
�&�D�O�K�R�X�Q�����7�K�H���1�3�6���,�Q�V�W�L�W�X�W�L�R�Q�D�O���$�U�F�K�L�Y�H

�'�6�S�D�F�H���5�H�S�R�V�L�W�R�U�\

�7�K�H�V�H�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q�V �������7�K�H�V�L�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q���&�R�O�O�H�F�W�L�R�Q�����D�O�O���L�W�H�P�V

��������������

�)�,�(�/�'���3�5�2�*�5�$�0�0�$�%�/�(���*�$�7�(���$�5�5�$�<���+�,�*�+

�&�$�3�$�&�,�7�<���7�(�&�+�1�2�/�2�*�<���)�2�5���5�$�'�$�5���$�1�'

�&�2�8�1�7�(�5���5�$�'�$�5���'�5�)�0���6�,�*�1�$�/���3�5�2�&�(�6�6�,�1�*

�*�U�X�E�E�V�����+�D�Z�N�H�Q���/��

�0�R�Q�W�H�U�H�\�����&�$�����1�D�Y�D�O���3�R�V�W�J�U�D�G�X�D�W�H���6�F�K�R�R�O

�K�W�W�S�������K�G�O���K�D�Q�G�O�H���Q�H�W������������������������

�'�R�Z�Q�O�R�D�G�H�G���I�U�R�P���1�3�6���$�U�F�K�L�Y�H�����&�D�O�K�R�X�Q

NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

FIELD PROGRAMMABLE GATE ARRAY HIGH
CAPACITY TECHNOLOGY FOR RADAR AND

COUNTER-RADAR DRFM SIGNAL PROCESSING

by

Hawken L. Grubbs

June 2018

Thesis Advisor: Phillip E. Pace
Co-Advisor: Steven J. Iatrou

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
FIELD PROGRAMMABLE GATE ARRAY HIGH CAPACITY
TECHNOLOGY FOR RADAR AND COUNTER-RADAR DRFM SIGNAL
PROCESSING

5. FUNDING NUMBERS

6. AUTHOR(S) Hawken L. Grubbs

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
�&�(�1�7�(�5���)�2�5���-�2�,�1�7���6�(�5�9�,�&�(�6���(�/�(�&�7�5�2�1�,�&���:�$�5�)�$�5�(

�1�D�Y�D�O���3�R�V�W�J�U�D�G�X�D�W�H���6�F�K�R�R�O�����0�R�Q�W�H�U�H�\�����&�$����������������������

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
CRUSER, Monterey, CA 93943

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Radar systems often use low power, continuous waveform radio frequency (RF) modulations and
require high-speed adaptive signal processors to provide the necessary processing gain to detect small radar
cross-section targets in clutter on range-Doppler maps. Counter-radar technologies include digital RF
memories (DRFMs) that attempt to provide multiple, structured false targets with clutter, for example, using
a pipelined, finite impulse response arrangement of complex range bin processors. This thesis investigates
high-capacity field-programmable gate array (FPGA) technology to enable on-the-fly flexibility and
reconfigurability for both radar signal processing and DRFM electronic attack using a Xilinx Virtex
Ultrascale+. A three-stage range, Doppler, post-detection integration radar modulation compression circuit is
designed and quantified. A range compression circuit with a peak power consumption of 6.100W and a
post-implementation utilization of 11% was designed. The Doppler filter bank was designed at 400 MHz
with a peak power consumption of 2.688W and a post-implementation utilization of 9%. A coherent
integration processor at 400 MHz had a peak power consumption of 2.517W and a post-implementation
utilization of 9%. In addition, a DRFM complex range bin processor was designed and quantified at 500
MHz and had a peak power 2.543W with a post-implementation utilization of 11%.

14. SUBJECT TERMS
LPI radar, low probability of intercept radar, FPGA, field programmable gate array, Virtex
Ultrascale+, Vivado, Simulink, DSP, digital signal processing, DRFM, Xilinx

15. NUMBER OF
PAGES 149

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

FIELD PROGRAMMABLE GATE ARRAY HIGH CAPACITY TECHNOLOGY
FOR RADAR AND COUNTER -RADAR DRFM SIGNAL PROCESSING

Hawken L. Grubbs
Captain, United States Marine Corps
BS, University of Oklahoma, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION WARFARE SYSTEMS
ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2018

Approved by: Phillip E. Pace
 Advisor

 Steven J. Iatrou
 Co-Advisor

 Dan C. Boger
 Chair, Department of Information Sciences

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Radar systems often use low power, continuous waveform radio frequency (RF)

modulations and require high-speed adaptive signal processors to provide the necessary

processing gain to detect small radar cross-section targets in clutter on range-Doppler

maps. Counter-radar technologies include digital RF memories (DRFMs) that attempt to

provide multiple, structured false targets with clutter, for example, using a pipelined,

finite impulse response arrangement of complex range bin processors. This thesis

investigates high-capacity field-programmable gate array (FPGA) technology to enable

on-the-fly flexibility and reconfigurability for both radar signal processing and DRFM

electronic attack using a Xilinx Virtex Ultrascale+. A three-stage range, Doppler,

post-detection integration radar modulation compression circuit is designed and

quantified. A range compression circuit with a peak power consumption of 6.100W and a

post-implementation utilization of 11% was designed. The Doppler filter bank was

designed at 400 MHz with a peak power consumption of 2.688W and a

post-implementation utilization of 9%. A coherent integration processor at 400 MHz had

a peak power consumption of 2.517W and a post-implementation utilization of 9%. In

addition, a DRFM complex range bin processor was designed and quantified at 500 MHz

and had a peak power 2.543W with a post-implementation utilization of 11%.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. RADAR SYSTEMS AND COUNTER-RADAR DIGITAL RF

MEMORIES: THE NEED F OR HIGH CAPACITY
EMBEDDED PROCESSORS ...1

B. PRINCIPAL CONTRIBUTI ONS ..3
C. THESIS OUTLINE ..4

II. LOW PROBABILITY OF I NTERCEPT RADAR ..7
A. REQUIREMENTS ...7
B. GENERATING LPI WAVEF ORMS ...8

1. Polyphase Modulation (Polyphase Shift Keying)9
2. Robust Symmetrical Number System (RSNS)9

C. RSNS-P4 THREE-STAGE COMPRESSION11
1. Range Compression ...13
2. Doppler Filtering ..13
3. Integration ..14

D. CHAPTER SUMMARY ..16

III. DRFM..17
A. DRFM ARCHITECTURE ..17
B. NEED FOR AUGMENTATIO N IN ELECTRONIC ATTA CK

SYSTEMS ...19
C. CHAPTER SUMMARY ..21

IV. FIELD PROGRAMMABLE G ATE ARRAY ...23
A. OVERVIEW OF THE FPGA ...23

1. History ...24
2. Current Uses ...26

B. DIGITAL SIGNAL PROCESSING ON A FPGA29
1. Introduction to DSP ...29
2. Introduction to DSP for FPGAs ...32
3. DSP-FPGA Design Fundamentals ..33

C. XILINX VIRTEX ULTRAS CALE+ ..42
1. Overview ...42
2. Hardware ..43

D. SIMULATION PROCESS ..45
E. CHAPTER SUMMARY ..52

viii

V. MODELING, SYNTHESIS, AND IMPLEMEN�7ATION RESULTS ...��.......53
A. DIGITAL RADIO FREQUE NCY MEMORY (DRFM) 55

1. Model ...55
2. Synthesis / Implementation ...59

B. RANGE COMPRESSION ..64
1. Model ...64
2. Synthesis / Implementation ...66

C. DATA STORAGE ..71
1. Model ...71
2. Synthesis / Implementation ...73

D. DOPPLER FILTERING ...77
1. Model ...77
2. Synthesis / Implementation ...79

E. COHERENT INTEGRATION ...84
1. Model ...84
2. Synthesis / Implementation ...86

F. THREE-STAGE COMPRESSION ..91
1. Model ...91
2. Synthesis / Implementation ...93

G. CHAPTER SUMMARY ..98

VI. CONCLUSION AN D RECOMMENDATIONS ...99

APPENDIX. VIVADO DAT A CAPTURES ..101
A. DRFM MODEL DATA ...101
B. RANGE COMPRESSION MODEL DATA ..104
C. DATA STORAGE MODEL D ATA ...108
D. DOPPLER FILTERING MO DEL DATA ...112
E. COHERENT INTEGRATION MODEL DATA 116
F. THREE-STAGE COMPRESSION MODEL DATA 120

LIST OF REFERENCES ..125

INITIAL DISTRIBUTION LIST ...127

 ix

LIST OF FIGURES

Figure 1. Multifunction Sensor System. Source: [2]. ..3

Figure 2. LPI Waveform Generation and Compression. ...9

Figure 3. �³�3��-�5�6�1�6���&�K�D�Q�Q�H�O�V���D�Q�G���6�\�P�P�H�W�U�L�F�D�O���5�H�V�L�G�X�H�V���´���6�R�X�U�F�H�����>���@��11

Figure 4. �³�5�6�1�6-P4 CW Radar - Block Diagram Indicating the Processing
�*�D�L�Q���6�W�H�S�V���´���6�R�X�U�F�H�����>���@�� ...12

Figure 5. �³�5�6�1�6-P4 CW Radar - Range-�'�R�S�S�O�H�U���'�H�W�H�F�W�L�R�Q���0�D�S���´���6�R�X�U�F�H�����>���@��13

Figure 6. �³�5�D�Q�J�H-Velocity Maps for Each of the Three Channels. Target
Moves at Relative Speeds Sufficiently Different from the Sea Clutter
�6�S�H�F�W�U�D���´���6�R�X�U�F�H�����>���@�� ...15

Figure 7. LPI Signaling Environment and Integration with the Multifunction
Sensor System. ...16

Figure 8. Block Diagram of a Single Sideband DRFM. Source: [5].........................18

Figure 9. Block Diagram of a Double Sideband DRFM. Source: [5].19

Figure 10. Simplified Block Diagram of the DRFM Integrated with the I/Q
Phase Converter and DIS. Source: [7]. ..20

Figure 11. �³A Xilinx Zynq-�����������$�O�O���3�U�R�J�U�D�P�P�D�E�O�H���6�\�V�W�H�P���R�Q���D���&�K�L�S���´���6�R�X�U�F�H����
[19]. ..27

Figure 12. Model-Design Environment that Provides an Integrated Workflow
for Faster Waveform Engineering. ..34

Figure 13. Virtex UltraScale+ VCU 118 Evaluation Board. Source: [21].43

Figure 14. MATLAB / Vivado Sync Command. ..47

Figure 15. Successful MATLAB / Vivado Sync Return. ..47

Figure 16. HDL Workflow Advisor Selection. ...47

Figure 17. System Selector Pop-up. ..48

Figure 18. Section 1.1: Set Target Device and Synthesis Tool Window.48

Figure 19. Section 3.1.1: Set Basic Options Window. ..49

 x

Figure 20. Section 3.1.2: Advanced Options Window. ...50

Figure 21. Section 4.2.2: Run Implementation Window. ..51

Figure 22. Create Runs button. ..52

Figure 23. Implementation Critical Warnings. ..54

Figure 24. DIS-512 DRFM Block Diagram. ...57

Figure 25. DIS-512 DRFM Block Diagram Built in Simulink.58

Figure 26. DRFM Model Timing Results. ..59

Figure 27. DRFM Model Power Results. ..61

Figure 28. DRFM Model Utilization Results. ...63

Figure 29. Range Compression Block Diagram Built in Simulink.65

Figure 30. Range Compression Model Timing Results. ...66

Figure 31. Range Compression Model Power Results. ...67

Figure 32. Range Compression Model MATLAB and Simulink Results.69

Figure 33. Range Compression Model MATLAB and Simulink Results.70

Figure 34. Data Storage Block Diagram Built in Simulink.72

Figure 35. Data Storage Model Timing Results. ...73

Figure 36. Data Storage Model Power Results. ..74

Figure 37. Data Storage Model Utilization Results. ...76

Figure 38. Doppler Filtering Block Diagram Built in Simulink.78

Figure 39. Doppler Filtering Model Timing Results. ..79

Figure 40. Doppler Filtering Model Power Results. ...80

Figure 41. Doppler Filtering Model Utilization Results. ..82

Figure 42. Doppler Filtering Model MATLAB and Simulink Results83

Figure 43. Coherent Integration Block Diagram Built in Simulink.85

Figure 44. Coherent Integration Model Timing Results. ..86

 xi

Figure 45. Coherent Integration Model Power Results. ..87

Figure 46. Coherent Integration Model Utilization Results.89

Figure 47. Coherent Integration Model MATLAB and Simulink Results90

Figure 48. Top Level Block Diagram of Three-stage Compression Built in
Simulink. ..92

Figure 49. Three-stage Compression Block Diagram Built in Simulink.92

Figure 50. Three-stage Compression Model Timing Results......................................93

Figure 51. Three-stage Compression Model Power Results.94

Figure 52. Three-stage Compression Model Utilization Results.96

Figure 53. Input RSNS-P4 Test Signal through the MATLAB and Simulink
Three-Stage Compression Model. ...97

Figure 54. Vivado Default Results for DRFM Model...101

Figure 55. Vivado Flow_PerfOptimized_high Results for DRFM Model.101

Figure 56. Vivado Flow_AreaOptimized_high Results for DRFM Model...............102

Figure 57. Vivado Flow_AlternateRoutability Results for DRFM Model.102

Figure 58. Vivado Flow_AreaMultThresholdDSP Results for DRFM Model.103

Figure 59. Vivado Flow_PerfThresholdCarry Results for DRFM Model.103

Figure 60. Vivado Flow_RuntimeOptimized Results for DRFM Model.104

Figure 61. Vivado Default Results for Range Compression Model..........................104

Figure 62. Vivado Flow_AreaOptimized_high Results for Range Compression
Model. ..105

Figure 63. Vivado Flow_AreaOptimized_medium Results for Range
Compression Model. ..105

Figure 64. Vivado Flow_AreaMultThresholdDSP Results for Range
Compression Model. ..106

Figure 65. Vivado Flow_AlternateRoutability Results for Range Compression
Model. ..106

 xii

Figure 66. Vivado Flow_PerfOptimized_high Results for Range Compression
Model. ..107

Figure 67. Vivado Flow_PerfThresholdCarry Results for Range Compression
Model. ..107

Figure 68. Vivado Flow_RuntimeOptimized Results for Range Compression
Model. ..108

Figure 69. Vivado Default Results for Data Storage Model.108

Figure 70. Vivado Flow_AreaOptimized_high Results for Data Storage Model.109

Figure 71. Vivado Flow_AreaOptimized_medium Results for Data Storage
Model. ..109

Figure 72. Vivado Flow_AreaMultThresholdDSP Results for Data Storage
Model. ..110

Figure 73. Vivado Flow_AlternateRoutability Results for Data Storage Model.110

Figure 74. Vivado Flow_PerfOptimized_high Results for Data Storage Model.111

Figure 75. Vivado Flow_PerfThresholdCarry Results for Data Storage Model.111

Figure 76. Vivado Flow_RuntimeOptimized Results for Data Storage Model.112

Figure 77. Vivado Default Results for Doppler Filtering Model.112

Figure 78. Vivado Flow_AreaOptimized_high Results for Doppler Filtering
Model. ..113

Figure 79. Vivado Flow_AreaOptimized_medium Results for Doppler Filtering
Model. ..113

Figure 80. Vivado Flow_AreaMultThresholdDSP Results for Doppler Filtering
Model. ..114

Figure 81. Vivado Flow_AlternateRoutability Results for Doppler Filtering
Model. ..114

Figure 82. Vivado Flow_PerfOptimized_high Results for Doppler Filtering
Model. ..115

Figure 83. Vivado Flow_PerfThresholdCarry Results for Doppler Filtering
Model. ..115

 xiii

Figure 84. Vivado Flow_RuntimeOptimized Results for Doppler Filtering
Model. ..116

Figure 85. Vivado Default Results for Coherent Integration Model.116

Figure 86. Vivado Flow_AreaOptimized_high Results for Coherent Integration
Model. ..117

Figure 87. Vivado Flow_AreaOptimized_medium Results for Coherent
Integration Model...117

Figure 88. Vivado Flow_AreaMultThresholdDSP Results for Coherent
Integration Model...118

Figure 89. Vivado Flow_AlternateRoutability Results for Coherent Integration
Model. ..118

Figure 90. Vivado Flow_PerfOptimized_high Results for Coherent Integration
Model. ..119

Figure 91. Vivado Flow_PerfThresholdCarry Results for Coherent Integration
Model. ..119

Figure 92. Vivado Flow_RuntimeOptimized Results for Coherent Integration
Model. ..120

Figure 93. Vivado Default Results for Three-stage Compression Model.120

Figure 94. Vivado Flow_AreaOptimized_high Results for Three-stage
Compression Model. ..121

Figure 95. Vivado Flow_AreaOptimized_medium Results for Three-stage
Compression Model. ..121

Figure 96. Vivado Flow_AreaMultThresholdDSP Results for Three-stage
Compression Model. ..122

Figure 97. Vivado Flow_AlternateRoutability Results for Three-stage
Compression Model. ..122

Figure 98. Vivado Flow_PerfOptimized_high Results for Three-stage
Compression Model. ..123

Figure 99. Vivado Flow_PerfThresholdCarry Results for Three-stage
Compression Model. ..123

Figure 100. Vivado Flow_RuntimeOptimized Results for Three-stage
Compression Model. ..124

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF TABLES

Table 1. Related Technologies to FPGAs. Source: [8]. ...24

Table 2. Current FPGA Applications. Adapted from [8]. ..28

Table 3. 1990s Multimedia PC Enabled by DSP Technologies. Source: [8]...........30

Table 4. DSP Applications. Source: [8]. ..32

Table 5. Virtex UltraScale+ VCU 118 Evaluation Board Features. Source:
[21]. ..44

Table 6. Total Resources for Project Part: xcvu9p-plga2104-2L-e-es1.44

Table 7. List of Installed MATLAB/Simulink Toolboxes and Add-ons.46

Table 8. Recommended Training Courses. ..100

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF ACRONYMS AND ABBREVIATIONS

ADC analog-to-digital converter

ASIC application specific integrated circuit

ASSP application-specific standard parts

BPF band-pass filter

CLB configurable logic block

CMT clock management tiles

CPLD complex programmable logic device

CW continuous wave

DAC digital-to-analog converter

DCM digital clock manager

DDS direct digital synthesis

DIS digital imaging synthesizer

DP data processing

DRFM digital radio frequency memory

DSB double sideband

DSP digital signal processing

EA electronic attack

EW electronic warfare

FF flip -flop

FFT fast Fourier transform

FMCW frequency modulated CW

FPGA field programmable gate array

FSK frequency shift keying

Go-CFAR greatest of (GO) constant false alarm rate (CFAR)

GPP general purpose processor

I in-phase

IF intermediate frequency

IFFT inverse fast Fourier transform

I/O input and output

IOB input/output block

 xviii

IP internet protocol

ISAR inverse synthetic aperture radar

LO local oscillator

LPF low pass filter

LPI low probability of intercept

LUT lookup table

MAC multiply and accumulate/add

MATLAB matrix laboratory software

MIMO minimum input minimum output

PLD programmable logic device

PLL phase locked loop

PROM programmable read-only memory

PSK polyphase shift keying

Q quadrature

RAM random access memory

RF radio frequency

ROM read only memory

RSNS robust symmetrical number system

RSNS-P4 robust symmetrical number system �± P4

SNR signal-to-noise ratio

SoC system on a chip

SRL shift register

SSB single sideband

VHDL Verilog hardware description language

WHS worst hold slack

WNS worst negative slack

 xix

ACKNOWLEDGMENTS

I would like to take the time to thank my thesis advisor, Dr. Pace, for his leadership,

mentorship, and guidance over the past year. This thesis experience has been an endeavor

in which I have personally learned more than I could have ever imagined in this field of

expertise. I would also like to thank Max Hainz for the countless hours he spent helping

me understand the pre-existing MATLAB simulations and further developing the required

Simulink models for this thesis. Without his time and dedication, this thesis would not have

been possible. I would like to thank Steve Iatrou for his support as a co-advisor and guiding

me through the IWSE curriculum while understanding that with my knowledge learned

from NPS, that I could indeed take on such a demanding thesis topic. Additionally, many

thanks are also aimed toward CRUSER personnel, who through their generosity and

sponsorship, made it possible for me to explore thesis topic ideas and eventually attend the

required courses to broaden my knowledge and understanding of the presented material.

I would like to thank my parents, Kenneth Brad and Rae Nita Grubbs, for instilling

in me the absolute importance of an education as a young child and to never forget who I

am and where I come from. Furthermore, I would like to thank my children, Colt, Levi,

Chloe, Cheyenne, and Conner, for always being the light in my life. Each of you

continually make me proud, especially with how well each of you handled the difficulty of

family separation for the past two years. Last but certainly not least, I would like to thank

the love of my life, Rachael, for the love and support you have given me over the past

thirteen years. Without that love and support, I would certainly not be the man I am today.

You are the strongest woman I know for being able to serve as a single mother in my

absence while earning your undergraduate degree. You are a shining example for our

children; may the future bring many more wonderful memories for us to hold as a family.

 xx

�³THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. RADAR SYSTEMS AND COUNTER-RADAR DIGITA L RF MEMORIES:
THE NEED FOR HIGH CA PACITY EMBEDDED PROC ESSORS

Low probability of intercept (LPI) radar systems are vital in many regions around

the world requiring force protection through surveillance. These radar systems often use

low power, continuous waveform (CW) modulations to remain undetected while retaining

the �³capability to detect and track targets in clutter� ́ [1]. The transmitted CW signal

�S�U�R�Y�L�G�H�V�� �D�� �S�U�R�F�H�V�V�L�Q�J�� �J�D�L�Q�� �E�D�V�H�G�� �R�Q�� �W�K�H�� �U�D�G�D�U�¶�V�� �S�H�U�L�R�Gic modulation. The radar return

waveform from the target is then distinguished using coherent compression. Many periodic

modulation techniques are used for digital CW radar systems such as frequency shift

keying (FSK), e.g., Costas sequencing, frequency modulated CW (FMCW), noise and

noise modulated waveforms. Also used are polyphase shift keying (PSK) with codes such

as the Frank and P4 codes. The PSK techniques have inherently low sidelobes and are also

compatible with digital sidelobe suppression techniques. Other CW modulation techniques

such as hybrid PSK/FSK combinations have also been recently a topic of active

investigation [1].

Lately, much attention has been given to PSK due to the many digital CW

modulations available. LPI characteristics are then achieved with a periodic autocorrelation

function that has inherently low time sidelobes. The PSK modulations have a code period

T containing limited amounts of range bins, each containing differing phase values. The

subcode width bt is related to both the �Z�D�Y�H�I�R�U�P�¶�V��range resolution and the 3-dB

bandwidth while the �³processing gain ()PG of the radar is equal to the number of

subcodes�´���>���@. One important example of a PSK technique is the P4. The P4 code exhibits

a perfect periodic autocorrelation in that it has zero sidelobes. Using a polyphase code for

CW modulation however, presents a major limitation in that the modulation code period

greatly confines the unambiguous range.

Extending the unambiguous range through the use of the Robust Symmetrical

Number System (RSNS) has been investigated. By combining the RSNS with the P4

 2

polyphase modulation, the unambiguous range can be divided up into different moduli,

with each modulus relating to a different P4 code period. Transmitting the moduli (P4 code

periods) in series and recombining the ambiguous detection results can resolve the targets

range at considerably longer ranges than the unambiguous range pertaining to only 1 code

period. In addition, the RSNS-P4 has Gray code properties that can serve to detect target

range errors.

A digital RF memory (DRFM) is a device that can receive, store, modulate and

retransmit, an RF signal. The DRFM is arguably one of the most important technologies

for electronic warfare (EW) since it can retransmit an intercepted radar waveform and can

put complex modulations on the return signal such that when integrated within the radar,

can deceive for example, the track loop. �7�R���F�U�H�D�W�H���D���³�V�W�U�X�F�W�X�U�H�G�´���I�D�O�V�H���W�D�U�J�H�W���W�K�D�W���K�D�V���V�K�D�S�H��

or amplitude in range-Doppler space, a standard DRFM kernel is not sufficient. That is,

this type of target cannot be accomplished with a DRFM kernel alone. Hence, an

augmented kernel must be used such as a high-speed, high capacity Field Programmable

Gate Array (FPGA).

The circuit designs in this thesis are two-fold. First, the circuit design for a post

analog-to-digital converter (ADC) compression process for a RSNS-P4 radar signal

processor is designed for use within a Multifunction Sensor System for which the antenna

is shown in Figure 1. A range compression processor is followed by a Doppler filter bank.

This is then followed by a range-Doppler post-detection integration processor. A range

compression circuit with a peak power consumption of 6.100W and a post-implementation

utilization of 11% was designed. The Doppler filter bank was designed at 400 MHz with a

peak power consumption of 2.688W and a post-implementation utilization of 9%. A

coherent integration processor at 400 MHz had a peak power consumption of 2.517W and

a post-implementation utilization of 9%. The second circuit design concept in this thesis is

to design a DRFM single complex range bin processor that accepts the sampled input

imaging radar �Z�D�Y�H�I�R�U�P�¶�V�� �S�K�D�V�H�� �Y�D�O�X�H�� �W�R��first �S�U�R�G�X�F�H�� �W�K�H�� �U�D�Q�J�H�� �E�L�Q�¶�V�� �G�H�V�L�U�H�G�� �'�R�S�S�O�H�U��

profile using an accumulator and then the desired radar cross section using a multiplier.

The final stage contains the range bin delay where the range bin consists of an adder. This

 3

DRFM processor runs at 500 MHz and is quantified with a peak power 2.543W with a

post-implementation utilization of 11%.

Figure 1. Multifunction Sensor System. Source: [2].

B. PRINCIPAL CONTRIBUTI ONS

For this thesis, the first step was to investigate the concepts involved in radar signal

processing. Detailed within the outline, the idea was to grasp an understanding from

macroscopic to microscopic. This included the design requirements of an LPI radar, the

specific modulation types used within the MATLAB code, and the three-stage compression

which was the ultimate task at hand: to replicate the MATLAB version of the three-stage

compression within Simulink. These investigations led into the study of DRFMs, which

use many of the same design requirements and modulation techniques. The only difference

was that DRFMs require an additional microprocessor to ensure false targets or images are

injected into a return signal. The first DRFM designs focused purely on false target returns

TX horn
array

RX horn
array

Spiral
array

Switching
network

Cancellation
array

RF circuit
boards

 4

whereas DRFM designed used today focus on the deception of high range resolution

profiling radar and range Doppler imaging sensors.

Subsequently, the use of FPGAs was examined. This study began through a

MathWorks sponsored course �W�L�W�O�H�G�� �³DSP for FPGAs� ́in Natick, Massachusetts. It was

here that the fundamentals of Xilinx Vivado, DSP regarding FPGA synthesis and

implementation, and the overall impact of area, power, and timing were introduced.

Afterwards, familiarity with the specific FPGA purchased for this thesis was required.

Through this familiarity of the FPGA, many design features could be rectified without need

of compiling or synthesis/implementation. This in turn saved much time, which in the

world of FPGAs, is extremely scarce.

Finally, the process of modeling, synthesis, and implementation of each digital

system was investigated. This included many hours of Simulink tutorials and phone calls

to MathWorks to ensure that the MATLAB derived results matched precisely with that of

Simulink. �7�K�L�V���S�U�R�Y�H�G���W�R���E�H���D���F�K�D�O�O�H�Q�J�H���G�X�H���W�R���6�L�P�X�O�L�Q�N�¶�V��reliance on power of twos and

HDL specific blocks. Many concepts were used to overcome these requirements such as

the periodic ambiguity function, which not only performed the required target detection

but also was built in a way that greatly increased the speed at which the FPGA could

process the bit streams. Once the models were complete, the synthesis and implementation

within Vivado began. About eight runs per model were constructed. Four of the models are

considered sub models of the overall three-stage compression model. The idea was to test

the subcomponents and relate it to the overall scheme. The relationships were summarized

within graphs and subsequently compared.

C. THESIS OUTLINE

In Chapter II, the LPI Radar concepts are discussed. This chapter delves into the

requirements of LPI Radars, the specifics of how to generate LPI modulation, in addition

to the RSNS-P4 Three-stage Compression. Chapter III discusses DRFM architecture as

well as the need for augmentation in Electronic Attack (EA). Chapter IV discusses FPGA

history and uses, digital signal processing (DSP) on FPGAs, and the specifics of the

XILINX Virtex Ultrascale+ FPGA utilized during this research. The modeling, synthesis,

 5

and implementation results are then analyzed and discussed within Chapter V. Chapter VI

concludes and provides recommendations for follow-on research.

 6

�³THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. LOW PROBABILITY OF I NTERCEPT RADAR

A. REQUIREMENTS

The safest sensor on the modern battlefield is one that can perform surveillance and

conduct operations without being identified as doing such. The most capable sensor that

can operate in smoke, rain, day or night is the radio frequency sensor that transmits

electromagnetic energy for target detection. If the radar transmits high-energy pulses, it

can detect targets at long ranges. However, their high peak power, pulsed radiated output

�V�L�J�Q�D�O�V���D�U�H���H�D�V�L�O�\���L�Q�W�H�U�F�H�S�W�H�G���E�\���W�K�H���D�G�Y�H�U�V�D�U�\�¶�V���Q�R�Q-cooperative intercept receiver. This

often leads to them executing an immediate counter-attack using several options with the

deadliest being an anti-radiation missile targeting the radar system and operators.

Arguably the most important development in radar system technology is the LPI

radar that �³uses a special emitted waveform intended to prevent the non-cooperative

intercept receiver from intercepting the radiation� ́ as discussed in [3]. The LPI radar

emission is a continuous waveform (CW) with low power. Typical output power ranges

from one to twenty milliwatts and is usually transmitted from a solid-state array. To

perform target measurements, the CW carrier is periodically modulated with a bandwidth

that depends on the range resolution. The range resolution also determines the bandwidth.

A larger bandwidth can be achieved making it difficult for narrowband receivers to detect

and intercept the signal. This technique is much like what is used in telecommunication

and radio communications, which is called, spread spectrum. The idea is to deliberately

spread the signal in the frequency domain causing it to increase in bandwidth while also

lowering its overall peak power. If spread spectrum is used effectively, it can essentially

hide the signal within noise making it difficult to intercept.

Another consideration for achieving LPI radar conditions also include using

frequency variations that may propagate well for an intended target but cannot effectively

be acknowledged by a passive or intercept receiver due to atmospheric absorption. Finally,

an antenna design requirement for an LPI radar is to have ultra-low side lobes. The return

signal to the radar is, for all intents and purposes, considered feint. Large side lobes would

 8

cause enough interference to deafen the return signal defeating the overall purpose of the

LPI radar.

As advancements continue with LPI radars, so come advancements to intercept

receivers. Near-peer adversaries are increasingly interested in the ability to perform

electronic attack on friendly radar or communication assets. �³�7�R���6�H�H���D�Q�G���1�R�W���%�H���6�H�H�Q�´���L�V��

the first line of defense in countering these intentions [3].

B. GENERATING LPI WAVEFORMS

In [4], Paepolshiri states that

s�L�Q�F�H�� �S�X�U�H�� �&�:�� �Z�D�Y�H�I�R�U�P�V�� �F�D�Q�Q�R�W�� �U�H�V�R�O�Y�H�� �W�K�H�� �W�D�U�J�H�W�¶�V�� �U�D�Q�J�H���� �S�H�U�L�R�G�L�F��
modulation techniques are used, such as frequency modulated CW,
frequency shift keying, noise modulation, PSK, as well as hybrids of these
techniques.�´��Paepolshiri found that the initial action to developing CW
radar systems using periodic modulation compression is deciding on the
necessary range resolution. According to Paepolshiri, this in turn �³sets the
transmitted bandwidth of the waveform for the above techniques (except for
frequency shift keying where the range resolution is dependent to the
duration of each frequency).

 Paepolshiri goes on to say that

due to the advances in high-speed processing and direct digital synthesis
modules, the use of PSK techniques in CW radar is highly advantageous.
CW radars that transmit and receive PSK signals can result in LPI radar
systems with small range resolution cells and are ideally suited for many
sensor applications for situational awareness including minimum input
minimum output (MIMO) configurations. [4]

Additionally, PSK allows for RSNS-P4 generation, as depicted in Figure 2, which

is the modulated signal utilized within this research.

 9

Figure 2. LPI Waveform Generation and Compression.

1. Polyphase Modulation (Polyphase Shift Keying)

The covert nature of polyphase modulation (or polyphase shift keying) is due to the

code not being available to the receiver. �³The unambiguous range of the radar is limited by

the code period. That is, the unambiguous range is limited by the number of subcodes

within the code period�´���>���@. The P4 polyphase code is unique due to it being a perfect code

�Z�L�W�K���]�H�U�R���S�H�U�L�R�G�L�F���D�X�W�R�F�R�U�U�H�O�D�W�L�R�Q���V�L�G�H�O�R�E�H�V�����³�7�K�H���S�K�D�V�H���V�H�T�X�H�Q�F�H���R�I���D���3�����V�L�J�Q�D�O���L�V���J�L�Y�H�Q��

by

�� �� �� ��2
1 1k

c

k k
N
�S

� I � S� �� �� �� (2.1)

where k is the subcode index and cN �L�V���W�K�H���Q�X�P�E�H�U���R�I���V�X�E�F�R�G�H�V���Z�L�W�K�L�Q���W�K�H���F�R�G�H���S�H�U�L�R�G�´

[1]. The phase distribution is both symmetrical and parabolic. It is these properties that

allow the P4 modulation to lend itself nicely to being compatible with the RSNS described

next.

2. Robust Symmetrical Number System (RSNS)

�³�7�K�H���5�6�1�6���L�V���D���P�R�G�X�O�D�U���V�\�V�W�H�P���F�R�Q�V�L�V�W�L�Q�J���R�I��2N �t integer sequences with each

sequence associated with a coprime modulusim ���´��Details on the RSNS are given in [1].

An example for 3N � is

 10

1 1 1

2 2 2

3 3 3

0 0 0 1 11 2 2 2 1 1 1 0 0 0 1 1 1 ...
1 0 0 0 11 1 2 2 2 1 1 1 0 0 0 1 ...
1 1 0 0 01 1 1 2 2 2 1 1 1 0 0 ...

m m m
m m m

m m m

� ª � º
� « � »
� « � »� ¬ � ¼

.

The above sequences �³�H�[�K�L�E�L�W���D�Q���L�Q�W�H�J�H�U���*�U�D�\���F�R�G�H���S�U�R�S�H�U�W�\���P�D�N�L�Q�J���W�K�H���5�6�1�6���Z�H�O�O���V�X�L�W�H�G��

for radar signal processing applications which can benefit from the inherent error detection

and correction capability. To use the RSNS for radar signal processing, it is only necessary

to know the greatest length of combined sequences without ambiguities, known as the

dynamic range�� �ÖM �D�Q�G���L�W�V���S�R�V�L�W�L�R�Q���´ As described in [1], combining the P4 with the RSNS

(RSNS-P4) the phase relationship is

�� ��2, ,
2 2i im k m k i i

i

RS m m
m
� S � S

�I � ª � º
� �� ��� « � »

� ¬ � ¼
 , (2.2)

�³�Z�K�H�U�H����,im kRS is the symmetrical residue, and {1,2,..., }
ick N�• is the phase index. The

code length is given as 2
ic c iN NN Nm� � ��� ́

 11

Figure 3. �³P4-RSNS Channels and Symmetrical Residues.� ́Source: [1].

C. RSNS-P4 THREE-STAGE COMPRESSION

The polyphase is transmitted, reflected from the target and upon receive, down

converted and digitized, as shown in Figure 4. The digitized RSNS-P4 waveform is strobed

into memory for receiver processing. The receive processing consists of range

compression, Doppler processing and range-Doppler integration. The total processing gain

TPG is then T R D IPG PG PG PG� �� �� which is determined from the required RiSNR input,

the maximum detection range RmaxR , and the �³greatest of constant false alarm rate�´��

(GOCFAR). The range compression determinesRPG and is determined from the maximum

unambiguous detection range and range resolution while the �³Doppler filtering process

determines DPG from the max target velocity at the unambiguous range during the process

 12

sync time. The range-Doppler map is shown in Figure 5. The coherent integration of the

range-�'�R�S�S�O�H�U�´ output is used to derive IPG over the process sync time [1].

Figure 4. �³RSNS-P4 CW Radar - Block Diagram Indicating the Processing
Gain Steps.� ́Source: [1].

 13

Figure 5. �³RSNS-P4 CW Radar - Range-Doppler Detection Map.� ́
Source: [1].

1. Range Compression

The range compression multiplies the �³fast Fourier transform (FFT) of the complex

received signal by the FFT of a reference (transmitted RSNS-P4 phase) waveform and then

taking the inverse fast Fourier transform (IFFT). Described in [1], the processing gain from

the range compression is

�� ��10log
iR cPG N� .� ́ (2.3)

2. Doppler Filtering

The Doppler filters for a particular range bin are calculated by executing the FFT

algorithm on all the range bins collected during the number of code periods iM , described

in [1] as

 �� ��1
ii b cM t N f� � ' (2.4)

and is a function of the Doppler resolution f�' , the subcode width bt and the code period

for the modulus
icN . The estimated PG from the Doppler filtering is described in [1] as

 14

 �� ��10logD iPG M� . (2.5)

3. Integrati on

Coherent integration provides a means to enhance the SNR and increase the

processing gain, which is described in [1] as

�� ��10logI iPG N� (2.6)

where
iN is the number of maps that are averaged together coherently. The range-Doppler

maps after the coherent integration are shown in Figure 6 �³for all three RSNS-P4 channels

or moduli (note the different range scales). Targets that have significant velocity separation

�I�U�R�P���W�K�H���F�O�X�W�W�H�U���F�D�Q���E�H���G�H�W�H�F�W�H�G�´���>���@��

 15

Figure 6. �³Range-Velocity Maps for Each of the Three Channels. Target
Moves at Relative Speeds Sufficiently Different from the Sea Clutter

Spectra.� ́Source: [1].

 16

Figure 7. LPI Signaling Environment and Integration with the Multifunction
Sensor System.

D. CHAPTER SUMMARY

In this chapter, the requirements for LPI radar were presented. PSK modulation as

an ideal modulation for LPI radars, the concept of RSNS, and advantages of using RSNS-

P4 were also presented. Additionally, the RSNS-P4 three-stage compression was presented

which broke down the properties of range compression, Doppler filtering, and coherent

integration. The next chapter presents the concept of Digital Radio Frequency Memory and

its continuing evolution to deceive current and future radar signatures.

 17

III. DRFM

A. DRFM ARCHITECTURE

The DRFM provides the ability to capture radiated emissions and generate precise,

coherent replicas, making them important in applications such as signal jamming,

deception of covert communications, SIGINT operations, decoys, radar transmitters,

simulations, and test equipment as discussed in [5]. A block diagram of single sideband

DRFM is shown in Figure 8. At the receive antenna, a bandpass filter is used to pass only

the signals of interest. A Local Oscillator (LO) is used to tune the DRFM to intercept the

desired signal in the down conversion process. A Low Pass Filter (LPF) removes the

components above Nyquist (anti-aliasing) along with unwanted mixer products. This

configuration gives good rejection of spurious signals while retaining all the advantages of

a conventional superheterodyne. At the output of the LPF, the signal is digitized by an

ADC with resolution typically on the order of one to eight bits depending on the DRFM

throughput. The higher the resolution, the slower the conversion process. After digitization,

the samples are strobed into memory. High-speed, dual-ported memory is often used so the

stored digital signal is captured and replayed simultaneously through memory control.

�³Dual-ported memory usually requires a serial-to-parallel and parallel-to-serial circuitry to

achieve the necessary data-rate conversion to match the dual-�S�R�U�W���P�H�P�R�U�\�¶�V���L�Q�S�X�W���R�X�W�S�X�W��

bandwidth�´���>5]. With the use of multi-ported memory, recording and multiple replays can

occur simultaneously. The retrieved digital signal is strobed from memory to a DAC to

reconstitute the signal back into an analog waveform. After lowpass filtering, the baseband

signal is mixed with the LO to reconstruct the radio frequency (RF) version (typically a

single sideband modulator). A band-pass filter (BPF) at the output serves to transmit only

the desired frequencies [5].

 18

Figure 8. Block Diagram of a Single Sideband DRFM. Source: [5].

Figure 9 shows a block diagram of a double sideband DRFM. As discussed by Dr.

Pace in [5], this architecture is similar to Figure 8 except that the phase of the DRFM signal

is retained throughout the digitization process using both an I and Q channel. These are

produced by the signals Q intermediate frequency (IF) modulator at the input. The Q IF

modulator also down converts the input RF signal. Also shown in this configuration is the

capability to retrieve the stored digital signal for further, more complicated signal

processing using FPGAs or DSPs. This additional processing power can be used to create

a variety of complex waveforms. For example, digital image synthesis for inverse synthetic

aperture radar (ISAR) counter targeting applications require a level of signal processing

that cannot be accomplished with simple memory recall and bit manipulation. The

synthesis of the image requires focusing the Doppler frequency at each range bin, and

amplitude modulating the output correctly such that the proper image is constructed [5].

Dr. Pace goes on to say that the double sideband (DSB) architecture requires the

lowest sampling rate and has the capability of retaining the phase of the signal. The single

sideband (SSB) is a less complex architecture; however, a higher sampling rate is required,

and the phase of the intercepted signal is not retained. Due to this higher sampling rate, the

bit resolution is less [5].

 19

Figure 9. Block Diagram of a Double Sideband DRFM. Source: [5].

Dr. Pace also notes that to process the signals of interest, the DRFM uses a memory

controller. The memory controller simply provides the memory address and control signals

for the signal storage and recall operations. Several user controls are also available. The

storage enable function is used to designate the pulse to be stored. The store address

designates where the leading edge of the pulse is to be stored. The recall initiates a recall

cycle at the next word clock time. The recall output triggers must be synchronized with the

DRFM clock for coherent output. The recall address is the address where recall begins, and

the delay time is the throughput delay impressed upon the stored signal [5].

Lastly, Dr. Pace determines that the development of a common DRFM kernel

interface specification has been of interest in the Electronic Warfare (EW) community. The

purpose of this specification is to define a common narrowband DRFM kernel that meets

the jamming requirements of the Department of Defense. This kernel can be utilized in

existing and future countermeasure systems. The interface architecture provides potential

for efficient upgrades and simplifies DRFM-based system development, leading to a cost

savings during development [5].

B. NEED FOR AUGMENTATIO N IN ELECTRONIC ATTACK SYSTEMS

In [6], the authors propose that �³the need for coherent countering of ISAR imaging

sensors remains a high priority for many electronic warfare systems.�´��They state that with

the development of an �³all-digital image synthesizer (DIS), multiple false-target images

 20

can be generated from a series of intercepted ISAR chirp pulses to provide a novel counter

targeting and counter lock-on capability.� ́The authors comment that the DIS �³can be also

be deployed for Suppression of Enemy Air Defense and any operation that encounters

interrogating ISAR imaging sensors��� ́The authors then conclude that the �³device can be

deployed on aircraft, ships, unmanned air or surface vehicles to provide a superior imaging

decoy and deception capability� ́[6].

In [7], Pak Ang examines and shows the concept of embedding an I/Q Phase

Converter and DIS into a DRFM in Figure 10. �,�Q���$�Q�J�¶�V���W�K�H�V�L�V�����Whis DRFM can intercept

and store RF waveforms as well as retransmit them subsequently. His thesis adds that upon

capturing an ISAR waveform, the DRFM uses a local oscillator to down convert the signal

to an intermediate frequency; and that these signals are separated into I and Q components

and then digitized by the ADCs into digital samples that are stored in a high-speed memory.

An I/Q phase converter extracts phase information from the digitized waveforms to

generate phase samples for the Digital Imaging Synthesizer (DIS) to process. Ang

continues that after modulation by the DIS is complete, the DRFM converts the processed

signal back into an analog form. Finally, the DRFM transmits the analog signal back to the

ISAR [7].

Figure 10. Simplified Block Diagram of the DRFM Integrated with the I/Q
Phase Converter and DIS. Source: [7].

 21

In [6], the authors remark that the �³position of the false target in range can be

controlled by delaying in time, the read-out samples going to the image synthesizer.�´��They

state that the

image synthesizer performs the complex modulations to synthesize the
temporal lengthening and amplitude modulation due to the many recessed
and reflective surfaces of the desired false target and generates a realistic
Doppler profile for each surface. The FPGA contains a parallel array of
identical digital modulators with one modulator for each false target range
bin. That is, each modulator synthesizes the part of the overall image that is
within the false-target range bin associated with that modulator. [6]

The authors state further that �³each complex output pulse I(m,n) is the superposition

of rN copies of the intercepted pulse, each delayed with respect to one another by the delay

within the modulator, scaled differently by the gains (,)2g r n and phase rotated by (,)inc r n�I

described in [6] as

1
(,) (,)(,)

0

(,) 2
r

inc

N
j m r n r ng r n

r

I m n e� I � I
��

� � � �

�

� �¦ (3.1)

where m represents the sample number within the chirp pulse, n is the pulse number index,

and r represents the range bin modulator index. The target extent, amplitude, and target

motion are controlled by the gain and phase increment coefficients applied to the FPGA� ́

[6].

C. CHAPTER SUMMARY

In this chapter, the current and proposed DRFM processes were presented to

include the need for an augmentation update within electronic attack systems. This

augmentation would require an I/Q Converter and DIS to be integrated into the current

DRFM architecture. This addition would ensure that not only traditional radars are

deceived but ISAR as well. The next chapter presents an overview of FPGAs, DSP utilizing

FPGAs, the specific Xilinx FPGA used during this research, and the simulation process

used to recreate the results in the follow-on chapter.

 22

�³THIS PAGE INTENTIONALLY LEFT BLANK

 23

IV. FIELD PROGRAMMABLE G ATE ARRAY

A. OVERVIEW OF THE FPGA

In [8], the training course states that FPGAs are a fully reconfigurable resource: the

implemented functionality is defined and programmed after manufacture, and this process

can be repeated indefinitely. The programmable resources of the FPGA are configured into

a desired digital circuit by downloading the user created design as a bitstream. Several

steps are involved in creating, verifying, and preparing a design for download to an FPGA

[8]. Table 1 provides a list of related technologies like FPGAs.

Historically, Application Specific Integrated Circuits (ASICs) have been faster,

extra energy efficient, and typically achieved much more performance than their FPGA

counterparts. In [9], the authors observed that implemented FPGA designs �³need an

average of 40 times as much area, draw 12 times as much dynamic power, and run at one

third the speed of corresponding ASIC implementations.� ́ In [9], the training course

determines that

much more recently, FPGAs including the Xilinx Virtex-7 or maybe the
Altera Stratix-5 came to rival corresponding ASIC and application-specific
standard parts (ASSP) through the process of delivering considerably
minimal power consumption, improved speeds, lower overall production
costs, less implementation utilization, and improved options for �µ�R�Q-the-�I�O�\�¶
re-configuration. [9]

Previously, implemented designs requiring and incorporating six to ten ASICs can

now produce the same results using a single FPGA [8].

In [8], the training course illustrates that

advantages of FPGAs include the ability to reprogram in the field to fix bugs
and may include a shorter time to market and lower non-recurring
engineering costs. Vendors can also take a middle road by developing their
hardware on ordinary FPGAs but manufacture their final version as an
ASIC so that it can no longer be modified after the design has been
committed. [8]

Due to ASIC complexity, revenue losses driving higher production costs, and slow

time-to-market trends, FPGAs have become a much-needed solution for higher-volume

 24

applications. Mentioned later in this chapter, many FPGAs can perform partial

reconfiguration, which allows one section of the unit to be reprogrammed while various

other regions keep on running.

Table 1. Related Technologies to FPGAs. Source: [8].

Appli cation Specific Integrated Circuits
(ASICs)

Unlike FPGAs, the function of an ASIC is defined at
manufacture, and it cannot be reconfigured. However,
ASICs are generally smaller, lower power and when
manufactured in high volume, cheaper to produce. The
time for design and manufacture of ASICs is longer than
for FPGAs, which is a consideration where fast time-to-
market is important.

Digital Signal Processors (DSPs) DSPs historically had one processing engine of fixed
wordlength, although modern devices may have several
cores. In comparison, FPGAs have parallel processing
capabilities, and the designer is not restricted to pre-
specified wordlengths. As DSPs and FPGAs offer such
different capabilities, they are often used for different tasks
within a larger system.

General Purpose Processors (GPPs) While DSP processors are optimized for fast arithmetic,
multiply-accumulate type operations, GPPs have the
flexibility to deal with a variety of applications but are not
suited to the fast arithmetic demanded by DSP.

Processor Arrays / Sea of Processors This type of device exhibits some of the characteristics of
an FPGA (parallelism, interconnects) with the processor
architecture of a DSP. One of the challenges associated
with this type of device is efficiently programming them.

Complex Programmable Logic Devices
(CPLDs)

CPLDs are like FPGAs in the sense that they are parallel
and reconfigurable, but they are smaller and far less
sophisticated. CPLDs have very low power consumption
and are suited to "glue logic" type applications.

Structured ASIC Structured ASICs offer a compromise between ASICs and
FPGAs, and there are several slightly different
architectures that fall into this category. The benefits of
lower power, and cheaper high-volume production than
FPGAs.

FPGA-hardening services The major FPGA companies offer a path to high-volume
production based on an FPGA prototype. These are
appropriate when the full reprogrammability of an FPGA is
not required, are cheaper than standard FPGAs, and faster
to produce than ASICs.

1. History

In [10], the article states that the FPGA industry began from �³programmable read-

only memory (PROM) and programmable logic devices (PLDs).� ́Both PROMs and PLDs

 25

had the ability to be uniformly and �³mass-programmed either in a factory or in the field by

the user (field programmable).� ́The programmable logic of the initial FPGA design was

�³hard-wired between logic gates� ́[10].

The article adds that in the late 1980s, Steve Casselman proposed to the Naval

Surface Warfare Center that a personal computer might be created that could apply 600,000

reprogrammable array gates. The system was funded as well as in 1992 a patent was given

because of the program eventually naming Casselman as �³the expert in the field of virtual

computing�´��[10].

As found in [11] and [12], David W. Page and LuVerne R. Peterson were awarded

with patents in 1985. These patents evolved into several of the �³industry's foundational

principles for programmable logic blocks, arrays, and gates.� ́

In [13], Ron Wilson claims Altera was founded in 1983, In 1984, Altera delivered

the EP300, which �Z�D�V�� �W�K�H�� �F�R�P�S�D�Q�\�¶�V�� �I�L�U�V�W�� �S�U�R�G�X�F�W�� This reprogrammable logic device

�³�R�I�I�H�U�H�G���H�U�D�V�D�E�L�O�L�W�\���E�\���V�K�L�Q�L�Q�J���D���8�9���O�D�P�S���W�K�U�R�X�J�K���W�K�H���Z�L�Q�G�R�Z���D�E�R�Y�H���W�K�H���G�L�H���´ The article

states that the logic device maintained a quartz window allowing the UV lamp to penetrate

the die, erasing the �³EPROM cells that held the device configuration� ́[13].

In [14] and [15], the articles state that Xilinx co-founders Ross Freeman and

Bernard Vonderschmitt invented the XC2064 in 1985, which was the first commercially

viable FPGA. The sources explain that the XC2064 began a new technology and

marketable demand using �³programmable gates and interconnects between gates.� ́The

XC2064 had �³64 configurable logic blocks (CLBs), with two three-input lookup tables

(LUTs).� ́As explained in [16] and [17], after two decades, �³Freeman was entered into the

National Inventors Hall of Fame for his invention.� ́

Unchallenged, Altera and Xilinx expanded through the latter part of the 1980s to

the mid-1990s. At this point, competition began to form within the technological market

causing Altera and Xilinx shares to decrease rapidly. In [15], the article explains that by

1993, �³Actel (now Microsemi) was serving about 18 percent of the market.� ́In [18], the

article reports that by 2013, �³Altera (31 percent), Actel (10 percent) and Xilinx (36 percent)

together represented approximately 77 percent of the FPGA market.� ́

 26

The ability to mass produce as well as the sophistication of circuitry within FPGAs

made significant leaps during the 1990s. The overall use of FPGAs transitioned from being

primarily used by telecommunications and networking to be utilized in everyday consumer,

automotive, and industrial applications by the early 2000s.

2. Current Uses

�$�� �W�U�H�Q�G�� �K�D�V�� �I�R�U�P�H�G�� �Z�L�W�K�L�Q�� �W�K�H�� �S�D�V�W�� �G�H�F�D�G�H�� �W�R�� �G�H�Y�H�O�R�S�� �D�� �³�F�R�P�S�O�H�W�H�� �V�\�V�W�H�P�� �R�Q�� �D��

�S�U�R�J�U�D�P�P�D�E�O�H���F�K�L�S�´ as seen on the Xilinx website in [19]. This idea of having a system on

a chip (SoC) involves the combination and assembling of logic blocks and interconnects

of previous generations of FPGAs as well as fixed microprocessors and associated

peripherals. The website states that the Zynq-7000 All Programmable SoC is an example

of such hybrid technology and is depicted in Figure 11. The website adds that this chip

�³includes a 1.0 GHz dual-core ARM Cortex-A9 MPCore processor embedded within the

FPGA's logic fabric.� ́The website concludes that his hybrid technology uses specific high-

performance processors and pair them �³with programmable logic architectures or multi-

channel ADC and DAC analog peripherals to their flash-based FPGA fabric�´���>19].

 27

Figure 11. �³A Xilinx Zynq-7000 All Programmable System on a Chip.� ́Source:
[19].

Implemented within the FPGA logic are soft processor cores, which provide a hard-

macro processor alternate approach. Examples of such technology with soft processor

cores are the Nios II, MicroBlaze and Mico32. Reconfigurable computing or systems is the

idea of programming current-day FPGAs prior to or during use which allows CPUs to meet

any task by reconfiguring themselves. Additionally, non-FPGA technology is emerging.

 28

Microprocessors, such as the Stretch S5000, are software configurable and maintain

FPGA-like programmable cores, which, in turn, provide an array of processor cores all

within the same chip.

In [20], the article states that �³companies like Microsoft have started to use FPGAs

to accelerate high-performance, computationally intensive systems (like the data centers

that operate their Bing search engine), due to the performance per watt advantage FPGAs

deliver.� ́Table 2 provides a list of current FPGA Applications per specified category.

Table 2. Current FPGA Applications. Adapted from [8].

Aerospace and Defense Audio Broadcast Automotive

Avionics/DO-254 Connectivity Solutions Real-Time Video
Engine High Resolution Video

Communications Portable Electronics EdgeQAM Image Processing

Missiles & Munitions Software-Defined Radio Encoders Vehicle Networking and
Connectivity

Secure Solutions Digital Signal Processing (DSP) Displays Automotive Infotainment
Space Speech Recognition Switches and Routers

Medical High Performance Computing Industrial Integrated Circuit Design
Ultrasound Servers Industrial Imaging ASIC Prototyping
CT Scan Super Computers Industrial Networking Computer Hardware Emulation
MRI SIGINT Systems Motor Control

X-ray High-end RADARs

PET High-end Beam Forming Systems

Surgical Systems Data Mining Systems

Data Center Consumer Electronics Security Wired Communications
Servers Digital Displays Industrial Imaging Optical Transport Networks
Security Digital Cameras Secure Solutions Network Processing

Hardware security module Multi -function Printers Hardware security
module

Connectivity Interfaces

Routers Portable Electronics Image Processing
Switches Set-top Boxes

Gateways Flash Cartridges

Load Balancing

Video & Image Processing Scientific Instruments Wireless
Communications

Bioinformatics

High Resolution Video Lock-in amplifiers Baseband

Video Over IP Gateway Boxcar averagers
Connectivity
Interfaces

Digital Displays Phase-locked loops Mobile Backhaul

Industrial Imaging Radio Astronomy Radio

Computer Vision

 29

B. DIGITAL SIGNAL PROCE SSING ON A FPGA

In [8], the training course states that from a DSP perspective, the resources available

on FPGAs have evolved significantly over the last 25 years. Early FPGAs comprised a

general-purpose array of CLBs and routing resources, surrounded by IOBs at the edge of

the chip. Over time, integrated memory blocks and fast arithmetic slices have been

introduced. The functionality of these arithmetic components has increased too. Initially,

embedded multipliers were provided, and now DSP engineers have access to an integrated

tile containing an adder, multiplier and accumulator. In terms of system integration,

embedded processors and communications interfaces have become standard. Naturally, the

speed and size of FPGAs has increased also, as have the sophistication of clock

management resources [8].

1. Introduction to DSP

In the 1980s, the arrival of microprocessors such as Intel 8086 and Rockwell 6502

triggered the so-called Microprocessor Revolution, as stated in [8]. This resulted in

commonly accessible and cost-effective computer equipment. Besides several early 1980s

home computer systems as well as video gaming machines, the primary development was

the IBMPC in 1980 as well as the Macintosh in 1984. This proliferation of computer

systems in the workplace, in the market, and the house, entirely altered business processes

along with the way info is stored as well as processed. By the 1990s,

multimedia PC was essentially enabled by DSP technology, devices, and
algorithms. Additionally, the processing power of DSP (micro-) processors
was increased by an order of magnitude with a decrease in price. The digital
reliability, repeatability, and programmability of DSP has widely displaced
analog systems in both consumer and industrial markets. [8]

Table 3 is a list of the individual DSP technology and components of early 1990

machines and Table 4 is a list of current DSP Applications per specified category.

 30

Table 3. 1990s Multimedia PC Enabled by DSP Technologies.
Source: [8].

Windows 95 OS Facilities for speech coding / compression (ADPCM, LPC, GSM etc.). Digital
filtering, FFT, correlation facilities all within Microsoft Excel spreadsheet.

Video Acquisition Card Fast ADC / DAC technology and DSP video coding algorithms for MPEG etc.
FFTs, DCTs, sub band coding etc.

Disk Drive Most modern disk Speech synthesis, speech recognition. Drives now include a
DSP processor for control purposes.

Teleconferencing Card Enabled by DSP coding for audio and video, and adaptive acoustic echo
cancellation.

Sound-card 16-bit sound technology sampling up to 48kHz. Sigma delta technology allows
low cost implementation; DSP processor implements algorithms for decimation,
interpolation, mixing, filtering, coding etc.

Speech Processing DSP enabled digital recording answering machine.

FAX-modem Enabled by adaptive signal processing algorithms for echo cancellation, data
equalization

Furthermore, a distinction must be made between data processing (DP) and DSP

according to the training course. DP and DSP are both

ideally performed by high speed computers which have very fast numerical
capabilities. DP is the arithmetic processing of (sampled) stored integer
numerical quantities (accounts, salary spreadsheets and so on); fast
processing of data is desirable but not essential. DSP is concerned with the
arithmetic processing of numerical representations of real world analog
quantities. Real time performance is necessary, such that processed outputs
are produced as fast as input data is available. For both, a suitable sampling
rate must be chosen (not too high and not too low). [8]

In short, DSP means real-time arithmetic operations and DP means non-real time

arithmetic operations [8].

Additionally, the training course provides the following DSP Strategies:

a. Linear Filtering

Removing high frequency background noise from speech. Linear filtering
strategies can be used in any application where it is known that two signals
can be discriminated by the frequency bands they occupy. [8]

 31

b. Signal Transforms

Signal component analysis, signal detection etc. Transforming a signal into
a different domain often allows a signal to be more conveniently analyzed
and viewed. For example, transformation into the s-domain (Laplace)
allows more straightforward mathematical manipulation. Transforming into
the frequency domain allows the frequency variation of a signal to be seen
more easily than in the time domain [8]

c. Non-linear Signal Enhancement / Filtering

Removing of impulse noise by median / order type filtering. Some signals
may often benefit from non-linear filtering. A well-known audio non-linear
filter is for impulsive noise, whereby a signal is contaminated by impulses.
Given that an impulse essentially contains all frequencies, frequency or
phase discriminating filter is not of use. Hence, a median filter may be used
whereby the N most recent samples are ordered and the median value is
chosen. Hence, very large magnitude outliers are likely to be ignored if the
duration of the N samples is somewhat longer than the duration of the
impulsive noise [8].

d. Signal Analysis / Interpretation / Classification

Designed for ECGs, speech recognition, image recognition, etc. The aim
here is to compare known �µpatterns�¶ with input signals to recognize the input
signal and output some parameterized information. [8]

e. Compression / Coding:

Hi-fidelity audio (Minidisc), mobile telecoms, videoconferencing, ECG
signal compression and so on. Compression is one of the most important
areas within the audio and telecommunication business at present.
Compressed formats such as MP3 are on the rise in the high-fidelity audio
market. For telecommunications speech requires to be coded into as small
a bandwidth as possible, but while maintaining sufficient signal quality.
With each new mobile generation, the availability of more DSP processing
power allows the bit rate to reduce but while still maintaining good
intelligible quality. [8]

 32

Table 4. DSP Applications. Source: [8].

Telecommunications
Mobile (GSM, CDMA, IS-95); Digital / Video Telephony; Data Modems;
ADSL

Digital Audio CD; CDI; DAT; DCC; Surround Sound, MPEG; MiniDisc; Dolby Prologic

Digital Video/Imaging High Definition TV (HDTV); MPEG; Medical Imaging; JPEG; DVD

Speech Based Systems Speech Recognition; Speech Coding / Compression; Speech Synthesis

Multimedia PC FAX / Modem / Graphics / Audio; Teleconferencing; Software Radio

Biomedical Systems ECG Electrocardiograph; EEG - Electroencephalograph; Hearing Aids

Industrial Motor Control; Disk Drives; Process Controllers; Noise Cancellation

Defense Guidance Systems; Sonar; Radar; Secure Communications

Automotive GPS Navigation; Engine Management; Digital Comms / Audio Systems

2. Introduction to DSP for FPGAs

In [8], the training course points out that a DSP algorithm or problem is often

specified in terms of its �³multiply and accumulates/add� ́ (MAC) requirements. When

comparing two algorithms, if both perform the same job but one with less MACs, then the

�R�W�K�H�U���Z�R�X�O�G���F�O�H�D�U�O�\���Z�R�X�O�G���E�H���³�F�K�H�D�S�H�U�´���D�Q�G���W�K�H���E�H�V�W���F�K�R�L�F�H�� However, this implies some

assumptions: one is that the required MACs are the same. In traditional DSP processor-

based situations, it is likely that a 16-bit device that will be processing 16-bit inputs will be

using a 16-bit digital filter coefficient. With FPGAs, this constraint is removed due to the

ability to use as many, or as few, bits as are required. Therefore, optimization and scheduled

DSP algorithms can be chosen and implemented in completely different ways [8].

The training course states further that standards are constantly evolving which

means that devices, like FPGAs, that can be reconfigured and upgraded become seamless

base-stations, access points, etc. DSP enables many aspects of everyday life but even

though they all have different specific requirements, usually the low-level processing is

similar i.e., filters, transforms, sine wave synthesis, adaptive filtering, and sampling rate

changes [8].

The training course finds that DSP is built upon arithmetic; therefore, special

attention must be given to the implementation of arithmetic operations. Most important are

addition and multiplication in which the arithmetic wordlength must increase to prevent

arithmetic overflow from input to output. FPGAs allow wordlengths to be specified with

 33

complete flexibility, and without any computational overhead. Before FPGAs arrived, DSP

circuits could be constructed but with less flexibility such as integrated circuits and gate

arrays but had fixed wordlengths. This also caused operations with shorter wordlengths to

be just as computationally expensive due to requiring one execution. DSPs are still useful,

particularly for sequential processing, and often complement FPGAs in a DSP system,

especially when FPGAs allow the user to choose exactly the required wordlength [8].

3. DSP-FPGA Design Fundamentals

a. General FPGA Architecture

In [8], the training course describes that most of the FPGA area is logic fabric,

which is the building blocks of combinational and sequential elements connected by local

and long-distance wires. Input / Output Blocks (IOBs) allow signals to be routed into and

out of the FPGA. The logic fabric is made up from CLBs and signals are routed between

CLBs using programmable interconnects. The programmable aspect of the

interconnections is partly realized by the Switch Matrices located beside each CLB. CLBs

contain slices that contain LUTs, Flip-Flops (FFs), and a few logic gates [8]. The functions

implemented by these resources are programmable, as depicted by the design process, as

depicted in Figure 12.

 34

Figure 12. Model-Design Environment that Provides an Integrated Workflow for
Faster Waveform Engineering.

The training course agrees that logic units differ in size, composition, and name.

However, in all cases, their Logic Blocks include both combinational logic and registers,

and routing resources are required for connecting blocks together. LUTs can be utilized in

four modes: to implement a combinatorial logic function, as Read Only Memory (ROM),

as Random-Access Memory (RAM), or as shift registers [8].

In more recent FPGAs, the training course states that the grouping of slices into

CLBs has changed to 2 slices per CLB. From a high-level perspective, a slice from one of

the 4-slice CLBs consists of 2 LUTs and 2 FFs. However, in newer devices, the grouping

of LUTs and FFs into slices differs. As mentioned previously, LUTs can also be configured

as RAM, i.e., memory that can be written to, as well as read from. LUTs can also act as

shift registers (SRLs). A 4-input LUT can provide up to 16 bits of memory and implement

up to length 16 shift registers, whereas a 6-input LUT can provide up to 64 bits of memory

and implement up to length 32 shift registers. When building shift registers or RAMs using

distributed resources (i.e., LUTs), several LUTs can be combined as necessary to build

 35

larger sizes. Likewise, RAMs capable of storing more bits can be created by combining

LUTs (although for very large memories, Block RAMs are a more appropriate choice) [8].

As well as implementing 16 or 32 (i.e., maximum length) shift registers, they can

also be programmed to implement any length up to that as stated by the training course.

The slice FF at the output of the LUT can be used to add another one-clock cycle delay,

which is beneficial for timing performance. Hence, with one LUT-FF pair, a delay of up to

17 clock cycles can be realized. In other types of FPGAs, with SRL32s and 2 FFs per LUT,

up to 34 cycles can be implemented [8].

The training course goes on to say that IOBs feature a pad which allows a signal on

the FPGA to be connected to an external signal (input/output direction is defined by

multiplexers). IOB FFs may optionally register signals as they enter or depart the chip;

registering inputs and outputs is generally recommended and beneficial for timing

performance. Ultimately, one IOB is required for each 1-bit signal [8].

The training course determines that each FPGA device is normally associated with

two or more packages. The choice of package defines which of the IOB pads on the FPGA

are physically bonded to pins on the package, and therefore which IOBs are available for

use. Therefore, some of the IOBs may not be connected to a pin. Some of the IOBs may be

connected to pins which are used for reserved purposes (like power provision,

programming etc.), and hence are not available to the user. Depending on the package

chosen, many fewer usable pins may be available than the maximum number the FPGA

device would support. To clarify, the term bonded IOBs is given in resource utilization

reports and unbonded IOBs are not available when using that particular package [8].

b. Memory

In [8], the training course reveals that columns of dedicated memories (Block

RAMs), and high-speed DSP functional blocks (DSP48x slices) are also integrated into the

array. The spacing of Block RAMs and DSP48s is sparser than CLBs. Block RAMs are

located in columns close to the edges of the FPGA (to buffer input and output data from

the chip) and next to DSP blocks (for enhanced DSP performance). Additionally, Block

 36

RAMs can be combined to form larger RAMs or be subdivided into smaller ones while

also being implemented as first-in first-out buffers [8].

Additionally, these arrangements allow for DSP48 to become dedicated high-speed

arithmetic blocks and Block RAMs to become dedicated high-speed memory. DSP48

comprise a multiplier, accumulator, and in most cases, a pre-adder. They also have several

internal registers provided such that the DSP48 may be configured to perform several

different functions. Block RAMs are more suitable than distributed RAM (i.e., using LUTs

as memory elements) for larger memories. The width of Xilinx memories is 18-bits.

However, they can also be configured to operate in several different dimensions. For

example, the number of entries can be doubled if the storage wordlength is shortened to

nine bits [8].

c. Communications Interfaces

In [8], the training course states that Xilinx supports high-speed connectivity

applications by embedding hard Internet Protocol (IP) blocks into its devices. Like DSP48

slices, these are dedicated blocks of silicon. They have a compact footprint and consume

much less power than an equivalent design implemented in the logic fabric. Alternatively,

soft IP blocks are also available. These are provided as Verilog hardware description

language (VHDL) source and may be incorporated into a design if required. Soft cores give

the customer the flexibility to include or omit an interface in any give design, but do not

achieve the power savings of a hard core [8].

Additionally, RocketIO GTP Transceivers are low power and support a variety of

protocols and standards. RocketIO GTX and GTH Transceivers are higher speed

alternatives. Ethernet MAC Controllers and PCI Express interfaces are also available. By

providing commonly used, standards-based communications interfaces as hard or soft

cores, Xilinx reduces the design effort required by its customers [8].

d. Clocking Resources

In [8], the training course notes that Digital Clock Managers (DCMs) undertake

several functions. One of these is to provide deskewed clocks, i.e., a different copy of the

 37

synthesized clock is created for each clock region of the FPGA, appropriately phased to

account for the delays in distributing the clocks throughout the device. Clock circuits and

buffers are used to convey these different clocks to the various resources and regions of

the FPGA. Clock buffers also act as clock enables, and this helps to reduce power

consumption (i.e., each FPGA resource is only clocked and enabled when required).

Another benefit of DCMs is that they reduce jitter present on the input clock. More recent

devices also include a Phase Locked Loop (PLL), which helps to reduce jitter further [8].

Additionally, Clock Management Tiles (CMTs) were introduced in the Virtex-5

series, with each CMT comprising 2 DCMs and 1 PLL. Each of these components can be

used in isolation or in cascade with another element. A common such usage is to precede

the DCM with a PLL in order that the PLL filters jitter from the input reference signal [8].

Finally, Mixed Mode Clock Managers (MMCMs) first appeared in the Virtex-6 and

Spartan-6 series, also based around the DCM and PLL, but offer enhanced options. For

example, instead of the four coarse clock output phases provided in the Virtex-5 (0o, 90o,

180o, and 270o), the MMCM provides 8 (at 0o, 45o, 90o, 135o, 180o, 225o, 270o, and 315o).

Fine-grained phase shifting is also possible, and the achievable resolution depends on the

clock frequency [8].

e. Critical Path and Clock Frequency

Signals experience logic and routing delays through all logic paths as they

propagate from one clocked register to the next. The critical path of a system is defined by

[8�@���D�V���³�W�K�H���O�R�Q�J�H�V�W���F�R�P�E�L�Q�D�W�R�U�L�D�O���O�R�J�L�F���S�D�W�K���E�H�W�Z�H�H�Q���W�Z�R���F�O�R�F�N�H�G���U�H�J�L�V�W�H�U�V���´ �,�W���L�V���³�O�R�Q�J�H�V�W�´��

in terms of propagation time. The critical path delay is the delay along the critical path, i.e.,

the longest combinatorial propagation delay through the circuit. However, the critical path

delay relates to any group of combinatorial logic that could be simple gates or more

complex operations such as arithmetic calculations [8].

Additionally, when considering arithmetic, the training course notes that the signals

are not single 1-bit wires, but buses formed from several bits, in accordance with the

arithmetic wordlengths. The last bit of the result (the most significant bit, in the case of

addition and subtraction) is not available until the calculation is complete, and all the

 38

necessary carries have propagated from the least significant bit to the most significant bit.

Therefore, the longer the arithmetic wordlengths involved, the longer the critical path [8].

The training course also notes that when the logical operations are significant, the

associated logic delays dominate over the routing delays. �7�K�H�� �W�H�U�P�� �³�U�R�X�W�L�Q�J�� �G�H�O�D�\�´��

describes the time it takes signals to travel along the wires through, switch matrices and so

on, between the logic elements in the circuit. �7�K�H���³�O�R�J�L�F���G�H�O�D�\�´���G�H�V�F�U�L�E�H�V���W�K�H���W�L�P�H���L�W���W�D�N�H�V��

a signal to pass through the logic elements in the circuit. DSP-FPGA designers must have

a greater influence over logic delays in terms of how the design is set for implementation.

Routing delays are largely managed by the design tool (specifically the place and route

process), or at a more advanced level, by manual intervention in this process. As described

in [8], this leads to the critical path delay , which is the sum of several logic and

routing delays therefore

 . (4.1)

The critical path is significant because it restricts the maximum frequency at which

the design can be clocked as described within the training course. As shown in (4.1), the

critical path is the sum of several logic and routing delays which directly relates to the

maximum clock frequency as described in [8] as

 (4.2)

Therefore, if the total is 1.6 ns within the design, then

 (4.3)

This means that if the clock frequency applied is less than 625MHz, then a signal

leaving one register arrives at the next register within on clock period. This is vital to

preserve t�K�H���L�Q�W�H�J�U�L�W�\���R�I���W�K�H���F�L�U�F�X�L�W�¶�V���I�X�Q�F�W�L�R�Q�D�O�L�W�\ [8].

 39

For the design to be valid, the output from the combinatorial logic must become

valid during the same clock period as the input. If this were not the case, then it would be

as if the combinatorial contained a 1-clock delay, which of course it cannot. From a

mathematical perspective, this would fundamentally change the implemented algorithm,

thus making it incorrect.

Signal changes occurring during the setup and hold times of the registers must be

avoided as well, i.e., a short period before and after the active clock transition. Hence the

true minimum clock period is slightly longer than the critical path delay, more accurately

described in [8] as

. (4.4)

The FPGA design tools (e.g., Xilinx ISE) will take these into account when

analyzing the minimum clock period.

Having noted the dependence of clock frequency on length of the combinatorial

logic path within the training course, additional registers would be inserted to break the

combinatorial logic path to an acceptable size. This process is referred to as pipelining.

By dividing the combinatorial logic path into two equal sections, a pipeline register

increases the maximum clock frequency by a factor of 2. However, for every pipeline

register, the latency is increased by one clock cycle [8].

In many cases, increasing the latency by one or two clock cycles to improve

timing performance is an acceptable outcome. However, one notable exception is in

feedback loops where each new calculation cannot start until the result of the last one has

been computed; in this instance, delaying the readiness of the output is not helpful. More

generally, pipeline registers must be placed within a design according to a formal method

to preserve the integrity of the DSP function implemented by the circuit [8].

f. FPGA Power Consumption

In [8], the training course describes that FPGA power consumption comprises two

components: static and dynamic power. FPGA companies are driven to reduce both. Static

power consumption is associated with the circuitry that maintains the programmed

 40

configuration of the FPGA. This is ultimately affected by transistor leakage current, which

tends to rise with smaller process geometries and it is effectively constant for any given

device. Dynamic power consumption is attributed to the switching of logic elements due

to the actual processing of data by the configured design. In contrast, this tends to reduce

with shrinking process geometries.

Additionally, FPGA companies can reduce static power consumption via the design

of their devices, in terms of both process and architecture. By replacing commonly used

functionality with integrated silicon blocks, they can reduce both static and dynamic power.

Dynamic power consumption varies linearly with capacitance and frequency and with the

square of the voltage described in [8] as

. (4.5)

A DSP engineer can influence dynamic power consumption through intelligent

design. For example, polyphase filters can be used to implement rate changes in multi-

rate designs while clocking each circuit element at the lowest possible rate [8].

g. Partial Reconfiguration

In [8], the training course mentions that partial reconfiguration is a relatively new

technique whereby selected partitions of an FPGA device are allocated with two or more

different modules but configured with only one of them at any given time. These modules

can be used to reconfigure the selected partition without affecting the rest of the FPGA

design while maintaining multiple such regions on one device.

Additionally, reconfiguration is accomplished by downloading the bitstream of the

desired module onto the FPGA. This replaces the existing configuration of that partition,

effectively swapping the old design out and inserting the new one in its place. Partial

reconfiguration is therefore ideal when the design can be separated into functional blocks

occupying the same area on the FPGA and when only one of these is required at any one

time.

Subsequently, the training course states that there are several potential benefits

associated with partial reconfiguration. Firstly, from a commercial perspective, using this

 41

technique may mean that a significantly smaller FPGA device can be specified, thus

leading to cost savings. As the design consumes fewer FPGA resources, it will also expend

less static power than an equivalent design in which all modules are programmed on the

device simultaneously. And finally, from a development perspective, partitioning the

design in this manner may be more suitable for an engineering team undertaking a large

and complex FPGA design.

Partial reconfiguration is also an enabler of software-defined radio, wherein the

functionality of high-speed DSP subsystems running on the FPGA are defined at runtime,

via software [8].

h. Implementation Metrics

The training course mentions that to tell if a design is good given the architecture

of an FPGA, the goal is to optimize one of the following metrics or to achieve a desirable

balance between them:

(1) Resource Utilization / Area �± The amounts of the various FPGA resources
required to implement the user design. This primarily includes slices,
DSP48s, and Block RAMs

(2) Timing Performance �± The maximum frequency at which the circuit can be
clocked. This is affected by the critical path.

(3) Power Consumption �± Overall FPGA power consumption is affected by the
dimensions of the FPGA, the number of circuit elements being clocked, and
their frequency of operation.

Additionally, there are certain interactions between these three metrics. For

example, often the technique of pipelining is used to reduce the critical path of a design

and hence increase the maximum frequency at which it can be clocked. Pipelining involves

the insertion of registers, which obviously increase the overall resource cost. However,

with the increased clock frequency, improved resource sharing may be possible, hence

reducing resource cost, etc. The implications of the design choices are not always

straightforward. Therefore, achieving the best balance requires intelligent DSP design

based on knowledge of the device architecture [8].

 42

C. XILINX VIRTEX ULTRAS CAL E+

1. Overview

a. Product Description

In [21], the Xilinx webpage states that the �³�9�L�U�W�H�[�Š���8�O�W�U�D�6�F�D�O�H���Œ���)�3�*�$���9�&�8��������

Evaluation Kit is the ideal development environment for evaluating the cutting edge Virtex

UltraScale+ FPGAs. Virtex UltraScale+ devices provide the highest performance and

integration capabilities in a FinFET node, including both the highest serial I/O and signal

processing bandwidth, as well as the highest on-chip memory density� ́[21].

The webpage continues stating that this �³kit is ideal for prototyping applications

ranging from 1+ Tb/s networking and data center to fully integrated radar/early-warning

systems� ́[21].

b. Key Features and Benefits

Presented in [21], the following key features and benefits are listed accordingly:

(1) Dual 80-bit DDR4 Component Memory

(2) RLDRAM3 (2x36-bit) Memory

(3) Dual QSFP28 Interfaces

(4) PCIe Gen3 x16 (VCCINT = 0.85V)

(5) VITA 57.4 FMC+ Interface

(6) VITA 57.1 FMC Interface

(7) Samtec FireFly Interface [21]

 43

2. Hardware

Depicted in Figure 13 is the Virtex UltraScale+ board and chipset that was utilized

throughout the research conducted for this thesis. Table 5 is an additional list of features

that are broken down according to functionality. Table 6 provides a list of total available

resources for area utilization or logic fabric utilization.

Figure 13. Virtex UltraScale+ VCU 118 Evaluation Board. Source: [21].

 44

Table 5. Virtex UltraScale+ VCU 118 Evaluation Board Features.
Source: [21].

Communications &
Networking

Clocking
Expansion
Connectors

Configuration

10/100/1000 Mbps
Ethernet (SGMII)

SI5335A Quad Clock
Generator

FMC+ HSPC
connector (24 �±
28Gbps GTY
Transceivers, 80
differential user
defined pairs)

Onboard JTAG
configuration circuitry to
enable configuration over
USB

Dual 4x28Gbps
QSFP28 cages

Si570 IIC Programmable
LVDS Clock Generator

 FMC HPC1
connector (58
differential user
defined pairs)

JTAG header provided for
use with Xilinx download
cables such as the Platform
Cable USB II

Samtec FireFly
4x28Gbps Interface

SI5328C Clock
Multiplier and Jitter
Attenuator

 PMOD header QSPI flash memory

Dual USB-to-UART
Bridge with mico-B
USB connector

2x SMA MGT
Reference Clock inputs

 IIC

RJ45 Ethernet
connector

1 SMA User Clock input

PCI Express endpoint
Gen3 x 16

Control & I/O Memory Display Power

User Push Buttons (x5) Two 4 GB DDR4
component memory
interfaces (five [256 Mb
x 16] devices each)

Users & Status
LEDs

12V wall adapter or ATX

User DIP Switch (4-
position)

4 MB RLD3 component
memory interfaces (five
[256 Mb x 16] devices
each) IIC EEPROM:
8Kb

PMBUS & System
Controller MSP430 for
power, clocks, SD-Card
and I2C bus switching

Micro Secure Digital
(SD) connector 1Gb
Quad SPI Flash

Table 6. Total Resources for Project Part: xcvu9p-plga2104-2L-e-es1.

Resource Total Available
LUT 1182240
LUTRAM 591840
FF 2364480
BRAM 2160
DSP 6840
IO 832
BUFG 1800

 45

D. SIMULATION PROCESS

To produce the results in the following chapter, a specific process involving

�0�D�W�K�:�R�U�N�V�¶ �6�L�P�X�O�L�Q�N���D�Q�G���;�L�O�L�Q�[�¶�V���9�L�Y�D�G�R���P�X�V�W���E�H���X�W�L�O�L�]�H�G�� These steps will be supplied

within this section.

First and foremost, the correct versions of MATLAB and Vivado must be installed

for the HDL Workflow Advisor (that will be discussed later) to work correctly. The correct

pairings are MATLAB R2017b and Vivado 2016.4 and for future iterations, MATLAB

R2018a would be compatible with Vivado 2017.1+. In Table 7, a full list of toolboxes and

add-ons is provided. Of those, the essentials are the Communications Toolbox, DSP

System Toolbox, Filter Design HDL Coder, Fixed-Point Designer, Fuzzy Logic Toolbox,

HDL Coder, HDL Verifier, RF Blockset, RF Toolbox, Signal Processing Toolbox, and any

of the FPGA for Simulink Toolboxes / Add-ons that are available at the time.

 46

Table 7. List of Installed MATLAB/Simulink Toolboxes
 and Add-ons.

Aerospace Blockset Version 3.2 (R2017b) Polyspace Bug Finder Version 2.4 (R2017b)
Aerospace Toolbox Version 2.2 (R2017b) Polyspace Code Prover Version 9.8 (R2017b)
Antenna Toolbox Version 3 (R2017b) Powertrain Blockset Version 1.2 (R2017b)
Audio System Toolbox Version 1.3 (R2017b) RF Blockset Version 6.1 (R2017b)
Automated Driving System Toolbox Version 1.1 (R2017b) RF Toolbox Version 3.3 (R2017b)
Bioinformatics Toolbox Version 4.9 (R2017b) Risk Management Toolbox Version 1.2 (R2017b)
Communications System Toolbox Version 6.5 (R2017b) Robotics System Toolbox Version 1.5 (R2017b)
Computer Vision System Toolbox Version 8 (R2017b) Robust Control Toolbox Version 6.4 (R2017b)
Control System Toolbox Version 10.3 (R2017b) Signal Processing Toolbox Version 7.5 (R2017b)
Curve Fitting Toolbox Version 3.5.6 (R2017b) SimBiology Version 5.7 (R2017b)
DSP System Toolbox Version 9.5 (R2017b) SimEvents Version 5.3 (R2017b)
Data Acquisition Toolbox Version 3.12 (R2017b) Simscape Version 4.3 (R2017b)
Database Toolbox Version 8 (R2017b) Simscape Driveline Version 2.13 (R2017b)
Datafeed Toolbox Version 5.6 (R2017b) Simscape Electronics Version 2.12 (R2017b)
Econometrics Toolbox Version 4.1 (R2017b) Simscape Fluids Version 2.3 (R2017b)
Embedded Coder Version 6.13 (R2017b) Simscape Multibody Version 5.1 (R2017b)
Filter Design HDL Coder Version 3.1.2 (R2017b) Simscape Power Systems Version 6.8 (R2017b)
Financial Instruments Toolbox Version 2.6 (R2017b) Simulink 3D Animation Version 7.8 (R2017b)
Financial Toolbox Version 5.1 (R2017b) Simulink Check Version 4 (R2017b)
Fixed-Point Designer Version 6 (R2017b) Simulink Code Inspector Version 3.1 (R2017b)
Fuzzy Logic Toolbox Version 2.3 (R2017b) Simulink Coder Version 8.13 (R2017b)
GPU Coder Version 1 (R2017b) Simulink Control Design Version 5 (R2017b)
Global Optimization Toolbox Version 3.4.3 (R2017b) Simulink Coverage Version 4 (R2017b)
HDL Coder Version 3.11 (R2017b) Simulink Design Optimization Version 3.3 (R2017b)
HDL Verifier Version 5.3 (R2017b) Simulink Design Verifier Version 3.4 (R2017b)
Image Acquisition Toolbox Version 5.3 (R2017b) Simulink Desktop Real-Time Version 5.5 (R2017b)
Image Processing Toolbox Version 10.1 (R2017b) Simulink PLC Coder Version 2.4 (R2017b)
Instrument Control Toolbox Version 3.12 (R2017b) Simulink Real-Time Version 6.7 (R2017b)
LTE HDL Toolbox Version 1 (R2017b) Simulink Report Generator Version 5.3 (R2017b)
LTE System Toolbox Version 2.5 (R2017b) Simulink Requirements Version 1 (R2017b)
MATLAB Coder Version 3.4 (R2017b) Simulink Test Version 2.3 (R2017b)
MATLAB Compiler Version 6.5 (R2017b) Spreadsheet Link Version 3.3.2 (R2017b)
MATLAB Compiler SDK Version 6.4 (R2017b) Stateflow Version 9 (R2017b)

MATLAB Report Generator Version 5.3 (R2017b)

Statistics and Machine Learning
Toolbox

Version 11.2 (R2017b)

Mapping Toolbox Version 4.5.1 (R2017b) Symbolic Math Toolbox Version 8 (R2017b)
Model Predictive Control Toolbox Version 6 (R2017b) System Identification Toolbox Version 9.7 (R2017b)
Model-Based Calibration Toolbox Version 5.3 (R2017b) Text Analytics Toolbox Version 1 (R2017b)
Neural Network Toolbox Version 11 (R2017b) Tracking and Sensor Fusion Toolbox Version 1 (R2017b)
OPC Toolbox Version 4.0.4 (R2017b) Trading Toolbox Version 3.3 (R2017b)
Optimization Toolbox Version 8 (R2017b) Vehicle Network Toolbox Version 3.4 (R2017b)
Parallel Computing Toolbox Version 6.11 (R2017b) Vision HDL Toolbox Version 1.5 (R2017b)
Partial Differential Equation
Toolbox

Version 2.5 (R2017b)

WLAN System Toolbox Version 1.4 (R2017b)

Phased Array System Toolbox Version 3.5 (R2017b) Wavelet Toolbox Version 4.19 (R2017b)

Once all software tools are established, an active license must be procured for

whichever FPGA is being utilized. In this case, a specific license was activated within

Vivado allowing synthesis and implementations to occur for the specific board that was

selected i.e., Project Part: xcvu9p-plga2104-2L-e-es1. Without a valid license, the Vivado

projects to be created or prior ones to be reviewed will not be allowed.

The next step is to ensure that the HDL Workflow Advisor is properly synced with

Vivado. To do this, input the command shown in Figure 14. Ensure the drive path for the

system at use and the Vivado versions are correct. The vivado.bat file is the key to a proper

sync.

 47

Figure 14. MATLAB / Vivado Sync Command.

If this is successful, a return shown in Figure 15 will appear.

Figure 15. Successful MATLAB / Vivado Sync Return.

Now that MATLAB and Vivado are synced, the Simulink design can be opened /

created. Once a design is created and run with no errors, it is time to synthesize and

implement the design through Simulink. To do so, go to Code >> HDL Code >> HDL

�:�R�U�N�I�O�R�Z���$�G�Y�L�V�R�U�«��as shown in Figure 16 and at this point, a pop-up will occur shown

in Figure 17. This pop-up allows the user to select which system within the design to be

synthesized and implemented. Individual pieces or the entire design can be selected.

Figure 16. HDL Workflow Advisor Selection.

 48

Figure 17. System Selector Pop-up.

Once selected, the HDL Workflow Advisor will pop-up. Now using the arrows to

the side of each folder, open them to see the list of categories within each. Figure 18 shows

the exact setup for this thesis for Section 1.1. The Target Workflow, Family, Device, and

Project Folder will all require inputs. Note: always press apply after any changes in all

HDL Workflow Advisor windows.

Figure 18. Section 1.1: Set Target Device and Synthesis Tool Window.

 49

In Section 1.2, the target frequency is the frequency in which the FPGA will run

the design. Normally, naming conventions are of *subsystem name*_*target frequency* is

applied to the Simulink design so that when it is run in HDL Workflow Advisor, separate

runs using different frequencies will be noticeable. In this example, 100 MHz is being

selected.

For Section 2 and all subsections, nothing needs to be altered. In Section 3.1.1, the

�/�D�Q�J�X�D�J�H���Q�H�H�G�V���W�R���E�H���F�K�D�Q�J�H�G���W�R���³�9�H�U�L�O�R�J�´���D�Q�G���W�K�H���E�R�[�H�V���L�Q���I�U�R�Q�W���R�I��generate traceability

report, generate resource utilization report, and generate optimization report need to be

checked as depicted in Figure 19.

Figure 19. Section 3.1.1: Set Basic Options Window.

In S�H�F�W�L�R�Q�����������������H�Q�V�X�U�H���W�K�D�W���W�K�H���U�H�V�H�W���W�\�S�H���L�V���F�K�D�Q�J�H�G���W�R���³�6�\�Q�F�K�U�R�Q�R�X�V���´ Then select

the ports tab in the additional settings section and ensure there is no check in front of the

minimize clock enables box, as shown in Figure 20.

 50

Figure 20. Section 3.1.2: Advanced Options Window.

The remainder of options within Section 3.1 will be selected based on experience

with the design and software. Section 3.2 does not require any changes unless the FPGA

being utilized is supported by Simulink like a Virtex 7, if so, then generate test bench can

be selected as well as generate RTL code. Unfortunately, the Virtex Ultrascale+ is still not

properly supported but MathWorks is aware of the demand for future patches.

 In Section 4.1, a synthesis objective can be selected at this point. If none is selected,

then a default synthesis will be created that can be later examined through Vivado. Within

Section 4.2, ensure all boxes within the Input parameters for both 4.2.1 and 4.2.2 are clear.

�:�K�H�Q���D�O�O���L�V���V�H�W���W�R���W�K�H���X�V�H�U�¶�V���V�D�W�L�V�I�D�F�W�L�R�Q�����U�L�J�K�W���F�O�L�F�N���R�Q���������������D�Q�G���V�H�O�H�F�W���U�X�Q���W�R���V�H�O�H�F�W�H�G���W�D�V�N,

as depicted in Figure 21.

 51

Figure 21. Section 4.2.2: Run Implementation Window.

As the program runs, check marks will begin to appear to each section and

subsection. At any point a section does not pass, it will end the run with an error output.

As the HDL Workflow Advisor continues to run, an HDL Generation Report Summary for

the design will be created. This will provide valuable information regarding I/O bits, total

utilization, and latency. Depending on the sophistication of the design, running HDL

Workflow Advisor from start to implementation can take from 30 minutes up to one hour

�G�H�S�H�Q�G�L�Q�J���R�Q���W�K�H���X�V�H�U�¶�V��processing power and available RAM.

Upon completion, the user will then open the folder in which the project was saved.

Within the folder, a Vivado Project File will be created with the naming convention that

was previously established. Execute this file and Vivado will automatically startup and run

the selected file. Once the Vivado Project File opens, the user will be able to visually

analyze the outcome as depicted within next chapter�¶s results. If additional synthesis and

implementation strategies are required, click on the button �D�W���W�K�H���E�R�W�W�R�P�� �R�I���W�K�H���³�'�H�V�L�J�Q��

�5�X�Q�V�´���S�D�Q�H�O��that is depicted in Figure 22.

 52

Figure 22. Create Runs button.

Once selected, navigate through the different options that pertain to the new runs.

There are different strategies for both synthesis and implementation. The user can then load

a queue of many different run strategies and allow them to process while the user is away

from the computer. Once the queue of created runs is complete, right click on the run that

�U�H�T�X�L�U�H�V���D�Q�D�O�\�]�L�Q�J���D�Q�G���V�H�O�H�F�W���³�0�D�N�H���$�F�W�L�Y�H���´ This will update all the Vivado panels to the

selected synthesis and implementation.

E. CHAPTER SUMMARY

In this chapter, it was presented that by leveraging the knowledge of DSP theory,

finite wordlength effects, the architecture of the FPGA device being targeted, while adding

�D���'�6�3���L�P�S�O�H�P�H�Q�W�D�W�L�R�Q���V�S�H�F�L�D�O�L�V�W�¶�V���N�Q�R�Z�O�H�G�J�H�����D�Q���H�I�I�L�F�L�H�Q�W���P�D�S�S�L�Q�J���R�I���W�K�H���'�6�3���D�O�J�R�U�L�W�K�P��

to FPGA hardware can be achieved. A seamless and invaluable process requires a good

understanding of design flow and the Electronic Design Automation Tools being utilized.

Verification and testing is also an essential element in ensuring the design works as

intended. Furthermore, integration is necessary to ensure the DSP design works within the

larger system. The chapter finished with the steps and process necessary to replicate the

simulation, synthesis, and implementation results of this thesis in the next chapter.

53

V. MODELING, SYNTHESIS, AND IMPLEMEN�7ATION
RESULTS

Within this chapter, the modeling, synthesis, and implementation results are

presented. The time required to simulate each model through HDL Workflow Advisor is

15-30 minutes depending on the overall computing power of the user. Subsequently, the

time required to synthesize and implement one run for each model is an additional 30

minutes to an hour. One run is defined as a synthesis and implementation pair chosen by

the user to maximize or balance the given parameters of either utilization (area), power, or

timing. The user can queue multiple runs within Vivado, but these runs will be processed

simultaneously by the computer tasked to do so. Therefore, if the computer is not capable

of multitasking large CPU and RAM intensive algorithms, it is highly recommended to not

queue for multiple runs. However, if the computer can process an intensive workload, it is

realistic to queue 8-10 runs and allow the computer to continue synthesizing and

implementing the runs overnight.

The requirements for a successful DRFM and three-stage compression were never

explicitly defined throughout this research. This led to an exploration of FPGA capabilities

as shown through the data presented in this chapter. Through these data, it can best be

served as a guide to what is to be expected once detailed parameters are set for each system.

For example, if the system is going to be placed in a radar that is required to run many

different systems on the same FPGA, then area or timing optimization may be most

beneficial depending which is more important at the time. On the other hand, if the system

was to be placed within an aircraft, then power optimization may be most beneficial to not

exclude overall power resources to more vital components within the aircraft.

There are two digital systems: the DRFM and three-stage compression for an LPI

radar. The three-stage compression includes a data storage component required for proper

simulation results. Simulink models were all built manually, and the simulations were

verified using pre-existing MATLAB code developed from past thesis results. These

models on their own are not complete and shall be explained within this chapter. Figure 23

is a screenshot from Vivado giving a detailed explanation, which populated for every

 54

model and every run. This figure is stating that although the model successfully synthesized

and implemented, due to I/O pins not actually being connected either logically or

physically (through the model), the implementation may cause severe harm to an FPGA.

These I/O pins are essentially placeholders until the design is finished and for each bit of

I/O that is left unconnected, the overall I/O bit count available on the FPGA shall be taxed.

This is evident in incomplete designs because all other parameters will appear to be normal

except for I/O which will appear to be utilizing a much higher number than what is

required. These indicators should be treated as a guide for identifying open ports and should

not be alarming unless the design is considered finalized. Once these ports are connected,

the I/O utilization shall reduce significantly.

Figure 23. Implementation Critical Warnings.

 55

After analyzing the data across all six models, there were a few observations that

became common amongst all. The first was previously mentioned regarding the I/O

utilization. The second observation is regarding the thermal power. It can be noted that the

Junction Temperature and Thermal Margin are inversely proportional to one another. If the

Junction Temperature rises by 0.1 degree Celsius, the Thermal Margin can be expected to

decrease by 0.1 degree Celsius.

The third observation is regarding the Vivado Default runs. These are the runs that

were created through Simulink in the HDL Workflow Advisor. In nearly all cases, these

were run with no specific synthesis or implementation strategies. Therefore, the results

appear to be skewed in comparison to the other results within the same model. Afterwards,

the runs varied the synthesis strategy (seven different options) while maintaining the same

implementation strategy (twenty-seven different options) except for the DRFM model �±

this model used the Performance_Explore strategy versus the Performance_Retiming

strategy like the rest of the models. The DRFM model also did not run a

Flow_AreaOptimized_medium synthesis strategy. The reasons for not testing twenty-

seven different implementation strategies may appear to be obvious but it must be noted

that the shear amount of time required for one set of synthesis and implementation runs

becomes unfeasible when multiplied by twenty-seven. So, the implementation became a

control within this research in which allows the user to analyze the results of differing

synthesis strategies. Once design requirements are set, a few selected implementation

strategies can be used in multiple variations with the synthesis strategies.

A. DIGITAL RADIO FREQUE NCY MEMOR Y (DRFM)

Project Name: DRFMvers2_vivado

Implementation Strategy: Performance_Explore

1. Model

The DRFM Simulink model in Figure 25 was built based off the DIS-512 Block

Diagram in Figure 24. The DRFM Simulink model is incomplete due to no I/O connections

made to the Phase Increment Register, CORDIC, Gain Preload/Increment Register, From

 56

Previous Range Bins for both I and Q, To Following Range Bins for both I and Q, and two

Reserved for Future Expansion slots. With this many unconnected I/O ports, the I/O

utilization is significantly higher. The model uses a microprocessor that establishes phase

and gain coefficients. These coefficients are then preloaded and then incremented into

registers. The phase increment goes through a phase adder with a 5-bit phase input data

supplied from the CORDIC. The 5-bit data are then pipelined and then processed through

an I/Q look-up table which splits the input data into two 8-bit streams for both the I and Q

components. These data streams are once again run through pipelining and then multiplied

by the information stored within the gain increment register which causes the bit stream to

shift between 8 and 18 bits depending on the multiplication results. These data streams are

then bit extracting the first five bits to future expansion output ports whereas the remaining

thirteen bits are pipelined into another adder in which the data stream is padded in the front

with three zeros. These 16-bit data streams are then added with 16-bits from previous range

bins for both the I and Q components. These new 16-bit data streams from this addition are

then sent to following range bins.

To ensure a working model is complete for FPGA implementation, this design must

be linked to both a microprocessor feed as well as CORDIC feed and then connected

accordingly to the port designations. The last output would therefore become the final

output of the DRFM model. Additionally, the current DRFM model was synthesized and

implemented with ease for a target frequency of 500 MHz autonomously from all other

models. A hypothesis is that the target frequency would only decrease to accommodate a

more complex structure.

 57

Figure 24. DIS-512 DRFM Block Diagram.

 58

Figure 25. DIS-512 DRFM Block Diagram Built in Simulink.

 59

2. Synthesis / Implementation

Within Figure 26, the DRFM model timing results are displayed for each synthesis

type run. The graph depicts the Worst Negative Slack (WNS) and is a point in the logical

path within the design having the maximum (worst) negative slack (timing). Worst Hold

Slack (WHS) points to a path within the design having the maximum or worst hold (delay)

in the slack. These times are both displayed in nanoseconds. The WNS and WHS resulted

in positive numbers, which means that the timing of the model passed. Significant

deviations in WNS are displayed depending on the run; however, the WHS stays consistent.

Figure 26. DRFM Model Timing Results.

Within Figure 27, the DRFM model power results are displayed for each synthesis

type run. The graphs depict the total on-chip power, how each synthesis run compares to

one another regarding power used per each static and dynamic component, and the thermal

power associated to each run. The total on-chip power graph shows a deviation within the

Flow_PerfOptimized_high synthesized run whereas the remaining runs are more consistent

 60

with each other. Within the power utilization comparison graph, many of the power

components have minimal deviations except for the DSP component, which indicates that

only the Flow_AreaMultThresholdDSP and Flow_AreaOptimized_high utilize power for

DSP. However, this is consistent with Figure 28 because these two runs are the only two

that utilize DSP logic space. The thermal power results are identical per run.

 61

Figure 27. DRFM Model Power Results.

 62

Within Figure 28, the DRFM model utilization results are displayed for each

synthesis type run. The graphs depict the total and individual utilizations per run. To note,

I/O and BUFG utilization are not provided for the Flow_PerfOptimized_high run. These

are outliers in comparison to the remaining runs in which use 90 I/O slices and 1 BUFG

slice. Many trade-offs can be captured through the individual utilization charts. The most

prominent trade-off is the fact that the amount of LUT and FFs are significantly reduced

with the use of a couple DSP as depicted through the differences between the

Flow_AreaMultThresholdDSP and Flow_AreaOptimized_high and the remaining runs.

 63

Figure 28. DRFM Model Utilization Results.

 64

B. RANGE COMPRESSION

Project Name: Correlation_Receiver_500_vivado

Implementation Strategy: Peformance_Retiming

1. Model

The Range Compression (also known as Correlation Receiver depending on the

publication) model shown in Figure 29 is the first step within the three-stage compression,

which was discussed in Chapter II . This Range Compression model was synthesized and

implemented with a target frequency of 500 MHz autonomously from all other models.

The model implements a coherent correlation receiver of finite duration NT where

is the number of matched periods for the signal. where the implementation Nc =

102 and � ���������������V, where Nc and are the number of subcodes and the subcode period

respectively. To implement the coherent correlation receiver, the signal begins by going

through a tapped delay of Nc and performs a cross-correlation between the received signal

and the complex conjugate of the reference signal. Then at each subcode, the single

correlation value is summed over the number of subcodes, Nc.

 65

Figure 29. Range Compression Block Diagram Built in Simulink.

 66

2. Synthesis / Implementation

Within Figure 30, the Range Compression model timing results are displayed for

each synthesis type run. The graph depicts the WNS and WHS resulted in seven of eight

positive numbers, which means that the timing of those models passed. However, the

Flow_RuntimeOptimized run failed timing causing the entire synthesis and

implementation of the model to fail. The WHS deviated by plus or minus 0.02ns throughout

the graph whereas the WNS deviated by plus or minus 0.03ns until the noted failure.

Figure 30. Range Compression Model Timing Results.

�:�L�W�K�L�Q���)�L�J�X�U�H�����������W�K�H���5�D�Q�J�H���&�R�P�S�U�H�V�V�L�R�Q���P�R�G�H�O���S�R�Z�H�U���U�H�V�X�O�W�V���D�U�H���G�L�V�S�O�D�\�H�G���I�R�U���H�D�F�K��

�V�\�Q�W�K�H�V�L�V���W�\�S�H���U�X�Q�����7�K�H���W�R�W�D�O���R�Q���F�K�L�S���S�R�Z�H�U���J�U�D�S�K���V�K�R�Z�V���D���G�H�Y�L�D�W�L�R�Q���R�I���S�O�X�V���R�U���P�L�Q�X�V�����������: ����

�:�L�W�K�L�Q���W�K�H���S�R�Z�H�U���X�W�L�O�L�]�D�W�L�R�Q���F�R�P�S�D�U�L�V�R�Q���J�U�D�S�K�����P�D�Q�\���R�I���W�K�H���S�R�Z�H�U���F�R�P�S�R�Q�H�Q�W�V���K�D�Y�H���P�L�Q�L�P�D�O��

�G�H�Y�L�D�W�L�R�Q�V���H�[�F�H�S�W���I�R�U���W�K�H���,���2���F�R�P�S�R�Q�H�Q�W�����Z�K�L�F�K���L�Q�G�L�F�D�W�H�V���W�K�D�W���9�L�Y�D�G�R���'�H�I�D�X�O�W�V���G�R�H�V���Q�R�W���U�H�T�X�L�U�H��

�S�R�Z�H�U�� �I�R�U�� �,���2�� �F�R�P�S�R�Q�H�Q�W�V�����+�R�Z�H�Y�H�U���� �W�K�L�V�� �L�V�� �F�R�Q�V�L�V�W�H�Q�W�� �Z�L�W�K�� �)�L�J�X�U�H���������E�H�F�D�X�V�H���W�K�H���9�L�Y�D�G�R��

�'�H�I�D�X�O�W�V���U�X�Q���G�R�H�V���Q�R�W���U�H�T�X�L�U�H���,���2���O�R�J�L�F���V�S�D�F�H�����7�K�H���W�K�H�U�P�D�O���S�R�Z�H�U���U�H�V�X�O�W�V���D�U�H���S�O�X�V���R�U���P�L�Q�X�V����������

�G�H�J�U�H�H�V���&�H�O�V�L�X�V����

 67

Figure 31. Range Compression Model Power Results.

 68

Within Figure 32, the Range Compression model utilization results are displayed

for each synthesis type run. The graphs depict the total and individual utilizations per run.

To note, I/O and BUFG utilization are not provided for the Vivado Default run. These are

outliers in comparison to the remaining runs in which use 68 I/O slices and one (up to two)

BUFG slices. No correlations can be made between individual utilization graphs. The rise

and fall in data can only be contributed to the actual synthesize type run. Figure 33 displays

the absolute values of the Range Compression model results as simulated through

MATLAB and Simulink. A delay is noted within the Simulink results due to slight

modeling error.

 69

Figure 32. Range Compression Model MATLAB and Simulink Results.

 70

Figure 33. Range Compression Model MATLAB and Simulink Results.

 71

C. DATA STORAGE

Project Name: DataStorage_500_vivado

Implementation Strategy: Peformance_Retiming

1. Model

The Data Storage model shown in Figure 34 is not considered an official step within

the three-stage compression but it necessary within Simulink to ensure the buffered Range

Compression signal is synchronized with the Doppler Filter range bins. This Data Storage

model was synthesized and implemented with a target frequency of 500 MHz

autonomously from all other models. This model takes the signal from the Range

Compression model and then collects the data to produce a matrix and is output as a matrix

transpose data stream. There are two data storages. One data storage is used as written

storage for later use and the other is used as storage that is currently being read. These data

storages cycle through each write or read only use accordingly after 4096 times 102 points

are collected. Therefore, they can never write or read to the same storage consecutively �±

they must alternate.

 72

Figure 34. Data Storage Block Diagram Built in Simulink.

 73

2. Synthesis / Implementation

Within Figure 35, the Data Storage model timing results are displayed for each

synthesis type run. The graph depicts the WNS and WHS resulted in positive numbers,

which means that the timing of the model passed. Both WNS the WHS remain constant

with plus or minus 0.075ns and 0.025ns deviations respectively. No runs were at risk of

failing timing.

Figure 35. Data Storage Model Timing Results.

Within Figure 36, the Data Storage model power results are displayed for each

synthesis type run. The total on-chip power graph shows a deviation of plus or minus 0.1

W except for Vivado Defaults which is 0.12W lower than the average of the other seven

runs. Within the power utilization comparison graph, many of the power components have

minimal deviations except for the I/O component which indicates that Vivado Defaults

does not require power for I/O components. However, this is consistent with Figure 37

because the Vivado Defaults run does not require I/O logic space. The thermal power

results are identical per run.

 74

Figure 36. Data Storage Model Power Results.

 75

Within Figure 37, the Data Storage model utilization results are displayed for each

synthesis type run. The graphs depict the total and individual utilizations per run. To note,

I/O and BUFG utilization are not provided for the Vivado Default run. These are outliers

in comparison to the remaining runs in which use 70 I/O slices and 1 BUFG slice. There

are no other variances within the Data Storage model for utilization.

 76

Figure 37. Data Storage Model Utilization Results.

 77

D. DOPPLER FILTERING

Project Name: DopplerFilter_400_vivado

Implementation Strategy: Peformance_Retiming

1. Model

The Doppler Filtering model shown in Figure 38 is the second step within the three-

stage compression. This Doppler Filtering model was synthesized and implemented with a

target frequency of 400 MHz autonomously from all other models. This model takes the

Data Storage model data stream and windows it with a Blackman window and performs an

FFT to perform the Doppler filtering. The �³convert� ́ Simulink block is not needed;

however, it is used to increase processing time and saves memory for the coherent

integration.

 78

Figure 38. Doppler Filtering Block Diagram Built in Simulink.

 79

2. Synthesis / Implementation

Within Figure 39, the Doppler Filtering model timing results are displayed for each

synthesis type run. The graph depicts the WNS and WHS resulted in seven of eight positive

numbers, which means that the timing of those models passed. However, the

Flow_RuntimeOptimized run failed timing causing the entire synthesis and

implementation of the model to fail. The WHS deviated by plus or minus 0.02ns throughout

the graph whereas the WNS deviated by plus or minus 0.05ns until the noted failure.

Figure 39. Doppler Filtering Model Timing Results.

 Within Figure 40, the Doppler Filtering model power results are displayed for each

synthesis type run. The total on-chip power graph shows a deviation of plus or minus 0.2W

however extra power is required for Flow_PerfOptimized_high, Flow_PerfThresholdCarry,

and Flow_RuntimeOptimized. This extra power requirement is outside the steady baseline set

by the other five runs. Within the power utilization comparison graph, many of the power

components have minimal deviations except for the I/O component which indicates that

Vivado Defaults does not require power for I/O components. However, this is consistent with

Figure 41 because the Vivado Defaults run does not require I/O logic space. The thermal power

results are plus or minus 0.1 degrees Celsius.

 80

Figure 40. Doppler Filtering Model Power Results.

 81

Within Figure 41, the Doppler Filtering model utilization results are displayed for

each synthesis type run. The graphs depict the total and individual utilizations per run. To

note, I/O and BUFG utilization are not provided for the Vivado Default run. These are

outliers in comparison to the remaining runs in which use 70 I/O slices and one BUFG

slice. A direct correlation can be made between LUTRAM, LUT, and FF. Within the graph,

as less LUTRAM is used, the more LUT and FF are utilized based on the synthesis strategy.

Figure 42 displays the absolute values of the Doppler Filtering model results as simulated

through MATLAB and Simulink. Once again, a delay is noted within the Simulink results

due to slight modeling error.

 82

Figure 41. Doppler Filtering Model Utilization Results.

 83

Figure 42. Doppler Filtering Model MATLAB and Simulink Results

 84

E. COHERENT INTEGRATION

Project Name: CoherentIntegration_400_vivado

Implementation Strategy: Peformance_Retiming

1. Model

The Coherent Integration model shown in Figure 43 is the third step within the

three-stage compression. This Coherent Integration model was synthesized and

implemented with a target frequency of 400 MHz autonomously from all other models.

This model takes the data stream from the Doppler filter and stores it into memory. Each

correlating point from the next four Doppler maps are then added accordingly. The output

then becomes the overall output for one moduli of the three-stage compression.

 85

Figure 43. Coherent Integration Block Diagram Built in Simulink.

 86

2. Synthesis / Implementation

Within Figure 44, the Coherent Integration model timing results are displayed for

each synthesis type run. The graph depicts the WNS and WHS resulted in positive

numbers, which means that the timing of the model passed. Both WNS the WHS remain

constant with plus or minus 0.025ns deviations. No runs were at risk of failing timing.

Figure 44. Coherent Integration Model Timing Results.

Within Figure 45, the Coherent Integration model power results are displayed for

each synthesis type run. The total on-chip power graph shows a deviation of plus or minus

0.1W except for Vivado Defaults which is 0.06W lower than the average of the other seven

runs. Within the power utilization comparison graph, many of the power components have

minimal deviations except for the I/O component which indicates that Vivado Defaults

does not require power for I/O components. However, this is consistent with Figure 46

because the Vivado Defaults run does not require I/O logic space. The power utilization

graph also indicates that Vivado Defaults requires far less power for clock and signals

components. The thermal power results are plus or minus 0.1 degrees Celsius.

 87

Figure 45. Coherent Integration Model Power Results.

 88

Within Figure 46, the Coherent Integration model utilization results are displayed

for each synthesis type run. The graphs depict the total and individual utilizations per run.

To note, I/O and BUFG utilization are not provided for the Vivado Default run. These are

outliers in comparison to the remaining runs in which use 72 I/O slices and one BUFG

slice. A direct correlation can be made between LUT and the synthesis strategy. As

expected, the less LUT is used as area is optimized during Flow_AreaOptimized_high and

Flow_AreaOptimized_medium. Then as the strategy moves towards performance, the

more resources on the FPGA are being utilized. Figure 47 displays the absolute values of

the Coherent Integration model results as simulated through MATLAB and Simulink. Once

again, a delay is noted within the Simulink results due to slight modeling error.

 89

Figure 46. Coherent Integration Model Utilization Results.

 90

Figure 47. Coherent Integration Model MATLAB and Simulink Results

 91

F. THREE-STAGE COMPRESSION

Project Name: alpha3StageCompression_100_vivado

Implementation Strategy: Peformance_Retiming

1. Model

The Three-stage Compression model shown in Figure 48 is the top-level view

consisting of the subsystem block diagram shown in Figure 49. This subsystem comprises

the Range Compression, Data Storage, Doppler Filtering, and Coherent Integration models

previously discussed. This Three-stage Compression model was synthesized and

implemented with a target frequency of 100 MHz autonomously from all other models. To

ensure this model is adapted for LPI detection, it must be duplicated for three separate

moduli running in parallel of each other. This model inputs a receiver for an RSNS-P4

signal that was scripted in MATLAB and is converted into Simulink. Therefore, a data

stream is stepped through the previous models (minus DRFM) with the use of Boolean

operators that act as miniature reference points that ensure the data stream remains in

proper step throughout all models.

 92

Figure 48. Top Level Block Diagram of Three-stage Compression Built in Simulink.

Figure 49. Three-stage Compression Block Diagram Built in Simulink.

 93

2. Synthesis / Implementation

Within Figure 50, the Three-stage Compression model timing results are displayed

for each synthesis type run. The graph depicts the WNS and WHS resulted in positive

numbers which means that the timing of the model passed. Both WNS the WHS remain

constant. WNS retained a plus or minus 0.4ns deviation whereas WHS shows no deviation

due to its consistency across runs. No runs were at risk of failing timing. However, when

this model was run at a target frequency of 200 MHz, the entire model failed timing across

all runs.

Figure 50. Three-stage Compression Model Timing Results.

Within Figure 51, the Three-stage Compression model power results are displayed for

each synthesis type run. The total on-chip power graph shows a deviation of plus or minus

0.0275W. Overall, the power is consistent between runs. Within the power utilization

comparison graph, many of the power components have minimal deviations except for the I/O

component, which indicates that Vivado Defaults does not require power for I/O components.

However, this is consistent with Figure 52 because the Vivado Defaults run does not require

I/O logic space. The thermal power results are plus or minus 0.1 degrees Celsius.

 94

Figure 51. Three-stage Compression Model Power Results.

 95

Within Figure 52, the Three-stage Compression model utilization results are

displayed for each synthesis type run. The graphs depict the total and individual utilizations

per run. To note, I/O and BUFG utilization are not provided for the Vivado Default run.

These are outliers in comparison to the remaining runs in which use 71 I/O slices and two

BUFG slices. A direct correlation can be made between LUT and the synthesis strategy.

As expected, the less LUT is used as area is optimized during Flow_AreaOptimized_high

and Flow_AreaOptimized_medium. Then as the strategy moves towards performance, the

more resources to include FFs as well as LUT on the FPGA are being utilized. Figure 53

displays the contour plot of the absolute values of the RSNS-P4 signal input into the Three-

Stage Compression model as simulated through MATLAB and Simulink. Once again, a

delay is noted within the Simulink results due to slight modeling error.

 96

Figure 52. Three-stage Compression Model Utilization Results.

 97

Figure 53. Input RSNS-P4 Test Signal through the MATLAB and Simulink Three-Stage Compression Model.

 98

G. CHAPTER SUMMARY

Within this chapter, the modeling, synthesis, and implementation results were

presented. These results were compiled using the Simulink modeling and Vivado synthesis

and implementation tools. The data was depicted using visual graphs in which help the user

pinpoint the inflections within the data for appropriate analysis. Further analysis of the data

can be done using the Vivado Data Captures in the Appendix. Each model reacted

differently to each synthesis strategy; however, the differences across all strategies for a

single model appeared to be minimal for smaller systems such as these. The differences

between a Vivado Default run and the remaining runs per model were made clear as well.

 99

VI. CONCLUSION AND RECOMMENDATIONS

This thesis involved two sequential objectives. The first objective was to generate

two Simulink digital systems: the DRFM and three-stage compression. The second

objective was to synthesize and implement the given models within Xilinx Vivado software

(based on area, power, or timing) to ensure the designs would precisely implement onto a

Xilinx Ultrascale+ FPGA.

In this thesis, given pre-existing MATLAB code simulating the desired outputs,

comparable models were designed in Simulink of two digital systems. These designed

Simulink models consisted of individual components for the three-stage compression

including but not limited to the range compression, Doppler filtering, and coherent

integration as well as the overall designs for both the DRFM and three-stage compression.

The overall designed models, however, are not complete. To finish the DRFM model, it

must be integrated with a CORDIC, microprocessor, and piped (connected) with additional

identical designs, which feed into one output for the desired deception outcome. To finish

the three-stage compression, two additional models need to be created, a model for each

moduli, and run in parallel of each other to subsequently decorrelate clutter which will

maximize the unambiguous range and range resolution while suppressing the false alarm

rate of returns.

The synthesis and implementation of the models with Xilinx Vivado software was

also investigated in this thesis. The individual sub systems were each run separately. The

concept was to compare the results of varying synthesis strategies while the

implementation strategy remained the same as a form of control. This resulted in the

understanding that the target frequency at which the FPGA was clocked would vary

depending on the model. For sub systems, they were clocked at 400-500 MHz, however,

the total three-stage compression system could only clock at 100 MHz. Through research,

it was found that although the overall system clocked significantly lower, the ability to

manually change the desired routing within the model can be done by an experienced

FPGA designer resulting in higher clock speeds. Furthermore, it was noted that Vivado

Default runs had significant differences in comparison to the controlled strategies.

 100

Therefore, the default results should be used as a guide to overall synthesis and

implementation strategy and not as a standalone end strategy.

Going forward, each model must be complete. To do so, additional training would

be required for the user. Table 8 is a list of recommended training courses that would help

facilitate successful designs. These courses are listed from basic to advanced and it is

highly recommended that the most novice user attend all listed courses to facilitate the

advanced designs required for proper DRFM and LPI radar operations. Once the models

are complete, implementation onto the FPGA and testing is required for further interfacing

into the analog portions of the overall systems.

Table 8. Recommended Training Courses.

MathWorks Xilinx

MATLAB Fundamentals
(3 days)

Designing FPGAs Using the Vivado Design Suite
1 (2 days)

Simulink for System and Algorithm Modeling
(2 days)

Designing FPGAs Using the Vivado Design Suite
2 (2 days)

Signal Processing with Simulink
(3 days)

Designing FPGAs Using the Vivado Design Suite
3 (2 days)

Verification and Validation of Simulink Models
(1 day)

Designing FPGAs Using the Vivado Design Suite
4 (2 days)

Simulink Model Management and Architecture
(2 days)

Designing with the UltraScale and UltraScale+
Architectures (2 days)

Generating HDL Code from Simulink
(2 days)

Xilinx Partial Reconfiguration Tools &
Techniques (2 days)

DSP for FPGAs
(3 days)

 101

APPENDIX. VIVADO DATA CAPTURES

A. DRFM MODEL DATA

Figure 54. Vivado Default Results for DRFM Model.

Figure 55. Vivado Flow_PerfOptimized_high Results for DRFM Model.

 102

Figure 56. Vivado Flow_AreaOptimized_high Results for DRFM Model.

Figure 57. Vivado Flow_AlternateRoutability Results for DRFM Model.

 103

Figure 58. Vivado Flow_AreaMultThresholdDSP Results for DRFM Model.

Figure 59. Vivado Flow_PerfThresholdCarry Results for DRFM Model.

 104

Figure 60. Vivado Flow_RuntimeOptimized Results for DRFM Model.

B. RANGE COMPRESSION MODEL DATA

Figure 61. Vivado Default Results for Range Compression Model.

 105

Figure 62. Vivado Flow_AreaOptimized_high Results for Range Compression
Model.

Figure 63. Vivado Flow_AreaOptimized_medium Results for Range
Compression Model.

 106

Figure 64. Vivado Flow_AreaMultThresholdDSP Results for Range
Compression Model.

Figure 65. Vivado Flow_AlternateRoutability Results for Range Compression
Model.

 107

Figure 66. Vivado Flow_PerfOptimized_high Results for Range Compression
Model.

Figure 67. Vivado Flow_PerfThresholdCarry Results for Range Compression
Model.

 108

Figure 68. Vivado Flow_RuntimeOptimized Results for Range Compression
Model.

C. DATA STORAGE MODEL D ATA

Figure 69. Vivado Default Results for Data Storage Model.

 109

Figure 70. Vivado Flow_AreaOptimized_high Results for Data Storage Model.

Figure 71. Vivado Flow_AreaOptimized_medium Results for Data Storage
Model.

 110

Figure 72. Vivado Flow_AreaMultThresholdDSP Results for Data Storage
Model.

Figure 73. Vivado Flow_AlternateRoutability Results for Data Storage Model.

 111

Figure 74. Vivado Flow_PerfOptimized_high Results for Data Storage Model.

Figure 75. Vivado Flow_PerfThresholdCarry Results for Data Storage Model.

 112

Figure 76. Vivado Flow_RuntimeOptimized Results for Data Storage Model.

D. DOPPLER FILTER ING MODEL DATA

Figure 77. Vivado Default Results for Doppler Filtering Model.

 113

Figure 78. Vivado Flow_AreaOptimized_high Results for Doppler Filtering
Model.

Figure 79. Vivado Flow_AreaOptimized_medium Results for Doppler Filtering
Model.

 114

Figure 80. Vivado Flow_AreaMultThresholdDSP Results for Doppler Filtering
Model.

Figure 81. Vivado Flow_AlternateRoutability Results for Doppler Filtering
Model.

 115

Figure 82. Vivado Flow_PerfOptimized_high Results for Doppler Filtering
Model.

Figure 83. Vivado Flow_PerfThresholdCarry Results for Doppler Filtering
Model.

 116

Figure 84. Vivado Flow_RuntimeOptimized Results for Doppler Filtering
Model.

E. COHERENT INTEGRATION MODEL DATA

Figure 85. Vivado Default Results for Coherent Integration Model.

 117

Figure 86. Vivado Flow_AreaOptimized_high Results for Coherent Integration
Model.

Figure 87. Vivado Flow_AreaOptimized_medium Results for Coherent
Integration Model.

 118

Figure 88. Vivado Flow_AreaMultThresholdDSP Results for Coherent
Integration Model.

Figure 89. Vivado Flow_AlternateRoutability Results for Coherent Integration
Model.

 119

Figure 90. Vivado Flow_PerfOptimized_high Results for Coherent Integration
Model.

Figure 91. Vivado Flow_PerfThresholdCarry Results for Coherent Integration
Model.

 120

Figure 92. Vivado Flow_RuntimeOptimized Results for Coherent Integration
Model.

F. THREE-STAGE COMPRESSION MODEL DATA

Figure 93. Vivado Default Results for Three-stage Compression Model.

 121

Figure 94. Vivado Flow_AreaOptimized_high Results for Three-stage
Compression Model.

Figure 95. Vivado Flow_AreaOptimized_medium Results for Three-stage
Compression Model.

 122

Figure 96. Vivado Flow_AreaMultThresholdDSP Results for Three-stage
Compression Model.

Figure 97. Vivado Flow_AlternateRoutability Results for Three-stage
Compression Model.

 123

Figure 98. Vivado Flow_PerfOptimized_high Results for Three-stage
Compression Model.

Figure 99. Vivado Flow_PerfThresholdCarry Results for Three-stage
Compression Model.

 124

Figure 100. Vivado Flow_RuntimeOptimized Results for Three-stage
Compression Model.

 125

LIST OF REFERENCES

[1] �3���� �(���� �3�D�F�H���� �6���� �7�H�L�F�K���� �2���� �(���� �%�U�R�R�N�V���� �'���� �&���� �-�H�Q�Q���� �D�Q�G�� �5���� �$���� �5�R�P�H�U�R���� �³Extended
detection range using a polyphase CW modulation with an efficient number
theoretic correlation process���´���L�Q�������������,�(�(�(���5�D�G�D�U���&�R�Q�I�H�U�H�Q�F�H�����5�D�G�D�U�&�R�Q�I�������0�D�\��
2017, pp. 1669�±1674.

[2] P. E. Pace, D. C. Jenn, and R. A. Romero, �³Cognitive, multi-function periscope

sensor with LPI radar, comms, and electronic warfare��� ́presented at Office of Naval
Research Symposium, Naval Postgraduate School, Monterey, CA, Jan. 18, 2017.

[3] P. E. Pace, Detecting and Classifying Low Probability of Intercept Radar, 2nd ed.

Norwood, MA, USA: Artech House, 2009.

[4] N. Paepolshiri, �³�(�[�W�H�Q�G�L�Q�J���W�K�H���X�Q�D�P�E�L�J�X�R�X�V���U�D�Q�J�H���R�I��CW polyphase radar systems
�X�V�L�Q�J�� �Q�X�P�E�H�U�� �W�K�H�R�U�H�W�L�F�� �W�U�D�Q�V�I�R�U�P�V���´�� �0�D�V�W�H�U�¶�V�� �W�K�H�V�L�V����Naval Postgraduate School,
Monterey, CA, 2011.

[5] P. E. Pace, Advanced Techniques for Digital Receivers. Norwood, MA, USA:

Artech House, 2000.

[6] �3�����(�����3�D�F�H�����'�����-�����)�R�X�W�V�����D�Q�G���'�����3�����=�X�O�D�L�F�D�����³�'�L�J�L�W�D�O��image synthesizers: Are enemy
sensors really seeing w�K�D�W�¶�V��t�K�H�U�H�"�´��IEEE Aerospace and Electronic Systems
Magazine, vol. 21, iss. 2, pp. 3-7, 2006.

[7] P. S. Ang, �³�'�5�)�0�� �&�2�5�'�,�&�� �S�U�R�F�H�V�V�R�U�� �D�Q�G�� �V�H�D�� �F�O�X�W�W�H�U�� �P�R�G�H�O�L�Q�J�� �I�R�U�� �H�Q�K�D�Q�F�L�Q�J��
�V�W�U�X�F�W�X�U�H�G�� �I�D�O�V�H�� �W�D�U�J�H�W�� �V�\�Q�W�K�H�V�L�V���´�� �0�D�V�W�H�U�¶�V�� �7�K�H�V�L�V����Department of Electrical and
Computer Engineering. Naval Postgraduate School, Monterey, CA, 2017.

[8] �0�D�W�K�:�R�U�N�V�������Q���G���������³�'�6�3���I�R�U���)�3�*�$�V���´���L�Q���0�D�WhWorks Training Course Notebook,
November 2017, pp. 2-1 �± 4-16, 9-5 �± 9-41, 12-5 �± 12-56

[9] I. Kuon and J. Rose. �³Measuring the gap between FPGAs and ASICs���´��
Department of Electrical and Computer Engineering. University of Toronto,
Toronto, ON, 2006. [Online]. Available:
https://ece.gmu.edu/coursewebpages/ECE/ECE448/S09/viewgraphs/Gap_between
_FPGAs_and_ASICs.pdf

[10] �³History of FPGAs���´���,�Q�W�H�U�Q�H�W���$�U�F�K�L�Y�H���:ay Back Machine, April 12, 2017.
[Online]. Available:
https://web.archive.org/web/20070412183416/http://filebox.vt.edu/users/tmagin/h
istory.htm

 126

[11] D. W. Page and L. R. Peterson. �³Re-programmable PLA���´���8�6���������������$��������������
Accessed May 19, 2018. [Online]. Available:
https://patents.google.com/patent/US4508977?oq=4508977

[12] D. W. Page. �³Dynamic data re-programmable PLA���´���8�6���������������$��������������
Accessed May 19, 2018. [Online]. Available:
https://patents.google.com/patent/US4524430?oq=4524430

[13] R. Wilson, �³In the Beginning���´��Altera, 2009. [Online]. Available:
https://www.altera.com/solutions/technology/system-design/articles/_2013/in-the-
beginning.html

[14] �³Xcell���´���;�L�O�L�Q�[����������������[Online]. Available:
https://www.xilinx.com/publications/archives/xcell/Xcell32.pdf

[15] �³Xilinx, Inc. History���´���;�L�O�L�Q�[�� Accessed May 19, 2018. [Online]. Available:
http://www.fundinguniverse.com/company-histories/xilinx-inc-history/

[16] C. Maxfield. �³Xilinx co-founder Ross Freeman honored���´���(�(���7�L�P�H�V����February 12,
2009. [Online]. Available:
https://www.eetimes.com/document.asp?doc_id=1243111

[17] R. H. Freeman. �³Configurable electrical circuit having configurable logic
elements and configurable interconnects���´���8�6���������������$�� 1989. Accessed May 19,
2018. [Online]. Available:
https://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=487030
2&KC=&FT=E&locale=en_EP#

[18] �³Top FPGA companies for 2013���´���6�R�X�U�F�H���7�H�F�K������������April 28, 2013. [Online].
Available: http://sourcetech411.com/2013/04/top-fpga-companies-for-2013/

[19] �³Zynq-7000 SoC���´���;�L�O�Lnx. Accessed May 19, 2018. [Online]. Available:
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

[20] R. McMillan. �³Microsoft supercharges Bing search with programmable chips���´��
Wired, June 16, 2014. [Online]. Available:
https://www.wired.com/2014/06/microsoft-fpga

[21] �³Xilinx Virtex UltraScale+ FPGA VCU118 Evaluation Kit���´���;�L�O�L�Q�[�� Accessed
May 17, 2018. [Online]. Available: https://www.xilinx.com/products/boards-and-
kits/vcu118.html#overview

 127

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

