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ABSTRACT  

 Radar systems often use low power, continuous waveform radio frequency (RF) 

modulations and require high-speed adaptive signal processors to provide the necessary 

processing gain to detect small radar cross-section targets in clutter on range-Doppler 

maps. Counter-radar technologies include digital RF memories (DRFMs) that attempt to 

provide multiple, structured false targets with clutter, for example, using a pipelined, 

finite impulse response arrangement of complex range bin processors. This thesis 

investigates high-capacity field-programmable gate array (FPGA) technology to enable 

on-the-fly flexibility and reconfigurability for both radar signal processing and DRFM 

electronic attack using a Xilinx Virtex Ultrascale+. A three-stage range, Doppler, 

post-detection integration radar modulation compression circuit is designed and 

quantified. A range compression circuit with a peak power consumption of 6.100W and a 

post-implementation utilization of 11% was designed. The Doppler filter bank was 

designed at 400 MHz with a peak power consumption of 2.688W and a 

post-implementation utilization of 9%. A coherent integration processor at 400 MHz had 

a peak power consumption of 2.517W and a post-implementation utilization of 9%.  In 

addition, a DRFM complex range bin processor was designed and quantified at 500 MHz 

and had a peak power 2.543W with a post-implementation utilization of 11%. 
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I. INTRODUCTION  

A. RADAR SYSTEMS AND COUNTER-RADAR DIGITA L RF MEMORIES: 
THE NEED FOR HIGH CA PACITY EMBEDDED PROC ESSORS 

Low probability of intercept (LPI) radar systems are vital in many regions around 

the world requiring force protection through surveillance. These radar systems often use 

low power, continuous waveform (CW) modulations to remain undetected while retaining 

the �³capability to detect and track targets in clutter�  ́ [1]. The transmitted CW signal 

�S�U�R�Y�L�G�H�V�� �D�� �S�U�R�F�H�V�V�L�Q�J�� �J�D�L�Q�� �E�D�V�H�G�� �R�Q�� �W�K�H�� �U�D�G�D�U�¶�V�� �S�H�U�L�R�Gic modulation. The radar return 

waveform from the target is then distinguished using coherent compression. Many periodic 

modulation techniques are used for digital CW radar systems such as frequency shift 

keying (FSK), e.g., Costas sequencing, frequency modulated CW (FMCW), noise and 

noise modulated waveforms. Also used are polyphase shift keying (PSK) with codes such 

as the Frank and P4 codes. The PSK techniques have inherently low sidelobes and are also 

compatible with digital sidelobe suppression techniques. Other CW modulation techniques 

such as hybrid PSK/FSK combinations have also been recently a topic of active 

investigation [1].  

Lately, much attention has been given to PSK due to the many digital CW 

modulations available. LPI characteristics are then achieved with a periodic autocorrelation 

function that has inherently low time sidelobes. The PSK modulations have a code period 

T  containing limited amounts of range bins, each containing differing phase values. The 

subcode width bt  is related to both the �Z�D�Y�H�I�R�U�P�¶�V��range resolution and the 3-dB 

bandwidth while the �³processing gain ( )PG  of the radar is equal to the number of 

subcodes�´���>���@. One important example of a PSK technique is the P4. The P4 code exhibits 

a perfect periodic autocorrelation in that it has zero sidelobes. Using a polyphase code for 

CW modulation however, presents a major limitation in that the modulation code period 

greatly confines the unambiguous range.  

Extending the unambiguous range through the use of the Robust Symmetrical 

Number System (RSNS) has been investigated. By combining the RSNS with the P4 
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polyphase modulation, the unambiguous range can be divided up into different moduli, 

with each modulus relating to a different P4 code period. Transmitting the moduli (P4 code 

periods) in series and recombining the ambiguous detection results can resolve the targets 

range at considerably longer ranges than the unambiguous range pertaining to only 1 code 

period. In addition, the RSNS-P4 has Gray code properties that can serve to detect target 

range errors. 

A digital RF memory (DRFM) is a device that can receive, store, modulate and 

retransmit, an RF signal. The DRFM is arguably one of the most important technologies 

for electronic warfare (EW) since it can retransmit an intercepted radar waveform and can 

put complex modulations on the return signal such that when integrated within the radar, 

can deceive for example, the track loop. �7�R���F�U�H�D�W�H���D���³�V�W�U�X�F�W�X�U�H�G�´���I�D�O�V�H���W�D�U�J�H�W���W�K�D�W���K�D�V���V�K�D�S�H��

or amplitude in range-Doppler space, a standard DRFM kernel is not sufficient. That is, 

this type of target cannot be accomplished with a DRFM kernel alone. Hence, an 

augmented kernel must be used such as a high-speed, high capacity Field Programmable 

Gate Array (FPGA).  

The circuit designs in this thesis are two-fold. First, the circuit design for a post 

analog-to-digital converter (ADC) compression process for a RSNS-P4 radar signal 

processor is designed for use within a Multifunction Sensor System for which the antenna 

is shown in Figure 1. A range compression processor is followed by a Doppler filter bank. 

This is then followed by a range-Doppler post-detection integration processor. A range 

compression circuit with a peak power consumption of 6.100W and a post-implementation 

utilization of 11% was designed. The Doppler filter bank was designed at 400 MHz with a 

peak power consumption of 2.688W and a post-implementation utilization of 9%. A 

coherent integration processor at 400 MHz had a peak power consumption of 2.517W and 

a post-implementation utilization of 9%. The second circuit design concept in this thesis is 

to design a DRFM single complex range bin processor that accepts the sampled input 

imaging radar �Z�D�Y�H�I�R�U�P�¶�V�� �S�K�D�V�H�� �Y�D�O�X�H�� �W�R��first �S�U�R�G�X�F�H�� �W�K�H�� �U�D�Q�J�H�� �E�L�Q�¶�V�� �G�H�V�L�U�H�G�� �'�R�S�S�O�H�U��

profile using an accumulator and then the desired radar cross section using a multiplier. 

The final stage contains the range bin delay where the range bin consists of an adder. This 
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DRFM processor runs at 500 MHz and is quantified with a peak power 2.543W with a 

post-implementation utilization of 11%. 

 

Figure 1.  Multifunction Sensor System. Source: [2]. 

B. PRINCIPAL CONTRIBUTI ONS 

For this thesis, the first step was to investigate the concepts involved in radar signal 

processing. Detailed within the outline, the idea was to grasp an understanding from 

macroscopic to microscopic. This included the design requirements of an LPI radar, the 

specific modulation types used within the MATLAB code, and the three-stage compression 

which was the ultimate task at hand: to replicate the MATLAB version of the three-stage 

compression within Simulink. These investigations led into the study of DRFMs, which 

use many of the same design requirements and modulation techniques. The only difference 

was that DRFMs require an additional microprocessor to ensure false targets or images are 

injected into a return signal. The first DRFM designs focused purely on false target returns 
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whereas DRFM designed used today focus on the deception of high range resolution 

profiling radar and range Doppler imaging sensors. 

Subsequently, the use of FPGAs was examined. This study began through a 

MathWorks sponsored course �W�L�W�O�H�G�� �³DSP for FPGAs�  ́in Natick, Massachusetts. It was 

here that the fundamentals of Xilinx Vivado, DSP regarding FPGA synthesis and 

implementation, and the overall impact of area, power, and timing were introduced. 

Afterwards, familiarity with the specific FPGA purchased for this thesis was required. 

Through this familiarity of the FPGA, many design features could be rectified without need 

of compiling or synthesis/implementation. This in turn saved much time, which in the 

world of FPGAs, is extremely scarce. 

Finally, the process of modeling, synthesis, and implementation of each digital 

system was investigated. This included many hours of Simulink tutorials and phone calls 

to MathWorks to ensure that the MATLAB derived results matched precisely with that of 

Simulink. �7�K�L�V���S�U�R�Y�H�G���W�R���E�H���D���F�K�D�O�O�H�Q�J�H���G�X�H���W�R���6�L�P�X�O�L�Q�N�¶�V��reliance on power of twos and 

HDL specific blocks. Many concepts were used to overcome these requirements such as 

the periodic ambiguity function, which not only performed the required target detection 

but also was built in a way that greatly increased the speed at which the FPGA could 

process the bit streams. Once the models were complete, the synthesis and implementation 

within Vivado began. About eight runs per model were constructed. Four of the models are 

considered sub models of the overall three-stage compression model. The idea was to test 

the subcomponents and relate it to the overall scheme. The relationships were summarized 

within graphs and subsequently compared.  

C. THESIS OUTLINE  

In Chapter II, the LPI Radar concepts are discussed. This chapter delves into the 

requirements of LPI Radars, the specifics of how to generate LPI modulation, in addition 

to the RSNS-P4 Three-stage Compression. Chapter III discusses DRFM architecture as 

well as the need for augmentation in Electronic Attack (EA). Chapter IV discusses FPGA 

history and uses, digital signal processing (DSP) on FPGAs, and the specifics of the 

XILINX Virtex Ultrascale+ FPGA utilized during this research. The modeling, synthesis, 
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and implementation results are then analyzed and discussed within Chapter V. Chapter VI 

concludes and provides recommendations for follow-on research. 
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II.  LOW PROBABILITY OF I NTERCEPT RADAR  

A. REQUIREMENTS  

The safest sensor on the modern battlefield is one that can perform surveillance and 

conduct operations without being identified as doing such. The most capable sensor that 

can operate in smoke, rain, day or night is the radio frequency sensor that transmits 

electromagnetic energy for target detection. If the radar transmits high-energy pulses, it 

can detect targets at long ranges. However, their high peak power, pulsed radiated output 

�V�L�J�Q�D�O�V���D�U�H���H�D�V�L�O�\���L�Q�W�H�U�F�H�S�W�H�G���E�\���W�K�H���D�G�Y�H�U�V�D�U�\�¶�V���Q�R�Q-cooperative intercept receiver. This 

often leads to them executing an immediate counter-attack using several options with the 

deadliest being an anti-radiation missile targeting the radar system and operators.  

Arguably the most important development in radar system technology is the LPI 

radar that �³uses a special emitted waveform intended to prevent the non-cooperative 

intercept receiver from intercepting the radiation�  ́ as discussed in [3]. The LPI radar 

emission is a continuous waveform (CW) with low power. Typical output power ranges 

from one to twenty milliwatts and is usually transmitted from a solid-state array. To 

perform target measurements, the CW carrier is periodically modulated with a bandwidth 

that depends on the range resolution. The range resolution also determines the bandwidth. 

A larger bandwidth can be achieved making it difficult for narrowband receivers to detect 

and intercept the signal. This technique is much like what is used in telecommunication 

and radio communications, which is called, spread spectrum. The idea is to deliberately 

spread the signal in the frequency domain causing it to increase in bandwidth while also 

lowering its overall peak power. If spread spectrum is used effectively, it can essentially 

hide the signal within noise making it difficult to intercept. 

Another consideration for achieving LPI radar conditions also include using 

frequency variations that may propagate well for an intended target but cannot effectively 

be acknowledged by a passive or intercept receiver due to atmospheric absorption. Finally, 

an antenna design requirement for an LPI radar is to have ultra-low side lobes. The return 

signal to the radar is, for all intents and purposes, considered feint. Large side lobes would 
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cause enough interference to deafen the return signal defeating the overall purpose of the 

LPI radar. 

As advancements continue with LPI radars, so come advancements to intercept 

receivers. Near-peer adversaries are increasingly interested in the ability to perform 

electronic attack on friendly radar or communication assets. �³�7�R���6�H�H���D�Q�G���1�R�W���%�H���6�H�H�Q�´���L�V��

the first line of defense in countering these intentions [3]. 

B. GENERATING LPI WAVEFORMS  

In [4], Paepolshiri states that  

s�L�Q�F�H�� �S�X�U�H�� �&�:�� �Z�D�Y�H�I�R�U�P�V�� �F�D�Q�Q�R�W�� �U�H�V�R�O�Y�H�� �W�K�H�� �W�D�U�J�H�W�¶�V�� �U�D�Q�J�H���� �S�H�U�L�R�G�L�F��
modulation techniques are used, such as frequency modulated CW, 
frequency shift keying, noise modulation, PSK, as well as hybrids of these 
techniques.�´��Paepolshiri found that the initial action to developing CW 
radar systems using periodic modulation compression is deciding on the 
necessary range resolution. According to Paepolshiri, this in turn �³sets the 
transmitted bandwidth of the waveform for the above techniques (except for 
frequency shift keying where the range resolution is dependent to the 
duration of each frequency). 

 Paepolshiri goes on to say that  

due to the advances in high-speed processing and direct digital synthesis 
modules, the use of PSK techniques in CW radar is highly advantageous. 
CW radars that transmit and receive PSK signals can result in LPI radar 
systems with small range resolution cells and are ideally suited for many 
sensor applications for situational awareness including minimum input 
minimum output (MIMO) configurations. [4]  

Additionally, PSK allows for RSNS-P4 generation, as depicted in Figure 2, which 

is the modulated signal utilized within this research. 
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Figure 2.  LPI Waveform Generation and Compression. 

1. Polyphase Modulation  (Polyphase Shift Keying) 

The covert nature of polyphase modulation (or polyphase shift keying) is due to the 

code not being available to the receiver. �³The unambiguous range of the radar is limited by 

the code period. That is, the unambiguous range is limited by the number of subcodes 

within the code period�´���>���@. The P4 polyphase code is unique due to it being a perfect code 

�Z�L�W�K���]�H�U�R���S�H�U�L�R�G�L�F���D�X�W�R�F�R�U�U�H�O�D�W�L�R�Q���V�L�G�H�O�R�E�H�V�����³�7�K�H���S�K�D�V�H���V�H�T�X�H�Q�F�H���R�I���D���3�����V�L�J�Q�D�O���L�V���J�L�Y�H�Q��

by 

�� �� �� ��2
1 1k

c

k k
N
�S

� I � S� �� �� ��     (2.1) 

where k is the subcode index and cN  �L�V���W�K�H���Q�X�P�E�H�U���R�I���V�X�E�F�R�G�H�V���Z�L�W�K�L�Q���W�K�H���F�R�G�H���S�H�U�L�R�G�´ 

[1]. The phase distribution is both symmetrical and parabolic. It is these properties that 

allow the P4 modulation to lend itself nicely to being compatible with the RSNS described 

next. 

2. Robust Symmetrical Number System (RSNS) 

�³�7�K�H���5�6�1�6���L�V���D���P�R�G�X�O�D�U���V�\�V�W�H�P���F�R�Q�V�L�V�W�L�Q�J���R�I��2N �t  integer sequences with each 

sequence associated with a coprime modulusim ���´��Details on the RSNS are given in [1]. 

An example for 3N �  is 
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1 1 1

2 2 2

3 3 3

0 0 0 1 11 2 2 2 ... ... 1 1 1 0 0 0 1 1 1 ...
1 0 0 0 11 1 2 2 2 ... ... ... 1 1 1 0 0 0 1 ...
1 1 0 0 01 1 1 2 2 2 ... ... ... ... 1 1 1 0 0 ...

m m m
m m m

m m m

� ª � º
� « � »
� « � »� ¬ � ¼

. 

The above sequences �³�H�[�K�L�E�L�W���D�Q���L�Q�W�H�J�H�U���*�U�D�\���F�R�G�H���S�U�R�S�H�U�W�\���P�D�N�L�Q�J���W�K�H���5�6�1�6���Z�H�O�O���V�X�L�W�H�G��

for radar signal processing applications which can benefit from the inherent error detection 

and correction capability. To use the RSNS for radar signal processing, it is only necessary 

to know the greatest length of combined sequences without ambiguities, known as the 

dynamic range�� �ÖM  �D�Q�G���L�W�V���S�R�V�L�W�L�R�Q���´ As described in [1], combining the P4 with the RSNS 

(RSNS-P4) the phase relationship is 

�� ��2, ,
2 2i im k m k i i

i

RS m m
m
� S � S

�I � ª � º
� �� ��� « � »

� ¬ � ¼
 ,    (2.2) 

�³�Z�K�H�U�H����,im kRS  is the symmetrical residue, and {1,2,..., }
ick N�•  is the phase index. The 

code length is given as 2
ic c iN NN Nm�  �  ��� ́



 11 

 

Figure 3.  �³P4-RSNS Channels and Symmetrical Residues.�  ́Source: [1]. 

C. RSNS-P4 THREE-STAGE COMPRESSION 

The polyphase is transmitted, reflected from the target and upon receive, down 

converted and digitized, as shown in Figure 4. The digitized RSNS-P4 waveform is strobed 

into memory for receiver processing. The receive processing consists of range 

compression, Doppler processing and range-Doppler integration. The total processing gain 

TPG  is then  T R D IPG PG PG PG� �� ��  which is determined from the required RiSNR  input, 

the maximum detection range RmaxR , and the �³greatest of constant false alarm rate�´��

(GOCFAR). The range compression determinesRPG and is determined from the maximum 

unambiguous detection range and range resolution while the �³Doppler filtering process 

determines DPG  from the max target velocity at the unambiguous range during the process 
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sync time. The range-Doppler map is shown in Figure 5. The coherent integration of the 

range-�'�R�S�S�O�H�U�´ output is used to derive IPG  over the process sync time [1].  

 

Figure 4.  �³RSNS-P4 CW Radar - Block Diagram Indicating the Processing 
Gain Steps.�  ́Source: [1]. 
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Figure 5.  �³RSNS-P4 CW Radar - Range-Doppler Detection Map.�  ́
Source: [1]. 

1. Range Compression 

The range compression multiplies the �³fast Fourier transform (FFT) of the complex 

received signal by the FFT of a reference (transmitted RSNS-P4 phase) waveform and then 

taking the inverse fast Fourier transform (IFFT). Described in [1], the processing gain from 

the range compression is 

�� ��10log
iR cPG N� .�  ́     (2.3) 

2. Doppler Filtering  

The Doppler filters for a particular range bin are calculated by executing the FFT 

algorithm on all the range bins collected during the number of code periods iM , described 

in [1] as  

 �� ��1
ii b cM t N f�  � '     (2.4) 

and is a function of the Doppler resolution f�' , the subcode width bt  and the code period 

for the modulus 
icN  . The estimated PG from the Doppler filtering is described in [1] as 
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          �� ��10logD iPG M� .     (2.5) 

3.  Integrati on 

Coherent integration provides a means to enhance the SNR and increase the 

processing gain, which is described in [1] as  

�� ��10logI iPG N�      (2.6) 

where 
iN  is the number of maps that are averaged together coherently. The range-Doppler 

maps after the coherent integration are shown in Figure 6 �³for all three RSNS-P4 channels 

or moduli (note the different range scales). Targets that have significant velocity separation 

�I�U�R�P���W�K�H���F�O�X�W�W�H�U���F�D�Q���E�H���G�H�W�H�F�W�H�G�´���>���@�� 
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Figure 6.  �³Range-Velocity Maps for Each of the Three Channels. Target 
Moves at Relative Speeds Sufficiently Different from the Sea Clutter 

Spectra.�  ́Source: [1]. 
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Figure 7.  LPI Signaling Environment and Integration with the Multifunction 
Sensor System. 

D. CHAPTER SUMMARY  

In this chapter, the requirements for LPI radar were presented. PSK modulation as 

an ideal modulation for LPI radars, the concept of RSNS, and advantages of using RSNS-

P4 were also presented. Additionally, the RSNS-P4 three-stage compression was presented 

which broke down the properties of range compression, Doppler filtering, and coherent 

integration. The next chapter presents the concept of Digital Radio Frequency Memory and 

its continuing evolution to deceive current and future radar signatures. 
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III.  DRFM 

A. DRFM ARCHITECTURE  

The DRFM provides the ability to capture radiated emissions and generate precise, 

coherent replicas, making them important in applications such as signal jamming, 

deception of covert communications, SIGINT operations, decoys, radar transmitters, 

simulations, and test equipment as discussed in [5]. A block diagram of single sideband 

DRFM is shown in Figure 8. At the receive antenna, a bandpass filter is used to pass only 

the signals of interest. A Local Oscillator (LO) is used to tune the DRFM to intercept the 

desired signal in the down conversion process. A Low Pass Filter (LPF) removes the 

components above Nyquist (anti-aliasing) along with unwanted mixer products. This 

configuration gives good rejection of spurious signals while retaining all the advantages of 

a conventional superheterodyne. At the output of the LPF, the signal is digitized by an 

ADC with resolution typically on the order of one to eight bits depending on the DRFM 

throughput. The higher the resolution, the slower the conversion process. After digitization, 

the samples are strobed into memory. High-speed, dual-ported memory is often used so the 

stored digital signal is captured and replayed simultaneously through memory control. 

�³Dual-ported memory usually requires a serial-to-parallel and parallel-to-serial circuitry to 

achieve the necessary data-rate conversion to match the dual-�S�R�U�W���P�H�P�R�U�\�¶�V���L�Q�S�X�W���R�X�W�S�X�W��

bandwidth�´���>5]. With the use of multi-ported memory, recording and multiple replays can 

occur simultaneously. The retrieved digital signal is strobed from memory to a DAC to 

reconstitute the signal back into an analog waveform. After lowpass filtering, the baseband 

signal is mixed with the LO to reconstruct the radio frequency (RF) version (typically a 

single sideband modulator). A band-pass filter (BPF) at the output serves to transmit only 

the desired frequencies [5]. 

 



 18 

 

Figure 8.  Block Diagram of a Single Sideband DRFM. Source: [5]. 

Figure 9 shows a block diagram of a double sideband DRFM. As discussed by Dr. 

Pace in [5], this architecture is similar to Figure 8 except that the phase of the DRFM signal 

is retained throughout the digitization process using both an I and Q channel. These are 

produced by the signals Q intermediate frequency (IF) modulator at the input. The Q IF 

modulator also down converts the input RF signal. Also shown in this configuration is the 

capability to retrieve the stored digital signal for further, more complicated signal 

processing using FPGAs or DSPs. This additional processing power can be used to create 

a variety of complex waveforms. For example, digital image synthesis for inverse synthetic 

aperture radar (ISAR) counter targeting applications require a level of signal processing 

that cannot be accomplished with simple memory recall and bit manipulation. The 

synthesis of the image requires focusing the Doppler frequency at each range bin, and 

amplitude modulating the output correctly such that the proper image is constructed [5]. 

Dr. Pace goes on to say that the double sideband (DSB) architecture requires the 

lowest sampling rate and has the capability of retaining the phase of the signal. The single 

sideband (SSB) is a less complex architecture; however, a higher sampling rate is required, 

and the phase of the intercepted signal is not retained. Due to this higher sampling rate, the 

bit resolution is less [5]. 
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Figure 9.  Block Diagram of a Double Sideband DRFM. Source: [5]. 

Dr. Pace also notes that to process the signals of interest, the DRFM uses a memory 

controller. The memory controller simply provides the memory address and control signals 

for the signal storage and recall operations. Several user controls are also available. The 

storage enable function is used to designate the pulse to be stored. The store address 

designates where the leading edge of the pulse is to be stored. The recall initiates a recall 

cycle at the next word clock time. The recall output triggers must be synchronized with the 

DRFM clock for coherent output. The recall address is the address where recall begins, and 

the delay time is the throughput delay impressed upon the stored signal [5]. 

Lastly, Dr. Pace determines that the development of a common DRFM kernel 

interface specification has been of interest in the Electronic Warfare (EW) community. The 

purpose of this specification is to define a common narrowband DRFM kernel that meets 

the jamming requirements of the Department of Defense. This kernel can be utilized in 

existing and future countermeasure systems. The interface architecture provides potential 

for efficient upgrades and simplifies DRFM-based system development, leading to a cost 

savings during development [5]. 

B. NEED FOR AUGMENTATIO N IN ELECTRONIC ATTACK SYSTEMS  

In [6], the authors propose that �³the need for coherent countering of ISAR imaging 

sensors remains a high priority for many electronic warfare systems.�´��They state that with 

the development of an �³all-digital image synthesizer (DIS), multiple false-target images 
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can be generated from a series of intercepted ISAR chirp pulses to provide a novel counter 

targeting and counter lock-on capability.�  ́The authors comment that the DIS �³can be also 

be deployed for Suppression of Enemy Air Defense and any operation that encounters 

interrogating ISAR imaging sensors��� ́The authors then conclude that the �³device can be 

deployed on aircraft, ships, unmanned air or surface vehicles to provide a superior imaging 

decoy and deception capability�  ́[6]. 

In [7], Pak Ang examines and shows the concept of embedding an I/Q Phase 

Converter and DIS into a DRFM in Figure 10. �,�Q���$�Q�J�¶�V���W�K�H�V�L�V�����Whis DRFM can intercept 

and store RF waveforms as well as retransmit them subsequently. His thesis adds that upon 

capturing an ISAR waveform, the DRFM uses a local oscillator to down convert the signal 

to an intermediate frequency; and that these signals are separated into I and Q components 

and then digitized by the ADCs into digital samples that are stored in a high-speed memory. 

An I/Q phase converter extracts phase information from the digitized waveforms to 

generate phase samples for the Digital Imaging Synthesizer (DIS) to process. Ang 

continues that after modulation by the DIS is complete, the DRFM converts the processed 

signal back into an analog form. Finally, the DRFM transmits the analog signal back to the 

ISAR [7]. 

 

Figure 10.  Simplified Block Diagram of the DRFM Integrated with the I/Q 
Phase Converter and DIS. Source: [7].  



 21 

In [6], the authors remark that the �³position of the false target in range can be 

controlled by delaying in time, the read-out samples going to the image synthesizer.�´��They 

state that the  

image synthesizer performs the complex modulations to synthesize the 
temporal lengthening and amplitude modulation due to the many recessed 
and reflective surfaces of the desired false target and generates a realistic 
Doppler profile for each surface. The FPGA contains a parallel array of 
identical digital modulators with one modulator for each false target range 
bin. That is, each modulator synthesizes the part of the overall image that is 
within the false-target range bin associated with that modulator. [6] 

The authors state further that �³each complex output pulse I(m,n) is the superposition 

of rN copies of the intercepted pulse, each delayed with respect to one another by the delay 

within the modulator, scaled differently by the gains ( , )2g r n  and phase rotated by ( , )inc r n�I  

described in [6] as  

1
( , ) ( , )( , )

0

( , ) 2
r

inc

N
j m r n r ng r n

r

I m n e� I � I
��

� � � �

� 

� �¦     (3.1) 

where m represents the sample number within the chirp pulse, n is the pulse number index, 

and r represents the range bin modulator index. The target extent, amplitude, and target 

motion are controlled by the gain and phase increment coefficients applied to the FPGA�  ́

[6]. 

C. CHAPTER SUMMARY  

In this chapter, the current and proposed DRFM processes were presented to 

include the need for an augmentation update within electronic attack systems. This 

augmentation would require an I/Q Converter and DIS to be integrated into the current 

DRFM architecture. This addition would ensure that not only traditional radars are 

deceived but ISAR as well. The next chapter presents an overview of FPGAs, DSP utilizing 

FPGAs, the specific Xilinx FPGA used during this research, and the simulation process 

used to recreate the results in the follow-on chapter. 
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IV.  FIELD PROGRAMMABLE G ATE ARRAY  

A. OVERVIEW OF THE FPGA  

In [8], the training course states that FPGAs are a fully reconfigurable resource: the 

implemented functionality is defined and programmed after manufacture, and this process 

can be repeated indefinitely. The programmable resources of the FPGA are configured into 

a desired digital circuit by downloading the user created design as a bitstream. Several 

steps are involved in creating, verifying, and preparing a design for download to an FPGA 

[8]. Table 1 provides a list of related technologies like FPGAs. 

Historically, Application Specific Integrated Circuits (ASICs) have been faster, 

extra energy efficient, and typically achieved much more performance than their FPGA 

counterparts. In [9], the authors observed that implemented FPGA designs �³need an 

average of 40 times as much area, draw 12 times as much dynamic power, and run at one 

third the speed of corresponding ASIC implementations.�  ́ In [9], the training course 

determines that 

much more recently, FPGAs including the Xilinx Virtex-7 or maybe the 
Altera Stratix-5 came to rival corresponding ASIC and application-specific 
standard parts (ASSP) through the process of delivering considerably 
minimal power consumption, improved speeds, lower overall production 
costs, less implementation utilization, and improved options for �µ�R�Q-the-�I�O�\�¶ 
re-configuration. [9] 

Previously, implemented designs requiring and incorporating six to ten ASICs can 

now produce the same results using a single FPGA [8]. 

In [8], the training course illustrates that  

advantages of FPGAs include the ability to reprogram in the field to fix bugs 
and may include a shorter time to market and lower non-recurring 
engineering costs. Vendors can also take a middle road by developing their 
hardware on ordinary FPGAs but manufacture their final version as an 
ASIC so that it can no longer be modified after the design has been 
committed. [8] 

Due to ASIC complexity, revenue losses driving higher production costs, and slow 

time-to-market trends, FPGAs have become a much-needed solution for higher-volume 
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applications. Mentioned later in this chapter, many FPGAs can perform partial 

reconfiguration, which allows one section of the unit to be reprogrammed while various 

other regions keep on running. 

Table 1.   Related Technologies to FPGAs. Source: [8]. 

Appli cation Specific Integrated Circuits 
(ASICs) 

Unlike FPGAs, the function of an ASIC is defined at 
manufacture, and it cannot be reconfigured. However, 
ASICs are generally smaller, lower power and when 
manufactured in high volume, cheaper to produce. The 
time for design and manufacture of ASICs is longer than 
for FPGAs, which is a consideration where fast time-to-
market is important. 

    

    

    

Digital Signal Processors (DSPs) DSPs historically had one processing engine of fixed 
wordlength, although modern devices may have several 
cores. In comparison, FPGAs have parallel processing 
capabilities, and the designer is not restricted to pre-
specified wordlengths. As DSPs and FPGAs offer such 
different capabilities, they are often used for different tasks 
within a larger system. 

    

    

    

    

General Purpose Processors (GPPs) While DSP processors are optimized for fast arithmetic, 
multiply-accumulate type operations, GPPs have the 
flexibility to deal with a variety of applications but are not 
suited to the fast arithmetic demanded by DSP. 

    

Processor Arrays / Sea of Processors This type of device exhibits some of the characteristics of 
an FPGA (parallelism, interconnects) with the processor 
architecture of a DSP. One of the challenges associated 
with this type of device is efficiently programming them. 

    

    

Complex Programmable Logic Devices 
(CPLDs) 

CPLDs are like FPGAs in the sense that they are parallel 
and reconfigurable, but they are smaller and far less 
sophisticated. CPLDs have very low power consumption 
and are suited to "glue logic" type applications.     

Structured ASIC Structured ASICs offer a compromise between ASICs and 
FPGAs, and there are several slightly different 
architectures that fall into this category. The benefits of 
lower power, and cheaper high-volume production than 
FPGAs. 

    

    

FPGA-hardening services The major FPGA companies offer a path to high-volume 
production based on an FPGA prototype. These are 
appropriate when the full reprogrammability of an FPGA is 
not required, are cheaper than standard FPGAs, and faster 
to produce than ASICs. 

    

    

 

1. History  

In [10], the article states that the FPGA industry began from �³programmable read-

only memory (PROM) and programmable logic devices (PLDs).�  ́Both PROMs and PLDs 
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had the ability to be uniformly and �³mass-programmed either in a factory or in the field by 

the user (field programmable).�  ́The programmable logic of the initial FPGA design was 

�³hard-wired between logic gates�  ́[10]. 

The article adds that in the late 1980s, Steve Casselman proposed to the Naval 

Surface Warfare Center that a personal computer might be created that could apply 600,000 

reprogrammable array gates. The system was funded as well as in 1992 a patent was given 

because of the program eventually naming Casselman as �³the expert in the field of virtual 

computing�´��[10]. 

As found in [11] and [12], David W. Page and LuVerne R. Peterson were awarded 

with patents in 1985. These patents evolved into several of the �³industry's foundational 

principles for programmable logic blocks, arrays, and gates.�  ́

In [13], Ron Wilson claims Altera was founded in 1983, In 1984, Altera delivered 

the EP300, which �Z�D�V�� �W�K�H�� �F�R�P�S�D�Q�\�¶�V�� �I�L�U�V�W�� �S�U�R�G�X�F�W�� This reprogrammable logic device 

�³�R�I�I�H�U�H�G���H�U�D�V�D�E�L�O�L�W�\���E�\���V�K�L�Q�L�Q�J���D���8�9���O�D�P�S���W�K�U�R�X�J�K���W�K�H���Z�L�Q�G�R�Z���D�E�R�Y�H���W�K�H���G�L�H���´ The article 

states that the logic device maintained a quartz window allowing the UV lamp to penetrate 

the die, erasing the �³EPROM cells that held the device configuration�  ́[13].  

In [14] and [15], the articles state that Xilinx co-founders Ross Freeman and 

Bernard Vonderschmitt invented the XC2064 in 1985, which was the first commercially 

viable FPGA. The sources explain that the XC2064 began a new technology and 

marketable demand using �³programmable gates and interconnects between gates.�  ́The 

XC2064 had �³64 configurable logic blocks (CLBs), with two three-input lookup tables 

(LUTs).�  ́As explained in [16] and [17], after two decades, �³Freeman was entered into the 

National Inventors Hall of Fame for his invention.�  ́

Unchallenged, Altera and Xilinx expanded through the latter part of the 1980s to 

the mid-1990s. At this point, competition began to form within the technological market 

causing Altera and Xilinx shares to decrease rapidly. In [15], the article explains that by 

1993, �³Actel (now Microsemi) was serving about 18 percent of the market.�  ́In [18], the 

article reports that by 2013, �³Altera (31 percent), Actel (10 percent) and Xilinx (36 percent) 

together represented approximately 77 percent of the FPGA market.�  ́
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The ability to mass produce as well as the sophistication of circuitry within FPGAs 

made significant leaps during the 1990s. The overall use of FPGAs transitioned from being 

primarily used by telecommunications and networking to be utilized in everyday consumer, 

automotive, and industrial applications by the early 2000s.  

2. Current Uses 

�$�� �W�U�H�Q�G�� �K�D�V�� �I�R�U�P�H�G�� �Z�L�W�K�L�Q�� �W�K�H�� �S�D�V�W�� �G�H�F�D�G�H�� �W�R�� �G�H�Y�H�O�R�S�� �D�� �³�F�R�P�S�O�H�W�H�� �V�\�V�W�H�P�� �R�Q�� �D��

�S�U�R�J�U�D�P�P�D�E�O�H���F�K�L�S�´ as seen on the Xilinx website in [19]. This idea of having a system on 

a chip (SoC) involves the combination and assembling of logic blocks and interconnects 

of previous generations of FPGAs as well as fixed microprocessors and associated 

peripherals. The website states that the Zynq-7000 All Programmable SoC is an example 

of such hybrid technology and is depicted in Figure 11. The website adds that this chip 

�³includes a 1.0 GHz dual-core ARM Cortex-A9 MPCore processor embedded within the 

FPGA's logic fabric.�  ́The website concludes that his hybrid technology uses specific high-

performance processors and pair them �³with programmable logic architectures or multi-

channel ADC and DAC analog peripherals to their flash-based FPGA fabric�´���>19].  
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Figure 11.  �³A Xilinx Zynq-7000 All Programmable System on a Chip.�  ́Source: 
[19]. 

Implemented within the FPGA logic are soft processor cores, which provide a hard-

macro processor alternate approach. Examples of such technology with soft processor 

cores are the Nios II, MicroBlaze and Mico32. Reconfigurable computing or systems is the 

idea of programming current-day FPGAs prior to or during use which allows CPUs to meet 

any task by reconfiguring themselves. Additionally, non-FPGA technology is emerging. 
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Microprocessors, such as the Stretch S5000, are software configurable and maintain 

FPGA-like programmable cores, which, in turn, provide an array of processor cores all 

within the same chip. 

In [20], the article states that �³companies like Microsoft have started to use FPGAs 

to accelerate high-performance, computationally intensive systems (like the data centers 

that operate their Bing search engine), due to the performance per watt advantage FPGAs 

deliver.�  ́Table 2 provides a list of current FPGA Applications per specified category.  

Table 2.   Current FPGA Applications. Adapted from [8]. 

Aerospace and Defense Audio Broadcast Automotive 

Avionics/DO-254 Connectivity Solutions Real-Time Video 
Engine High Resolution Video 

Communications Portable Electronics EdgeQAM Image Processing 

Missiles & Munitions Software-Defined Radio Encoders Vehicle Networking and 
Connectivity 

Secure Solutions Digital Signal Processing (DSP) Displays Automotive Infotainment 
Space Speech Recognition Switches and Routers  
    

Medical High Performance Computing Industrial  Integrated Circuit Design 
Ultrasound Servers Industrial Imaging ASIC Prototyping 
CT Scan Super Computers Industrial Networking Computer Hardware Emulation 
MRI SIGINT Systems Motor Control  

X-ray High-end RADARs   

PET High-end Beam Forming Systems   

Surgical Systems Data Mining Systems   
    

Data Center Consumer Electronics Security Wired Communications 
Servers Digital Displays Industrial Imaging Optical Transport Networks 
Security Digital Cameras Secure Solutions Network Processing 

Hardware security module Multi -function Printers Hardware security 
module 

Connectivity Interfaces 

Routers Portable Electronics Image Processing   
Switches Set-top Boxes   

Gateways Flash Cartridges   

Load Balancing    

   
 

   

Video & Image Processing Scientific Instruments Wireless 
Communications 

Bioinformatics 

High Resolution Video Lock-in amplifiers Baseband  

Video Over IP Gateway Boxcar averagers 
Connectivity 
Interfaces 

 

Digital Displays Phase-locked loops Mobile Backhaul  

Industrial Imaging Radio Astronomy Radio  

Computer Vision    
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B. DIGITAL SIGNAL PROCE SSING ON A FPGA 

In [8], the training course states that from a DSP perspective, the resources available 

on FPGAs have evolved significantly over the last 25 years. Early FPGAs comprised a 

general-purpose array of CLBs and routing resources, surrounded by IOBs at the edge of 

the chip. Over time, integrated memory blocks and fast arithmetic slices have been 

introduced. The functionality of these arithmetic components has increased too. Initially, 

embedded multipliers were provided, and now DSP engineers have access to an integrated 

tile containing an adder, multiplier and accumulator. In terms of system integration, 

embedded processors and communications interfaces have become standard. Naturally, the 

speed and size of FPGAs has increased also, as have the sophistication of clock 

management resources [8]. 

1. Introduction to DSP 

In the 1980s, the arrival of microprocessors such as Intel 8086 and Rockwell 6502 

triggered the so-called Microprocessor Revolution, as stated in [8]. This resulted in 

commonly accessible and cost-effective computer equipment. Besides several early 1980s 

home computer systems as well as video gaming machines, the primary development was 

the IBMPC in 1980 as well as the Macintosh in 1984. This proliferation of computer 

systems in the workplace, in the market, and the house, entirely altered business processes 

along with the way info is stored as well as processed. By the 1990s,  

multimedia PC was essentially enabled by DSP technology, devices, and 
algorithms. Additionally, the processing power of DSP (micro-) processors 
was increased by an order of magnitude with a decrease in price. The digital 
reliability, repeatability, and programmability of DSP has widely displaced 
analog systems in both consumer and industrial markets. [8]  

Table 3 is a list of the individual DSP technology and components of early 1990 

machines and Table 4 is a list of current DSP Applications per specified category. 
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Table 3.   1990s Multimedia PC Enabled by DSP Technologies. 
Source: [8]. 

Windows 95 OS Facilities for speech coding / compression (ADPCM, LPC, GSM etc.). Digital 
filtering, FFT, correlation facilities all within Microsoft Excel spreadsheet.   

  

Video Acquisition Card Fast ADC / DAC technology and DSP video coding algorithms for MPEG etc. 
FFTs, DCTs, sub band coding etc.   

  

Disk Drive Most modern disk Speech synthesis, speech recognition. Drives now include a 
DSP processor for control purposes.   

  

Teleconferencing Card Enabled by DSP coding for audio and video, and adaptive acoustic echo 
cancellation.   

  

Sound-card 16-bit sound technology sampling up to 48kHz. Sigma delta technology allows 
low cost implementation; DSP processor implements algorithms for decimation, 
interpolation, mixing, filtering, coding etc. 

  
  

Speech Processing DSP enabled digital recording answering machine. 

FAX-modem Enabled by adaptive signal processing algorithms for echo cancellation, data 
equalization       

 

Furthermore, a distinction must be made between data processing (DP) and DSP 

according to the training course. DP and DSP are both 

ideally performed by high speed computers which have very fast numerical 
capabilities. DP is the arithmetic processing of (sampled) stored integer 
numerical quantities (accounts, salary spreadsheets and so on); fast 
processing of data is desirable but not essential. DSP is concerned with the 
arithmetic processing of numerical representations of real world analog 
quantities. Real time performance is necessary, such that processed outputs 
are produced as fast as input data is available. For both, a suitable sampling 
rate must be chosen (not too high and not too low). [8] 

In short, DSP means real-time arithmetic operations and DP means non-real time 

arithmetic operations [8]. 

Additionally, the training course provides the following DSP Strategies: 

a. Linear Filtering  

Removing high frequency background noise from speech. Linear filtering 
strategies can be used in any application where it is known that two signals 
can be discriminated by the frequency bands they occupy. [8] 
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b. Signal Transforms  

Signal component analysis, signal detection etc. Transforming a signal into 
a different domain often allows a signal to be more conveniently analyzed 
and viewed. For example, transformation into the s-domain (Laplace) 
allows more straightforward mathematical manipulation. Transforming into 
the frequency domain allows the frequency variation of a signal to be seen 
more easily than in the time domain [8] 

c. Non-linear Signal Enhancement / Filtering  

Removing of impulse noise by median / order type filtering. Some signals 
may often benefit from non-linear filtering. A well-known audio non-linear 
filter is for impulsive noise, whereby a signal is contaminated by impulses. 
Given that an impulse essentially contains all frequencies, frequency or 
phase discriminating filter is not of use. Hence, a median filter may be used 
whereby the N most recent samples are ordered and the median value is 
chosen. Hence, very large magnitude outliers are likely to be ignored if the 
duration of the N samples is somewhat longer than the duration of the 
impulsive noise [8]. 

d. Signal Analysis / Interpretation / Classification  

Designed for ECGs, speech recognition, image recognition, etc. The aim 
here is to compare known �µpatterns�¶ with input signals to recognize the input 
signal and output some parameterized information. [8] 

e. Compression / Coding: 

Hi-fidelity audio (Minidisc), mobile telecoms, videoconferencing, ECG 
signal compression and so on. Compression is one of the most important 
areas within the audio and telecommunication business at present. 
Compressed formats such as MP3 are on the rise in the high-fidelity audio 
market. For telecommunications speech requires to be coded into as small 
a bandwidth as possible, but while maintaining sufficient signal quality. 
With each new mobile generation, the availability of more DSP processing 
power allows the bit rate to reduce but while still maintaining good 
intelligible quality. [8] 
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Table 4.   DSP Applications. Source: [8]. 

Telecommunications 
Mobile (GSM, CDMA, IS-95); Digital / Video Telephony; Data Modems; 
ADSL 

Digital Audio  CD; CDI; DAT; DCC; Surround Sound, MPEG; MiniDisc; Dolby Prologic 

Digital Video/Imaging High Definition TV (HDTV); MPEG; Medical Imaging; JPEG; DVD 

Speech Based Systems Speech Recognition; Speech Coding / Compression; Speech Synthesis 

Multimedia  PC FAX / Modem / Graphics / Audio; Teleconferencing; Software Radio 

Biomedical Systems ECG Electrocardiograph; EEG - Electroencephalograph; Hearing Aids 

Industrial  Motor Control; Disk Drives; Process Controllers; Noise Cancellation 

Defense Guidance Systems; Sonar; Radar; Secure Communications 

Automotive GPS Navigation; Engine Management; Digital Comms / Audio Systems 

 

2. Introduction to DSP for FPGAs 

In [8], the training course points out that a DSP algorithm or problem is often 

specified in terms of its �³multiply and accumulates/add�  ́ (MAC) requirements. When 

comparing two algorithms, if both perform the same job but one with less MACs, then the 

�R�W�K�H�U���Z�R�X�O�G���F�O�H�D�U�O�\���Z�R�X�O�G���E�H���³�F�K�H�D�S�H�U�´���D�Q�G���W�K�H���E�H�V�W���F�K�R�L�F�H�� However, this implies some 

assumptions: one is that the required MACs are the same. In traditional DSP processor-

based situations, it is likely that a 16-bit device that will be processing 16-bit inputs will be 

using a 16-bit digital filter coefficient. With FPGAs, this constraint is removed due to the 

ability to use as many, or as few, bits as are required. Therefore, optimization and scheduled 

DSP algorithms can be chosen and implemented in completely different ways [8]. 

The training course states further that standards are constantly evolving which 

means that devices, like FPGAs, that can be reconfigured and upgraded become seamless 

base-stations, access points, etc. DSP enables many aspects of everyday life but even 

though they all have different specific requirements, usually the low-level processing is 

similar i.e., filters, transforms, sine wave synthesis, adaptive filtering, and sampling rate 

changes [8]. 

The training course finds that DSP is built upon arithmetic; therefore, special 

attention must be given to the implementation of arithmetic operations. Most important are 

addition and multiplication in which the arithmetic wordlength must increase to prevent 

arithmetic overflow from input to output. FPGAs allow wordlengths to be specified with 
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complete flexibility, and without any computational overhead. Before FPGAs arrived, DSP 

circuits could be constructed but with less flexibility such as integrated circuits and gate 

arrays but had fixed wordlengths. This also caused operations with shorter wordlengths to 

be just as computationally expensive due to requiring one execution. DSPs are still useful, 

particularly for sequential processing, and often complement FPGAs in a DSP system, 

especially when FPGAs allow the user to choose exactly the required wordlength [8]. 

3. DSP-FPGA Design Fundamentals 

a. General FPGA Architecture  

In [8], the training course describes that most of the FPGA area is logic fabric, 

which is the building blocks of combinational and sequential elements connected by local 

and long-distance wires. Input / Output Blocks (IOBs) allow signals to be routed into and 

out of the FPGA. The logic fabric is made up from CLBs and signals are routed between 

CLBs using programmable interconnects. The programmable aspect of the 

interconnections is partly realized by the Switch Matrices located beside each CLB. CLBs 

contain slices that contain LUTs, Flip-Flops (FFs), and a few logic gates [8]. The functions 

implemented by these resources are programmable, as depicted by the design process, as 

depicted in Figure 12. 
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Figure 12.  Model-Design Environment that Provides an Integrated Workflow for 
Faster Waveform Engineering. 

The training course agrees that logic units differ in size, composition, and name. 

However, in all cases, their Logic Blocks include both combinational logic and registers, 

and routing resources are required for connecting blocks together. LUTs can be utilized in 

four modes: to implement a combinatorial logic function, as Read Only Memory (ROM), 

as Random-Access Memory (RAM), or as shift registers [8]. 

In more recent FPGAs, the training course states that the grouping of slices into 

CLBs has changed to 2 slices per CLB. From a high-level perspective, a slice from one of 

the 4-slice CLBs consists of 2 LUTs and 2 FFs. However, in newer devices, the grouping 

of LUTs and FFs into slices differs. As mentioned previously, LUTs can also be configured 

as RAM, i.e., memory that can be written to, as well as read from. LUTs can also act as 

shift registers (SRLs). A 4-input LUT can provide up to 16 bits of memory and implement 

up to length 16 shift registers, whereas a 6-input LUT can provide up to 64 bits of memory 

and implement up to length 32 shift registers. When building shift registers or RAMs using 

distributed resources (i.e., LUTs), several LUTs can be combined as necessary to build 
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larger sizes. Likewise, RAMs capable of storing more bits can be created by combining 

LUTs (although for very large memories, Block RAMs are a more appropriate choice) [8]. 

As well as implementing 16 or 32 (i.e., maximum length) shift registers, they can 

also be programmed to implement any length up to that as stated by the training course. 

The slice FF at the output of the LUT can be used to add another one-clock cycle delay, 

which is beneficial for timing performance. Hence, with one LUT-FF pair, a delay of up to 

17 clock cycles can be realized. In other types of FPGAs, with SRL32s and 2 FFs per LUT, 

up to 34 cycles can be implemented [8]. 

The training course goes on to say that IOBs feature a pad which allows a signal on 

the FPGA to be connected to an external signal (input/output direction is defined by 

multiplexers). IOB FFs may optionally register signals as they enter or depart the chip; 

registering inputs and outputs is generally recommended and beneficial for timing 

performance. Ultimately, one IOB is required for each 1-bit signal [8]. 

The training course determines that each FPGA device is normally associated with 

two or more packages. The choice of package defines which of the IOB pads on the FPGA 

are physically bonded to pins on the package, and therefore which IOBs are available for 

use. Therefore, some of the IOBs may not be connected to a pin. Some of the IOBs may be 

connected to pins which are used for reserved purposes (like power provision, 

programming etc.), and hence are not available to the user. Depending on the package 

chosen, many fewer usable pins may be available than the maximum number the FPGA 

device would support. To clarify, the term bonded IOBs is given in resource utilization 

reports and unbonded IOBs are not available when using that particular package [8]. 

b. Memory 

In [8], the training course reveals that columns of dedicated memories (Block 

RAMs), and high-speed DSP functional blocks (DSP48x slices) are also integrated into the 

array. The spacing of Block RAMs and DSP48s is sparser than CLBs. Block RAMs are 

located in columns close to the edges of the FPGA (to buffer input and output data from 

the chip) and next to DSP blocks (for enhanced DSP performance). Additionally, Block 
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RAMs can be combined to form larger RAMs or be subdivided into smaller ones while 

also being implemented as first-in first-out buffers [8].  

Additionally, these arrangements allow for DSP48 to become dedicated high-speed 

arithmetic blocks and Block RAMs to become dedicated high-speed memory. DSP48 

comprise a multiplier, accumulator, and in most cases, a pre-adder. They also have several 

internal registers provided such that the DSP48 may be configured to perform several 

different functions. Block RAMs are more suitable than distributed RAM (i.e., using LUTs 

as memory elements) for larger memories. The width of Xilinx memories is 18-bits. 

However, they can also be configured to operate in several different dimensions. For 

example, the number of entries can be doubled if the storage wordlength is shortened to 

nine bits [8].  

c. Communications Interfaces 

In [8], the training course states that Xilinx supports high-speed connectivity 

applications by embedding hard Internet Protocol (IP) blocks into its devices. Like DSP48 

slices, these are dedicated blocks of silicon. They have a compact footprint and consume 

much less power than an equivalent design implemented in the logic fabric. Alternatively, 

soft IP blocks are also available. These are provided as Verilog hardware description 

language (VHDL) source and may be incorporated into a design if required. Soft cores give 

the customer the flexibility to include or omit an interface in any give design, but do not 

achieve the power savings of a hard core [8]. 

Additionally, RocketIO GTP Transceivers are low power and support a variety of 

protocols and standards. RocketIO GTX and GTH Transceivers are higher speed 

alternatives. Ethernet MAC Controllers and PCI Express interfaces are also available. By 

providing commonly used, standards-based communications interfaces as hard or soft 

cores, Xilinx reduces the design effort required by its customers [8]. 

d. Clocking Resources 

In [8], the training course notes that Digital Clock Managers (DCMs) undertake 

several functions. One of these is to provide deskewed clocks, i.e., a different copy of the 
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synthesized clock is created for each clock region of the FPGA, appropriately phased to 

account for the delays in distributing the clocks throughout the device. Clock circuits and 

buffers are used to convey these different clocks to the various resources and regions of 

the FPGA. Clock buffers also act as clock enables, and this helps to reduce power 

consumption (i.e., each FPGA resource is only clocked and enabled when required). 

Another benefit of DCMs is that they reduce jitter present on the input clock. More recent 

devices also include a Phase Locked Loop (PLL), which helps to reduce jitter further [8]. 

Additionally, Clock Management Tiles (CMTs) were introduced in the Virtex-5 

series, with each CMT comprising 2 DCMs and 1 PLL. Each of these components can be 

used in isolation or in cascade with another element. A common such usage is to precede 

the DCM with a PLL in order that the PLL filters jitter from the input reference signal [8]. 

Finally, Mixed Mode Clock Managers (MMCMs) first appeared in the Virtex-6 and 

Spartan-6 series, also based around the DCM and PLL, but offer enhanced options. For 

example, instead of the four coarse clock output phases provided in the Virtex-5 (0o, 90o, 

180o, and 270o), the MMCM provides 8 (at 0o, 45o, 90o, 135o, 180o, 225o, 270o, and 315o). 

Fine-grained phase shifting is also possible, and the achievable resolution depends on the 

clock frequency [8]. 

e. Critical Path and Clock Frequency 

Signals experience logic and routing delays through all logic paths as they 

propagate from one clocked register to the next. The critical path of a system is defined by 

[8�@���D�V���³�W�K�H���O�R�Q�J�H�V�W���F�R�P�E�L�Q�D�W�R�U�L�D�O���O�R�J�L�F���S�D�W�K���E�H�W�Z�H�H�Q���W�Z�R���F�O�R�F�N�H�G���U�H�J�L�V�W�H�U�V���´ �,�W���L�V���³�O�R�Q�J�H�V�W�´��

in terms of propagation time. The critical path delay is the delay along the critical path, i.e., 

the longest combinatorial propagation delay through the circuit. However, the critical path 

delay relates to any group of combinatorial logic that could be simple gates or more 

complex operations such as arithmetic calculations [8].  

Additionally, when considering arithmetic, the training course notes that the signals 

are not single 1-bit wires, but buses formed from several bits, in accordance with the 

arithmetic wordlengths. The last bit of the result (the most significant bit, in the case of 

addition and subtraction) is not available until the calculation is complete, and all the 
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necessary carries have propagated from the least significant bit to the most significant bit. 

Therefore, the longer the arithmetic wordlengths involved, the longer the critical path [8].  

The training course also notes that when the logical operations are significant, the 

associated logic delays dominate over the routing delays. �7�K�H�� �W�H�U�P�� �³�U�R�X�W�L�Q�J�� �G�H�O�D�\�´��

describes the time it takes signals to travel along the wires through, switch matrices and so 

on, between the logic elements in the circuit. �7�K�H���³�O�R�J�L�F���G�H�O�D�\�´���G�H�V�F�U�L�E�H�V���W�K�H���W�L�P�H���L�W���W�D�N�H�V��

a signal to pass through the logic elements in the circuit. DSP-FPGA designers must have 

a greater influence over logic delays in terms of how the design is set for implementation. 

Routing delays are largely managed by the design tool (specifically the place and route 

process), or at a more advanced level, by manual intervention in this process. As described 

in [8], this leads to the critical path delay , which is the sum of several logic and 

routing delays therefore 

 .   (4.1) 

The critical path is significant because it restricts the maximum frequency at which 

the design can be clocked as described within the training course. As shown in (4.1), the 

critical path is the sum of several logic and routing delays which directly relates to the 

maximum clock frequency  as described in [8] as  

      (4.2) 

Therefore, if the total is 1.6 ns within the design, then  

   (4.3) 

This means that if the clock frequency applied is less than 625MHz, then a signal 

leaving one register arrives at the next register within on clock period. This is vital to 

preserve t�K�H���L�Q�W�H�J�U�L�W�\���R�I���W�K�H���F�L�U�F�X�L�W�¶�V���I�X�Q�F�W�L�R�Q�D�O�L�W�\ [8]. 
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For the design to be valid, the output from the combinatorial logic must become 

valid during the same clock period as the input. If this were not the case, then it would be 

as if the combinatorial contained a 1-clock delay, which of course it cannot. From a 

mathematical perspective, this would fundamentally change the implemented algorithm, 

thus making it incorrect. 

Signal changes occurring during the setup and hold times of the registers must be 

avoided as well, i.e., a short period before and after the active clock transition. Hence the 

true minimum clock period is slightly longer than the critical path delay, more accurately 

described in [8] as 

.    (4.4) 

The FPGA design tools (e.g., Xilinx ISE) will take these into account when 

analyzing the minimum clock period. 

Having noted the dependence of clock frequency on length of the combinatorial 

logic path within the training course, additional registers would be inserted to break the 

combinatorial logic path to an acceptable size. This process is referred to as pipelining. 

By dividing the combinatorial logic path into two equal sections, a pipeline register 

increases the maximum clock frequency by a factor of 2. However, for every pipeline 

register, the latency is increased by one clock cycle [8]. 

In many cases, increasing the latency by one or two clock cycles to improve 

timing performance is an acceptable outcome. However, one notable exception is in 

feedback loops where each new calculation cannot start until the result of the last one has 

been computed; in this instance, delaying the readiness of the output is not helpful. More 

generally, pipeline registers must be placed within a design according to a formal method 

to preserve the integrity of the DSP function implemented by the circuit [8]. 

f. FPGA Power Consumption 

In [8], the training course describes that FPGA power consumption comprises two 

components: static and dynamic power. FPGA companies are driven to reduce both. Static 

power consumption is associated with the circuitry that maintains the programmed 
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configuration of the FPGA. This is ultimately affected by transistor leakage current, which 

tends to rise with smaller process geometries and it is effectively constant for any given 

device. Dynamic power consumption is attributed to the switching of logic elements due 

to the actual processing of data by the configured design. In contrast, this tends to reduce 

with shrinking process geometries.  

Additionally, FPGA companies can reduce static power consumption via the design 

of their devices, in terms of both process and architecture. By replacing commonly used 

functionality with integrated silicon blocks, they can reduce both static and dynamic power. 

Dynamic power consumption varies linearly with capacitance and frequency and with the 

square of the voltage described in [8] as 

.    (4.5) 

A DSP engineer can influence dynamic power consumption through intelligent 

design. For example, polyphase filters can be used to implement rate changes in multi-

rate designs while clocking each circuit element at the lowest possible rate [8]. 

g. Partial Reconfiguration 

In [8], the training course mentions that partial reconfiguration is a relatively new 

technique whereby selected partitions of an FPGA device are allocated with two or more 

different modules but configured with only one of them at any given time. These modules 

can be used to reconfigure the selected partition without affecting the rest of the FPGA 

design while maintaining multiple such regions on one device. 

Additionally, reconfiguration is accomplished by downloading the bitstream of the 

desired module onto the FPGA. This replaces the existing configuration of that partition, 

effectively swapping the old design out and inserting the new one in its place. Partial 

reconfiguration is therefore ideal when the design can be separated into functional blocks 

occupying the same area on the FPGA and when only one of these is required at any one 

time. 

Subsequently, the training course states that there are several potential benefits 

associated with partial reconfiguration. Firstly, from a commercial perspective, using this 
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technique may mean that a significantly smaller FPGA device can be specified, thus 

leading to cost savings. As the design consumes fewer FPGA resources, it will also expend 

less static power than an equivalent design in which all modules are programmed on the 

device simultaneously. And finally, from a development perspective, partitioning the 

design in this manner may be more suitable for an engineering team undertaking a large 

and complex FPGA design.  

Partial reconfiguration is also an enabler of software-defined radio, wherein the 

functionality of high-speed DSP subsystems running on the FPGA are defined at runtime, 

via software [8]. 

h. Implementation Metrics 

The training course mentions that to tell if a design is good given the architecture 

of an FPGA, the goal is to optimize one of the following metrics or to achieve a desirable 

balance between them: 

(1) Resource Utilization / Area �± The amounts of the various FPGA resources 
required to implement the user design. This primarily includes slices, 
DSP48s, and Block RAMs 

(2) Timing Performance �± The maximum frequency at which the circuit can be 
clocked. This is affected by the critical path. 

(3) Power Consumption �± Overall FPGA power consumption is affected by the 
dimensions of the FPGA, the number of circuit elements being clocked, and 
their frequency of operation. 

Additionally, there are certain interactions between these three metrics. For 

example, often the technique of pipelining is used to reduce the critical path of a design 

and hence increase the maximum frequency at which it can be clocked. Pipelining involves 

the insertion of registers, which obviously increase the overall resource cost. However, 

with the increased clock frequency, improved resource sharing may be possible, hence 

reducing resource cost, etc. The implications of the design choices are not always 

straightforward. Therefore, achieving the best balance requires intelligent DSP design 

based on knowledge of the device architecture [8]. 
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C. XILINX VIRTEX ULTRAS CAL E+ 

1. Overview 

a. Product Description 

In [21], the Xilinx webpage states that the �³�9�L�U�W�H�[�Š���8�O�W�U�D�6�F�D�O�H���Œ���)�3�*�$���9�&�8��������

Evaluation Kit is the ideal development environment for evaluating the cutting edge Virtex 

UltraScale+ FPGAs. Virtex UltraScale+ devices provide the highest performance and 

integration capabilities in a FinFET node, including both the highest serial I/O and signal 

processing bandwidth, as well as the highest on-chip memory density�  ́[21]. 

The webpage continues stating that this �³kit is ideal for prototyping applications 

ranging from 1+ Tb/s networking and data center to fully integrated radar/early-warning 

systems�  ́[21]. 

b. Key Features and Benefits 

Presented in [21], the following key features and benefits are listed accordingly: 

(1) Dual 80-bit DDR4 Component Memory 

(2) RLDRAM3 (2x36-bit) Memory 

(3) Dual QSFP28 Interfaces 

(4) PCIe Gen3 x16 (VCCINT = 0.85V) 

(5) VITA 57.4 FMC+ Interface 

(6) VITA 57.1 FMC Interface 

(7) Samtec FireFly Interface [21] 
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2. Hardware 

Depicted in Figure 13 is the Virtex UltraScale+ board and chipset that was utilized 

throughout the research conducted for this thesis.  Table 5 is an additional list of features 

that are broken down according to functionality.  Table 6 provides a list of total available 

resources for area utilization or logic fabric utilization. 

 

Figure 13.  Virtex UltraScale+ VCU 118 Evaluation Board. Source: [21]. 
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Table 5.   Virtex UltraScale+ VCU 118 Evaluation Board Features. 
Source: [21]. 

Communications & 
Networking 

Clocking 
Expansion 
Connectors 

Configuration 

10/100/1000 Mbps 
Ethernet (SGMII) 

SI5335A Quad Clock 
Generator 

FMC+ HSPC 
connector (24 �± 
28Gbps GTY 
Transceivers, 80 
differential user 
defined pairs) 

Onboard JTAG 
configuration circuitry to 
enable configuration over 
USB 

Dual 4x28Gbps 
QSFP28 cages 

Si570 IIC Programmable 
LVDS Clock Generator 

 FMC HPC1 
connector (58 
differential user 
defined pairs) 

JTAG header provided for 
use with Xilinx download 
cables such as the Platform 
Cable USB II 

Samtec FireFly 
4x28Gbps Interface 

SI5328C Clock 
Multiplier and Jitter 
Attenuator 

 PMOD header QSPI flash memory 

Dual USB-to-UART 
Bridge with mico-B 
USB connector 

2x SMA MGT 
Reference Clock inputs 

 IIC   

RJ45 Ethernet 
connector 

1 SMA User Clock input     

PCI Express endpoint 
Gen3 x 16 

      

Control & I/O  Memory Display Power 

User Push Buttons (x5) Two 4 GB DDR4 
component memory 
interfaces (five [256 Mb 
x 16] devices each) 

Users & Status 
LEDs 

12V wall adapter or ATX 

User DIP Switch (4-
position) 

4 MB RLD3 component 
memory interfaces (five 
[256 Mb x 16] devices 
each) IIC EEPROM: 
8Kb 

    

PMBUS & System 
Controller MSP430 for 
power, clocks, SD-Card 
and I2C bus switching 

Micro Secure Digital 
(SD) connector 1Gb 
Quad SPI Flash 

    

 

Table 6.   Total Resources for Project Part: xcvu9p-plga2104-2L-e-es1. 

Resource Total Available 
LUT 1182240 
LUTRAM 591840 
FF 2364480 
BRAM 2160 
DSP 6840 
IO 832 
BUFG 1800 
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D. SIMULATION PROCESS  

To produce the results in the following chapter, a specific process involving 

�0�D�W�K�:�R�U�N�V�¶ �6�L�P�X�O�L�Q�N���D�Q�G���;�L�O�L�Q�[�¶�V���9�L�Y�D�G�R���P�X�V�W���E�H���X�W�L�O�L�]�H�G�� These steps will be supplied 

within this section.  

First and foremost, the correct versions of MATLAB and Vivado must be installed 

for the HDL Workflow Advisor (that will be discussed later) to work correctly. The correct 

pairings are MATLAB R2017b and Vivado 2016.4 and for future iterations, MATLAB 

R2018a would be compatible with Vivado 2017.1+. In Table 7, a full list of toolboxes and 

add-ons is provided. Of those, the essentials are the Communications Toolbox, DSP 

System Toolbox, Filter Design HDL Coder, Fixed-Point Designer, Fuzzy Logic Toolbox, 

HDL Coder, HDL Verifier, RF Blockset, RF Toolbox, Signal Processing Toolbox, and any 

of the FPGA for Simulink Toolboxes / Add-ons that are available at the time. 
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Table 7.   List of Installed MATLAB/Simulink Toolboxes 
 and Add-ons. 

Aerospace Blockset Version 3.2 (R2017b)  Polyspace Bug Finder Version 2.4 (R2017b) 
Aerospace Toolbox Version 2.2 (R2017b)  Polyspace Code Prover Version 9.8 (R2017b) 
Antenna Toolbox Version 3 (R2017b)  Powertrain Blockset Version 1.2 (R2017b) 
Audio System Toolbox Version 1.3 (R2017b)  RF Blockset Version 6.1 (R2017b) 
Automated Driving System Toolbox Version 1.1 (R2017b)  RF Toolbox Version 3.3 (R2017b) 
Bioinformatics Toolbox Version 4.9 (R2017b)  Risk Management Toolbox Version 1.2 (R2017b) 
Communications System Toolbox Version 6.5 (R2017b)  Robotics System Toolbox Version 1.5 (R2017b) 
Computer Vision System Toolbox Version 8 (R2017b)  Robust Control Toolbox Version 6.4 (R2017b) 
Control System Toolbox Version 10.3 (R2017b)  Signal Processing Toolbox Version 7.5 (R2017b) 
Curve Fitting Toolbox Version 3.5.6 (R2017b)  SimBiology Version 5.7 (R2017b) 
DSP System Toolbox Version 9.5 (R2017b)  SimEvents Version 5.3 (R2017b) 
Data Acquisition Toolbox Version 3.12 (R2017b)  Simscape Version 4.3 (R2017b) 
Database Toolbox Version 8 (R2017b)  Simscape Driveline Version 2.13 (R2017b) 
Datafeed Toolbox Version 5.6 (R2017b)  Simscape Electronics Version 2.12 (R2017b) 
Econometrics Toolbox Version 4.1 (R2017b)  Simscape Fluids Version 2.3 (R2017b) 
Embedded Coder Version 6.13 (R2017b)  Simscape Multibody Version 5.1 (R2017b) 
Filter Design HDL Coder Version 3.1.2 (R2017b)  Simscape Power Systems Version 6.8 (R2017b) 
Financial Instruments Toolbox Version 2.6 (R2017b)  Simulink 3D Animation  Version 7.8 (R2017b) 
Financial Toolbox Version 5.1 (R2017b)  Simulink Check Version 4 (R2017b) 
Fixed-Point Designer Version 6 (R2017b)  Simulink Code Inspector Version 3.1 (R2017b) 
Fuzzy Logic Toolbox Version 2.3 (R2017b)  Simulink Coder Version 8.13 (R2017b) 
GPU Coder Version 1 (R2017b)  Simulink Control Design Version 5 (R2017b) 
Global Optimization Toolbox Version 3.4.3 (R2017b)  Simulink Coverage Version 4 (R2017b) 
HDL Coder Version 3.11 (R2017b)  Simulink Design Optimization Version 3.3 (R2017b) 
HDL Verifier  Version 5.3 (R2017b)  Simulink Design Verifier Version 3.4 (R2017b) 
Image Acquisition Toolbox Version 5.3 (R2017b)  Simulink Desktop Real-Time Version 5.5 (R2017b) 
Image Processing Toolbox Version 10.1 (R2017b)  Simulink PLC Coder Version 2.4 (R2017b) 
Instrument Control Toolbox Version 3.12 (R2017b)  Simulink Real-Time Version 6.7 (R2017b) 
LTE HDL Toolbox  Version 1 (R2017b)  Simulink Report Generator Version 5.3 (R2017b) 
LTE System Toolbox Version 2.5 (R2017b)  Simulink Requirements Version 1 (R2017b) 
MATLAB Coder  Version 3.4 (R2017b)  Simulink Test Version 2.3 (R2017b) 
MATLAB Compiler  Version 6.5 (R2017b)  Spreadsheet Link Version 3.3.2 (R2017b) 
MATLAB Compiler SDK  Version 6.4 (R2017b)  Stateflow Version 9 (R2017b) 

MATLAB Report Generator  Version 5.3 (R2017b) 
 

Statistics and Machine Learning 
Toolbox 

Version 11.2 (R2017b) 

Mapping Toolbox Version 4.5.1 (R2017b)  Symbolic Math Toolbox Version 8 (R2017b) 
Model Predictive Control Toolbox Version 6 (R2017b)  System Identification Toolbox Version 9.7 (R2017b) 
Model-Based Calibration Toolbox Version 5.3 (R2017b)  Text Analytics Toolbox Version 1 (R2017b) 
Neural Network Toolbox Version 11 (R2017b)  Tracking and Sensor Fusion Toolbox Version 1 (R2017b) 
OPC Toolbox Version 4.0.4 (R2017b)  Trading Toolbox Version 3.3 (R2017b) 
Optimization Toolbox Version 8 (R2017b)  Vehicle Network Toolbox Version 3.4 (R2017b) 
Parallel Computing Toolbox Version 6.11 (R2017b)  Vision HDL Toolbox Version 1.5 (R2017b) 
Partial Differential Equation 
Toolbox 

Version 2.5 (R2017b) 
 

WLAN System Toolbox Version 1.4 (R2017b) 

Phased Array System Toolbox Version 3.5 (R2017b)  Wavelet Toolbox Version 4.19 (R2017b) 

 

Once all software tools are established, an active license must be procured for 

whichever FPGA is being utilized. In this case, a specific license was activated within 

Vivado allowing synthesis and implementations to occur for the specific board that was 

selected i.e., Project Part: xcvu9p-plga2104-2L-e-es1. Without a valid license, the Vivado 

projects to be created or prior ones to be reviewed will not be allowed. 

The next step is to ensure that the HDL Workflow Advisor is properly synced with 

Vivado. To do this, input the command shown in Figure 14. Ensure the drive path for the 

system at use and the Vivado versions are correct. The vivado.bat file is the key to a proper 

sync. 
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Figure 14.  MATLAB / Vivado Sync Command. 

If this is successful, a return shown in Figure 15 will appear. 

 

Figure 15.  Successful MATLAB / Vivado Sync Return. 

Now that MATLAB and Vivado are synced, the Simulink design can be opened / 

created. Once a design is created and run with no errors, it is time to synthesize and 

implement the design through Simulink. To do so, go to Code >> HDL Code >> HDL 

�:�R�U�N�I�O�R�Z���$�G�Y�L�V�R�U�«��as shown in Figure 16 and at this point, a pop-up will occur shown 

in Figure 17. This pop-up allows the user to select which system within the design to be 

synthesized and implemented. Individual pieces or the entire design can be selected.  

 

Figure 16.  HDL Workflow Advisor Selection. 
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Figure 17.  System Selector Pop-up. 

Once selected, the HDL Workflow Advisor will pop-up. Now using the arrows to 

the side of each folder, open them to see the list of categories within each. Figure 18 shows 

the exact setup for this thesis for Section 1.1. The Target Workflow, Family, Device, and 

Project Folder will all require inputs. Note: always press apply after any changes in all 

HDL Workflow Advisor windows. 

 

Figure 18.  Section 1.1: Set Target Device and Synthesis Tool Window. 
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In Section 1.2, the target frequency is the frequency in which the FPGA will run 

the design. Normally, naming conventions are of *subsystem name*_*target frequency* is 

applied to the Simulink design so that when it is run in HDL Workflow Advisor, separate 

runs using different frequencies will be noticeable. In this example, 100 MHz is being 

selected. 

For Section 2 and all subsections, nothing needs to be altered. In Section 3.1.1, the 

�/�D�Q�J�X�D�J�H���Q�H�H�G�V���W�R���E�H���F�K�D�Q�J�H�G���W�R���³�9�H�U�L�O�R�J�´���D�Q�G���W�K�H���E�R�[�H�V���L�Q���I�U�R�Q�W���R�I��generate traceability 

report, generate resource utilization report, and generate optimization report need to be 

checked as depicted in Figure 19. 

 

Figure 19.  Section 3.1.1: Set Basic Options Window. 

In S�H�F�W�L�R�Q�����������������H�Q�V�X�U�H���W�K�D�W���W�K�H���U�H�V�H�W���W�\�S�H���L�V���F�K�D�Q�J�H�G���W�R���³�6�\�Q�F�K�U�R�Q�R�X�V���´ Then select 

the ports tab in the additional settings section and ensure there is no check in front of the 

minimize clock enables box, as shown in Figure 20. 
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Figure 20.  Section 3.1.2: Advanced Options Window. 

The remainder of options within Section 3.1 will be selected based on experience 

with the design and software. Section 3.2 does not require any changes unless the FPGA 

being utilized is supported by Simulink like a Virtex 7, if so, then generate test bench can 

be selected as well as generate RTL code. Unfortunately, the Virtex Ultrascale+ is still not 

properly supported but MathWorks is aware of the demand for future patches. 

 In Section 4.1, a synthesis objective can be selected at this point. If none is selected, 

then a default synthesis will be created that can be later examined through Vivado. Within 

Section 4.2, ensure all boxes within the Input parameters for both 4.2.1 and 4.2.2 are clear. 

�:�K�H�Q���D�O�O���L�V���V�H�W���W�R���W�K�H���X�V�H�U�¶�V���V�D�W�L�V�I�D�F�W�L�R�Q�����U�L�J�K�W���F�O�L�F�N���R�Q���������������D�Q�G���V�H�O�H�F�W���U�X�Q���W�R���V�H�O�H�F�W�H�G���W�D�V�N, 

as depicted in Figure 21. 
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Figure 21.  Section 4.2.2: Run Implementation Window. 

As the program runs, check marks will begin to appear to each section and 

subsection. At any point a section does not pass, it will end the run with an error output. 

As the HDL Workflow Advisor continues to run, an HDL Generation Report Summary for 

the design will be created. This will provide valuable information regarding I/O bits, total 

utilization, and latency. Depending on the sophistication of the design, running HDL 

Workflow Advisor from start to implementation can take from 30 minutes up to one hour 

�G�H�S�H�Q�G�L�Q�J���R�Q���W�K�H���X�V�H�U�¶�V��processing power and available RAM.  

Upon completion, the user will then open the folder in which the project was saved. 

Within the folder, a Vivado Project File will be created with the naming convention that 

was previously established. Execute this file and Vivado will automatically startup and run 

the selected file. Once the Vivado Project File opens, the user will be able to visually 

analyze the outcome as depicted within next chapter�¶s results. If additional synthesis and 

implementation strategies are required, click on the button �D�W���W�K�H���E�R�W�W�R�P�� �R�I���W�K�H���³�'�H�V�L�J�Q��

�5�X�Q�V�´���S�D�Q�H�O��that is depicted in Figure 22. 
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Figure 22.  Create Runs button. 

Once selected, navigate through the different options that pertain to the new runs. 

There are different strategies for both synthesis and implementation. The user can then load 

a queue of many different run strategies and allow them to process while the user is away 

from the computer. Once the queue of created runs is complete, right click on the run that 

�U�H�T�X�L�U�H�V���D�Q�D�O�\�]�L�Q�J���D�Q�G���V�H�O�H�F�W���³�0�D�N�H���$�F�W�L�Y�H���´ This will update all the Vivado panels to the 

selected synthesis and implementation.  

E. CHAPTER SUMMARY  

In this chapter, it was presented that by leveraging the knowledge of DSP theory, 

finite wordlength effects, the architecture of the FPGA device being targeted, while adding 

�D���'�6�3���L�P�S�O�H�P�H�Q�W�D�W�L�R�Q���V�S�H�F�L�D�O�L�V�W�¶�V���N�Q�R�Z�O�H�G�J�H�����D�Q���H�I�I�L�F�L�H�Q�W���P�D�S�S�L�Q�J���R�I���W�K�H���'�6�3���D�O�J�R�U�L�W�K�P��

to FPGA hardware can be achieved. A seamless and invaluable process requires a good 

understanding of design flow and the Electronic Design Automation Tools being utilized. 

Verification and testing is also an essential element in ensuring the design works as 

intended. Furthermore, integration is necessary to ensure the DSP design works within the 

larger system. The chapter finished with the steps and process necessary to replicate the 

simulation, synthesis, and implementation results of this thesis in the next chapter. 

 



53 

V. MODELING, SYNTHESIS, AND IMPLEMEN�7ATION 
RESULTS 

Within this chapter, the modeling, synthesis, and implementation results are 

presented. The time required to simulate each model through HDL Workflow Advisor is 

15-30 minutes depending on the overall computing power of the user. Subsequently, the 

time required to synthesize and implement one run for each model is an additional 30 

minutes to an hour. One run is defined as a synthesis and implementation pair chosen by 

the user to maximize or balance the given parameters of either utilization (area), power, or 

timing. The user can queue multiple runs within Vivado, but these runs will be processed 

simultaneously by the computer tasked to do so. Therefore, if the computer is not capable 

of multitasking large CPU and RAM intensive algorithms, it is highly recommended to not 

queue for multiple runs. However, if the computer can process an intensive workload, it is 

realistic to queue 8-10 runs and allow the computer to continue synthesizing and 

implementing the runs overnight. 

The requirements for a successful DRFM and three-stage compression were never 

explicitly defined throughout this research. This led to an exploration of FPGA capabilities 

as shown through the data presented in this chapter. Through these data, it can best be 

served as a guide to what is to be expected once detailed parameters are set for each system. 

For example, if the system is going to be placed in a radar that is required to run many 

different systems on the same FPGA, then area or timing optimization may be most 

beneficial depending which is more important at the time. On the other hand, if the system 

was to be placed within an aircraft, then power optimization may be most beneficial to not 

exclude overall power resources to more vital components within the aircraft. 

There are two digital systems: the DRFM and three-stage compression for an LPI 

radar. The three-stage compression includes a data storage component required for proper 

simulation results. Simulink models were all built manually, and the simulations were 

verified using pre-existing MATLAB code developed from past thesis results. These 

models on their own are not complete and shall be explained within this chapter. Figure 23 

is a screenshot from Vivado giving a detailed explanation, which populated for every 
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model and every run. This figure is stating that although the model successfully synthesized 

and implemented, due to I/O pins not actually being connected either logically or 

physically (through the model), the implementation may cause severe harm to an FPGA. 

These I/O pins are essentially placeholders until the design is finished and for each bit of 

I/O that is left unconnected, the overall I/O bit count available on the FPGA shall be taxed. 

This is evident in incomplete designs because all other parameters will appear to be normal 

except for I/O which will appear to be utilizing a much higher number than what is 

required. These indicators should be treated as a guide for identifying open ports and should 

not be alarming unless the design is considered finalized. Once these ports are connected, 

the I/O utilization shall reduce significantly. 

 

Figure 23.  Implementation Critical Warnings. 
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After analyzing the data across all six models, there were a few observations that 

became common amongst all. The first was previously mentioned regarding the I/O 

utilization. The second observation is regarding the thermal power. It can be noted that the 

Junction Temperature and Thermal Margin are inversely proportional to one another. If the 

Junction Temperature rises by 0.1 degree Celsius, the Thermal Margin can be expected to 

decrease by 0.1 degree Celsius.  

The third observation is regarding the Vivado Default runs. These are the runs that 

were created through Simulink in the HDL Workflow Advisor. In nearly all cases, these 

were run with no specific synthesis or implementation strategies. Therefore, the results 

appear to be skewed in comparison to the other results within the same model. Afterwards, 

the runs varied the synthesis strategy (seven different options) while maintaining the same 

implementation strategy (twenty-seven different options) except for the DRFM model �± 

this model used the Performance_Explore strategy versus the Performance_Retiming 

strategy like the rest of the models. The DRFM model also did not run a 

Flow_AreaOptimized_medium synthesis strategy. The reasons for not testing twenty-

seven different implementation strategies may appear to be obvious but it must be noted 

that the shear amount of time required for one set of synthesis and implementation runs 

becomes unfeasible when multiplied by twenty-seven. So, the implementation became a 

control within this research in which allows the user to analyze the results of differing 

synthesis strategies. Once design requirements are set, a few selected implementation 

strategies can be used in multiple variations with the synthesis strategies. 

A. DIGITAL RADIO FREQUE NCY MEMOR Y (DRFM)  

Project Name: DRFMvers2_vivado 

Implementation Strategy: Performance_Explore  

1. Model 

The DRFM Simulink model in Figure 25 was built based off the DIS-512 Block 

Diagram in Figure 24. The DRFM Simulink model is incomplete due to no I/O connections 

made to the Phase Increment Register, CORDIC, Gain Preload/Increment Register, From 
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Previous Range Bins for both I and Q, To Following Range Bins for both I and Q, and two 

Reserved for Future Expansion slots. With this many unconnected I/O ports, the I/O 

utilization is significantly higher.  The model uses a microprocessor that establishes phase 

and gain coefficients. These coefficients are then preloaded and then incremented into 

registers. The phase increment goes through a phase adder with a 5-bit phase input data 

supplied from the CORDIC. The 5-bit data are then pipelined and then processed through 

an I/Q look-up table which splits the input data into two 8-bit streams for both the I and Q 

components. These data streams are once again run through pipelining and then multiplied 

by the information stored within the gain increment register which causes the bit stream to 

shift between 8 and 18 bits depending on the multiplication results. These data streams are 

then bit extracting the first five bits to future expansion output ports whereas the remaining 

thirteen bits are pipelined into another adder in which the data stream is padded in the front 

with three zeros. These 16-bit data streams are then added with 16-bits from previous range 

bins for both the I and Q components. These new 16-bit data streams from this addition are 

then sent to following range bins. 

To ensure a working model is complete for FPGA implementation, this design must 

be linked to both a microprocessor feed as well as CORDIC feed and then connected 

accordingly to the port designations. The last output would therefore become the final 

output of the DRFM model. Additionally, the current DRFM model was synthesized and 

implemented with ease for a target frequency of 500 MHz autonomously from all other 

models. A hypothesis is that the target frequency would only decrease to accommodate a 

more complex structure. 
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Figure 24.  DIS-512 DRFM Block Diagram.
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Figure 25.  DIS-512 DRFM Block Diagram Built in Simulink. 
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2. Synthesis / Implementation 

Within Figure 26, the DRFM model timing results are displayed for each synthesis 

type run. The graph depicts the Worst Negative Slack (WNS) and is a point in the logical 

path within the design having the maximum (worst) negative slack (timing). Worst Hold 

Slack (WHS) points to a path within the design having the maximum or worst hold (delay) 

in the slack. These times are both displayed in nanoseconds. The WNS and WHS resulted 

in positive numbers, which means that the timing of the model passed. Significant 

deviations in WNS are displayed depending on the run; however, the WHS stays consistent.  

 

Figure 26.  DRFM Model Timing Results. 

Within Figure 27, the DRFM model power results are displayed for each synthesis 

type run. The graphs depict the total on-chip power, how each synthesis run compares to 

one another regarding power used per each static and dynamic component, and the thermal 

power associated to each run. The total on-chip power graph shows a deviation within the 

Flow_PerfOptimized_high synthesized run whereas the remaining runs are more consistent 
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with each other. Within the power utilization comparison graph, many of the power 

components have minimal deviations except for the DSP component, which indicates that 

only the Flow_AreaMultThresholdDSP and Flow_AreaOptimized_high utilize power for 

DSP. However, this is consistent with Figure 28 because these two runs are the only two 

that utilize DSP logic space. The thermal power results are identical per run. 
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Figure 27.  DRFM Model Power Results. 
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Within Figure 28, the DRFM model utilization results are displayed for each 

synthesis type run. The graphs depict the total and individual utilizations per run. To note, 

I/O and BUFG utilization are not provided for the Flow_PerfOptimized_high run. These 

are outliers in comparison to the remaining runs in which use 90 I/O slices and 1 BUFG 

slice. Many trade-offs can be captured through the individual utilization charts. The most 

prominent trade-off is the fact that the amount of LUT and FFs are significantly reduced 

with the use of a couple DSP as depicted through the differences between the 

Flow_AreaMultThresholdDSP and Flow_AreaOptimized_high and the remaining runs. 
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Figure 28.  DRFM Model Utilization Results. 
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B. RANGE COMPRESSION 

Project Name: Correlation_Receiver_500_vivado 

Implementation Strategy: Peformance_Retiming 

1. Model 

The Range Compression (also known as Correlation Receiver depending on the 

publication) model shown in Figure 29 is the first step within the three-stage compression, 

which was discussed in Chapter II . This Range Compression model was synthesized and 

implemented with a target frequency of 500 MHz autonomously from all other models. 

The model implements a coherent correlation receiver of finite duration NT where  

is the number of matched periods for the signal.  where the implementation Nc = 

102 and � ���������������V, where Nc and  are the number of subcodes and the subcode period 

respectively. To implement the coherent correlation receiver, the signal begins by going 

through a tapped delay of Nc and performs a cross-correlation between the received signal 

and the complex conjugate of the reference signal. Then at each subcode, the single 

correlation value is summed over the number of subcodes, Nc.  
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Figure 29.  Range Compression Block Diagram Built in Simulink. 



 66 

2. Synthesis / Implementation 

Within Figure 30, the Range Compression model timing results are displayed for 

each synthesis type run. The graph depicts the WNS and WHS resulted in seven of eight 

positive numbers, which means that the timing of those models passed. However, the 

Flow_RuntimeOptimized run failed timing causing the entire synthesis and 

implementation of the model to fail. The WHS deviated by plus or minus 0.02ns throughout 

the graph whereas the WNS deviated by plus or minus 0.03ns until the noted failure. 

 

Figure 30.  Range Compression Model Timing Results. 
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Figure 31.  Range Compression Model Power Results. 
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Within Figure 32, the Range Compression model utilization results are displayed 

for each synthesis type run. The graphs depict the total and individual utilizations per run. 

To note, I/O and BUFG utilization are not provided for the Vivado Default run. These are 

outliers in comparison to the remaining runs in which use 68 I/O slices and one (up to two) 

BUFG slices. No correlations can be made between individual utilization graphs. The rise 

and fall in data can only be contributed to the actual synthesize type run. Figure 33 displays 

the absolute values of the Range Compression model results as simulated through 

MATLAB and Simulink. A delay is noted within the Simulink results due to slight 

modeling error. 
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Figure 32.  Range Compression Model MATLAB and Simulink Results. 
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Figure 33.  Range Compression Model MATLAB and Simulink Results.
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C. DATA STORAGE  

Project Name: DataStorage_500_vivado 

Implementation Strategy: Peformance_Retiming 

1. Model 

The Data Storage model shown in Figure 34 is not considered an official step within 

the three-stage compression but it necessary within Simulink to ensure the buffered Range 

Compression signal is synchronized with the Doppler Filter range bins. This Data Storage 

model was synthesized and implemented with a target frequency of 500 MHz 

autonomously from all other models. This model takes the signal from the Range 

Compression model and then collects the data to produce a matrix and is output as a matrix 

transpose data stream. There are two data storages. One data storage is used as written 

storage for later use and the other is used as storage that is currently being read. These data 

storages cycle through each write or read only use accordingly after 4096 times 102 points 

are collected. Therefore, they can never write or read to the same storage consecutively �± 

they must alternate.
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Figure 34.  Data Storage Block Diagram Built in Simulink.
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2. Synthesis / Implementation 

Within Figure 35, the Data Storage model timing results are displayed for each 

synthesis type run. The graph depicts the WNS and WHS resulted in positive numbers, 

which means that the timing of the model passed. Both WNS the WHS remain constant 

with plus or minus 0.075ns and 0.025ns deviations respectively. No runs were at risk of 

failing timing.  

 

Figure 35.  Data Storage Model Timing Results. 

Within Figure 36, the Data Storage model power results are displayed for each 

synthesis type run. The total on-chip power graph shows a deviation of plus or minus 0.1 

W except for Vivado Defaults which is 0.12W lower than the average of the other seven 

runs. Within the power utilization comparison graph, many of the power components have 

minimal deviations except for the I/O component which indicates that Vivado Defaults 

does not require power for I/O components. However, this is consistent with Figure 37 

because the Vivado Defaults run does not require I/O logic space. The thermal power 

results are identical per run. 
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Figure 36.  Data Storage Model Power Results. 
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Within Figure 37, the Data Storage model utilization results are displayed for each 

synthesis type run. The graphs depict the total and individual utilizations per run. To note, 

I/O and BUFG utilization are not provided for the Vivado Default run. These are outliers 

in comparison to the remaining runs in which use 70 I/O slices and 1 BUFG slice. There 

are no other variances within the Data Storage model for utilization.
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Figure 37.  Data Storage Model Utilization Results.
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D. DOPPLER FILTERING  

Project Name: DopplerFilter_400_vivado 

Implementation Strategy: Peformance_Retiming 

1. Model 

The Doppler Filtering model shown in Figure 38 is the second step within the three-

stage compression. This Doppler Filtering model was synthesized and implemented with a 

target frequency of 400 MHz autonomously from all other models. This model takes the 

Data Storage model data stream and windows it with a Blackman window and performs an 

FFT to perform the Doppler filtering. The �³convert�  ́ Simulink block is not needed; 

however, it is used to increase processing time and saves memory for the coherent 

integration. 
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Figure 38.  Doppler Filtering Block Diagram Built in Simulink. 



 79 

2. Synthesis / Implementation 

Within Figure 39, the Doppler Filtering model timing results are displayed for each 

synthesis type run. The graph depicts the WNS and WHS resulted in seven of eight positive 

numbers, which means that the timing of those models passed. However, the 

Flow_RuntimeOptimized run failed timing causing the entire synthesis and 

implementation of the model to fail. The WHS deviated by plus or minus 0.02ns throughout 

the graph whereas the WNS deviated by plus or minus 0.05ns until the noted failure. 

 

Figure 39.  Doppler Filtering Model Timing Results. 

 Within Figure 40, the Doppler Filtering model power results are displayed for each 

synthesis type run. The total on-chip power graph shows a deviation of plus or minus 0.2W 

however extra power is required for Flow_PerfOptimized_high, Flow_PerfThresholdCarry, 

and Flow_RuntimeOptimized. This extra power requirement is outside the steady baseline set 

by the other five runs. Within the power utilization comparison graph, many of the power 

components have minimal deviations except for the I/O component which indicates that 

Vivado Defaults does not require power for I/O components. However, this is consistent with 

Figure 41 because the Vivado Defaults run does not require I/O logic space. The thermal power 

results are plus or minus 0.1 degrees Celsius.  
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Figure 40.  Doppler Filtering Model Power Results. 
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Within Figure 41, the Doppler Filtering model utilization results are displayed for 

each synthesis type run. The graphs depict the total and individual utilizations per run. To 

note, I/O and BUFG utilization are not provided for the Vivado Default run. These are 

outliers in comparison to the remaining runs in which use 70 I/O slices and one BUFG 

slice. A direct correlation can be made between LUTRAM, LUT, and FF. Within the graph, 

as less LUTRAM is used, the more LUT and FF are utilized based on the synthesis strategy. 

Figure 42 displays the absolute values of the Doppler Filtering model results as simulated 

through MATLAB and Simulink. Once again, a delay is noted within the Simulink results 

due to slight modeling error.
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Figure 41.  Doppler Filtering Model Utilization Results. 
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Figure 42.  Doppler Filtering Model MATLAB and Simulink Results
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E. COHERENT INTEGRATION  

Project Name: CoherentIntegration_400_vivado 

Implementation Strategy: Peformance_Retiming 

1. Model 

The Coherent Integration model shown in Figure 43 is the third step within the 

three-stage compression. This Coherent Integration model was synthesized and 

implemented with a target frequency of 400 MHz autonomously from all other models. 

This model takes the data stream from the Doppler filter and stores it into memory. Each 

correlating point from the next four Doppler maps are then added accordingly. The output 

then becomes the overall output for one moduli of the three-stage compression.  
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Figure 43.  Coherent Integration Block Diagram Built in Simulink.  
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2. Synthesis / Implementation 

Within Figure 44, the Coherent Integration model timing results are displayed for 

each synthesis type run. The graph depicts the WNS and WHS resulted in positive 

numbers, which means that the timing of the model passed. Both WNS the WHS remain 

constant with plus or minus 0.025ns deviations. No runs were at risk of failing timing.  

 

Figure 44.  Coherent Integration Model Timing Results. 

Within Figure 45, the Coherent Integration model power results are displayed for 

each synthesis type run. The total on-chip power graph shows a deviation of plus or minus 

0.1W except for Vivado Defaults which is 0.06W lower than the average of the other seven 

runs. Within the power utilization comparison graph, many of the power components have 

minimal deviations except for the I/O component which indicates that Vivado Defaults 

does not require power for I/O components. However, this is consistent with Figure 46 

because the Vivado Defaults run does not require I/O logic space. The power utilization 

graph also indicates that Vivado Defaults requires far less power for clock and signals 

components. The thermal power results are plus or minus 0.1 degrees Celsius.  
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Figure 45.  Coherent Integration Model Power Results. 
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Within Figure 46, the Coherent Integration model utilization results are displayed 

for each synthesis type run. The graphs depict the total and individual utilizations per run. 

To note, I/O and BUFG utilization are not provided for the Vivado Default run. These are 

outliers in comparison to the remaining runs in which use 72 I/O slices and one BUFG 

slice. A direct correlation can be made between LUT and the synthesis strategy. As 

expected, the less LUT is used as area is optimized during Flow_AreaOptimized_high and 

Flow_AreaOptimized_medium. Then as the strategy moves towards performance, the 

more resources on the FPGA are being utilized. Figure 47 displays the absolute values of 

the Coherent Integration model results as simulated through MATLAB and Simulink. Once 

again, a delay is noted within the Simulink results due to slight modeling error. 
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Figure 46.  Coherent Integration Model Utilization Results.
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Figure 47.  Coherent Integration Model MATLAB and Simulink Results 
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F. THREE-STAGE COMPRESSION 

Project Name: alpha3StageCompression_100_vivado 

Implementation Strategy: Peformance_Retiming 

1. Model 

The Three-stage Compression model shown in Figure 48 is the top-level view 

consisting of the subsystem block diagram shown in Figure 49. This subsystem comprises 

the Range Compression, Data Storage, Doppler Filtering, and Coherent Integration models 

previously discussed. This Three-stage Compression model was synthesized and 

implemented with a target frequency of 100 MHz autonomously from all other models. To 

ensure this model is adapted for LPI detection, it must be duplicated for three separate 

moduli running in parallel of each other. This model inputs a receiver for an RSNS-P4 

signal that was scripted in MATLAB and is converted into Simulink. Therefore, a data 

stream is stepped through the previous models (minus DRFM) with the use of Boolean 

operators that act as miniature reference points that ensure the data stream remains in 

proper step throughout all models. 
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Figure 48.  Top Level Block Diagram of Three-stage Compression Built in Simulink. 

 

 

Figure 49.  Three-stage Compression Block Diagram Built in Simulink.
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2. Synthesis / Implementation 

Within Figure 50, the Three-stage Compression model timing results are displayed 

for each synthesis type run. The graph depicts the WNS and WHS resulted in positive 

numbers which means that the timing of the model passed. Both WNS the WHS remain 

constant. WNS retained a plus or minus 0.4ns deviation whereas WHS shows no deviation 

due to its consistency across runs. No runs were at risk of failing timing. However, when 

this model was run at a target frequency of 200 MHz, the entire model failed timing across 

all runs.  

 

Figure 50.  Three-stage Compression Model Timing Results. 

Within Figure 51, the Three-stage Compression model power results are displayed for 

each synthesis type run. The total on-chip power graph shows a deviation of plus or minus 

0.0275W. Overall, the power is consistent between runs. Within the power utilization 

comparison graph, many of the power components have minimal deviations except for the I/O 

component, which indicates that Vivado Defaults does not require power for I/O components. 

However, this is consistent with Figure 52 because the Vivado Defaults run does not require 

I/O logic space. The thermal power results are plus or minus 0.1 degrees Celsius.  
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Figure 51.  Three-stage Compression Model Power Results. 
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Within Figure 52, the Three-stage Compression model utilization results are 

displayed for each synthesis type run. The graphs depict the total and individual utilizations 

per run. To note, I/O and BUFG utilization are not provided for the Vivado Default run. 

These are outliers in comparison to the remaining runs in which use 71 I/O slices and two 

BUFG slices. A direct correlation can be made between LUT and the synthesis strategy. 

As expected, the less LUT is used as area is optimized during Flow_AreaOptimized_high 

and Flow_AreaOptimized_medium. Then as the strategy moves towards performance, the 

more resources to include FFs as well as LUT on the FPGA are being utilized. Figure 53 

displays the contour plot of the absolute values of the RSNS-P4 signal input into the Three-

Stage Compression model as simulated through MATLAB and Simulink. Once again, a 

delay is noted within the Simulink results due to slight modeling error.
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Figure 52.  Three-stage Compression Model Utilization Results. 
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Figure 53.  Input RSNS-P4 Test Signal through the MATLAB and Simulink Three-Stage Compression Model.
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G. CHAPTER SUMMARY  

Within this chapter, the modeling, synthesis, and implementation results were 

presented. These results were compiled using the Simulink modeling and Vivado synthesis 

and implementation tools. The data was depicted using visual graphs in which help the user 

pinpoint the inflections within the data for appropriate analysis. Further analysis of the data 

can be done using the Vivado Data Captures in the Appendix. Each model reacted 

differently to each synthesis strategy; however, the differences across all strategies for a 

single model appeared to be minimal for smaller systems such as these. The differences 

between a Vivado Default run and the remaining runs per model were made clear as well. 
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VI.  CONCLUSION AND RECOMMENDATIONS  

This thesis involved two sequential objectives. The first objective was to generate 

two Simulink digital systems: the DRFM and three-stage compression. The second 

objective was to synthesize and implement the given models within Xilinx Vivado software 

(based on area, power, or timing) to ensure the designs would precisely implement onto a 

Xilinx Ultrascale+ FPGA. 

In this thesis, given pre-existing MATLAB code simulating the desired outputs, 

comparable models were designed in Simulink of two digital systems. These designed 

Simulink models consisted of individual components for the three-stage compression 

including but not limited to the range compression, Doppler filtering, and coherent 

integration as well as the overall designs for both the DRFM and three-stage compression. 

The overall designed models, however, are not complete. To finish the DRFM model, it 

must be integrated with a CORDIC, microprocessor, and piped (connected) with additional 

identical designs, which feed into one output for the desired deception outcome. To finish 

the three-stage compression, two additional models need to be created, a model for each 

moduli, and run in parallel of each other to subsequently decorrelate clutter which will 

maximize the unambiguous range and range resolution while suppressing the false alarm 

rate of returns. 

The synthesis and implementation of the models with Xilinx Vivado software was 

also investigated in this thesis. The individual sub systems were each run separately. The 

concept was to compare the results of varying synthesis strategies while the 

implementation strategy remained the same as a form of control. This resulted in the 

understanding that the target frequency at which the FPGA was clocked would vary 

depending on the model. For sub systems, they were clocked at 400-500 MHz, however, 

the total three-stage compression system could only clock at 100 MHz. Through research, 

it was found that although the overall system clocked significantly lower, the ability to 

manually change the desired routing within the model can be done by an experienced 

FPGA designer resulting in higher clock speeds. Furthermore, it was noted that Vivado 

Default runs had significant differences in comparison to the controlled strategies. 
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Therefore, the default results should be used as a guide to overall synthesis and 

implementation strategy and not as a standalone end strategy.  

Going forward, each model must be complete. To do so, additional training would 

be required for the user. Table 8 is a list of recommended training courses that would help 

facilitate successful designs. These courses are listed from basic to advanced and it is 

highly recommended that the most novice user attend all listed courses to facilitate the 

advanced designs required for proper DRFM and LPI radar operations. Once the models 

are complete, implementation onto the FPGA and testing is required for further interfacing 

into the analog portions of the overall systems. 

Table 8.   Recommended Training Courses. 

MathWorks Xilinx  

MATLAB Fundamentals  
(3 days) 

Designing FPGAs Using the Vivado Design Suite 
1 (2 days) 

Simulink for System and Algorithm Modeling  
(2 days) 

Designing FPGAs Using the Vivado Design Suite 
2 (2 days) 

Signal Processing with Simulink  
(3 days) 

Designing FPGAs Using the Vivado Design Suite 
3 (2 days) 

Verification and Validation of Simulink Models  
(1 day) 

Designing FPGAs Using the Vivado Design Suite 
4 (2 days) 

Simulink Model Management and Architecture  
(2 days) 

Designing with the UltraScale and UltraScale+ 
Architectures (2 days) 

Generating HDL Code from Simulink  
(2 days) 

Xilinx Partial Reconfiguration Tools & 
Techniques (2 days) 

DSP for FPGAs  
(3 days) 
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APPENDIX. VIVADO DATA CAPTURES  

A. DRFM MODEL DATA  

 

Figure 54.  Vivado Default Results for DRFM Model. 

 

Figure 55.  Vivado Flow_PerfOptimized_high Results for DRFM Model. 
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Figure 56.  Vivado Flow_AreaOptimized_high Results for DRFM Model. 

 

Figure 57.  Vivado Flow_AlternateRoutability Results for DRFM Model. 
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Figure 58.  Vivado Flow_AreaMultThresholdDSP Results for DRFM Model. 

 

Figure 59.  Vivado Flow_PerfThresholdCarry Results for DRFM Model. 
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Figure 60.  Vivado Flow_RuntimeOptimized Results for DRFM Model. 

B. RANGE COMPRESSION MODEL DATA  

 

Figure 61.  Vivado Default Results for Range Compression Model. 
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Figure 62.  Vivado Flow_AreaOptimized_high Results for Range Compression 
Model. 

 

Figure 63.  Vivado Flow_AreaOptimized_medium Results for Range 
Compression Model. 
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Figure 64.  Vivado Flow_AreaMultThresholdDSP Results for Range 
Compression Model. 

 

Figure 65.  Vivado Flow_AlternateRoutability Results for Range Compression 
Model. 
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Figure 66.  Vivado Flow_PerfOptimized_high Results for Range Compression 
Model. 

 

Figure 67.  Vivado Flow_PerfThresholdCarry Results for Range Compression 
Model. 
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Figure 68.  Vivado Flow_RuntimeOptimized Results for Range Compression 
Model. 

C. DATA STORAGE MODEL D ATA  

 

Figure 69.  Vivado Default Results for Data Storage Model. 
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Figure 70.  Vivado Flow_AreaOptimized_high Results for Data Storage Model. 

 

Figure 71.  Vivado Flow_AreaOptimized_medium Results for Data Storage 
Model.  
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Figure 72.  Vivado Flow_AreaMultThresholdDSP Results for Data Storage 
Model. 

 

Figure 73.  Vivado Flow_AlternateRoutability Results for Data Storage Model. 



 111 

 

Figure 74.  Vivado Flow_PerfOptimized_high Results for Data Storage Model. 

 

Figure 75.  Vivado Flow_PerfThresholdCarry Results for Data Storage Model. 
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Figure 76.  Vivado Flow_RuntimeOptimized Results for Data Storage Model.  

D. DOPPLER FILTER ING MODEL DATA  

 

Figure 77.  Vivado Default Results for Doppler Filtering Model.  
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Figure 78.  Vivado Flow_AreaOptimized_high Results for Doppler Filtering 
Model.  

 

Figure 79.  Vivado Flow_AreaOptimized_medium Results for Doppler Filtering 
Model. 
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Figure 80.  Vivado Flow_AreaMultThresholdDSP Results for Doppler Filtering 
Model. 

 

Figure 81.  Vivado Flow_AlternateRoutability Results for Doppler Filtering 
Model. 
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Figure 82.  Vivado Flow_PerfOptimized_high Results for Doppler Filtering 
Model. 

 

Figure 83.  Vivado Flow_PerfThresholdCarry Results for Doppler Filtering 
Model. 
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Figure 84.  Vivado Flow_RuntimeOptimized Results for Doppler Filtering 
Model. 

E. COHERENT INTEGRATION  MODEL DATA  

 

Figure 85.  Vivado Default Results for Coherent Integration Model. 
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Figure 86.  Vivado Flow_AreaOptimized_high Results for Coherent Integration 
Model. 

 

Figure 87.  Vivado Flow_AreaOptimized_medium Results for Coherent 
Integration Model. 
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Figure 88.  Vivado Flow_AreaMultThresholdDSP Results for Coherent 
Integration Model. 

 

Figure 89.  Vivado Flow_AlternateRoutability Results for Coherent Integration 
Model. 
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Figure 90.  Vivado Flow_PerfOptimized_high Results for Coherent Integration 
Model. 

 

Figure 91.  Vivado Flow_PerfThresholdCarry Results for Coherent Integration 
Model. 
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Figure 92.  Vivado Flow_RuntimeOptimized Results for Coherent Integration 
Model. 

F. THREE-STAGE COMPRESSION MODEL DATA  

 

Figure 93.  Vivado Default Results for Three-stage Compression Model. 
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Figure 94.  Vivado Flow_AreaOptimized_high Results for Three-stage 
Compression Model. 

 

Figure 95.  Vivado Flow_AreaOptimized_medium Results for Three-stage 
Compression Model. 
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Figure 96.  Vivado Flow_AreaMultThresholdDSP Results for Three-stage 
Compression Model. 

 

Figure 97.  Vivado Flow_AlternateRoutability Results for Three-stage 
Compression Model. 
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Figure 98.  Vivado Flow_PerfOptimized_high Results for Three-stage 
Compression Model. 

 

Figure 99.  Vivado Flow_PerfThresholdCarry Results for Three-stage 
Compression Model. 
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Figure 100.  Vivado Flow_RuntimeOptimized Results for Three-stage 
Compression Model. 
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