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ABSTRACT 

The USMC maintenance depots at Marine Corps Logistics Base (MCLB) Albany, 

GA, and MCLB Barstow, CA, conduct extensive contracted overhauls and repairs on a 

variety of ground combat and combat service support vehicles from throughout the 

operating forces. Servicing of one vehicle in particular, the Light Armored Vehicle 

(LAV), has had issues with runaway costs and prolonged maintenance cycle-time caused 

by severe bottlenecks at key junctures in the maintenance cycle. 

This study models the bottlenecks experienced in the real system and 

then provides recommendations to mitigate them.  The discrete-event simulation (DES) 

tools used in this study implement data farming and data analysis that provide 

quantitative justification and show the sponsor where to adjust resource capacity 

parameters in the system in order to reduce the effect of these bottlenecks and  overall 

cycle time. In addition to the DES analysis, this project provides the sponsor, Marine 

Corps Logistics Command, with a working tool that can be used in assisting key 

leadership in making resource capacity decisions by showing how individual queues 

and the overall system are affected when input parameters are adjusted. 
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I. INTRODUCTION 

In the 1980s, as a response to an emerging need to have a rapidly deployable, highly 

maneuverable capability that could address threats in an urban environment as well rugged 

expeditionary environments, the United States Marine Corps developed and purchased the 

Light Armored Vehicle (LAV) program (Mullins, Adams, & Simms, 2005). Initially 

fielded in 1986 with a 20-year expected life span, the LAV has been a mainstay of the 

Marine Corps’ ground combat arsenal (Mullins et al., 2005). The nature of the strain that 

the LAV fleet has undergone while traversing rugged terrain in both training and 

operational environments necessitate an incredibly immense maintenance effort.  

Maintenance in the Marine Corps is a rather structured effort in which levels of 

responsibility for completed different types of work are delineated into echelons and tasked 

the various supporting agencies within the operating forces. 1st Echelon maintenance is 

also known as operator level maintenance, and is conducted by the unit or crew that owns 

the equipment and uses it for their assigned mission set (“Marine Corps Order 4790.2C,” 

2012). Examples of 1st echelon maintenance would be weekly routine vehicle checks and 

inspections such as checking fluid levels, tire wear, presence of any fluid leaks, or damage 

to vehicle parts or issued equipment the operator is responsible for maintaining. If the 

operator identifies concerns that are outside their capability to address, they will induct the 

equipment in for 2nd echelon maintenance (“Marine Corps Order 4790.2C,” 2012). 2nd 

echelon maintenance is conducted by personnel that are trained mechanics on that given 

piece of equipment (“Marine Corps Order 4790.2C,” 2012).  

2nd echelon maintenance would include repairs that do not involve pulling major 

drivetrain components off of the vehicle such as hose replacements, electrical component 

replacements, or routine semi-annual or annual preventive maintenance such as oil 

changes. 1st and 2nd echelon maintenance are together also known as the organic level of 

maintenance, because they consist of repairs conducted by personnel within the unit that 

owns and uses the equipment (“Marine Corps Order 4790.2C,” 2012).  



 2 

If a particular repair is above the capability of that unit’s maintenance section, then 

it must be inducted into the 3rd echelon maintenance shop (“Marine Corps Order 4790.2C,” 

2012). If that particular battalion has a third echelon maintenance capability, then it could 

be that the company’s mechanics will induct the equipment into the battalion’s 

maintenance section for that higher level repair. You may see this transaction most often 

at units who are typically the sole custodian of that piece of equipment on the base, such 

as a tank battalion or Assault Amphibian Vehicle (AAV) Battalion. For equipment that is 

held and maintained by a variety of units on that particular installation, such as motor 

transport equipment, the battalion that owns the equipment will induct the equipment into 

their designated direct support maintenance activity within the Marine Logistics Group. 

The types of work done at 3rd echelon might be more complex scheduled preventive 

maintenance and the removal and replacement of major component items such as 

transmissions and engines.  

While the major components are replaced at the 3rd echelon shop, those component 

items are pulled from the end item, packaged, shipped, and inducted at the 4th echelon 

shop for repair (“Marine Corps Order 4790.2C,” 2012). The 4th echelon shop has the 

primary responsibility of receipt, repair and/or rebuilding of major component items, and 

then return of fixed component item back to the 3rd echelon shop for re-installation into 

the end item (“Marine Corps Order 4790.2C,” 2012). The 4th echelon repairs are typically 

performed by maintenance Marines at the highest support agency within the Marine Air 

Ground Task Force (MAGTF), possibly in conjunction with defense contracting company 

representatives, if the end item has some warranty or maintenance contract that covers 

those repairs. 3rd and 4th echelon are together referred to as the intermediate level of 

maintenance (“Marine Corps Order 4790.2C,” 2012).  

Echelons one through four comprise the methods by which equipment in the 

maintenance cycle while still remaining in the operating forces and still owned by the 

original using unit. Periodically, however, the MAGTF will need to cycle a piece of 

equipment out of the operating forces for a complete overhaul in order to conduct complete 

rebuild of the equipment and all component items to whatever extent is necessary. This 

level is known as the 5th echelon of maintenance, also called depot-level maintenance 
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(“Marine Corps Order 4790.2C,” 2012). This study will be looking at the depot-level 

maintenance processes for the LAV. 

Depot level maintenance for the Marine Corps is overseen by the Marine Corps 

Logistics Command (LOGCOM) and the Marine Depot Maintenance Command (MDMC) 

(Marine Corps Logistics Command, 2017). Depot-level maintenance is performed at two 

sites—Marine Corps Logistics Base (MCLB) Albany, GA, and MCLB Barstow, CA, both 

of which are overseen by MDMC based at MCLB Albany (Marine Corps Logistics 

Command, 2017).  

The motivation for the sponsor having this study completed was originally drawn 

from the recommendations from a report by the Penn State Applied Research Laboratory 

(B. Bagley, personal communication, 29 January 2017), a team from which was invited to 

MDMC to conduct a review and provide ideas as to how LOGCOM can achieve a more 

efficient operating environment (Bair et al., 2017). Specifically, the Penn State Team 

recommended LOGCOM pursue the development of a discrete-event simulation model in 

order to truly assess the throughput capabilities of the facility so that they can understand 

how the system can be expected to perform by applying probability distributions for 

arrivals and service times throughout the different stations and processes in depot level 

maintenance (Bair et al., 2017). This will ideally lead to an improved ability to make 

decisions regarding adjustments to the key drivers for the maintenance production process 

and how system resources can be manipulated to achieve desired effects on the system.  

The objective of this study will be to create a discrete-event model of the LAV 

depot-level maintenance process and conduct simulation experiments with the model to 

see how system performance can be expected to change based on how resources allocations 

are changed due to decisions made governing the system. 

This project presents several challenges, some of which are incumbent upon any 

equipment involved in depot-level maintenance and some of which are unique to the LAV. 

Depot-level maintenance can be particularly difficult to forecast due to the nature of how 

equipment is repaired (K. Luckie, personal communication, 29 January 2018). For any 

given item that is inducted into MDMC for depot-level maintenance, the types of jobs that 
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will be completed and the degree of repair that will be required will be unique to that 

individual item (United States Marine Corps, 1992). There is an incredible amount of 

variability in the time it will take to complete each task as it will depend entirely on how 

damaged or worn the given component may be (K. Luckie, personal communication, 29 

January 2018). An engine could take anywhere from several hours to over a week to repair 

(K. Luckie, personal communication, 29 January 2018). Similarly, to complete a welding 

job on a vehicle’s hull and body could take anywhere from a number of hours to over a 

month (K. Luckie, personal communication, 29 January 2018).  

Another complication that is pertinent to the LAV right now is the numerous life 

extension packages that have been directed by the acquisition program office for the 

equipment (K. Luckie, personal communication, 29 January, 2018). The LAV program 

initially had a program expected lifespan of 20 years, which would have put the original 

disposition date for the entire program in the mid-2000s (Mullins et al., 2005). Due to both 

the conflicts that have taken place as well as no sensible cost-effective alternative, the 

program office has directed life-extension modifications to the equipment as it comes to 

the depot for maintenance (K. Luckie, personal communication, 29 January 2018). These 

modification packages create another layer of variation that can be difficult to model, 

especially early into the cycle of completion, as you will not have the data to understand to 

what degree the modification package changes the expected service time of any given 

station. This variation is compounded even further when the maintenance production 

stations are being based not in data, but off of the staff estimates of subject matter experts 

(K. Luckie, personal communication, 29 January 2018). 

There are several concerns that will limit the ability to produce a useful model. 

While LOGCOM has asked for a complete, beginning to end discrete-event model that 

maps production through all steps in the maintenance cycle, there is currently no data for 

actual service times for each step in the maintenance process (K. Luckie, personal 

communication, 29 January 2018). Every station in the model has been based on subject 

matter expert’s estimate of the average time is takes to complete a given step (K. Luckie, 

personal communication, 29 January 2018). This will be problematic as the observed 

variations seen in the system through the model will not be as representative as the actual 
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variation. That being said, the discrete-event model based on this limited information can 

still be useful to leadership to begin to understand where capacity restrictions may be 

expected to cause bottlenecks, how capacity expansion may be expected to relieve 

bottlenecks, and how adjustments to resources to address known problems in one part of 

the system may potentially create other problems elsewhere. This model will primarily 

look at the system resources of personnel and space during the experimentation phase in 

order to provide recommendations for decisions to the LOGCOM leadership.  

 

 

 

 

 

 



 6 

THIS PAGE INTENTIONALLY LEFT BLANK  



 7 

II. BACKGROUND 

A. PREVIOUS MDMC STUDIES 

1. DES Used at MDMC 

In preparation for conducting this study, a comprehensive review was undertaken 

of a variety of publications, including student theses related to the LAV, depot-level 

maintenance, and DES as well as professional studies and journal articles related to the 

employment of discrete-event simulation in supply chain and logistics networks outside 

the military domain.  

One of the first works reviewed was that of a previous MOVES student, Maj 

Timothy Curling. In his study, Major Curling completed an overview of the generic depot-

level maintenance process; however, he did not narrow down on any one particular end 

item, or group of items his scope was more broad and had a different goal (Curling, 2016). 

In Major Curling’s project he used both DES and optimization techniques to help provide 

an improved method for ordering repair parts for the equipment that undergoes 

maintenance at the Logistics bases (Curling, 2016). Seeing how Major Curling was able to 

implement a DES/optimization model was helpful in building the framework for this study, 

however there are some fundamental differences in both the models and objectives between 

Major Curling’s project and the overarching model being attempted in this LAV depot 

process study.  

Where Major Curling’s project had a focus on inventory control in depot-level 

maintenance (Curling, 2016), this study will be focused more on measuring system 

throughput and cycle time. In addition, while Major Curling looked at the generic depot-

level maintenance process (Curling, 2016), this model will be a little more narrowly 

focused on a specific end item, the Light Armored vehicle. One particular item of note is 

the maintenance production model. DES models can be represented in the form of an event 

graph (Schruben, 1983; Buss, 1995). An event graph is simply a depiction used to 

demonstrate the behavior found in a particular DES model (Schruben, 1983; Buss, 1995). 

In Major Curling’s production event graph, he has 12 nodes (Curling, 2016). If each step 
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in the LAV process were implemented, there would be 156 nodes in the event graph. He 

accomplished this by looking at broad brushstroke movements such as “Start Disassembly” 

or “Finish Assembly” rather than specific steps in the process such as “remove armor 

plating” or “final communications inspection”; the takeaway is that not every step must be 

fleshed out in thorough detail, that a DES model can incorporate aggregation and still be 

valid. Please see Chapter IV for examples of event graphs. 

One of the challenges Maj Curling faced was obtaining worthwhile data from the 

maintenance facilities (T. Curling, personal communication, 20 September 2017); the same 

difficulties can reasonably be expected in this study also. This particular issue provided 

insight that the baseline model being developed for the LAV may need to find ways to 

work around on hand data being present to map the system. Ultimately Major Curling’s 

thesis was able to provide recommendations to LOGCOM for more efficient repair part 

requisition forecasting; the proof of concept is that a DES model developed from limited 

data can still provide value to the client, in this case the same client. 

2. LAV Business Study 

The 2005 Business school thesis on LAV depot-level maintenance by Mullins, 

Adams, and Simms took a look at the business aspects of the maintenance undergone at 

both the Albany and Barstow facilities (Mullins et al., 2005). While their analysis is a bit 

old and does not incorporate any simulation, it provides some very insightful information 

on both the LAV processes and the depots themselves.  

One of the major changes the depots made 15–20 years ago was the implementation 

of the theory of constraints method of maintenance production (Mullins et al., 2005). This 

called from shifting from an “assembly line” type process to a “workstation” method 

(Mullins et al., 2005). This essentially means that instead of doing every single step in 

perfect order, the maintenance crews will perform any work they can at a given workstation 

given that they have the necessary resources on hand to do so; even if it is not the traditional 

or typical order in which the maintenance tasks are performed (Mullins et al., 2005).  

The next major concepts discussed in the paper are the IROAN and SLEP 

programs. The service life extension program (SLEP) is essentially a set of that all end 
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items of a particular model coming to the facility will undergo and a predetermined 

modification in order to extend the program life from its original end date; the marine corps 

uses this program as a cost effective alternative to acquisition of a new product (Mullins et 

al., 2005). The inspect and repair only as necessary (IROAN) is a program that will have 

the personnel conduct a thorough limited technical inspection (LTI) upon the equipment’s 

arrival to the depot in order to determine which items need to be repaired or replaced on 

the vehicle (Mullins et al., 2005). IROAN has in effect helped the maintenance depots 

avoid taking time to disassemble, replace, and reassemble components that are still 

functional (Mullins et al., 2005).  

The next interesting piece in the paper was the comparisons between various costs 

at the maintenance depots. At Albany, the labor costs tended to be less than Barstow, while 

Barstow had cheaper costs for repair parts (Mullins et al., 2005). Another significant cost 

was that of shipping from Marine Corps units in Hawaii, and Okinawa, Japan, to the 

maintenance facility in Barstow (Mullins et al., 2005). Where it costs $600–$1000 for 

vehicles on the east and west coast units to get to their respective maintenance facilities, it 

costs around $6000 to get from Hawaii and nearly $10,000 to get from Okinawa to their 

respective depot-level maintenance facility (Mullins et al., 2005). These points leave 

unanswered questions: do these cost disparities between Albany and Barstow still exist, 

and what are the causes?  

While the goal of the previous study was different from the intent of the upcoming 

simulation study, the background and insight into the evolution of processes at the 

maintenance depots is invaluable and provides perspective that helps us understand the full 

picture. It also helps build the case for some level of aggregation into the final model. 

Drilling down to low might not only be wasting time, it could be limiting the model to a 

degree of granularity that is neither practical nor realistic. 

B. PREVIOUS DES WORK 

1. DES and Value Networks 

“Integration of discrete-event simulation and optimization for the design of value 

networks,” by M. Schlegel, G. Brosig, A. Eckert, M. Jung, A. Polt, M. Sonnenschein and 
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C. Vogt, was an incredibly relevant resource. In this particular paper, the authors describe 

the application of discrete event simulation and optimization in generic value networks, 

but specifically those in which discrete decisions can be made that affect the policy of a 

given manufacturing or supply chain type network (Schlegel et al., 2006). The application 

mentioned in this article provides an excellent proof of concept and basis for a discrete 

event simulation model which can test policies at a maintenance facility. This paper 

provides an excellent foundation and outline for how to create a model for resource 

capacity expansion in a given system (Schlegel et al., 2006). It serves as an excellent 

example of how a pool of resources can be allocated and tested at various points in a given 

network to examine effectiveness. 

2. DES Application in Supply Chains 

“Linking Supply Chain Configuration to Supply Chain Performance: a DES 

Model” by Cigolini, Pero, Rossi, and Sianesi took a look at some of the phenomena 

resulting from inherent dependencies/relationships between the performance of a supply 

chain to the various management decisions and configurations used within the various 

components of a supply chain (Cigolini, Pero, Rossi, & Sianesi, 2014). They define 

performance as the occurrence (or conversely the lack of occurrence) of stock levels and 

stock-outs in a given supply chain (Cigolini et al., 2014). They also break down the various 

stages within a supply chain to either retailers, distributors, and manufacturers (Cigolini et 

al., 2014). They narrowed the main parameters in supply chains to number of sources, 

capacity of system, distance between nodes, number of levels of distribution (how many 

steps between manufacturer and retailer) (Cigolini et al., 2014).  

Some of the phenomena found in this work were rather interesting and may be able 

to shed light on the incorporation of inventory policy as an element of the LAV depot 

maintenance model. While the authors determined there was no statistically significant 

effect of performance due to the distance of nodes, they did notice an increasing trend of 

stocks outs at the retailer the closer they were to the distributers (Cigolini et al., 2014). 

They believed this was due to the fact that the retailers based their orders on the lead time 
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due to transportation from distributers and therefore tended to place smaller orders, leading 

to a lower resistance to demand variation (Cigolini et al., 2014).  

To combat this, Cigolini et al. (2014) recommended better information sharing 

between retailers and distributors. On the part of distributors, they noticed a significant 

effect due to multiple retailers being supplied, attributed to compounded demand variations 

due to the individual variances of each retailer’s demand; this setup resulted in stock-out 

and backlogs at the distributors (Cigolini et al., 2014). When retailers decided to split 

sources from multiple manufacturers, it tended to lower the probability of a stock-out; 

however, once a stock-out took place it tended to be more severe; particularly problematic 

for items with a seasonal demand (Cigolini et al., 2014). These effects paint some 

interesting notions as to how issues that may occur at the depot could be resolved with 

policy decisions. 

“Improving the Rigor of DES in Logistics and Supply Chain Research” by Manuj, 

Mentzer, and Bowers examined the notion of rigor in simulations; rigor in this case 

meaning the degree to which complex simulations testing a logistics or supply chain system 

adhere to a certain set of prescribed standards (Manuj, Mentzer, & Bowers, 2009). The 

purpose of this paper was to propose their eight step simulation model development process 

for the design, implementation, and evaluation of logistics and supply chain models (Manuj 

et al., 2009). The eight steps are (Manuj et al., p. 176): 

“1. Formulate the problem—precisely determining the purpose of the model 
while retrieving input from all involved stakeholders. 

2. Specify independent and dependent variables. 

3. Develop conceptual model—a walk-through of the process with experts 
who know it well. 

4. Collect Data. 

5. Develop and verify computer-based model. Based on a detailed 
flowchart, involve independent programmers, and cross-check against 
manual calculations. 

6. Validate the model—involve subject matter experts, conduct pilot tests 
and determine validity of outputs. 
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7. Run simulations—after appropriately determining proper sample size, 
runs, and length of each run. 

8. Analyze and document results.” 

These eight steps serve as a fairly apt guide to the creation of any model in the supply chain 

realm. Certainly, the ultimate model for this LAV depot-level maintenance study will apply 

these on a case-by-case basis; but as an overarching guideline it is fairly sound. 

3. Parallel DES 

“Parallel Discrete-Event Simulation,” by Richard M. Fujimoto delves into the 

aspect of parallel discrete-event simulation (DES), a method by which we test a discrete-

event model by employing parallel computing, that is the use of multiple computer 

processors to simultaneously work through the computational processes necessary to 

complete the steps of a given simulation (Fujimoto, 1990).  

Parallel DES is in some cases helpful, and in other cases necessary due to the 

complexity of emerging models (Fujimoto, 1990). The employment of the parallel 

computing aspect can drastically cut down the time it takes to complete a prescribed 

number of runs in a given simulation, as there is a limit to how much processing power we 

can hope to get out of any one processor (Fujimoto, 1990). The concept of parallel DES 

can often involve an incredible amount of memory and effective networking to ensure that 

state variables are be accurately updated to reflect the changes made by one processor or 

another (Fujimoto, 1990). The problems that can arise from parallel DES are that you can 

have an issue of processing the wrong steps from the event list as you have two separate 

processers computing events which may at times be dependent on one another (Fujimoto, 

1990).  

What makes the refinement of parallel DES difficult is that you are in essence 

attempting to balance the benefit of taking advantage of the additional computing power 

with the extra memory space, coding, networking capability, and other features you will 

need to implement in order to get the most efficient result (Fujimoto, 1990). There are 

essentially two schools of thought when it comes to the implementation of parallel DES, 

the conservative approach and the optimistic approach (Fujimoto, 1990).  
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The conservative approach looks to ensure that there are no possibilities that any 

steps occur out of sequence (Fujimoto, 1990). The program will have code that prevents 

and event from being processed before the completion of its previously sequenced event 

(Fujimoto, 1990). While this method avoids the pain of errors in processing order, it can 

often be overly pessimistic (Fujimoto, 1990), which is in essence to say that it will sacrifice 

the advantage of computing capability in order to have confidence in the correct processing 

order (Fujimoto, 1990). The conservative approach will often not take the fullest advantage 

of parallel computing and will fail to simultaneously process multiple events that may have 

no dependency on one another (Fujimoto, 1990).  

The optimistic approach looks to take the fullest advantage of parallel computing 

and addresses the errors that may result on the back end by employing measures that detect 

and recover program errors (Fujimoto, 1990). While the optimistic approach can often take 

advantage of more simultaneous computing than the conservative approach, the concern is 

that it does not necessarily mean it is operating more efficiently (Fujimoto, 1990). If too 

many errors abound, then the concern is that the processors end up spending too much time 

recovering the correct state of the system instead of primarily engaging the event list 

effectively (Fujimoto, 1990).  

While it is not expected that parallel DES will be required for the depot 

maintenance model, it is beneficial to understand the challenge and implications it has for 

the domain of DES. 

C. OTHER SIMULATION APPLICATIONS FOR SUPPLY CHAINS 

In “Simulation and optimization of supply chains: Alternative or complementary 

approaches?” by Almeder et al., the authors specifically mention the need to iterate the 

testing of the simulation model and the optimization model in order to properly verify and 

validate the inputs and outputs (Almeder, Preusser, & Hartl, 2009). This is perhaps the 

biggest takeaway we have from this paper and will come into play much more during the 

later milestones of the model development.  

Once the maintenance depot model has been completed, it will not be sufficient to 

create parameter adjustments to the system based on baseline performance. We will have 
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to conduct reruns of the optimization as we adjust system parameters in order to confirm 

which resource parameters levels will ultimately perform at the most effective and efficient 

levels. “Resources” for purposes of this study are to mean component items, personnel 

staffing, and maintenance bay space necessary to conduct work; all of which are key 

ingredients necessary to accomplishing tasks in the system.  

In “A simulation-based optimization framework for parameter optimization of 

supply-chain networks” by Mele et al., the authors also looked at how to best integrate 

optimization within a discrete-event model (Mele, Guillén, Espuña, & Puigjaner, 2006). 

The specifics of the analyses do not particularly translate into what will be 

achieved/attempted with this maintenance depot project, but they do provide some relevant 

background/proof of concept for the employment of optimization and simulation 

techniques in tandem to create an effective model. 

“Supply chain analysis methodology—Leveraging optimization and simulation 

software,” by S. Kumar and D. A. Nottestad dealt with the integration of discrete-event 

simulation and optimization in more industrial sectors (Kumar & Nottestad, 2013). It also 

discussed how they used the relationship from supplier to distributer and the relationship 

between inventory control and customer service and how they affect and relate to supply 

chain policy decisions (Kumar & Nottestad, 2013).  

While this particular article was not incredibly relevant in its application of the 

principles of discrete-event simulation, it did provide very good insights on how to 

incorporate discrete-event simulation in defining and refining policy decisions, which is 

ultimately what will be done with the LAV model of depot level maintenance. In addition, 

this paper also described employing a cost-benefit tool to allow decision makers to see 

steady state impact of a supply-chain policy decision (Kumar & Nottestad, 2013). While a 

graphic user interface will be outside the scope of this particular thesis project, it is certainly 

an interesting idea, and perhaps something that can be considered later on. 
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III. APPROACH 

One of the primary problems in developing a model of the LAV depot-level 

maintenance cycle is the size and complexity of the process. In order to provide some 

method to this effort, the modelling was broken down into several tasks. The first necessary 

step would be to correctly identify the scope of the problem. What would be in or out of 

the scope, and to what level of detail would we drill down into the system. Once we 

determined the system boundaries, it was time to delineate milestones for the model’s 

development, ranging from a basic single server system all the way to the goal of the final 

system model. The next step would be to gather sponsor input and develop a pilot model. 

The pilot model would be presented to the sponsor during a site visit in order to demonstrate 

what a DES product would look like and how their inputs would be used to generate data 

farming. The site visit was also the time at which we, together with the sponsor, determined 

the extent to which the model would represent the system, behaviors we would aim to 

achieve, and the degree to which tasks and events would be aggregated. Following all 

sponsor inputs, implementation of the final LAV system model could commence 

A. PROBLEM SCOPE 

This study looked at any and all operations that take place within the Albany, GA 

maintenance depot facility. While ultimately LOGCOM will want to have simulations 

completed for both maintenance depots, it will only be possible at this point to complete a 

proof of concept for one maintenance depot. Inside the scope of the simulation model will 

only be actions taking place at the Albany, GA maintenance facility. The scoped actions 

will “start” with our entity creation/arrival process when vehicles are simulated as being 

received by the facility.  

The scoped actions will stop once a vehicle is considered fully completed with all 

required maintenance in the system and is ready to be returned to the fleet. It is important 

to note that that only includes the declaration that the vehicle is ready to be returned to the 

operating forces; the process of shipping the vehicle will not be modeled. Other vehicles 

that undergo maintenance at the Albany, GA facility will not be modeled. Actions taken in 
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the operating forces which could affect the ability of MDMC to conduct depot-level repairs 

on the LAV will be discussed on an anecdotal basis and included as subject matter for 

future work; but it will not be included in the model itself. 

B. DELINEATE MILESTONES 

The initial cut of problem framing was a very high level overview of the system 

into a single-server concept: an LAV arrives into the depot maintenance system, repairs 

begin, and repairs end. From that point, the focus was to add complexity to this basic 

premise and add queue counters, arrival counters, random arrival generators, and random 

service time generators. At this point, no code is yet being written for the model; everything 

is being designed through the use of diagrams and event graphs. This high-level approach 

helps drive the modelling process so that we ensure we are accounting for the appropriate 

factors before drilling down deep in the wrong direction. 

When modelling a complex system such as the entire depot-level maintenance 

process of the LAV, it is necessary to break the entirety of the modelling into manageable 

pieces in order to verify a simple iteration of the model before progressing to a more 

complex iteration. The following milestones were decided upon for the model progression: 

1. Basic entity, arrival process, server classes. This milestone was meant to be an 

initial big picture overview of the system, using a simple single server class to pass 

information regarding the entirety of the depot maintenance process. 

2. Server node aggregation. This milestone expanded the scope of the single server 

class and incorporated all steps of the maintenance cycle in an aggregated fashion. The 

maintenance steps were aggregated by the building they were completed at in order to 

graduate the model’s complexity slightly and not jump directly from a single server model 

into a 156 server model. When completed, this milestone consisted of an arrival process 

and 22 servers connected in a row by way of adapters. This milestone was used as the basis 

for the pilot model presented to key sponsor personnel during the site visit. 

3. Server complexity. The site visit tour and associated meetings provided 

additional information that could be added into the individual servers. At this point in 
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development, the model used separate server class instances for every single step in the 

maintenance cycle, 156 in total. Additionally, different types of classes were created to 

more effectively represent what was taking place in the real system, such as rework delays, 

wedge delays, entity servers, component servers, disassembly servers, assembly servers, 

servers with bays, among others. Information gathered during the site visit and follow-on 

communication with the sponsor helped enumerate the probabilities that a particular item 

underwent a delay, and what the impact of that delay meant for that particular item’s 

maintenance cycle. Additional refinements to individual server service time/resource 

capacity constraints were compiled during the milestone also. Details on the individual 

classes will be discussed in more depth in the “Implementation” section of this chapter. 

4. Entity complexity. Roughly concurrent with the server complexity development 

was the development and improvement of the use of entities in the model. As with any 

coding model, there was a great degree of circular editing and testing before coming to the 

final granularity of what properties the model needed to account for with a given entity. In 

the initial stages, the only entities account for in the model was the LAV end item itself. 

Through development and testing it became more apparent that separate entities classes 

would need to be created for the key component tracks that the project was looking to 

represent. This allowed for the model to fully track the maintenance cycle more realistically 

as well as effectively capture desired statistics in order to show measure of performance. 

5. Statistics. Delay in queue, time in system, queue size, number of arrivals, and 

number of repairs were the statistical figures that were determined most important for 

tracking in this study. With these figures captured in the model, we would easily see how 

maintenance cycle time and system throughput would be effected when adjusting resource 

capacity parameters. Several iterations were required to properly capture these figures. The 

first several iterations focused on properly capturing the statistical figures across a single 

run. Once that was successfully achieved, that was designated as the “inner loop” and then 

collected across multiple run iterations, or an “outer loop” that allowed the user to see what 

the steady state long run average of those statistics looked like. The outer loop statistics 

and long run average concepts were especially important for this depot-level maintenance 

model as the depot maintenance process is very lengthy. Measuring long-run effects across 
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a live, real-time study would simply be impractical if not impossible. Using simulation to 

test the effects of resource decisions really allows MDMC leadership to be more prepared 

before making such decisions. 

6. Optimization. After statistics were effectively collected, the next step is to adjust 

resources capacities in a manner that provides actionable, realistic recommendations to the 

sponsor that can begin to help ease the bottleneck trends they have experienced in the past. 

This particular step looked largely at the disassembly, re-assembly, welding, and other 

time-consuming tasks to see where additional personnel and/or space might be most 

effectively assigned. See the results and conclusions chapters for more details on how these 

issues could be addressed. 

7. Refinement. The ultimate value of this product to the sponsor is that it is a living 

software tool that the sponsor can continue to modify and run at their discretion as new or 

updated information becomes available about the nature of the system capacity, constraints, 

capabilities, or anything specific to the entities undergoing maintenance. Given the nature 

of this study and this product, this milestone is never fully complete. A simple adjustment 

of the input parameters in the model’s main method allows the user to conduct a new run 

of the simulation and test the effects of the resource adjustment. 

C. PILOT MODEL 

Once a basic high-level understanding was developed for the overview of what the 

model would need to achieve, it was appropriate to begin to collect information specific to 

the LAV depot-level maintenance process. The first batch of information provided by the 

sponsor enumerated the various maintenance steps along which the end item travels during 

its maintenance production cycle. This allowed for the further mapping of the system and 

helps provide understanding for the level of complexity necessary to study the system. The 

next set of key products was a work breakdown structure that outlined the production times 

for each step in the process of both the end item and all component items as well, to include 

disassembly, re-assembly, inspections, and wedge delays. Additionally, the products also 

showed how many personnel were required to complete each step in the maintenance cycle.  
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The pilot model was an important development for a couple different reasons. It 

provided an initial near sighted goal to work towards prior to any substantial data collection 

and it also provided a simplified demonstration to show the sponsor what a DES application 

might look like during the site visit. This gave an incentive to begin the development of 

several generic Simkit classes for the model which ultimately made the final model easier 

develop once the available information was mature enough. Having the pilot model ready 

at the site visit allowed the sponsor to see what their information was going towards and 

how it would factor into the model. It also helped them see from my perspective why 

certain types of information about the system were more valuable than others, why the 

analyzed variables had been chosen in a particular way, and how the granularity of the 

model had to be broad enough to encompass the full maintenance cycle, detailed enough 

to capture to behavior of the servers and entities, and yet not too detailed to where the key 

drivers the study wanted to analyze were not getting lost. 

D. SITE VISIT 

The two-day site visit to the Albany, GA, MDMC facility/LOGCOM headquarters 

was an invaluable experience that helped in achieving the appropriate orientation of the 

depot maintenance process. Simply reading or having a question and answer session with 

some subset of the sponsorship group would not have been nearly sufficient to achieve this 

level of familiarity and understanding. Day one consisted of a lengthy tour of the 

maintenance facilities and walkthrough of all steps and locations that the end item and 

major component items traveled throughout the LAV depot-level maintenance process. 

Following the tour, there was ample time to conduct a meet and greet of various key 

personnel involved in the depot-level maintenance of the LAV both at LOGCOM 

headquarters and at the floor of the MDMC depot facility. Day two consisted of various 

meetings that facilitated more detailed information collection of the LAV process so that 

the model could more realistically and accurately represent what was going on in the real 

process. Day two also allowed for a sit in of a teleconference with a Penn State team that 

is working on a similar project for MDMC, and who very well may attempt to tackle some 

of the future work recommendations that came out of this study. 
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E. MODEL INTENT AND DIRECTION 

Once the site visits were completed and the necessary information was acquired, 

the direction and intent of the eventual model was decided. It was at this point that the 

decision was made to instantiate every server that has a role in the maintenance of the end 

item as well as all servers for the miscellaneous hull component, power pack 

(engine/transmission assembly), suspension system, and communications equipment. In 

talking with the subject matter experts at MDMC, these four components were the most 

critical, most problematic, and the most actionable components that could be effectively 

included into the model (B. Bagley and K. Luckie, personal communication, 30 January 

2018).  

Employees would be included as a resource parameter at every server instance 

along with a randomized service time generator per their estimated average real service 

time. In the assembly, disassembly, and welding server instances, maintenance bay spaces 

would also be included as a resource parameter. The first goal in building the final model 

would be correctly tying in a main class all the server instances that reflected the proper 

flow, probabilities, decisions, delays, etc. that can be observed in the real system. 

A guiding feature to identifying intermittent success of this initial piece would be 

seeing the same issues found in the real system beginning to present themselves in the 

simulation, such as a sever bottleneck in the welding station. Once the baseline model had 

achieved some level of fidelity and confidence through numerous simulation runs, we 

would identify the most problematic servers and adjust the input parameters in order to 

provide actionable recommendations to MDMC for improving the system’s long-run 

cycle-time and throughput. The key to the previous objective is actionable 

recommendations; a strict optimization will not be utilized to address this problem as there 

are simply too many constraints and too little additional resources to work with. The 

outcome of this particular study will be an output provided to the sponsor showing uses 

cases in which a slight adjustment of parameters, whether in additional resources or a 

reallocation of resources, will provide a statistically significant decrease in average cycle 

time.  
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Another key thing to remember is that this model will not necessarily provide value 

in the empirical sense, but in the relative sense. The objective is not to recreate the 

performance time observed in the real system, nor to achieve some arbitrary level but to 

demonstrate the degree to which a policy decision improves that performance. Thus, the 

key performance measure will be the statistical improvement of cycle-time. Further 

analysis of parametric policy decisions beyond the uses cases provided in the model output 

results will be considered in future work. For the specific parametric inputs of both the 

baseline runs and the recommended improvement runs, and their respective outputs, please 

see the implementation and results chapters. 
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IV. DEVELOPMENT 

In creating the model for the LAV depot level maintenance system, as stated 

previously, DES methodology was the vehicle chosen to represent this system. This chapter 

will discuss the details of how the DES principles were applied to the LAV depot level 

maintenance process. This involves a brief background of model theory, DES 

methodologies, the Simkit software application used to implement the model. The specific 

classes of code and their behaviors that were developed will be discussed in detail, as will 

the specifics on how the classes were instantiated and tied together to form the model. 

A. OVERVIEW 

In creating a discrete-event simulation model of any system, we must first break 

down what it means to have a model, a simulation, and that it be discrete-event in nature. 

A model is often described as an abstraction of reality. In the words of the Panel on 

Modelling Human Behavior and Command Decision Making (National Research Council, 

Education, Integration, & Simulations, 1998) “Models are condensed summaries of a 

domain, omitting (i.e., averaging over) details below a certain level” (p. 186) and that the 

term “model” itself “implies that human or organizational behavior can be represented by 

computational formulas, programs, or simulations” (p. 11). This is to say simply that any 

model is essentially a simplified representation of a given system in order to better 

understand the nature of the real system (National Research Council et al., 1998). The 

aforementioned panel goes on to describe a simulation as “a method, usually involving 

hardware and software, for implementing a model to play out the represented behavior over 

time” (p. 11). 

1. Discrete Event Simulation 

As mentioned previously, discrete-event simulation (DES) was the vehicle chosen 

to model the MDMC Albany LAV maintenance cycle. DES is a division under the broader 

discipline of simulation which is defined mostly in the means by which time is advanced 

in the simulation (Buss, 2017). In a DES program, time is advanced by irregular steps that 

are determined by the next event on the event list (Buss, 2017). This is in opposition to a 
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time-step style of simulation which progresses time forward at regular, uniform intervals 

(Power World Corporation, 2014). A depicting of the next event algorithm is featured in 

Figure 1. 

Whether to implement a model in a time-step or DES method is entirely dependent 

on which flavor of simulation the analyst believes will address the problem. When the 

system is being analyzed on the basis of its aggregate performance in continuous 

procedures over time, a time-step implementation may be appropriate (Power World 

Corporation, 2014). However, when the analyst needs to address a system that is measuring 

events taking place, it is imperative that each event be captured discretely for it will be in 

capturing those events that the holistic value of the simulation will be revealed (Buss, 

2017). Additionally, if a time-step simulation method is chosen inappropriately for an 

event-based model, it could lead to the simulation not detecting the occurrence of one or 

more events, or not detecting the occurrence at the proper time (Buss, 2017). The effects 

of this disparity become more apparent when understanding the concept of states, state 

variables, and events. 

 

Figure 1.  Next Event Selection Algorithm. Source: Buss (2017). 
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2. States and State Variables 

The state of a simulation is often described by the value of the changing variables, 

also called state variables, at any given time in the system (Buss, 2017). State variables are 

essentially the variables in the model which can be expected to change at different points 

in time during the simulation’s run, such as the size of a queue, the delay in queue of a 

particular workstation, or the time in system of a vehicle’s maintenance cycle (Buss, 2017). 

State trajectory graphs can be used to measure a single state variable’s over time (Buss, 

2017). For a DES model, this essentially will be a piecewise function that depicts a state 

variable’s value at varying points in time; the times of which again will be tied to events 

that are scheduled, added to, and then removed from the event list. Figure 2 features a 

continuous/time-step state trajectory graph, while Figure 3 depicts the state trajectory graph 

of a DES system 

 

Figure 2.  Continuous/Time-Step State Trajectory. Source: Buss (2017). 

 

Figure 3.  DES State Trajectory. Source: Buss (2017). 



 26 

3. Events 

Events are the triggers used in a DES program to employ state transitions (Buss, 

2017). Events are called upon to possibly change one, all, or none of the state variables 

being used in the simulation (Buss, 2017). Events are also used as a means to schedule 

follow-on events (Buss, 2017). If we consider a pertinent example of a simple maintenance 

workstation at the MDMC facility, we will have an “Arrival” event that increases the queue 

size and schedules service if workers are available; a “Start Service” event, which 

decreases the queue size, decrements the number of available servers, records the delay in 

queue, and schedules an end of the service task; and an “End Service” event, which records 

the time in system for that station, increments the number of available servers and 

schedules another servicing if the queue has items waiting in it (Buss, 2017). In the actual 

implementation of Java code, these events are represented as methods within a particular 

class type of the simulation. The object-oriented nature of the java language allows for a 

relatively seamless application of these events in different class instances (Buss, 2000). 

B. SIMKIT 

The tool used to create this simulation model is a Java-based application known as 

Simkit (Buss, 2000). Simkit was developed by Dr. Arnold Buss at the Naval Postgraduate 

School as a component based modeling tool by which one can develop generic types of 

sub-systems, also called “classes,” within a larger system they are attempting to model 

(Buss, 2000). The user will then create the appropriate number of instances of the types of 

classes/systems they have designed to represent the model, and connect them together by 

way of adapters (Buss, 2017). Simkit is essentially a coding capability fulfillment of Dr. 

Schruben’s Event Graph principle (Buss, 1995). In using Simkit, users are often 

encouraged to use first create event graphs of their system before developing them in code 

(Buss, 2017). Because the MDMC Albany facility is composed of numerous maintenance 

stations that have similar behavior, Simkit was an ideal application with which to develop 

the model. The Simkit software makes use of various classes, or types of code that will 

ultimately be implemented in order to represent the appropriate behavior that is found in 

the system. These classes will be used to represent entities, or objects that are being passed 
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along through the network of service stations; an arrival process, and the service stations 

that are found in the maintenance process. 

C. CLASSES 

1. Entities 

Entities used this simulation represent the physical LAV in the maintenance cycle 

as well as key components that are taken from and then re-applied to the end item. Using 

entity objects as a means by which to map the simulation help us develop a simulation 

network that makes use of queues, disassembly, reassembly, and other properties and 

behaviors that help us represent the real system more effectively. Each of the entity classes 

used in the model are extensions of the Simkit Entity class. The LAV entity class represents 

the flow of the item through all of its necessary step in the maintenance cycles. The 

HullMisc class represents floor panels, engine covers, access panels, transmission covers, 

and other such items disassembled from the hull that must come off and undergo their own 

sets of procedures. The PowerPack class represents the transmission and engine assembly. 

The Comm class represents all communications related assets that are pulled off the LAV 

and repaired/replaced. The Suspension class represents the suspension components travel 

through its respective maintenance processes. 

2. LAV Entity Creator 

The LAVEntityCreator is a class which extends the Simkit library “ArrivalProcess” 

class in order to generate instances of the end item entities in the system. The only 

parameter input for this class is a random variate for the set of interarrival times. Based on 

the input of the set of random variates, entities are feed into the system and begin working 

their way through the maintenance cycle. This class is the only instance or extension of an 

Arrival Process type class found in the model, and it is used to create new LAV instances. 

Component instances are created within the LAVDisassemblyServer class. Figure 4 depicts 

the event graph of LAVEntityCreator class. 
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LAVEntityCreator 
 

Parameters: 
 

{ta}: set of interarrival times 

 

Figure 4.  LAVEntityCreator Event Graph 

3. Entity Servers 

Entity servers are the base case instance for any server found in the model. They 

operate as single service stations with input parameters of a random variate which generates 

random service times for that particular instance, and the total number of servers. “Servers” 

in the case of this and all classes is to mean the number of teams of employees that are 

available to conduct work on a given task. The “Run” method essentially represents the 

initial instantiation of the class.  

When the instance is created, the time in system and delay in queue figures are set 

to NaN, the available servers is set equal to the total number of servers, and the queue is 

cleared. When the “Arrival” method is activated, an entity has “arrived” into the system 

and is added to the queue. The entity is also given a time stamp that starts the delay in 

queue clock. If there are servers available, then the “Start Service” method is scheduled to 

take place immediately. Once “Start Service” has been initiated, the entity’s delay in queue 

time, the entity is removed from the queue, and the number of available servers is decreased 
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by one. “End Service” is schedule to take place with a delay time of whatever the generated 

service time for that particular entity is. “End Service” takes in the entity as an input.  

Once “End Service” take places, the entity’s time in system is recorded, and the 

number of available servers is increased by one. If there are vehicles in the service queue, 

then another “Start Service” event is also scheduled. The LAVEntityServer class is depicted 

om the event graph in Figure 5, however identical variations of the functionality of these 

server classes were created that model the HullMisc, Comm, Suspension, and PowerPack 

servers. 

LAVEntityServer Class 
 
Parameters 
 
{ts}: set of service times 
k: total number of servers 
 
State Variables 
 
s: number of available servers 
queue: FIFO container of entities 
D: delay in queue 
W: time in system 
 

 

Figure 5.  LAVEntityServer Event Graph 
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4. LAV Disassembly Server 

The Disassembly server is used in only one place in the model, the station at which 

the component disassembly is completed and the component items are sent along their 

respective maintenance routes. This class functions almost identically to the 

LAVEntityServer; except that upon start service, in addition to the recording of time in 

system and incrementing the available servers, new component class instances are also 

created. These component instances are what will be passed to the component entity server 

networks. A visualization of this class is depicted in Figure 6. 

LAVDisassemblyServer Class 
 
Parameters 
 
{ts}: set of service times 
k: total number of servers 
 
State Variables 
 
s: number of available servers 
queue: FIFO container of entities 
D: delay in queue 
W: time in system 
 

 

Figure 6.  LAVDisassemblyServer Event Graph 



 31 

5. Entity Server with Bays 

In modelling the resources used at the facility, it became apparent that it would not 

be sufficient to use employees alone as a resource. In instances where space was observed 

to be a concern at the maintenance facility, maintenance bays were also used as a limited 

resource that must be accounted for when mapping the maintenance cycle. The stations 

that were represented in the model using this particular class were the disassembly stations 

and the welding station.  

The implementation of this class only required a few slight deviations from the 

standard entity server classes. An additional parameter is added to the class constructor 

which defines b: the number of total maintenance bays at that particular workstation. The 

state variable “a” is then used to identify the number of available maintenance bays at a 

particular time in the simulation run.  

Available maintenance bays are decremented by 1 when the “Start Service” event 

is activated indicating that the bay is no longer available since a vehicle has gone into 

maintenance. Once the “End Service” event takes place, the available maintenance bay 

figures are incremented by 1, representing in the model the notion that the bay is now 

available to be worked in as a vehicle’s maintenance has just been completed. The event 

graph of the class is represented in Figure 7. 
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LAVEntityServerWithBays Class 
 
Parameters 
 
{ts}: set of service times 
k: total number of servers 
b: total number of bays 
 
State Variables 
 
s: number of available servers 
a: number of available bays 
queue: FIFO container of entities 
D: delay in queue 
W: time in system 
 

 

Figure 7.  LAVEntityServerWithBays Event Graph 

6. Wedge Delay Server 

In a maintenance facility as complex as the Albany depot, there are several times 

where items encounter unexpected delays that prolong service time. These instances of 

unexpected extra time for a particular maintenance step are represented and instantiated by 

the Wedge Delay Server class. The Wedge Delay server is used primarily for quality 
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control type stations at which spot corrections are made to a vehicle before sending it on 

its way to complete the remainder of the maintenance cycle.  

Examples of stations where the wedge delay server is employed is after an assembly 

phase in order to ensure everything has been done correctly. As mentioned previously the 

wedge delay accounts for instances where spot corrections are made to the vehicle in excess 

of the expected service time of the previous task, and also removal and replacement of a 

simple subcomponent that may have been flawed with a new or newly refurbished 

subcomponent from off of the inventory shelf.  

New parameters introduced in the wedge delay server class are the delay time and 

the delay probability. Delay time is the time that a given delay is expected to last in the 

model. Delay probability is the rate at which we expect a vehicle to fail the 

inspection/quality control check/etc., and encounter the delay. Upon the “Start Service” 

event, a Bernoulli generator will generate either “0” or “1” at an average long-run rate 

determined by the delay probability parameter; this value is stored under the Boolean 

variable “delay.” If “delay” is found to be 0, that indicates that the vehicle passed its 

inspection and proceeds without delay to schedule an “End Service” event. If the “delay” 

variable is found to be 1, that indicates that an issue has been detected and a delay will be 

incurred.  

When a delay must take place in the model, the entity is transferred to the “Delay” 

event, which will then successively schedule the “End Service” event with a wait time of 

the indicate delay time parameter. As the wedge delay is taking place on the spot, only an 

entity’s activation of the “End Service” event will free up the team of employees working 

on the vehicle. This key difference is one of the things that distinguishes this delay class 

from the Rework Delay server class we will examine later on. The event graph for this 

class is represented in Figure 8. 
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WedgeDelayLAVServer Class 
 
Parameters 
 
{ts}: set of service times 
k: total number of servers 
dt: delay time (double, constant) 
dp: delay probability (double) 
 
State Variables 
 
s: number of available servers 
queue: FIFO container of entities 
D: delay in queue 
W: time in system 
bernoulli = random variate generator based on delay probability 

 

 

Figure 8.  WedgeDelayLAVServer Event Graph 

7. Rework Delay Server 

The Rework Delay server class will have quite a few similarities to the Wedge 

Delay server class we examined previously. The Bernoulli generator will generate upon 

the “Start Service” event in the same fashion as before and determine whether an event will 

“pass” and go on to the “End Service” event or whether an event will “fail” and be sent to 
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the “Delay” event. The key difference in this class is that there is no parameter for delay 

time. The delay time in this particular class will take effect when it is sent from the “Delay” 

event of this class instance to the “Arrival” event of the station it is being sent back to for 

additional work.  

The only case the Rework Delay server is being used in this model is the heat 

distortion temperature (HDT) inspection following the welding station’s entity server. 

Following the completion of a welding job, the vehicle is sent to receive an HDT inspection 

in order to ensure that the hull integrity meets specifications following completion of the 

welding job. If the vehicle passes, it proceeds further into the maintenance cycle. If the 

vehicle fails, it is sent back through the welding station. In order to effectively model this 

class, a variable was created for the LAV class named “numberWeld,” which indicates the 

amount of times the vehicle has been through the welding station. Initially set the 0, 

numberWeld is incremented by one for that entity each time it is sent to the “Delay” event 

in the model.  

The model employs two Bernoulli generators in determining how to send vehicles 

to rework. The first generator causes the vehicles to fail at a rate of .7. The second generator 

causes vehicles to fail at a rate of .1. The desired effect being that while vehicles are 

expected to require some rework 70% of the time after the first inspection, only 10% of 

vehicles are expected to require rework after the second inspection, and all vehicles are 

expected to pass a third inspection. This behavior is based on subject matter expertise on 

the failure rates of vehicles going back for additional welding/HDT inspections (K. Luckie, 

personal communication, 11 April 2018). Because the vehicles leave the station upon 

activating the “Delay” event, it also changes the states variables similarly to an “End 

Service” event and frees up a team of employees to work on the next LAV in the queue. 

Figure 9 depicts the event graph for this class. 
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ReworkDelayLAVServer Class 
 
Parameters 
 
{ts}: set of service times 
k: total number of servers 
dp: delay probability (double) 
 
State Variables 
 
s: number of available servers 
queue: FIFO container of entities 
D: delay in queue 
W: time in system 
bernoulli = random variate generator based on delay probability 

 

 

Figure 9.  ReworkDelayLAVServer Event Graph 
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8. Component Re-Assembly Servers 

The Component Assembly server classes are designed specifically to take in two 

separate types of entities and simulate the performance of the assembly process and then 

sending the LAV entity itself along the remainder of its route in the maintenance cycle. 

The major distinguishing feature with this class is that it has two different arrival events. 

“LAV Arrival” is where the LAV entity arrives and is added to its respective queue. The 

“Component Arrival” event adds a component entity to the component queue.  

Conditions for proceeding to the “Start Service” event are having entities ready in 

both the LAV and component queues, space available, and server teams available. Upon 

“Start Service” the entities are removed from their respective queues, and states variables 

recorded appropriately. From that point, the class behaves nearly identically to the 

“LAVEntityServerWithBays” class. The event graph for this class type is depicted in 

Figure 10. 
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________AssemblyServer Class (Comm, HullMisc, PowerPack, and 
Suspension) 
 
Parameters 
 
{ts}: set of service times 
k: total number of servers 
b: total number of bays 
 
State Variables 
 
s: number of available servers 
a: number of available bays 
queuel: FIFO container of LAV end-item entities 
queueh: FIFO container of component entities 
D: delay in queue 
W: time in system 
 

 

Figure 10.  Component Assembly Server Event Graph 
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D. IMPLEMENTATION 

In creating the main method for the simulation, we faced three major challenges: 

compiling the appropriate data to create random number generators for the arrival times 

and service times for each class instance, instantiating the appropriate classes in the model 

as necessary, and connecting those classes together appropriately such that they represent 

the behaviors observed in the LAV depot-level maintenance process. 

An exponential distribution was used to create random interarrival times of the 

LAVs into the system. The system averages about 30 LAV arrivals/year and the 

exponential distribution was used to provide some variability in that effect on the front 

end of the maintenance process. Unfortunately, there was no data on service times 

available with which to apply a distribution for the model; we only had the average 

service times for the maintenance steps being analyzed. In order to achieve some 

variability in service times, the service times were all applied with a gamma distribution 

and a shape factor of 2. After consultation with the advisor for the study, we both 

concurred that these distributions would be acceptable to achieve the behavior effects the 

model was designed to represent (A. Buss, personal communication, 7 February 2018). 

However, the simulation model is flexible so that if subsequent data indicate different 

service time distributions, they could be seamlessly incorporated into the model. Once 

all random number generators are created, the server classes are all instantiated as 

appropriate. The respective random number generator that pertains to a given class is 

input as a parameter as well as the other parametric inputs. Based on inputs from the 

depot, baseline personnel policy inputs were entered as well. 

Once the class instances were all created, we then create the appropriate listeners 

and adapters that will be used to connect the classes they are passing entities between. Only 

one listener was instantiated in the system which was used to connect the 

LAVEntityCreator class to the first server class instance in the system. The adapter 

instantiations only have two inputs—the event that the adapter is accepting an entity from, 

and the event that the entity is being passed to. The adapter instances are independent of 

the servers they are connecting; only once we connect the servers with the method 

“adapter1.connect(server1, server2)” are the servers in the model fully connected. The 
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connection of one class instance to another can be depicted using a listener diagram (Buss, 

2017). Figure 11 depicts the listener diagram for the LAVEntityCreator class instance 

connecting to the first LAVEntityServer class instance. Figure 12 depicts the listener 

diagram of the LAVDisassemblyServer class instance to the first entity server class 

instances of each of the major components that were analyzed. Figure 13 depicts the 

listener diagram of a component assembly server class instance taking inputs from both the 

preceding LAVEntityServer instance and the final component entity server of the 

component being assembled. 

 

Figure 11.  Listener Diagram Depicting Entities being Passed 
from the LAV Entity Creator Class to the First LAV Entity Server Instance 

 

Figure 12.  Listener Diagram Depicting Component Entities being 
Created by the LAV Disassembly Server Instance and 

Passed to their Respective Entity Server Networks 
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Figure 13.  Listener Diagram Depicting the LAV and Component Entities 
being Passed to the Respective Component Assembly Server Instance 

Next, the loggers for the model are instantiated to collect data from the simulation 

runs. Multi-tally statistics loggers are used for the “delay in queue” and “time in system” 

statistics. The “queue” statistic is collected with a multi-collection size data logger. Each 

of these loggers collects the statistics at appropriate points in the model in order to capture 

the information that is being studied, compile it correctly, and write to a .csv output file. 

The “delay in queue” and “queue” statistics capture every single queue in the system, while 

the “time in system” statistic captures only one value, the time in system statistics at the 

last maintenance station in the system. Property change listeners are added to the code in 

order to the loggers are capturing the necessary information from each server. The property 

change listeners also ensure the same statistical information is captured and output to the 

console also, as this helps in debugging. 

Following the property change listeners, an iteration loop is added which contains 

the lines of code that actually run and govern the simulation time parameters. The loop 

resets all servers in the system to initial conditions and runs them for roughly a five-year 

time period. While Simkit is operating on a pseudo-random generation which is technically 

deterministic, the random number generator used is known to have excellent properties in 

mimicking randomness. Furthermore, the iteration loop allows the servers to be reset and 

multiple identical independent replications be performed. This is crucial for estimating the 

performance measures with statistical accuracy. 
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The last bit of code in the main method running class contains the print statements. 

These statements largely contain statistical information that can be quickly accessed on the 

console and helped largely in the debugging efforts of the simulation model’s development 

and refinement. 
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V. RESULTS 

The testing of the LAV depot-level maintenance model was conducted in three 

stages. The first stage was a baseline run that was designed to determine which 

maintenance steps in the process had a delay-in-queue that was significantly larger than the 

rest of the system. The next stage consisted of an iterative improvement of the system—

incrementing the resources of the problematic servers until no server in the system had a 

delay-in-queue statistic that was significantly larger than the rest of the system. This was 

meant to understand how other servers in the system might behave as bottlenecks were 

addressed in one part of the system or another. The final stage of testing was to conduct 

experiments combining different arrangements of parameter inputs for the problematic 

service stations in order to determine which servers had the most statistical impact on the 

ultimate goal of reducing the service time in the system. 

A. MODEL GOVERNANCE 

Each replication in the running class ran the model for a five-year time period. In 

order to obtain a high confidence in the long-term performance of a given set of input 

parameters for the model, each simulation run consisted of 1000 independent replications. 

Following completion of the simulations run, csv files were written containing data for the 

queue size changes, average delay in queue per server per replication, and time in system 

per replication. 

The delay in queue statistic was the measure used to determine which server 

instances needed to have their resource capacities expanded to alleviate the bottlenecking 

that was taking place. The delay-in-queue statistic is the best indicator to determine the 

amount of time in a given entities maintenance cycle that is lost due to waiting at that 

particular queue. The csv file for a particular run’s delay-in-queue statistic was imported 

to JMP statistical analysis software (JMP Pro Version 13.1.0., 2016) and ANOVA tests 

performed in order to determine which servers had delay in queue statistics were 

significantly above the average for the entire system; in particular, the connecting letters 

report within the Tukey-Kramer HSD test (JMP Pro Version 13.1.0., 2016). Those servers 
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then had their resource capacities incremented by 1 (server teams and bays, if applicable). 

This improvement process was iterated until there was no longer a significant difference 

present between successive servers when ordered from longest to shortest average queue 

delay. Theoretically this could result in an effect of regression to a long average delay 

between servers; however, that was not a concern as most servers even after the initial 

baseline run had very short queue delays, at or near zero.  

Following the completion of all iterative improvement steps and follow-on runs of 

the simulation model, the time in system statistics were used to measure the improvement 

of the cycle time in the system across multiple runs. 

B. BASELINE RUN 

The baseline run of the model was intended to represent the system’s long-run 

performance based on current resource parameters. Upon completion of the baseline run, 

the delay-in-queue output for all servers was opened in JMP statistical analysis software 

and was tested with an ANOVA tests as well as a means comparison/Tukey’s honest 

significant difference (HSD) test. The output from the connecting letters report as part of 

these tests arranges all servers in order from the most extreme to least extreme average 

delay-in-queue time. The output shown in Figure 14 is an excerpt from the ANOVA 

Tukey’s HSD connecting letters report, and was the primary device used to determine 

which servers in the system were targets for improvement following any given simulation 

run.  
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Level          Mean 
delayInQueue[15] A         1330.7932 
delayInQueue[153]  B        1240.9619 
delayInQueue[126]   C       478.9464 
delayInQueue[142]    D      195.9205 
delayInQueue[139]    D      190.7030 
delayInQueue[143]     E     150.9409 
delayInQueue[127]     E     148.8737 
delayInQueue[141]      F    96.1477 
delayInQueue[39]       G   80.9713 
delayInQueue[33]        H  25.9670 
delayInQueue[137]         I 7.4782 
delayInQueue[152]         I 6.6529 
delayInQueue[150]         I 2.6815 
delayInQueue[16]         I 2.4004 
delayInQueue[13]         I 1.9017 
delayInQueue[69]         I 1.8243 
delayInQueue[68]         I 1.5742 
delayInQueue[71]         I 1.1834 
delayInQueue[80]         I 1.1711 
delayInQueue[87]         I 1.0611 
delayInQueue[146]         I 1.0284 
delayInQueue[5]         I 0.8386 
delayInQueue[79]         I 0.7545 
delayInQueue[85]         I 0.5547 
delayInQueue[111]         I 0.5412 
delayInQueue[74]         I 0.5334 
delayInQueue[99]         I 0.4899 
delayInQueue[140]         I 0.4169 
delayInQueue[57]         I 0.4019 
delayInQueue[124]         I 0.3802 

 

Figure 14.  Baseline Delay-in-Queue: Connecting Letters Report Excerpt. 
Source: JMP® Pro Version 13.1.0 (2016). 

C. ITERATIVE IMPROVEMENT 

The baseline run ANOVA/Tukey’s HSD connecting letters report output displayed 

the comparison of the average delay-in-queue statistics from each server in the system. The 

connecting letters report tells us that servers that are not connected by the same letter have 

a significant difference in average delay-in-queue time. Because the model generated the 

statistics of each server from a base zero frame of reference, we know that servers 16, 154, 

127, 143, 140, 144, 128, 142, 40, and 34 have significantly longer average delays in their 
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queues. These servers had their resources incremented by 1 prior to the start of the next run 

of the simulation. 

This process of delay-in-queue analysis, incrementing the server resources, and 

running the model with adjusted parameters constituted the first improvement iteration 

step. In total, five improvement iterations were conducted for this model. Conditions to 

stop the iterative improvement process was the lack of significant difference between 

server delay-in-queue statistics. The effects of the improvement steps were measured by 

comparing the time in system statistics following each run. The table featured in Figure 15 

was assembled by consolidating the average time-in-system for each run iteration as well 

as a 95% confidence interval for time-in-system, throughput measured in average number 

of repairs/replication for that run, and the number of employee teams that were added to 

the system for that particular run of the simulation. 

 

 

Figure 15.  Improvement Step Comparisons. Source: JMP Pro 
Version 13.1.0. (2016). 

The results here demonstrate that each improvement step provided a significant 

reduction in overall system cycle-time. This is given from the fact that the average time-

in-system confidence interval’s upper bound for an improvement step in the simulation is 

always lower that the lower bound of the preceding run’s confidence interval for its average 

time-in-system.  

D. REGRESSION 

The iterative improvement step was only the first piece of the testing and analysis 

that was conducted with this model. Once all improvement steps were completed, each 

server that had undergone improvement was arranged into a 16-factor nearly orthogonal 

Run Average Time-in-System 95% confidence Interval Average Repairs/Replication Employees Added
Baseline 2966.49 (2940.23, 2992.73) 78.49  -

1st Improvement 1630.96 (1611.34, 1650.58) 120.75 10
2nd Improvement 1201.52 (1197.10, 1205.94) 131.89 14
3rd Improvement 1142.15 (1140.32, 1143.98) 133.32 4
4th Improvement 1124.21 (1122.86, 1125.57) 133.43 6
5th Improvement 1119.54 (1118.27, 1120.80) 133.68 4
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Latin hypercube (NOLH) experimental design array. This array generator tool was 

provided by the Naval Postgraduate Schools Simulation, Experiments, and Efficient 

Design (SEED) Center for Data Farming (“Naval Postgraduate School SEED Center 

website”). The 16-factor NOLH array was generated from a spreadsheet tool which took 

as inputs the “low level” and “high level” of each server (“Naval Postgraduate School 

SEED Center website,”). The low level is essentially the baseline resource parameter 

setting for a particular server. The high level is the maximum number of resources a given 

service station had across all improvement steps in the simulation.  

From these inputs, the spreadsheet displays the appropriate resource parameters 

that each of the 16 altered servers needs to be set at across an additional 65 runs of the 

simulation. This testing method, while it appears to be time-consuming, it actually saves 

the user time because it allows us to detect behavior of the system at different parametric 

settings not observed during the improvement steps and explore the space of those 

parametric possibilities without testing every single parameter in the space. Following the 

completion of each of the runs, the average time-in-system across all replications within 

that run was recorded. 

When all runs were completed, the server parameters and time-in-system 

performance for each run was put into JMP in order to test the effects of server parameter 

settings on system performance. In order to achieve that goal, the data was run through a 

multiple linear regression in JMP with the explanatory variables being the various server 

resource parameter settings for a run and the outcome variable being the system’s time-in-

system for that run. Ultimately, the objective with this test was to observe the significance 

to which each server’s resource parameters affected the time in system of the model. The 

below output shows the key finding from the multiple regression. We can see from these 

outputs that the multiple linear regression fit of actual by predicted plot (Figure 16) that 

the model demonstrates a fair correlation with an R-Square value of .49. We can also see 

from the output of the effects summary (Figure 17), effect test (Figure 18), and parameter 

estimates (Figure 19) that there is a statistically significant effect of servers 16 and 113F 

on the model.  
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Figure 16.  Actual by Predicted Plot. Source: JMP Pro Version 13.1.0. (2016). 

 

Figure 17.  Effect Summary. Source: JM Pro Version 13.1.0. (2016). 
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Figure 18.  Effect Tests. Source: JMP Pro Version 13.1.0. (2016.) 

 
Term Estimate Std Error t Ratio Prob>|t| 
Intercept 4161.9538 739.6663 5.63 <.0001* 
14  -40.58324 123.6378  -0.33 0.7442 
16  -211.7056 41.15387  -5.14 <.0001* 
17 21.515878 91.96385 0.23 0.8160 
34  -50.75335 63.86969  -0.79 0.4307 
40  -50.90181 50.75517  -1.00 0.3209 
11312  -32.84162 64.30883  -0.51 0.6119 
11313 5.4422629 87.85465 0.06 0.9509 
assemble 61.515181 125.0061 0.49 0.6249 
1131 12.361876 63.82182 0.19 0.8472 
1133  -7.364802 65.19327  -0.11 0.9105 
1134  -124.4666 89.91274  -1.38 0.1727 
1135  -74.44517 89.87652  -0.83 0.4116 
1138  -79.85948 127.4666  -0.63 0.5339 
113C  -92.66755 127.6928  -0.73 0.4715 
113E 5.6568403 123.9251 0.05 0.9638 
113F  -134.5299 50.91223  -2.64 0.0111* 

 

Figure 19.  Parameter Estimates. Source: JMP Pro Version 13.1.0. (2016). 
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E. CONCLUSIONS 

From the results of the simulation runs and statistical analysis we have seen that 

expanding server resource capacity can have a tremendous effect on the time-in-system 

performance of the system. The improvement step comparisons demonstrated that a 

significant reduction in repair cycle-time can be achieved by adding additional resources 

to the slower servers in the maintenance cycle. Not all queues that were experimented with 

following the improvement step analysis were found to have a statistical impact on the 

overall time-in-system of the LAV.  

From our statistical analysis, it is clear that the system would greatly benefit from 

capacity expansion at station 16 (welding) and station 113F (driving differential repair, 

paint, and assembly); the other stations, while having the potential to relieve somewhat 

larger delay-in-queue times, should not be expected to have a statistical impact on the 

system’s performance. This is important to understand, because any organization with a 

limited investment budget, such as MDMC, will have a limited amount of resources that 

can be devoted to improving any one maintenance process. The NOLH analysis provides 

the sponsor, in order of precedence, the degree to which resource availability at a given 

server will provide them a return in reduced maintenance cycle-time, and thus provides a 

plan of action and justification for allocating additional resources towards a different 

maintenance station in the system. 
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VI. FUTURE WORK 

This study was the first of its kind at MDMC; DES had never before been used to 

study an entire vehicle’s maintenance cycle. Through the research and work that was done 

to create a worthwhile model, several follow-on topics were identified that could be 

beneficial to the process improvement endeavors at the MDMC and the discovery of 

knowledge that might help LOGCOM better understand the depot-level maintenance 

processes of not just the LAV, but many types of equipment throughout the Marine Corps. 

As mentioned previously one of the challenges of undertaking this study was the 

lack of data to work with. The aspect of the model that was most affected by this disparity 

was the random number generation that was used for the service times of the service 

stations in the model. In order to have a full verification, validation, and accreditation 

(VV&A) of this model, the service times used in the model would need to reflect the actual 

distribution of service times found in the system.  

In order to do this, a robust data collection effort would have to be started at 

MDMC. Currently data is not collected by maintenance step, the data collection effort is 

focused on the labor hours completed by a particular work section of employees over a 

specified span of time. As the current cycle-time for the LAV going through depot-level 

maintenance is estimated around 180 days (K. Luckie, personal communication, 

29 January 2018), it would likely take several years to obtain the necessary data required 

to have a basis to adjust the service time random number generators throughout the model. 

As this model was designed through the use of an object-oriented programming 

application, the classes developed could be instantiated to represent servers and behaviors 

of any other equipment’s maintenance cycle at MDMC. In addition to modelling other 

types of equipment, a future study could look at increasing the complexity of the existing 

class to include more elaborate behaviors, more statistical tracking, and an integration of 

additional business metrics that would be beneficial to the decision makers at MDMC. 
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Another key thing to keep in mind about the model is that it only looks at analyzing 

and improving the system performance of steady state behavior. That is to say that this 

model looks at how the system can be expected to perform on the average over a 

predetermined period of time. Another study could look at including a flexible 

schedule/flexible state construct for the model. For example, it might look at when it would 

make sense to incorporate an overtime policy at MDMC. That simulation could compare 

how overtime policies are currently managed at MDMC vs alternative and perhaps more 

efficient methods. Additionally, this study could include a cost-benefit analysis of adding 

additional resources to servers in a steady-state long term case compared to other cases of 

adjusting overtime policies on a flexible state basis, or some combination of the two. 

Outside the influence of MDMC exists an entire realm of possibilities that could be 

addressed in a future study. There are a variety of issues outside MDMC that have an 

impact on maintenance cycle-time and repair costs. One such issue is the fact that MDMC 

does not operate on the same oracle-based software that the operating forces are using for 

maintenance management. This results in MDMC not having access to the full complement 

of property and repair requisition records. This can have the effect of MDMC not having 

oversight of some of the component items that belong to the end items undergoing repairs 

at the depot.  

Because the transaction history is not clear and common to all in this process, the 

depot may not always know if a component item belonging to an end item was evacuated 

for repair within the operating forces prior to the end item being shipped to MDMC for 

depot-level repair. The depot will at times have to purchase these component items from 

the manufacturer in order to have a fully equipped item ready for shipment upon 

completion of depot-level maintenance. These component items are no little expense; some 

of them can exceed $100,000 in price (K. Luckie, personal communication, 29 January 

2018). The strain this can put on the system can be extensive. A study looking at the degree 

to which this and issues like it are occurring and having an impact on the costs of depot-

level maintenance in the Marine Corps would be greatly beneficial to the understanding of  
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all the challenges that must be addressed by the depot-level maintenance of not only the 

LAV, but all principle end items throughout the Marine Corps. While these are only a few 

examples of follow-on work, there are numerous potential applications for the DES model 

at MDMC that could ultimately provide the Marine Corps with additional ideas and 

methods for improvement of its maintenance processes. 
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