
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2018-09

EDUCATIONAL GUIDANCE ON EXTENSIBLE

SOFTWARE DEVELOPMENT

Alcorn, Damon R.

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/60344

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

EDUCATIONAL GUIDANCE ON EXTENSIBLE
SOFTWARE DEVELOPMENT

by

Damon R. Alcorn

September 2018

Thesis Advisor: Thomas W. Otani
Second Reader: Paul C. Clark

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2018 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
EDUCATIONAL GUIDANCE ON EXTENSIBLE SOFTWARE
DEVELOPMENT

 5. FUNDING NUMBERS

 6. AUTHOR(S) Damon R. Alcorn

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Software extensibility is a software engineering principle that characterizes how easily new features can
be added to the software system by requiring no or minimal rewrite of existing code base. Software that is
extensible leads to reduced development time, increased stability and security, and better support of software
assurance and maintenance. Although it is critically important, the Department of Defense (DoD) utilizes
software development documents that provide only limited information and guidance on software
extensibility. Moreover, the software development processes supported by the DoD do not fully address
Model-View-Controller (MVC), a design pattern that industry experts recommend for a higher degree of
software extensibility. This thesis studies the design patterns and software extensibility in the context of the
DoD software development environment with the case study on mobile application design. The design
guidance on software extensibility developed in this thesis will integrate well with currently utilized DoD
software development documents and processes.

 14. SUBJECT TERMS
software engineering, software assurance, software maintenance, extensibility, software
design patterns, model, view, controller, Model-View-Controller, MVC

 15. NUMBER OF
PAGES
 75
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

EDUCATIONAL GUIDANCE ON EXTENSIBLE SOFTWARE DEVELOPMENT

Damon R. Alcorn
Civilian

BA, California State University, East Bay, 2004
MA, California State University, Sacramento, 2008

AS, Las Positas College, 2016

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2018

Approved by: Thomas W. Otani
Advisor

Paul C. Clark
Second Reader

Peter J. Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Software extensibility is a software engineering principle that characterizes how

easily new features can be added to the software system by requiring no or minimal

rewrite of existing code base. Software that is extensible leads to reduced development

time, increased stability and security, and better support of software assurance and

maintenance. Although it is critically important, the Department of Defense (DoD)

utilizes software development documents that provide only limited information and

guidance on software extensibility. Moreover, the software development processes

supported by the DoD do not fully address Model-View-Controller (MVC), a design

pattern that industry experts recommend for a higher degree of software extensibility.

This thesis studies the design patterns and software extensibility in the context of the

DoD software development environment with the case study on mobile application

design. The design guidance on software extensibility developed in this thesis will

integrate well with currently utilized DoD software development documents and

processes.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM OVERVIEW ..1
B. PROPOSED SOLUTION ..3

II. BACKGROUND ..7
A. THE DOD SOFTWARE DEVELOPMENT PROCESS........................7
B. NOTIONS OF EXTENSIBILITY IN DOD SOFTWARE

DEVELOPMENT DOCUMENTS ...10
C. FURTHER NEED FOR GUIDANCE ON EXTENSIBILITY13

III. MVC OVERVIEW AND ANALYSIS ...17
A. MVC DESIGN PATTERN BACKGROUND17
B. MVC-LIKE ALTERNATIVES ..21
C. MVC KEY FEATURES ..26

IV. CRITERIA FOR EXTENSIBLE SOFTWARE DEVELOPMENT29
A. MODULE DECOMPOSITION ..29
B. MODULE DECOUPLING ...31
C. MODULE HIERARCHY ..33
D. CRITERIA OVERVIEW ..35

V. CASE STUDY ..37
A. MODULE DECOMPOSITION ..37
B. MODULE DECOUPLING ...41
C. MODULE HIERARCHY ..50

VI. CONCLUSION ..53

APPENDIX ...55

LIST OF REFERENCES ..59

INITIAL DISTRIBUTION LIST ...61

viii

THIS PAGE INTENTIONALLY LEFT BLANK

ix

LIST OF FIGURES

Figure 1. Tryve Reenskaug’s vision of MVC ...19

Figure 2. Apple’s vision of MVC ..20

Figure 3. Microsoft’s vision of MVC ..21

Figure 4. The MVP design pattern. ...23

Figure 5. The MVVM design pattern ..24

Figure 6. The VIPER design pattern ...25

Figure 7. Module decomposition...31

Figure 8. Module decoupling ..33

Figure 9. Hierarchical module structure ..35

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF ACRONYMS AND ABBREVIATIONS

CC Common Criteria
DoD Department of Defense
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
ISO International Organization for Standardization
KA Knowledge Area
MVC Model-View-Controller
MVP Model-View-Presenter
MVVM Model-View-ViewModel
NIST National Institute of Standards and Technology
UI User Interface
VIPER View, Interactor, Presenter, Entity, Router

xii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PROBLEM OVERVIEW

When it comes to their software, companies such as Apple and Microsoft

encourage the use of the Model-View-Controller (or MVC) software design pattern, or

one of its very similar alternatives. They do this by hosting online guides that argue the

benefits of adhering to these patterns, including easier application modification, greater

code reuse, and extensibility.1

Extensibility, which is the ability for software to easily incorporate additional

functionally, is a tremendously valuable and powerful feature to have, especially given

the natural limitations of program testing and the fact that the needs of users are rarely

static—often even evolving in completely unforeseen ways given enough time. For one,

systems can have their operational life span extended—possibly even indefinitely—as

they adapt to new user needs and roles as they materialize. This fact alone can result in

considerable cost savings for an organization, whether it be in terms of money, time,

workforce energy, computing resources, or whatever else might need to be committed to

a new project in which an application is developed from scratch. Second, extensible

applications have a higher degree of improvability. By allowing for not only slight

modification but also the complete addition of functionality, these applications are more

flexible and adaptable when it comes to actions such as overcoming newly discovered

security and stability issues, reducing or eliminating the effect of non-beneficial or

detrimental qualities, and refining or increasing the effect of advantageous qualities. As a

result, extensible applications often have fewer bugs, are more secure, and operate with

greater efficiency and effectiveness. Third, since their code is often both highly

modifiable and reusable, extensible applications can often be developed much faster than

1 “Model-View-Controller,” Apple, accessed May 22, 2018, https://developer.apple.com/library/

archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html; “The MVVM Pattern,”
Microsoft , last modified February 10, 2012, https://docs.microsoft.com/en-us/previous-versions/msp-n-p/
hh848246(v=pandp.10).

https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)

2

non-extensible applications, which tend to have code that is either not easily changed or

reused, or both.

Clearly, given the Department of Defense’s (DoD) desire to quickly and easily

field cost effective, stable, and secure applications that provide a maximum operational

advantage, it would seem that the DoD has an interest in developing extensible

applications. Despite this fact, the DoD goes about the software development process in a

manner that does not really seem to stress the importance of extensibility or offer much

guidance or support in terms of implementing it. For one, documents used by the DoD

regarding software development mostly discuss the concept of application extension as it

pertains to the documentation of software requirements, barely touching on how to

actually create extensible software or doing so only indirectly.2 Second, instead of

advocating the use of extensible-minded design patterns such as MVC or one of its

alternatives, the DoD favors a process in which software design is the result of something

called a “Design Definition.”3 While the Design Definition process does not preclude the

use of an extensible-minded design pattern, it does not really encourage it either. This is

because the process allows for—maybe even actively encourages—ad hoc changes to an

application’s utilized design or design pattern in response to issues encountered during

development.4 This is argued to be an advantage, resulting in greater project adaptability,

as well as a development environment that is highly compatible with the popular Agile

development approach.5 But this argument seems to ignore the fact that allowing for and

even encouraging deviations from time-tested and vetted design patterns can quickly

result in the loss of certain valued design characteristics—such as extensibility.

2 Pierre Bourque and Richard E. Fairley (eds.), Guide to the Software Engineering Body of Knowledge,

Version 3.0 (Piscataway, NJ: IEEE Computer Society, 2014), 1-5, 3-3, 3-6.
3 International Organization of Standardization, ISO/IEC/IEEE 12207: Systems and Software

Engineering - Software Life Cycle Processes, First Edition 2017-11 (Geneva: ISO/IEC, 2017; Piscataway,
NJ: IEEE Computer Society, 2017), 71. This document replaced the previous relied upon MIL-STD-498.

4 Ibid.
5 Ibid., 127.

3

In short, the DoD utilizes software development documents that cover the concept

of extensibility somewhat ineffectively, while simultaneously relying upon a process that

undermines the use of extensible-minded design patterns to help ensure extensibility.

B. PROPOSED SOLUTION

Seeing the potential development of non-extensible applications by the DoD as a

problem, this thesis attempts to investigate a manner in which the DoD might effectively

go about ensuring application extensibility. Of course, one way to do this would be to

always strictly enforce an unchanging extensible-minded design pattern. That said, that

solution would probably threaten the argued advantages of adaptability and flexibility

supported by the Design Definition process and its allowance for a potential evolving

design. That is why this thesis takes a different approach.

Looking at the MVC and MVC-like design patterns used by industry as a starting

point, this thesis attempts to distill the key features shared by these patterns that result in

extensibility. In brief, these key features seem to be the following:

• The first is the decomposition of code into modules. This results in code

that is easier to read and work with. Issues can be localized, and

debugging is thus simplified. In this way, code is made more modifiable

by being modular.

• The second is the decoupling of those modules. This results in code that is

more reusable. By reducing the ways in which the internal design and

implementation of one module may be reliant on the internal design and

implementation of others, it becomes possible to modify that module and

often simply reuse the rest.

• The third is the organization of modules into a clear-cut, hierarchical

structure. After decomposition and decoupling are done, this action is

what seems to finally result in extensibility. Modules operate so that

dependencies are limited and one-way. This makes it easier to add new

application functionality by means of refactoring or replacing branch and

4

leaf modules within the hierarchy, where the effects of those changes are

less likely to require extensive alterations to the rest of the application’s

code base.

Using these key features, this thesis formulates an easy to use guideline that

highlights the various requirements of producing extensible code. This guideline can be

used as an educational tool for developing extensible software or checking for

extensibility in an existing code base. It includes the following criteria:

• As a first criterion, to produce decomposed modules, code that is logically

related must be grouped together and separated out for unrelated code,

forming clearly distinct modules with clearly defined roles and concerns,

as well as limited tasks.

• As a second criterion, to produce decoupled modules, the internal design

of one module must not be reliant on the internal design of another. If a

module “knows something” about the public interface of another module,

it should be the caller of that module. The callee should not need to know

anything about its caller, beyond how to return messages to it.

Additionally, interactions between modules should be kept to a minimum

and as general as possible, with no messages or data being passed that

could leak any information regarding module implementation.

• Finally, as a third criterion, to produce hierarchically organized modules,

confusing or circular interactions and possible dependencies must be

avoided. There should not be instances of two-way coupling—that is to

say, no module should be both a caller and callee of another module. And

functionality that is more likely to be replaced or extended should be

pushed out into branch or leaf modules, while core functionality (i.e., that

which is not likely to be changed) should be located in modules that are

closer to the hierarchy’s root.

5

As one implements software following these criteria, the burden of an application’s

design process will likely increase. That said, achieving the first criterion should result in

the benefit of modular and therefore easier to work with code. Implementing the second

should result in the benefit of reusable code. And achieving the third should result in the

benefit of extensible code—the end goal of this guide.

In showing the application and utility of this guide, this thesis includes a case

study in which a simple extensible iOS application is reviewed. While this application

conforms to the MVC design pattern used by Apple, more importantly, it clearly

highlights the presence of the key features needed for application extensibility.

In this end, this guide could potentially serve as a tool for DoD personnel

overseeing application development or acquisitions. Through its use, an individual could

gain greater awareness of the basic features that generally result in extensible code,

increasing the likelihood that that individual will be able to gauge if an application is

extensible or make recommendations on what changes should be made in order to

achieve extensibility. All of this serves the goal of hopefully increasing the likelihood

that the DoD produces more cost effective, stable, and secure applications that provide a

maximum operational advantage. Additionally, use of this guide should not work against

the adaptability or flexibility of the Design Definition process in the way that strict

adherence to an extensible-minded design pattern might.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. BACKGROUND

A. THE DOD SOFTWARE DEVELOPMENT PROCESS

The DoD uses various documents to give structure to its application development

processes. The core documents used include the following:

• ISO/IEC/IEEE 12207: Systems and Software Engineering – Software

Life Cycle Processes: This document “establishes a common framework

for the software life cycle processes,” which at a high-level includes the

“acquisition, supply, development, operation, maintenance, and disposal

of software systems, products and systems, and software portions of any

system.”6 The purpose of this document is for essentially “establishing

business environments, e.g., methods, procedures, techniques, tools, and

trained personnel” capable of successfully and systematically developing

or acquiring software.7 This document replaced MIL-STD-498 (Software

Development and Documentation).

• ISO/IEC/IEEE 14767: Systems and Software Engineering – Software

Life Cycle Processes – Maintenance: This document “describes in greater

detail management of the Maintenance Process described in ISO/IEC

12207 ... to provide guidance for the planning for and maintenance of

software products or services.”8 The reason for this separate document

that expands on the content covered in the Maintenance Process section of

ISO/IEC/IEEE 12207 is due to the fact that “maintenance consumes a

major share of a software cycle financial resources,” making it “an

important project consideration” that could have a proportionally high and

6 Ibid, 1.
7 Ibid.
8 International Organization of Standardization, ISO/IEC 14767, IEEE Std 14767-2006: Systems and

Software Engineering - Software Life Cycle Processes - Maintenance, Second Edition 2006-09-01
(Geneva: ISO, 2006; Piscataway, NJ: IEEE Computer Society, 2006), 1.

8

far-reaching impact on the development of an application and its success

in the field.9

• IEEE Guide to the Software Engineering Body of Knowledge

(SWEBOK 3.0): This document “constitutes a valuable characterization of

the software engineering profession.... as a mechanism for acquiring the

knowledge you need in your lifelong career development as a software

engineering professional.”10 This characterization includes Knowledge

Areas (or KAs) that contain “generally accepted” and “generally

recognized” knowledge and practices, which are “distinguished from

advanced and research knowledge (on the grounds of maturity) and from

specialized knowledge (on the grounds of generality of application).”11

Additionally, they “are applicable to most projects most of the time, and

there is consensus about their value and usefulness.”12 These KAs cover

numerous aspects of software development, including software

requirements, design, construction, testing, and maintenance to name a

few.13

• NIST SP-800-53 (Rev. 4): Security and Privacy Controls for Federal

Information Systems and Organizations: This document “provides a

holistic approach to information security and risk management,” providing

guidelines for selecting and specifying security controls for organizations

and information systems supporting the executive agencies of the federal

government.”14 It is used by concerned parties to help clarify the burden

9 Ibid., vii.
10 Pierre Bourque and Richard E. Fairley (eds.). Guide to the Software Engineering Body of

Knowledge. Version 3.0, (Piscataway, NJ: IEEE Computer Society, 2014), xvii.
11 Ibid., xxxi, xxxiii.
12 Ibid.
13 Ibid., xxxii.
14 National Institute of Standards and Technology, NIST SP-800-53: Security and Privacy Controls

for Federal Information Systems and Organizations, Rev. 4, (Gaithersburg, MD: National Institute of
Standards and Technology, 2013), xv, 2.

9

of meeting certain requirements and recommendations specified in other

security-minded standards documents, including FIPS Publication 200

(Minimum Security Requirements for Federal Information and

Information Systems) and FIPS Publication 199 (Standards for Security

Categorization for Federal and Information Systems), as well as map

specified controls to international security standards such as ISO/IEC

15408 (Common Criteria).15

• NIST SP-800-600 (Vol. 1): Systems Security Engineering

Considerations for a Multidisciplinary Approach in the Engineering of

Trustworthy Secure Systems: This document “addresses the engineering-

driven actions necessary to develop more defensible and survivable

systems—including the components that compose and the services that

depend on those systems.”16 To achieve this end, it relies upon “well-

established International Standards for systems and software engineering

… and infuses systems security engineering techniques, methods, and

practices into those systems and software engineering activities.”17 In the

end, the overall goal of the document is the realization of “trustworthy

secure systems that are fully capable of supporting critical missions and

business operations while protecting stakeholder assets” and, as a result, it

approaches “security issues from a stakeholder requirements and

protection needs perspective.”18

Used together, these documents can be thought of as giving the DoD software

development process its basic structure. ISO/IEC/IEEE 12207 and ISO/IEC/IEEE 14767

can be used to outline the work environment, processes, and operational considerations

15 Ibid., 2, xv.
16 National Institute of Standards and Technology, NIST SP-800-600: Systems Security Engineering

Considerations for a Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems,
Volume 1, (Gaithersburg, MD: National Institute of Standards and Technology, 2018), viii.

17 Ibid.
18 Ibid.

10

that an application’s development will entail. IEEE’s SWEBOK 3.0 can be used to give

guidance on the general knowledge and recognized practices that may be relied upon in

each of the outlined processes. NIST SP-800-53 provides specific guidance on issues of

risk and responsibility that translate into security-minded requirements for software,

software development processes, and certain parties developing software for

organizations such as the DoD. And NIST SP-800-600 provides guidance on the

standards, methods, principles, and techniques that can be leveraged in order to enhance

the security and trustworthiness the software being developed.

B. NOTIONS OF EXTENSIBILITY IN DOD SOFTWARE DEVELOPMENT
DOCUMENTS

As stated before, extensibility (which, again, is the ability for software to easily

incorporate additional functionally) is a tremendously valuable and powerful feature to

have. It can translate into applications that can often cost less over their life cycle, can be

more quickly developed and maintained, and exhibit greater stability, security, and

functionality as a result of their higher degree of improvability. One would therefore

think that the DoD would be highly interested in developing and fielding extensible

applications; however, the documents described earlier strangely do not do a great job of

addressing the concept at all.

For one, much of the discussion of extensibility is limited to the notion of

documenting software requirements. In SWEBOK 3.0, it is stressed that the process of

refining software requirements should include “a description of the software being

specified and its purpose,” but not one that is overly exclusive.19 Instead it should be

“scalable and extensible to accept further requirements” as they become known to

stakeholders.20 Alternatively, in ISO/IEC 15408 (Common Criteria, which is referenced in

NIST SP-800-53), it is explained that because “the understanding and needs of consumers

may change,” the functional requirements specified in the Common Criteria (or CC)

framework “will need to be maintained,” alluding to the possibility of updates, as well as the

19 Bourque, Guide to the Software Engineering Body of Knowledge, 1-5.
20 Ibid.

11

limitations of the current framework and the software security requirements, properties, and

controls the framework may be used to specify.21 The document then goes on to suggest that

authors of Protection Profile and Security Target documents (i.e. CC framework documents

outlining security requirements and properties) who “may have security needs not (yet)

covered by the functional requirement components in CC…. may choose to consider using

functional requirements not yet taken from the CC.”22 Within the context of the Common

Criteria, this inclusion of additional requirements that are not yet covered by the framework

is “referred to as extensibility.”23 In many ways, it is true that the addition of functionality to

software can open the door to new threats, creating the need for new security controls and

functional requirements. Therefore, it is understandable that the extension of an application

could have a significant impact on the documented software requirements of that application.

But that being said, extending software requirements is probably the easiest of the actions

associated with software extension, especially when compared to the actual work of

designing, constructing, integrating, and testing the extensions. As a result, it seems

somewhat myopic that this is a significant portion of these documents’ discussion of the

concept of extensibility.

Second, any discussion of actual software extension by the documents—that is to say,

how to go about software extension, or somehow recognize or ensure that it is possible with

regard to an application’s code base—seems superficial and not particularly useful. In ISO/

IEC/IEEE 12207, the “extension of capability, mid-life upgrade, or evolution of legacy

systems” are mentioned as common realities of the software maintenance process, often

resulting from things like “changes to interfaced systems or infrastructure, evolving

security threats, and technical obsolescence of system elements and enabling systems

over the system life cycle.”24 But even with that said, the document gives no real

guidance on how to actually go about anticipating or planning for software extension, or

21 International Organization for Standardization, ISO/IEC 15408: Common Criteria for Information

Technology Security Evaluation - Part 2: Security Functional Components, Ver. 3.1, Rev. 5 (Geneva: ISO/
IEC, 2017), 17.

22 Ibid.
23 Ibid.
24 ISO/IEC/IEEE 12207, 95.

12

how to make certain that extensions to an application’s code base will be possible when

the need arises. One might assume that such information is covered by one of the KAs in

SWEBOK 3.0; however, its guidance seems fairly limited and not very useful as well. In

it, it is stated, “Anticipating change helps software engineers build extensible code, which

means they can enhance a software product without disrupting the underlying

structure.”25 The book then promises that the action of anticipating change “is supported

by specific techniques” listed in a later section.26 Unfortunately, the actual nine

techniques that SWEBOK 3.0 lists are fairly high-level and not at all exclusive to the

creation of extensible code, including rather basic and somewhat vague recommendations

like “creating understandable source code, including naming conventions and source

code layout”; the use of “classes, enumerated types, variables, named constants, and other

similar entities”; the inclusion of documentation; the use of “control structures”; and

“code organization (into statements, routines, classes, packages, or other structures).”27

While it is good to see that these documents at least at some level inform readers about

when software extension efforts might take place and that there are techniques for

making such work easier when they occur, the provided information is fairly general and

not particularly useful when it comes to practical application.

In truth, when it comes to these documents, perhaps the best source of practical

information for use in the development of extensible applications is NIST SP-800-600,

albeit somewhat indirectly. Given the fact that extensible applications are generally more

secure than non-extensible applications, it makes sense that some of the concepts and

practices used to engineer secure and trustworthy systems are also those used to develop

extensible software. That is to say, in attempting to build a secure system, one may very

well build a fairly extensible one as well, and vice versa. This is especially true when

considering the “structural design principles” overviewed in Appendix F of the

document, which cover “how the system is decomposed into its constituent system

elements,” as well as “how those elements relate to each other and the nature of the

25 Bourque, Guide to the Software Engineering Body of Knowledge, 3-3.
26 Ibid.
27 Ibid., 3-6.

13

interfaces between elements.”28 Many of these principles—including the use of

“modularity and layering... derived from functional decomposition,” “clear abstractions”

(i.e. “well-defined interfaces and functions”), “partial ordered dependencies” that result

in linear inter-layer interactions as opposed to possibly circular ones, and “reduced

complexity” by keeping systems “as simple and small as possible”—are leveraged to

increase the “simplicity and coherence of the system design” with the aim of making the

work of secure system analysis, development, debugging, and validation faster, easier,

and less error-prone.29 As discussed in later chapters, very similar principles are

leveraged to also make simpler and more coherent systems that are faster and easier to

modify, reuse, and extend. However, this fact is not expressly stated in NIST SP-800-600

and the overall focus and drive of the document is the development of secure and

trustworthy systems, not necessarily extensible ones.

In the end, the concept of extensibility is not completely overlooked by the

documents used by the DoD for software development. That said, the discussion does

seem fairly limited in scope, superficial, or somewhat indirect in its approach to the topic,

pointing to the fact that the documents are probably not a sufficient source of education

or guidance—especially for non-technical personnel, who within the DoD environment

may very well be involved in a project’s decision making process—on how to possibly

implement or check for extensibility in software that is being developed for or by the

DoD.

C. FURTHER NEED FOR GUIDANCE ON EXTENSIBILITY

The fact that documents relied upon by the DoD for the purpose of software

development seem to insufficiently address the concept of extensibility is strong

motivation for this thesis. Further motivation comes from the DoD’s use of a design

process that makes simple adherence to extensible-minded design patterns such as MVC

potentially difficult.

28 NIST SP-800-600 (Vol. 1), 205.
29 Ibid, 205-207.

14

As mentioned in the introduction, in order to give instruction and guidance to

developers on how to create extensible code, companies such as Apple and Microsoft

host online guides on the application of the MVC or MCV-like software design patterns.

The same is not done by the DoD, which does not encourage the use of any particular

design pattern. Instead, it favors the use of something called a “Design Definition”

process.30 In its most basic form, this process is intended to maximize project

adaptability and responsiveness, allowing for changes to and refinements of a software

design in response to decisions regarding desired and feasible design principles

(“including controlling ideas such as abstraction, modularization and encapsulation,

separation of interface and implementation, concurrency, and persistence of data”),

security considerations (e.g. “the principle of least privilege, layered defenses, restricted

access to system services, and other considerations to minimize and defend the system

attack surface”), and design characteristics (e.g. “availability, fault tolerance and

resilience, scalability, usability, capacity and performance, testability, portability, and

affordability”).31 Decisions regarding specific design principles, security considerations,

and design characteristics are themselves influenced by decisions on things like software

requirements and architecture choices, as well as realities regarding “necessary enabling

systems or services,” which may include “software and system platforms, programming

languages, design notations and tools for collaboration and design development, design

reuse repositories (for product lines, design patterns, and design artifacts), and design

standards.”32

While it is perhaps hoped that the decisions that come before and potentially

influence the Design Definition process are “as design-agnostic as possible to allow for

maximum flexibility in the design trade space,” this is not actually a necessity or always

even possible, because at its heart the “process is driven by requirements” and mainly

“focuses on compatibility with technologies [e.g., hardware and architectures] and other

30 ISO/IEC/IEEE 12207, 71.
31 Ibid., 72.
32 Ibid., 72, 71.

15

design elements and feasibility of implementation and integration.”33 Additionally, in

light of the fact that issues may arise during the implementation and integration phases, it

is argued that a software design need not be viewed as static once selected, nor must it be

fully defined before beginning other phases of development; rather, the Design Definition

process “is typically applied iteratively and incrementally to develop a detailed design”

and “is usually concurrent with software implementation, integration, verification, and

validation.”34

This approach to defining a piece of software’s design—“which accommodates

flexibility in design while the software is being constructed”—fits perfectly with the

Agile development approach, in which “software design, implementation (construction),

and continuous integration are frequently performed concurrently.”35 The Agile approach

is very popular in industry, “because it is believed to be more affordable and to deliver

usable products more quickly.”36 This is mainly due to the fact that “concept exploration,

development, construction, testing, transition, and retirement of previous software can be

performed concurrently for successive iterations,” potentially reducing or eliminating the

time that development teams must wait for others to complete their portions of a project,

therefore possibly reducing the overall time it takes to fully develop and deploy a piece of

software.37 This way of doing things “is contrasted with a formal top-down approach…

in which construction cannot begin until design is approved so that the constructed

software [can be] traced to a previously approved detailed design”—that is to say,

something more along the lines of a linear “sequentially staged (idealized waterfall)”

approach to software development.38

In the end, while the Design Definition process does not necessarily preclude the

use of an extensible-minded design pattern such as MVC, it seems to not particularly

33 Ibid., 71.
34 Ibid.
35 Ibid., 127
36 Ibid.
37 Ibid.
38 Ibid.

16

encourage it either. In many ways, the process itself and whatever design is initially or

eventually utilized are orthogonal. What is encouraged by the process is continual

“replanning,” as an application’s design or design pattern is changed to accommodate ad

hoc solutions to issues encountered throughout development.39 Working within this type

of development environment, it is not hard to imagine the strict adherence to an

extensible-minded design pattern as being potentially difficult and problematic, and

therefore probably not the best way to attempt to ensure extensibility. This highlights the

second motivating force behind this thesis. In many ways, in order to encourage the

development of extensible code, what is needed is probably something that is a bit more

flexible than a design pattern: perhaps, something along the lines of a distillation of the

key features of extensible-mined design patterns such as MVC, which could be used as

an educational guide and with greater ease within the context of the Design Definition

process.

39 Ibid., 127, 71.

17

III. MVC OVERVIEW AND ANALYSIS

A. MVC DESIGN PATTERN BACKGROUND

The Model-View-Controller design pattern is probably one of the more logical

design patterns to investigate in terms of extensibility, simply because it is time-tested

and widely used by industry leaders. Tryve Reenskaug is credited with first developing

MVC for the Smalltalk-80 programming language at Xerox PARC (Palo Alto Research

Center) in 1978.40 Working within the context of the object oriented programming

paradigm, the pattern’s “top-level goal was to support the user’s mental model of the

relevant information space and to enable the user to inspect and edit this information.”41

This meant thinking about the user’s mental model as something that was both

“accessible through the user interface,” but also—given the inherent differences between

users in terms of their thinking, perspectives, and desires, as well as the wide availability

of different types of interfaces—not necessary correspondent with any actual raw data

formats, program objects, or domain services found within the system.42 Thus, at its most

basic level, one of the design pattern’s chief concerns was how to systematically

construct flexible and adaptable software that was able to “create the illusion that the

system implements the user’s mental models.”43

Reenskaug describes this illusion as the “direct manipulation metaphor: the sense

that end users are actually manipulating objects in memory that reflect the images in their

head.”44 He explains the way in which the Model-View-Controller design pattern

supports the metaphor in the following manner:

40 Tryve Reenskaug, “The Model-View-Controller (MVC): Its Past and Present,” University of Oslo,

6, last modified August 20, 2003, https://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_pattern.pdf.
41 Ibid. 1.
42 Ibid., 8.
43 Ibid., 9.
44 Trygve Reenskaug and James O. Coplien, “The DCI Architecture: A New Vision of Object-

Oriented Programming,” Vilnius University, 2, last modified March 9, 2009,
https://klevas.mif.vu.lt/~donatas/Vadovavimas/Temos/DCI/2009%20The%20DCI%20Architecture%20-
%20A%20New%20Vision%20of%20OOP.pdf.

18

The job of the model is to “filter” the raw data so the programmer can
think about them in terms of simple cognitive models. For example, a
telephone system may have underlying objects that represent the basic
building blocks of local telephony called half-calls. (Think about it: if you
just had “calls,” then where would the “call” object live if you were
making a call between two call centers in two different cities? The concept
of a “half-call” solves this problem.) However, a telephone operator thinks
of a “call” as a thing, which has a duration and may grow or shrink in the
number of parties connected to it over its lifetime. The Model supports
this illusion. Through the computer interface the end user feels as though
they are directly manipulating a real thing in the system called a “Call.”
Other Models may present the same data (of a half-call) in another way, to
serve a completely different end user perspective. This illusion of direct
manipulation lies at the heart of the object perspective of what computers
are and how they serve people.

The View displays the Model on the screen. View provides a simple
protocol to pass information to and from the Model. The heart of a View
object presents the Model data in one particular way that is of interest to
the end user. Different views may support the same data, i.e., the same
Models, in completely different ways. The classic example is that one
View may show data as a bar graph while another shows the same data as
a pie chart.

The Controller creates Views and coordinates Views and Models. It
usually takes on the role of interpreting input user gestures, which it
receives as keystrokes, locater device data, and other events.

Together, these three roles define interactions between the objects that
play them—all with the goal of sustaining the illusion that the computer
memory is an extension of the end user memory: that computer data
reflect that end user cognitive model.45

The interaction envisioned by Reenskaug between a user and the Model, View, and

Controller of an application is diagrammed in Figure 1.

45 Ibid, 3.

19

An illustration of Reenskaug’s vision of interaction between the user and the various
components of a MVC application, with some of the interactions being unidirectional and
others being bidirectional.

Figure 1. Tryve Reenskaug’s vision of MVC46

Over the years, the MVC design pattern has become widely adopted by industry

leaders, who argue its many benefits. Apple has argued that “MVC is central to a good

design for a Cocoa application.”47 This is in part due to the fact that “many Cocoa

technologies and architectures are based on MVC and require that… custom objects play

one of the MVC roles.”48 But along with this argument for consistency, it is also stated

that MVC applications have numerous benefits over non-MVC applications, including

the fact that “many objects in these applications tend to be more reusable,” “their

interfaces tend to be better defined,” and they “are also more easily extensible than other

applications.”49 Microsoft similarly argues the benefits of MVC, stating that utilization

of the Model, View, and Controller roles within an application generally helps developers

“scale the application in terms of complexity because it’s easier to code, debug, and

46 Source: Reenskaug, “The Model-View-Controller (MVC): Its Past and Present,” 10.
47 Apple, “Model-View-Controller.”
48 Ibid.
49 Ibid.

20

test.”50 Figures 2 and 3 illustrate Apple’s and Microsoft’s vison of the MVC design

pattern, which are fairly similar to Reenskaug’s, perhaps most differing from the original

vision in that they both add the concept of directionality to all interactions between

modules.

Apple’s vision of the interactions between the components of a MVC application. While
the general structure is the same as that seen in Figure 1, there are notable differences
between this and Reenskaug’s vision of MVC, included the unidirectional nature of all
interactions and the lack of direct interaction between the View and Model components.

Figure 2. Apple’s vision of MVC51

50 Steve Smith, “Overview of ASP.NET Core MVC,” Microsoft, last modified January 7, 2018,

https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-2.1.
51 Source: Apple, “Model-View-Controller.”

https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-2.1

21

Microsoft’s depiction of the interactions between the components of a MVC application.
This third depiction illustrates yet another different view on the directionality of
component interactions and potential component hierarchy. The fact that disagreements
exists regarding the best way to organize MVC components is perhaps one way to
explain the impetus behind some of the MVC-like alternatives described in the next
section.

Figure 3. Microsoft’s vision of MVC52

Of course, this is not to say that the MVC design pattern is without its critics.

While it is a popular pattern, so are numerous MVC-like alternatives, each of which

seems designed specifically in an attempt to overcome some perceived shortcoming of

MVC when it comes to implementing real-world applications.

B. MVC-LIKE ALTERNATIVES

If one searches for guidance on how to implement MVC, one will invariably run

into countless papers, articles, blog posts, and courses outlining the issues some

developers have experienced in their attempts to develop MVC compliant applications.

These issues usually center on one or more ways in which use of the pattern can fail to

deliver on its promised benefits, resulting in an application that is not flexible or

adaptable, or possibly requires substantial refactoring if its code is to be reused or

extended. Additionally, in perhaps an attempt to differentiate and perhaps even brand the

52 Source: Smith, “Overview of ASP.NET Core MVC.”

22

argued solution to the encountered issues, these writings also tend to propose changes to

the MVC acronym. The following are some common MVC-like alternatives:

• Model-View-Presenter (MVP): This MVC-alternative was developed by

IBM for the Taligent programming language in the 1990s in an attempted

to enforce “clean separation and encapsulation” between the data that is

stored in a Model and the information that is viewed and manipulated by a

user, as well as better respond to the fact that, especially with graphical

user interface (or GUI) applications, users tend to view and interact with

information through the same interface.53 To meet these goals, the pattern

attempted to “formalize the separation between the Model and the View

Controller” by defining all displayed and interactable information (i.e.,

non-Model data) as a distinct application component called a

“Presentation.”54 The application’s View Controller then had its

operations refined and restricted to specifically handling Presentations in a

unidirectional manner—receiving updates from Views and sending

updates to Models—hence its name change to “Presenter.”55 Figure 4

illustrates the interaction between the Model, View, and Presenter

modules of an MVP application.

53 Mike Potel, “MVP: Model-View-Presenter: The Taligent Programming Model for C++ and Java,”

Taligent, Inc., 1996, last modified September 11, 2014, https://www.researchgate.net/publication/
255616200_MVP_Model-View-Presenter_The_Taligent_Programming_Model_for_C_and_Java_
Taligent_Inc, 2.

54 Ibid, 3.
55 Ibid, 6.

23

An illustration of the interactions between the components of the MVP design pattern as
envisioned by Taligent. Of particular note here is the replacement of the Controller
component with the Presenter component, as well as the strict directionality of
interactions between the Model, View, and Presenter.

Figure 4. The MVP design pattern.56

• Model-View-ViewModel (MVVM): Microsoft argues that this pattern

“helps to more cleanly separate business and presentation logic”; that is to

say, just like MVP, MVVM attempts to more formally separate the data

that may be used by the system and stored in Models from the information

that is utilized in user interfaces (or UIs).57 But instead of relying on

Presentation and Presenter components to achieve this end, MVVM uses a

ViewModel component, which acts as an intermediary between an

application’s Model(s) and View(s), carrying out updates to system data

and providing digestible information to UIs.58 IBM argues that a strong

benefit of this pattern is that ViewModels tend to contain code that would

otherwise be located in a View Controller or Presenter, thus the use of

ViewModels can help reduce or at least better manage the size of those

56 Source: Ibid, 7.
57 David Britch and Craig Dunn, “The Model-View-ViewModel Pattern,” Microsoft, last modified

August 6, 2017, https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/
mvvm.

58 Ibid.

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm

24

components.59 In this manner, the ViewModel does not replace the

Controller as much as assist it. The Controller need only concentrate on

transitions between the potentially numerous View-ViewModel-Model

pairings found with an application. Figure 5 illustrates the interaction of

the Model, View, and ViewModel modules of an MVVM application.

An illustration of the components of the MVVM design pattern. Not shown here are
Controller components, which still exist in implementations of MVVM, handling
transitions between the different View-ViewModel-Model pairings that may be found
within the application. The key point here is simply that the View and Model do not
interact directly, but rather utilize a ViewModel as an intermediary, which can house
code and logic for how to manipulate information that is sent from the View to be saved
as data in the Model, as well as how to manipulate data that is retrieved from the Model
so that it can be displayed by the View.

Figure 5. The MVVM design pattern60

• View, Interactor, Presenter, Entity and Router (VIPER): This pattern

takes MVVM’s decomposition and creation of new components even

further. First, the Model is essentially decomposed into two parts: A Data

Store module for persistent data storage and Entity modules for data that is

in use. Then, the MVC Controller is replaced with three components: A

Presenter module for handling UI setup and updates, an Interactor module

for handling interactions with any Data Stores or Entities, and a Router (or

Wireframe) module, which handles transitions to and from other

application scenes (i.e., other View, Interactor, and Presenter [or VIP]

59 Taylor Franklin, “Control your View Controllers with a Model-View-ViewModel Architecture,”

IBM, last modified January 15, 2016, https://developer.ibm.com/open/2016/01/15/control-your-view-
controllers-with-a-model-view-viewmodel-architecture/.

60 Source: Britch, “The Model-View-ViewModel Pattern.”

25

module groups).61 The argument supporting this perhaps extreme level of

decomposition is that it helps avoid the occurrence of what is often

jokingly referred to as the “Massive View Controller,” which is a View

Controller that has become bloated and unmanageable as it incorporates

the code for everything from data formatting and UI setup to networking,

user input validation, segues between scenes, and more.62

An illustration of the interactions between the components of the VIPER design pattern.
Not shown here are the potential connections between the components of one VIP
module group and another.

Figure 6. The VIPER design pattern63

There are many other alternative design patterns, but the basic trend here seems to be

clear. For the most part, the patterns all attempt to offer better guidance for developers on

how to either more effectively separate MVC components or reduce the size of bloated

components by decomposing them into smaller ones with more restricted roles. This

points to the fact that patterns such as MVP, MVVM, or VIPER are not really rejections

of MVC. At their core, they actually embrace its general philosophy and aesthetics and

operate in an essentially identical fashion, just with perhaps slight structural changes,

such as two or three components in place of an original one. In a way, they simply

61 “Meet VIPER: Mutual Mobile’s application of Clean Architecture for iOS apps,” Mutual Mobile,
last modified September 24, 2014, https://mutualmobile.com/posts/meet-viper-fast-agile-non-lethal-ios-
architecture-framework.

62 Ibid.
63 Ibid.

https://mutualmobile.com/posts/meet-viper-fast-agile-non-lethal-ios-architecture-framework
https://mutualmobile.com/posts/meet-viper-fast-agile-non-lethal-ios-architecture-framework
https://mutualmobile.com/posts/meet-viper-fast-agile-non-lethal-ios-architecture-framework

26

attempt to help developers write better MVC applications, through the application of

certain tweaks and refinements to the MVC pattern’s overall structure.

C. MVC KEY FEATURES

By ignoring the differences between MVC and MVC-like alternatives and instead

focusing on their similarities, three shared features of the design patterns quickly become

apparent.

One feature is the use of modularity. The only disagreement in this area seems to

be to what degree it is necessary. Both MVC and MVP argue that three general module

types are enough, while MVVM argues that four are needed (seeing as how Controllers/

Presenters are not actually replaced by the inclusion of ViewModels, just possible

assisted). VIPER meanwhile argues for six.

A second feature is the need for clear separation between those modules, or

decoupling. Here, disagreements seem to center mostly on what level of separation is

required and how to implement it. MVP makes the argument that better decoupling can

be achieved by just reworking an already present module (i.e., the Controller), redefining

its role and strictly limiting how it goes about it. Alternatively, MVVM takes the

approach that a new intermediary module is necessary to better separate two modules—

Models and Views specifically—which are perhaps prone to tight coupling.

The third feature is a clear-cut, organized structuring of modules, perhaps best

described as a hierarchy. Disagreements seem to focus on which modules should actually

interact with one another and the direction of those interactions, which in practical terms

could easily inform which module acts as the caller of the other. While Reenskaug’s

original vision of MVC does not seem to concern itself much with the directionality of

module interactions, both Apple’s and Microsoft’s versions of the pattern do. Apple’s

version of MVC, like the MVVM design pattern, doesn’t allow for direct interaction

between the Model(s) and View(s) of an application, instead requiring the use of an

intermediary module. In both situations, the central position of these intermediary

modules makes them likely candidates as root or caller modules. Meanwhile, one of

MVP’s main distinguishing principles is the fact that the one of its modules—the

27

Presenter—operates in a highly restricted unidirectional manner, only receiving updates

from one module type and only sending updates to another.

Given the fact that these three features of modularity, module decoupling, and

module hierarchy are what seem to be shared by all of the MVC and MVC-like design

patterns—not specific module names, numbers, roles, or placements—it seems

reasonable to assume that they are the contributing factors to the flexibility and

adaptability often associated with the patterns and the main reasons for their shared

success and popularity among industry leaders. They are the features that are actually put

to use by developers in order to make flexible and adaptable software, capable of

accommodating a wide variety of users and interface types, and give life to Reenskaug’s

direct manipulation metaphor. It therefore makes sense to focus on these three features

when attempting to develop criteria for extensible software development.

28

THIS PAGE INTENTIONALLY LEFT BLANK

29

IV. CRITERIA FOR EXTENSIBLE SOFTWARE DEVELOPMENT

Using the three key features identified in the previous section of modularity,

module decoupling, and module hierarchy, three criteria can be extrapolated for

extensible software development. When applied together, the notion is that they should

result in the quality of extensibility—if not in general, then at least in a similar fashion or

to a similar degree as relying upon an extensible-minded design pattern such as MVC or

one of its alternatives. These are not superficial aspects of an application’s code base, like

the use of particular component naming conventions, but rather fundamental decisions

regarding software structure and operation. Additionally, they are not necessarily

independent, but can be seen as interacting with one another, each helping facilitate the

next and/or building off the foundation established by the previous.

A. MODULE DECOMPOSITION

As a first criterion, with the goal of creating modularity, an application should be

decomposed into various distinct modules made up of highly related code. This can be

“achieved by grouping together logically related elements, such as statements,

procedures, variable declarations, object attributes and so on in increasingly greater levels

of detail.”64 Deciding what constitutes a logical relation between different portions of

code—and therefore deciding which elements should be grouped together or set apart—

can be argued to be somewhat subjective, especially given the fact that all code found

within an application should in some way be related. But perhaps a good way to think

about relationships is merely in terms of distinct application tasks.

With any task, there is a starting point, ending point, and a metric of success or

failure, which can be observed either when the task is finished or along the way. This fact

aids in the decomposition process, because it provides a determinable threshold of logical

relation: that is to say, any portions of code that perform operations between a task’s

beginning and end in order to produce some measurable element should probably be

64 Philip A. Laplante, What Every Engineer Should Know About Software Engineering, (Boca Rotan,

FL: CRC Press, 2007), 85.

30

grouped together. But even better, thinking in terms of tasks has two distinct benefits.

The first benefit is testability. With task-based modules, there is a clear correlation

between the structure of the module and how the module and its code can be tested. In the

end, the module need only be started, possibly allowed to finish, and the results of its

labor compared against some expected value(s). The second benefit of thinking in terms

of task-based modules is that they for the most part reveal when further decomposition is

probably unnecessary. After all—through the process of separating tasks, then separating

those tasks into subtasks, and so on—at some point a task will become essentially

irreducible, with each subsequent attempt at decomposition returning the same (or for all

intents and purposes, equivalent) start and end points and measurable element(s). Figure

7 illustrates the process of decomposing a module into subordinate modules.

31

In this illustration, modules are depicted as being decomposed into smaller and smaller
modules. “The arrows represent input and outputs in the procedural paradigm. In the
object-oriented paradigm, they represent method invocations and messages. The boxes
represent encapsulated data and procedures in the procedural paradigm. In the object-
oriented paradigm they represent classes.”65

Figure 7. Module decomposition66

B. MODULE DECOUPLING

As a second criterion, with the goal of producing loosely coupled modules,

modules should be decoupled to the furthest degree that is possible. In the most general

terms, this means that internal design of one module should not be reliant on the internal

design of another. This is perhaps best facilitated through the use of “information

hiding,” which (if done well) results in situations where “only the function of the code [of

a particular module] … is visible to other modules, not the method of implementation.”67

65 Ibid, 86.
66 Ibid.
67 Ibid, 88, 90.

32

This manner of decoupling modules is effective simply by virtue of the fact that modules

cannot become reliant on what they cannot see.

Thinking primarily in terms of objected-oriented languages, information hiding is

for the most part achieved through encapsulation and the use of public and private

elements. By only allowing each module’s data or behavior to be accessed by others “via

a published interface,” modules cannot directly access, manipulate, or retrieve the data of

one another (actions sometimes referred to as “inappropriate intimacy”).68 As a result,

they must independently operate on the data they are allowed to retrieve from one

another. This may end up in more overall work having to be done on the data itself, but it

also reduces the chance that the operations of any two modules will become inseparable.

Of course, even with the use of encapsulation, it is possible for modules to

become overly aware of each other’s methods of implementation. This can easily occur

when modules trade data or data structures that have a highly customized nature or

format, which possibly hints at, encourages, or even forces the methods of

implementation found within all concerned modules. As a result, encapsulation alone

may not be enough to encourage loose coupling and efforts should be made to keep the

data and behavior that is accessible through published interfaces as general and

implementation agnostic as possible, thus supporting actual independence of

implementation. Figure 8 shows two versions of the same theoretical application—one

that has been effectively decoupled, resulting in a minimum of interactions, and another

that has not been effectively decoupled, resulting in high likelihood of implementation

dependencies among its three modules.

68 Ibid, 94; Martin Fowler, Refactoring: Improving the Design of Existing Code, (Boston: Addison

Wesley Longman, 1999), 85.

33

An illustration of (a) loosely coupled or decoupled and (b) tightly coupled modules. “The
inside squares represent statements or data, and the arcs indicate functional
dependencies.”69

Figure 8. Module decoupling70

C. MODULE HIERARCHY

Finally, as a third criterion, to produce module hierarchy, module interactions

should be as one-way as possible, corresponding to clear-cut and easy to follow master/

detail or caller/callee relationships between the components.

69 Laplante, What Every Engineer Should Know About Software Engineering, 87.
70 Ibid.

34

In programming languages such as Swift and C#, these module interactions are

then facilitated through the inheritance of often highly standardized abstract classes,

interfaces, or protocols. These structures enforce certain characteristics when it comes to

module interactions, not only in terms of what behaviors may be accessed and data can be

sent back and forth, but also how. They discourage two-way coupling (i.e., when a

module acts as both a caller and callee of another module) and encourage delegation and

the presence of clear module levels or tiers within the application’s overall structure.

 This last point is of particular importance and worth stressing. As David Lorge

Parnas explains in his essay “On the criteria to be used in decomposing systems into

modules,” hierarchical, leveled or tiered organization has two very strong benefits.71 For

one, it promotes greater simplicity of modules, because they can rely on the services of

lower priority, higher level, callee, or detail modules to perform work for them, freeing

them from the burden of having to implement the services themselves.72 Second—and

perhaps of greater importance in a discussion on extensible software development—a

hierarchical organization allows one to “cut off the upper levels and still have a usable

and useful product.”73 Parnas goes on to explain:

The existence of the hierarchical structure assures us that we can “prune”
off the upper levels of the tree and start a new tree on the old trunk. If we
had designed a system in which the “low level” modules made some use
of the “high level” modules we would not have the hierarchy, [therefore]
we would find it much harder to remove portions of the system, and
“level” would not have much meaning in the system.74

71 David Lorge Parnas, “On the Criteria To Be Used In Decomposing Systems Into Modules,”

(Pittsburgh, PA: Carnegie Mellon University, 1971), 23, last modified June 30, 2018, https://figshare.com/
articles/On_the_criteria_to_be_used_in_decomposing_systems_into_modules/6607958.

72 Ibid, 23.
73 Ibid, 23.
74 Ibid, 32.

35

In this figure, the modules are structured into a hierarchy, with the solid black lines
between them representing interactions. Orange modules are to be retained while blues
modules represent those that can be pruned and replaced or modified to extend the
application and add new functionality.

Figure 9. Hierarchical module structure

These thoughts are clearly related to the goal of extensible software development. It is

perhaps therefore not surprising that a practice known as “Parnas partitioning,” in which

developers attempt to push code and functionality that is likely to be changed in the

future into higher level and prune-able modules is often argued as a best practice when it

comes to code modularization, information hiding, and extensible software

development.75

D. CRITERIA OVERVIEW

In looking at the criteria outlined earlier for extensible software development, it is

easy to see how each can potentially interact with and help facilitate the next. The

75 Laplante, What Every Engineer Should Know about Software Engineering, 90.

36

decomposition of code into modules can help create the basic building blocks of an

application. The code—separated into logically related groupings—is easier to work

with, debug, and test. The localization of issues and code becomes easier and the code

base is therefore much more modifiable from the perspective of developers and testers.

With modules present, it would then be nice to limit the ways in which refactoring one

module might require the refactoring of another. This is where module decoupling comes

in. With modules that are loosely coupled, the overall code base becomes far more

reusable, as modules that are not altered can potentially just be reused. With modules that

have been decoupled to a sufficient degree present, the last concern is module hierarchy.

As modules interact, performing services for one another, they can become dependent on

one another. Having modules that are organized in a way that allows for the easy

refactoring, removal, or replacement of certain modules while limiting the negative

effects of such actions on the application, including the need to substantial refactor

neighboring modules, is really the last required element for software extensibility.

Therefore, it makes sense that, when developing or reviewing software for use by the

DoD, these three criteria should be looked for and rated. Put another way, if modules are

not found to be cleanly decomposed and decoupled, or the organization of an

application’s code is confusing and prone to things like circular or multilevel

dependencies, it is probably reasonable to assume that that application will not be very

extensible.

37

V. CASE STUDY

While the overview of the criteria for extensible software development in the

previous chapter may be helpful for some, others may gain a better understanding of the

discussed concepts by viewing ways in which they may be applied in a real-world

context. What follows is a case study of a simple to-do list application. The application is

written in Swift—a modern object-oriented programming language used for Apple

devices—and for the most part conforms to the MVC design pattern, with perhaps some

slight variations. However, perhaps most importantly, the code of this application

demonstrates how the criteria discussed in the previous chapter might be found in real-

world, working software. (The code belonging to modules that are mentioned but not

directly referenced in this chapter can be found in the appendix of this thesis.)

A. MODULE DECOMPOSITION

As discussed previously, an application should be decomposed into modules. That

is to say, it should be organized into distinct groupings of logically related portions of

code, often defined by roles or tasks performed by the application. This will help make

the code base easier to work with, test, and debug, and thus far more modifiable.

Unfortunately, when developers think of module decomposition, they might not

think critically enough. For example, they may think only in terms of Models, Views, and

Controllers. In reality, these modules should probably only be thought of as general

guides. More to the point, they do not perfectly define what code should or should not be

grouped together or separated out. This means that programmers should always think

critically about the code they are developing, regardless of what module naming

conventions (e.g. MVC, MVVM, MVP) they may be relying upon, always asking

themselves if code that is located within a particular module is essential to that module’s

defined role and tasks. If it is not, and it can be separated out into a distinct module, it

probably should be.

An excellent example of this type of code, which can confuse developers in terms

of where it should or should not go, can make up a module sometimes known as a Model

38

Manager. A Model Manager typically works between a Model (or Models) and a View

Controller, taking on the role of an intermediary. It receives signals from the View

Controller, then gets or sets data stored in a Model accordingly. Sometimes it returns

information—which is itself the result of copied and possibly then manipulated data

stored in a Model—back to the View Controller. However, perhaps most importantly, the

code contained within a Model Manager could easily be found within the View

Controller in certain situations.

There are various reasons why one would probably not want to put the code found

in a Model Manager into a View Controller. One main reason, discussed in the next

section of this chapter, involves raising the likelihood of tight coupling between the

Model(s) and View Controller. The second reason has to do with the already mentioned

issue of module bloat, which often occurs when Controllers attempt to incorporate too

many tasks and their code.

Generally speaking, the less code and fewer tasks contained within a module, the

better. Less code means the module is probably easier to read and fully understand, which

can significantly aid those developing or maintaining the code base of the application.

Fewer tasks means the module will more than likely be easier to test and debug, as it will

probably have a lower number of inputs, outputs, and internal operations to check and

validate. To avoid Controller bloat, the Master View Controller class found within this

thesis’s case study application relies upon the use of a Model Manager, which is

comprised of the following code:

//
// ElementManager.swift
// toDoListCaseStudyApp
//
// Created by Damon Alcorn on 4/8/18.
// Copyright © 2018 Damon Alcorn. All rights reserved.
//

import UIKit

import os.log

class ElementManager {

 // MARK: Properties

39

 private var elementGroup: [String: Element]

 // MARK: Initialization

 init() {

 elementGroup = [String: Element]()

 loadElements()
 }

 // MARK: Public Methods

 func getElementTemplate() -> [String: String] {

 return [“title”: “Empty,”
 “body”: “Empty,”
 “dueDate”: Date().description]
 }

 func addElementUsing(template: [String: String]) {

 let newEntry = Element(title: template[“title”]!, body:
 template[“body”]!, dueDate: template[“dueDate”]!)

 self.elementGroup[(newEntry.getCreationDate())] = newEntry

 saveElements()
 }

 func updateElementUsing(creationDate: String, updates: [String:
 String]) {

 self.elementGroup[creationDate]?.set(title: updates[“title”]!)

 self.elementGroup[creationDate]?.set(body: updates[“body”]!)

 self.elementGroup[creationDate]?.set(dueDate:
 updates[“dueDate”]!)

 saveElements()
 }

 func removeElementWith(creationDate: String) {

 self.elementGroup[creationDate] = nil

 saveElements()
 }

 func getContentsOfElementWith(creationDate: String) ->
 [String:String] {

 return [“body”: (self.elementGroup[creationDate]?.getBody())!,

40

 “title”:
 (self.elementGroup[creationDate]?.getTitle())!,
 “dueDate”:
 (self.elementGroup[creationDate]?.getDueDate())!]
 }

 func elementCount() -> Int {

 return self.elementGroup.count
 }

 func sortedElementCreationDates() -> [String] {

 return [String](elementGroup.keys).sorted()
 }

 // MARK: Private Methods

 private func saveElements() {

 let isSuccessfulSave =
 NSKeyedArchiver.archiveRootObject(elementGroup, toFile:
 Element.ArchiveURL.path)

 if isSuccessfulSave {

 os_log(“Elements successfully saved.,” log:
 OSLog.default, type: .debug)

 } else {

 os_log(“Failed to save items...,” log: OSLog.default, type:
 .error)
 }
 }

 private func loadElements() {

 if let savedElements =
 NSKeyedUnarchiver.unarchiveObject(withFile:
 Element.ArchiveURL.path) as? [String: Element] {

 self.elementGroup = savedElements
 }
 }
}

One thing that is immediately obvious when viewing the code of the Element Manager

class is just how much logic it contains and thus removes from the Master View

Controller class. In the case of this to-do list application, if a Model Manger were not

used to handle interactions between the View Controller and the elements comprising the

Model, the Master View Controller class would have to contain its own elementGroup

41

property, as well as code that delivered the same functionality as the seven public

methods found within the Element Manager class. Additionally, the Master View

Controller class would have to incorporate the functionality of the two private methods

found within the Element Manager class, meaning the already much larger View

Controller would have to also take on tasks that, in the application’s current form, the

View Controller is not directly concerned with or even aware of.

When one thinks of the numerous tasks that might be handled by a View

Controller—including but not limited to interacting with numerous Views and Models,

routing aspects of application control and state between other Controllers, and overseeing

actions such as hardware communications and networking—the incredible speed and ease

in which the module can become bloated is made apparent. That is why, if it becomes

possible to separate out the code of any of these tasks and place it in a distinct

subordinate helper module, it should probably be done, regardless of whether the

application already has its requisite Models, Views, and Controllers.

In this way, looking for an acceptable level of module decomposition can be seen

as going beyond simply requiring that an application be composed of modules of

particular names and roles. Rather, it is the position that every module should be well

defined in its role and limited in the number of tasks it takes on, and that existing

modules may need to be broken up and new ones created if this is not the case.

B. MODULE DECOUPLING

One of the reasons module decomposition may not be done is simply because a

programmer might view it as too difficult or time-consuming to do. After all, the work

often requires planning, because inter-module communications can be more restrictive

than the communications between the elements found within a single module. In order to

bypass that restrictiveness and required planning, yet still separate code into distinct

modules, a programmer might relax their use of information hiding techniques when

developing their modules; for example, they may weaken module encapsulation. The

result of this can be situations in which the internal elements of various modules interact

freely and extensively. While the code of these modules may appear to be separated into

42

distinct groupings, those separations are essentially nominal, there benefit undone by

interactions that for the most part fuse the modules together. This is the essence of the

previously mentioned situations of inappropriate intimacy or tight coupling between

modules.

Module decoupling focuses on creating loose coupling between modules.

Interactions are kept as general as possible and to a minimum. While the function of each

module can and probably should be obvious, what goes on inside the module should not

be. By not being allowed to know too much about each other’s internal code, modules

cannot become dependent on their neighbors’ implementations. This state of unawareness

protects each module from changes that may be done to the others, and vice versa, which

in turn raises the likelihood that modules will remain reusable in the face of any potential

modifications to the application’s code.

As stated in the previous section of this chapter, not using a Model Manager like

the Element Manager class could raise the likelihood of tight coupling between the

Master View Controller class and the Model(s) it relies upon. This is due to the fact that a

Model Manager—in its role as an intermediary between the Model and View

Controller—adds a level of abstraction between the two module types. In looking at the

code of the Element Manager class, it becomes apparent that the module provides the

Master View Controller very little information about the Model(s) being accessed. The

module provides a method (named sortedElementCreationDates) that the Master View

Controller class can use to get the unique identifiers of all the data elements that are

available to it. Those identifiers must then be used to get or set any data elements. How

the Element Manager class stores, retrieves, or manipulates the data elements is for the

most part a total mystery to the Master View Controller class.

If a Model Manager were not used and the logic that is currently present in the

Element Manager class were instead located in the Master View Controller class, the

Master View Controller class would contain something along the lines of the

elementGroup property. Although currently the property is a dictionary data structure, if

located in the Master View Controller, it could easily be refactored as a list data structure.

This change might make sense to a developer who wanted to simplify and reduce code,

43

because the sortedElementCreationDates method could be eliminated. The data stored

within the list version of elementGroup could simply be searched for, retrieved, and set

using indices. Given the fact that the Master View Controller class inherits iOS’s

standard Table View Controller class—which utilizes indices rather extensively in its

methods for manipulating subordinate Views—the ability to search for, get, and set

Model elements through the use of indices would probably be considered far more

straightforward, easy, and efficient than using unique identifiers. Additionally, with direct

access to the elementGroup property, the Master View Controller class would also have

direct access to the Element class objects making up the list. This would allow for the

elimination of the addElementUsing, updateElementUsing, removeElementWith, and

getContentsOfElementWith methods. String values retrieved from subordinate Views

could simply be entered directly into Element class objects, and vice versa. But to do all

of this would create a problem. While the need for an entire class and much of its code

would be done away with (i.e., the Element Manger class and many of its public

methods), such changes would also fuse together the Master View Controller class’s

methods for updating Views with a very particular implementation of the application’s

Model component (i.e. Element class objects stored in a list). In short, the View

Controller and Model would become tightly coupled and any changes to one module’s

implementation would probably necessitate extensive refactoring of the other.

In the above scenario, the level of abstraction that separated the View Controller

and the Model(s) was allowed to be significantly reduced with the removal of the

intermediary Model Manager module. This fact shows how published interfaces like the

public methods of the Element Manager class can not only offer access to data and

behaviors, but can also help restrict it as well. After all, instead of accepting indices, they

require strings in the form of provided unique identifiers. Instead of returning the actual

Element class objects stored in the elementGroup property, they construct and return

dictionaries. Working in this manner, the methods allow access to Model data, without

acknowledging how it is actually stored. When viewed in this manner, it becomes clear

that the question one should ask when designing or reviewing an interface is not simply

how effectively does it provide information, but also how effectively does it hide

44

information, abstracting away and not leaking possible clues regarding module

implementation.

Taking these efforts a step further, if a caller module has no need to access

numerous callee module properties or methods—for example, only requiring a single

return message, which might be data or simply an acknowledgement that some task has

been successfully completed—then a delegate can be used instead of an interface.

In this thesis’s case study application, the Master View Controller class and Detail

View Controller class use a delegate to commutate called the Data Delegate protocol. The

code of the all three classes looks as follows:

//
// DataDelegate.swift
// toDoListCaseStudyApp
//
// Created by Damon Alcorn on 5/24/18.
// Copyright © 2018 Damon Alcorn. All rights reserved.
//

import Foundation

protocol DataDelegate: AnyObject {

 func retrieve(objects: [String:String])
}

//
// MasterViewController.swift
// toDoListCaseStudyApp
//
// Created by Damon Alcorn on 4/8/18.
// Copyright © 2018 Damon Alcorn. All rights reserved.
//

import UIKit

class MasterViewController: UITableViewController, DataDelegate {

 // MARK: - Properties

 private var elementManager = ElementManager()

 // MARK: - Setup methods

 override func viewDidLoad() {

 print(“In MasterViewController.viewDidLoad”)

45

 super.viewDidLoad()

 self.navigationItem.leftBarButtonItem = self.editButtonItem
 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()
 }

 override func numberOfSections(in tableView: UITableView) -> Int {

 print(“In MasterViewController.numberOfSections”)

 return 1
 }

 override func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 print(“In MasterViewController.numberOfRowsInSections”)

 return elementManager.elementCount()
 }

 override func tableView(_ tableView: UITableView, cellForRowAt
 indexPath: IndexPath) -> UITableViewCell {

 print(“In MasterViewController.tableView - Creating cell:,”
 indexPath.row)

 let cellIdentifier = “CustomTableViewCell”

 guard let cell = tableView.dequeueReusableCell(withIdentifier:
 cellIdentifier, for: indexPath) as? CustomTableViewCell
 else {

 fatalError(“The dequeued cell is not an instance of
 CustomTableViewCell.”)
 }
 cell.cellId =
 elementManager.sortedElementCreationDates()[indexPath.row]

 let data =
 elementManager.getContentsOfElementWith(creationDate:
 cell.cellId)

 cell.cellLabel.text = data[“title”]

 print(“\t Created ,” cell.cellLabel.text!, cell.cellId)

 return cell
 }

46

 override func tableView(_ tableView: UITableView, canEditRowAt
 indexPath: IndexPath) -> Bool {

 return true
 }

 override func tableView(_ tableView: UITableView, commit
 editingStyle: UITableViewCellEditingStyle, forRowAt indexPath:
 IndexPath) {

 print(“In MasterViewController.tableView - Deleting cell:,”
 indexPath.row)

 if editingStyle == .delete {

 if let cell = tableView.cellForRow(at: indexPath) as?
 CustomTableViewCell {

 print(“\t Deleting ,” cell.cellId)

 elementManager.removeElementWith(creationDate:
 cell.cellId)

 tableView.deleteRows(at: [indexPath], with: .fade)
 }
 }
 }

 // MARK: - Navigation methods

 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 print(“In MasterViewController.prepareForSegue”)

 if let addItemVC = segue.destination as? DetailViewController {
 addItemVC.dataDelegate = self

 if let indexPath = tableView.indexPathForSelectedRow {

 print(“\t Cell number,” indexPath.row, “was clicked”)

 let cell = tableView.cellForRow(at: indexPath) as?
 CustomTableViewCell

 print(“\t Cell ID is ,” (cell?.cellId)!)

 let data =
 elementManager.getContentsOfElementWith(
 creationDate: (cell?.cellId)!)

 addItemVC.set(details: data)
 }
 else {
 print(“\t + was clicked”)

47

 let data = elementManager.getElementTemplate()

 addItemVC.set(details: data)
 }
 }
 }

 // MARK: - Delegate methods

 func retrieve(objects: [String:String]) {

 print(“In MasterViewController.retrieveItem”)

 if let indexPath = tableView.indexPathForSelectedRow {

 print(“\t Cell number,” indexPath.row, “was clicked”)

 let cell = tableView.cellForRow(at: indexPath) as?
 CustomTableViewCell

 elementManager.updateElementUsing(creationDate:
 (cell?.cellId)!, updates: objects)

 tableView.reloadRows(at: [indexPath], with: .automatic)

 print(elementManager.sortedElementCreationDates())
 }
 else {

 print(“\t + was clicked”)

 let newIndexPath = IndexPath(row:
 elementManager.elementCount(), section:0)

 elementManager.addElementUsing(template: objects)

 tableView.insertRows(at: [newIndexPath], with: .automatic)

 print(elementManager.sortedElementCreationDates())
 }
 }
}

//
// DetailViewController.swift
// toDoListCaseStudyApp
//
// Created by Damon Alcorn on 4/8/18.
// Copyright © 2018 Damon Alcorn. All rights reserved.
//

import UIKit

import os.log

48

class DetailViewController: UIViewController {

 // MARK: - Properties

 @IBOutlet weak var saveButton: UIBarButtonItem!

 @IBOutlet weak private var scrollView: UIScrollView!

 @IBOutlet weak private var stackView: UIStackView!

 weak var dataDelegate: DataDelegate?

 private var details: [String: String] = [:]

 // MARK: - Set up methods

 func set(details: [String:String]) {

 print(“In DetailViewController.setDetails”)

 self.details = details
 }

 override func viewDidLoad() {

 print(“In DetailViewController.viewDidLoad”)

 super.viewDidLoad()

 let insets = UIEdgeInsetsMake(20.0, 0.0, 0.0, 0.0)

 scrollView.contentInset = insets

 scrollView.scrollIndicatorInsets = insets

 dynamicSetUp()
 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()
 }

 private func dynamicSetUp() {

 print(“In DetailViewController.dynamicSetUp”)

 stackView.spacing = 10

 stackView.distribution = .fillProportionally

 let detailKeys = Array(details.keys).sorted().reversed()

 for key in detailKeys {

49

 let label = UILabel()

 label.text = key

 stackView.addArrangedSubview(label)

 let textField = UITextField()

 textField.text = details[key]

 textField.backgroundColor = UIColor.white

 stackView.addArrangedSubview(textField)
 }
 }

 private func returnMessage() {

 print(“In DetailViewController.returnMessage”)

 let labels = stackView.arrangedSubviews.filter{$0 is UILabel}
 as? [UILabel]

 let textFields = stackView.arrangedSubviews.filter{$0 is
 UITextField} as? [UITextField]

 for i in 0..<stackView.arrangedSubviews.count/2 {

 let key = labels![i].text

 let value = textFields![i].text
 details[key!] = value
 }

 print(details)

 dataDelegate?.retrieve(objects: details)

 navigationController?.popViewController(animated: true)
 }

 // MARK: - Actions

 @IBAction func saveButtonClicked(_ sender: UIBarButtonItem) {

 print(“In DetailViewController.saveClicked”)

 returnMessage()
 }

 // MARK: - Navigation

 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 print(“In DetailViewController.prepareForSegue”)

50

 }
}

In observing the code of the Master View Controller and Detail View Controller

classes, it quickly becomes clear how little the two actually know about each other, with

all of their interactions going through the Data Delegate protocol. By invoking the

protocol, the Master View Controller class simply makes it known to other modules that

it implements the method (named retrieve) prototyped in the Data Delegate protocol. A

callee module of the Master View Controller class does not know anything else about its

caller. Working in the opposite direction, when the Master View Controller class assigns

a delegate, it need only know that the callee class possesses a Data Delegate type

property. The module does not need to know anything else about its callee module, which

in this case is the Detail View Controller class. The result of all of this is coordinated

interaction between the two classes, but also almost compete unawareness and a lack of

concern regarding what the other class is doing with the data or messages it is being sent.

In the end, module decoupling is all about hiding information. Modules should

have an ability to interact with one another, but that interaction should be in a way that

allows modules to remain as independent as possible, without leaking knowledge of their

implementations. Usually this will involve keeping module communications as minimal,

but also as general, as possible. If that is kept in mind, neighboring modules cannot be

developed or changed in ways that become dependent on neighboring modules’

implementations and as a result modules will likely remain more reusable as the

application receives changes to its code base.

C. MODULE HIERARCHY

With module decomposition and decoupling both performed, a possible last

hurdle to extensibility can be the organization of the modules that make up an

application. Modules that work together can quickly form dependencies on one another,

in so far as one can come to rely on the other for the completion of critical tasks. While

certain dependencies are unavoidable, those that are circular, convoluted, or multilevel in

nature can result in code that is difficult to understand, debug, and modify and should

51

therefore be avoided. Additionally, modules that are highly likely to receive extensive

refactoring or replacement should probably be pushed to the branches or leaves of any

module hierarchy, where their alteration or removal will directly impact fewer modules

found within the application. This means that, when it comes to module organization,

whenever possible modules should work together in a simple to follow, caller/callee or

master/detail, hierarchical fashion.

Some excellent examples of this kind of clear cut, hierarchical organization are

displayed in the Master View Controller class’s interactions with both the Element

Manager and Detail View Controller classes. In the former case, the Master View

Controller class acts as the caller, interacting with the Element Manager through that

class’s published interface. In the latter case, the Master View Controller class again acts

as the caller, but this time interacting with the Detail View Controller class through the

use of the Data Delegate protocol. In both of these cases, the relationship is one-way,

with the Master View Controller utilizing the other classes for particular subtasks.

Neither the Element Manager nor the Detail View Controller (nor any of their

subordinate objects) act as the caller of the Master View Controller class.

Given the application’s nature as a to-do list, it makes sense that the Master View

Controller class is located at the root of these interactions. The Master View Controller

class inherits the iOS Table View Controller class, meaning it is specifically setup to

manage a vertically scrolling, updatable, cell-based, list-like graphical user interface. This

essentially means the Master View Controller class delivers the core functionality most

users would probably expect to see in a phone-based to-do list application. This makes it

highly unlikely that it will be replaced during the lifetime of the application. On the other

hand, if the Model(s) used by the application for its data storage changed (for example, to

something like a remote SQL database), the Element Manager class might need to be

refactored. Additionally, the Detail View Controller class could easily be replaced with a

different class that delivers some new form of functionality in terms of data display and

editing. Really, the only real requirements of that new class would be that it inherited the

standard View Controller class and implemented the Data Delegate type property.

52

In the end, the interactions between the Master View Controller class and the

Element Manager or Detail View Controller classes demonstrate something very similar

to the concept of Parnas Partitioning. They are strictly one-way relationships, in which

functionality that is likely to change has been pushed out into easier to replace branch/

leaf modules. Additionally, they show how once this sort of module organization has

been achieved, concepts such as inheritance and subclassing can be leveraged to make the

replacement of those branch/leaf modules quicker and easier, as the interfaces or

delegates through which they communicate are already established. In this way, it seems

apparent how a clear-cut caller/callee or master/detail module hierarchy may be the final

piece in creating an extensible application.

53

VI. CONCLUSION

Compared to non-extensible applications, extensible applications can often be

built faster, have fewer bugs, are more secure, and have the capability to adapt to users

changing needs. Given the DoD’s desire to quickly and easily field cost effective, stable,

and secure applications that provide a maximum operational advantage, it would seem

that the DoD has an interest in developing extensible applications. Unfortunately, the

software development documents and processes utilized by the DoD do not seem to fully

support or encourage extensible software development. The intent of this thesis was to

help create an educational guide that could work within the context of the highly flexible

Design Definition process, providing criteria useful in the development or acquisition of

extensible software, without requiring strict adherence to any particular extensible-

minded design pattern.

Looking to the MVC and MVC-like design patterns that are popular among

industry leaders for indications of which key features seem most necessary for

extensibility, this thesis came up with three criteria. The first criterion was the

decomposition of application code into modules with well-defined roles and limited

tasks. The second criterion was the decoupling of those modules through the using of

information hiding techniques, resulting in loosely coupled modules with internal

operations that are as hidden and abstracted away as possible. The third criterion was the

organization of those loosely coupled modules into a clear-cut hierarchical structure,

which utilizes straightforward caller/callee relationships, as well as locates unlikely to

change functionality in root or lower-level modules and likely to change functionality in

easily pruned higher-level branch or leaf modules. Together, these three criteria can be

leveraged in the development or acquisition of software code bases that are potentially

more modifiable, reusable, and extensible.

Looking forward, the three criteria outlined in this thesis could be tested further

using other case study applications. For example, work could be done using examples of

extensible programs written in the C or Go languages, examining how procedural

programming effects the application’s alignment with the criteria. Additionally, more

54

design patterns, including those outside of the MVC family, could be assessed in order to

elucidate what they do well or poorly with regard to ensuring extensibility. Such data

could be used to potentially enhance the criteria. In the end, all research of this type could

enhance the DoD’s (and other interested parties’) understanding of extensible software

development and help add to the knowledge base that is necessary for the effective

development and acquisition of extensible applications.

55

APPENDIX

The code of the Element class and Custom Table View Cell class of the case

study application, mentioned in Chapter V, are included in this appendix.

//
// Element.swift
// toDoListCaseStudyApp
//
// Created by Damon Alcorn on 4/9/18.
// Copyright © 2018 Damon Alcorn. All rights reserved.
//

import UIKit

import os.log

class Element: NSObject, NSCoding {

 //MARK: Properties

 private var title: String

 private var body: String

 private var dueDate: String

 private var creationDate: String

 //private var userMetaData: String

 //MARK: Initialization

 init(title: String, body: String, dueDate: String) {

 self.title = title

 self.body = body

 self.dueDate = dueDate

 let date = Date()

 self.creationDate = date.description

 //self.userMetaData = ““
 }

 // MARK: Public methods

 func set(title: String) {

56

 self.title = title
 }

 func set(body: String) {

 self.body = body
 }

 func set(dueDate: String) {

 self.dueDate = dueDate
 }
 /*
 func set(userMetaData: String) {

 self.userMetaData = userMetaData
 }
 */
 func getTitle() -> String {

 return self.title
 }

 func getBody() -> String {

 return self.body
 }

 func getDueDate() -> String {

 return self.dueDate
 }
 /*
 func getUserMetaData() -> String {

 return self.userMetaData
 }
 */
 func getCreationDate() -> String {

 return self.creationDate
 }

 // MARK: Private methods

 private func set(creationDate: String) {

 self.creationDate = creationDate
 }

 //MARK: Types

 struct PropertyKey {

 static let title = “title”

57

 static let body = “body”

 static let dueDate = “dueDate”

 static let creationDate = “creationDate”

 //static let userMetaData = “metaData”
 }

 // MARK: Archiving Paths

 static let DocumentsDirectory = FileManager().urls(for:
 .documentDirectory, in: .userDomainMask).first!

 static let ArchiveURL =
 DocumentsDirectory.appendingPathComponent(“elements”)

 //MARK: NSCoding

 func encode(with aCoder: NSCoder) {

 aCoder.encode(title, forKey: PropertyKey.title)

 aCoder.encode(body, forKey: PropertyKey.body)

 aCoder.encode(dueDate, forKey: PropertyKey.dueDate)

 aCoder.encode(creationDate, forKey: PropertyKey.creationDate)

 //aCoder.encode(userMetaData, forKey: PropertyKey.userMetaData)
 }

 required convenience init?(coder aDecoder: NSCoder) {

 guard let creationDate = aDecoder.decodeObject(forKey:
 PropertyKey.creationDate) as? String else {

 os_log(“Unable to decode the creation date for an Element
 object.,” log: OSLog.default, type: .debug)

 return nil
 }

 let title = aDecoder.decodeObject(forKey: PropertyKey.title)
 as? String

 let body = aDecoder.decodeObject(forKey: PropertyKey.body) as?
 String

 let dueDate = aDecoder.decodeObject(forKey:
 PropertyKey.dueDate) as? String

 //let userMetaData = aDecoder.decodeObject(forKey:
 PropertyKey.userMetaData) as? String

58

 self.init(title: title!, body: body!, dueDate: dueDate!)

 self.set(creationDate: creationDate)

 //self.set(userMetaData: userMetaData!)
 }
}

//
// CustomTableViewCell.swift
// toDoListCaseStudyApp
//
// Created by Damon Alcorn on 4/10/18.
// Copyright © 2018 Damon Alcorn. All rights reserved.
//

import UIKit

class CustomTableViewCell: UITableViewCell {

 @IBOutlet weak var cellLabel: UILabel!

 var cellId: String = ““

 override func awakeFromNib() {

 super.awakeFromNib()

 // Initialization code
 }

 override func setSelected(_ selected: Bool, animated: Bool) {

 super.setSelected(selected, animated: animated)

 // Configure the view for the selected state
 }
}

59

LIST OF REFERENCES

Apple. “Model-View-Controller.” Developer. Accessed May 22, 2018.
https://developer.apple.com/library/archive/documentation/General/Conceptual/
DevPedia-CocoaCore/MVC.html.

Bourque, Pierre, and Richard E. Fairley (eds.). Guide to the Software Engineering Body
of Knowledge. Version 3.0. Piscataway, NJ: IEEE Computer Society, 2014.

Britch, David, and Craig Dunn. “The Model-View-ViewModel Pattern.” Microsoft. Last
modified August 6, 2017. https://docs.microsoft.com/en-us/xamarin/xamarin-
forms/enterprise-application-patterns/mvvm.

Fowler, Martin. Refactoring: Improving the Design of Existing Code. Boston: Addison
Wesley Longman, 1999.

Franklin, Taylor. “Control your View Controllers with a Model-View-ViewModel
Architecture.” IBM. Last modified January 15, 2016. https://developer.ibm.com/
open/2016/01/15/control-your-view-controllers-with-a-model-view-viewmodel-
architecture/.

International Organization of Standardization. ISO/IEC/IEEE 12207: Systems and
Software Engineering – Software Life Cycle Processes, First Edition 2017–11.
Geneva: ISO/IEC, 2017. Piscataway, NJ: IEEE Computer Society, 2017.

International Organization of Standardization. ISO/IEC 14767, IEEE Std 14767-2006:
Systems and Software Engineering – Software Life Cycle Processes –
Maintenance, Second Edition 2006–09-01. Geneva: ISO, 2006. Piscataway, NJ:
IEEE Computer Society.

International Organization of Standardization. ISO/IEC 15408: Common Criteria for
Information Technology Security Evaluation – Part 2: Security Functional
Components, Ver. 3.1, Rev. 5. Geneva: ISO/IEC, 2017.

Laplante, Philip A. What Every Engineer Should Know About Software Engineering.
Boca Rotan, FL: CRC Press, 2007.

Microsoft. “The MVVM Pattern.” Microsoft Patterns and Practices: Proven Practices for
Predictable Work. Last modified February 10, 2012. https://docs.microsoft.com/
en-us/previous-versions/msp-n-p/hh848246(v=pandp.10).

Mutual Mobile. “Meet VIPER: Mutual Mobile’s Application of Clean Architecture for
iOS Apps.” Last modified September 24, 2014. https://mutualmobile.com/posts/
meet-viper-fast-agile-non-lethal-ios-architecture-framework.

60

National Institute of Standards and Technology. NIST SP-800-53: Security and Privacy
Controls for Federal Information Systems and Organizations, Rev. 4.
Gaithersburg, MD: National Institute of Standards and Technology, 2013.

National Institute of Standards and Technology. NIST SP-800-600: Systems Security
Engineering Considerations for a Multidisciplinary Approach in the Engineering
of Trustworthy Secure Systems, Volume 1. Gaithersburg, MD: National Institute
of Standards and Technology, 2018.

Parnas, David Lorge. “On the Criteria to Be Used in Decomposing Systems into
Modules.” Carnegie Mellon University. 1971. Last modified June 30, 2018,
https://figshare.com/articles/On_the_criteria_to_be_used_in_decomposing_
systems_into_modules/6607958.

Potel, Mike. “MVP: Model-View-Presenter: The Taligent Programming Model for C++
and Java.” Taligent, Inc. 1996. Last modified September 11, 2014.
https://www.researchgate.net/publication/255616200_MVP_Model-View-
Presenter_The_Taligent_Programming_Model_for_C_and_Java_Taligent_Inc.

Reenskaug, Tryve. “The Model-View-Controller (MVC): Its Past and Present.”
University of Oslo. 2003. Last modified August 20, 2003. https://heim.ifi.uio.no/
~trygver/2003/javazone-jaoo/MVC_pattern.pdf.

Reenskaug, Trygve, and James O. Coplien. “The DCI Architecture: A New Vision of
Object-Oriented Programming.” Vilnius University. Last modified March 9,
2009. https://klevas.mif.vu.lt/~donatas/Vadovavimas/Temos/DCI/
2009%20The%20DCI%20Architecture%20-
%20A%20New%20Vision%20of%20OOP.pdf.

Smith, Steve. “Overview of ASP.NET Core MVC.” Microsoft. Last modified January 7,
2018. https://docs.microsoft.com/en-us/aspnet/core/mvc/
overview?view=aspnetcore-2.1.

61

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	18Sep_Alcorn_Damon_First8
	18Sep_Alcorn_Damon
	18Sep_Alcorn_Damon_First8
	18Sep_Alcorn_Damon
	I. Introduction
	A. Problem Overview
	B. Proposed Solution

	II. Background
	A. The dod software development Process
	B. notions OF EXTENSIBILITY In dod software development documents
	C. further need for guidAnce on extensibility

	III. MVC Overview and Analysis
	A. MVC Design pattern background
	B. MVC-like AlternAtives
	C. MVC key features

	IV. Criteria for Extensible software development
	A. Module Decomposition
	B. Module DeCoupling
	C. Module Hierarchy
	D. Criteria Overview

	V. Case Study
	A. Module Decomposition
	B. Module Decoupling
	C. Module Hierarchy

	VI. Conclusion
	appendix
	List of References
	initial distribution list

