

available computing power each continue to improve, so too will the quality and variety of

UAC applications.

2.1.2 Performance Factors
Performance factors for underwater communications can best be summarized by the passive

and active sonar equations [3], [4]. The passive sonar equation is given by

SL� T L � NL � DI + DT; (2.1)

where SL, Transmission Loss (TL), Noise Level (NL), Directivity Index (DI), and Detection

Threshold (DT) are each measured in Decibels (dB). The active sonar equation is

SL� 2T L + TS� NL � DI + DT (2.2)

when noise-limited and

SL� 2T L + TS� RL + DT (2.3)

when reverberation limited. Target Strength (TS) and Reverberation Level (RL) are also

measured in terms of dB. Generally, the SL, DI, DT, and TS parameters depend on the

characteristics of the equipment and the target, while TL, RL, and NL are depend strongly

on the propagation medium [3]. For the purposes of this study, we must elaborate on the

parameters determined by the medium, as they will be the focus of simulation.

Transmission Loss

TL can be thought of as having two main components, TL due to geometric spreading

and TL due to non-geometric e�ects such as absorption and scattering [4]. Geometric

spreading can be approximated as spherical at short ranges, but it can be dramatically

altered by refraction based on the Sound Speed Pro�le (SSP). The channel's SSP depends

on changes in temperature, pressure, and salinity, each of which typically vary more by

depth than by horizontal distance. The presence of layers can lead to trapped rays that

spread cylindrically past a certain transition range.

Many factors contribute to non-geometric TL. Some sound is absorbed by the seawater itself.
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Rays that bounce o� the surface experience losses due to scattering, which is determined

by sea state roughness, frequency, and angle of incidence. Though rays re�ecting o� the

bottom can be a useful propagation path, bottom bounces experience some loss based on

angle of incidence, frequency, as well as the physical properties of the bottom itself such as

roughness and bottom type. The combination of multiple arrival paths in a received signal

constitutes the multipath e�ect, which can have a signi�cant and unpredictable e�ect on the

TL and �delity of an acoustic signal.

Reverberation Level

Back scattering due to heterogeneities like particulates, bubbles, wildlife, the sea surface,

and the sea�oor can act as an additional noise source in active sonar [4]. The amount of noise

produced by this back scatter is called the RL, and depends on the transmit signal as well

as the range and ocean properties. In UAC, forward scattering from these inhomogeneities

will lead to changes in TL in the received signal.

Noise

Noise comes from a variety of sources and can greatly inhibit performance. NL comes

from both ambient noise due to the environment, as well as self-noise of the receiver and

electronic noise.

Sources of ambient noise in di�erent frequency regions were summarized by Wenz [5]. At

very low frequencies, ocean turbulence and seismic activity are the most prevalent ambient

noise sources. Distant shipping and biological noise become signi�cant between 20 Hz to

about 500 Hz, beyond which sea state and wind speed dominate. Above 50 kHz, thermal

e�ects on the water molecules themselves contributes more signi�cantly to noise. In shallow

water environments, the e�ects of ambient noise can be magni�ed due to generally higher

levels of human activity, nearby surf, and denser ecosystems.

Self-noise comes from the receiving platform, and can be transferred to the receiver itself

through the structure or through the water. Self-noise tends to increase with speed. At low

enough speeds, self-noise will be less limiting than ambient noise [4].
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2.1.3 Modeling The Underwater Acoustic Channel
As underwater sensor networks, acoustic modems, UUVs, and other nodes which perform

UAC become more ubiquitous, mathematical models which can approximate the time and

spatial varying channel become a useful tool when at-sea experimentation is not feasible

or timely. The overarching framework for most theoretical models of underwater acoustic

propagation is the wave equation, whose �ve canonical solutions make up the basis for the

�ve major model categories [6]. Each model has its own advantages and limitations, and

applicability in all cases depends on factors of frequency, range, and the complexity of the

ocean environment.

Ray-Theoretical

Ray-theoretical models apply ray tracing theory using the Helmholtz equation in order to

calculate TL [6]. These types of models calculate the coherent TL for each eigenray between

source and receiver, and then add the pressures coherently or incoherently to calculate the

total pressure. Typically ray-theoretical models include a direct path, bottom bounce, and

surface bounce eigenray for close ranges and only a direct path at longer ranges, assuming

that all others are attenuated away. Ray-theoretical models are useful for deep water, high

frequency applications but are not applicable or practical in shallow water environments or

at low frequencies [6].

Normal Mode

In simple normal mode theory, it is assumed that the medium is strati�ed and with cylindrical

symmetry, so that the channel changes as a function of depth only. Solving the wave equation

with a cylindrical coordinate system and subject to the boundary conditions at the surface

and bottom yields a Hankel function for the travelling wave portion and standing waves in

the vertical direction [6]. Simple normal mode models assume a single frequency point

source, and are limited to frequencies below 500 Hz, as the number of modes needed to

accurately estimate TL increase as frequency increases.

Multipath Expansion

Multipath expansion models are similar to normal mode models in that they result from

integral expressions of the wave equation, but they only consider certain modes and are
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range independent [6]. This approach works well for deep water scenarios at intermediate

and high frequencies.

Fast-Field

Fast-�eld models have their roots in wavenumber integration, and use a similar integral

tranform as in normal modes but instead replace the �rst kind Hankel function with the

�rst term of its asymptotic expansion [6]. The in�nite integral can be evaluated by Fast

Fourier Transform (FFT), which gives values for the scalar potential function of the wave

equation at discrete points for particular source and receiver locations. The major downside

to fast-�eld modeling techniques is the inability to handle range dependent calculations.

Parabolic Equation

In Parabolic Equation (PE) models, the elliptical reduced wave equation version of the

Helmholtz equation is replaced with a PE, which relies on the assumption that group speed

is very close to or equal to compression or shear speeds [6]. The simpli�ed parabolic

wave equation depends on range, depth, and azimuth. PE models can be very accurate and

exist as both range independent and dependent solutions. Results can be calculated for a

wide variety of parameters. The most signi�cant downside to PE acoustic models is the

dramatic increase in required computational time at frequencies above 500 Hz. Calculations

become increasingly intensive when raising the number of range or depth interval steps, as

decreasing the step size means more steps must be calculated in order to achieve the desired

prediction range as frequency increases.

2.1.4 The Monterey-Miami Parabolic Equation
For the purposes of this study and its simulations, we opt to implement the MMPE acoustic

propagation model [7]. MMPE, like other PE models, uses as its basis the parabolic form

of the acoustic wave equation to represent the waveguide's forward propagating acoustic

energy, but di�ers from other implementations in its methods of calculating the solutions

to that equation. To do so, MMPE decomposes the acoustic �eld into a slowly modulating

envelope function, with an oscillating phase term at an acoustic frequency, and then makes

use of a propagator function to propagate the solution out in range. To compute the PE

solution, MMPE uses the split-step Fourier (SSF). The SSF method is advantageous because
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it balances computational e�ciency (a known problem for most PE models) with generation

of range dependent environments, whereas most PE models can only e�ciently calculate

range-independent solutions.

Though the MMPE model's employment of the SSF method to march the acoustic �eld

solution out in range is relatively e�cient, it does su�er from other complexities, for

which accuracy su�ers. Results from the Shallow Water Acoustic Modeling (SWAM'99)

Workshop, which contained several canonical test cases for several di�erent environments

and frequencies, are presented for reference in [8]. The �exibility in parameterization,

relative e�ciency, and granularity trade o�s in respect to accuracy available to MMPE

make it an adequate model for our research. Additionally, since no modeling will need to

be done in real time, the long calculation times inherent to PE models are acceptable.

2.2 Steganography Background
Steganography, a subset of the more general data hiding �eld, is the security technique of

interest to this research, and one whose foundation must be adequately understood.

2.2.1 Steganography Principles
Fridrich informally de�nes steganography as �the practice of undetectably communicating

a message in a cover object� [9]. In this case, the �cover� object refers to the object in which

information will be hidden, and usually has little to no intrinsic value other than to contain

the valuable hidden message. Applying a steganographic scheme to embed a message into a

cover object yields a �stego� object, which a recipient would then use to extract the needed

information. The value of steganography, as opposed to more conventional privacy tools

such as cryptography, is that it achieves the same goals of private communication between

parties while being covert rather than overt. That is, the very existence of the message

in question is kept secret from would be attackers and eavesdroppers. In other words, the

scheme is LPD. Messages may be passed to and from involved parties without raising

suspicion or alerting an unwanted party. Undetectability is therefore the most important

aspect of a given steganographic system [9]. The dramatic rise of digitization in multimedia

and progress in signal processing capabilities has made steganography and data hiding

increasingly easy to implement, and has drawn great interest in steganography as a �eld of
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study for many U.S. agencies.

2.2.2 The Prisoner's Problem
The classical steganography scenario can be best described by Simmons's prisoner's prob-

lem [10]. Suppose Alice and Bob are both prisoners in the same prison, but assigned to

di�erent cells. The prisoners desire to escape and have resolved to work on a plan to achieve

this. They are allowed to communicate with one another under the surveillance of a warden,

Eve. If at any point Eve catches wind of their plan, she will disallow further communication

and place each prisoner into solitary con�nement. The prisoners will use steganography to

detail their plans to escape in Eve's plain view.

In the prisoner's problem, we can assume that Eve is aware of the steganographic algorithm

but is ignorant of the secret stego key that Alice and Bob would have agreed upon prior

to imprisonment. In this way, the security of the system is not reliant upon the secrecy of

the system itself, but rather the secrecy of its key [11]. As with encryption, the algorithm

in question may fall into the hands of the enemy, and if it does, should not in and of itself

compromise the security of the channel. The warden can be passive, and merely observe

tra�c, or active, and attempt to tamper with or disrupt the steganography or trick the parties

into revealing their communication. Both must be considered when designing a secure

steganographic system. From a philosophical standpoint, however, it should be noted that

all Eve needs to do in order to break the steganographic system in the prisoner's problem

is to detect that secret communication is taking place, as opposed to in encryption wherein

access to the decrypted content is considered a successful attack. Extracting the secret

message is a very di�cult problem known as forensic steganalysis, and will not be explored

in this research.

2.2.3 The Steganographic Channel
When Alice and Bob begin communicating secretly, they must decide how to de�ne their

channel, or comprehensive method of steganography. Fridrich recognizes �ve basic ele-

ments characteristic of a steganographic channel, namely a source of covers, algorithms,

keys, messages, and data exchange channel [9].
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Cover Source

The cover source is the digital object into which information will be hidden, such as images,

audio, and text, and should be an object that can be exchanged overtly. One must be able to

make a fundamental assumption about the cover source that makes formal analysis possible,

so that its properties can be modeled and analyzed using information theory or complexity

theory.

Embedding and Extraction Algorithms

The data-embedding and data-extraction algorithms are the procedures by which the secret

bits are placed into and subsequently removed from the cover object. The two functions

are normally inverse operations from one another, are not inherently secret, and rely upon

a stego key.

Stego Key

The predetermined stego key is a value for determining the protocol for embedding the

secret bits. A common method in steganographic schemes is to select the key at random,

using a gaussian distribution, from among the set of all possible stego keys. The stego key

must be kept secret for the scheme to work.

Message Source

The source of the intended hidden message must be carefully selected as it has strong

in�uence on making the steganographic channel secure, as its size can directly contribute to

the detectability of the covert communication. Needing to send consistently large messages

and thereby exhausting the storage capacity of the channel can produce large distortions

of the cover object, and undermine the goal of hiding information. Typically, the message

source is modeled as a random variable covering the sample space of all possible messages.

Primary Communication Channel

The primary communication channel is the medium through which the stego object is

transferred from Alice to Bob, or vice versa. As in the prisoner's problem scenario, we must

always assume that this channel is being monitored by the warden, Eve, and furthermore,

that Eve is behaving in one of three possible manners.
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If Eve is a passive warden, she acts merely as an observer, watching all of the tra�c but

taking no action to interfere with the communication itself. If she is an active warden and

suspects hidden communication between Alice and Bob, she can intentionally distort data

in the primary communication channel and break the steganographic system. This can

be mitigated, however, if Alice and Bob utilize a robust system that can withstand such

processing. Finally, the worst case scenario is that Eve can be a malicious warden, guess

the steganographic method, and attempt to impersonate either Alice or Bob to confuse or

undermine both parties.

The main di�erence between the active and malicious warden is that an active warden seeks

to make steganography between Alice and Bob impossible, whereas the more nuanced

malicious warden leverages the stego channel to her advantage, rather than necessarily seek

to disrupt or block it. For the purposes of this research, we will assume a passive warden

scenario in which an adversary is likely oblivious to the fact that steganography is being

employed, or takes no harmful action in the event they are aware.

2.2.4 Embedding and Extraction Methods
Fridrich identi�es three fundamental paradigms by which the embedding and extraction

algorithms function in relation to their respective covers. These include steganography

schemes based on cover selection, cover synthesis, and cover modi�cation, and are elabo-

rated on in the following paragraphs [9].

Steganography By Cover Selection

In a steganography by cover selection scheme, the hidden message is expressed by inter-

preting a feature inherent to the cover. For this type of scheme to function, Alice must have

a selection of static covers, such as image or audio �les, from which to choose. A feature

speci�c to that cover will in turn express some information. The embedding algorithm

need only be a process that selects from the available covers at random until one suitable

for the intended message or portion of the message is found. The stego key is a set of

predetermined rules that dictate how Alice and Bob interpret the selected covers.

In practice, many cases of steganography by cover selection involve hash functions. Alice

can select a cover from her database, run it through a message-digest function, and compare
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the output digest to a desired message bit stream, repeating as necessary with other covers

until a match is found, which can then be forwarded to Bob. Bob can obtain the message

by extracting the digest.

Steganography by cover selection is advantageous in that the covers are unmodi�ed, therefore

there is nothing to introduce artifacts or avenues for statistical exploitation. The biggest

disadvantage, however, is that the expected number of tries to �nd a suitable will increase

exponentially as the length of the digest increases, thus precluding the feasibility of longer

messages.

Steganography By Cover Synthesis

In a steganography by cover synthesis scheme, Alice generates covers according to the

message that needs to be passed, often in conjunction with cover selection to o�set the

exponential complexity introduced by hashing. Data masking is among the few practical

methods of steganography by cover synthesis, and works under the assumption that auto-

mated steganalysis tools identify numerical features of a given object, which may or may

not be a stego, and compare them with analyzed features obtained from prototypical cover

objects. Evading detection is as simple as emulating the statistical features of a cover in

the cover space, and not necessarily the observed covers themselves. Radhakrishnan et al.

demonstrate a practical method of data masking by using an inverse Wiener �lter to make

the message look statistically like an audio or image object, giving a covert channel capacity

potentially much higher than in traditional steganography [12].

Steganography By Cover Modi�cation

Steganography by cover modi�cation, which is to date the most studied and practiced form

of steganography, involves Alice starting with a cover object and making calculated changes

to it in order to embed the secret message. Bob receives the stego object, and without

requiring the original cover, can extract the message. When communicating, Alice and

Bob can select from the set of all possible covers, as well as the sets of keys and messages-

some of which depend on the cover itself, to a utilize a steganographic scheme that is by

de�nition the pair of embedding and extracting algorithms. Formally, we represent these

concepts in terms similar to those used in cryptography:C is the set of cover objects, such

that x 2 C, K¹ xº is the set of all stego keys for x, andM¹ xº is the set of all messages that
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can be communicated in x [9]. A steganographic scheme can therefore be formally de�ned

as an embedding functionEmb,

Emb: K¹ xº (2.4)

an extraction functionExt,

Ext : M¹ xº (2.5)

such that8x 2 C, 8k 2 K¹ xº, andm 2 M¹ xº,

Ext¹Emb¹x; k; mº; kº = m: (2.6)

The length or number of messages which can be e�ectively communicated in a given cover

x is dependent on the scheme and the cover itself. Fridrich de�nes several terms to aid in

understanding these relationships [9]. Two important concepts which further illustrate this

point are the embedding capacity and relative embedding capacity. The maximum quantity

of bits or symbols which can be embedded in a given cover element is its embedding capacity,

while its relative embedding capacity is is the ratio of the embedding capacity to the quantity

of individual elements of the cover where a message can be embedded. The concept most

critical to the steganographic channel, however, is the steganographic capacity, de�ned as

the maximum quantity of bits or symbols which can be embedded without introducing

artifacts susceptible to statistical analyses. The steganographic capacity is typically a great

deal smaller than the embedding capacity.

2.3 Audio Steganography
The use of audio as covers, as well as embedding and extracting algorithms tailored to

existing formats, has become increasingly relevant as digital data usage spreads. The

variety of steganographic criteria and transmission environments has led to a similarly

great diversity in techniques. System design and usage is thus both media and situation

dependent. The most critical properties associated with audio steganography techniques

are the robustness to noise, compression, and signal manipulation, in conjunction with the

integrity, security, and volume of the hidden data. Bender et al. describe these properties

and explain the typical tradeo�s between capacity and robustness [13]. Another key feature

pertinent to audio steganography is to utilize natural limits in the Human Auditory System
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(HAS) as a means of undetectability, in addition to the aformentioned susceptibility to

statistical analyses. Djebbar et al. compile and discuss current trends in digital audio

steganography, explaining their tradeo�s, practicality, and methods [14].

2.3.1 Temporal Domain
Temporal domain audio steganography techniques were among the earliest conceived for the

medium, and have the advantage of being relatively simple to understand and implement.

As a trade-o�, however, robustness and security each su�er, and only a moderate tolerance

to noise addition at low levels has been shown. The most robust and secure temporal domain

techniques achieve those criteria at the expense of data hiding capacity. Temporal domain

techniques often rely on low-bit encoding techniques. To date, few have been developed

and employed.

Low Bit Encoding

Low bit encoding, or Least Signi�cant Bit (LSB) encoding, is a traditional steganography

method applicable to almost every type of cover element. Its various incarnations each

involve deterministically embedding the message bits into the audio cover's LSBs. LSB in

its simplest form can support a hiding rate in Bits Per Second (bps) proportional to the audio

sampling rate in Hz, but this simplicity comes at the cost of easy message retrieval for a

would-be attacker. LSB embedding also su�ers from low robustness. Lossy compression,

�ltration, ampli�cation, and noise addition are each among the inevitable phenomena

when processing audio that can cause the message to become signi�cantly corrupted or

outright lost. Cvejic et al. demonstrate several variations on this concept showing improved

robustness against distortion while preserving perceptual transparency of the stego signal

by leveraging multiple LSB layers [15], [16]. Robustness and imperceptibility in most LSB

techniques is improved at the cost of hiding rate and capacity.

Echo Hiding

Echo hiding involves embedding the data via small "echoes" of the cover audio signal, in the

form of resonance in order to avoid sensing by the HAS. For each data segment, the starting

amplitude, o�set, and decay rate are adjusted as needed to express the desired symbol, but

must be so adjusted such that the added echo e�ect is imperceptible. Though able to pass
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the HAS test, echo hiding techniques can only support low embedding rates and low levels

of security. Few recent works present research into echo hiding methods, and the only

known applications to date are to audio watermarking.

Silence Intervals

Audio sources that exhibit brief interspersed moments of silence, such as speech signals, may

use those properties to embed data in a silence interval scheme. In a typical implementation

of this method, the cover's discrete silence intervals and their respective number of samples

must be determined, from which the largest integer value less than 2 raised to the power of

the number of bits used to represent a given message is subtracted. For example, if the value

"8" were to be hidden in a silence interval of length 110 samples, the new interval length

would be 95 samples. If the value "6" were to be hidden, the new interval would be 103

samples. Extracting the hidden data makes use of the modulo operator on the new silent

interval. Smaller intervals, which in the case of speech usually occur mid-sentence, are

left unchanged in order to avoid disturbing the quality of the speech. Though this method

produces decent perceptual transparency, it does not survive compression. The changing

silence interval lengths result in corrupted data extraction.

2.3.2 Transform Domain
Transform domain audio steganography exploits the inherent properties of both audio

signals and the HAS. Processing in the transform domain is dependent on the inherent

masking e�ect wherein weaker frequencies are audibly masked by nearby, stronger resonant

frequencies. Stego audio modi�ed in the transform domain achieves its stealthiness by

taking advantage of this masking e�ect. This is achieved by exclusively modifying masked

regions, or by slightly modifying the audio signal's samples.

Performing audio steganography in the transform domain as opposed to the time domain

shows demonstrably better Signal-to-Noise Ratio (SNR) due to the frequency masking

phenomenon [13]. As a result, perceptual models are often used as benchmarks when

determining embedding capacities relative to acceptable stego signal distortion. Many

techniques have recently evolved which provide security and robustness in the face of

common audio signal processes like re-sampling, ampli�cation, and �ltration. The chief

concern in employing transform domain techniques remains �nding a way to preserve
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the integrity of embedded data under conditions unlikely to their survival, namely noisy

transmission channels, compression, and encoding processes.

Spread Spectrum

Spread Spectrum (SS) is an important communications capability by which a signal can

improve its chances of recovery when transmitted through a noisy channel by producing

repeated copies of itself throughout the frequency spectrum. SS steganography, in its most

basic form, multiplies the message data by an M-sequence code, then hides it in the cover

audio [17]. The code is the stego key and must be shared between Alice and Bob. Several

variations of the SS concept include Direct Sequence Spread Spectrum (DSSS), hiding the

SS data under a frequency mask, combining the technique with phase-shifting, or using

the technique in the sub-band domain. Each variation provides a measured increase in

robustness and helps in detecting the hidden data. SS techniques are bene�cial due to their

high robustness, but become vulnerable to time scale.

Discrete Wavelet Transform

Audio Steganography based on the Discrete Wavelet Transform (DWT) is a marriage of

LSB embedding and frequency domain calculations. After transforming the cover signal,

message data can be hidden in the wavelet coe�cients' LSBs. The inverse transform creates

the stego signal. The DWT provides both time and frequency relative information, allowing

these techniques to be further re�ned by implementing hearing thresholds when embedding

into coe�cients, and by simultaneously avoiding embedding in silent portions. The result

is a stego signal with minimal perceptible artifacts. Hiding information using the DWT

yields very high embedding rates, but the recovery at the receiver side can often be distorted

and inaccurate due to the e�ects of the transform.

Tone Insertion

Steganography by tone insertion leverages the masking property speci�c to relative powers

rather than frequencies. Lower power tones can be inaudible in the presence of higher power

tones. Embedding one information bit into a given audio frame involves selecting two tones,

each generated at two distinct frequencies, and setting their respective power levels such that

a known ratio between the two and the power level of the frame determines whether a "0"
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or "1" is inserted. Though embedding rate is limited by the number of audio frames, using

appropriate frequencies and su�ciently low power levels balances both robustness and ease

of data recovery. At the reception side, each frame is examined, from which the frame's

power and the tone frequencies' power are compared to determine the message bit. Audio

steganography by tone insertion is resistant to common attacks such as low-pass �ltration

and bit truncation, but the artifacts associated with inserted tones are easily detected and

could possibly lead to the warden extracting the hidden bits.

Phase Spectrum

Embedding with phase coding replaces speci�c phase information from the cover audio

with hidden message data, and works on the fundamental assumption that the HAS is

insensitive to the relative phase of a perceived signal's spectral components, provided that

the modi�cation to the phase components is kept small [18]. A basic approach is to modulate

an independent multi-band phase to insert data into a desired phase component. In their

implementation, Gang et al. achieve imperceptibility by using a controlled phase alteration

on the cover audio with a Quantization Index Modulation (QIM) method. In QIM, the

phase value of a given frequency bin is replaced by the nearest of two possible constellation

points for either a �0� or �1.� The advantage of phase spectrum techniques is that they

are robust to audio compression. Additionally, HAS is not sensitive to phase changes,

making it more discreet. As a downside to this fact, however, an active warden can disrupt

a phase quantization scheme by quietly inserting imperceptible frequency modulation into

the signal.

Magnitude Spectrum

Magnitude spectrum, or amplitude coding, follows the principle that the HAS is more

dependent on frequencies as it is more sensitive to signal amplitude values. Djebbar

et al. proposed an algorithm which examines a wideband speech spectrum, locates secure

spectral embedding areas, and embeds the payload data using a frequency mask 13 dB lower

than the cover signal spectrum [19]. The algorithm takes a tolerated distortion level and

selects the embedding locations and hiding capacity based on that. For example, frequency

components in the 7 kHz to 8 kHz range have negligible contribution to wideband speech,

and can largely be replaced by message data. Djebbar's method preserves speech quality

and is capable of high embedding capacities.
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Cepstral Domain

A cepstrum is the Inverse Fourier Transform (IFT) of the logarithm of a signal's estimated

spectrum. Cepstral domain techniques, also known as log spectrum techniques, transform

the cover signals into the cepstral domain and embed data into speci�c cepstrum coe�cients

selected by statistical mean manipulations. The cepstra of two frequencies in each energetic

frame are modi�ed to embed either binary bit. This method is computationally expensive,

but has the bene�t of high embedding rates and resistance to common signal attacks. Fur-

thermore, performing the cepstrum transform over regions which are perceptually masked

in most of the cover audio frames guarantees the same in the stego frames.
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Table 2.1. Audio Steganography Techniques

Method Embedding Tool Strengths Weaknesses

Low Bit

Encoding

Embed data in least

signi�cant bits of cover

according to some rule

High bitrate, simple

implementation

Data easily

extracted or

destroyed

Echo Hiding
Introduces echo into cover

signal

Robust against lossy

compression

Low capacity,

low security

Silence

Intervals

Hidden data is represented

by number of samples in

periods of intermittent

silence

Robust against lossy

compression
Low capacity

Spread

Spectrum

Spreads hidden data over

all signal frequencies
Robust

Weak to time

scale

modi�cation

Discrete

Wavelet

Embeds data in altered

wavelet coe�cients
High capacity

Lossy data

extraction

Tone

Insertion

Embeds data in low power

inaudible tones at speci�c

frequencies

Imperceptibility of

embedded data

Lack of

transparency, not

very secure

Phase

Spectrum

Modulates the phase of the

cover signal

Robust against signal

processing changes, data

extraction requires

knowledge of the original

signal

Low capacity

Magnitude

Spectrum

Use frequency bands to

hide data

Can hide longer messages,

less likely to be hurt by

transmission errors

Not robust to

simple audio

manipulation

Cepstral

Domain

Embeds data in altered

cepstral coe�cients

Robust against signal

processing changes

High signal

distortion, low

robustness

A summary of the categories audio steganography techniques. Adapted from [14,
Table 4].
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2.4 Steganography and Covert Underwater Acoustic Com-
munications

To date, little research exists devoted to steganography applications to UAC, though other

forms of covert communication have been proposed. Applying the techniques discussed in

2.3 is much more challenging due to the nature of the channel, as are balancing robustness,

imperceptibility, embedding rate, and security. Most importantly, the underwater acoustic

channel is dynamic and lossy, with variations in water depth, temperature, salinity, bottom

topography/composition, surface roughness, and node distance contributing widely to the

stego signal's expected TL. As a result, any feasible covert UAC technique must be resilient

to substantial signal degradation and should expect to transmit at very low bitrates. Further,

inevitable multipath e�ects produce interference a�ecting signal quality. The following

subsections detail the extent of existing work particular to UAC, as well as the extent to

which each author overcame the challenges associated with the underwater acoustic channel.

2.4.1 Orthogonal Frequency-Division Multiplexing
Leus et al. demonstrate a covert UAC scheme tailored to communications between a UUV

and mother platform in [20]. Rather than use a unique data embedding scheme, this

application instead takes advantage of multiband Orthogonal Frequency-Division Multi-

plexing (OFDM) at low SNRs to achieve its covertness. Here, using OFDM as opposed to a

Frequency-Shift Keying (FSK) scheme or other chip modulations has the distinct advantage

of appearing noise-like. The data transfer at very low SNRs furthers this concept, allowing

the messages to be hidden in the presence of ambient noise. The authors chose OFDM

as their modulation scheme due to its ability to streamline the equalization process, and

multiband over single-band to reduce the receiver side complexity. They also opt to perform

the equalization and despreading operations jointly rather than as separate, linear processes.

With a transmitter/receiver pair programmed in this scheme, Leus et al. conducted trials

both at sea in two littoral regions as well as in a simulated communication channel using 16

subbands and a total 3.6 kHz bandwidth, with varying time and Doppler spreading. Two

user data rates were tested, 78 bps and 4.2 bps. At 78 bps, the performance limits of their

scheme are evident, with substantial bit errors occurring at ranges beyond 30 km, and a

successful SNR down to -9 and -7 dB, respectively, for each of the two sea channels. In

comparison, the 4.2 bps mode transmitted successfully out to 52 km with no bit errors,
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with SNRs of -17 and -13 dB. In the �rst, more benign channel, the 4.2 bps signal limits

were extrapolated, not measured, therefore performance is limited by detection and failure

of initial synchronization, instead of the OFDM scheme itself. It should also be noted that

the second channel was more di�cult due to multipath fading and a time-variable Doppler

shift induced by the transmitter's re�ection from the uneven sea surface. In all cases, covert

signals at the lowest achievable SNRs are audibly imperceptible and invisible when viewed

in a spectrogram, even if their position in the recorded data is known to a listener.

The disadvantage of a solely modulation based OFDM scheme is the possibility that a trained

sonar operator could observe the acoustic features that arise from its signal waveform, which

is generated by modulating �xed carrier signals. Furthermore, attenuation is based heavily

on distance and the signals are likely to experience frequency selective fading.

2.4.2 Biological Mimicry
Rather than modulate using a scheme whose signal is itself undetectable in the presence of

noise due to low SNR, several authors instead opt to exploit the nature of sounds occurring in

the underwater acoustic channel in a form of biological mimicry. This more steganographic

approach selects sounds based on their bene�cial properties, and uses them to obscure the

signal carrying the message or convey using a timing sequence. An adversary must think

that the noise they observe is occurring naturally.

Masking

Liu et al. present a recent experiment in covert UAC biological mimicry using a DSSS

carrier signal masked by relatively louder whale noises in both the time and frequency

domain [21]. The communication signal is allowed to be detected, and does not require that

its signal level be reduced to the minimum possible. The scheme depends on the warden

classifying the signal's observable characteristics as innocuous whale noise. This must hold

for both technical displays as well as the HAS.

Liu et al. exploit the HAS masking phenomenon by choosing the relatively low frequency

whale noises as the masking sound, as lower frequencies of higher power mask higher

frequencies, whereas the opposite is not true for higher power high frequencies. The low

frequency signals also aid in longer distance UAC. The authors use a DSSS signal to carry
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the actual information in the same frequency range as the whale noise, using a slightly

weaker signal amplitude at each successive frequency. To extract the information signal on

the receiver's end, they use a frame structure adapted to synchronization, channel estimation,

and equalization. The synchronization operation is performed by using a matched �lter

technique on the original whale signal. Using a high SNR probe signal based on that

original whale signal, the channel impulse response can be accurately estimated using a

matching pursuit method, which greatly improves the scheme's resistance to multipath

e�ects. Finally, a virtual time reversal mirror equalizer uses the reference whale signal

to separate the DSSS signal from the combined signal, thereby obtaining the �nal virtual

received signal and recovered information.

In their simulation, the authors used a smooth humpback whale sound and a DSSS signal

in the 600 to 1000 Hz band, with a 10 dB masking strength, in both a BELLHOP simulated

shallow water multipath channel and an Additive White Gaussian Noise (AWGN) channel.

In this case, the masking strength is the logarithm of the power of the normalized whale

sound divided by that of the DSSS signal expressed in dB. The simulated channel was 30m

deep, with source and receiver each at 10m and 30km horizontal range. The experiment

was repeated over a range of SNRs, as well as masking strengths of 20 and 30 dB to test the

e�ectiveness of the whale sounds interference algorithm and to compare resulting Bit Error

Rate (BER). The results indicated that the BERs were predictably higher for the multipath

channel than for the gaussian noise channel. With masking strengths lower than 5 dB, the

major signal energy is the spread spectrum signal, and below this threshold the masking

strength is too low for reliable synchronization. Beyond the 5 dB threshold, BER seemed

to be mostly a�ected by noise. In every case, the BER decreases sharply over the range of

-15 to 25 SNR/dB for each masking strength curve.

2.4.3 Environmental Adaptation
In sections 2.4.1 and 2.4.2, the authors focused on LPI and LPD schemes whose reliance on

waveform design and undectectability by conventional methods was paramount. Though

feasible results have been proven in the respective schemes, the chosen methods pay little

concern to the environment in which they are being transmitted and received. To leverage

steganography principles in UAC, as is the goal of this study, methods which take more care

to conceal the existence of communication, as well as those which pay particular attention to
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evaluation by statistical techniques rather than energy intercept detectors, must be explored.

Steganographic Framework

Though intended for covert active sonar tracking rather than UAC, Park et al. present a

steganography by cover synthesis method for waveform design which applies relevant con-

cepts [22]. Park et al. employ short-time ambient background modeling using a �time series

analysis, phase space representation, and clustering with a time series distance metric [22].�

Then, a hidden Markov model captures the time-evolving qualities of the sound. Doing

so creates a probability distribution of symbol groups, from which a stochastic matrix

and emission distribution function are generated, which together make up the estimated

reference background sound model. Park et al. leverage this model by creating a mimic

waveform which seeks conform to the statistical properties of the reference. From there,

the authors evaluate the security of their algorithm by calculating the Kullback-Leibler

divergence and performing hypothesis testing to determine the probability of missed de-

tection, giving them the lower bound of this probability for a potential intercept detector.

Kullback-Leibler divergence, also called relative entropy, is a measure of how much a given

probability distribution diverges from another, expected distribution, and is a standing met-

ric in steganographic security [23]. Two candidate waveforms were compared: one based

on mimicry of the background distribution, and one based on the AWGN distribution, with

each being subject to an approximated, simple attenuation factor based on the frequency-

selective and range dependent nature of underwater propagation. The mimicked signal

outperforms the AWGN waveform across the range of signal strengths, achieving a lower

bound probability of missed detection as high as 0.8 at optimal waveform strength as seen

from the target.

Recorded Noise

Critical practical limitations of most proposed schemes arise from the human elements

involved in detecting covert UAC. Passerieux points out many of these limitations in

development of his novel, patent pending stealth communication scheme [2]. A skilled

sonar operator armed with a modern suite of audio and time-frequency analysis tools can

undermine many of the existing covert UAC techniques. Even if unable to decode messages

or conduct an attack, the operator may become a passive warden, aware that communication

is taking place. Ubiquitous DSSS techniques, even at lower SNRs, can be susceptible
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to detection if the transmission is long enough. OFDM schemes, despite their optimistic

low SNR requirements, have not developed to the point where they are resistant to brute

force attacks. Schemes based on simulated biological noise, such as whale songs, periodic

dolphin clicks, or snapping shrimp, have the distinct challenge of having to successfully

emulate nature to high degree and not appear or sound arti�cial. Several authors propose

using recorded biological or weather based noises as covers in their steganography schemes

in order to avoid the aforementioned problems, with the added bene�t of communication

always being suited to the current operating environment. This improves the stego signal's

imperceptibility.

Dol et al. are among the few authors to explore a method of UAC using distinct stegano-

graphic techniques with application to naval tactics [24]. Their techniques leverage naturally

occurring sounds based on on the characteristics of their spectrograms, and for cover audio

tend to favor whistling sounds with fundamental frequencies and harmonics, as well as

biological click sequences. Their work applies three types of audio steganography: tone

insertion, phase coding, and silence intervals. Each were detailed in sections 2.3.1 and

2.3.2.

In regard to the time domain techniques, tone insertion and phase coding, robustness is

maximized by using frequencies in which the audio energy is concentrated in the carrier

signal, as well as by using larger segment sizes, though the latter option comes at the cost

of data rate. Both techniques can be combined, but in general modifying the phase is

more stealthy than changing the power and amplitude. Implementing a random frequency

or phase sequence as a stego key, as well as exploiting harmonics, are additional features

which can be implemented to increase security and redundancy, respectively.

For the silence interval technique, Dol replaces the click sounds produced by many cetaceans

with an arti�cial sequence consisting of short, linear frequency modulated pulses centered

around a speci�c frequency, but with random phases [24]. By changing the time sequence

between subsequent clicks and providing a tolerance in sequence, selected length data bits

can be encoded. The click sequence is further modi�ed to sound more natural by appending

extra clicks as a "sweep" at the end of each segment with a rising central frequency, a

trait commonly observed in actual marine mammal clicks. The click sequence, silence

interval technique is very susceptible to multipath e�ects, which can add apparent random,
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erroneous extra clicks.

To test their scheme, Dol et al. performed sea trials between a frigate-towed transmitting

source and a Walrus-class diesel-electric submarine, each on an identical base course and

traveling between 6 and 8 knots, and with a gradually increasing range over the course

of one hour. The submarine maintained depth between 60�80 meters, while the source

remained between 50�55 meters. The sound source consisted of one Low Frequency (LF)

transducer ring with a 1�2 kHz range and a High Frequency (HF) one with a 4�8 kHz range.

Together, these two transducers cover most of the typical 1�8 kHz range of real marine

mammal sounds. A.wav �le based on recordings previously obtained by the submarine

was prepared for each band demonstrating the three schemes [24].

Dol's results were mixed. Too little data was recovered to enable statistically relevant

matching by the tone insertion technique, and its results were consequently left out. Suc-

cessful decodings were only achieved using the click sequences, yielding a 5% success rate

for LF and a 7% success rate for HF. It should be noted that no attempts at equalization

or error correction were made. Dol et al. conclude that the silence interval click sequence,

despite being noted to sound rather "digital" to the operators, was the best coding technique

to prove the concept [24]. This is only provided that the low-energy clicks can propagate to

their destination, a fact which was made easier due to the very small amount of multipath

propagation present during the experiment. Furthermore, the data capacity is linked to

the number of clicks transmitted, thus a necessarily longer sequence will be more likely

to arouse suspicion. Though in this brief experiment the overall robustness could not be

guaranteed for phase coding, Dol posits that implementing error correction and equalization

may make it the most viable overall technique due to its imperceptibility [24].

Passerieux's Technique

Literature to date contains few other examples of background noise recording based tech-

niques. Recognizing the limitations of using an arti�cially repeated, short recorded click

series, Passerieux presented a novel steganography based technique relying only on ma-

nipulation of a single continuous audio sample of previously recorded sound [1], [2]. The

scheme proposes recording a variable length sound clip for use as a cover, from which a

unique auxiliary signal can be computed and inserted back into the original signal, thus

producing the stego signal.
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On the source side, the algorithm works by dividing the cover signal into a sequence of short,

equally sized, non-overlapping intervals, usually several hundred milliseconds long. The

number of these segments is proportional to the number of embedded symbols. For each

interval, an operator "	 " is applied to the complex baseband demodulation of the signal in a

frequency band centered on a selected carrier frequency. This allows for optimization with

respect to covertness and desired SNR on the receiving end, as well as adaptation to a number

of modulation techniques for symbol expression. Though it can be implemented in a variety

of ways, the	 operator should include some means of incorporating a steganographic key

into the embedding scheme, and in Passerieux's implementation provides resistance to

Doppler and signal reproduction. The result of the	 operation is then multiplied by the

desired symbol and a gain value, which must be minimized as much as possible in order to

make the transmitted signal look similar to the original signal. This quantity is then added

to the initial signal, and each segment is recombined to form the stego signal.

The reception scheme is described in three broad steps. First, since the original signal is not

known to the receiver, the auxiliary signal must be approximated from the received stego

signal. This will also depend on the gain, as higher values mean that the stego signal will

more distorted. Next, for each interval, the signal must be demodulated into a new signal

from which the data will be extracted, which introduces a Doppler compensation term

determined at each measurable time interval. This new signal, due to the data embedded

in phases, will display periodic peaks at intervals equal to the originally chosen segment

size, with amplitudes and phases proportional to the transmitted symbol. From there the

symbols can be extracted

Passerieux evaluated his algorithm in two phases. The data embedding portion was tested

on a 10-second sperm whale click signal and 25-seconds of rain noises, each recorded at

sea. He inserted bits in the 1500�3000 Hz frequency band, with 0.5-second segments.

This equates to 2 bps in his chosen Binary Phase Shift Keying (BPSK) scheme. The gain

applied was -10 dB. The spectrograms of each audio cover were compared before and after

embedding, revealing no visually detectable artifacts. Moreover, listening to the audio

samples claimed no discernible di�erence.

To test the reception chain, Passerieux simulated the received signal after propagation

through an underwater acoustic channel, using a scattering technique described in one
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of his previous works [25]. The main parameters include a 2250 Hz carrier frequency,

transmitter and receiver range of 5000 meters and at respective depths of 5 and 60 meters,

and 100 meters total water depth. The Doppler spread was set to 0.5 Hz, and in order to

simulate a non-zero Doppler equivalent to 1.7 m/s relative speed, he resampled the received

signal based on sound speed. Remarkably, each of the 16 and 50 estimated symbols were

recovered correctly despite low SNR at reception, about 0 dB. This novel concept may be

a valuable addition to the steganographic literature with regards to expected robustness.

2.5 Summary
In this chapter, we presented an overview of UAC, including history of applications, the

underwater acoustic channel, and methods to approximate the channel. Next, we intro-

duced steganography, including its composite elements, mechanics, and goals. Next, we

described existing techniques for applying steganography to audio covers, including the

general requirements for performing each technique, the strengths and weaknesses inherent

to each, and the critical metrics of robustness, imperceptibility, security, and SNR. In Sec-

tion 2.4, we discussed UAC, and detailed the numerous challenges necessary to overcome

when attempting to use audio steganography techniques as a means of covert UAC. We

explained the various works focused particularly on stealth underwater communications for

use by submersibles, surface ships, and underwater modems. Though SS and OFDM signal

processing-heavy techniques show great promise for future work, we choose to focus on the

newer paradigm presented by Dol and Passerieux regarding localized ambient, biological,

and weather noises. Passerieux's technique is of particular interest due to its upfront claim to

work within the boundaries of what most in open literature see as practical limitations. We

intend to further explore Passerieux's algorithm as a steganographic technique and analyze

its capabilities and limitations. Speci�cally, we position our study to further investigate the

following:

ˆ Performance in terms of traditional steganography metrics, such as relative distortion

and quality terms Mean-Square Error (MSE), Root-Mean-Square-Error (RMSE),

Peak Signal-to-Noise Ratio (PSNR), and SNR.

ˆ Evaluation of performance via a parabolic equation underwater acoustic channel

model.

ˆ Evaluation of algorithm performance at di�erent source and receiver depth and range.
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ˆ Evaluation of algorithm performance in a deep water, open ocean environment as

well as a constrained, multipath heavy shallow water environment.

ˆ Performance with di�erent length interval segments.

ˆ Evaluation of how much gain increase is tolerable when balancing data recovery with

artifact introduction.

ˆ An overall evaluation of robustness, imperceptibility, data rate and the trade-o�s

between these metrics.

The remainder of this thesis will describe and analyze the approaches taken to implement

Passerieux's technique with our chosen deviations, to include the methodology behind

channel simulation, and will provide analysis of the results.
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CHAPTER 3:
Methodology

In Chapter 2, we discussed the most important concepts of UAC, acoustic channel models,

and steganography, then positioned our research in reference to the existing literature. In

this chapter, we present a steganography by cover modi�cation, phase spectrum technique

in the transform domain based on the principles of Passerieux's method [1], and simulate

a test channel using the MMPE model. Section 3.1 presents the rationale behind our

method, including the departure from Passerieux. Section 3.2 details our implementation

for calculation, while Section 3.2.1 describes the modules used in the experiment and

how they interact with one another. Section 3.2.2 is a description of the input �les and

post-processing routines used to generate the MMPE channel model.

3.1 Theory
In his original paper and patent, Passerieux proposes to perform his steganographic algo-

rithm in the time domain on the complex baseband signal representation of an original

signal obtained after demodulation around a chosen carrier frequency and bandwidth [1],

[2]. Passerieux calculates an auxiliary signal,	 x¹tº from a noise signal,x¹tº. 	 x¹tº is

calculated in a manner known to both the transmitter and receiver, with a series of phase

terms � p acting as the stego key. The stego signal to be transmitted,y¹tº, can then be

obtained as

y¹tº = x¹tº + � � am � 	 x¹tº; (3.1)

where � is a gain term acting as the relative amplitude of the auxiliary signal to the

original signal andam is the symbol to be embedded (� 1 in a BPSK scheme) in themth

symbol period. With knowledge of the scheme, as well as the pre-shared stego key, the

receiver can perform a complementary operation to estimate	 x¹tº as	 y¹tº, and thereafter

cross-correlate	 y¹tº with the received signal in order to extract the embedded symbols.

The	 operator is critical to this scheme. To create the auxiliary signal,x¹tº is �rst divided

into small segments of period, T, normally several hundred milliseconds, depending on

the desired bitrate. Next, each period, T, is divided into2p sub-intervals of decreasing
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and subsequently increasing lengths, indexed from� p; : : : ;� 2; � 1; � 1; � 2; : : : ;p. The sub-

intervals are separated by guard intervals, both of whose lengths are heuristically chosen.

The length of both the sub-intervals and the guard intervals are symmetric around the

midpoint of the period segment. The data points in the segment are switched and then time-

reversed such that data in thepth sub-interval,xp¹tº, would then becomex0
p¹tº = x� p¹� p � tº

when switched and time-reversed, where� p is the time delay between sub-interval� p and

p

3.1.1 Embedding Theory
To leverage the e�ciency of the Discrete Fourier Transform (DFT), avoid computational

complexity associated with calculating the complex baseband equivalent, and to provide

�exibility with frequency selection, we choose to examine an implementation of this concept

in the frequency domain. Beginning with a sampled digital signal in the time domain,x¹tº,

which we split into intervals of T seconds as before, we then calculate the DFT of each

segment of T seconds. This yields a frequency domain representation of each interval of

x¹tº

X̂¹kº =
N� 1Õ

n=0

x¹nºe� j 2� nk
N ; (3.2)

whereN is the number of sampled audio data points in each T second segment, andk is the

frequency of a given bin. This bin frequency is described in terms of the analog frequency

as

k =
f N
fs

: (3.3)

Assuming x¹nº is a sequence of real numbers, its DFT will have symmetric negative

and positive frequency components given byX̂¹kº = X̂� ¹N � kº, where the �*� operator

represents the complex conjugate. Next, we take2p sub-intervals and guard intervals in a

chosen frequency range, up to the Nyquist frequency,k = fs
2 . Time delay and time-reversal

in the time domain are analogous to multiplication by a phase term and taking the complex

conjugate, respectively, in the frequency domain. For example, if we have chosen two

equal length sub-intervals in which to embed our symbols, the data in this period could be
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expressed as

xm¹nº =

8>>>>>>>><

>>>>>>>>
:

x1¹nº 0 � n � n1

x2¹nº n1 + 1 � n � n2

x3¹nº n2 + 1 � n � n3

x4¹nº n3 + 1 � n � N � 1

: (3.4)

Combining the sequence given in 3.4 with equation 3.2, the DFT of this original sequence

can be expressed in terms of sub-intervals as

X̂¹kº =
n1Õ

n=0

x1¹nºe� j 2� nk
N +

n2Õ

n=n1+1

x2¹nºe� j 2� nk
N

+
n3Õ

n=n2+1

x3¹nºe� j 2� nk
N +

N� 1Õ

n=n3+1

x4¹nºe� j 2� nk
N

: (3.5)

Switching the position of data in sequences 2 and 3 and then time reversing them, the new

signalsx0
2¹nº andx0

3¹nº becomex3¹n1 + n3 + 1� nº andx2¹n1 + n3 + 1� nº, respectively. By

letting n0 = n1 + n3 + 1, the DFT of the auxiliary signal	 x is given by

	̂ X¹kº =
n1Õ

n=0

x1¹nºe� j 2� nk
N +

n2Õ

n=n1+1

x3¹n0 � nºe� j 2� nk
N

+
n3Õ

n=n2+1

x2¹n0 � nºe� j 2� nk
N +

N� 1Õ

n=n3+1

x4¹nºe� j 2� nk
N

: (3.6)

Substitutingn0 for n0 � n, the DFT of these new sequences can now be expressed as

	̂ X¹kº =
n1Õ

n=0

x1¹nºe� j 2� nk
N +

n0� n2Õ

n0=n0�¹ n1+1º

x3¹n0ºe� j
2� ¹n0� n0ºk

N

+
n3Õ

n0=n0�¹ n2+1º

x2¹n0ºe� j
2� ¹n0� n0ºk

N +
N� 1Õ

n=n3+1

x4¹nºe� j 2� nk
N

: (3.7)
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This can be simpli�ed to

	̂ x¹kº =
n1Õ

n=0

x1¹nºe� j 2� nk
N + e� j

2� n0k
N

n0� n2Õ

n0=n0�¹ n1+1º

x3¹n0ºej 2� n0k
N

+e� j
2� ¹n0ºk

N

n0� n3Õ

n0=n0�¹ n2+1º

x2¹n0ºej 2� n0k
N +

N� 1Õ

n=n3+1

x4¹nºe� j 2� nk
N

: (3.8)

Given that time-reversed sub-intervals are complex conjugates of the original, this manip-

ulated sequence can be expressed as the frequency domain auxiliary signal

	̂ X¹kº = X̂1¹kº + X̂�
2¹kºe� j

2� n0k
N + X̂�

3¹kºe� j
2� n0k

N + X̂4¹kº: (3.9)

Next, we can include the additional phase terms in the sub-intervals as Passerieux does

in the time-domain, complex baseband version. In our frequency domain implementation,

these would be additional complex exponential factors.

The process leading to equation 3.9 can be extended to include additional switched and

time-reversed sub-intervals, serving to further obscure the original signal. Each case will

add a component to the total DFT consisting of the complex conjugate of the original sub-

interval DFT multiplied by a complex exponential of the forme� j
2� n0k

N and by the additional

complex exponential from the phase term. Ifn0 is equal toN, the value ofe� j
2� n0k

N is 1.

This corresponds to simply time-reversing the entire sequence.

To demonstrate Passerieux's algorithm for embedding in the frequency domain, assume we

have a cover signal in the frequency domain given by

X̂¹kº = X̂1¹kº + X̂2¹kº; (3.10)

whereX̂1¹kº contains the portion of the signal outside of bands to be used to embed data and

X̂2¹kº contains the signal in the frequencies to have data embedded. The auxiliary signal,

in the frequency domain, is then

	̂ X¹kº = X̂2¹kº� e� j � 2; (3.11)
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where � 2 represents the phase key for the portion of the signal with the embedded data

frequencies. In Equation 3.11, the FFT symmetry is preserved such that the time domain

representation of the stego signal is real. The process could then be extended to any number

of individual frequency bands with di�erent values of the complex exponential for each of

them. The frequency domain version of Equation 3.1 to obtain the stego signal using the

cover signal and auxiliary signal is therefore

Ŷ¹kº = X̂¹kº + � am	̂ X¹kº

= X̂1¹kº + X̂2¹kº + � � am � X̂�
2¹kºe� j � 2;

(3.12)

where� andam have the same meaning as they do in equation 3.1.

3.1.2 Extraction Theory
On the receiver end, we start with the output signaly¹nº. Since the receiver will not know

the original auxiliary signal, they must extract the embedded symbols by calculating the

auxiliary signal ofŶ¹kº

	̂ Y¹kº = X̂�
2¹kºe� j � 2 + � � am � X̂2¹kº: (3.13)

Next, we take the complex conjugate of the auxiliary signal and multiply it by the received

signal, yielding

Ẑ¹kº = 	̂ �
Y¹kº�Ŷ¹kº =

�
X̂2¹kºej � 2 + � amX̂�

2¹kº
� �

X̂1¹kº+ X̂2¹kº+ � �am� X̂�
2¹kºe� j � 2

�
: (3.14)

In Equation 3.13, thêX1¹kº term can be ignored, sincêX1¹kº andX̂2¹kº have no frequencies

in common. The remaining real terms in̂Z¹kº together equal

2� � am � jX̂2¹kºj2; (3.15)

while the other remaining terms are complex. Assuming the amplitudes and phases of the

frequency components in̂X2¹kº are random, summing the frequency components ofẐ¹kº

will make the remaining complex terms tend toward zero. The result of these operations

leaves the real terms which will be positive or negative depending on the embedded symbol.
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3.1.3 Transfer Function Theory
In this section, we will examine the scheme when the stego signal is transmitted to the

receiver through an acoustic channel with transfer functionĤ¹kº.

In the frequency domain, the received signal will be given by

Ŝ¹kº = Ŷ¹kºĤ¹kº; (3.16)

which, expandinĝY¹kº, can be expressed as

Ŝ¹kº =
�
X̂1¹kº + X̂2¹kº + � � am � X̂�

2¹kºe� j � 2
�
Ĥ¹kº

= X̂1¹kºĤ¹kº + X̂2¹kºĤ¹kº + � � am � X̂�
2¹kºe� j � 2Ĥ¹kº:

(3.17)

Obtaining the auxiliary signal of the received signalŜ¹kº yields

	̂ S¹kº = X̂�
2¹kºĤ � ¹kºe� j � 2 + � � am � X̂2¹kºĤ � ¹kº; (3.18)

the complex conjugate of which is

	̂ �
S¹kº = X̂2¹kºĤ¹kºe+ j � 2 + � � am � X̂�

2¹kºĤ¹kº: (3.19)

Now, computing the product of the received signal with its respective auxiliary signal and

dropping the terms containinĝX1¹kº gives

Ẑ¹kº = 	̂ �
S � Ŝ¹kº

=
�
X̂2¹kºĤ¹kºe+ j � 2 + � � am � X̂�

2¹kºĤ¹kº
� �

X̂1¹kºĤ¹kº + X̂2¹kºĤ¹kº

+ � � am � X̂�
2¹kºe� j � 2Ĥ¹kº

�

=
�
X̂2¹kºe+ j � 2 + � � am � X̂�

2¹kº
� �

X̂2¹kº + � � am � X̂�
2¹kºe� j � 2

�
Ĥ¹kº:

(3.20)

Unlike in Equation 3.14, however, none of the frequency components of this newẐ¹kº can

be guaranteed to be purely real, since none of the terms contain the complex conjugate

of the transfer functionĤ¹kº. Additionally, due to the fact that the phase of the transfer

function depends on frequency, the components which were previously real in the case of

the transmit signal,2� � am � jX̂2¹kºj2, will tend to cancel each other out. If the transfer

38



function is known, this problem can be overcome if it is divided out of theẐ¹kº term, though

the transfer function is usually not known exactly.

As a compromise, we can attempt to undo the phase shift imposed by applying the transfer

function in the time domain. We do this by continually adjusting the starting point of the

received signal to �nd the optimal symbol recovery performance. This is equivalent to

estimating the transfer function as a simple time advance, orĤe¹kº = ej 2� ¹k� 1ºfsr
n�t �c , where

n�t is the number of FFTs,r is range in meters, andc is 1500 m/s. In a dispersion-free

channel, this completely cancels the e�ect of the channel, since the transfer function for

simple spherical spreading without dispersion isĤ¹kº = 1
r e� j 2� ¹k� 1ºfsr

n�t �c . However, algorithm

performance in both the time domain and the frequency domain will su�er as dispersion

increases.

In Section 3.2, we present our implementation and method for experimentation, to include

code structure, module interaction, and simulated acoustic channel setup.

3.2 Implementation
To demonstrate performance of Passerieux's method in the frequency domain, we pro-

grammed a series of modules for embedding symbols, extracting symbols, and applying the

transfer function generated from MMPE, as well as a main module to manage parameter

selection and data collection. Each module was written in MATLAB R2017b due to its

ease of matrix operations and useful built-in functions for signal processing [26]. MMPE

generates a.mat �le containing the transfer function to be used in conjunction with the

other modules.

3.2.1 Modules
The three main modules perform the embedding, extraction, and transfer function opera-

tions, and work with one another to complete the simulated data exchange.

Embedding

The function passerieuxembedfd.m implements the operations described in Sec-

tion 3.1.1.passerieuxembedfd.m takescoverAudio , T, alpha as inputs.coverAudio

is assumed to be an audio �le in uncompressed.wav format, from which only one channel
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will be used for calculation. TheT is the symbol period andalpha is the relative amplitude

of the auxiliary signal.passerieuxembedfd.m reads thecoverAudio sample frequency

for use in the algorithm.

passerieuxembedfd.m outputs eight variables,x, y, M, N, nfft , a, start_index , and

stop_index . x is the original sampled audio, with truncated extra points after division

into even symbol periods.y is the stego audio with embedded symbols, where the number

of embedded symbols depends on the chosenT. Though the algorithm is computed in

the frequency domain, bothx andy are time domain signals.M, N, andnfft are matrix

dimensions which must be saved for use in subsequent operations.a is a pseudo-random

stream of symbols, which are always +1 or -1 in our BPSK scheme.start_index , and

stop_index are index markers for the sub-intervals and guard bands. We heuristically

choosep = 4, such that the total number of sub-intervals as described in Section 3.1 are

eight, the sub-intervals are symmetric around the midpoint, are each one-third as long

as the previous sub-interval, and with guard interval one-quarter length of the associated

sub-interval.passerieuxembedfd.m also calculates additional indices to ensure no infor-

mation is embedded in the guard bands. The phase key,� p, is a simple, symmetric series

of terms: �
4 , 3�

4 , � 3�
4 , � �

4 . � p is hard-coded intopasserieuxembedfd.m .

passerieuxembedfd.m always embeds symbols in a 2048 Hz band centered around a

2500 Hz center frequency. This places the embedded symbols in a band most frequently

associated with low frequency sonar systems, which provide an adequate trade-o� between

transmission ranges and transmitter size and required power. In Passerieux's original paper,

he uses a 1500 Hz band centered around 2250 Hz [1]. The 2048 band simpli�es applying

the MMPE transfer function, whose number of frequencies is always an integer power of

two.

Extraction

passerieuxextractfd.m is the partner function topasserieuxembedfd.m , which im-

plements the operations described in Section 3.1.2, and takesy, M, N, nfft , start_index ,

and stop_index as arguments.y is a time domain stego signal.M, N, and nfft are

matrix dimensions based on the length ofy and theT second symbol period used in a

given call topasserieuxembedfd.m . start_index andstop_index mark the relative

sub-interval and guard band starting points based on the embedding process. For these
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reasons, calls topasserieuxextractfd.m must follow calls topasserieuxembedfd.m .

passerieuxextractfd.m outputsz_sum, which is an array representing the terms from

equations 3.14 and 3.15. The sign of each elementz_sum's real term represent the recovered

symbols.

For optimization, and to account for the phenomenon described in the �nal paragraph

of Section 3.1.3,passerieuxextractfd.m iterates through possible values of estimated

delay in order to �nd the highest portion of recovered symbols, corresponding to proper

symbol period cross-correlation. In practice, one would have to �nd this by maximizing

the absolute value ofz_sum's real portion.

Transfer Function

The functionmmpetransfer.m applies the channel transfer function from MMPE to a

stego signal in order to approximate a received signal, from which data extraction can be

performed to test algorithm e�ectiveness after transmission through a simulated underwater

channel.mmpetransfer.m takesy, M, N, nfft , range, pressd , andSNRas inputs.range

andpressd are an array of range or depth values and the associated transfer function for

a given frequency band, respectively. Both parameters are generated from MMPE post-

processing, whose operation will be described in Section 3.2.2.SNRis a dB value that

will correspond to noise that the transmitter must overcome in order to successfully recover

symbols at the receiver.mmpetransfer.m outputs an expected received signal,ys, which

represents a time-domain representation of the value in Equation 3.16.

To account for dispersion,mmpetransfer.m pads the symbol period matrix representation

of y with zeroes, according to the value ofnfft . After multiplying by the transfer function,

which is the frequency-domain equivalent of convolution, overlapping segments of each

successive are added coherently such that the reshaped signal represents the received signal

with added dispersion length.

Since the MMPE transfer function only covers a 2048 Hz frequency band, the transfer

function for other frequencies in the signal are set to approximate spherical spreading, with

zero phase change. This provides a more intuitive received signal when listening to the

audio or viewing the frequencies on a spectrogram.
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3.2.2 MMPE
Accurate representation of an acoustic channel transfer function is critical to estimating

algorithm performance. MMPE generates three binary �les,press.bin , avr.bin , and

avz.bin , each containing a small header detailing the important calculation information,

and, more importantly the PE �eld function particle velocity component [27]. The post-

processing routinespeout1.m andpeout2.m use these binary �les and provide a variety

of useful processing routines. Calculating these all-important binaries depends on the

execution of a single executable,mmpe2dbbv2_64, which contains options for prioritizing

accuracy or e�ciency, and whose output depends on parameters speci�ed in seven.inp

�les, which de�ne the environment, source characteristics, and source position in 2D space.

Main Input

pefiles.inp is the main input �le for MMPE. It speci�es what the other inputs are,

as well as the default output name for the three binary �les. The line containing the

parameters �nzout , depmin[m], depmax[m]� specify the requested number of points,

and the minimum and maximum depth to output, in meters. Line two has the �nrout ,

rngmin[km] , andrngmax[km]� �elds which are self explanitory. The �nal line, containing

� nz, dr[km] , depcalc[m] , andc0[m/s] � represents the vertical FFT size, range step in

kilometers, the maximum calculation depth in meters, and reference sound speed in meters

per second.nz must be an integer power of two. If any values are set to zero, their value

will default to the value speci�ed in their respective input �les [27].

Environmental Data

pessp.inp de�nes the vertical SSP for the water column. The boolean value at the start

of the �le speci�es whether or not water volume attenuation should be used, and should

normally be set to 1. The number of SSPs and the individual points de�ning the pro�le

itself constitute the majority of the �le [27].

pebath.inp de�nes the ocean bottom lengths and locations. The user can specify multiple

depths to simulate shelves, sloping bottoms, or a simple �at bottom [27].

pebotprop.inp de�nes the properties of the ocean �oor itself. These properties are range

dependent, but not depth dependent. The user must specify the number of bathymetry points,
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as well as commensurate �oating point numbers for range , sound speed, sound speed gradi-

ent, density, compression attenuation, shear speed, and shear attenuation.pebotprop.inp

essentially de�nes the bottom type and its physical characteristics [27].

pedbath.inp de�nes the deep layer bathymetry beneath that de�ned bypebotprop.inp ,

in absolute depth from the surface. An excessively deep bathymetry value will not be used

if it exceeds maximum computational depth. Shallower depths will replace the upper layer

and act as a outcropping for its length value. This �le is formatted in the same manner as

pebath.inp [27].

pedbotprop.inp is the partner �le topedbath.inp , containing the deep layer's acoustic

properties. It has identical format topebotprop.inp [27].

Source Data

pesrc.inp de�nes all the the source node's characteristics, and can be con�gured for a

point source or a vertical hydrophone source. This is based on the value set for array length.

To set the source as a point source, the user set must set length to zero. If a point source

is selected, the value for �D/E angle� also defaults to zero.pesrc.inp also has �elds

for center frequency in Hz, frequency bandwidth in Hz, and number of frequencies, which

must be a power of two.pesrc.inp also de�nes the source depth, in meters. Each �eld in

pesrc.inp is a �oating point number, with the exception of number of frequencies. Great

care must be taken to select a su�cient number of frequencies, as too few can result in travel

time wrap around, and the frequency domain equivalent of incorrect phase terms.

Post-Processing

After calculating the MMPE binary �les, one can run the MMPE post-processing �les

peout1.m and peout2.m to obtaining meaningful data.peout1.m prompts the user

for the name of the binary input �le and initializes the routine by reading in the header

information, and giving the �le ID for subsequent processing.peout2.m gives several

options for processing the data. Runningpeout.m will prompt the user to select from one

of six options:

1. Output starting �eld data

2. Compute data for single radial
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3. Compute data for single range

4. Compute data for single depth

5. Compute data for single interface

6. Compute travel time data

Selecting any of these options will prompt the user to enter the value at which to calculate

the output, such as the frequency, range or depth.peout2.m will output dB TL plots for

the particle velocity components, as well as pressure, and will prompt the user to save

the data after review. The �save� option will retain the complex quantities not explicitly

displayed by the TL plots. When saving the particle velocity �les, the amplitudes are scaled

appropriately relative to pressure.

Figure 3.1 details the overall scheme, including major inputs, outputs, and modules.

pe�les.inp

MMPE Input Files

MMPE

press.bin

peout1.m

peout2.m

Transfer Function

Cover, x Stego, y Received, yrc Symbolspasserieuxembedfd.m passerieuxextractfd.mmmpetransfer.m

Figure 3.1. Work�ow and Module Interaction

3.3 Summary
In this chapter, we explained the theory of our frequency domain steganography implemen-

tation, including how data is embedded and how it can be extracted. We also explained

how a transfer function approximating the frequency response of an acoustic channel would

theoretically impact our stego signal, as well as how to mitigate negative e�ects of applying

such a transfer function. Next, we explained the modules we developed to implement these
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approaches in MATLAB, using digital audio as our cover signal and an MMPE generated

transfer function to modify our stego signal. We concluded with a description of how

MMPE inputs de�ne the environment and source, as well as how the output can be ma-

nipulated to display a variety of useful acoustic data. In Chapter 4, we de�ne parameters

for testing, construct MMPE channel models, and present the results of experimentation.

Further, we evaluate the e�ectiveness and performance of our scheme.
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CHAPTER 4:
Results and Analysis

In Chapter 3, we discussed the theory supporting our frequency domain implementation of

Passerieux's steganography by cover modi�cation technique, as well as the tools by which

we will measure the theoretical performance of that technique. In this section, we present

the results of our simulations and experiments.

4.1 Steganographic Evaluation
We begin by performing the embedding and extraction algorithms on a given cover audio

signal and show theoretical perfect bit recovery absent losses from the transmission medium

or noise. For this embedding procedure, we use one channel of a 48 kHz sampled, uncom-

pressed.wav �le, SpermWhaleNormalClicks.wav obtained from the National Oceanic

and Atmospheric Administration (NOAA) Southwest Fisheries Science Center catalog of

cetacean sounds [28]. We use this cover audio �le as the basis for all further experimenta-

tion as well. The embedding frequencies are a 2048 Hz bandwidth centered on 2500 Hz.

Additionally, we use nominal parameters from Passerieux's original paper, namelyT=0.50

seconds for a 2 bps bitrate and gainalpha=0.3 corresponding to -10 dB [1]. Next, we

measure the e�ectiveness of the embedding scheme by traditional steganography metrics

MSE, RMSE, PSNR, and SNR.

4.1.1 Spectrogram and Constellation
We �rst examine the impact of embedding on the original signal, with the goal being to

preserve its characteristics. Viewing the spectrogram of both the cover and stego audio

reveals little di�erence in the plots, even for higher values of� . This would be di�cult for

an operator to distinguish on a time-frequency display, let alone after transmission through

an underwater acoustic channel. Figure 4.1 shows a comparison of the spectrum for the full

71-second length of the audio signal, as well as two example stego signals, each with 142

embedded bits.
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(b) Spectrum with Embedded Bits,� = 0.32
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(c) Spectrum with Embedded Bits,� = 0.89

Figure 4.1. Comparison of Spectra Between Cover and Stego Audio Signals

The user can also listen to the stego audio to qualitatively assess whether there are obvious

artifacts or tones. Increasing the gain introduces greater signal distortions due to the addi-

tional information added by the auxiliary signal term. Likewise, a gain of zero reproduces

the cover signal as the stego signal.

A visual representation of symbol recovery can be obtained by plotting the complex values

which make up the demodulated values in thez_sumarray resulting from the extraction

algorithm. This is similar in concept to a typical constellation diagram for a BPSK signal

transmission. Here, the sign of the real component corresponds to the estimated symbol

for a symbol period, with 1 or -1 corresponding to 1 or 0, respectively. A clear separation

of points on a scatter plot represents ideal symbol recovery. Figure 4.2 displays two
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polar scatter plots representing the constellation for an extremely successful and extremely

unsuccessful symbol recovery.
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(b) Ambiguous Symbol Recovery with T = 0.5,� = 0.3, and No Estimated Delay

Figure 4.2. Comparison of Estimated Symbols Constellations.
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Noting the di�erence in scale, Figure 4.2 demonstrates the e�ect of maximizing this sep-

aration. Higher gain values for� increase the magnitude of these terms. Not properly

accounting for the estimated delay as described in Section 3.2.1 will obscure these points.

As performance degrades, the constellation converges increasingly toward the center and

giving an expected 50% symbol recovery.

4.1.2 Steganography Measures
The impact of embedding algorithm on the signal can be further evaluated by calculating

several of the well known quantitative steganography measures. To calculate these results we

perform the embedding procedure usingAlpha = 0.11, 0.16, 0.22, 0.32, 0.45,

0.63, and0.89 . These amplitude ratios correspond roughly with -19 to -1 dB in 3 dB

increments. We perform embedding using these values forT = 0.50, 0.25, and0.10

corresponding to 2, 4, and 10 bps respectively. Values ofT any lower than 0.10 begin

to incur MATLAB errors due to insu�cient precision and calculation resolution. Each

point represents the average for that value over �ve runs, after performing the embedding

procedure after reseeding the random number generator for the random embedded bits.

MSE and RMSE

The MSE is an average measure of the energy of embedding changes [9]. The MSE is given

by

MSE =
1
n

nÕ

i=1

jx»i¼ � y»i¼j2; (4.1)

wherex andy are the cover and stego audio in sampled points andn is the total number of

sampled points. The RMSE is given by

RMSE=
p

MSE: (4.2)

and represents the standard deviation of the stego signal from the cover signal. Figure 4.3

displays the results of the MSE and RMSE calculations.
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Figure 4.3. Comparison of Average MSE and RMSE for Di�ering T

In Figure 4.3 we see that MSE and RMSE are very close for each value ofT, but grow

exponentially for successive values of� . Overall, these measures are extremely small even

for larger values of� .

PSNR and SNR

The PSNR and SNR are two other measures of relative distortion [9]. PSNR is given by

PSNR= 10 log10
x2

max

MSE
; (4.3)

wherex2
max is the max value that an item inx can achieve. Since the MATLABaudioread

function returns normalized values between 1.0 and -1.0 of typedouble , x2
max is simply

1 [26].

The SNR in this case is in terms of cover audio to stego audio, with the �noise� representing

the modi�cations brought about during the embedding process. It is given by

SNR= 10 log10

Í n
i=1 jx»i¼j2

MSE
: (4.4)

In general, SNR above 30 dB means that the audio quality in a stego signal has been perfectly

preserved, while those with SNR below 20 dB are considered �noisy� signals [14].
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We calculate PSNR and SNR using the same embedding parameters and averaging described

at the beginning of Section 4.1.2. Figure 4.4 displays the results of the PSNR and SNR

calculations.
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Figure 4.4. Comparison of Average PSNR and SNR for Di�ering T

As with MSE and RMSE, adjusting the symbol period has little e�ect on the resulting

PSNR and SNR, which both decrease linearly with� . The audio quality is technically only

preserved for� values less than 0.16, or -16 dB or less. However, the average SNR remains

above that which would be considered noisy until� is approximately 0.50, including the

� = 0:3 value used in the original paper [1].

4.2 Channel Simulation
To simulate the impact of transmission through an underwater acoustic channel on our

ability to extract the embedded symbols, we generate two models via the MMPE. The

�rst represents a simple, open-ocean channel with a deep bottom to minimize possible

multipath e�ects and demonstrate the e�ect of spherical spreading. The second corresponds

to a fairly challenging shallow water channel used for at-sea experimentation by Song and

Hodgkiss [29]. Both channels were generated using the �e�ciency� option in the MMPE

executable.

It is important to note that selection of simulation parameters may result in exceeding the
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limits of the model, which can limit the angles of elevation and depression, and, in extreme

cases, cause errors during executable runtime. Without always having a clear warning of

this, simulation parameters must be chosen by trial-and-error to ensure su�cient resolution

for ranges, depths, and frequencies. To ensure adequate frequency resolution, we examine

the the travel time output at max possible range for each channel. After running the

MATLAB post-processing routines on the calculated binaries, we selectpeout2.m option

`6' and output over the entire water column, to ensure no wrap-around. An example of

travel time wrap-around is given in �gure 4.5.

Figure 4.5. Travel Time Wrap-Around with 4096 Frequencies at 3km

Increasing the number of frequencies calculated by the next higher power of two may

eliminate this phenomenon. This will result in drastically longer calculation times and

much larger binary output �les. For the purpose of these experiments, the number of

frequencies was limited to 4096. Figure 4.6 displays the travel time calculations for the two

simulated channels.
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(a) Travel Time for the Deep Channel, 4096 Frequencies, 1km.

(b) Travel Time for the Shallow Channel, 4096 Frequencies, 3km.

Figure 4.6. Travel Time Calculations for the Two Channels.
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4.2.1 Deep Channel Setup
The deep channel simulates a generic, open-ocean channel. Its parameters are described in

Table 4.1.

Table 4.1. Deep Channel MMPE Parameters

Input File Parameter Values

pefiles.inp

nzout, depmin[m], depmax[m] 500, 0, 2000

nrout, rngmin[km], rngmax[km] 500, 0, 1.0

nz, dr[km], depcalc[m], c0[m/s] 0, 0.0, 0.0, 1500.0

pessp.inp

Water volume attenuation 1

Number of SSPs in �rst radial 1

range[m], Number SSPs in depth 0.0, 501

pebath.inp
Number of bathymetry points 1

range[km] and depth[m] 0.0, 1000

pebotprop.inp

Number of range points 1

range[km], sound speed[m/s], gradient[1/s], 0.0, 1700.0, 0.0,

density [g/cm3], compression attenuation[dB/m/kHz],1.8, 0.25

shear speed[m/s], shear attenuation[dB/m/kHz] 0.0, 0.0

pesrc.inp

Source depth[m] 500

Array length[m] 0.0

D/E angle [deg] 0.0

Center frequency [Hz] 2500

Frequency bandwidth [Hz] 2048

Number of frequencies 4096

The deep bathymetry �lespedbath.inp and pedbotprop.inp are left at their default

values. Figure 4.7 shows the SSP for the deep channel, as de�ned inpessp.inp . Figure 4.8

displays the TL through depth and range of the entire channel for the 2500 Hz center

frequency.
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Figure 4.7. SSP for the Deep Channel Model

Figure 4.8. Deep Channel TL for Pressure vs. Depth and Range (dB re 1m)
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4.2.2 Shallow Channel Setup
The shallow channel simulates Song and Hodgkiss's challenging shallow water environ-

ment [29]. The shallow water channel is meant to demonstrate performance under stronger

multipath conditions, but has the added bene�t of being calculated out to three kilometers

in range. The parameters for generating the shallow channel are described in Table 4.2.

Table 4.2. Shallow Channel MMPE Parameters

Input File Parameter Values

pefiles.inp

nzout, depmin[m], depmax[m] 500, 0, 200

nrout, rngmin[km], rngmax[km] 500, 0, 3.0

nz, dr[km], depcalc[m], c0[m/s] 0, 0.0, 0.0, 1500.0

pessp.inp

Water volume attenuation 1

Number of SSPs in �rst radial 1

range[m], Number SSPs in depth 0.0, 9

pebath.inp
Number of bathymetry points 1

range[km] and depth[m] 0.0, 100.0

pebotprop.inp

Number of range points 1

range[km], sound speed[m/s], gradient[1/s], 0.0, 1700.0, 0.0,

density [g/cm3], compression attenuation[dB/m/kHz],1.8, 0.25

shear speed[m/s], shear attenuation[dB/m/kHz] 0.0, 0.0

pessp.inp

Source depth[m] 60

Array length[m] 0.0

D/E angle [deg] 0.0

Center frequency [Hz] 2500

Frequency bandwidth [Hz] 2048

Number of frequencies 4096

As with the deep channel, the deep bathymetry �lespedbath.inp andpedbotprop.inp

are left at their default values. Figure 4.9 shows the SSP for the shallow channel as de�ned in

pessp.inp . This less generic SSP is representative of a pro�le measured in the Monterey

Bay. Figure 4.10 displays the TL through depth and range of the entire channel for the 2500

Hz center frequency.
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Figure 4.9. SSP for the Shallow Channel Model

Figure 4.10. Shallow Channel TL for Pressure vs. Depth and Range (dB re
1m)
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4.3 Deep Channel Experiment
To measure algorithm performance in the deep channel, we �rst obtain the transfer function

for our 2048 Hz frequency band. We initialize the environment by running the post-

processing routinepeout1.m, and when prompted, specify the deep channel binary gen-

erated by MMPE. Next, we runpeout2.m, selecting �Compute data for single depth,�

choosing 500 meters, such that the receiver depth matches the source depth. This outputs

a .mat data �le containing several matrices, one of which ispressd . pressd is a 500 by

4096 matrix of complex values representing the transfer function for every 0.5 Hz value in

our frequency band, across every range bin from zero to our maximum range. This trans-

fer function is applied to the transmit signal by themmpetransfer module. Figure 4.11

displays the calculated transfer function's phase angle at maximum range over each of the

frequency bins.

Figure 4.11. Transfer Function Phase Angle at 1km vs. Frequency Bin

To demonstrate the impact of the channel on our ability to recover symbols, we perform the

embedding procedure, simulate the received signal based on the channel characteristics, and

then apply extraction with varyingTand� values identical to those described in Section 4.1.

Furthermore, we add white Gaussian noise with standard deviation equal to the transmit

signal's to simulate noise at the receiver side, accounting for the e�ect over distance such

that the receiver sees lower SNR. In reality, this noise would be spectrum dependent. To
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achieve a receiver side SNR of 0 dB, we initially set the SNR to 60 dB, such that the

nominal TL loss for spherical spreading o�sets this value. We also set the SNR to 40 dB to

compare the results for more noise and an overall lower SNR at the receiver. We perform

each simulation in 20 meter increments from zero to 1000 meters. Table 4.3 summarizes

the experiment's simulation parameters.

Table 4.3. Deep Channel Experiment Parameters

Parameter Values

Symbol Period (T) 0.5s, 0.25s, 0.10s

Auxiliary Signal Gain (� ) 0.11, 0.16, 0.22, 0.32, 0.45, 0.63, 0.89

SNR 60 dB, 40 dB

Range 20m to 1000m, in 20m Increments

Bit percentages at each range are calculated by �nding the estimated delay value over the

�rst 100 bins which yielded the highest bit percentage. Beyond that value, bit percentages

tend to oscillate around 50%. Figure 4.12 demonstrates the importance of correctly �nding

the estimated delay to symbol recovery. Maximizing the spread of the real terms inz_sum

is functionally equivalent to �nding the correct estimated delay. Figure 4.13 displays the

results of each experiment.

Figure 4.12. Example of Recovered Symbols vs. Estimated Delay over 100
Bins
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(a) T = 0.5s, SNR = 60dB
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(b) T = 0.5s, SNR = 40dB
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(c) T = 0.25s, SNR = 60dB
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(d) T = 0.25s, SNR = 40dB
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Figure 4.13. Symbol Recovery Percentage vs. Range for the Deep Channel
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Predictably, overall performance su�ers for lower� values, representing the trade-o� be-

tween imperceptibility and robustness. Lowering the symbol period, though e�ectively

increasing the bitrate, also hinders performance, likely due to the data points being more

profoundly impacted by dispersion. Noise represents the largest contribution to perfor-

mance degradation, with values approaching the worst-case 50% mark in each of the 40dB

scenarios. The erratic percentages from point to point may be best explained by imprecision

in �nding estimated delay, as well as the e�ects of multipath arrival, each of which will

impact the other. In every scenario, performance su�ered over range, especially for low�

values.

4.4 Shallow Channel Experiment
The shallow water experiment examines algorithm performance under more challenging

conditions. The experiment is conducted using the same methods and parameters described

in Section 4.3, but with a 60 meter source and receiver depth. In this experiment, multipath

e�ects are more prominent. Figure 4.14 displays the transfer function phase angle at 3000

meters for each of the 4096 frequency bins.

Figure 4.14. Transfer Function Phase Angle at 3km vs. Frequency Bin

The results of the shallow water experiment are presented in Figure 4.15
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(a) T = 0.5s, SNR = 60dB (b) T = 0.5s, SNR = 40dB

(c) T = 0.25s, SNR = 60dB (d) T = 0.25s, SNR = 40dB

(e) T = 0.10s, SNR = 60dB (f) T = 0.10s, SNR = 40dB

Figure 4.15. Symbol Recovery Percentage vs. Range for the Shallow Channel
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The results of the shallow channel experiment are similar to the deep channel experiment

with some notable exceptions. Overall performance is worse than in the deep water scenario,

even for high� values and longer symbol periods. For each plot, bit recovery percentage

shows several notable localized dips and spikes, shown across eachT and� value. This

may be explained by the e�ects of constructive or destructive interference due to the surface

re�ections, bottom bounces, and direct paths expected in such an environment. Noise is still

the most signi�cant factor in worsening performance, with symbol recovery percentages for

the 40 dB scenarios dropping o� rapidly after several hundred meters.

4.5 Summary
In this Chapter, we explained the factors used to evaluate our scheme, including stegano-

graphic distortion and audio quality measurements, demonstrating the extent to which our

embedding algorithm preserves the characteristics of the cover audio signal. Next, we de-

scribed how we set up our MMPE de�ned channels and their associated transfer functions,

as well as how we mitigated potential simulation problems. We concluded the chapter with

a discussion of our experimental results and their possible explanations. In Chapter 5, we

will summarize our work, present our �ndings, and detail areas for further research.
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CHAPTER 5:
Conclusions and Future Work

In this thesis, we have discussed UAC and steganography at length, to include how these

concepts may be linked in order to provide an innovative tactical capability to military

platforms, UUVs, and underwater acoustic modems. We have examined the extent of

present research using steganography for covert UAC and further explored Passerieux's

steganography by cover modi�cation technique using recorded ambient noise.

This thesis presented new work based on Passerieux's method and takes a modi�ed approach

to embed and extract hidden symbols in the frequency domain. We explained the theory

supporting our implementation and demonstrate symbol recovery. Then, we evaluated the

impact of embedding via several common steganography metrics, and examined the impact

of simulated ocean channels and noise upon our ability to recover information.

5.1 Key Findings
It is possible to implement Passerieux's method in the frequency domain and recover

symbols hidden in the phase, and recover those symbols at short ranges. The� values best

for minimizing distortion, which are anything less than about 0.5, also show high success

rates in both channel scenarios. Higher bit rates, though negligible in terms of stego signal

distortion, negatively impact symbol recovery. There is an observable trade-o� between

robustness and imperceptibly.

Multipath arrival and background noise are the most likely contributors to performance

degradation. If this scheme were to be employed in a practical scenario, determining

the appropriate SL to transmit the stego signal which balances the goal of inconspicuous

steganographic communication with reliable message recovery would be paramount.

5.2 Recommendations for Future Work
An important goal of this research was to lay the foundation for future work, and identify

areas that can be improved or expanded upon. At present, we recommend the following as
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focus areas for future work:

ˆ Implementing spectrum-dependent noise to better understand its e�ects on perfor-

mance.

ˆ Developing guidance for choosing appropriate transmission SL and algorithm param-

eters as a function of channel characteristics, ambient noise, desired robustness, and

desired covertness.

ˆ Improving understanding of limits to performance by simulating the e�ects of trans-

mission through an acoustic channel with greater accuracy, such as the MMPE �ac-

curacy� option.

ˆ Developing a more realistic method for estimating delay/symbol period alignment.

ˆ An evaluation of security via steganalysis, information theory, and general resistance

to active and passive warden scenarios.

ˆ Overall algorithm and scheme improvement, focusing on robustness, imperceptibility,

and capacity.

Other areas for recommended future research include:

ˆ Performing at-sea testing in real time.

ˆ Experimenting among a greater variety of simulated channels, to include those that

are representative of speci�c locations.

ˆ Evaluating performance using other existing models or modeling techniques.

ˆ Developing a method to resist Doppler e�ects, or deal with a moving transmitter

and/or receiver.

ˆ Implementing and measuring the e�ects of di�erent modulation techniques, such

as Quadrature Phase Shift Keying (QPSK) and Quadrature Amplitude Modulation

(QAM).

ˆ Experimenting among a variety of cover signals with di�erent properties.

ˆ Experimenting with di�erent bandwidths and center frequencies.

ˆ Determining optimal sub-interval and guard band sizes.

ˆ Developing a method for receiver synchronization.

ˆ Developing higher layer protocols to allow interface with existing equipment.

ˆ Developing software modules for operator usability.

ˆ Implementing and testing a complete, receiver/transmitter stegosystem.
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