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ABSTRACT 

 Cyber criminals are increasingly using malicious programs to take control of and 

exploit individuals’, businesses’, and governments’ data. A large portion of malware is a 

type called ransomware, which finds a way to restrict the infected user’s access to data 

until a payment is obtained. Current detection solutions include programs that analyze 

file system changes and registry events, employ honeypot techniques, and identify 

anomalies in network patterns. This research presents an algorithm developed to detect 

ransomware by analyzing a computer’s power consumption. Specifically, the algorithm 

identifies features of the computer’s power consumption that are indicative of encryption 

operations. We can successfully identify encryption of files with sizes of 500MB and 

greater with a high degree of success. By applying our encryption detection algorithm to 

the Cryptographic Ransomware, we are able to successfully identify the execution of 

WannaCry Ransomware samples. 
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CHAPTER 1:
Introduction

In the modern era of the global Internet, information systems are increasingly falling victim
to malicious programs. Ransomware is one extortion method that prevents the target from
accessing their data until a payment is extracted. In the last few years, ransomware has
been a problem worldwide, with one attack, Wannacry, affecting more than 200,000 victims
across the globe [1]. The two main types of ransomware are locker ransomware and crypto
ransomware [2]. Locker ransomware prevents the user from accessing or logging on to the
device and, as a result, denies access to the user’s data [3]. Crypto ransomware encrypts data
throughout the targeted system, causing the files to become useless without the encryption
key. The user is then prompted to pay for the encryption key. Crypto ransomware accounts
for over 90 percent of the ransomware attacks executed in 2016 [4]. Since 2013, the threat
from crypto ransomware has only grown in volume and sophistication. The ability to detect
and prevent ransomware attacks is beneficial to individuals, businesses and governments by
reducing costs and increasing information availability.

1.1 Objective
The objective of this research is to develop a method for detecting ransomware that can be
applied with great effect to the current state of ransomware activity. Current proposed meth-
ods for detection include signature detection, honeypot techniques, and machine learning
methods [5]–[7]. Each of these approaches has drawbacks, including the inability to detect
new types of ransomware and a long lag time between detection and distribution of a de-
fense. In order to target these failures, we propose a method to detect a common trait across
the scope of all ransomwares. Since crypto ransomware is the majority of ransomware, in
this research we propose a method to detect this type of malware. Specifically, the method
targets the detection of encryption operations used in crypto ransomware. As for the method
to detect encryption, past research in [8] showed that detection of encryption operations in
field-programmable gate arrays (FPGAs) was possible through power analysis techniques.
In the experiment, encryption of plain text was performed while the power of the FPGA
was recorded. The execution of encryption operations was shown to have a unique and
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consistent effect on the device’s power consumption. In addition, other research in [9]
and [10] use power analysis to detect read and write operations occurring on a computer.
Specifically, in this research we propose a method for detection of a computer’s execution
of encryption operations. Power consumption of a computer’s solid-state drive (SSD) and
central-processing unit (CPU) are monitored while ransomware activity is preformed. More
specifically, this involves recognizing the procedure taken to encrypt a file through identi-
fying representative features within the computer’s power consumption. Since the process
for encrypting a file causes interaction with the computer’s SSD and CPU, the energy used
by these components yields a classifiable pattern.

The ultimate goal of this research project is to create an algorithm to recognize crypto ran-
somware activity using power consumption data. Since crypto ransomware uses encryption
to render a user’s files unusable, this algorithm specifically looks for features that indicate
encryption operations while limiting the identification of false positives. The ability to
recognize the occurrence of encryption allows for intervention in the computer’s process
to limit the data rendered inaccessible by ransomware. For example, when encryption is
detected, the process can be halted while the user is asked if the encryption operations are
authorized. Having a high degree of accuracy is crucial when predicting the presence of
encryption operations. Alerting the user to false positives can be desensitizing and decrease
the value of a true positive alert. A successful algorithm enables the majority of a victim’s
data to remain accessible while detecting the presence of malware on their device.

1.2 Thesis Contributions
To detect crypto ransomware on computers, we provide a unique solution using the device’s
power consumption. The proposed method detects the use of encryption operations that are
innate characteristics of crypto ransomware.The contributions of this thesis are as follows.

1. We propose a method for using the power consumption of a computer’s SSD and CPU
to detect the execution of crypto ransomware. First, an automated power gathering
system is used to collect the power traces of the SSD and CPU. Second, an algorithm
extracts features from the power traces and predicts the occurrence of encryption
operations inherent to crypto ransomware.

2. In this thesis, we analyze the performance of the proposed crypto ransomware detec-
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tion algorithm in terms of its ability to detect encryption operations. Furthermore,
the algorithm is shown to detect a sample of Wannacry ransomware.

1.3 Organization
This thesis is organized into five chapters. A discussion of previous work with ransomware
and its history is provided in Chapter 2. Additionally, background on the power analysis
techniques used in this research is provided in Chapter 2 as well. The method for data
collection as well as the algorithm used to extract features from power traces and identify
encryption operations is explained in Chapter 3. The results of several experiments to test
the proposed method of encryption detection is presented in Chapter 4. A final overview of
the results and proposed methods for further work are described in Chapter 5.

3
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CHAPTER 2:
Background

In this chapter, we explore previous work investigating the detection of ransomware. Topics
covered include ransomware history, ransomware characteristics, current ransomware de-
tection methods, and power analysis techniques. In Ransomware History, we introduce the
reader to the evolution of ransomware to its modern-day state. In Ransomware Character-
istics, we cover the common characteristics seen with this malware’s behavior. In Current
Ransomware DetectionMethods, we focus on current methods for detecting and eliminating
the execution of ransomware on a victim’s computers.

2.1 Ransomware History
The idea of using a malicious program to hold a target’s data for ransom has been around for
decades. The first credited crypto ransomware attack occurred in 1989 and targeted health-
care data through the use of a hidden program distributed on floppy disks and became
recognized as the AIDS Trojan [11]. Fortunately, this attack was relatively unsuccessful
because of several limiting factors. At the time, processing payments to regain access to
the data was more complex than today. Additionally, encryption algorithms allowing the
encryption keys to be retrieved and allowing for recovery of data were not as advanced.
Furthermore, the Internet was not as widely used, so propagation and infection of malware
wasmore difficult than in current circumstances. Finally, inmany ransomware code samples,
the encryption key could be viewed in plain text and not properly hidden to prevent easy
decryption. Today these barriers have all been overcome, enabling ransomware to have a
large and devastating impact.

The second major wave of crypto ransomware occurred in 2005 with the appearance of
the Trojan Gpcoder [4]. These malicious programs contained several flaws including
using weak custom encryption or having the encryption key visible within the code of the
malware. These failures were quickly overcome with newer versions using Rivest, Shamir,
and Adelman (RSA) encryption for stronger encryption and generating random encryption
keys for each victim. A few years later, in 2008, ransomware began using crypto currency
as a form of payment, giving malware an easier platform to extract payments from victims.
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Crypto currency is a digital asset that has a monetary value. Due to the digital nature
of crypto currencies, transactions occur globally, with great speed, and are secure and
anonymous [12]. As a result, revenue from ransomware can be generated worldwide almost
instantly.

The evolution of ransomware continued with the creation of locker ransomware. Instead of
encrypting the victim’s data, locker ransomware restricts access to the device until a payment
is extracted. Some examples include programs that displayed threats of law enforcement
prosecution for downloading copyrighted materials or faking expired software licenses [13].

Figure 2.1. Percentage of Malware Identified between 2005 and 2015. Source: [4].

In 2013, there was a shift from the social-engineering aspects of locker ransomware back to
the crypto-ransomware attacks. In Figure 2.1, we see the popularity of crypto ransomware
explode starting in 2013. This is a result of cyber criminals learning that through the use of
strong encryption algorithms and proper encryption keymanagement it is almost impossible
to recover the compromised data without paying the ransom fee. For instance, one modern
ransomware called CryptoWall has earned over 300 million U.S. dollars in revenue [11].

6



2.2 Ransomware Characteristics
Cyber criminals create ransomware with the goal of gaining access to a victim’s system,
restricting access to key data files, and then extorting the user to regain control of their files.
With this procedure in mind, a generic ransomware attack includes the following stages:
deployment, installation, destruction, and extortion [14].

Deployment
In this phase, the malware seeks to gain access to the target device. Typical attack vectors
include the following.

• Drive-by downloads: Malicious code is placed on websites to exploit a visitor’s
browser in an attempt to download malware onto the targeted machines [15].

• Phishing attacks: Phishing uses social-engineering methods to attract victims to
spoofed websites and links. Often trustworthy websites are impersonated to get
victims to give away personal information or download malicious software [16].

• Exploit kits: These software tools were created to automatically take advantage of
vulnerabilities in a victim’s machine. These kits can be used to create code that targets
applications such as Abode Flash Player and Java Runtime Environment. Because
of their automated nature, exploit kits have lowered the technical ability required to
create and use malicious code [17].

Installation
After the malware has successfully been downloaded to the victim’s computer, the ran-
somware attempts to gain control over the system’s functions. In many cases with ran-
somware, the infected machine attempts to establish a connection to a domain over the
Internet to communicate information of the victim’s machine as well as encryption keys
generated to be used on the device [18]. Generally at this stage, the malware also scans the
local connections for other vulnerable systems [19].

Destruction
In this phase, the malware encrypts files on the victim’s system. Encryption methods
range from using asymmetric algorithms, such as RSA, to symmetric algorithms, such as
Advanced Encryption Standard (AES) and Data Encryption Standard (DES). Asymmetric
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algorithms use two keys to encrypt data were symmetric algorithms only use one key. There
are even families of ransomware that use self-designed encryption systems [20].

Extortion
Once the victim’s files have been encrypted, the malware displays information explaining
that the device has been compromised. Payment, typically in the form of a crypto currency
because of its users’ anonymity, is requested for the service to decrypt the victim’s data.

2.3 Current Ransomware Detection Methods
Each year the number of new malware specimens increases, and with this growth, new
security methods are invented to protect networks and devices [21]. From Figure 2.2, we
see that cyber attacks against federal agencies grow yearly. Current methods can be divided
into three categories: signature, behavioral, and heuristic [22]. Signature-based detection is
the most commonly used today. In the rest of this section, we investigate proposed defenses
against ransomware.

Figure 2.2. Incidents Reported for Cyber Attacks on Federal Agencies between 2006
and 2015. Source: [23].
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Signature Detection
Pattern matching is the backbone of signature-based detection [5]. Using a unique feature or
a developed fingerprint is common in traditional anti-virus products. The process involves
capturing a sample of the malware, developing its signature, then distributing that pattern
to anti-virus software. Anti-virus software then scans files on the device looking for the
extracted signature, and if found, the file is red flagged and quarantined. The main issue
with this method is that zero-day attacks or brand-new malware cannot be detected. The
delay until the malware’s signature updates can be created to protect systems from infection
can leave the door open for many victims to be infected. As a consequence, more specific
detection techniques have been suggested.

Honeypot
The use of a honeypot in a computer system refers to monitoring for unwarranted use of
a resource by a program. For example, User Behavior Analytics (UBA) can be applied to
identify abnormal behavior of ransomware. Specifically, identifying when a user modifies
a large number of files in a relatively short amount of time can indicate the execution of
ransomware [24]. Another approach uses the placement of files and folders throughout the
device and constantly monitors them for modifications. If these tripwire files are accessed
and modified with encryption, then ransomware is likely present [6]; however, this method
can only raise the alarm that ransomware is present if the specified files are modified.
Unfortunately, ransomware can be programmed to only encrypt certain files and directories,
and if the tripwire files are not among these, the honeypot technique fails to detect the
ransomware. Even in the case of the tripwire files being modified, there is a likelyhood that
much of the data on the device has already been encrypted and is inaccessible by the user.

Hashing
A hash function is typically a mathematical algorithm that takes input data and determines
an output value as a direct result of the input [25]. In some cases, these functions have a
specified output length. For example, the text file of a book could be put through a hash
function and only a 20 character output is provided. Each output is directly determined by
the data throughout the input. If the same bookwasmodified slightly, the 20 character output
is different. The advantage of these functions is that they can be used to determine when data
has been modified based on a change in the hashing functions output. In [26], hashing is
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used to monitor files and identify when they have been modified. Additionally, through the
use of similarity-preserving hash functions [27], an altered file can be analyzed and inferred
if encryption has occurred. Since encryption results in plain text that is unrelated to the
original document, these hash functions can indicatewhether a filewas just altered slightly or
entirely encrypted. Using similarity-preserving hash functions to monitor recently modified
files can give an indication to the presence of ransomware; however, using hashing to detect
when files are modified incurs a large overhead in CPUs time for continuously calculating
the hashes of files. Additionally, for large directories, it takes a significant amount of time
to calculate the hashes of the stored data. As a consequence, the delay for recognizing a
modified file is large and gives the ransomware a nontrivial amount of time to encrypt files.
This can lead to a substantial amount of data already encrypted before the ransomware is
detected and stopped.

Shannon’s Entropy
In the context data, Shannon’s entropy is used to describe the amount of randomness, or
disorder, that is contained in a given sample of data [28]. Specifically, this technique
presents a value to represent the amount of information and randomness in a given data
sample. For example, if a string contains ten characters, the entropy may suggest that the
same amount of information can be expressed in eight characters. The reason files may have
low entropy values is repetition of the same data, and as a result that data can be expressed
with less data. An example is the string "thethethe" which represented in fewer characters,
perhaps with "3xthe," representing three times that string. A low value of entropy suggests
that the information in that file can be expressed using a smaller number of bits. A large
value of entropy suggests that the raw data cannot be expressed with a smaller number of
bits.

The research from [28] shows that it is possible to identify encrypted files from the file’s
entropy. In [29], a process for monitoring the entropy of the data buffer is proposed as a way
to identify encryption operations from ransomware. Specifically, this research looks for
increases in entropy in the data buffer because encryption methods increase the randomness
and disorder or a file. This method for detecting encryption depends on the entropy of a file
increasing for detection, and as a result will fail to detect encryption of a file already having
a larger amount of entropy. Files that are stored or compressed by the user have larger
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entropy values before the execution of ransomware and, therefore, do not yield a detection
with this method.

Machine Learning
Past research has usedmachine learning to detectmalware executables. Thework in [7] tack-
led the issue as a text-classification problem. With support-vector machines, naïve Bayes,
and decision trees, the researchers demonstrated they could detect malicious executables.
In another study, machine learning algorithms were applied to detect cryptographic algo-
rithms from program binaries. A large number of encryption programs were generated
using known encryption libraries and compiled into binary files. Using decision tree mod-
els, we see that an algorithm was presented to detect ransomware in [30]. These methods
have large overhead requirements in terms of computational power, which causes a latency
between infection of a device with ransomware and its detection. In addition, these methods
had trouble with malware that uses compressed or encrypted payloads. Malware using com-
pression or encryption to hold its executable code remained undetected using this proposed
method.

2.3.1 Limitation of Current Detection Methods
Current ransomware methods have several limitations. Using signature detection and
machine learning requires a sample of the malware that is at least similar to the ransomware
infecting your device to yield detection. If this is not the case, then there is a large latency
between when these methods stop ransomware attacks and the introduction of the malware.
Additionally, other methods such as hashing and entropy techniques have large overheads
and, in some cases, can result in a large delay before the encryption operations are detected
on a device. Finally, honeypot techniques rely on tripwire files which can be coded to
be avoided, and the method also has a large delay before encryption detection. These
limitations mainly result in an inability to recognize the presence of ransomware in a timely
manner in order for the victim to avoid being denied access to their data. The method
proposed in this research is able to consistently detect ransomware at the beginning stages
of infection.
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2.4 SSD Architecture
The demand for SSDs has increased in recent years due to their faster storage operations and
smaller power characteristics. The benefits of SSDs has allowed them to be in almost every
new computer sold. As a result, these devices’ behavior is important to understand with the
current threat from ransomware. Compared to traditional hard disk drive (HDD)s, which
use spinning magnetic disks to store data, SSDs use NAND-based flash memory [9]. This
type of memory has groups of memory cells that are arranged in blocks and managed by a
controller as shown in Figure 2.3. Due to the nature of the design, read, write, and delete
operations are limited to the size of the entire block [31]. Additionally, each of these cells
is made up of a floating-gate transistor. These transistors contain an electrically secluded
region where a charge or absence of a charge can be stored representing a logical 1 or 0,
respectively. In order to modify the isolated region, electron tunneling is used to write a
logical bit [32]. It is important to note that the high voltage differential required to write a
bit is not needed when reading data from the electrically secluded region.

Figure 2.3. Basic SSD Architecture. Source: [33].

2.5 Power-Analysis Techniques
The power consumption of devices can often be used to gain insight into the operations being
preformed by the electronic system. Some of the most powerful examples are side-channel
attacks against cryptographic implementations. More specifically, physical measurements
of a device’s power consumption while performing encryption can lead to the discovery
of the key used in algorithms ranging from AES to RSA [34]. The implication of these
attacks have been profound, implying that even technically sound security algorithms may
have unintentional back doors.
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In other research, power analysis has been used to show that devices such as SSDs do not
behave as manufacturers advertise [9], [35]. The authors of [35] found that SSDs do not
erase all their data when a delete command is issued. In addition, when a TRIM command
is enabled, which is supposed to ensure data deletion as opposed to just file pointers, some
manufacture’s drives do not perform the operation [9]. Another paper found that through
measuring the current in the power line of an SSD, operations such as file read and writes
can be predicted [10].

The research presented in this thesis uses similar power analysis and gather techniques
as [9], [10]. In addition to past research, the power consumption of the CPU is be analyzed
in conjunction with the SSD. The algorithm for detecting encryption also draws from the
techniques presented in [10] for classifying read and write operations. These techniques are
used to identify features in the power traces of the SSD and CPU. A unique algorithm was
developed to compare these features and extract information that can identify the execution
of encryption algorithms.
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CHAPTER 3:
Ransomware-Detection Algorithm Design

The objective of this chapter is to describe the process behind the proposed ransomware
detecting algorithm. Since crypto ransomware is the most prevalent type of ransomware in
today’s market [4], our goal is to develop a method to detect this type of ransomware. With
encryption being crucial to this type of malware’s operation, the objective is to recognize
encryption operations being executed. Through the analysis of a computer’s CPU and SSD
power consumption, features can be extracted to detect the occurrence of encryption. By
recognizing the presence of encryption, we can stop the malware before the majority of the
victim’s data is encrypted. Additionally, if the ransomware’s activity is stopped prematurely,
the key is often still in memory and can be used to decrypt the initial modified data [36].

3.1 Determination of Method and Data Sources
Encryption is the backbone of modern day digital security, providing the ability for secure
communications and data storage. The security of cipher text is determined by the strength
of the algorithm. Basically, the security of the cipher text is determined by the length of time
it takes to convert the cipher text back to plain text by trial and error. Modern encryption
algorithms such as implementations of AES can take over hundreds of years to crack by
brute force [37]; however, there are other ways to attack encryption such as through side
channel attacks.

A side-channel attack is a technique that extracts information on cryptographic devices
by gathering physical information about the device while cryptographic operations are
occurring [38]. For example, in [8] DES encryption was executed on an FPGA while the
power consumption of the device was recorded. By analyzing the power consumption of
the FPGA, the authors of [8] were able to detect the period when encryption was occurring
and even recover the encryption key used. For detection of encryption on a computer, power
analysis can potentially yield similar results.

To determine the parts of a computer where power consumption will yield information about
ransomware, an understanding of the basic components of a computer is necessary. Modern
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computers share similar characteristics to the well known Von Neumann architecture shown
in Figure 3.1 [39]. This architecture uses memory called primary memory to store data and
programs, and in modern computers, this is referred to as random access memory (RAM).
The Arithmetic Logic Unit (ALU) carries out calculations with data such as add and
multiply. The control unit manages moving data into and from memory and executing
program instructions. In a modern computer, a CPU contains the ALU and control unit.
For interaction with secondary memory, the data must be directed through the input and
output terminals displayed in Figure 3.1. In a computer, the operating system (OS) and
user’s files are stored in secondary memory, typically on an SSD. When an application or
file is being used, that data is loaded from secondary memory into primary memory referred
to as RAM. From RAM, the CPU runs the application or modifies the file and eventually
updates the data back to secondary memory.

Figure 3.1. Von Neumann Architecture. Source: [40].

3.2 Signal Processing
In order to reach the goal of identifying when encryption is occurring, some sort of machine
learning or classification algorithm must be used. These algorithms tend to have certain
steps, as shown in Figure 3.2, that enables new data to be analyzed and classified based on
extracted features from training data.
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Figure 3.2. Flow Chart for Classification Algorithm

When beginning with a classification problem to separate data into groups, training data
or data from known sources is used to instruct the algorithm on how to classify samples;
however, the machine-learning algorithm is only as good as the identifying inputs extracted
from the training data. In order for best results, these features should be impacted as a direct
consequence of differences in the known groups in the training data. Once the features are
extracted from the training data, they are used to form a model by the machine-learning
algorithm that can be used to classify new data. When new data is analyzed, features
are extracted and compared against the model in a classifier to predict the new data’s
characteristics.

3.3 Algorithm for Identifying Encryption
In the following section, we describe the algorithm’s process for taking the inputs of SSD
and CPU power consumption and determining if and when an encryption operation has
occurred or is occurring. The flowchart in Figure 3.3 describes at a high level the stages
within the presented algorithm.
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Figure 3.3. Flowchart of for Identifying Encryption

3.3.1 Determination of Features
When looking for features that signify the presence of encryption in the power consumption
of an SSD and CPU, it is necessary to understand the innate process of encryption and how
it is preformed on a computer system. For a file from secondary memory to be encrypted,
the following three actions shown in Figure 3.4 have to occur:

1. The file must be loaded from main memory into RAM in the form of a file-read
operation.

2. The encryption algorithm performs the process of translating the plain text into cipher
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text and updating the values in RAM.
3. Encrypted data is written back to main memory in the form of a file-write operation

and in the process overwrites the old file.

Figure 3.4. Encryption Operation Steps

These three steps are what the algorithm recognizes as features, and encryption can be iden-
tified through associating these features within certain parameters. More specifically, the
file read and write operations are features ascertained using the SSD’s power consumption,
and the encryption algorithm’s activity is extracted using the CPU’s power consumption.
In order to extract features from the power traces, a median filter is implemented to reduce
noise in the signals.

The median filter was computed as

y[i] = median{x[i] ∈ ω}, (3.1)

where ω represents the neighborhood centered around the location [i] in the signal. In
general, a median filter takes a block of data centered at a location, determines the median
value, and replaces the centered value with the median value. This type of filtering is
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typically used to reduce noise while still preserving the edges in the signals [41]. In the
implementation of this filter in the algorithm, aw value of 10,000was used. This equates to a
window size of a fifth of a second in the time domain in our implementation. Once the power
consumption traces are filtered, the algorithm goes on to extract features representative of
encryption operations.

In [10], the authors use different threshold values of the SSD’s power consumption to signify
operations either being a file read, file write, or an idle operation; the amplitude of the power
consumption signal is the most consistent feature across several SSD manufacturers. In
addition, the researchers in [10] show that across several manufacturers, in combination
with either a Windows or Linux OS, a write operation has a higher amplitude than a read
operation. This observation is consistent with the discussion in Chapter 2, where the voltage
required to write to a floating-gate transistor is significantly larger than what is required to
perform a read operation. Furthermore, through experimentation, we see in (a) in Figure
3.5 the power consumption of a 1.0-GB read operation and in (b) in Figure 3.5 a 1.0-GB
write operation. From Figure 3.5, it is apparent that for the same size file, a write operation
consumes more power.

Figure 3.5. Power Plot of 1.0 GB File Read in (a) and 1.0 GB File Write in (b)
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The presented ransomware detection algorithm applies a method of using thresholds to
determine file read or file write features. Additionally, threshold limits are used to determine
CPU features from the processor power draw. In (a) from Figure 3.6, we see a power trace of
a file-write operation followed by a file-read operation. The displayed thresholds represent
the values that the power trace must exceed to be classified as a read or write feature.
Once the algorithm analyzes the power trace of the SSD against the thresholds, probable
features are identified as a potential read feature if the power consumption exceeds only the
lowest threshold and a potential write feature if the trace surpasses the second threshold.
The thresholds were determined by visual inspection, and the values of the read and write
threshold are 0.007 W and 0.0158 W, respectively. For the area to be deemed a true
feature, the integrated value of the power signal exceeding the threshold is compared to a
minimum size to ensure the location is significant enough to be labeled a feature. In the
implementation of the algorithm, the minimum feature size is determined by looking at the
power consumption of the SSD while in an idle state and visually identifying a minimum
threshold size of 0.0028 W-s. The minimum threshold size allows only features of true
operations to be considered in the algorithm. In Figure 3.6, the read and write features are
shown in (b) to be extracted from the power trace from (a).

Figure 3.6. Power Plot of 1.0-GB File Write then 1.0-GB File Read in (a) and Plot
of 1.0-GB File Write then 1.0-GB File Read Features in (b)
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The process for extracting features is executed for the entirety of the inputted power trace.
Once the features are extracted and deemed to be significant, the algorithm methodically
checks for associated write and read operations.

3.3.2 Associating Read and Write Features
A vital step in the process to identify the occurrence of an encryption operation is to find a
read and a write feature that are related. Using steps one and three presented in Figure 3.4,
we use the assertion that the size of the file read from secondary memory to RAM in step
1 is the same size as the file written back to secondary memory in step 3 as a method
for classifying the existence of a relationship. This notion leads to the idea that the read
and write feature associated with encryption is consistently correlated with all file sizes
being encrypted. To address this concept, the read and write features are integrated to find
the total power used to perform that operation. The encryption-detecting algorithm uses
a linear function generated from experimental data to check if the energy of the read and
write features extracted from the SSD power trace are correlated in a manner that suggests
the potential presence of an encryption operation. Specifically, in Figure 3.7 we see the
correlation between the integrated values of the associated read and write feature.

After the feature extraction, the algorithm starts to compare the read and write features. In
the research process, we used both a linear and degree-two relationship to compare features.
The additional degree fit did not add any additional classification ability, so a simple linear
comparison was implemented. Beginning with the first obtained read feature, we compared
write operations to the linear function of best fit to discern their relationship. Nonetheless,
not all extracted write features were used to compare against each read feature. Only write
operations occurring within 90 s after the time of the read feature are compared with the
linear model. The time limitation ensures that the only write operations considered are
ones that could be the result of the read feature being considered. If no correlation is found
between a read and write feature, then the algorithmmoves on to consider another pairing of
these two feature types. If a relationship is identified, as shown in Figure 3.3, the algorithm
moves on to attempt to associate a CPU feature to potentially predict the occurrence of an
encryption operation.
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Figure 3.7. Read and Corresponding Write Power for Encryption

3.3.3 Associating CPU Features
The final step in identifying the presence of an encryption operation is to verify that a CPU
feature can be associated with the already related read and write features. The importance of
this step in the algorithm was highlighted when analyzing operations that contained similar
steps to that of an encryption operation. For example, a file copy operation contains both the
read operation of the file to RAM from secondary memory and the write operations from
RAM to secondary memory. The impact on the SSDs power consumption is remarkably
similar to that of an encryption operation; however, the distinguishing factor is seen in the
CPUs power trace. Since, an encryption operation has extensive computations to make, the
CPU has a significant increase in power consumption as compared to a simple file copy
operation.

The importance of using the CPU power consumption can be seen by comparing Figure 3.8
(a) and (b). The power plots of the encryption operation and copy operation are similar
except for the impact on the CPU power trace. We see that the encryption operation causes
the CPU to consume a great deal more power. With a large enough threshold for identifying
CPU features, operations such as a file copy will fail to elicit a corresponding CPU feature
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to the associated read and write features.

Figure 3.8. 1.0-GB File Encryption Power Plot in (a) and 1.0-GB File Copy Power
Plot in (b)

The implementation of checking for a related CPU feature is fairly simple. After identifying
related read and write operations, the algorithm looks for a CPU feature within 5.0 s of the
read feature. Normally, the CPU feature is seen collocated in time with the read feature;
however, in implementation the association window was expanded to 5.0 s to account for
processor delay. If the CPU feature is of similar size to the read feature, then an encryption
operation has been detected. Since the algorithm requires the information of the write
feature which occurs last in the sequence, encryption is detected precisely at the end of the
related write feature. For example, in Figure 3.9 we see the features extracted for a 1.0-GB
file encryption operation and the point at which the algorithm identifies the encryption
operation occurring.
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Figure 3.9. 1.0-GB File Encryption Detection

3.4 Summary
In this chapter, an algorithmwas presented that uses the power consumption of a computer’s
SSD and CPU to detect the execution of encryption operations. The algorithm uses thresh-
olds to extract features from the power traces. Once features are extracted from the SSD,
they are compared using a linear relationship to determine the possibility of encryption.
After this comparison is completed, features from the CPU are used to validate the presence
of encryption. In the next chapter, the results of the proposed algorithm are discussed
including testing with Wannacry ransomware.
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CHAPTER 4:
Results and Analysis

Testing of the encryption detecting algorithm was conducted throughout the design phase,
yielding a product with a high degree of accuracy for larger encryption operations. Each
of the steps discussed in Chapter 3 was tested individually with encryption operations and
with other similar actions. This process ensured that each module performed as expected
and improved the overall performance of the algorithm. Finally, this culminated with an
evaluation of the performance of the algorithm with detection of encryption operations and
ransomware.

4.1 Encryption Detection
The design purpose of the algorithm is to detect encryption operations occurring on a
computer through analyzing the power consumption of the CPU and SSD. The initial
experiments were deigned to determine the detection rate of encryption of a range of file
sizes. The goal of these experiments was to determine the upper and lower limits for
the sizes of encrypted data that could be detected. Additionally, the algorithm was tested
against power traces that held similar sized operations along with encryption. This test
demonstrated the algorithm’s ability to avoid false positives and determine the overall
accuracy of the process. Finally, an experiment was performed with the detection of
ransomware. Specifically, a malware created in 2017 called Wannacry [1] was analyzed
and used to demonstrate the effectiveness of the detection algorithm.

4.1.1 Experimental Setup
In order to gather the power consumption of the CPU and SSD on a computer, a setup
was designed to measure and store the corresponding data. The entire system is automated
through the use of a data gathering program that synchronizes execution of operations with
a data recorder through the use of the computer’s serial port. The overall setup is shown in
Figure 4.1.
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Figure 4.1. Experimental Setup

Computer Setup
The test bed computer system is an Intel Core i7-4790 with 16 GB of RAM running Ubuntu
18.04 LTS. The setup contains two drives, the first is a 240 GB Seagate 600 Pro SSD
that contains the operating system, and the second is a 64 GB Crucial M4 SSD where the
tests occur. Having two drives with one specifically dedicated for testing ensures that all
power fluctuations are a direct result of the testing commands as opposed to the OS. This
is accomplished because the files for the OS are stored on the Seagate SSD and, when
accessed, have no impact on the test bed SSD because of their physical separation.

SSD and CPU Monitoring
First, a method was chosen to collect the power being consumed by the SSD and CPU. The
three options that were considered was using a Rogowski coil to sample the current being

28



drawn by the components, the use of small-value precision resistors, or a current probe.
The small-value resistors were chosen to be placed in series with the power supply and
can be seen in (b) of Figure 4.1. Specifically, 0.1-Ω resistors with a tolerance of 1.0% and
a power rating of 5.0 W were used. In past research from [10], current sensing resistors
were used with great effect. In this setup, the SSD’s power supply was accessed by placing
a precision resistor in series with the 5.0-V wire within the Serial Advanced Technology
Attachment (SATA) power cable. The CPU’s power was gathered by splicing both 12.0-V
power cords in Advanced Technology eXtended (ATX) 12V four pin power supply cord
and placing the precision resistors in series. Once the resistors were placed in series with
the power supply to both the SSD and CPU, a data acquisition device was connected to the
ends of the resistors in order to monitor their voltage. Specifically, a National Instruments
USB-6281 multifuction I/O device shown in (a) of Figure 4.1, was used to sample the
voltage across the resistors with 18 bits of precision and at a rate of 50 ksamples/s. The
data recorder was triggered externally through a USB-to-Serial connection from the test
computer to coordinate the start and stop times of the data collection experiments.

4.2 Detection Rate
To determine if the proposed algorithm can successfully predict encryption, a method
was developed to test the limits of the process in terms of size of detectable encryption
operations. Specifically, a range of file sizes were selected, and power samples of those
files being encrypted were collected. For this experiment the file sizes used are shown in
Table 4.1.

Table 4.1. Number of Encryption Data Recordings
File Size (MB) 50 100 250 500 750 1000 2500 5000
Number of
Encryption
Samples

46 46 46 46 46 46 46 46

In order to gather power samples of encryption operations, a program was created to
encrypt files using AES encryption in a block cipher mode. This means that each block
of bits encrypted is used to initialize the next block of bits to be encrypted. An advantage
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of this method is that multiple blocks of the same plain text result in different cipher texts
and as a result, the cipher text are more resistant to frequency-analysis attacks. Block
cipher mode is used by various known ransomwares. An automated executable, displayed
in Appendix A.3.3, was created to use this program as well as coordinate the data collection
of the power consumption of the CPU and SSD. Furthermore, this executable performs
an encryption of the file sizes shown in Table 4.1 and then performs a 20-GB file write.
The 20-GB file write ensures that the RAM does not keep a copy of the encrypted data so
that future operations have to interact with the SSD. This large file write was necessary
because in previous attempts to collect data the read operations did not occur when multiple
operations were executed on the same file. This is a result of the file being still stored in
RAM for sequential operations using the same file. In order to prevent this issue, the entire
space on the RAM had to be overwritten. Each of the mentioned file sizes were encrypted
46 times, and their CPU and SSD power traces were recorded. The encryption detection
algorithm was then applied to each sample, and the results for detection are displayed in
Figure 4.2 and Table 4.2.

Figure 4.2. Encryption Detection Rate for File Sizes
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Table 4.2. Detection Percentage for Encryption Operations
File Size(MB)

50 100 250 500 750 1000 2500 5000
Detection
Rate(%)

10.8 43.5 63 97.8 95.7 97.8 100 100

As we can see from the detection rates displayed in Table 4.2, the algorithm was able to
successfully detect encryption over 95 percent of the time for file sizes of 500 MB or larger.
For file sizes 250 MB and smaller, there is a decline in detection rate as file size decreases.
The downtrend in performance is a result of a decrease power consumption impact on
the SSD and CPU as file size decreases. An example of this decreased power impact is
illustrated in (a) of Figure 4.3 where the read step in the encryption operation fails to elicit
a significant response by the algorithm. The failure to extract a read feature due to a lack of
impact on the power consumption is shown in (b) of Figure 4.3.

Figure 4.3. Example of Missed Read Feature for a 100 MB Encryption Operation
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This trend affects the algorithm in two ways. First, as stated in Chapter 3, a median filter is
used to help reduce noise. If the feature size in smaller than the window used in the median
filter, the power increase is eliminated in the filter output. Secondly, as the power impact of
the encryption operations is reduced, the relationship between the integrated values of the
read and write features varies to a greater degree. As a result, the linear function used to
compare the two features may not be able to overcome the greater variation for the read and
write operation relationship and does not classify the operation as encryption. To overcome
these shortfalls, a higher sampling rate would help alleviate the impact of the stated issues.

The results of this experiment indicate that encryption operations of 500 MB and larger
can be detected by the proposed algorithm. Today, with the average computer carrying at
least a 500 GB hard drive, detecting an encryption operation from ransomware the size of
500 MB leaves a large portion of the data yet to be modified. After establishing that the
detection of encryption operations above 500MB are feasible, an experiment to see how
well the algorithm performed in a noisy environment was devised.

4.3 Testing in a Noisy Environment
For a binary classifier to be considered successful, it must be able to accurately predict
target events while not miss-classifying operations. In the previous section, the encryption
detection algorithm showed its ability to classify encryption operations, and in this section
the algorithm is tested to determine its capability to classify true positive and true negatives.
Specifically, an experiment was designed to randomly select 18 operations with power im-
pacts similar to encryption and two actual encryption operations and test the algorithms
classification ability. These were file copy operations of the same size as the tested encryp-
tion operations. This experiment was conducted 20 times for the file sizes 50 MB, 100 MB,
250 MB, 500 MB, 750 MB, 1.0 GB, 2.5 GB, and 5.0 GB. The results of these experiments
are illustrated with a confusion matrix displayed in Tables 4.3- 4.10.
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Table 4.3. Confusion Matrix of 50-MB Encryption Operations in Noisy En-
vironment

n=400
Predicted:
Encryption

Predicted: No
Encryption

Actual:
Encryption

8 32 40

Actual: No
Encryption

0 360 360

8 392

Table 4.4. Confusion Matrix of 100-MB Encryption Operations in Noisy
Environment

n=400
Predicted:
Encryption

Predicted: No
Encryption

Actual:
Encryption

17 23 40

Actual: No
Encryption

0 360 360

17 383

Table 4.5. Confusion Matrix of 250-MB Encryption Operations in Noisy
Environment

n=400
Predicted:
Encryption

Predicted: No
Encryption

Actual:
Encryption

29 11 40

Actual: No
Encryption

4 356 360

33 367
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Table 4.6. Confusion Matrix of 500-MB Encryption Operations in Noisy
Environment

n=400
Predicted:
Encryption

Predicted: No
Encryption

Actual:
Encryption

36 4 40

Actual: No
Encryption

2 358 360

38 362

Table 4.7. Confusion Matrix of 750-MB Encryption Operations in Noisy
Environment

n=400
Predicted:
Encryption

Predicted: No
Encryption

Actual:
Encryption

37 3 40

Actual: No
Encryption

5 355 360

42 358

Table 4.8. Confusion Matrix of 1.0-GB Encryption Operations in Noisy
Environment

n=400
Predicted:
Encryption

Predicted: No
Encryption

Actual:
Encryption

38 2 40

Actual: No
Encryption

2 358 360

40 360
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Table 4.9. Confusion Matrix of 2.5-GB Encryption Operations in Noisy
Environment

n=400
Predicted:
Encryption

Predicted: No
Encryption

Actual:
Encryption

40 0 40

Actual: No
Encryption

0 360 360

40 360

Table 4.10. Confusion Matrix of 5.0-GB Encryption Operations in Noisy
Environment

n=400
Predicted:
Encryption

Predicted: No
Encryption

Actual:
Encryption

40 0 40

Actual: No
Encryption

0 360 360

40 360

Table 4.11. F score for Test in Noisy Environment
File Size (MB)

50 100 250 500 750 1000 2500 5000
Recall 0.2 0.425 0.725 0.9 0.925 0.95 1 1
Precision 1 1 0.879 0.947 0.881 0.95 1 1
F score 0.333 0.596 0.794 0.923 0.902 0.95 1 1

When analyzing a confusion matrix, ideal results in this situation are large numbers in the
diagonal, corresponding to true positives and true negatives. The confusion matrices for
the encryption operations of 500 MB and larger all have very large values in the diagonal
for true positives and true negatives. As a result the encryption detecting algorithm shows
its robustness in still identifying encryption in a high activity environment.

35



In order to numerically determine the success of the algorithm, a statistic called the F
score was calculated, displayed in Table 4.11. The F score is calculated using two other
statistics called recall and precision. Precision is the number of correct positive predictions
divided by the total number of positive predictions. A high precision shows that a classifier,
when predicting a true positive, is usually right. Recall is the amount of correct positive
predictions divided by the number of samples that should have been predicted positive. A
large value for recall shows that a classifier is able to return most relevant results or true
positives. The F score calculation is computed as [42]

Fscore = 2/((1/Recall) + (1/Precision)), (4.1)

where the resulting score is a combination of recall and precision. As we see from the
Table 4.11, the algorithm’s ability to detect encryption operations is shown by the recall
statistic. As file size increases, the algorithm is able to increasingly detect the encryption
operation. The precision statistic reveals that when the algorithm classifies an operation
as an encryption operation, it is highly likely that the operation is encryption. Due to the
reduced impact on the power consumption at smaller file sizes, file copy operations do
not produce features that indicate encryption; however, as file sizes increase, the features
extracted from file copies can be confused with encryption in some cases. This relationship
explains the trend of a high precision value decreasing slightly from 50 MB to 750 MB
as shown in Table 4.11; however, this trend reverses and increases from file sizes 750 MB
to 5.0 GB due to the more consistent feature sizes seen in larger files. This enables the
algorithm to better identify encryption operations. In Table 4.11 is an illustration that the
F score and the recall statistic have the same general trend of starting low and increasing to
one, demonstrating that the effectiveness of the algorithm increases as file sizes escalate and
eventually plateauing at a file size of 500 MB. As a result, the algorithm can be considered
extremely effective for file sizes of 500 MB and larger.

4.4 Testing Against Wannacry Ransomware
The ultimate goal of this research was to create a method for ransomware detection based on
analysis of the power consumption of the SSD and CPU. In the past sections, the proposed
algorithm was demonstrated to have a high degree of accuracy for encryption operations
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above 500 MB. With the assertion that detecting encryption can identify the execution
of crypto ransomware, a final experiment was designed to apply the encryption detection
algorithm to a sample of Wannacry ransomware. The purpose behind this experiment is to
demonstrate that an encryption detecting algorithm is effective in identifying the execution
of ransomware. With the same hardware setup used in the previous experiments, a 50 GB
Windows 7 virtual machine (VM) was run on the 64 GB secondary storage SSD. Within
this VM, a directory of 14 GB of random text files was created to simulate a user’s data. The
ransomware executable was then run while the power consumption of the computer’s SSD
and CPU was collected, this is displayed in Figure 4.4. The algorithm’s extracted features
and locations or detected encryption are shown in Figure 4.5.

Figure 4.4. Wannacry Ransomware Attack Power Plot

The power impact of the encryption operations occurring as a result of the ransomware’s
process to encrypt a targets data is illustrated in Figure 4.4. The features extracted from
the ransomware’s power trace correspond to a previous assertion that encryption operations
follow the procedure of performing a read operation, encrypting that data and then subse-
quently executing a write operation. The repetition of this pattern is displayed Figure 4.5,
where read features occur at the same time as CPU features and afterwards a write fea-
ture occurs. The proposed algorithm clearly identifies this process with vertical blue line
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Figure 4.5. Wannacry Ransomware Attack Features

representing the detection of encryption in illustrated in Figure 4.5. The experiment was
conducted ten times, and in each case the proposed encryption detection algorithm clearly
identified the presence of encryption operations within the power traces gathered from the
SSD and CPU.

4.5 Summary
In this chapter, several experimentswere discussed that involved calculating the performance
of the encryption detecting algorithm. Using many samples of encryption for a range of
file sizes, we demonstrated a detection rate for encryption to exceed 95 percent for files
sizes 500 MB and greater. In addition, the algorithm was exposed to a noisy environment
and established a high degree of accuracy for identifying encryption operations. The best
performance was seen in file sizes greater than 500 MB due to the consistent noticeable
impact on the power traces of the SSD and CPU for larger file sizes. On application to a
sample of Wannacry ransomware, the algorithm detected multiple instances of encryption
in every test run. These results clearly show that crypto ransomware can be identified by
power consumption of a computer’s SSD and CPU.
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CHAPTER 5:
Conclusions and Recommendations

5.1 Summary
With global digital interconnectivity ever increasing in the modern age, new challenges for
maintaining secure communications and networks occur constantly. In particular, cyber
criminals are continually in the process of developing malicious software to compromise
legitimate organizations. Recently, the state of malware has seen the emergence of ran-
somware as the most prevalent threat to devices and networks. With millions of dollars in
damages caused each year by ransomware, measures for detection and prevention are of
great importance to institutions worldwide. Previous research has suggested the use of sig-
nature detection methods, honeypot techniques, entropy, and machine learning algorithms
as a way to detect ransomware. Unfortunately these suggested solutions lack consistency,
fail to protect against new versions of malware, and have large delays between malware
creations and eventual implementation of counter measures. To provide a remedy to these
shortcomings, in this research we proposed an algorithm that focuses on detecting the
universal characteristic of all crypto ransomwares, encryption. The proposed method uses
power analysis techniques to classify the steps of encryption and correlate them to identify
when encryption is occurring on a computer.

To detect encryption by analyzing the power consumption, an initial understanding of the
steps in an encryption operation is required. For the purpose of this research, encryption was
broken down into the following three steps: file read from secondary memory, encryption
of data in RAM, and file write back to secondary memory. From these steps we concluded
that the SSD and CPU components would have large impacts on their power consumption.
In addition, past research has shown that read and write operations can be identified by
evaluating the power traces of SSDs [10]. As a result, an automated testing setup was
designed and created to monitor the power consumption of these parts while operations
could be executed on the computer.

With a data collection process for the power consumption of a computer’s SSD and CPU,
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an algorithm was devised for the detection of the previously mentioned steps for encryption.
This algorithm identifies read and write operations from the SSD’s power trace and CPU
activity from the CPU’s power trace. Additionally, a classifier uses a function to compare
the energy usage of extracted read and write operations to verify the execution of an
encryption operation. An experiment was devised to test the accuracy of the encryption
detecting algorithm. A test with varying size of files undergoing encryption revealed that
the algorithm is able to detect encryption operations 500 MB and larger with greater than
95 percent accuracy. Smaller file sizes have a reduced consistent impact on the power
consumption of the SSD and CPU which decreases the accuracy of the algorithm; however,
these results are not concerning since ransomware attacks typically encrypt gigabytes of
information. To further test the design, an experiment was devised to apply the algorithm
to a recent sample of ransomware called Wannacry. In all runs, the proposed algorithm
predicted encryption several times. These results indicate that crypto ransomware can be
detected through power-analysis techniques.

The original contribution in this research is an algorithm and test setup capable of detecting
encryption. When applying this algorithm to ransomware, due to the nature of the malware,
encryption processes are detected. When such processes are observed, it is possible to stop
the computer processes until verified by the user. As a result, ransomware activity can be
halted before continuing to encrypt data and possibly preventing further damage in data
loss. Stopping encryption early in the ransomware’s process limits the amount of data being
no longer accessible by the user while saving most of the files on a computer.

5.2 Future Work

5.2.1 Identifying Smaller Encryption Operations
With the current setup, the encryption detection algorithm is only able to accurately detect
encryption operations of sizes 500 MB and larger. As discussed in Chapter 4, the current
implementation struggles to overcome the issue of smaller operations having a reduced
power consumption impact. To account for this reality, improvements in the sampling
rate could pick up the smaller power impacts. Additionally, a different model can be
implemented to check for read and write operations relationship being indicative of an
encryption operation. The current method uses a linear regression with an acceptable error
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region to identify a correlation; however, with further investigation, a different method of
classification can be implement to improve the algorithm’s ability to associate read and
write operations at the lower magnitudes seen in smaller file sizes.

Other methods for comparing the features extracted may have a higher degree of perfor-
mance. At the early stages of this research, using the length of the CPU, read, and write
features was considered as a method of comparison instead of using integrated values. This
method was never fully investigated. Additionally, in [43] frequency analysis of SSD power
consumption was used as a method to determine characteristics of the onboard file system.
Perhaps a similar method could be used an avenue to extract additional features from the
power traces and, in turn, reveal another method of classification. Furthermore, another
power consumption source such as the RAM component may yield more identifying fea-
tures. Since each of the three steps of encryption identified in this research interact with
RAM, more information can be extracted from this component. With the main issue for
smaller encryption files being their reduced interaction with the current collection methods,
any of the new suggested methods can help improve the current method’s performance.

5.2.2 User Authentication from Computer Power Consumption
Industries throughout the world have issues with network and digital security. Similar
to the problem of identifying malicious code such as ransomware, another vital issue is
verifying user and user activity on computers and networks. As a result there have been
many proposed methods for building a profile for users based on network activity and
even physical movements such as the way a computer mouse is handled [44]. In a similar
application, a computers power consumption can be used to provide user identification.
When the built profile does correspond to current behavior, it may signal the use of an
unauthorized user or a malicious program executing operations. The future work aspect
of this topic is the creation and implementation of a method that extracts features from
the power consumption of a computer and uses the information as a method for user
authentication.
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APPENDIX: Power Plots of Data

A.1 Power Plots
The following figures are power plots of the encryption samples that were gathered to test
the detection rate of the proposed algorithm

Figure A.1. Power Plot of a 50-MB File Encryption
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Figure A.2. Feature Plot of a 50-MB File Encryption

Figure A.3. Power Plot of a 100-MB File Encryption
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Figure A.4. Feature Plot of a 100-MB File Encryption

Figure A.5. Power Plot of a 250-MB File Encryption
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Figure A.6. Feature Plot of a 250-MB File Encryption

Figure A.7. Power Plot of a 500-MB File Encryption
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Figure A.8. Feature Plot of a 500-MB File Encryption

Figure A.9. Power Plot of a 750-MB File Encryption
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Figure A.10. Feature Plot of a 750-MB File Encryption

Figure A.11. Power Plot of a 1.0-GB File Encryption
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Figure A.12. Feature Plot of a 1.0-GB File Encryption

Figure A.13. Power Plot of a 2.5-GB File Encryption
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Figure A.14. Feature Plot of a 2.5-GB File Encryption

Figure A.15. Power Plot of a 5.0-GB File Encryption
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Figure A.16. Feature Plot of a 5.0-GB File Encryption

A.2 MATLAB Code for Classification Algorithm

A.2.1 Main Code Block for Classification Algorithm
1 c l e a r a l l
2 c l o s e a l l
3

4 %Spec i f y f i l e t o be t e s t e d and l o ad d a t a
5 f i l e = ’ 5GB2 ’ ;
6 l o c = s t r c a t ( ’H : \ MyDocs \ t r a n s f e r 3 \ ’ , f i l e ) ;
7 l o ad ( s t r c a t ( loc , ’ / A l l d a t a . mat ’ ) ) ;
8 CPUpower= d a t a {1} ;
9 SSDpower= d a t a {2} ;
10

11 %Get Read f e a t u r e s
12 [ f e a t u r eRead , f e a t u r e R e a d I n t e g r a t e d ]= g e tR e a dF e a t u r e s ( SSDpower ) ;
13 %Get Wr i t e f e a t u r e s
14 [ f e a t u r eW r i t e , f e a t u r eW r i t e I n t e g r a t e d ]= g e tW r i t e F e a t u r e s ( SSDpower ) ;
15 %Get CPU f e a t u r e s
16 [ fea tureCPU , f e a t u r eCPU I n t e g r a t e d ] = ge tCPUFea tu re s ( CPUpower ) ;
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17

18 %Ca l c u l a t e s i z e s o f r e ad f e a t u r e s
19 Reads i z e =1;
20 f o r i = 2 : 2 : l e n g t h ( f e a t u r eRe a d )
21 temp= f e a t u r eR e a d ( i )− f e a t u r eRe a d ( i −1) ;
22 Reads i z e =[ Reads ize , temp ] ;
23 end
24 Reads i z e ( 1 ) = [ ] ;
25

26 %Ca l c u l a t e s i z e s o f w r i t e f e a t u r e s
27 Wr i t e s i z e =1;
28 f o r i = 2 : 2 : l e n g t h ( f e a t u r eW r i t e )
29 temp= f e a t u r eW r i t e ( i )− f e a t u r eW r i t e ( i −1) ;
30 Wr i t e s i z e =[ Wr i t e s i z e , temp ] ;
31 end
32 Wr i t e s i z e ( 1 ) = [ ] ;
33

34 %F i l t e r t h e power s i g n a l s t o look b e t e r f o r p l o t s
35 SSDpower=me d f i l t 1 ( SSDpower , 1 0000 ) ;
36 CPUpower=me d f i l t 1 ( CPUpower , 1 0000 ) ;
37

38 d e t e c t E n c r y p t i o n = [ ] ;
39 f o r i =1 : l e n g t h ( f e a t u r e R e a d I n t e g r a t e d )
40 f o r k =1: l e n g t h ( f e a t u r eW r i t e I n t e g r a t e d )
41 c l e a r temp
42

43 %Pe r c e n t e r r o r a c c e p t e d f o r a s s o c i a t i o n o f r e ad and w r i t e
44 %f e a t u r e s i z e
45 p e r c e n t E r r o r =67;
46

47 %Equa t i on t o a s s o c i a t e d r e ad and w r i t e f e a t u r e s based on
i n t e g r a t e d s i z e

48 tempp1 = (0 ) ∗ f e a t u r e R e a d I n t e g r a t e d ( i ) ^ ( 2 ) + ( 5 . 0 011 ) ∗
f e a t u r e R e a d I n t e g r a t e d ( i ) −85 .7321;

49 tempp1 = ( ( f e a t u r eW r i t e I n t e g r a t e d ( k )−tempp1 ) / tempp1 ) ∗100
50

51 %Equa t i on t o a s s o c i a t e d r e ad and w r i t e f e a t u r e s based on l e n g t h
52 %tempp1 = (0 ) ∗Reads i z e ( i ) ^ ( 2 ) + ( 5 . 0 011 ) ∗Reads i z e ( i ) −85 .7321;
53 %tempp1 = ( ( W r i t e s i z e ( k )−tempp1 ) / tempp1 ) ∗100
54
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55 i f ( abs ( tempp1 ) < p e r c e n t E r r o r )
56 %t e s t f o r d e a t u r e s be ing nea r i n t ime
57 temp2= f e a t u r eW r i t e (2∗k−1)− f e a t u r eRe a d (2∗ i −1) ;
58 i f ( temp2 <1400000 && temp2 >0)
59 %read and w r i t e f e a t u r e a r e c o r r e l a t e d t o i n d i c a t e
60 %en c r y p t i o n
61 d i s p ( ’ yes e n c r y p t i o n f o r r e ad and w r i t e ’ )
62 f o r m=1: l e n g t h ( f e a t u r eCPU I n t e g r a t e d )
63 temp3=abs ( fea tu reCPU (2∗m−1)− f e a t u r eRe a d (2∗ i −1) ) ;
64 i f temp3 <50000
65 %Enc r yp t i o n i s d e t e c t e d by a s s o c i a t i n g a read ,
66 %wr i t e and CPU f e a t u r e
67 d i s p ( ’ yes e n c r y p t i o n f o r r e ad and w r i t e and cpu ’ )
68 d e t e c t E n c r y p t i o n =[ d e t e c t E n c r y p t i o n , f e a t u r eW r i t e (2∗

k ) ]
69 end
70 end
71 end
72 end
73 end
74 end
75

76 %Figu r e t o p l o t f e a t u r e s and l o a c t i o n s o f d e t e c t e d e n c r y p t i o n
77 t r y
78 f i g u r e
79 t =1 : l e n g t h ( SSDpower ) ;
80 t = t . / 1 8 0 0 0 ;
81 ho ld on
82

83 %P l o t r e ad f e a t u r e s
84 f o r i = 1 : 2 : l e n g t h ( f e a t u r eRe a d )
85 h2= p l o t ( ( f e a t u r eRe a d ( i ) : f e a t u r eRe a d ( i +1) ) / 18000 , SSDpower ( f e a t u r eR e a d

( i ) : f e a t u r eRe a d ( i +1) ) ∗ . 5 , ’ b ’ ) ;
86 tmp= l e n g t h ( f e a t u r eR e a d )− i ;
87 s e t ( h2 , ’ l i n ew i d t h ’ , 2 ) ;
88 i f tmp ==1
89 b r eak ;
90 end
91 end
92 %P l o t CPU f e a t u r e s
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93 f o r i = 1 : 2 : l e n g t h ( fea tu reCPU )
94 h1= p l o t ( ( fea tu reCPU ( i ) : f ea tu reCPU ( i +1) ) / 18000 , CPUpower ( fea tu reCPU ( i )

: f ea tu reCPU ( i +1) ) , ’ r ’ ) ;
95 tmp= l e n g t h ( fea tu reCPU )− i ;
96 s e t ( h1 , ’ l i n ew i d t h ’ , 2 ) ;
97 i f tmp ==1
98 b r eak ;
99 end

100 end
101 %P l o t w r i t e f e a t u r e s
102 f o r i = 1 : 2 : l e n g t h ( f e a t u r eW r i t e )
103 h3= p l o t ( ( f e a t u r eW r i t e ( i ) : f e a t u r eW r i t e ( i +1) ) / 18000 , SSDpower (

f e a t u r eW r i t e ( i ) : f e a t u r eW r i t e ( i +1) ) ∗ . 5 , ’ g ’ ) ;
104 tmp= l e n g t h ( f e a t u r eW r i t e )− i ;
105 s e t ( h3 , ’ l i n ew i d t h ’ , 2 ) ;
106 i f tmp ==1
107 b r eak ;
108 end
109 end
110

111 %P l o t i n g l o c a t i o n s where e n c r y p t i o n was d e t e c t e d
112 f o r i =1 : l e n g t h ( d e t e c t E n c r y p t i o n )
113 h4= l i n e ( [ d e t e c t E n c r y p t i o n ( i ) /18000 d e t e c t E n c r y p t i o n ( i ) / 1 8 0 0 0 ] , [ 0

. 0 4 5 ] ) ;
114 s e t ( h4 , ’ l i n ew i d t h ’ , 2 ) ;
115 end
116 g r i d on
117 t i t l e ( s t r c a t ( ’ F e a t u r e r e c o g n i t i o n o f : ’ , ’ 5GB F i l e Enc r yp t i o n ’ ) ) ;
118 x l a b e l ( ’ Time ( s ) ’ )
119 y l a b e l ( ’ Power (W) ’ )
120 a x i s ( [ 0 120 0 . 0 3 ] )
121 t r y
122 l e g end ( [ h1 , h2 , h3 , h4 ] , ’CPU F e a t u r e s ’ , ’ Read F e a t u r e s ’ , ’ Wr i t e F e a t u r e s ’ , ’

En c r yp t i o n De t e c t e d ’ , ’ Loc a t i o n ’ , ’ n o r t hwe s t ’ ) ;
123 c a t c h
124 t r y
125 l e g end ( [ h1 , h2 , h3 ] , ’CPU F e a t u r e s ’ , ’ Read F e a t u r e s ’ , ’ Wr i t e F e a t u r e s

’ , ’ Loc a t i o n ’ , ’ n o r t hwe s t ’ ) ;
126 c a t c h
127 t r y
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128 l e g end ( [ h1 , h3 ] , ’CPU F e a t u r e s ’ , ’ Wr i t e F e a t u r e s ’ , ’ Loc a t i o n ’ , ’
n o r t hwe s t ’ ) ;

129 c a t c h
130 t r y
131 l e g end ( [ h1 ] , ’CPU F e a t u r e s ’ , ’ Loc a t i o n ’ , ’ n o r t hwe s t ’ ) ;
132 c a t c h
133 end
134 end
135 end
136 end
137 ho ld o f f
138 c a t c h
139 end
140 %P l o t j u s t power consumpt ion of SSD and CPU
141 f i g u r e
142 ho ld on
143 t =1 : l e n g t h ( SSDpower ( 2000 : end −2000) ) ;
144 t = t . / 1 8 0 0 0 ;
145 h4= p l o t ( t , SSDpower ( 2000 : end −2000) ∗ . 5 , ’ c ’ )
146 s e t ( h4 , ’ l i n ew i d t h ’ , 2 ) ;
147 h5= p l o t ( t , CPUpower ( 2000 : end −2000) , ’ r ’ )
148 s e t ( h5 , ’ l i n ew i d t h ’ , 2 ) ;
149 g r i d on
150 t i t l e ( s t r c a t ( ’ Power P l o t o f : ’ , ’ 5GB F i l e Enc r yp t i o n ’ ) ) ;
151 x l a b e l ( ’ Time ( s ) ’ )
152 y l a b e l ( ’ Power (W) ’ )
153 l e g end ( ’SSD Power ’ , ’CPU Power ’ , ’ Loc a t i o n ’ , ’ n o r t hwe s t ’ ) ;
154 ho ld o f f
155 a x i s ([ − i n f i n f 0 . 0 2 5 ] )

A.2.2 Function for Extracting Read Features
1 f u n c t i o n [ f e a t u r eRead , f e a t u r e R e a d I n t e g r a t e d ] = g e tR e a dF e a t u r e s (

SSDpower )
2 f e a t u r eRe a d =0;
3 f e a t u r e R e a d I n t e g r a t e d =0;
4

5 %Median f i l t e r t o g e t r i d o f n o i s e
6 SSD f i l t =me d f i l t 1 ( SSDpower , 1 0000 ) ;
7 SSDread= SSD f i l t ;
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8

9 %Use t h r e s h o l d s
10 i ndex = f i n d ( SSDf i l t < .0132 | SSDf i l t > . 0 3 ) ;
11 f o r i =1 : l e n g t h ( i ndex )
12 SSDread ( i ndex ( i ) ) =0 ;
13 end
14 SSDread=me d f i l t 1 ( SSDread , 3 0 00 ) ;
15

16 %va l u e o f i d l e s t a t e
17 med i ano f s i g = . 01238 ;
18

19 %Look f o r c o n t i g u o u s f e a t u r e s
20 F l a gF e a t u r e =0;
21 temp =1;
22 f o r i =1 : l e n g t h ( SSDread )
23 i f SSDread ( i ) >0;
24 %f e a t u r e
25 i f F l a g F e a t u r e ==0
26 %s t a r t o f f e a t u r e
27 temp= i ;
28

29 F l a gF e a t u r e =1;
30 e l s e
31 F l a gF e a t u r e =1;
32 end
33 e l s e
34 i f F l a g F e a t u r e ==0
35 %no f e a t u r e
36 temp= i ;
37

38 F l a gF e a t u r e =0;
39 e l s e
40 %end of f e a t u r e
41 F l a gF e a t u r e =0;
42 f e a t u r eRe a d =[ f e a t u r eRead , temp , i ] ;
43 end
44 end
45 end
46 f e a t u r eRe a d ( 1 ) = [ ] ;
47 f e a t u r eRe ad1 =1;
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48 t r y
49 f e a t u r eRe ad1 = f e a t u r eRe a d ( 1 ) ;
50 end
51

52 %Combine f e a t u r e s c l o s e t o each o t h e r
53 f o r i = 2 : 2 : l e n g t h ( f e a t u r eRe a d )
54 tmp= l e n g t h ( f e a t u r eR e a d )− i ;
55 i f tmp ==0
56 b r eak ;
57 end
58 temp= f e a t u r eR e a d ( i +1)− f e a t u r eRe a d ( i ) ;
59 i f temp <40000
60

61 e l s e
62 f e a t u r eRe ad1 =[ f e a t u r eRead1 , f e a t u r eRe a d ( i ) , f e a t u r eRe a d ( i +1)

] ;
63 end
64 tmp= l e n g t h ( f e a t u r eR e a d )− i ;
65 i f tmp ==0
66 b r eak ;
67 end
68 end
69 t r y
70 f e a t u r eRe ad1 =[ f e a t u r eRead1 , f e a t u r eRe a d ( l e n g t h ( f e a t u r eRe a d ) ) ] ;
71 end
72 c l e a r f e a t u r eR e a d
73 f e a t u r eRe a d = f e a t u r eRe ad1 ;
74

75 %Ex t r a c t f e a t u r e i n t e g r a t e d s i z e
76 t r y
77 f o r i = 1 : 2 : l e n g t h ( f e a t u r eRe a d )
78 i f i ==1
79 f e a t u r e R e a d I n t e g r a t e d =sum ( SSDread ( f e a t u r eRe a d ( i ) :

f e a t u r eRe a d ( i +1) ) )−med i ano f s i g ∗ ( f e a t u r eR e a d ( i +1)− f e a t u r eRe a d ( i ) ) ;
80 e l s e
81 f e a t u r e R e a d I n t e g r a t e d =[ f e a t u r e R e a d I n t e g r a t e d , sum ( SSDread (

f e a t u r eRe a d ( i ) : f e a t u r eR e a d ( i +1) ) )−med i ano f s i g ∗ ( f e a t u r eR e a d ( i +1)−
f e a t u r eRe a d ( i ) ) ] ;

82 end
83 tmp= l e n g t h ( f e a t u r eR e a d )− i ;
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84 i f tmp ==1
85 b r eak ;
86 end
87 end
88

89 %f e a t u r e s must exceed a c e r t a i n s i z e
90 d e l =0;
91 f e a t u r eRe ad1 =0;
92 f e a t u r e R e a d I n t e g r a t e d 1 =0;
93 f o r i =1 : l e n g t h ( f e a t u r e R e a d I n t e g r a t e d )
94

95 i f f e a t u r e R e a d I n t e g r a t e d ( i ) <18
96 %d e l e t e i ndex
97 e l s e
98 f e a t u r eRe ad1 =[ f e a t u r eRead1 , f e a t u r eRe a d ( i ∗2−1) , f e a t u r eRe a d

( i ∗2) ] ;
99 f e a t u r e R e a d I n t e g r a t e d 1 =[ f e a t u r eR e a d I n t e g r a t e d 1 ,

f e a t u r e R e a d I n t e g r a t e d ( i ) ] ;
100 end
101 end
102 f e a t u r eRe ad1 ( 1 ) = [ ] ;
103 f e a t u r e R e a d I n t e g r a t e d 1 ( 1 ) = [ ] ;
104 c l e a r f e a t u r eR e a d f e a t u r e R e a d I n t e g r a t e d
105 f e a t u r eRe a d = f e a t u r eRe ad1 ;
106 f e a t u r e R e a d I n t e g r a t e d = f e a t u r e R e a d I n t e g r a t e d 1 ;
107 end
108 end

A.2.3 Function for Extracting Write Features
1 f u n c t i o n [ f e a t u r eW r i t e , f e a t u r eW r i t e I n t e g r a t e d ] = g e tW r i t e F e a t u r e s (

SSDpower )
2 f e a t u r eW r i t e =0;
3 f e a t u r eW r i t e I n t e g r a t e d =0;
4

5 %Median f i l t e r t o g e t r i d o f n o i s e
6 SSD f i l t =me d f i l t 1 ( SSDpower , 1 0000 ) ;
7

8 %Use t h r e s h o l d s
9 SSDwri te= SSD f i l t ;
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10 i ndex = f i n d ( SSDf i l t < . 0315 ) ;
11 f o r i =1 : l e n g t h ( i ndex )
12 SSDwri te ( i ndex ( i ) ) =0 ;
13 end
14 SSDwri te=me d f i l t 1 ( SSDwrite , 3 0 00 ) ;
15

16 %va l u e o f i d l e s t a t e
17 med i ano f s i g = . 01238 ;
18

19 %Look f o r c o n t i g u o u s f e a t u r e s
20 edgeUP =0;
21 edgeDown=0;
22 F l a gF e a t u r e =0;
23 temp =1;
24 f o r i =1 : l e n g t h ( SSDwri te )
25 i f SSDwri te ( i ) >0;
26 %f e a t u r e
27 i f F l a g F e a t u r e ==0
28 %s t a r t o f f e a t u r e
29 temp= i ;
30

31 F l a gF e a t u r e =1;
32 e l s e
33 F l a gF e a t u r e =1;
34 end
35 e l s e
36 i f F l a g F e a t u r e ==0
37 %no f e a t u r e
38 temp= i ;
39

40 F l a gF e a t u r e =0;
41 e l s e
42 %end of f e a t u r e
43 F l a gF e a t u r e =0;
44 f e a t u r eW r i t e =[ f e a t u r eW r i t e , temp , i ] ;
45 end
46 end
47 end
48 f e a t u r eW r i t e ( 1 ) = [ ] ;
49 f e a t u r eW r i t e 1 =1;
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50 t r y
51 f e a t u r eW r i t e 1 = f e a t u r eW r i t e ( 1 ) ;
52 end
53

54 %Combine f e a t u r e s c l o s e t o each o t h e r
55 i f l e n g t h ( f e a t u r eW r i t e ) >2
56 f o r i = 2 : 2 : l e n g t h ( f e a t u r eW r i t e )
57 temp= f e a t u r eW r i t e ( i +1)− f e a t u r eW r i t e ( i ) ;
58 i f temp <40000
59

60 e l s e
61 f e a t u r eW r i t e 1 =[ f e a t u r eWr i t e 1 , f e a t u r eW r i t e ( i ) ,

f e a t u r eW r i t e ( i +1) ] ;
62 end
63 tmp= l e n g t h ( f e a t u r eW r i t e )− i ;
64 i f tmp ==2
65 b r eak ;
66 end
67 i f tmp ==0
68 b r eak ;
69 end
70 end
71 end
72 t r y
73 f e a t u r eW r i t e 1 =[ f e a t u r eWr i t e 1 , f e a t u r eW r i t e ( l e n g t h ( f e a t u r eW r i t e ) )

] ;
74 end
75 c l e a r f e a t u r eW r i t e
76 f e a t u r eW r i t e = f e a t u r eW r i t e 1 ;
77

78 %Ex t r a c t f e a t u r e i n t e g r a t e d s i z e
79 t r y
80 i f l e n g t h ( f e a t u r eW r i t e ) >1
81 f o r i = 1 : 2 : l e n g t h ( f e a t u r eW r i t e )
82 i f i ==1
83 f e a t u r eW r i t e I n t e g r a t e d =sum ( SSDwri te ( f e a t u r eW r i t e ( i ) :

f e a t u r eW r i t e ( i +1) ) )−med i ano f s i g ∗ ( f e a t u r eW r i t e ( i +1)− f e a t u r eW r i t e ( i ) ) ;
84 e l s e
85 f e a t u r eW r i t e I n t e g r a t e d =[ f e a t u r eW r i t e I n t e g r a t e d , sum (

SSDwri te ( f e a t u r eW r i t e ( i ) : f e a t u r eW r i t e ( i +1) ) )−med i ano f s i g ∗ (
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f e a t u r eW r i t e ( i +1)− f e a t u r eW r i t e ( i ) ) ] ;
86 end
87 tmp= l e n g t h ( f e a t u r eW r i t e )− i ;
88 i f tmp ==1
89 b r eak ;
90 end
91 end
92 end
93

94 %f e a t u r e s must exceed a c e r t a i n s i z e
95 d e l =0;
96 f e a t u r eW r i t e 1 =0;
97 f e a t u r eW r i t e I n t e g r a t e d 1 =0;
98 f o r i =1 : l e n g t h ( f e a t u r eW r i t e I n t e g r a t e d )
99

100 i f f e a t u r eW r i t e I n t e g r a t e d ( i ) <100
101 %d e l e t e i ndex
102 e l s e
103 f e a t u r eW r i t e 1 =[ f e a t u r eWr i t e 1 , f e a t u r eW r i t e ( i ∗2−1) ,

f e a t u r eW r i t e ( i ∗2) ] ;
104 f e a t u r eW r i t e I n t e g r a t e d 1 =[ f e a t u r eW r i t e I n t e g r a t e d 1 ,

f e a t u r eW r i t e I n t e g r a t e d ( i ) ] ;
105 end
106 end
107 f e a t u r eW r i t e 1 ( 1 ) = [ ] ;
108 f e a t u r eW r i t e I n t e g r a t e d 1 ( 1 ) = [ ] ;
109 c l e a r f e a t u r eW r i t e f e a t u r eW r i t e I n t e g r a t e d
110 f e a t u r eW r i t e = f e a t u r eW r i t e 1 ;
111 f e a t u r eW r i t e I n t e g r a t e d = f e a t u r eW r i t e I n t e g r a t e d 1 ;
112 end
113 end

A.2.4 Function for Extracting CPU Features
1 f u n c t i o n [ fea tureCPU , f e a t u r eCPU I n t e g r a t e d ] = ge tCPUFea tu re s ( CPUpower

)
2 fea tu reCPU =0;
3 f e a t u r eCPU I n t e g r a t e d =0;
4

5 %Median f i l t e r t o g e t r i d o f n o i s e
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6 CPUf i l t =me d f i l t 1 ( CPUpower , 1 0000 ) ;
7

8 %Use t h r e s h o l d s
9 CPUsignal=CPUf i l t ;

10 i ndex = f i n d ( CPUf i l t < . 0055 ) ;
11 f o r i =1 : l e n g t h ( i ndex )
12 CPUsignal ( i ndex ( i ) ) =0 ;
13 end
14 CPUsignal=me d f i l t 1 ( CPUsignal , 3 0 00 ) ;
15

16 %va l u e o f i d l e s t a t e
17 med i ano f s i g = . 004201 ;
18

19 %Look f o r c o n t i g u o u s f e a t u r e s
20 F l a gF e a t u r e =0;
21 temp =1;
22 f o r i =1 : l e n g t h ( CPUsignal )
23 i f CPUsignal ( i ) >0;
24 %f e a t u r e
25 i f F l a g F e a t u r e ==0
26 %s t a r t o f f e a t u r e
27 temp= i ;
28

29 F l a gF e a t u r e =1;
30 e l s e
31 F l a gF e a t u r e =1;
32 end
33 e l s e
34 i f F l a g F e a t u r e ==0
35 %no f e a t u r e
36 temp= i ;
37

38 F l a gF e a t u r e =0;
39 e l s e
40 %end of f e a t u r e
41 F l a gF e a t u r e =0;
42 fea tu reCPU =[ featureCPU , temp , i ] ;
43 end
44 end
45 end
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46 fea tu reCPU ( 1 ) = [ ] ;
47

48 %Combine f e a t u r e s c l o s e t o each o t h e r
49 f o r i = 2 : 2 : l e n g t h ( fea tu reCPU )
50 tmp= l e n g t h ( fea tu reCPU )− i ;
51 i f tmp ==0
52 b r eak ;
53 end
54 temp= fea tu reCPU ( i +1)− fea tu reCPU ( i ) ;
55 i f temp <30000
56 fea tu reCPU ( i +1) = [ ] ;
57 fea tu reCPU ( i ) = [ ] ;
58 end
59 tmp= l e n g t h ( fea tu reCPU )− i ;
60 i f tmp ==0
61 b r eak ;
62 end
63 end
64

65 %Ex t r a c t f e a t u r e i n t e g r a t e d s i z e
66 f o r i = 1 : 2 : l e n g t h ( fea tu reCPU )
67 i f i ==1
68 f e a t u r eCPU I n t e g r a t e d =sum ( CPUsignal ( fea tu reCPU ( i ) : f ea tu reCPU ( i

+1) ) )−med i ano f s i g ∗ ( f ea tu reCPU ( i +1)− fea tu reCPU ( i ) ) ;
69 e l s e
70 f e a t u r eCPU I n t e g r a t e d =[ f e a t u r eCPU In t e g r a t e d , sum ( CPUsignal (

fea tu reCPU ( i ) : f ea tu reCPU ( i +1) ) )−med i ano f s i g ∗ ( f ea tu reCPU ( i +1)−
fea tu reCPU ( i ) ) ] ;

71 end
72 tmp= l e n g t h ( fea tu reCPU )− i ;
73 i f tmp ==1
74 b r eak ;
75 end
76 end
77

78 %f e a t u r e s must exceed a c e r t a i n s i z e
79 d e l =0;
80 fea tu reCPU1 =0;
81 f e a t u r eCPU I n t e g r a t e d 1 =0;
82 f o r i =1 : l e n g t h ( f e a t u r eCPU I n t e g r a t e d )
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83

84 i f f e a t u r eCPU I n t e g r a t e d ( i ) <20
85 %d e l e t e i ndex
86 e l s e
87 fea tu reCPU1 =[ fea tureCPU1 , fea tu reCPU ( i ∗2−1) , f ea tu reCPU ( i ∗2) ] ;
88 f e a t u r eCPU I n t e g r a t e d 1 =[ f e a t u r eCPUIn t e g r a t e d 1 ,

f e a t u r eCPU I n t e g r a t e d ( i ) ] ;
89 end
90 end
91 fea tu reCPU1 ( 1 ) = [ ] ;
92 f e a t u r eCPU I n t e g r a t e d 1 ( 1 ) = [ ] ;
93 c l e a r fea tu reCPU f e a t u r eCPU I n t e g r a t e d
94 fea tu reCPU=fea tu reCPU1 ;
95 f e a t u r eCPU I n t e g r a t e d = f e a t u r eCPU I n t e g r a t e d 1 ;
96

97 end

A.3 Python Code

A.3.1 Code for Generating Random Text Files
1

2 from random impo r t c ho i c e
3 from s t r i n g impo r t a s c i i _ u p p e r c a s e
4 impo r t s t r i n g
5

6 # s i z e o f random t e x t f i l e t o be c r e a t e d
7 s izeinMB=750
8

9 kb=sizeinMB ∗1000
10 by t e s =kb∗1000
11 f i l e n ame= s t r ( s izeinMB )
12 f i l e n ame= ’move from / ’+ f i l e n ame+ ’MB. t x t ’
13

14 # g e t random c h a r a c t e r s
15 s= ’ ’ . j o i n ( c ho i c e ( s t r i n g . h e x d i g i t s ) f o r i i n r ange ( 100 ) )
16 p r i n t ( s )
17

18 f = open ( f i l ename , "w+" )
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19 l o o p t ime s = by t e s /100
20

21 f o r x i n r ange ( 0 , l o o p t ime s ) :
22 s= ’ ’ . j o i n ( c ho i c e ( s t r i n g . h e x d i g i t s ) f o r i i n r ange ( 100 ) )
23 f . w r i t e ( s )
24 f . c l o s e ( )

A.3.2 Code for Encrpting Files in a Location
1 impo r t g lob
2 impo r t t ime
3 impo r t os , random , s t r u c t
4 from Cryp to . C iphe r impo r t AES
5

6 #AES e n c r y p t i o n f u n c t i o n u s i ng Ciphe r Block Cha in ing
7 de f e n c r y p t _ f i l eAES ( key , i n _ f i l e n ame , o u t _ f i l e n ame =None , c hunk s i z e

=64∗1024) :
8 i f no t o u t _ f i l e n ame :
9 ou t _ f i l e n ame = i n _ f i l e n ame + ’ . enc ’

10

11 i v = os . urandom (16 )
12 e n c r y p t o r = AES . new ( key ,AES .MODE_CBC, i v )
13 f i l e s i z e = os . p a t h . g e t s i z e ( i n _ f i l e n ame )
14

15 wi th open ( i n _ f i l e n ame , ’ rb ’ ) a s i n f i l e :
16 wi th open ( ou t _ f i l e n ame , ’wb ’ ) a s o u t f i l e :
17 o u t f i l e . w r i t e ( s t r u c t . pack ( ’<Q’ , f i l e s i z e ) )
18 o u t f i l e . w r i t e ( i v )
19

20 whi l e True :
21 chunk = i n f i l e . r e ad ( c hunk s i z e )
22 i f l e n ( chunk ) == 0 :
23 b r eak
24 e l i f l e n ( chunk ) % 16 != 0 :
25 chunk += b ’ ’ ∗ (16 − l e n ( chunk ) % 16)
26

27 o u t f i l e . w r i t e ( e n c r y p t o r . e n c r y p t ( chunk ) )
28

29 # Dec ryp t i on f u n c t i o n
30 de f d e c r y p t _ f i l eAES ( key , i n _ f i l e n ame , o u t _ f i l e n ame =None , c hunk s i z e
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=24∗1024) :
31

32 i f no t o u t _ f i l e n ame :
33 ou t _ f i l e n ame = os . p a t h . s p l i t e x t ( i n _ f i l e n ame ) [ 0 ]
34

35 wi th open ( i n _ f i l e n ame , ’ rb ’ ) a s i n f i l e :
36 o r i g s i z e = s t r u c t . unpack ( ’<Q’ , i n f i l e . r e ad ( s t r u c t . c a l c s i z e ( ’Q’ ) )

) [ 0 ]
37 i v = i n f i l e . r e ad ( 1 6 )
38 d e c r y p t o r = AES . new ( key , AES .MODE_CBC, i v )
39

40 wi th open ( ou t _ f i l e n ame , ’wb ’ ) a s o u t f i l e :
41 whi l e True :
42 chunk = i n f i l e . r e ad ( c hunk s i z e )
43 i f l e n ( chunk ) == 0 :
44 b r eak
45 o u t f i l e . w r i t e ( d e c r y p t o r . d e c r y p t ( chunk ) )
46

47 o u t f i l e . t r u n c a t e ( o r i g s i z e )
48

49 key = ’ key ’
50

51 # D i r e c t o r y t o be Enc ryp t ed
52 s t a r t P a t h = ’ / p a t h ’
53

54 q=1
55

56 i f q ==1:
57 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
58 f o r f i l e i n f i l e s :
59 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
60 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
61 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
62 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
63 e l s e :
64 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
65 f o r f i l e i n f i l e s :
66 f i l e n ame=os . p a t h . j o i n ( s ubd i r , f i l e )
67 fname , e x t = os . p a t h . s p l i t e x t ( f i l e n ame )
68 i f ( e x t == ’ . enc ’ ) :
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69 p r i n t ( ’ Dec ryp t i ng > ’ + f i l e )
70 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
71 d e c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
72 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )

A.3.3 Code for Executing Encryption Operations 50MB-5GB
1 impo r t g lob
2 impo r t t ime
3 impo r t os , random , s t r u c t
4 from Cryp to . C iphe r impo r t AES
5

6 de f e n c r y p t _ f i l eAES ( key , i n _ f i l e n ame , o u t _ f i l e n ame =None , c hunk s i z e
=64∗1024) :

7

8 i f no t o u t _ f i l e n ame :
9 ou t _ f i l e n ame = i n _ f i l e n ame + ’ t ’

10

11 i v = os . urandom (16 )
12 e n c r y p t o r = AES . new ( key ,AES .MODE_CBC, i v )
13 f i l e s i z e = os . p a t h . g e t s i z e ( i n _ f i l e n ame )
14

15 wi th open ( i n _ f i l e n ame , ’ rb ’ ) a s i n f i l e :
16 wi th open ( ou t _ f i l e n ame , ’wb ’ ) a s o u t f i l e :
17 o u t f i l e . w r i t e ( s t r u c t . pack ( ’<Q’ , f i l e s i z e ) )
18 o u t f i l e . w r i t e ( i v )
19

20 whi l e True :
21 chunk = i n f i l e . r e ad ( c hunk s i z e )
22 i f l e n ( chunk ) == 0 :
23 b r eak
24 e l i f l e n ( chunk ) % 16 != 0 :
25 chunk += b ’ ’ ∗ (16 − l e n ( chunk ) % 16)
26

27 o u t f i l e . w r i t e ( e n c r y p t o r . e n c r y p t ( chunk ) )
28

29 de f d e c r y p t _ f i l eAES ( key , i n _ f i l e n ame , o u t _ f i l e n ame =None , c hunk s i z e
=24∗1024) :

30

31 i f no t o u t _ f i l e n ame :
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32 ou t _ f i l e n ame = os . p a t h . s p l i t e x t ( i n _ f i l e n ame ) [ 0 ]
33

34 wi th open ( i n _ f i l e n ame , ’ rb ’ ) a s i n f i l e :
35 o r i g s i z e = s t r u c t . unpack ( ’<Q’ , i n f i l e . r e ad ( s t r u c t . c a l c s i z e ( ’Q’ ) )

) [ 0 ]
36 i v = i n f i l e . r e ad ( 1 6 )
37 d e c r y p t o r = AES . new ( key , AES .MODE_CBC, i v )
38

39 wi th open ( ou t _ f i l e n ame , ’wb ’ ) a s o u t f i l e :
40 whi l e True :
41 chunk = i n f i l e . r e ad ( c hunk s i z e )
42 i f l e n ( chunk ) == 0 :
43 b r eak
44 o u t f i l e . w r i t e ( d e c r y p t o r . d e c r y p t ( chunk ) )
45

46 o u t f i l e . t r u n c a t e ( o r i g s i z e )
47

48 key = ’ Th i s i s a key123 ’
49

50 de l a y =600
51

52

53 f o r x i n r ange ( 1 , 4 0 ) :
54

55 S t a r t = t ime . t ime ( )
56

57 t ime . s l e e p ( 100 )
58 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / Enc rpy t

/ 50MB’
59

60 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
61 f o r f i l e i n f i l e s :
62 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
63 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
64 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
65 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
66 t ime . s l e e p ( 5 0 )
67

68 # need t o f i l l up ram
69 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / Enc rpy t /
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ram ’
70

71 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
72 f o r f i l e i n f i l e s :
73 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
74 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
75 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
76 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
77

78 End= t ime . t ime ( )
79 p r i n t ( ’ Takes t h i s many seconds f o r run ’ )
80 p r i n t ( End− S t a r t )
81

82 temp=End− S t a r t
83 whi l e temp <de l a y :
84 End= t ime . t ime ( )
85 temp=End− S t a r t
86 p r i n t ( temp )
87

88 f o r x i n r ange ( 1 , 4 0 ) :
89 S t a r t = t ime . t ime ( )
90

91 t ime . s l e e p ( 100 )
92 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / Enc rpy t

/100MB’
93

94 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
95 f o r f i l e i n f i l e s :
96 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
97 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
98 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
99 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )

100 t ime . s l e e p ( 5 0 )
101 # need t o f i l l up ram
102 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / Enc rpy t /

ram ’
103

104 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
105 f o r f i l e i n f i l e s :
106 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
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107 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
108 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
109 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
110

111 End= t ime . t ime ( )
112 p r i n t ( ’ Takes t h i s many seconds f o r run ’ )
113 p r i n t ( End− S t a r t )
114

115 temp=End− S t a r t
116 whi l e temp <de l a y :
117 End= t ime . t ime ( )
118 temp=End− S t a r t
119 p r i n t ( temp )
120

121 f o r x i n r ange ( 1 , 4 0 ) :
122 S t a r t = t ime . t ime ( )
123

124 t ime . s l e e p ( 100 )
125 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / Enc rpy t

/250MB’
126

127 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
128 f o r f i l e i n f i l e s :
129 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
130 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
131 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
132 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
133 t ime . s l e e p ( 5 0 )
134 # need t o f i l l up ram
135 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / Enc rpy t /

ram ’
136

137 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
138 f o r f i l e i n f i l e s :
139 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
140 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
141 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
142 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
143

144 End= t ime . t ime ( )
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145 p r i n t ( ’ Takes t h i s many seconds f o r run ’ )
146 p r i n t ( End− S t a r t )
147

148 temp=End− S t a r t
149 whi l e temp <de l a y :
150 End= t ime . t ime ( )
151 temp=End− S t a r t
152 p r i n t ( temp )
153

154 f o r x i n r ange ( 1 , 4 0 ) :
155 S t a r t = t ime . t ime ( )
156

157 t ime . s l e e p ( 100 )
158 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / Enc rpy t

/500MB’
159

160 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
161 f o r f i l e i n f i l e s :
162 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
163 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
164 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
165 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
166 t ime . s l e e p ( 5 0 )
167 # need t o f i l l up ram
168 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / Enc rpy t /

ram ’
169

170 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
171 f o r f i l e i n f i l e s :
172 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
173 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
174 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
175 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
176

177 End= t ime . t ime ( )
178 p r i n t ( ’ Takes t h i s many seconds f o r run ’ )
179 p r i n t ( End− S t a r t )
180

181 temp=End− S t a r t
182 whi l e temp <de l a y :
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183 End= t ime . t ime ( )
184 temp=End− S t a r t
185 p r i n t ( temp )
186

187

188 f o r x i n r ange ( 1 , 4 0 ) :
189 S t a r t = t ime . t ime ( )
190

191 t ime . s l e e p ( 100 )
192 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / Enc rpy t

/1000MB’
193

194 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
195 f o r f i l e i n f i l e s :
196 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
197 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
198 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
199 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
200 t ime . s l e e p ( 5 0 )
201 # need t o f i l l up ram
202 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / Enc rpy t /

ram ’
203

204 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
205 f o r f i l e i n f i l e s :
206 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
207 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
208 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
209 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
210

211 End= t ime . t ime ( )
212 p r i n t ( ’ Takes t h i s many seconds f o r run ’ )
213 p r i n t ( End− S t a r t )
214

215 temp=End− S t a r t
216 whi l e temp <de l a y :
217 End= t ime . t ime ( )
218 temp=End− S t a r t
219 p r i n t ( temp )
220
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221 f o r x i n r ange ( 1 , 4 0 ) :
222 S t a r t = t ime . t ime ( )
223

224 t ime . s l e e p ( 100 )
225 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / Enc rpy t

/2500MB’
226

227 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
228 f o r f i l e i n f i l e s :
229 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
230 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
231 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
232 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
233 t ime . s l e e p ( 5 0 )
234 # need t o f i l l up ram
235 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / Enc rpy t /

ram ’
236

237 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
238 f o r f i l e i n f i l e s :
239 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
240 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
241 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
242 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
243

244 End= t ime . t ime ( )
245 p r i n t ( ’ Takes t h i s many seconds f o r run ’ )
246 p r i n t ( End− S t a r t )
247

248 temp=End− S t a r t
249 whi l e temp <de l a y :
250 End= t ime . t ime ( )
251 temp=End− S t a r t
252 p r i n t ( temp )
253

254 f o r x i n r ange ( 1 , 4 0 ) :
255 S t a r t = t ime . t ime ( )
256

257 t ime . s l e e p ( 100 )
258 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / Enc rpy t
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/ 5000MB’
259

260 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
261 f o r f i l e i n f i l e s :
262 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
263 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
264 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
265 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
266 t ime . s l e e p ( 5 0 )
267 # need t o f i l l up ram
268 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / Enc rpy t /

ram ’
269

270 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
271 f o r f i l e i n f i l e s :
272 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
273 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
274 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
275 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
276

277 End= t ime . t ime ( )
278 p r i n t ( ’ Takes t h i s many seconds f o r run ’ )
279 p r i n t ( End− S t a r t )
280

281 temp=End− S t a r t
282 whi l e temp <de l a y :
283 End= t ime . t ime ( )
284 temp=End− S t a r t
285 p r i n t ( temp )
286

287 p r i n t ( ’ Te s t Done ’ )
288 p r i n t ( t ime . t ime ( ) )

A.3.4 Code for Executing Move Operations 50MB-5GB
1 impo r t g lob
2 impo r t t ime
3 impo r t s h u t i l
4 impo r t os , random , s t r u c t
5 from Cryp to . C iphe r impo r t AES

74



6

7 de f e n c r y p t _ f i l eAES ( key , i n _ f i l e n ame , o u t _ f i l e n ame =None , c hunk s i z e
=64∗1024) :

8 i f no t o u t _ f i l e n ame :
9 ou t _ f i l e n ame = i n _ f i l e n ame + ’ t ’

10

11 i v = os . urandom (16 )
12 e n c r y p t o r = AES . new ( key ,AES .MODE_CBC, i v )
13 f i l e s i z e = os . p a t h . g e t s i z e ( i n _ f i l e n ame )
14

15 wi th open ( i n _ f i l e n ame , ’ rb ’ ) a s i n f i l e :
16 wi th open ( ou t _ f i l e n ame , ’wb ’ ) a s o u t f i l e :
17 o u t f i l e . w r i t e ( s t r u c t . pack ( ’<Q’ , f i l e s i z e ) )
18 o u t f i l e . w r i t e ( i v )
19

20 whi l e True :
21 chunk = i n f i l e . r e ad ( c hunk s i z e )
22 i f l e n ( chunk ) == 0 :
23 b r eak
24 e l i f l e n ( chunk ) % 16 != 0 :
25 chunk += b ’ ’ ∗ (16 − l e n ( chunk ) % 16)
26

27 o u t f i l e . w r i t e ( e n c r y p t o r . e n c r y p t ( chunk ) )
28

29 de f d e c r y p t _ f i l eAES ( key , i n _ f i l e n ame , o u t _ f i l e n ame =None , c hunk s i z e
=24∗1024) :

30

31 i f no t o u t _ f i l e n ame :
32 ou t _ f i l e n ame = os . p a t h . s p l i t e x t ( i n _ f i l e n ame ) [ 0 ]
33

34 wi th open ( i n _ f i l e n ame , ’ rb ’ ) a s i n f i l e :
35 o r i g s i z e = s t r u c t . unpack ( ’<Q’ , i n f i l e . r e ad ( s t r u c t . c a l c s i z e ( ’Q’ ) )

) [ 0 ]
36 i v = i n f i l e . r e ad ( 1 6 )
37 d e c r y p t o r = AES . new ( key , AES .MODE_CBC, i v )
38

39 wi th open ( ou t _ f i l e n ame , ’wb ’ ) a s o u t f i l e :
40 whi l e True :
41 chunk = i n f i l e . r e ad ( c hunk s i z e )
42 i f l e n ( chunk ) == 0 :
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43 b r eak
44 o u t f i l e . w r i t e ( d e c r y p t o r . d e c r y p t ( chunk ) )
45

46 o u t f i l e . t r u n c a t e ( o r i g s i z e )
47

48 key = ’ Th i s i s a key123 ’
49

50 de l a y =900
51

52

53 f o r x i n r ange ( 1 , 9 0 ) :
54 S t a r t = t ime . t ime ( )
55

56 t ime . s l e e p ( 100 )
57 t ime . s l e e p ( 1 0 )
58 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / movefrom

/50MB/50MB. t x t ’
59 endPa th = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto / 50

MB/50MB. t x t ’
60

61 s h u t i l . c o p y f i l e ( s t a r t P a t h , endPa th )
62 t ime . s l e e p ( 6 0 )
63 os . remove ( ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto / 50

MB/50MB. t x t ’ )
64

65 t ime . s l e e p ( 1 0 )
66 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / movefrom

/100MB/100MB. t x t ’
67 endPa th = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto /100

MB/100MB. t x t ’
68

69 s h u t i l . c o p y f i l e ( s t a r t P a t h , endPa th )
70 t ime . s l e e p ( 6 0 )
71 os . remove ( ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto /100

MB/100MB. t x t ’ )
72

73 t ime . s l e e p ( 1 0 )
74 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / movefrom

/250MB/250MB. t x t ’
75 endPa th = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto /250

76



MB/250MB. t x t ’
76

77

78 s h u t i l . c o p y f i l e ( s t a r t P a t h , endPa th )
79 t ime . s l e e p ( 6 0 )
80 os . remove ( ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto /250

MB/250MB. t x t ’ )
81

82 t ime . s l e e p ( 1 0 )
83 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / movefrom

/500MB/500MB. t x t ’
84 endPa th = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto /500

MB/500MB. t x t ’
85

86 s h u t i l . c o p y f i l e ( s t a r t P a t h , endPa th )
87 t ime . s l e e p ( 6 0 )
88 os . remove ( ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto /500

MB/500MB. t x t ’ )
89

90 t ime . s l e e p ( 1 0 )
91 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / movefrom

/750MB/750MB. t x t ’
92 endPa th = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto /750

MB/750MB. t x t ’
93

94 s h u t i l . c o p y f i l e ( s t a r t P a t h , endPa th )
95 t ime . s l e e p ( 6 0 )
96 os . remove ( ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto /750

MB/750MB. t x t ’ )
97 t ime . s l e e p ( 1 0 )
98 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / movefrom

/1000MB/1000MB. t x t ’
99 endPa th = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto

/1000MB/1000MB. t x t ’
100

101 s h u t i l . c o p y f i l e ( s t a r t P a t h , endPa th )
102 t ime . s l e e p ( 6 0 )
103 os . remove ( ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto

/1000MB/1000MB. t x t ’ )
104 t ime . s l e e p ( 1 0 )
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105 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / movefrom
/2500MB/2500MB. t x t ’

106 endPa th = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto
/2500MB/2500MB. t x t ’

107

108 s h u t i l . c o p y f i l e ( s t a r t P a t h , endPa th )
109 t ime . s l e e p ( 6 0 )
110 os . remove ( ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto

/2500MB/2500MB. t x t ’ )
111 t ime . s l e e p ( 1 0 )
112 t ime . s l e e p ( 1 0 )
113 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / movefrom

/5000MB/5000MB. t x t ’
114 endPa th = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto

/5000MB/5000MB. t x t ’
115

116 s h u t i l . c o p y f i l e ( s t a r t P a t h , endPa th )
117 t ime . s l e e p ( 6 0 )
118 os . remove ( ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / moveto

/5000MB/5000MB. t x t ’ )
119 t ime . s l e e p ( 1 0 )
120

121

122

123

124 # need t o f i l l up ram
125 s t a r t P a t h = ’ / media / j a k e / e0931aa2−d501−41c4−95 ef −d84bfa2d1737 / Enc rpy t /

ram / ’
126

127 f o r s ubd i r , d i r s , f i l e s i n os . walk ( s t a r t P a t h ) :
128 f o r f i l e i n f i l e s :
129 p r i n t ( ’ Enc ryp t i ng > ’ + f i l e )
130 p r i n t ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
131 e n c r yp t _ f i l eAES ( key , os . p a t h . j o i n ( s ubd i r , f i l e ) )
132 os . remove ( os . p a t h . j o i n ( s ubd i r , f i l e ) )
133

134 End= t ime . t ime ( )
135 p r i n t ( ’ Takes t h i s many seconds f o r run ’ )
136 p r i n t ( End− S t a r t )
137
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138 temp=End− S t a r t
139 whi l e temp <de l a y :
140 End= t ime . t ime ( )
141 temp=End− S t a r t
142 p r i n t ( temp )
143

144 p r i n t ( ’ Te s t Done ’ )
145 p r i n t ( t ime . t ime ( ) )

A.4 Labview Code

Figure A.17. Labview Block Diagram for Data Collection
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