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A QUADRATIC ASSIGNMENT PROBLEM 
WITHOUT COLUMN CONSTRAINTS 

Harold Greenberg 

Naval Postgraduate School 
Monterey, California 

ABSTRACT 

We convert a quadratic assignment problem [1] with a nonconvex objective function 
into an integer linear program. We then solve the equivalent integer program by a simple 
enumeration that produces global minima. 

We consider the problem (a variation of the quadratic assignment problem): 

n m m 

minimize ]£ £ Σ a''**<7**j 
(i) J = , , = 1 =1 

n 
w h e n V ; t j j = l ( i = l , . . . , m ) 

*ij = 0 o r l , ( t ' = l , . . . , m ; y = l , . . ., n) 

where m>n and A= (a,·*) is a given symmetric matrix with nonnegative elements and zero main 
diagonal terms. Note that (1) is the standard quadratic assignment problem with the column con­
straints omitted. 

For a discussion of problem (1) see [1], where an algorithm is presented that gives a local minimum. 
Global minima are not always produced by the method of [1] because the objective function in (1) 
is not convex. In this paper, we convert (1) to an integer program. We then present an algorithm that 
produces the global minima by a simple enumeration. 

THE EQUIVALENT INTEGER PROGRAM 
We make the change of variables 

Π 

(2) y i k = ^ XijXkj, ( i = l , . . -, m — 1 ; A : = i + 1 , . . ., m). 

We are interested in converting (1) to a problem containing the yuc alone. Once the y,/t are found 
from the equivalent problem, we must show how to determine the Xy. 

Consider the m by n matrix X = (XÌJ) having elements zero or one. We make the following obser­
vations: 

1. The linear constraints in (1) allow only a single one to appear in each row of X. 
2. We obtain ys,= 1 only when xSJ= 1 and xtj= 1 for s < t and a single; value. Thus the objective 

function in (1) can have a nonzero value only when Λ" has two or more unit elements in the same column. 
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3. If d elements of a column of X have unity value then at least I „ ) elements y-,k have unity value. 

/ D M . . . , , . (d\ d{d-\) (By I,, I we mean two combinations out of d and I ̂  I = ö ) 

4. If y„i= Ì and y,i— 1 fors < r < t then ysr — 1- This is true becauseysi = 1 only if xSj = 1 and X/j= 1, 
and y,i— 1 only if x,-j = 1 and XIJ = 1. Thus, since x*j= 1 and x,j = 1 we must have ys, = 1. Similarly, if 
y si— 1 and yn= 1 for s < t < r, then ysr= 1. 

5. The columns of X may be interchanged in any way and will still produce the same values for 
y,A and the objective function in (1). 

From these observations, we can think of problem (1) as one of loading zeroes and ones into matrix 
X and calculating the effect on the y^ and in turn the objective function in (1). The major constraint 
on the y,A· is determined by the assignments in X. This constraint is obtained by finding the loading of 

m - l m 

1=1 Α·=ι+Ι 
X that minimizes V V y^, which is obtained by attempting to equalize the number of ones in each 

column. We write m = nd+mth where d=\— and m()= (mod n); [x] means the greatest integer less 

than or equal to x and mod n is the usual remaindering operation. 
m - 1 m 

A solution that minimizes V V y,·*· will have (n — ma) columns with d ones and mo columns 
ι=1 Α=ι+1 

with d+ 1 ones. Thus 

mir 
m - l m ,fK 

lin Σ Σ 3 r * = n L) + i/'""· 
i = i fr=7+i w 

In general, we have the constraint 

m - l m / J \ 

(3) 2 Σ yaffil ) + dm<). 
,= l A = i+1 \ * / 

The integer program equivalent to (1) is 

» i - l m 

(4) minimize ^ Σ α*>^·> 
A=/+ l 

subject to y,A = 0 or 1, the results of the fourth observation, and the constraint (3). Once the y,* are 
found the x^ are obtained by loading the matrix X depending on which y,* values are unity. The observa­
tions above tell us the values of x,j to set to one; in particular, the fifth observation indicates that there 
is considerable freedom in doing so. The major constraint is (3) and although the quantification of the 
fourth observation requires many constraints, they may be included in a simple enumeration to solve 
the equivalent integer program. Note that the integer program uses the terms above the main diagonal 
of A and has a solution value that is one-half that for (1). The integer program is solved in the following 
algorithm: 

We define φ as the null set and \T\ as the number of elements in set T. We also have d= \ — \, m0= m 

(mod n), and r= n I — 1 + dm». 
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1. List the values of the problem as 

1 
2 

m-\ 

1 2 

« 1 2 

3 . 

a is · 

« 2 3 -

. . m 

. . (l\,n 

■ ■ ai,,, 

û / H - i , ï»; 

set s = 0 for this list. Go to 2. 
2. Given lists of the form 

5 

T, 

f-2 

1 

On 

Ô21 an 
a i3 

αΐλ 

Tm-\ a » i - i . i OiH-i.i fl»i-l.:l 

« I» 

ä>„ 

0-m~\. m 

find ä,./= min äfj for all unmarked elements on all lists. Mark the element. Set s = s, T,,= Te and go to 3. 
3. If s+ \T,.\ 5= r go to 4. Otherwise form an additional list with values obtained from the newly marked 
list as follows: 

(a) Replace the f,. heading with T,.= T,.Uf. 
(b) Delete the/column and the T,. column if it exists. Delete the/row if it exists. 
(c) Sets = s+|7V|. 
(d) Elements in the fe row are a",./, = a V / + ^ am for ief,. and where α,ι, = αι,ι for i > h. The indices 

» 
h are the column headings. The remaining elements are äij = äe/+äij. Go to 2. 
4. The problem is solved with objective function value a,,/. Using the newly marked list, we find the Xij 
by loading the X matrix as follows: 

(a) Replace T, by T,.= TcUf. 
(b) Set k = 1,7=1 and go to 4(c). 
(c) Set x-,j= 1 for ieft, ; set k = k+ 1 and go to 4(d). 
(d) If Tk = 9, go to 4(e). Otherwise sei j=j+ 1 and go to 4(c). 
(e) If an assignment has been made in row m, end; otherwise set *,„,,= 1 and end. 
This completes the algorithm. The method implicitly contains an enumeration of all possible values 

of the y\k that satisfy the fourth observation in order of increasing values of the objective function (4). 
We stop when constraint (3) is satisfied. The corresponding x,j are then produced and represent the 
solution to the global minimum of problem (1). This is seen as follows: suppose the values of the y,* and 
Xij produced by the algorithm are y',1*-and x'ij and there exist x-,j that satisfy the constraints in (1) with 

Σ Σ Σ a'**u*y < Σ Σ Σ a'**Wu· 
j = l 1=1 A = l j= i ; = i Α·= 
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If we calculate 

as in (2), we have 

Σ Σ ""-y*<Σ ï α'*Λ" 

where the y,*· satisfy the fourth observation. If the y,* also satisfy (3), we would have a contradiction 
since the y|A. produce the minimum value in (4); however, the right side of (3) is the smallest possible 
value for 

lli—i HI 

Σ Σ y-

consonant with (2). Thus (3) is satisfied by the y,A and the x"j must be the global minimum in (1). 
Care must be taken in computational work using the algorithm since storage does become a prob­

lem; however, the lists developed reduce in size as the algorithm progresses. Lists, beyond the first, 
with all marked elements may be discarded. Further, redundant information may develop in several 
lists and may be discarded; however, the number of lists grows rapidly and storage may be a problem 
even for moderate-sized problems. 

We use as example the problem in [1]. Step 1 of the algorithm defines the problem: 

(5) 
1 

2 
3 
4 

1 2 
0* 

3 
2* 

6 

4 
4 

2* 
5 

5 
3 

3 
3 
3 

where m = 5, ra = 3, d=\, mn = 2, and r = 2 . The minimum value listed is zero, which is then marked; 
we form the list 

(6) 

1 
1,2 

3 
4 

3 
8 

4 
6 
5 

5 
6 
3* 
3 

The minimum unmarked value is 2 in (5); which is then marked; we form the list 

(7) 

1 
1,3 

2 
4 

2 
8 

4 
11 

4 

5 
8 
5 
5 
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The minimum unmarked value is 2 in (5); which is then marked; we form the list 

(8) 

1 
1 

2 ,4 
3 

1 

6 

3 
4 

13 

5 
5 
8 
5 

The solution is apparent in (6) for the element 3. The objective function value is 3 (or 6 in the original 
problem) where 7i = (l, 2), To = (3, 5), Γ3 = 4. Thus we have 

(9) X = 

1 0 0 
1 0 0 
0 1 0 
0 0 1 
0 1 0 

Note an alternate solution in (6) with 7Ί=(1, 2), 72 = 3, 7,
3 = (4, 5). 
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