
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2018-06

USMC DEPOT-LEVEL MAINTENANCE OF THE
LIGHT ARMORED VEHICLE (LAV): A
DISCRETE-EVENT SIMULATION ANALYSIS

Blankenbeker, Michael J.
Monterey, CA; Naval Postgraduate School

https://hdl.handle.net/10945/59711

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

USMC DEPOT-LEVEL MAINTENANCE OF THE LIGHT
ARMORED VEHICLE (LAV): A DISCRETE-EVENT

SIMULATION ANALYSIS

by

Michael J. Blankenbeker

June 2018

Thesis Advisor: Arnold H. Buss
Second Reader: Ruriko Yoshida

This thesis was performed at the MOVES Institute.

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
USMC DEPOT-LEVEL MAINTENANCE OF THE LIGHT ARMORED
VEHICLE (LAV): A DISCRETE-EVENT SIMULATION ANALYSIS

5. FUNDING NUMBERS

6. AUTHOR(S) Michael J. Blankenbeker

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
The USMC maintenance depots at Marine Corps Logistics Base (MCLB) Albany, GA, and MCLB

Barstow, CA, conduct extensive contracted overhauls and repairs on a variety of ground combat and combat
service support vehicles from throughout the operating forces. Servicing of one vehicle in particular, the
Light Armored Vehicle (LAV), has had issues with runaway costs and prolonged maintenance cycle-time
caused by severe bottlenecks at key junctures in the maintenance cycle.

This study models the bottlenecks experienced in the real system and then provides recommendations to
mitigate them. The discrete-event simulation (DES) tools used in this study implement data farming and data
analysis that provide quantitative justification and show the sponsor where to adjust resource capacity parameters
in the system in order to reduce the effect of these bottlenecks and overall cycle time. In addition to the DES
analysis, this project provides the sponsor, Marine Corps Logistics Command, with a working tool that can
be used in assisting key leadership in making resource capacity decisions by showing how individual queues
and the overall system are affected when input parameters are adjusted.

14. SUBJECT TERMS
discrete event simulation, Light Armored Vehicle, Marine Corps Logistics Command,
Marine Depot Maintenance Command

15. NUMBER OF
PAGES

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

73

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

USMC DEPOT-LEVEL MAINTENANCE OF THE LIGHT ARMORED
VEHICLE (LAV): A DISCRETE-EVENT SIMULATION ANALYSIS

Michael J. Blankenbeker
Captain, United States Marine Corps

BS, Georgia Institute of Technology, 2011

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN
MODELING, VIRTUAL ENVIRONMENTS, AND SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
June 2018

Approved by: Arnold H. Buss
 Advisor

 Ruriko Yoshida
 Second Reader

 Peter J. Denning
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The USMC maintenance depots at Marine Corps Logistics Base (MCLB) Albany,

GA, and MCLB Barstow, CA, conduct extensive contracted overhauls and repairs on a

variety of ground combat and combat service support vehicles from throughout the

operating forces. Servicing of one vehicle in particular, the Light Armored Vehicle

(LAV), has had issues with runaway costs and prolonged maintenance cycle-time caused

by severe bottlenecks at key junctures in the maintenance cycle.

This study models the bottlenecks experienced in the real system and

then provides recommendations to mitigate them. The discrete-event simulation (DES)

tools used in this study implement data farming and data analysis that provide

quantitative justification and show the sponsor where to adjust resource capacity

parameters in the system in order to reduce the effect of these bottlenecks and overall

cycle time. In addition to the DES analysis, this project provides the sponsor, Marine

Corps Logistics Command, with a working tool that can be used in assisting key

leadership in making resource capacity decisions by showing how individual queues

and the overall system are affected when input parameters are adjusted.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. BACKGROUND ..7
A. PREVIOUS MDMC STUDIES ..7

1. DES Used at MDMC ..7
2. LAV Business Study ..8

B. PREVIOUS DES WORK ..9
1. DES and Value Networks ..9
2. DES Application in Supply Chains ..10
3. Parallel DES ...12

C. OTHER SIMULATION APPLICATIONS FOR SUPPLY
CHAINS ..13

III. APPROACH ...15
A. PROBLEM SCOPE ...15
B. DELINEATE MILESTONES...16
C. PILOT MODEL ...18
D. SITE VISIT...19
E. MODEL INTENT AND DIRECTION ..20

IV. DEVELOPMENT ..23
A. OVERVIEW ...23

1. Discrete Event Simulation ...23
2. States and State Variables ...25
3. Events ..26

B. SIMKIT ...26
C. CLASSES ..27

1. Entities ..27
2. LAV Entity Creator ...27
3. Entity Servers ...28
4. LAV Disassembly Server ...30
5. Entity Server with Bays ...31
6. Wedge Delay Server ...32
7. Rework Delay Server ...34
8. Component Re-Assembly Servers ..37

D. IMPLEMENTATION ...39

 viii

V. RESULTS ...43
A. MODEL GOVERNANCE...43
B. BASELINE RUN ..44
C. ITERATIVE IMPROVEMENT ...45
D. REGRESSION ...46
E. CONCLUSIONS ..50

VI. FUTURE WORK ...51

LIST OF REFERENCES ..55

INITIAL DISTRIBUTION LIST ...57

 ix

LIST OF FIGURES

Figure 1. Next Event Selection Algorithm. Source: Buss (2017).24

Figure 2. Continuous/Time-Step State Trajectory. Source: Buss (2017).25

Figure 3. DES State Trajectory. Source: Buss (2017). ..25

Figure 4. LAVEntityCreator Event Graph ..28

Figure 5. LAVEntityServer Event Graph ..29

Figure 6. LAVDisassemblyServer Event Graph ...30

Figure 7. LAVEntityServerWithBays Event Graph ..32

Figure 8. WedgeDelayLAVServer Event Graph ...34

Figure 9. ReworkDelayLAVServer Event Graph ...36

Figure 10. Component Assembly Server Event Graph ...38

Figure 11. Listener Diagram Depicting Entities being Passed from the LAV
Entity Creator Class to the First LAV Entity Server Instance40

Figure 12. Listener Diagram Depicting Component Entities being Created by
the LAV Disassembly Server Instance and Passed to their
Respective Entity Server Networks ...40

Figure 13. Listener Diagram Depicting the LAV and Component Entities being
Passed to the Respective Component Assembly Server Instance41

Figure 14. Baseline Delay-in-Queue: Connecting Letters Report Excerpt.
Source: JMP® Pro Version 13.1.0 (2016). ...45

Figure 15. Improvement Step Comparisons. Source: JMP Pro Version 13.1.0.
(2016). ..46

Figure 16. Actual by Predicted Plot. Source: JMP Pro Version 13.1.0. (2016).48

Figure 17. Effect Summary. Source: JM Pro Version 13.1.0. (2016).48

Figure 18. Effect Tests. Source: JMP Pro Version 13.1.0. (2016.)49

Figure 19. Parameter Estimates. Source: JMP Pro Version 13.1.0. (2016).49

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF ACRONYMS AND ABBREVIATIONS

AAV Assault Amphibian Vehicle
LAV Light Armored Vehicle
LOGCOM Marine Corps Logistics Command
MAGTF Marine Air Ground Task Force
MCLB Marine Corps Logistics Base
MDMC Marine Depot Maintenance Command
MOVES Modeling, Virtual Environments, and Simulation
IROAN Inspect and Repair Only as Necessary
SLEP Service Life Extension Program
LTI Limited Technical Inspection
DES Discrete Event Simulation
NaN Not a Number
HDT Heat Distortion Temperature
FIFO First In First Out
ANOVA Analysis of Variance
HSD Honest Significant Difference
NOLH Nearly Orthogonal Latin Hypercube
SEED Simulation, Experiments, and Efficient Design
VV&A Verification, Validation, and Accreditation

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

Completing this work was no small endeavor, and there are many who contributed

to my success. I would like to thank the NPS staff who assisted me in this effort, Dr. Arnold

Buss and Dr. Ruriko Yoshida. Without their expertise and counsel, this project would have

been markedly more difficult. I would also like to thank the personnel at the Marine Corps

Logistics Command, Mr. Huntley Bodden, Major Brian Bagley, and Mr. Kyle Luckie, for

their support and assistance in the data collection and scoping of this project. Most

importantly, I would like to thank my wife, Angela, for her continuous support throughout

my pursuit of this achievement and in my career.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

In the 1980s, as a response to an emerging need to have a rapidly deployable, highly

maneuverable capability that could address threats in an urban environment as well rugged

expeditionary environments, the United States Marine Corps developed and purchased the

Light Armored Vehicle (LAV) program (Mullins, Adams, & Simms, 2005). Initially

fielded in 1986 with a 20-year expected life span, the LAV has been a mainstay of the

Marine Corps’ ground combat arsenal (Mullins et al., 2005). The nature of the strain that

the LAV fleet has undergone while traversing rugged terrain in both training and

operational environments necessitate an incredibly immense maintenance effort.

Maintenance in the Marine Corps is a rather structured effort in which levels of

responsibility for completed different types of work are delineated into echelons and tasked

the various supporting agencies within the operating forces. 1st Echelon maintenance is

also known as operator level maintenance, and is conducted by the unit or crew that owns

the equipment and uses it for their assigned mission set (“Marine Corps Order 4790.2C,”

2012). Examples of 1st echelon maintenance would be weekly routine vehicle checks and

inspections such as checking fluid levels, tire wear, presence of any fluid leaks, or damage

to vehicle parts or issued equipment the operator is responsible for maintaining. If the

operator identifies concerns that are outside their capability to address, they will induct the

equipment in for 2nd echelon maintenance (“Marine Corps Order 4790.2C,” 2012). 2nd

echelon maintenance is conducted by personnel that are trained mechanics on that given

piece of equipment (“Marine Corps Order 4790.2C,” 2012).

2nd echelon maintenance would include repairs that do not involve pulling major

drivetrain components off of the vehicle such as hose replacements, electrical component

replacements, or routine semi-annual or annual preventive maintenance such as oil

changes. 1st and 2nd echelon maintenance are together also known as the organic level of

maintenance, because they consist of repairs conducted by personnel within the unit that

owns and uses the equipment (“Marine Corps Order 4790.2C,” 2012).

 2

If a particular repair is above the capability of that unit’s maintenance section, then

it must be inducted into the 3rd echelon maintenance shop (“Marine Corps Order 4790.2C,”

2012). If that particular battalion has a third echelon maintenance capability, then it could

be that the company’s mechanics will induct the equipment into the battalion’s

maintenance section for that higher level repair. You may see this transaction most often

at units who are typically the sole custodian of that piece of equipment on the base, such

as a tank battalion or Assault Amphibian Vehicle (AAV) Battalion. For equipment that is

held and maintained by a variety of units on that particular installation, such as motor

transport equipment, the battalion that owns the equipment will induct the equipment into

their designated direct support maintenance activity within the Marine Logistics Group.

The types of work done at 3rd echelon might be more complex scheduled preventive

maintenance and the removal and replacement of major component items such as

transmissions and engines.

While the major components are replaced at the 3rd echelon shop, those component

items are pulled from the end item, packaged, shipped, and inducted at the 4th echelon

shop for repair (“Marine Corps Order 4790.2C,” 2012). The 4th echelon shop has the

primary responsibility of receipt, repair and/or rebuilding of major component items, and

then return of fixed component item back to the 3rd echelon shop for re-installation into

the end item (“Marine Corps Order 4790.2C,” 2012). The 4th echelon repairs are typically

performed by maintenance Marines at the highest support agency within the Marine Air

Ground Task Force (MAGTF), possibly in conjunction with defense contracting company

representatives, if the end item has some warranty or maintenance contract that covers

those repairs. 3rd and 4th echelon are together referred to as the intermediate level of

maintenance (“Marine Corps Order 4790.2C,” 2012).

Echelons one through four comprise the methods by which equipment in the

maintenance cycle while still remaining in the operating forces and still owned by the

original using unit. Periodically, however, the MAGTF will need to cycle a piece of

equipment out of the operating forces for a complete overhaul in order to conduct complete

rebuild of the equipment and all component items to whatever extent is necessary. This

level is known as the 5th echelon of maintenance, also called depot-level maintenance

 3

(“Marine Corps Order 4790.2C,” 2012). This study will be looking at the depot-level

maintenance processes for the LAV.

Depot level maintenance for the Marine Corps is overseen by the Marine Corps

Logistics Command (LOGCOM) and the Marine Depot Maintenance Command (MDMC)

(Marine Corps Logistics Command, 2017). Depot-level maintenance is performed at two

sites—Marine Corps Logistics Base (MCLB) Albany, GA, and MCLB Barstow, CA, both

of which are overseen by MDMC based at MCLB Albany (Marine Corps Logistics

Command, 2017).

The motivation for the sponsor having this study completed was originally drawn

from the recommendations from a report by the Penn State Applied Research Laboratory

(B. Bagley, personal communication, 29 January 2017), a team from which was invited to

MDMC to conduct a review and provide ideas as to how LOGCOM can achieve a more

efficient operating environment (Bair et al., 2017). Specifically, the Penn State Team

recommended LOGCOM pursue the development of a discrete-event simulation model in

order to truly assess the throughput capabilities of the facility so that they can understand

how the system can be expected to perform by applying probability distributions for

arrivals and service times throughout the different stations and processes in depot level

maintenance (Bair et al., 2017). This will ideally lead to an improved ability to make

decisions regarding adjustments to the key drivers for the maintenance production process

and how system resources can be manipulated to achieve desired effects on the system.

The objective of this study will be to create a discrete-event model of the LAV

depot-level maintenance process and conduct simulation experiments with the model to

see how system performance can be expected to change based on how resources allocations

are changed due to decisions made governing the system.

This project presents several challenges, some of which are incumbent upon any

equipment involved in depot-level maintenance and some of which are unique to the LAV.

Depot-level maintenance can be particularly difficult to forecast due to the nature of how

equipment is repaired (K. Luckie, personal communication, 29 January 2018). For any

given item that is inducted into MDMC for depot-level maintenance, the types of jobs that

 4

will be completed and the degree of repair that will be required will be unique to that

individual item (United States Marine Corps, 1992). There is an incredible amount of

variability in the time it will take to complete each task as it will depend entirely on how

damaged or worn the given component may be (K. Luckie, personal communication, 29

January 2018). An engine could take anywhere from several hours to over a week to repair

(K. Luckie, personal communication, 29 January 2018). Similarly, to complete a welding

job on a vehicle’s hull and body could take anywhere from a number of hours to over a

month (K. Luckie, personal communication, 29 January 2018).

Another complication that is pertinent to the LAV right now is the numerous life

extension packages that have been directed by the acquisition program office for the

equipment (K. Luckie, personal communication, 29 January, 2018). The LAV program

initially had a program expected lifespan of 20 years, which would have put the original

disposition date for the entire program in the mid-2000s (Mullins et al., 2005). Due to both

the conflicts that have taken place as well as no sensible cost-effective alternative, the

program office has directed life-extension modifications to the equipment as it comes to

the depot for maintenance (K. Luckie, personal communication, 29 January 2018). These

modification packages create another layer of variation that can be difficult to model,

especially early into the cycle of completion, as you will not have the data to understand to

what degree the modification package changes the expected service time of any given

station. This variation is compounded even further when the maintenance production

stations are being based not in data, but off of the staff estimates of subject matter experts

(K. Luckie, personal communication, 29 January 2018).

There are several concerns that will limit the ability to produce a useful model.

While LOGCOM has asked for a complete, beginning to end discrete-event model that

maps production through all steps in the maintenance cycle, there is currently no data for

actual service times for each step in the maintenance process (K. Luckie, personal

communication, 29 January 2018). Every station in the model has been based on subject

matter expert’s estimate of the average time is takes to complete a given step (K. Luckie,

personal communication, 29 January 2018). This will be problematic as the observed

variations seen in the system through the model will not be as representative as the actual

 5

variation. That being said, the discrete-event model based on this limited information can

still be useful to leadership to begin to understand where capacity restrictions may be

expected to cause bottlenecks, how capacity expansion may be expected to relieve

bottlenecks, and how adjustments to resources to address known problems in one part of

the system may potentially create other problems elsewhere. This model will primarily

look at the system resources of personnel and space during the experimentation phase in

order to provide recommendations for decisions to the LOGCOM leadership.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. BACKGROUND

A. PREVIOUS MDMC STUDIES

1. DES Used at MDMC

In preparation for conducting this study, a comprehensive review was undertaken

of a variety of publications, including student theses related to the LAV, depot-level

maintenance, and DES as well as professional studies and journal articles related to the

employment of discrete-event simulation in supply chain and logistics networks outside

the military domain.

One of the first works reviewed was that of a previous MOVES student, Maj

Timothy Curling. In his study, Major Curling completed an overview of the generic depot-

level maintenance process; however, he did not narrow down on any one particular end

item, or group of items his scope was more broad and had a different goal (Curling, 2016).

In Major Curling’s project he used both DES and optimization techniques to help provide

an improved method for ordering repair parts for the equipment that undergoes

maintenance at the Logistics bases (Curling, 2016). Seeing how Major Curling was able to

implement a DES/optimization model was helpful in building the framework for this study,

however there are some fundamental differences in both the models and objectives between

Major Curling’s project and the overarching model being attempted in this LAV depot

process study.

Where Major Curling’s project had a focus on inventory control in depot-level

maintenance (Curling, 2016), this study will be focused more on measuring system

throughput and cycle time. In addition, while Major Curling looked at the generic depot-

level maintenance process (Curling, 2016), this model will be a little more narrowly

focused on a specific end item, the Light Armored vehicle. One particular item of note is

the maintenance production model. DES models can be represented in the form of an event

graph (Schruben, 1983; Buss, 1995). An event graph is simply a depiction used to

demonstrate the behavior found in a particular DES model (Schruben, 1983; Buss, 1995).

In Major Curling’s production event graph, he has 12 nodes (Curling, 2016). If each step

 8

in the LAV process were implemented, there would be 156 nodes in the event graph. He

accomplished this by looking at broad brushstroke movements such as “Start Disassembly”

or “Finish Assembly” rather than specific steps in the process such as “remove armor

plating” or “final communications inspection”; the takeaway is that not every step must be

fleshed out in thorough detail, that a DES model can incorporate aggregation and still be

valid. Please see Chapter IV for examples of event graphs.

One of the challenges Maj Curling faced was obtaining worthwhile data from the

maintenance facilities (T. Curling, personal communication, 20 September 2017); the same

difficulties can reasonably be expected in this study also. This particular issue provided

insight that the baseline model being developed for the LAV may need to find ways to

work around on hand data being present to map the system. Ultimately Major Curling’s

thesis was able to provide recommendations to LOGCOM for more efficient repair part

requisition forecasting; the proof of concept is that a DES model developed from limited

data can still provide value to the client, in this case the same client.

2. LAV Business Study

The 2005 Business school thesis on LAV depot-level maintenance by Mullins,

Adams, and Simms took a look at the business aspects of the maintenance undergone at

both the Albany and Barstow facilities (Mullins et al., 2005). While their analysis is a bit

old and does not incorporate any simulation, it provides some very insightful information

on both the LAV processes and the depots themselves.

One of the major changes the depots made 15–20 years ago was the implementation

of the theory of constraints method of maintenance production (Mullins et al., 2005). This

called from shifting from an “assembly line” type process to a “workstation” method

(Mullins et al., 2005). This essentially means that instead of doing every single step in

perfect order, the maintenance crews will perform any work they can at a given workstation

given that they have the necessary resources on hand to do so; even if it is not the traditional

or typical order in which the maintenance tasks are performed (Mullins et al., 2005).

The next major concepts discussed in the paper are the IROAN and SLEP

programs. The service life extension program (SLEP) is essentially a set of that all end

 9

items of a particular model coming to the facility will undergo and a predetermined

modification in order to extend the program life from its original end date; the marine corps

uses this program as a cost effective alternative to acquisition of a new product (Mullins et

al., 2005). The inspect and repair only as necessary (IROAN) is a program that will have

the personnel conduct a thorough limited technical inspection (LTI) upon the equipment’s

arrival to the depot in order to determine which items need to be repaired or replaced on

the vehicle (Mullins et al., 2005). IROAN has in effect helped the maintenance depots

avoid taking time to disassemble, replace, and reassemble components that are still

functional (Mullins et al., 2005).

The next interesting piece in the paper was the comparisons between various costs

at the maintenance depots. At Albany, the labor costs tended to be less than Barstow, while

Barstow had cheaper costs for repair parts (Mullins et al., 2005). Another significant cost

was that of shipping from Marine Corps units in Hawaii, and Okinawa, Japan, to the

maintenance facility in Barstow (Mullins et al., 2005). Where it costs $600–$1000 for

vehicles on the east and west coast units to get to their respective maintenance facilities, it

costs around $6000 to get from Hawaii and nearly $10,000 to get from Okinawa to their

respective depot-level maintenance facility (Mullins et al., 2005). These points leave

unanswered questions: do these cost disparities between Albany and Barstow still exist,

and what are the causes?

While the goal of the previous study was different from the intent of the upcoming

simulation study, the background and insight into the evolution of processes at the

maintenance depots is invaluable and provides perspective that helps us understand the full

picture. It also helps build the case for some level of aggregation into the final model.

Drilling down to low might not only be wasting time, it could be limiting the model to a

degree of granularity that is neither practical nor realistic.

B. PREVIOUS DES WORK

1. DES and Value Networks

“Integration of discrete-event simulation and optimization for the design of value

networks,” by M. Schlegel, G. Brosig, A. Eckert, M. Jung, A. Polt, M. Sonnenschein and

 10

C. Vogt, was an incredibly relevant resource. In this particular paper, the authors describe

the application of discrete event simulation and optimization in generic value networks,

but specifically those in which discrete decisions can be made that affect the policy of a

given manufacturing or supply chain type network (Schlegel et al., 2006). The application

mentioned in this article provides an excellent proof of concept and basis for a discrete

event simulation model which can test policies at a maintenance facility. This paper

provides an excellent foundation and outline for how to create a model for resource

capacity expansion in a given system (Schlegel et al., 2006). It serves as an excellent

example of how a pool of resources can be allocated and tested at various points in a given

network to examine effectiveness.

2. DES Application in Supply Chains

“Linking Supply Chain Configuration to Supply Chain Performance: a DES

Model” by Cigolini, Pero, Rossi, and Sianesi took a look at some of the phenomena

resulting from inherent dependencies/relationships between the performance of a supply

chain to the various management decisions and configurations used within the various

components of a supply chain (Cigolini, Pero, Rossi, & Sianesi, 2014). They define

performance as the occurrence (or conversely the lack of occurrence) of stock levels and

stock-outs in a given supply chain (Cigolini et al., 2014). They also break down the various

stages within a supply chain to either retailers, distributors, and manufacturers (Cigolini et

al., 2014). They narrowed the main parameters in supply chains to number of sources,

capacity of system, distance between nodes, number of levels of distribution (how many

steps between manufacturer and retailer) (Cigolini et al., 2014).

Some of the phenomena found in this work were rather interesting and may be able

to shed light on the incorporation of inventory policy as an element of the LAV depot

maintenance model. While the authors determined there was no statistically significant

effect of performance due to the distance of nodes, they did notice an increasing trend of

stocks outs at the retailer the closer they were to the distributers (Cigolini et al., 2014).

They believed this was due to the fact that the retailers based their orders on the lead time

 11

due to transportation from distributers and therefore tended to place smaller orders, leading

to a lower resistance to demand variation (Cigolini et al., 2014).

To combat this, Cigolini et al. (2014) recommended better information sharing

between retailers and distributors. On the part of distributors, they noticed a significant

effect due to multiple retailers being supplied, attributed to compounded demand variations

due to the individual variances of each retailer’s demand; this setup resulted in stock-out

and backlogs at the distributors (Cigolini et al., 2014). When retailers decided to split

sources from multiple manufacturers, it tended to lower the probability of a stock-out;

however, once a stock-out took place it tended to be more severe; particularly problematic

for items with a seasonal demand (Cigolini et al., 2014). These effects paint some

interesting notions as to how issues that may occur at the depot could be resolved with

policy decisions.

“Improving the Rigor of DES in Logistics and Supply Chain Research” by Manuj,

Mentzer, and Bowers examined the notion of rigor in simulations; rigor in this case

meaning the degree to which complex simulations testing a logistics or supply chain system

adhere to a certain set of prescribed standards (Manuj, Mentzer, & Bowers, 2009). The

purpose of this paper was to propose their eight step simulation model development process

for the design, implementation, and evaluation of logistics and supply chain models (Manuj

et al., 2009). The eight steps are (Manuj et al., p. 176):

“1. Formulate the problem—precisely determining the purpose of the model
while retrieving input from all involved stakeholders.

2. Specify independent and dependent variables.

3. Develop conceptual model—a walk-through of the process with experts
who know it well.

4. Collect Data.

5. Develop and verify computer-based model. Based on a detailed
flowchart, involve independent programmers, and cross-check against
manual calculations.

6. Validate the model—involve subject matter experts, conduct pilot tests
and determine validity of outputs.

 12

7. Run simulations—after appropriately determining proper sample size,
runs, and length of each run.

8. Analyze and document results.”

These eight steps serve as a fairly apt guide to the creation of any model in the supply chain

realm. Certainly, the ultimate model for this LAV depot-level maintenance study will apply

these on a case-by-case basis; but as an overarching guideline it is fairly sound.

3. Parallel DES

“Parallel Discrete-Event Simulation,” by Richard M. Fujimoto delves into the

aspect of parallel discrete-event simulation (DES), a method by which we test a discrete-

event model by employing parallel computing, that is the use of multiple computer

processors to simultaneously work through the computational processes necessary to

complete the steps of a given simulation (Fujimoto, 1990).

Parallel DES is in some cases helpful, and in other cases necessary due to the

complexity of emerging models (Fujimoto, 1990). The employment of the parallel

computing aspect can drastically cut down the time it takes to complete a prescribed

number of runs in a given simulation, as there is a limit to how much processing power we

can hope to get out of any one processor (Fujimoto, 1990). The concept of parallel DES

can often involve an incredible amount of memory and effective networking to ensure that

state variables are be accurately updated to reflect the changes made by one processor or

another (Fujimoto, 1990). The problems that can arise from parallel DES are that you can

have an issue of processing the wrong steps from the event list as you have two separate

processers computing events which may at times be dependent on one another (Fujimoto,

1990).

What makes the refinement of parallel DES difficult is that you are in essence

attempting to balance the benefit of taking advantage of the additional computing power

with the extra memory space, coding, networking capability, and other features you will

need to implement in order to get the most efficient result (Fujimoto, 1990). There are

essentially two schools of thought when it comes to the implementation of parallel DES,

the conservative approach and the optimistic approach (Fujimoto, 1990).

 13

The conservative approach looks to ensure that there are no possibilities that any

steps occur out of sequence (Fujimoto, 1990). The program will have code that prevents

and event from being processed before the completion of its previously sequenced event

(Fujimoto, 1990). While this method avoids the pain of errors in processing order, it can

often be overly pessimistic (Fujimoto, 1990), which is in essence to say that it will sacrifice

the advantage of computing capability in order to have confidence in the correct processing

order (Fujimoto, 1990). The conservative approach will often not take the fullest advantage

of parallel computing and will fail to simultaneously process multiple events that may have

no dependency on one another (Fujimoto, 1990).

The optimistic approach looks to take the fullest advantage of parallel computing

and addresses the errors that may result on the back end by employing measures that detect

and recover program errors (Fujimoto, 1990). While the optimistic approach can often take

advantage of more simultaneous computing than the conservative approach, the concern is

that it does not necessarily mean it is operating more efficiently (Fujimoto, 1990). If too

many errors abound, then the concern is that the processors end up spending too much time

recovering the correct state of the system instead of primarily engaging the event list

effectively (Fujimoto, 1990).

While it is not expected that parallel DES will be required for the depot

maintenance model, it is beneficial to understand the challenge and implications it has for

the domain of DES.

C. OTHER SIMULATION APPLICATIONS FOR SUPPLY CHAINS

In “Simulation and optimization of supply chains: Alternative or complementary

approaches?” by Almeder et al., the authors specifically mention the need to iterate the

testing of the simulation model and the optimization model in order to properly verify and

validate the inputs and outputs (Almeder, Preusser, & Hartl, 2009). This is perhaps the

biggest takeaway we have from this paper and will come into play much more during the

later milestones of the model development.

Once the maintenance depot model has been completed, it will not be sufficient to

create parameter adjustments to the system based on baseline performance. We will have

 14

to conduct reruns of the optimization as we adjust system parameters in order to confirm

which resource parameters levels will ultimately perform at the most effective and efficient

levels. “Resources” for purposes of this study are to mean component items, personnel

staffing, and maintenance bay space necessary to conduct work; all of which are key

ingredients necessary to accomplishing tasks in the system.

In “A simulation-based optimization framework for parameter optimization of

supply-chain networks” by Mele et al., the authors also looked at how to best integrate

optimization within a discrete-event model (Mele, Guillén, Espuña, & Puigjaner, 2006).

The specifics of the analyses do not particularly translate into what will be

achieved/attempted with this maintenance depot project, but they do provide some relevant

background/proof of concept for the employment of optimization and simulation

techniques in tandem to create an effective model.

“Supply chain analysis methodology—Leveraging optimization and simulation

software,” by S. Kumar and D. A. Nottestad dealt with the integration of discrete-event

simulation and optimization in more industrial sectors (Kumar & Nottestad, 2013). It also

discussed how they used the relationship from supplier to distributer and the relationship

between inventory control and customer service and how they affect and relate to supply

chain policy decisions (Kumar & Nottestad, 2013).

While this particular article was not incredibly relevant in its application of the

principles of discrete-event simulation, it did provide very good insights on how to

incorporate discrete-event simulation in defining and refining policy decisions, which is

ultimately what will be done with the LAV model of depot level maintenance. In addition,

this paper also described employing a cost-benefit tool to allow decision makers to see

steady state impact of a supply-chain policy decision (Kumar & Nottestad, 2013). While a

graphic user interface will be outside the scope of this particular thesis project, it is certainly

an interesting idea, and perhaps something that can be considered later on.

 15

III. APPROACH

One of the primary problems in developing a model of the LAV depot-level

maintenance cycle is the size and complexity of the process. In order to provide some

method to this effort, the modelling was broken down into several tasks. The first necessary

step would be to correctly identify the scope of the problem. What would be in or out of

the scope, and to what level of detail would we drill down into the system. Once we

determined the system boundaries, it was time to delineate milestones for the model’s

development, ranging from a basic single server system all the way to the goal of the final

system model. The next step would be to gather sponsor input and develop a pilot model.

The pilot model would be presented to the sponsor during a site visit in order to demonstrate

what a DES product would look like and how their inputs would be used to generate data

farming. The site visit was also the time at which we, together with the sponsor, determined

the extent to which the model would represent the system, behaviors we would aim to

achieve, and the degree to which tasks and events would be aggregated. Following all

sponsor inputs, implementation of the final LAV system model could commence

A. PROBLEM SCOPE

This study looked at any and all operations that take place within the Albany, GA

maintenance depot facility. While ultimately LOGCOM will want to have simulations

completed for both maintenance depots, it will only be possible at this point to complete a

proof of concept for one maintenance depot. Inside the scope of the simulation model will

only be actions taking place at the Albany, GA maintenance facility. The scoped actions

will “start” with our entity creation/arrival process when vehicles are simulated as being

received by the facility.

The scoped actions will stop once a vehicle is considered fully completed with all

required maintenance in the system and is ready to be returned to the fleet. It is important

to note that that only includes the declaration that the vehicle is ready to be returned to the

operating forces; the process of shipping the vehicle will not be modeled. Other vehicles

that undergo maintenance at the Albany, GA facility will not be modeled. Actions taken in

 16

the operating forces which could affect the ability of MDMC to conduct depot-level repairs

on the LAV will be discussed on an anecdotal basis and included as subject matter for

future work; but it will not be included in the model itself.

B. DELINEATE MILESTONES

The initial cut of problem framing was a very high level overview of the system

into a single-server concept: an LAV arrives into the depot maintenance system, repairs

begin, and repairs end. From that point, the focus was to add complexity to this basic

premise and add queue counters, arrival counters, random arrival generators, and random

service time generators. At this point, no code is yet being written for the model; everything

is being designed through the use of diagrams and event graphs. This high-level approach

helps drive the modelling process so that we ensure we are accounting for the appropriate

factors before drilling down deep in the wrong direction.

When modelling a complex system such as the entire depot-level maintenance

process of the LAV, it is necessary to break the entirety of the modelling into manageable

pieces in order to verify a simple iteration of the model before progressing to a more

complex iteration. The following milestones were decided upon for the model progression:

1. Basic entity, arrival process, server classes. This milestone was meant to be an

initial big picture overview of the system, using a simple single server class to pass

information regarding the entirety of the depot maintenance process.

2. Server node aggregation. This milestone expanded the scope of the single server

class and incorporated all steps of the maintenance cycle in an aggregated fashion. The

maintenance steps were aggregated by the building they were completed at in order to

graduate the model’s complexity slightly and not jump directly from a single server model

into a 156 server model. When completed, this milestone consisted of an arrival process

and 22 servers connected in a row by way of adapters. This milestone was used as the basis

for the pilot model presented to key sponsor personnel during the site visit.

3. Server complexity. The site visit tour and associated meetings provided

additional information that could be added into the individual servers. At this point in

 17

development, the model used separate server class instances for every single step in the

maintenance cycle, 156 in total. Additionally, different types of classes were created to

more effectively represent what was taking place in the real system, such as rework delays,

wedge delays, entity servers, component servers, disassembly servers, assembly servers,

servers with bays, among others. Information gathered during the site visit and follow-on

communication with the sponsor helped enumerate the probabilities that a particular item

underwent a delay, and what the impact of that delay meant for that particular item’s

maintenance cycle. Additional refinements to individual server service time/resource

capacity constraints were compiled during the milestone also. Details on the individual

classes will be discussed in more depth in the “Implementation” section of this chapter.

4. Entity complexity. Roughly concurrent with the server complexity development

was the development and improvement of the use of entities in the model. As with any

coding model, there was a great degree of circular editing and testing before coming to the

final granularity of what properties the model needed to account for with a given entity. In

the initial stages, the only entities account for in the model was the LAV end item itself.

Through development and testing it became more apparent that separate entities classes

would need to be created for the key component tracks that the project was looking to

represent. This allowed for the model to fully track the maintenance cycle more realistically

as well as effectively capture desired statistics in order to show measure of performance.

5. Statistics. Delay in queue, time in system, queue size, number of arrivals, and

number of repairs were the statistical figures that were determined most important for

tracking in this study. With these figures captured in the model, we would easily see how

maintenance cycle time and system throughput would be effected when adjusting resource

capacity parameters. Several iterations were required to properly capture these figures. The

first several iterations focused on properly capturing the statistical figures across a single

run. Once that was successfully achieved, that was designated as the “inner loop” and then

collected across multiple run iterations, or an “outer loop” that allowed the user to see what

the steady state long run average of those statistics looked like. The outer loop statistics

and long run average concepts were especially important for this depot-level maintenance

model as the depot maintenance process is very lengthy. Measuring long-run effects across

 18

a live, real-time study would simply be impractical if not impossible. Using simulation to

test the effects of resource decisions really allows MDMC leadership to be more prepared

before making such decisions.

6. Optimization. After statistics were effectively collected, the next step is to adjust

resources capacities in a manner that provides actionable, realistic recommendations to the

sponsor that can begin to help ease the bottleneck trends they have experienced in the past.

This particular step looked largely at the disassembly, re-assembly, welding, and other

time-consuming tasks to see where additional personnel and/or space might be most

effectively assigned. See the results and conclusions chapters for more details on how these

issues could be addressed.

7. Refinement. The ultimate value of this product to the sponsor is that it is a living

software tool that the sponsor can continue to modify and run at their discretion as new or

updated information becomes available about the nature of the system capacity, constraints,

capabilities, or anything specific to the entities undergoing maintenance. Given the nature

of this study and this product, this milestone is never fully complete. A simple adjustment

of the input parameters in the model’s main method allows the user to conduct a new run

of the simulation and test the effects of the resource adjustment.

C. PILOT MODEL

Once a basic high-level understanding was developed for the overview of what the

model would need to achieve, it was appropriate to begin to collect information specific to

the LAV depot-level maintenance process. The first batch of information provided by the

sponsor enumerated the various maintenance steps along which the end item travels during

its maintenance production cycle. This allowed for the further mapping of the system and

helps provide understanding for the level of complexity necessary to study the system. The

next set of key products was a work breakdown structure that outlined the production times

for each step in the process of both the end item and all component items as well, to include

disassembly, re-assembly, inspections, and wedge delays. Additionally, the products also

showed how many personnel were required to complete each step in the maintenance cycle.

 19

The pilot model was an important development for a couple different reasons. It

provided an initial near sighted goal to work towards prior to any substantial data collection

and it also provided a simplified demonstration to show the sponsor what a DES application

might look like during the site visit. This gave an incentive to begin the development of

several generic Simkit classes for the model which ultimately made the final model easier

develop once the available information was mature enough. Having the pilot model ready

at the site visit allowed the sponsor to see what their information was going towards and

how it would factor into the model. It also helped them see from my perspective why

certain types of information about the system were more valuable than others, why the

analyzed variables had been chosen in a particular way, and how the granularity of the

model had to be broad enough to encompass the full maintenance cycle, detailed enough

to capture to behavior of the servers and entities, and yet not too detailed to where the key

drivers the study wanted to analyze were not getting lost.

D. SITE VISIT

The two-day site visit to the Albany, GA, MDMC facility/LOGCOM headquarters

was an invaluable experience that helped in achieving the appropriate orientation of the

depot maintenance process. Simply reading or having a question and answer session with

some subset of the sponsorship group would not have been nearly sufficient to achieve this

level of familiarity and understanding. Day one consisted of a lengthy tour of the

maintenance facilities and walkthrough of all steps and locations that the end item and

major component items traveled throughout the LAV depot-level maintenance process.

Following the tour, there was ample time to conduct a meet and greet of various key

personnel involved in the depot-level maintenance of the LAV both at LOGCOM

headquarters and at the floor of the MDMC depot facility. Day two consisted of various

meetings that facilitated more detailed information collection of the LAV process so that

the model could more realistically and accurately represent what was going on in the real

process. Day two also allowed for a sit in of a teleconference with a Penn State team that

is working on a similar project for MDMC, and who very well may attempt to tackle some

of the future work recommendations that came out of this study.

 20

E. MODEL INTENT AND DIRECTION

Once the site visits were completed and the necessary information was acquired,

the direction and intent of the eventual model was decided. It was at this point that the

decision was made to instantiate every server that has a role in the maintenance of the end

item as well as all servers for the miscellaneous hull component, power pack

(engine/transmission assembly), suspension system, and communications equipment. In

talking with the subject matter experts at MDMC, these four components were the most

critical, most problematic, and the most actionable components that could be effectively

included into the model (B. Bagley and K. Luckie, personal communication, 30 January

2018).

Employees would be included as a resource parameter at every server instance

along with a randomized service time generator per their estimated average real service

time. In the assembly, disassembly, and welding server instances, maintenance bay spaces

would also be included as a resource parameter. The first goal in building the final model

would be correctly tying in a main class all the server instances that reflected the proper

flow, probabilities, decisions, delays, etc. that can be observed in the real system.

A guiding feature to identifying intermittent success of this initial piece would be

seeing the same issues found in the real system beginning to present themselves in the

simulation, such as a sever bottleneck in the welding station. Once the baseline model had

achieved some level of fidelity and confidence through numerous simulation runs, we

would identify the most problematic servers and adjust the input parameters in order to

provide actionable recommendations to MDMC for improving the system’s long-run

cycle-time and throughput. The key to the previous objective is actionable

recommendations; a strict optimization will not be utilized to address this problem as there

are simply too many constraints and too little additional resources to work with. The

outcome of this particular study will be an output provided to the sponsor showing uses

cases in which a slight adjustment of parameters, whether in additional resources or a

reallocation of resources, will provide a statistically significant decrease in average cycle

time.

 21

Another key thing to remember is that this model will not necessarily provide value

in the empirical sense, but in the relative sense. The objective is not to recreate the

performance time observed in the real system, nor to achieve some arbitrary level but to

demonstrate the degree to which a policy decision improves that performance. Thus, the

key performance measure will be the statistical improvement of cycle-time. Further

analysis of parametric policy decisions beyond the uses cases provided in the model output

results will be considered in future work. For the specific parametric inputs of both the

baseline runs and the recommended improvement runs, and their respective outputs, please

see the implementation and results chapters.

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

IV. DEVELOPMENT

In creating the model for the LAV depot level maintenance system, as stated

previously, DES methodology was the vehicle chosen to represent this system. This chapter

will discuss the details of how the DES principles were applied to the LAV depot level

maintenance process. This involves a brief background of model theory, DES

methodologies, the Simkit software application used to implement the model. The specific

classes of code and their behaviors that were developed will be discussed in detail, as will

the specifics on how the classes were instantiated and tied together to form the model.

A. OVERVIEW

In creating a discrete-event simulation model of any system, we must first break

down what it means to have a model, a simulation, and that it be discrete-event in nature.

A model is often described as an abstraction of reality. In the words of the Panel on

Modelling Human Behavior and Command Decision Making (National Research Council,

Education, Integration, & Simulations, 1998) “Models are condensed summaries of a

domain, omitting (i.e., averaging over) details below a certain level” (p. 186) and that the

term “model” itself “implies that human or organizational behavior can be represented by

computational formulas, programs, or simulations” (p. 11). This is to say simply that any

model is essentially a simplified representation of a given system in order to better

understand the nature of the real system (National Research Council et al., 1998). The

aforementioned panel goes on to describe a simulation as “a method, usually involving

hardware and software, for implementing a model to play out the represented behavior over

time” (p. 11).

1. Discrete Event Simulation

As mentioned previously, discrete-event simulation (DES) was the vehicle chosen

to model the MDMC Albany LAV maintenance cycle. DES is a division under the broader

discipline of simulation which is defined mostly in the means by which time is advanced

in the simulation (Buss, 2017). In a DES program, time is advanced by irregular steps that

are determined by the next event on the event list (Buss, 2017). This is in opposition to a

 24

time-step style of simulation which progresses time forward at regular, uniform intervals

(Power World Corporation, 2014). A depicting of the next event algorithm is featured in

Figure 1.

Whether to implement a model in a time-step or DES method is entirely dependent

on which flavor of simulation the analyst believes will address the problem. When the

system is being analyzed on the basis of its aggregate performance in continuous

procedures over time, a time-step implementation may be appropriate (Power World

Corporation, 2014). However, when the analyst needs to address a system that is measuring

events taking place, it is imperative that each event be captured discretely for it will be in

capturing those events that the holistic value of the simulation will be revealed (Buss,

2017). Additionally, if a time-step simulation method is chosen inappropriately for an

event-based model, it could lead to the simulation not detecting the occurrence of one or

more events, or not detecting the occurrence at the proper time (Buss, 2017). The effects

of this disparity become more apparent when understanding the concept of states, state

variables, and events.

Figure 1. Next Event Selection Algorithm. Source: Buss (2017).

 25

2. States and State Variables

The state of a simulation is often described by the value of the changing variables,

also called state variables, at any given time in the system (Buss, 2017). State variables are

essentially the variables in the model which can be expected to change at different points

in time during the simulation’s run, such as the size of a queue, the delay in queue of a

particular workstation, or the time in system of a vehicle’s maintenance cycle (Buss, 2017).

State trajectory graphs can be used to measure a single state variable’s over time (Buss,

2017). For a DES model, this essentially will be a piecewise function that depicts a state

variable’s value at varying points in time; the times of which again will be tied to events

that are scheduled, added to, and then removed from the event list. Figure 2 features a

continuous/time-step state trajectory graph, while Figure 3 depicts the state trajectory graph

of a DES system

Figure 2. Continuous/Time-Step State Trajectory. Source: Buss (2017).

Figure 3. DES State Trajectory. Source: Buss (2017).

 26

3. Events

Events are the triggers used in a DES program to employ state transitions (Buss,

2017). Events are called upon to possibly change one, all, or none of the state variables

being used in the simulation (Buss, 2017). Events are also used as a means to schedule

follow-on events (Buss, 2017). If we consider a pertinent example of a simple maintenance

workstation at the MDMC facility, we will have an “Arrival” event that increases the queue

size and schedules service if workers are available; a “Start Service” event, which

decreases the queue size, decrements the number of available servers, records the delay in

queue, and schedules an end of the service task; and an “End Service” event, which records

the time in system for that station, increments the number of available servers and

schedules another servicing if the queue has items waiting in it (Buss, 2017). In the actual

implementation of Java code, these events are represented as methods within a particular

class type of the simulation. The object-oriented nature of the java language allows for a

relatively seamless application of these events in different class instances (Buss, 2000).

B. SIMKIT

The tool used to create this simulation model is a Java-based application known as

Simkit (Buss, 2000). Simkit was developed by Dr. Arnold Buss at the Naval Postgraduate

School as a component based modeling tool by which one can develop generic types of

sub-systems, also called “classes,” within a larger system they are attempting to model

(Buss, 2000). The user will then create the appropriate number of instances of the types of

classes/systems they have designed to represent the model, and connect them together by

way of adapters (Buss, 2017). Simkit is essentially a coding capability fulfillment of Dr.

Schruben’s Event Graph principle (Buss, 1995). In using Simkit, users are often

encouraged to use first create event graphs of their system before developing them in code

(Buss, 2017). Because the MDMC Albany facility is composed of numerous maintenance

stations that have similar behavior, Simkit was an ideal application with which to develop

the model. The Simkit software makes use of various classes, or types of code that will

ultimately be implemented in order to represent the appropriate behavior that is found in

the system. These classes will be used to represent entities, or objects that are being passed

 27

along through the network of service stations; an arrival process, and the service stations

that are found in the maintenance process.

C. CLASSES

1. Entities

Entities used this simulation represent the physical LAV in the maintenance cycle

as well as key components that are taken from and then re-applied to the end item. Using

entity objects as a means by which to map the simulation help us develop a simulation

network that makes use of queues, disassembly, reassembly, and other properties and

behaviors that help us represent the real system more effectively. Each of the entity classes

used in the model are extensions of the Simkit Entity class. The LAV entity class represents

the flow of the item through all of its necessary step in the maintenance cycles. The

HullMisc class represents floor panels, engine covers, access panels, transmission covers,

and other such items disassembled from the hull that must come off and undergo their own

sets of procedures. The PowerPack class represents the transmission and engine assembly.

The Comm class represents all communications related assets that are pulled off the LAV

and repaired/replaced. The Suspension class represents the suspension components travel

through its respective maintenance processes.

2. LAV Entity Creator

The LAVEntityCreator is a class which extends the Simkit library “ArrivalProcess”

class in order to generate instances of the end item entities in the system. The only

parameter input for this class is a random variate for the set of interarrival times. Based on

the input of the set of random variates, entities are feed into the system and begin working

their way through the maintenance cycle. This class is the only instance or extension of an

Arrival Process type class found in the model, and it is used to create new LAV instances.

Component instances are created within the LAVDisassemblyServer class. Figure 4 depicts

the event graph of LAVEntityCreator class.

 28

LAVEntityCreator

Parameters:

{ta}: set of interarrival times

Figure 4. LAVEntityCreator Event Graph

3. Entity Servers

Entity servers are the base case instance for any server found in the model. They

operate as single service stations with input parameters of a random variate which generates

random service times for that particular instance, and the total number of servers. “Servers”

in the case of this and all classes is to mean the number of teams of employees that are

available to conduct work on a given task. The “Run” method essentially represents the

initial instantiation of the class.

When the instance is created, the time in system and delay in queue figures are set

to NaN, the available servers is set equal to the total number of servers, and the queue is

cleared. When the “Arrival” method is activated, an entity has “arrived” into the system

and is added to the queue. The entity is also given a time stamp that starts the delay in

queue clock. If there are servers available, then the “Start Service” method is scheduled to

take place immediately. Once “Start Service” has been initiated, the entity’s delay in queue

time, the entity is removed from the queue, and the number of available servers is decreased

 29

by one. “End Service” is schedule to take place with a delay time of whatever the generated

service time for that particular entity is. “End Service” takes in the entity as an input.

Once “End Service” take places, the entity’s time in system is recorded, and the

number of available servers is increased by one. If there are vehicles in the service queue,

then another “Start Service” event is also scheduled. The LAVEntityServer class is depicted

om the event graph in Figure 5, however identical variations of the functionality of these

server classes were created that model the HullMisc, Comm, Suspension, and PowerPack

servers.

LAVEntityServer Class

Parameters

{ts}: set of service times
k: total number of servers

State Variables

s: number of available servers
queue: FIFO container of entities
D: delay in queue
W: time in system

Figure 5. LAVEntityServer Event Graph

 30

4. LAV Disassembly Server

The Disassembly server is used in only one place in the model, the station at which

the component disassembly is completed and the component items are sent along their

respective maintenance routes. This class functions almost identically to the

LAVEntityServer; except that upon start service, in addition to the recording of time in

system and incrementing the available servers, new component class instances are also

created. These component instances are what will be passed to the component entity server

networks. A visualization of this class is depicted in Figure 6.

LAVDisassemblyServer Class

Parameters

{ts}: set of service times
k: total number of servers

State Variables

s: number of available servers
queue: FIFO container of entities
D: delay in queue
W: time in system

Figure 6. LAVDisassemblyServer Event Graph

 31

5. Entity Server with Bays

In modelling the resources used at the facility, it became apparent that it would not

be sufficient to use employees alone as a resource. In instances where space was observed

to be a concern at the maintenance facility, maintenance bays were also used as a limited

resource that must be accounted for when mapping the maintenance cycle. The stations

that were represented in the model using this particular class were the disassembly stations

and the welding station.

The implementation of this class only required a few slight deviations from the

standard entity server classes. An additional parameter is added to the class constructor

which defines b: the number of total maintenance bays at that particular workstation. The

state variable “a” is then used to identify the number of available maintenance bays at a

particular time in the simulation run.

Available maintenance bays are decremented by 1 when the “Start Service” event

is activated indicating that the bay is no longer available since a vehicle has gone into

maintenance. Once the “End Service” event takes place, the available maintenance bay

figures are incremented by 1, representing in the model the notion that the bay is now

available to be worked in as a vehicle’s maintenance has just been completed. The event

graph of the class is represented in Figure 7.

 32

LAVEntityServerWithBays Class

Parameters

{ts}: set of service times
k: total number of servers
b: total number of bays

State Variables

s: number of available servers
a: number of available bays
queue: FIFO container of entities
D: delay in queue
W: time in system

Figure 7. LAVEntityServerWithBays Event Graph

6. Wedge Delay Server

In a maintenance facility as complex as the Albany depot, there are several times

where items encounter unexpected delays that prolong service time. These instances of

unexpected extra time for a particular maintenance step are represented and instantiated by

the Wedge Delay Server class. The Wedge Delay server is used primarily for quality

 33

control type stations at which spot corrections are made to a vehicle before sending it on

its way to complete the remainder of the maintenance cycle.

Examples of stations where the wedge delay server is employed is after an assembly

phase in order to ensure everything has been done correctly. As mentioned previously the

wedge delay accounts for instances where spot corrections are made to the vehicle in excess

of the expected service time of the previous task, and also removal and replacement of a

simple subcomponent that may have been flawed with a new or newly refurbished

subcomponent from off of the inventory shelf.

New parameters introduced in the wedge delay server class are the delay time and

the delay probability. Delay time is the time that a given delay is expected to last in the

model. Delay probability is the rate at which we expect a vehicle to fail the

inspection/quality control check/etc., and encounter the delay. Upon the “Start Service”

event, a Bernoulli generator will generate either “0” or “1” at an average long-run rate

determined by the delay probability parameter; this value is stored under the Boolean

variable “delay.” If “delay” is found to be 0, that indicates that the vehicle passed its

inspection and proceeds without delay to schedule an “End Service” event. If the “delay”

variable is found to be 1, that indicates that an issue has been detected and a delay will be

incurred.

When a delay must take place in the model, the entity is transferred to the “Delay”

event, which will then successively schedule the “End Service” event with a wait time of

the indicate delay time parameter. As the wedge delay is taking place on the spot, only an

entity’s activation of the “End Service” event will free up the team of employees working

on the vehicle. This key difference is one of the things that distinguishes this delay class

from the Rework Delay server class we will examine later on. The event graph for this

class is represented in Figure 8.

 34

WedgeDelayLAVServer Class

Parameters

{ts}: set of service times
k: total number of servers
dt: delay time (double, constant)
dp: delay probability (double)

State Variables

s: number of available servers
queue: FIFO container of entities
D: delay in queue
W: time in system
bernoulli = random variate generator based on delay probability

Figure 8. WedgeDelayLAVServer Event Graph

7. Rework Delay Server

The Rework Delay server class will have quite a few similarities to the Wedge

Delay server class we examined previously. The Bernoulli generator will generate upon

the “Start Service” event in the same fashion as before and determine whether an event will

“pass” and go on to the “End Service” event or whether an event will “fail” and be sent to

 35

the “Delay” event. The key difference in this class is that there is no parameter for delay

time. The delay time in this particular class will take effect when it is sent from the “Delay”

event of this class instance to the “Arrival” event of the station it is being sent back to for

additional work.

The only case the Rework Delay server is being used in this model is the heat

distortion temperature (HDT) inspection following the welding station’s entity server.

Following the completion of a welding job, the vehicle is sent to receive an HDT inspection

in order to ensure that the hull integrity meets specifications following completion of the

welding job. If the vehicle passes, it proceeds further into the maintenance cycle. If the

vehicle fails, it is sent back through the welding station. In order to effectively model this

class, a variable was created for the LAV class named “numberWeld,” which indicates the

amount of times the vehicle has been through the welding station. Initially set the 0,

numberWeld is incremented by one for that entity each time it is sent to the “Delay” event

in the model.

The model employs two Bernoulli generators in determining how to send vehicles

to rework. The first generator causes the vehicles to fail at a rate of .7. The second generator

causes vehicles to fail at a rate of .1. The desired effect being that while vehicles are

expected to require some rework 70% of the time after the first inspection, only 10% of

vehicles are expected to require rework after the second inspection, and all vehicles are

expected to pass a third inspection. This behavior is based on subject matter expertise on

the failure rates of vehicles going back for additional welding/HDT inspections (K. Luckie,

personal communication, 11 April 2018). Because the vehicles leave the station upon

activating the “Delay” event, it also changes the states variables similarly to an “End

Service” event and frees up a team of employees to work on the next LAV in the queue.

Figure 9 depicts the event graph for this class.

 36

ReworkDelayLAVServer Class

Parameters

{ts}: set of service times
k: total number of servers
dp: delay probability (double)

State Variables

s: number of available servers
queue: FIFO container of entities
D: delay in queue
W: time in system
bernoulli = random variate generator based on delay probability

Figure 9. ReworkDelayLAVServer Event Graph

 37

8. Component Re-Assembly Servers

The Component Assembly server classes are designed specifically to take in two

separate types of entities and simulate the performance of the assembly process and then

sending the LAV entity itself along the remainder of its route in the maintenance cycle.

The major distinguishing feature with this class is that it has two different arrival events.

“LAV Arrival” is where the LAV entity arrives and is added to its respective queue. The

“Component Arrival” event adds a component entity to the component queue.

Conditions for proceeding to the “Start Service” event are having entities ready in

both the LAV and component queues, space available, and server teams available. Upon

“Start Service” the entities are removed from their respective queues, and states variables

recorded appropriately. From that point, the class behaves nearly identically to the

“LAVEntityServerWithBays” class. The event graph for this class type is depicted in

Figure 10.

 38

________AssemblyServer Class (Comm, HullMisc, PowerPack, and
Suspension)

Parameters

{ts}: set of service times
k: total number of servers
b: total number of bays

State Variables

s: number of available servers
a: number of available bays
queuel: FIFO container of LAV end-item entities
queueh: FIFO container of component entities
D: delay in queue
W: time in system

Figure 10. Component Assembly Server Event Graph

 39

D. IMPLEMENTATION

In creating the main method for the simulation, we faced three major challenges:

compiling the appropriate data to create random number generators for the arrival times

and service times for each class instance, instantiating the appropriate classes in the model

as necessary, and connecting those classes together appropriately such that they represent

the behaviors observed in the LAV depot-level maintenance process.

An exponential distribution was used to create random interarrival times of the

LAVs into the system. The system averages about 30 LAV arrivals/year and the

exponential distribution was used to provide some variability in that effect on the front

end of the maintenance process. Unfortunately, there was no data on service times

available with which to apply a distribution for the model; we only had the average

service times for the maintenance steps being analyzed. In order to achieve some

variability in service times, the service times were all applied with a gamma distribution

and a shape factor of 2. After consultation with the advisor for the study, we both

concurred that these distributions would be acceptable to achieve the behavior effects the

model was designed to represent (A. Buss, personal communication, 7 February 2018).

However, the simulation model is flexible so that if subsequent data indicate different

service time distributions, they could be seamlessly incorporated into the model. Once

all random number generators are created, the server classes are all instantiated as

appropriate. The respective random number generator that pertains to a given class is

input as a parameter as well as the other parametric inputs. Based on inputs from the

depot, baseline personnel policy inputs were entered as well.

Once the class instances were all created, we then create the appropriate listeners

and adapters that will be used to connect the classes they are passing entities between. Only

one listener was instantiated in the system which was used to connect the

LAVEntityCreator class to the first server class instance in the system. The adapter

instantiations only have two inputs—the event that the adapter is accepting an entity from,

and the event that the entity is being passed to. The adapter instances are independent of

the servers they are connecting; only once we connect the servers with the method

“adapter1.connect(server1, server2)” are the servers in the model fully connected. The

 40

connection of one class instance to another can be depicted using a listener diagram (Buss,

2017). Figure 11 depicts the listener diagram for the LAVEntityCreator class instance

connecting to the first LAVEntityServer class instance. Figure 12 depicts the listener

diagram of the LAVDisassemblyServer class instance to the first entity server class

instances of each of the major components that were analyzed. Figure 13 depicts the

listener diagram of a component assembly server class instance taking inputs from both the

preceding LAVEntityServer instance and the final component entity server of the

component being assembled.

Figure 11. Listener Diagram Depicting Entities being Passed
from the LAV Entity Creator Class to the First LAV Entity Server Instance

Figure 12. Listener Diagram Depicting Component Entities being
Created by the LAV Disassembly Server Instance and

Passed to their Respective Entity Server Networks

 41

Figure 13. Listener Diagram Depicting the LAV and Component Entities
being Passed to the Respective Component Assembly Server Instance

Next, the loggers for the model are instantiated to collect data from the simulation

runs. Multi-tally statistics loggers are used for the “delay in queue” and “time in system”

statistics. The “queue” statistic is collected with a multi-collection size data logger. Each

of these loggers collects the statistics at appropriate points in the model in order to capture

the information that is being studied, compile it correctly, and write to a .csv output file.

The “delay in queue” and “queue” statistics capture every single queue in the system, while

the “time in system” statistic captures only one value, the time in system statistics at the

last maintenance station in the system. Property change listeners are added to the code in

order to the loggers are capturing the necessary information from each server. The property

change listeners also ensure the same statistical information is captured and output to the

console also, as this helps in debugging.

Following the property change listeners, an iteration loop is added which contains

the lines of code that actually run and govern the simulation time parameters. The loop

resets all servers in the system to initial conditions and runs them for roughly a five-year

time period. While Simkit is operating on a pseudo-random generation which is technically

deterministic, the random number generator used is known to have excellent properties in

mimicking randomness. Furthermore, the iteration loop allows the servers to be reset and

multiple identical independent replications be performed. This is crucial for estimating the

performance measures with statistical accuracy.

 42

The last bit of code in the main method running class contains the print statements.

These statements largely contain statistical information that can be quickly accessed on the

console and helped largely in the debugging efforts of the simulation model’s development

and refinement.

 43

V. RESULTS

The testing of the LAV depot-level maintenance model was conducted in three

stages. The first stage was a baseline run that was designed to determine which

maintenance steps in the process had a delay-in-queue that was significantly larger than the

rest of the system. The next stage consisted of an iterative improvement of the system—

incrementing the resources of the problematic servers until no server in the system had a

delay-in-queue statistic that was significantly larger than the rest of the system. This was

meant to understand how other servers in the system might behave as bottlenecks were

addressed in one part of the system or another. The final stage of testing was to conduct

experiments combining different arrangements of parameter inputs for the problematic

service stations in order to determine which servers had the most statistical impact on the

ultimate goal of reducing the service time in the system.

A. MODEL GOVERNANCE

Each replication in the running class ran the model for a five-year time period. In

order to obtain a high confidence in the long-term performance of a given set of input

parameters for the model, each simulation run consisted of 1000 independent replications.

Following completion of the simulations run, csv files were written containing data for the

queue size changes, average delay in queue per server per replication, and time in system

per replication.

The delay in queue statistic was the measure used to determine which server

instances needed to have their resource capacities expanded to alleviate the bottlenecking

that was taking place. The delay-in-queue statistic is the best indicator to determine the

amount of time in a given entities maintenance cycle that is lost due to waiting at that

particular queue. The csv file for a particular run’s delay-in-queue statistic was imported

to JMP statistical analysis software (JMP Pro Version 13.1.0., 2016) and ANOVA tests

performed in order to determine which servers had delay in queue statistics were

significantly above the average for the entire system; in particular, the connecting letters

report within the Tukey-Kramer HSD test (JMP Pro Version 13.1.0., 2016). Those servers

 44

then had their resource capacities incremented by 1 (server teams and bays, if applicable).

This improvement process was iterated until there was no longer a significant difference

present between successive servers when ordered from longest to shortest average queue

delay. Theoretically this could result in an effect of regression to a long average delay

between servers; however, that was not a concern as most servers even after the initial

baseline run had very short queue delays, at or near zero.

Following the completion of all iterative improvement steps and follow-on runs of

the simulation model, the time in system statistics were used to measure the improvement

of the cycle time in the system across multiple runs.

B. BASELINE RUN

The baseline run of the model was intended to represent the system’s long-run

performance based on current resource parameters. Upon completion of the baseline run,

the delay-in-queue output for all servers was opened in JMP statistical analysis software

and was tested with an ANOVA tests as well as a means comparison/Tukey’s honest

significant difference (HSD) test. The output from the connecting letters report as part of

these tests arranges all servers in order from the most extreme to least extreme average

delay-in-queue time. The output shown in Figure 14 is an excerpt from the ANOVA

Tukey’s HSD connecting letters report, and was the primary device used to determine

which servers in the system were targets for improvement following any given simulation

run.

 45

Level Mean
delayInQueue[15] A 1330.7932
delayInQueue[153] B 1240.9619
delayInQueue[126] C 478.9464
delayInQueue[142] D 195.9205
delayInQueue[139] D 190.7030
delayInQueue[143] E 150.9409
delayInQueue[127] E 148.8737
delayInQueue[141] F 96.1477
delayInQueue[39] G 80.9713
delayInQueue[33] H 25.9670
delayInQueue[137] I 7.4782
delayInQueue[152] I 6.6529
delayInQueue[150] I 2.6815
delayInQueue[16] I 2.4004
delayInQueue[13] I 1.9017
delayInQueue[69] I 1.8243
delayInQueue[68] I 1.5742
delayInQueue[71] I 1.1834
delayInQueue[80] I 1.1711
delayInQueue[87] I 1.0611
delayInQueue[146] I 1.0284
delayInQueue[5] I 0.8386
delayInQueue[79] I 0.7545
delayInQueue[85] I 0.5547
delayInQueue[111] I 0.5412
delayInQueue[74] I 0.5334
delayInQueue[99] I 0.4899
delayInQueue[140] I 0.4169
delayInQueue[57] I 0.4019
delayInQueue[124] I 0.3802

Figure 14. Baseline Delay-in-Queue: Connecting Letters Report Excerpt.
Source: JMP® Pro Version 13.1.0 (2016).

C. ITERATIVE IMPROVEMENT

The baseline run ANOVA/Tukey’s HSD connecting letters report output displayed

the comparison of the average delay-in-queue statistics from each server in the system. The

connecting letters report tells us that servers that are not connected by the same letter have

a significant difference in average delay-in-queue time. Because the model generated the

statistics of each server from a base zero frame of reference, we know that servers 16, 154,

127, 143, 140, 144, 128, 142, 40, and 34 have significantly longer average delays in their

 46

queues. These servers had their resources incremented by 1 prior to the start of the next run

of the simulation.

This process of delay-in-queue analysis, incrementing the server resources, and

running the model with adjusted parameters constituted the first improvement iteration

step. In total, five improvement iterations were conducted for this model. Conditions to

stop the iterative improvement process was the lack of significant difference between

server delay-in-queue statistics. The effects of the improvement steps were measured by

comparing the time in system statistics following each run. The table featured in Figure 15

was assembled by consolidating the average time-in-system for each run iteration as well

as a 95% confidence interval for time-in-system, throughput measured in average number

of repairs/replication for that run, and the number of employee teams that were added to

the system for that particular run of the simulation.

Figure 15. Improvement Step Comparisons. Source: JMP Pro
Version 13.1.0. (2016).

The results here demonstrate that each improvement step provided a significant

reduction in overall system cycle-time. This is given from the fact that the average time-

in-system confidence interval’s upper bound for an improvement step in the simulation is

always lower that the lower bound of the preceding run’s confidence interval for its average

time-in-system.

D. REGRESSION

The iterative improvement step was only the first piece of the testing and analysis

that was conducted with this model. Once all improvement steps were completed, each

server that had undergone improvement was arranged into a 16-factor nearly orthogonal

Run Average Time-in-System 95% confidence Interval Average Repairs/Replication Employees Added
Baseline 2966.49 (2940.23, 2992.73) 78.49 -

1st Improvement 1630.96 (1611.34, 1650.58) 120.75 10
2nd Improvement 1201.52 (1197.10, 1205.94) 131.89 14
3rd Improvement 1142.15 (1140.32, 1143.98) 133.32 4
4th Improvement 1124.21 (1122.86, 1125.57) 133.43 6
5th Improvement 1119.54 (1118.27, 1120.80) 133.68 4

 47

Latin hypercube (NOLH) experimental design array. This array generator tool was

provided by the Naval Postgraduate Schools Simulation, Experiments, and Efficient

Design (SEED) Center for Data Farming (“Naval Postgraduate School SEED Center

website”). The 16-factor NOLH array was generated from a spreadsheet tool which took

as inputs the “low level” and “high level” of each server (“Naval Postgraduate School

SEED Center website,”). The low level is essentially the baseline resource parameter

setting for a particular server. The high level is the maximum number of resources a given

service station had across all improvement steps in the simulation.

From these inputs, the spreadsheet displays the appropriate resource parameters

that each of the 16 altered servers needs to be set at across an additional 65 runs of the

simulation. This testing method, while it appears to be time-consuming, it actually saves

the user time because it allows us to detect behavior of the system at different parametric

settings not observed during the improvement steps and explore the space of those

parametric possibilities without testing every single parameter in the space. Following the

completion of each of the runs, the average time-in-system across all replications within

that run was recorded.

When all runs were completed, the server parameters and time-in-system

performance for each run was put into JMP in order to test the effects of server parameter

settings on system performance. In order to achieve that goal, the data was run through a

multiple linear regression in JMP with the explanatory variables being the various server

resource parameter settings for a run and the outcome variable being the system’s time-in-

system for that run. Ultimately, the objective with this test was to observe the significance

to which each server’s resource parameters affected the time in system of the model. The

below output shows the key finding from the multiple regression. We can see from these

outputs that the multiple linear regression fit of actual by predicted plot (Figure 16) that

the model demonstrates a fair correlation with an R-Square value of .49. We can also see

from the output of the effects summary (Figure 17), effect test (Figure 18), and parameter

estimates (Figure 19) that there is a statistically significant effect of servers 16 and 113F

on the model.

 48

Figure 16. Actual by Predicted Plot. Source: JMP Pro Version 13.1.0. (2016).

Figure 17. Effect Summary. Source: JM Pro Version 13.1.0. (2016).

1000

1500

2000

2500

3000

500 1000 1500 2000 2500 3000

Average Time In System Predicted RMSE=483.49

RSq=0.49 PValue=0.0023

 49

Figure 18. Effect Tests. Source: JMP Pro Version 13.1.0. (2016.)

Term Estimate Std Error t Ratio Prob>|t|
Intercept 4161.9538 739.6663 5.63 <.0001*
14 -40.58324 123.6378 -0.33 0.7442
16 -211.7056 41.15387 -5.14 <.0001*
17 21.515878 91.96385 0.23 0.8160
34 -50.75335 63.86969 -0.79 0.4307
40 -50.90181 50.75517 -1.00 0.3209
11312 -32.84162 64.30883 -0.51 0.6119
11313 5.4422629 87.85465 0.06 0.9509
assemble 61.515181 125.0061 0.49 0.6249
1131 12.361876 63.82182 0.19 0.8472
1133 -7.364802 65.19327 -0.11 0.9105
1134 -124.4666 89.91274 -1.38 0.1727
1135 -74.44517 89.87652 -0.83 0.4116
1138 -79.85948 127.4666 -0.63 0.5339
113C -92.66755 127.6928 -0.73 0.4715
113E 5.6568403 123.9251 0.05 0.9638
113F -134.5299 50.91223 -2.64 0.0111*

Figure 19. Parameter Estimates. Source: JMP Pro Version 13.1.0. (2016).

 50

E. CONCLUSIONS

From the results of the simulation runs and statistical analysis we have seen that

expanding server resource capacity can have a tremendous effect on the time-in-system

performance of the system. The improvement step comparisons demonstrated that a

significant reduction in repair cycle-time can be achieved by adding additional resources

to the slower servers in the maintenance cycle. Not all queues that were experimented with

following the improvement step analysis were found to have a statistical impact on the

overall time-in-system of the LAV.

From our statistical analysis, it is clear that the system would greatly benefit from

capacity expansion at station 16 (welding) and station 113F (driving differential repair,

paint, and assembly); the other stations, while having the potential to relieve somewhat

larger delay-in-queue times, should not be expected to have a statistical impact on the

system’s performance. This is important to understand, because any organization with a

limited investment budget, such as MDMC, will have a limited amount of resources that

can be devoted to improving any one maintenance process. The NOLH analysis provides

the sponsor, in order of precedence, the degree to which resource availability at a given

server will provide them a return in reduced maintenance cycle-time, and thus provides a

plan of action and justification for allocating additional resources towards a different

maintenance station in the system.

 51

VI. FUTURE WORK

This study was the first of its kind at MDMC; DES had never before been used to

study an entire vehicle’s maintenance cycle. Through the research and work that was done

to create a worthwhile model, several follow-on topics were identified that could be

beneficial to the process improvement endeavors at the MDMC and the discovery of

knowledge that might help LOGCOM better understand the depot-level maintenance

processes of not just the LAV, but many types of equipment throughout the Marine Corps.

As mentioned previously one of the challenges of undertaking this study was the

lack of data to work with. The aspect of the model that was most affected by this disparity

was the random number generation that was used for the service times of the service

stations in the model. In order to have a full verification, validation, and accreditation

(VV&A) of this model, the service times used in the model would need to reflect the actual

distribution of service times found in the system.

In order to do this, a robust data collection effort would have to be started at

MDMC. Currently data is not collected by maintenance step, the data collection effort is

focused on the labor hours completed by a particular work section of employees over a

specified span of time. As the current cycle-time for the LAV going through depot-level

maintenance is estimated around 180 days (K. Luckie, personal communication,

29 January 2018), it would likely take several years to obtain the necessary data required

to have a basis to adjust the service time random number generators throughout the model.

As this model was designed through the use of an object-oriented programming

application, the classes developed could be instantiated to represent servers and behaviors

of any other equipment’s maintenance cycle at MDMC. In addition to modelling other

types of equipment, a future study could look at increasing the complexity of the existing

class to include more elaborate behaviors, more statistical tracking, and an integration of

additional business metrics that would be beneficial to the decision makers at MDMC.

 52

Another key thing to keep in mind about the model is that it only looks at analyzing

and improving the system performance of steady state behavior. That is to say that this

model looks at how the system can be expected to perform on the average over a

predetermined period of time. Another study could look at including a flexible

schedule/flexible state construct for the model. For example, it might look at when it would

make sense to incorporate an overtime policy at MDMC. That simulation could compare

how overtime policies are currently managed at MDMC vs alternative and perhaps more

efficient methods. Additionally, this study could include a cost-benefit analysis of adding

additional resources to servers in a steady-state long term case compared to other cases of

adjusting overtime policies on a flexible state basis, or some combination of the two.

Outside the influence of MDMC exists an entire realm of possibilities that could be

addressed in a future study. There are a variety of issues outside MDMC that have an

impact on maintenance cycle-time and repair costs. One such issue is the fact that MDMC

does not operate on the same oracle-based software that the operating forces are using for

maintenance management. This results in MDMC not having access to the full complement

of property and repair requisition records. This can have the effect of MDMC not having

oversight of some of the component items that belong to the end items undergoing repairs

at the depot.

Because the transaction history is not clear and common to all in this process, the

depot may not always know if a component item belonging to an end item was evacuated

for repair within the operating forces prior to the end item being shipped to MDMC for

depot-level repair. The depot will at times have to purchase these component items from

the manufacturer in order to have a fully equipped item ready for shipment upon

completion of depot-level maintenance. These component items are no little expense; some

of them can exceed $100,000 in price (K. Luckie, personal communication, 29 January

2018). The strain this can put on the system can be extensive. A study looking at the degree

to which this and issues like it are occurring and having an impact on the costs of depot-

level maintenance in the Marine Corps would be greatly beneficial to the understanding of

 53

all the challenges that must be addressed by the depot-level maintenance of not only the

LAV, but all principle end items throughout the Marine Corps. While these are only a few

examples of follow-on work, there are numerous potential applications for the DES model

at MDMC that could ultimately provide the Marine Corps with additional ideas and

methods for improvement of its maintenance processes.

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

LIST OF REFERENCES

Almeder, C., Preusser, M., & Hartl, R. (2009). Simulation and optimization of supply
chains: alternative or complementary approaches? OR Spectrum, 31(1), 95–119.
https://doi.org/10.1007/s00291-007-0118-z

Bair, T. D., Belen, Jr., F. C., et al. (2017). Marine Depot Maintenance Command
strategic planning support report. State College, PA: Penn State Applied
Research Laboratory.

Buss, A. (1995). A tutorial on discrete-event modeling with simulation graphs. In Winter
Simulation Conference Proceedings, 1995. (pp. 74–81).
https://doi.org/10.1109/WSC.1995.478708

Buss, A. (2000). Component-based simulation modeling. In 2000 Winter Simulation
Conference Proceedings (Cat. No.00CH37165) 1(1), pp. 964–971.
https://doi.org/10.1109/WSC.2000.899899

Buss, A. (2017). Discrete Event Simulation (DES) Modeling. [Unpublished course book].
Naval Postgraduate School.

Cigolini, R., Pero, M., Rossi, T., & Sianesi, A. (2014). Linking supply chain
configuration to supply chain performance: A discrete event simulation model.
Simulation Modelling Practice and Theory, 40, 1–11.
https://doi.org/10.1016/j.simpat.2013.08.002

Curling, T. (2016, September). USMC inventory control using optimization modeling and
discrete event simulation (Master's thesis). Monterey, California: Naval
Postgraduate School. Retrieved from https://calhoun.nps.edu/handle/10945/50528

Fujimoto, R. M. (1990). Parallel discrete event simulation. Commun. ACM, 33(10), 30–
53. https://doi.org/10.1145/84537.84545

JMP Pro Version 13.1.0. [Statistical analysis software package and documentation].
Cary, NC: SAS Institute Inc., 2016.

Kumar, S., & Nottestad, D. A. (2013). Supply chain analysis methodology—Leveraging
optimization and simulation software. OR Insight, 26(2), 87–119.
https://doi.org/http://dx.doi.org/10.1057/ori.2012.10

Manuj, I., Mentzer, J. T., & Bowers, M. R. (2009). Improving the rigor of discrete‐event
simulation in logistics and supply chain research. International Journal of
Physical Distribution & Logistics Management, 39(3), 172–201.
https://doi.org/10.1108/09600030910951692

 56

Marine Corps Logistics Command. (2017). Logcom command brief [Unpublished
presentation].

Marine Corps Order 4790.2C. (2012, December 17). Washington, DC: United States
Marine Corps.

Mele, F. D., Guillén, G., Espuña, A., & Puigjaner, L. (2006). A simulation-based
optimization framework for parameter optimization of supply-chain networks.
Industrial & Engineering Chemistry Research, 45(9), 3133–3148.
https://doi.org/10.1021/ie051121g

Mullins, M., Adams, T., Simms., R. (2005). Analysis of Light Armored Vehicle Depot
Level Maintenance (MBA Professional Report). Monterey, CA: Naval
Postgraduate School. Retrieved from
https://calhoun.nps.edu/bitstream/handle/10945/33970

National Research Council, Education, (1998). Modeling human and organizational
behavior: application to military simulations. Washington, D.C.: National
Academies Press.

Naval Postgraduate School SEED Center website. (n.d.). NOLHdesigns_v6 [Excel
spreadsheet tool for NOLH generation]. Retrieved May 9, 2018, from
https://my.nps.edu/web/seed

Power World Corporation. (2014). Time step simulation [Presentation]. Retrieved May 8,
2018 from https://www.powerworld.com/files/M07Time-Step-Simulation.pdf

Schlegel, M., Brosig, G., Eckert, A., Engelke, K., Jung, M., Polt, A., (…) Vogt, C.
(2006). Integration of discrete-event simulation and optimization for the design of
value networks. In W. Marquardt & C. Pantelides (Eds.), Computer Aided
Chemical Engineering (Vol. 21, pp. 1955–1960). Elsevier.
https://doi.org/10.1016/S1570-7946(06)80334-2

Schruben, L. (1983). Simulation modeling with event graphs. Communications of the
ACM, 26(11). pp. 957–963.

United States Marine Corps. (1992, November 2). Principles of Inspect, Repair Only as
Necessary (IROAN) procedures and preparation of IROAN Publications.
Washington, DC: Department of Defense.

 57

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. IntroDuction
	II. Background
	A. Previous mdmc Studies
	1. DES Used at MDMC
	2. LAV Business Study

	B. previous des work
	1. DES and Value Networks
	2. DES Application in Supply Chains
	3. Parallel DES

	C. Other Simulation applications for supply chains

	III. Approach
	A. Problem scope
	B. delineate milestones
	C. Pilot Model
	D. Site Visit
	E. Model intent and direction

	IV. Development
	A. overview
	1. Discrete Event Simulation
	2. States and State Variables
	3. Events

	B. simkit
	C. classes
	1. Entities
	2. LAV Entity Creator
	3. Entity Servers
	4. LAV Disassembly Server
	5. Entity Server with Bays
	6. Wedge Delay Server
	7. Rework Delay Server
	8. Component Re-Assembly Servers

	D. Implementation

	V. Results
	A. Model governance
	B. Baseline run
	C. Iterative improvement
	D. Regression
	E. Conclusions

	VI. Future work
	List of References
	initial distribution list

