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ABSTRACT 

Unmanned systems are gaining popularity in many modern-day applications, and 

their growth potential in unmanned technologies is infinite. These systems have created 

research and development opportunities for enabling autonomous behavior to reduce 

human workload and involvement in tedious operations. This thesis assesses 

autonomy-enabling technologies for conducting search-and-rescue (SA) operations and 

intelligence, surveillance, and reconnaissance (ISR) missions using a small unmanned 

system (sUAS). These technologies include an electro-optical sensor, onboard processor, 

and computer-vision (CV) algorithms. In a previous master’s thesis by Wee Kiong Ang, a 

commercial off-the-shelf (COTS) quadcopter sUAS was integrated with a suite of 

hardware and multiple-moving-target-detection software. Building upon that work, this 

thesis aims to advance the system’s capabilities by exploring the applicability of 

the aforementioned three technologies on a�Q sUAS. Using the systems engineering 

approach, the baseline system deficiencies are identified first. Next, a technology 

enabler review is conducted to explore the relevant COTS products and paradigms. 

Then, through the implementation of a set of changes, the baseline system 

architecture is reassessed and consequently redesigned, followed by an assessment of 

state-of-the-art CV algorithms. After being tested in a field experiment based on SA/

ISR-type mission scenarios, the developed prototype was found to be successful. 
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EXECUTIVE SUMMARY  

Unmanned systems are gaining popularity for various commercial and military 

applications. The hype about civilian unmanned aerial vehicle (UAV) applications such as 

photography, agricultural monitoring, and inspection is driving sales demand and mass 

production volume, which leads to lower unit costs and greater potential market growth. 

On the other hand, production volume for military-specific UAVs is much less robust, 

which results in higher ownership costs for defense spending. According to the Unmanned 

Aircraft Systems Roadmap 2005–2030, the U.S. Department of Defense is exploring the 

concept of using commercial off-the-shelf (COTS) UAVs as “consumable logistic” and 

allowing the commercial market to drive the research and development (R&D). In addition, 

the COTS system will provide a 50-percent solution tomorrow to meet the military’s 

immediate needs, as compared to waiting for a full-scale development to achieve a 70–80-

percent solution in three years (Office of the Secretary of Defense, 2005). As these current 

COTS UAVs have limited performance to support the military mission, any R&D will need 

to include autonomous behavior using vision as a means to advance the capabilities of 

COTS UAVs. The key elements required for vision are: a) a physical sensor, b) the 

computer-vision (CV) algorithm, and c) the computing platform on which the algorithms 

run. 

This thesis elaborates on the past Naval Postgraduate School (NPS) master’s thesis 

titled “Assessment of an Onboard EO [Electro-Optical] Sensor to Enable Detect-and-Sense 

Capability for UAVs Operating in a Cluttered Environment” by Wee Kiong Ang (2017). 

Through the utilization of the baseline system developed in his thesis work, this thesis 

research focuses on problem rectification through system improvements to advance the 

capabilities of a COTS UAV system. To address the problems, this thesis aims to fulfill 

the following research objectives: 

�x Evaluate and determine the limitation of existing EO sensors on the baseline 

system to support the CV algorithm. Consider whether the setup is sufficient 

to meet the requirements for continuous detection and tracking.  



 xx 

�x Perform an assessment of existing CV algorithms and check whether they 

are adequate to support the detection and tracking requirements. Determine 

the recommended improvements or approaches can be made to the 

algorithms.   

�x Evaluate the capabilities of the UAVs in supporting or fulfilling a simulated 

operational scenario. 

In the initial assessment of the physical sensor, the rolling-shutter based EO sensor 

(Logitech C920) produced images with object distortion when the object or the capturing 

platform was moving. Even though the sensor has a high-resolution detector, the image did 

not appear crisp and clear for image processing usage. The thesis studied the effects of 

rolling shutter and global shutter, and established that the object distortion in images was 

attributed to the mode of capturing the image (i.e., how shuttering controlled image 

capture). Since the rolling shutter EO will capture its imagery by row-by-row exposure, the 

distorted image will occur for objects that were moving in the capture process. Hence, the 

result shows that the new EO (Zenmuse X3) with a global shutter is a better alternative for 

capturing moving objects, as well as for system autonomy development. 

For the CV algorithm, the existing algorithm (Purdue and NPS algorithm) had 

multiple occurrences of false positive target detection in the field experiment. Based on the 

thesis research, it was discovered that the false positive results were due to how detection 

has been defined. Since the Purdue/NPS algorithm was designed for moving target 

detection, the capturing sensor is assumed to be stationary. As such, the slight movement 

of the UAV will result in angular difference of the object in a given scene, and the algorithm 

will identify it as a target. Hence, this thesis studied and implemented a state-of-the-art 

object detection based algorithm for the system. Unlike the typical object detection 

algorithm, the new CV algorithm (You Only Look Once, or YOLO) is less straining to the 

computational requirements. The YOLO represents a feasible solution for providing real-

time object detection on embedded processors. 

As for the computing platform, the change in EO senor and CV algorithm makes 

the Odroid-XU4 obsolete. In order to keep pace with the relevant technology, the DJI 
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Manifold system was selected as the computing platform to support the algorithm. The DJI 

Manifold is based on an Nvidia CPU+GPU framework that accelerates the computation-

intensive convolution network layer in the YOLO algorithm. Based on the testing,  the 

Nvidia devices were able to process a sample image (with three objects�•a horse, a dog, 

and a person) with multiple convolution layers and high confidence in approximately 0.3 

seconds. 

Finally, a field test was conducted to demonstrate the capabilities of the system to 

perform a search and rescue (SAR) mission. In the SAR, the mission is broken down into 

three phases (mapping, search, and surveillance). The results show that the COTS UAV 

was able to perform the operations as required by the mission. In the target search phase, 

the EO’s imagery data was processed by the YOLO algorithm, and it was able to work well 

to detect the objects (a person and a car) for the four defined scenarios. Hence, this thesis 

demonstrated advancements in COTS UAV capability through the use of an EO sensor and 

CV algorithm to fulfill mission needs. With the improvements pursued in this thesis, the 

M100 platform (COTS UAV) can be quickly turned around for military missions, which 

is likely a key factor in modern warfare. 
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I. INTRODUCTION  

With the advancement in technology, the use of unmanned systems such as the 

unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) has gained 

popularity in various military and civilian applications. Such applications include 

intelligence, surveillance, and reconnaissance (ISR) operations, strike missions, search and 

rescue operations, agricultural activities, and hobbyists’  usage. According to the U.S. 

Department of Defense (DoD) Unmanned Systems Integrated Roadmap FY2013–2038 

publication, 

The prevalence and uses of unmanned systems continue to grow at a 
dramatic pace. The past decade of conflict has seen the greatest increase in 
unmanned aircraft systems, primarily performing ISR missions. Use of 
unmanned systems in the other domains is growing as well. The growth of 
unmanned systems use is expected to continue across most domains. 
Unmanned systems have proven they can enhance situational awareness, 
reduce human workload, improve mission performance, and minimize 
overall risk to both civilian and military personnel, and all at a reduce cost. 
(2013, 20) 

Hence, the growing demand for unmanned system applications creates opportunities in 

research and development for autonomous behavior, particularly autonomous behavior 

involving the use of computer vision. The key elements required for vision are: a) a 

physical sensor, b) computer vision (CV) algorithms, and c) the computing platform on 

which the algorithms are run.  

A. AUTONOMY ENABLERS  

In the most deployed unmanned systems, the first element, the physical sensor, is 

usually the electro-optical (EO) sensor. The EO sensor provides situational awareness to 

the system, and its imagery data contributes to fulfilling  the autonomous system 

requirements. These imagery data can complement the remote sensing operation by 

providing eyes on target. In addition, algorithm can be designed to allow operations such 

as target identification, threat assessment, and fire support for tactical weaponry for 

numerous military operations (Wilson 2016). Nonetheless, EO sensors form only the 

hardware behind the technology enablers to autonomous behavior in UAV. The software 
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algorithm shaping the CV techniques has been researched and developed to work with the 

EO sensors to increase the autonomy of the UAV.  

One typical application of unmanned system autonomy is the search and rescue 

(SAR) mission, which can be a tedious and tiresome task for operators as it requires flight 

precision and long operation times to screen through the camera coverage of a given area 

(e.g., a disaster zone). In the event of such emergency situations, the operator needs to 

locate the potential survivors who might require medical attention. Thus, such a mission is 

of utmost importance and can be time sensitive. Therefore, unmanned systems can operate 

autonomously and execute the mission from take-off to landing, and designated to collect 

imagery footage of every square meter of an area of interest.  

The second key element, the CV algorithm, plays a key role in providing 

perspective of the surroundings environment. The algorithm provides interpretation of the 

data and enables a response to the situation. Visual Simultaneous Location and Mapping 

(SLAM) is an example of a potential CV algorithm to yield reasonably accurate local 

navigation results based on image sequences from an EO sensor. Significantly, the EO 

sensor and CV algorithm support the navigation element as local referencing in the 

autonomous system behavior. Together with the data for global referencing (Global 

Positioning System [GPS] and Inertial Navigation System [INS]), the complete navigation 

solutions are supplied to the mission computers. The flight dynamics (guidance and 

control) are constantly updated with the navigation data and the results from the CV 

algorithm. The system benefits from these inputs to plan the best route for flight 

advancement, while avoiding the potential threats and the predefined boundaries (Office 

of the Secretary of Defense 2013).  

While most CV algorithms that are developed using desktop computers execute 

well beyond the requirements, the limited computational capacity of commercial-of-the-

shelf (COTS) UAVs precludes the use of modern CV algorithms on them. Hence, the third 

element, the computing platform, must consider the resources requirements of the CV 

algorithm. With the improvement in embedded processors through the Internet-of-Things 

(IoT), system developers must be ready to leverage these highly efficient embedded 

devices for military applications. The IoT processor is expected to lead to changes in future 
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military unmanned system design. Furthermore, the IoT-enabled system enables a highly 

connected operating environment (i.e., swarm UAV operation) and increases the potential 

for situational awareness via a networked entity (Tortonesi et al. 2017). 

B. PROBLEM FORMULATION AND RESEARCH QUESTI ONS 

This thesis elaborates on a previous Naval Postgraduate School (NPS) master’s 

thesis titled “Assessment of an Onboard EO Sensor to Enable Detect-and-Sense Capability 

for UAVs Operating in a Cluttered Environment”  by Wee Kiong Ang (2017), of the 

Singapore Army. In his thesis research, he integrated and demonstrated the use of EO 

sensors to achieve a detect and track capability for multi-UAV operations. Ang discovered, 

however, that the existing EO sensor (a Logitech webcam) had a rolling shutter mechanism, 

which degrades the full performance of the CV algorithm. Furthermore, the embedded 

onboard processor (Odroid) lacked computing power for computationally-intensive 

algorithm implementation. In addition, the hardware setup was unable to support data 

sharing and interfacing between the payload and flight controller.  

Hence, the present research focuses on the development, integration, and evaluation 

of the required algorithm as well as the hardware implementation to achieve the desired 

capability for a COTS UAV to perform onboard decision making upon continuous 

detection and tracking of a target. To address the aforementioned problems, this thesis aims 

to fulfill the following research objectives: 

�x Evaluate and determine the limitation of existing EO sensors on the baseline 

system to support the CV algorithm. Consider whether the setup is sufficient 

to meet the requirements for continuous detection and tracking.  

�x Perform an assessment of existing CV algorithms, and check whether they 

are adequate to support the detection and tracking requirements. Determine 

the recommended improvements or approaches that can be made to the 

algorithms.   

�x Evaluate the capabilities of the UAVs in supporting or fulfill ing a simulated 

operational scenario.  
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The thesis study adopts both the qualitative and the quantitative approaches to look 

into the key performance differences between the rolling shutter and global shutter imaging 

sensors in providing real-time video stream to the CV algorithm application. It is essential 

to look at the embedded computing hardware to process the imagery data from the EO 

sensor, and to execute CV algorithms. Since the CV algorithm (software) is one of the key 

elements in autonomy research, the existing algorithm needs to be evaluated and possibly 

revised. This report reviews the current state-of-the-art open source algorithm supporting 

target detection and tracking. Finally, this thesis research looks into how COTS UAVs can 

be adapted to support a typical military mission such as search and rescue.  

C. THESIS CHAPTER OUTLI NE  

This remainder of the thesis is organized as follows: 

�x Chapter II reviews the architecture, including the hardware and software 

configuration, of the baseline system. In addition, the test results from the 

experimental test case and the potential problems are identified and briefly 

discussed. 

�x Chapter III discusses system considerations relevant to this thesis and the 

proposed changes based on the current available technologies. 

�x Chapter IV presents the architecture, including the hardware and software 

configuration, of the advanced system. The modifications in terms of the 

hardware and software are described. 

�x Chapter V discusses the results of the test and evaluation of the proposed 

system in a typical military mission, namely a SAR.  

�x Chapter VI summarizes the thesis findings and suggests recommendations 

for future research. 
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II.  REVIEW OF BASELINE  SYSTEM 

This chapter reviews the existing system architecture, key details of hardware and 

software solutions, test results, and potential problems that were identified in the past NPS 

master’s thesis titled “Assessment of an Onboard EO Sensor to Enable Detect-and-Sense 

Capability for UAVs Operating in a Cluttered Environment”  (Ang 2017). 

A. SYSTEM ARCHITECTURE  

The UAV system utilized in Ang’s thesis is the Matrice 100 (M100) platform by 

the Da Jiang Innovation (DJI) Science and Technology Company Ltd. The design hierarchy 

of the M100 allows a highly flexible architecture, where vision-based payload electronics 

can be integrated onto the system and perform the additional tasks on top of the features 

provided by the baseline unit. Figure 1 shows the M100 system setup that was developed. 

The modules listed in the red textbox are the baseline hardware required by the M100 to 

provide essential flight capability, and the modules listed in the green textbox are the 

payload to enable user-defined functions (object detection and tracking). 

 

Figure 1.  Baseline M100-Based Platform. Adapted from Ang (2017). 
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Ang’s (2017) thesis utilized the Department of Defense Architecture Framework 

(DoDAF) as the systems engineering approach to define the operational view (OV) and 

system view (SV) of the system. The OV diagram focuses on the behaviors and functions 

describing the enterprise mission aspects, while the SV diagram describes the systems and 

services supporting the operational mission activities (Beery 2017). Figure 2 presents the 

SV of the baseline platform. 

 

Figure 2.  System View of the Baseline Platform. Source: Ang (2017). 
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B. STANDARD M100 HARDWARE CONFIGURATION 

The M100 baseline hardware consists of the minimal essential items required for 

the UAV to operate in a human-in-the-loop flight environment. The M100 base unit is a 

quadcopter configuration with one direct-current (DC) brushless motor and one propeller 

attached to the end of its carbon-fiber rod. The M100’s N1 flight controller receives and 

processes the data from the local sensor suite (i.e., gyroscope, compass, barometer) and 

GPS receiver prior to sending the control information to each individual motor via its 

electronic speed control (ESC) circuits, which are designed to control the motor’s thrust, 

revolutions per minute (RPM), and direction. The M100 also contains a gimbal camera 

(Zenmuse X3), which provides video feed to the human operator via the radio frequency 

(RF) up/down link. Figure 3 illustrates the Matrice 100 base unit, with the arrows 

representing the direction for the propellers in flight. 

 

Figure 3.  Matrice 100 Base Unit. Adapted from DJI (2017). 

Basically, the movement of the M100 quadcopter UAV originates from the remote 

control stick; the signals are sent via RF data up/down link and are passed to the N1 flight 

controller to execute the desired movement by directing the ESC and motors to increase or 

decrease speed. In order for the quadcopter to have a vertical lift, a force must be created 

that must equal or exceed the force of gravity. The spinning of the quadcopter propellers 

forces air downward, and a reaction force with equal size and opposite direction pushes 



 8 

upward onto the UAV platform. Hence, the faster the propellers spin, the greater the lift 

force will be, and vice versa. In the vertical plane, the UAV is designed to: 

�x Hover—Zero net force. The quadcopter UAV produces an upward force 

that is equal to the gravitational force.  

�x Ascend—Positive net force. The quadcopter increases the thrust of the 

propeller to generate an upward force that is greater than the gravitational 

force. 

�x Descend—Negative net force. The quadcopter reduces the thrust, resulting 

in an upward force that is less than the gravitational force. 

Next, in order to move forwards, backwards, and sideways or to rotate during flight, the 

quadcopter produces an angular momentum by varying the speed of its motor 

configuration. As shown in Figure 3, the quadcopter motor configuration shows that motors 

2 and 4 are rotating counterclockwise (CCW motors) and motors 1 and 3 are rotating 

clockwise (CW motors). Hence, for the UAV platform to execute:   

�x Yaw—Rotation of the system to either its right or left. This requires a 

decrease in the spin of CW motors 1 and 3, with an increase in the spin of 

CCW motors 2 and 4. This produces a positive angular momentum to rotate 

counterclockwise.  

�x Pitch—Movement of the system either forward or backward. For forward 

pitch movement, the motors 3 and 4 located at the rear of the system must 

increase in spin rate, while the motors 1 and 2 (front motors) decrease in 

spin. The greater force from the back of the system tilts the system forward, 

pushing the system into forward flight motion.   

�x Roll—Movement of system to either the right or left. For right movement, 

a similar concept to pitch movement applies; the motors 1 and 4 increase 

their spin rate, while motors 2 and 3 decrease in spin. The greater force from 

the right side of the system creates a roll effect of the system to its right. 
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The M100 system is powered by a single TB47D / TB48D, 6S LiPo battery with 

voltage rated at 22.8V, and capacity of 4700 mAh / 5700 mAh. The M100 has its own 

power distribution circuitry to provide regulated power to the base unit hardware modules. 

The M100 power circuitry has two additional ports for 22.8V unregulated voltage, which 

can be supplied to additional experimental hardware units. Table 1 summarizes the key 

specifications of the M100 system. 

Table 1.   Key Specifications of the Matrice 100 UAV. Source: DJI (2017). 

Parameters Values 

Performance 

Hovering Accuracy (P-Mode with GPS) Vertical: 0.5m, Horizontal: 2.5m 

Max. Angular Velocity Pitch: 300o/s , Yaw: 150o/s 

Max. Tilt Angle 35o 

Max. Speed of Ascent 5 m/s 

Max. Speed of Descent 4 m/s 

Max. Wind Resistance 10 m/s 

Max. Speed 22 m/s (ATTI mode, no payload) 
17 m/s (GPS mode, no payload) 

Battery Voltage/Capacity TB47D : 22.8V / 4500 mAh 
TB48D : 22.8V / 5700 mAh 

Hovering Time w/o payload 
(with Zenmuse X3) 

19 mins with TB47D 
23 mins with TB48D 

RF Data Up/Down Link  

Operating Frequency 5.725 ~ 5.825 GHz (Video) 
2.400 ~ 2.483 GHz (Data) 

Estimated Transmission Distance 
(Line-of-sight) 

CE: 3.5 km 
FCC: 5 km 

Structure 

Diagonal Wheelbase 650 mm 

System Weight 2355 g with TB47D 
2431 g with TB48D 

Maximum Takeoff Weight 3600 g 

Expansion Bay Weight 45 g 

Zenmuse X3 Gimbal Camera 247 g 
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The M100 is integrated with a Zenmuse X3 gimbal camera system for live video 

feed during the flight. This X3 camera contains a Sony complementary metal oxide semi-

conductor (CMOS) sensor with 12.4M pixels, which provides 4K / FHD / HD quality video 

recording to the user. The three-axis gimbal controller receives data from the N1 flight 

controller to compute the required angular motion correction to the camera for video 

stabilization during flight, and to make control changes to point the camera according to 

user-defined inputs. The Zenmuse X3 has also its own proprietary interfacing protocols 

that enable efficient data transfer to the DJI products. Table 2 summarizes the key 

specifications of the DJI Zenmuse X3 gimbal camera. 

Table 2.   Key Specifications of DJI Zenmuse X3 Gimbal Camera. 
Adapted from DJI (2017). 

Parameters Values 

Model Zenmuse X3 (FC250) 

Sensor Sony EXMOR 1 / 2.3” CMOS 

Shutter Type Global Shutter  

Lens Field of View (FOV): 94o 

Focal Length (35 mm Equivalent): 20 mm 
Aperture: F/2.8 

Video Recording UHD (4K): 
4096 x 2160 
3840 x 2160: 
 
FHD (1080p): 
1920 x 1080 
 
HD (720p) 
1280 x 720 

File Format Photo: JPEG, DNG Video:MP4 in .MOV 

Photography Modes Storage on MicroSD Card 
Single Shot, Burst (3, 5, 7 frames per sec) 

Interface Proprietary of DJI. Undisclosed. 
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C. BASELINE SYSTEM HARDWARE ADDITIONS  

The additional payload electronics are placed on the UAV system to perform image 

processing functions. In the existing setup, the system utilized an onboard embedded 

processor (Odroid-XU4) fitted with supporting peripherals (i.e., WiFi adapters) that are 

capable to handle the computationally intensive processes of the CV algorithm in a small 

form-factor solution. In additional, the Logitech webcam (C920) is connected to the Odroid 

processor via USB3.0 ports to provide the imagery data. This setup simplifies the 

communication between base unit and CV electronics to a universal asynchronous receiver 

transmitter (UART) interface. Figure 4 shows the overview of the payload electronics used 

in the UAV system developed by Ang (2017). 

 

Figure 4.  Overview of the Added Payload Electronics. Adapted from 
Ang (2017). 
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The main processor embedded within the Odroid-XU4 is a Samsung Exynos 5422 

central processing unit (CPU) element, with quad-core of ARM-Cortex-A15 clocked at 2 

GHz and quad-core of ARM-Cortex-A7 clocked at 1.2 gigahertz (GHz) (Samsung 2014). 

The processor has also two gigabytes (GB) low power double data rate 3 (LPDDR3) 

random access memory (RAM) mounted as a package-on-package (POP) on top of the 

CPU element to reduce its footprint on the printed circuit board form factor. The Odroid-

XU4 receives its regulated power through a battery eliminator circuit (BEC), which taps 

into the one of the 22.8V unregulated power sources provided by the M100 power circuitry. 

The BEC is programmed to down-convert the 22.8V unregulated voltage to 5V constant 

regulated voltage for the Odroid-XU4. The Odroid-XU4 contains internal power circuitry 

to supply the Logitech C920 webcam and the WiFi adapter with the correct voltage through 

the universal serial bus (USB) connection. Table 3 summarizes the key specifications of 

the payload processor. 

Table 3.   Key Specifications of the Odroid Processor. Adapted from 
Hardkernel (2014). 

Parameters Values 

CPU Samsung Exynos 5422 Octa-core CPU 
- 4x Cortex-A15 2 GHz 
- 4x Cortex-A7 1.2 GHz 

3D Accelerator Mali-T628 MP6  
(Support OpenGL and OpenCL) 

RAM 2 GB LPDDR3 RAM 

Memory eMMC 5.0 HS400 Flash Storage 

Interface USB 3.0 – Logitech C920 Webcam 
USB 3.0 – Wifi Adapter 
 
USB 2.0 – Available 
Gigabit Ethernet Port – Available  

Power In 4.0A @ 5V (Peak Consumption) 
2.7A @ 5V (Nominal Loading) 

Miscellaneous GPIO Interface - +1.8V LVTLL Logic 
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The added payload also includes a USB 2.0 webcam (Logitech C920) as its main 

video input feed into the autonomous detection and tracking algorithm executed by the 

Odroid-XU4 CPU element. The resolution of the video feed is kept and interchangeable 

between 640-by-480p or 800-by-600p to achieve balance between the FOV, data transfer 

between devices, and bandwidth to process between frames. The Logitech C920 has a 

rolling shutter sensor mechanism to reduce the complexity of the electronic module and its 

cost of production. In his thesis, Ang (2017) suggested that the rolling shutter produces 

image artifacts or distortion when capturing moving objects at a frequency higher than the 

shutter rate. Since the Logitech C920 is mounted as a fixed structure on the system, it will 

look at a certain facing direction with a FOV of 78 degrees. Table 4 summarizes the key 

specifications of the Logitech C920 webcam. 

Table 4.   Key Specifications of Logitech C920 Webcam. Adapted from 
Logitech (2016). 

Parameters Values 

Model Logitech C920 

Sensor Aptina 1/3” CMOS 

Shutter Type Rolling Shutter  

Lens FOV: 78o 

Focal Length (35 mm Equivalent): 3.67 mm 
Aperture: Not Available 

Video Recording FHD (1080p): 
1920 x 1080 
 
HD (720p) 
1280 x 720 

File Format Video stream in H264 compression 

Photography Modes No Storage Capability 

Interface Hi-Speed USB2.0 
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D. SOFTWARE CONFIGURATI ON OF BASELINE PLATFORM  

The software configuration for the M100 system can be broken down into the 

software within the base unit, the N1 flight controller, and the added payload electronics, 

which is mainly the Odroid-XU4 hardware. The simplified software architecture of the 

M100 system, depicted in Figure 5, shows that DJI had limited developer access to their 

products. In fact, through the research efforts and discussions with a collaborating research 

team at the University of Missouri – Kansas City (UMKC), it was concluded that DJI 

provided these “blackbox” solutions to protect their intellectual property rights and avoid 

modification of their software program. Therefore, the experimental hardware must be 

integrated as a payload and communicate with the N1 flight controller via the UART 

interface and robot operating system (ROS) protocol standard. The DJI software 

development kit (SDK) ROS wrapper (see Appendix C) for communicating with the N1 

flight controller is discussed in a later section. 

DJI N1 Flight Controller

Operating System (Undisclosed)

ROS (Undisclosed)

Odroid-XU4

Operating System (Ubuntu 14.04)

ROS (Indigo)

Python 2.7

OpenCV 3.0

DJI Zenmuse X3

User Flight Actions

Video Compression

Flight Control

Computer Vision 
Algorithm

Gimbal Control

Propriety Interface

Logitech C920

Imagery Data

USB2.0

Flight Control 
Algorithm

Wrong Signal 
Standard

 

Figure 5.  Software Architecture of Baseline System 
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The M100 system is controllable via the DJI Go application, which can be run from 

a mobile device (i.e., a tablet or smartphone) connected to the M100 remote controller. The 

remote controller is embedded with the RF data up or down link to communicate with the 

M100 system. All data exchanges between the M100 platform system and the remote 

controller are handled seamlessly by the DJI application. In the research, the system 

utilized firmware v1.3.100 for the M100 platform, v1.8.100 for the Zenmuse X3, 1.8.0 for 

the DJI remote controller, and v3.1.6 for the DJI Go application (Ang 2017). 

As mentioned earlier, the software within the N1 flight controller is built on a 

proprietary architecture controlled by DJI. Hence, the M100 system requires the user to 

integrate additional payload to communicate and control the operation of the M100 system. 

DJI has released information and coding examples via the DJI SDK on their developer 

webpage. In order to implement any user-defined solution, the payload must be installed 

with DJI SDK and use Linux ROS as the means for communication.  

The Odroid-XU4 hardware has Ubuntu 14.04 LTS as its main operating system 

software, loaded with ROS-Indigo (version name), and the OpenCV is cross-compiled as 

an add-on package to Python 2.7 in a virtual workspace environment. The ROS-Indigo 

provides the environment in which the DJI SDK is to be installed and the workspace for 

the flight control code (if any) to be implemented. 

The Python2.7-OpenCV cross-compilation provides the framework for the 

autonomous detection and tracking algorithm code to be executed. The Python scripts are 

used for extracting data (via the USB interface) from the Logitech C920 (visual sensor), 

and for performing the required image processing to identify the moving objects within the 

image dataset (Ang 2017). The OpenCV enables an open source image processing library 

to be utilized, and for taking advantage of the multi-core processing and hardware 

acceleration capability of the mathematical functions to execute the computationally-

intensive application.  
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E. THREAT DETECTION ALGORITHM  

The CV algorithm used in the baseline system (shown in Figure 5) is the result of 

a joint collaboration between Purdue University and the Naval Postgraduate School (Li et 

al. 2016). Among the different techniques to support the detection and tracking of moving 

objects, the Purdue/NPS CV algorithm utilizes the motion-based approach, which involves 

a combination of background subtraction and optical flow techniques to process the image 

dataset. The background subtraction technique removes the pixels with the same brightness 

constancy over time, and thus enables the moving object to be identified (Nuria et al. 1999). 

This technique, however, will experience poor accuracy in a moving system when the 

background is ever-changing in the image dataset. The optical flow technique detects the 

moving object by identifying the local motion vectors through the examination of various 

sequential frames (Brox and Malik 2011). The accuracy of detection for this technique 

depends upon the image quality; hence, distorted images reduce the overall accuracy of 

this technique. Figure 6 illustrates the key components overview of the Purdue/NPS CV 

algorithm. 

 

Figure 6.  Overview of Purdue/NPS CV Algorithm. Source: Ang (2017). 
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F. HIGHLIGHTS OF THE BA SELINE SYSTEM FLIGHT TESTS  

The baseline system was tested and evaluated at McMill an Airfield of Camp 

Roberts. Test and evaluation (T&E) exercises were conducted with two distinct 

backgrounds simulating the field and urban test environments. The flight altitude of the 

UAV was capped at 30 meters (m), and placed in a hovering flight mode. While the UAV 

was placed in flight mode, the Purdue algorithm was executed on the CV hardware to detect 

and track the multiple moving objects. 

Figure 7 shows the sampled screenshots of the video with varying classifier 

parameters of the field test environment. Ang’s (2017) thesis highlighted observations 

made from the entire video footage, whereby the classifier parameter for small targets 

resulted in enhanced sensitivity as compared to the average targets. The average targets 

classifier yielded more misdetections as the CV algorithm was inefficient in discerning the 

slower moving UGVs and smaller UAVs. 

 

Figure 7.  Varying Classifier Parameters in the Field Test Environment. Source: 
Ang (2017). 
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Figure 8 shows the sampled screenshots of the video with varying classifier 

parameters from the urban test environment. Similarly, Ang’s (2017) thesis repeated the 

field experimentation with the visual sensor on the M100 system. The sensor was placed 

to capture video feed of an urban test environment, which is relatively noisier with 

background clutter due to the multiple stationary objects (i.e., parked cars, buildings, etc.). 

Based on Ang’s observation, he highlighted that the classifier for small targets had better 

performance compared to the average targets. The average targets classifier yielded more 

detection errors. 

 

Figure 8.  Varying Classifier Parameters in the Urban Test Environment. Source: 
Ang (2017). 
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For the urban test environment, the background clutter of objects proved to be a 

challenge for the Purdue/NPS CV algorithm and resulted in multiple instances of 

misdetections. Therefore, this amounted to poor consistency in detection and tracking 

efficiency. Using the recorded video from the urban test environment, the classifier 

parameters were fine tuned to enhance their sensitivity. The threshold for clustering and 

grouping of points was lowered to capture and maintain tracking of the minute movements 

of the targets in a noisy background (Ang 2017). Figure 9 shows the sampled screenshot 

of the video with tuned classifier parameters to detect and track human subjects, UGVs, 

and UAVs simultaneously. 

 

Figure 9.  Post-flight Experimental Testing with Tuned Classifier Parameters. 
Source: Ang (2017). 
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G. IDENTIFIED PROBLEMS  OF THE BASELINE PLATFORM  

This section presents on the problems of the baseline platform based on the test data 

collected during the field experimental 

1. Sensitivity of the Classifier Parameters 

The sensitivity of the classifier parameter defines the threshold for the detection of 

the moving objects in the input video feed. When an oversensitive classifier parameter is 

used, it results in false positives or unwanted noise in the data. When the UAV was moved 

during Ang’s experiment, the undesired results from an oversensitive classifier parameter 

of the Purdue/NPS CV algorithm became worse. Hence, Ang (2017) suggested that there 

is a need to fine tune the sensitivity of the algorithm to improve the capture result of the 

objects while blocking out the unwanted noise. Figure 10 shows the unwanted noise effects 

that resulted from the oversensitive classifier parameters. 

 

Figure 10.  Unwanted Noise from the Oversensitive Classifier Parameter. Source: 
Ang (2017). 
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2. Overlap in the Bounding Box 

The version of the Purdue/NPS CV algorithm used in Ang’s (2017) thesis research 

occasionally produces large extended bounding boxes (depicted in green in Figure 11) 

when the detected moving objects cross paths and overlap each other. The appearance of 

large extended bounding boxes affects system performance, reducing effectiveness in 

distinguishing the individual objects.  

 

Figure 11.  Extended Bounding Box over Detected Objects. Source: Ang (2017). 
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3. Rolling Shutter Effects 

Due to the movement of a UAV in flight mode or in a strong wind, the video quality 

experiences rolling shutter effects, depicted in Figure 12. The rolling shutter effects of the 

video degrade the effectiveness of the Purdue/NPS CV algorithm in detection and tracking 

of the objects (Ang 2017). Figure 12(a) illustrates where the algorithm lost track of UAV 1, 

following the tilted planar axis of the system in strong wind. Figure 12(b) highlights 

distortion in image quality due to the rolling shutter effects, following the tilted planar axis 

of the system in strong wind. Figure 12(c) highlights another example of rolling shutter 

effect on image quality as the M100 transited in flight. Figure 12(d) shows a positive 

example of the image without rolling shutter effect. Furthermore, there is no available post 

image processing technique to correct for these rolling shutter effects in the degraded 

imagery.  

 

Figure 12.  Example of Image Quality under Various Conditions. Adapted from 
Ang (2017). 
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III.  TECHNOLOGY ENABLERS AND AREAS FOR BASELINE 
SYSTEM IMPROVEMENTS  

This chapter addresses the proposed means to mitigate the deficit of the baseline 

system reviewed in the previous chapter. 

A. PROPOSED CHANGES 

Based on the summary of identified problems, discussed in Section II.G, it is 

evident that rolling shutter effects contribute negatively to the test outcome. Rolling shutter 

is a shutter mechanism, electronic or mechanical, for capturing images in which the scenes 

exposed on the sensor are read out in either a vertical or horizontal manner (Tirosh 2012). 

In other words, the top and bottom points of the scene image are not captured at the same 

moment. This is why images might appear skewed under certain circumstances.  

The appearance of skewed objects in an image can also be referred to as geometric 

distortions. This phenomenon occurs when images are captured from a vibrating EO 

sensor, UAV in-flight moving motion, or fast moving objects within the scene. Depending 

on the circumstances, multiple effects might occur at the same time. In Figure 13(a), the 

fast spin rate of the helicopter motors causes a “ jello effect”  on the helicopter propellers, 

where they appear to be wobbling. Next, for Figure 13(b), the captured images appear to 

have a skewed effect on the building, where all the buildings appear to lean in a common 

direction.  

Hence, it is evident that the rolling shutter effects influence the video quality 

available from the Purdue/NPS CV algorithm on the CV hardware. Furthermore, the 

degraded video can lead to multiple instances of false positives and noise. Therefore, the 

change in EO sensor from a rolling sensor mechanism to a global shutter mechanism 

generates significant improvement in the performance of the CV hardware. 
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Figure 13.  Examples of Rolling Shutter Effects. Adapted from 
Jonen (2007) (left); Adler (2016) (right). 

 Beside the hardware changes, a review of the algorithm that provides the object 

detection and tracking is significant. The current version of the Purdue/NPS CV algorithm 

has some flaws, which require improvements. Since the research students working on the 

algorithm have graduated, there is a lack of support for improvements in the algorithm 

coding. As the objective of this thesis research is to be able to perform system integration 

and evaluation of the CV algorithm, the approach taken is to mitigate the lack of support 

for the Purdue/NPS CV algorithm by creating a generic system architecture to enable 

different open-source CV coding to be evaluated. 

Hence, the proposed changes to the baseline system focus on the payload 

electronics. A new payload processor, DJI Manifold, has been introduced to replace the 

Odroid-XU4. Recalling that the DJI Zenmuse X3 has a proprietary interface, the DJI 

Manifold has been designed to decode this proprietary interface. This enables the use of 

the Zenmuse X3 (a gimbal and global shutter EO solution) in the development of this thesis.  

 

 

 



 25 

B. EO SENSOR TECHNOLOGIES 

Depending on the application, the EO sensors can be separated into two different 

classes (i.e., active sensors and passive sensors). Active sensors usually possess their own 

energy source, which is used to illuminate the object. The radiation energy from the source 

is reflected from the object and measured by the sensor. In comparison, the passive sensor 

uses naturally occurring radiation, without emitting any energy. This section focuses on 

the passive EO sensor (i.e., the Zenmuse X3) found on the M100 baseline system. 

1. Imaging Considerations 

Since images contain the information required for the CV algorithm application, it 

is important to understand the definition of an image. According to Robert C. Harney 

(2013), an image can be defined by multiple spatial dimensions that are related to the 

physical properties of an object or scene. Table 5 shows the listed of potential spatial 

dimensions and physical properties that characterize the image. Hence, the image from the 

DJI Zenmuse X3 can be seen as a distribution of reflected intensity over azimuth and 

elevation angles (Harney 2013). 

Table 5.   Potential Object Characteristics that Form Images. Source: 
Harney (2013). 

Potential Spatial Dimension Potential Physical Properties 

Azimuth (or Bearing) Color 

Elevation Angle Reflectivity 

Range Reflected Intensity 

Cartesian Coordinates (x, y, z) Radiance 

Depth (or Altitude) Concentration 

Map Coordinates Transmittance (or Absorptance) 

Cross-Range Velocity 

 Temperature 

 Range 

 Radar Cross Section 
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2. Sensor Technologies 

The two imagery sensor types widely used in EO sensors are the Charge Coupled 

Devices (CCD) and the Complementary Metal Oxide Semiconductors (CMOS). The major 

distinction between the two sensor technologies is how the sensor reads the individual pixel 

signal formed within the sensor, as illustrated in Figure 14.  

Typically, the CCD sensor employs a global shutter mode. In the global shutter 

mode, every pixel on the detector is exposed simultaneously to the reflected intensity of 

the object (Qimaging 2014). Due to this exposure mechanism, the global shutter detector 

has an advantage in capturing changing scenes. Nevertheless, one of the drawbacks of the 

global shutter is the slower frame rate due to the readout of the pixel data. The readout rate 

is dependent on the analog-to-digital (A/D) converter, which receives and digitizes the 

analog value of each individual pixel. In addition, the CCD sensors do not build a large 

detector (high pixel count) to prevent further slowing down of the frame rate. 

For CMOS technologies, the sensor uses an A/D converter for each and every 

column of pixels on the sensor, which is known as a rolling shutter (Qimaging 2014). The 

workload to digitize the pixels is shared among the parallel A/D converters in each column. 

Hence, this results in a small delay for each row’s readout and contributes to a faster frame 

rate.   

 

Figure 14.  Sensor Architecture of CCD Sensor (left) and CMOS Sensor (right). 
Adapted from Qimaging (2014). 
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Since the shutter mechanism of an EO sensor determines how and when light is 

recorded during exposure, the two fundamental types of electronic shutter are the global 

shutter and the rolling shutter. 

The sensor exposure with a global shutter is either on or off during exposure (a 

single simultaneous exposure). Depending on the readout rate of the sensor, a moving 

object will be illuminated in a rapid sequence. Unlike with the global shutter, the sensor 

exposure with a rolling shutter is a series of exposures when the capturing function is 

triggered. Each row of the sensor is exposed in succession, line after line. However, for 

moving objects, the rolling shutter might create image distortions.  

The exposure sequence for global shutter and rolling shutter sensors is illustrated 

in Figure 15. While the rolling shutter sensor provides the advantages of fast frame rate, it 

is not without flaws. The overlapping and time delay between each row’s exposure 

contributes to the geometric distortion of moving objects within the captured image. 

 

Figure 15.  Illustration of Exposure with Global Shutter (left) and Rolling Shutter 
(right). Source: Lappenküper (2018). 
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As discussed earlier, the main rolling shutter effect on images is the geometric 

distortion of an object. The distortion occurs if the object or sensor is moved at a rate faster 

than the exposure and readout time of the sensor. As the images are reconstituted in a 

sequential manner of the exposure on individual rows, the rate of the readout will determine 

the impact of rolling shutter effect on the image. Assuming sensors with global shutter and 

rolling shutter are used for traffic monitoring, the rolling shutter sensor will likely result in 

some distortion. In the example depicted in Figure 16, the moving cars appear to be skewed 

in their geometric dimension for the sensor using a rolling shutter mechanism. 

 

Figure 16.  Image Distortion for Global Shutter (top) versus Rolling Shutter 
(bottom). Source: Lappenküper (2018). 
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3. Visual Considerations 

For the new EO sensor, we know that the DJI Zenmuse X3 uses a Sony EXMOR 

CMOS 1 / 2.3-inch sensor, with effective pixels of 12.4 megapixels and a global shutter 

mechanism. Hence, to achieve optimum results in the CV algorithm application, it is 

important to consider the visual coverage and performance of the EO sensor.  

a. Ground Sample Distance  

The visual coverage of the EO sensor is the actual distance covered in a single 

image. Considering the M100 system is flying at a certain flight altitude with the EO sensor 

looking down at the ground, the image captured by the sensor is composed of the object in 

the foreground and the actual distance covered in the background. By defining the Ground 

Sample Distance (GSD) as the ground distance, we can compute the flight altitude H that 

is required to meet the GSD. The computation depends on the camera focal length, the 

camera sensor width (in millimeters, mm), and the image width (pixels). Figure 17 shows 

the relationship of the parameters used to find the GSD. 

SW

DW

FR

H

Sw  = Sensor Width [mm]

FR  = Sensor Focal Length [mm]

H   = Flight Altitude [m]

Dw = Ground distance (width)               
-        in an  image [m]

 

Figure 17.   Relationship of Parameters in GSD. Adapted from PIX4D (2017). 
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From the specification of the Sony EXMOR, the sensor has a dimension width by 

height of 6.16 mm * 4.62 mm. The real focal length FR is related to the 35 mm equivalent 

focal length by: 

For 4:3 Sensor Ratio: 

 35( )
34.6

W
R

F S
F mm

�u
� ,  (1) 

where:  

�x �(�7�9 = focal length that corresponds to the 35mm equivalent      20 mm 

�x �5�Ð = real sensor width          6.16 mm. 

 

Therefore, the real focal length is: 

�(�Ë(�I�I ) =
�(�7�9× �5�Ð

34.6
=

20 �I�I × 6.16 mm
34.6

 , 

�(�Ë(�I�I ) = 3.56069 �I�I  . 

 

Assuming the flight altitude and the sensor image resolution is 4000 by 3000 pixels. 

The GSD will be: 

 
_

W

R image wd

S H
GSD

F Sensor
�u

� 
�u

 ,  (2) 

�)�5�&=
6.16 �I�I  × (50 �I × 100)

3.56069 �I�I  × 4000 �L�E�T�A�H�O
 ,  

�)�5�&= 2.16 �?�I/�L�E�T�A�H . 

 

The result shows that when the Zenmuse X3 is operated at a height of 50 m, the 

camera can see 2.16 cm at ground sample distance per sensor image pixel. If the camera is 

operated as 4000 * 3000 pixels resolution, the width of a single image footprint on the 

ground will be: 
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�&�Ð =
�)�5�&× �E�I�=�C�A�ê�×

100
=

2.16 �?�I/�L�E�T�A�H×  4000
100

= 86 �I  . 

 

And the height of a single image footprint on the ground will be: 

�&�Û=
�)�5�&× �E�I�=�C�A�Û�Ø�Ü�Ú�Û�ç

100
=

2.16 �?�I/�L�E�T�A�H× 3000
100

= 65 �I  . 

 

Figure 18 shows a snapshot recorded at 4000*3000 pixels of the ground coverage 

over an area of Fort Ord’s Impossible City located at GPS coordinates of 36o 37’ 11.20” 

N, 121o 44’ 55.90” from the DJI Zenmuse X3 operated at 50 m flight altitude.  

 

Figure 18.  Snapshot of the Ground Distance from UAV (50 m Altitude) 
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b. Object Resolution 

The primary objective for the EO imaging system is object perception (i.e., 

detection, recognition, identification, etc.) based on image characteristics. The GSD 

provides a linear resolution of the object that can be observed from the sensor. Since GSD 

is a function of flight altitude, EO sensor specifications, and image resolution, the 

measurement of GSD in terms of centimeters per pixel defines the number of pixels that 

the object (given its perpendicular surface area) represents in the image snapshot captured 

by the UAV EO sensor. Applying the concept from an earlier section, it is assumed the 

total surface area of the human body is approximately 1.7m x 0.2m = 0.34m2, and the total 

surface area of a small UAV is approximately 0.2m x 0.2m = 0.04m2. With the Zenmuse 

X3 sensor designed to capture images at 4000 by 3000 pixels, the number of pixels 

represented for the two objects changes according to the distance between the objects and 

the sensor, as depicted in Figure 19. 

 

Figure 19.  Representation of Pixels Count for Human and Small UAV Detection 
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c. Exposure Time 

For the CV algorithm application, the distortion will affect the performance and 

accuracy of the algorithm. Hence, for the requirement to image a moving object, the 

object’s size and velocity must be considered for its sampling time while avoiding motion 

blur of the objects in the image. Motion blur is created when the exposure time for a moving 

object is set too long causes motion blur. Regardless of the sensor type, the motion blur on 

objects will occur if the object’s velocity is much greater than the exposure performance 

of the sensor. According to Qimaging (2014), if it is assumed that motion blur of no more 

than 10 percent is acceptable, the exposure time to image a moving object can be computed 

as: 

 
10

x
T

v
�'

�d   ,  (3) 

where: 

�x T = exposure time 

�x �� �T = object’s length 

�x �R = object’s velocity. 

For the DJI Zenmuse X3, the sensor has a range of shutter speeds from 8 sec to 1/8000 sec. 

Let us assume a small UAV with the length of 0.2 m, and flying at 10 m/s, the result shows 

that: 

�6Q
0.2 m

10
�I
�O

 = 0.02 �O . 

Hence, the minimum shutter speed required for the EO system is 1/50 sec. If  the scene has 

sufficient brightness, however, the shutter speed can go even faster to reduce the motion 

blur in the image. Based on the EO (DJI Zenmuse X3) specification, the EO has the 

capability to meet the minimum shutter speed. 
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C. COMPUTING HARDWARE TECHNOLOGIES  

The payload hardware functions as the processing element for the execution of the 

machine algorithm (i.e., CV algorithm and flight control) and to manage the 

communication interface between the EO sensor and the flight controller. The required 

onboard payload data processing capability is defined by the amount of data from the EO 

sensors and the desired level of autonomy. The greater the payload capability that can be 

integrated onto the UAV system, the more the flexibility in additional technology enablers 

that can be adapted to the specific needs. This will mean upgrading the EO sensors to a 

dual mode imaging system (Thermal and Visible), adding Light Detection and Ranging 

(LiDAR) technology, integrating different GPS systems, or even using different sensor 

systems to improve accuracy in the target identification and navigation process. However, 

the increase in payload leads to an increase in payload weight, and this will affect the 

system’s flight performance (mainly in terms of its flight time). Therefore, it is important 

to achieve balance among the required performance, payload weight, and flight time.  

1. Hardware Technologies 

In this section, we focus on the proposed replacement payload hardware (DJI 

Manifold). The DJI Manifold is a computing platform on which the algorithms are run. 

a. Processor Architecture 

The framework for the processor hardware requires the computing architecture to 

be scalable and achieve energy efficiency in the overall system design. The general trend 

between processor performance and power consumption is a directly proportional 

relationship. The increase in demand for processor performance leads to higher power 

consumption. Yet, small UAV systems such as the M100 system have a limited power-to-

weight ratio, which creates constraints for the payload processor type and weight. In the 

modern technology evolution of mobile devices, the processor element has delivered 

powerful computational performance and graphics outputs within a reasonable power 

budget (Norris 2014).  
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Among the available embedded processor architectures, the Advanced RISC 

Machine (ARM) is the market leader due to the demand for its technology. The ARM 

simply designs the architecture and instruction sets, which are then licensed to hardware 

partners (i.e., Apple, Samsung, Nvidia) to modify their own ARM processor variants 

(Norris 2014). The ARM architecture delivers relevant technology to drive system-on-chip 

(SOC) solutions in solving the challenges for embedded system design. These SOC 

solutions facilitate both the scalability of hardware to meet requirements of specific tasks 

and system efficiency for optimized software solutions (Steele 2016). 

The existing payload processor (an Odroid-XU4) utilizes a Samsung Exynos 

chipset featuring quad-cores of ARM Cortex-A15 and quad-cores of ARM Cortex-A7, and 

integrating ARM’s designed Mali Graphics Processing Unit (GPU) design. Since the 

Cortex-A15 cores have a higher demand in power consumption, the ARM implemented a 

system scheme called “big.LITTLE”  whereby each high-performance core is shadowed by 

a lower-power, lower-performance core (the Cortex-A7) that takes over the system 

processing whenever the workload permits (Norris 2014). The implementation of 

big.LITTLE heterogeneous computing architecture enables the system to achieve savings 

in power usage according to dynamic computing needs. Figure 20 shows the block diagram 

for the Odroid-XU4 hardware. 

 

Figure 20.  Block Diagram for Odroid-XU4. Source: Hardkernel (2014). 
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For the new proposed payload processor, the DJI manifold utilizes an Nvidia Tegra 

K1 (TK1) chipset featuring a quad-core of the ARM Cortex-A15 and single-core of the 

ARMv7 microcontroller, and 192 Nvidia proprietary CUDA cores (Kepler GPU 

Architecture). Similar to the Samsung strategies for power saving for embedded 

processors, the Nvidia TK1 chooses to design with the 4-PLUS-1 CPU core architecture 

and variable symmetric multiprocessing (vSMP) technology (Nvidia 2014). This 

architecture enables the management of the high-performance quad-core A15 CPU for 

complex and performance intensive tasks, and switches to the power optimized ARMv7 

microcontroller to handle low performance tasks. Hence, the architecture achieves an 

intelligent power management scheme according to dynamic computing needs. In addition, 

the one clear advantage of the Nvidia TK1 is its integration of 192 Nvidia CUDA Kepler 

GPU cores as part of the co-processor element. The Kepler GPU architecture enables 

parallel computing applications and delivered high performance computing performance 

while maintaining efficient energy for mobile usage (Nvidia 2014). 

 

Figure 21.  Block Diagram of DJI Manifold. Adapted from Berkeley Design 
Technology Inc (2014). 
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b. Memory Interface 

The memory interfacing is an essential function to sustain standard operation within 

the embedded processor. The two critical memory components required by the embedded 

processor are the RAM and onboard storage, read-only memory (ROM). The RAM serves 

as temporary storage between the file system, which is stored on the ROM, and the 

processor. The RAM usually designed for an embedded processor is technically DRAM, 

with D meaning dynamic. The structure of DRAM stores a data bit on a capacitor cell, and 

its contents on the DRAM have the ability to be refreshed or changed quickly. In additional, 

the RAM is different from the flash-based ROM storage, whereby its contents will be lost 

upon power disconnect. Due to the volatile nature and its storage mechanism, RAM 

typically has a faster access time as compared to ROM (Schiesser 2012). Hence, RAM 

interfacing contributes to the overall performance of the embedded processor design. In the 

modern technology evolution, the RAM memory is designed to be mounted directly on top 

of the embedded processor (SoC), as depicted in Figure 22, for the most direct access, and 

its close proximity improves the signal integrity of high-speed signals and reduces the 

power consumption of devices. 

 

Figure 22.  Diagram Illustrating the Package-on-Package Setup of the Memory 
and Processor. Source: Schiesser (2012). 

ROM is part of internal storage and refers to the system files that are not accessible 

for end users to write on. Typically, the internal storage memory is partitioned into several 

sections for different purposes, such as system files, cache, application storage, and media 
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files, etc. The most widely used storage device employed in embedded device design is the 

embedded Multi-Media Controller (eMMC). The eMMC combines the flash controller, 

interface adapter, and flash memory arrays onto a single silicon die (Datalight 2018). With 

the flash controller integrated into the eMMC architecture, the storage memory interface 

design is simplified and the processor is freed from low-level flash memory management. 

Also, the interface adapter within the eMMC eliminates the need to develop interface 

software for different types of NAND memory and provides an easy-to-use memory 

solution for software programmers.  

2. Performance-Power Considerations 

For the new payload processor, we know that the DJI manifold utilizes the Nvidia 

TK1 as its main processor element. Hence, the selection of a new processor will bring 

changes to the performance parameters of the payload hardware and the power 

consumption of the hardware. In this section, the performance and power considerations 

for the Nvidia TK1 and Samsung Exynos 5422 are reviewed. 

a. Performance 

From the key specifications of the two payload hardware types summarized in 

Table 6, it is evident that both types have comparable parameters in terms of their hardware 

specifications. The most significant difference in the processor architecture is evident in 

the GPU processor cores, where the Nvidia Tegra K1 had 192 CUDA cores that delivered 

excellent parallel computing performance. In the GPU-accelerated algorithm, the 

sequential workload will be executed on the CPU, which is excellent for a single-threaded 

task, and the computational hungry portion is run in parallel over the CUDA GPU cores. 

The CPU-GPU architecture improves the computing and processing of complex data. 
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Table 6.   Summary of Payload Hardware. Adapted from DJI (2014); 
HardKernel (2017). 

 DJI Manifold  Odroid-XU4 

Processor Chipset Nvidia Tegra K1 Samsung Exynos 5422 

CPU 4x ARM Cortex-A15 @ 2.3GHz 
1x ARMv7 controller core 

4x ARM Cortex-A15 @ 2GHz 
4x ARM Cortex-A7 @ 1.2GHz 
big.LITTLE Processing 

GPU Kepler GK20a (192-cores)  
@  950 MHz 

ARM Mali-T628 MP6  
@ 533 MHz 

RAM  2 GBtyes DDR3L 2 GBtyes LPDDR3 

Memory eMMC 16GBtyes eMMC 16GBtyes 

Interface 2x USB 3.0 / 2x USB 2.0 
1x Gigabit Ethernet 

2x USB 3.0 / 1x USB 2.0 
1x Gigabit Ethernet 

Interface with 
Zenmuse X3? 

Yes No 

 

Figures 23 and 24 show the benchmark results of the CPU and the GPU 

performance, respectively. The benchmark results show consistency with the hardware 

specifications, when the CPU performance is relatively similar for single-core and multi-

core computing, and the GPU performance for the Nvidia TK1 is two times better than that 

of the Samsung Exynos 5422 processor. 

 

Figure 23.  Plot of CPU Performance Score. Adapted from Triggs (2014). 
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Figure 24.  Plot of GPU Performance Score. Adapted from Triggs (2014). 

b. Power 

The DJI Manifold is designed with power management circuitry to handle the 

power distribution within the system. The specification of the DJI manifold required an 

input voltage in the range of 14 volts (V) to 26V. According to the Nvidia benchmark 

studies, the TK1 processor typically uses between 0.6 watts (W) to 4W during normal use, 

and reach a peak of 15W if the CPU, GPU, camera interface, and codec hardware are 

pushed to their limits (eLinux 2016). 

A comparison of the results of the Nvidia benchmark studies against the power 

measurements for the Odroid-XU4 shows that the power consumption between the two 

payload processor alternatives is comparable, with the Odroid-XU4 and DJI Manifold 

drawing 20W and 15W at peak loading, respectively. 

D. ADVANCEMENT IN CV ALGORITHM S 

CV algorithms are attracting interest in both academia and real-world settings to 

harness the power of artificial intelligence (AI) for a wide range of applications. Among 

these applications, three different levels of processes are used in the identification of 

objects. Figure 25 illustrates the differences among image classification, object detection, 

and instance segmentation. In general, image classification models are used for classifying 
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images into a single category; object detection models are used in identifying multiple 

objects in a single image and providing some form of object localization in the process; 

and instance segmentation is the combination process of object detection and semantic 

segmentation that aims to group the relevant pixels of the objects together.  

For most autonomous systems (e.g., self-driving cars and transportation 

surveillance), object detection and object tracking are the two major components required 

in the CV algorithm to enable the required level of autonomy in these applications (Zhu et 

al. 2018). Object detection identifies the target from the imagery data of the payload sensor, 

and object tracking supports the update of target location as it moves through the imagery 

data. The processed data output from the object tracker facilitates the navigation of the 

systems to accomplish the desired actions set. 

 

Figure 25.  Comparison of Image Classification, Object Detection, and Instance 
Segmentation. Source: Ouaknine (2018). 

Although there have been various approaches to handle object detection and 

tracking, the real game-changer has been through the use of deep machine learning for CV 

algorithm application. In machine learning, convolutional neural networks (ConvNets or 

CNNs) classification is the current state-of-art technique for efficient processing of the 

imagery data from the sensor.  
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1. Convolutional Neural Networks 

CNN is a variant of artificial neural networks, having the ability to perform image 

recognition and object detection tasks by generating identification characteristics from a 

training dataset. The architecture of regular neural networks is explained in CS231n course 

materials, instructed by Dr. Fei-Fei Li, a renowned Stanford University professor working 

in the area of computer vision and Chief Scientist of Google Cloud AI and machine 

learning, as: 

Neural Networks receive an input (a single vector), and transform it through 
a series of hidden layers. Each hidden layer is made up of a set of neurons, 
where each neuron is fully connected to all neurons in the previous layer, 
and where neurons in a single layer function completely independently and 
do not share any connections. The last fully-connected layer is called the 
“output layer”  and in classification settings it represents the class scores. (Li 
et al. 2017)  

Regular neural networks, however, do not perform well for larger images. Considering 

images from the CIFAR-101 dataset with a size of 32 x 32 x 3 (32 wide, 32 high, 3color – 

RGB), a single fully connected neuron of the first hidden layer within the regular neural 

network would have 32 x 32 x 3 = 3,072 weights (Li et al. 2017). If a larger image is desired 

(i.e., a size of 200 x 200 x 3), the neuron will have 200 x 200 x 3 = 120,000 weights. As 

such, it is evident that weights add up quickly, and the huge weight parameters would lead 

to overfitting and ultimately to inefficiency in processing (Li et al. 2017). 

Therefore, researchers included a convolution process layer in addition to the 

regular neural network to resolve the issue related to larger image, where it helps to 

preserve the spatial relationship between the imagery data by learning features using 

smaller squares of image data (Karn 2016). In CNNs, the convolution process layers are 

organized in three dimensions: width, height, and depth. Additionally, the upper layer 

neurons do not connect to all the lower layer neurons, specifically to a small region of the 

lower layer. The output layer of the CNNs will be reduced to a single vector of probabilistic 

                                                 
1 CIFAR-10 is a widely used dataset used to train and test machine learning and computer vision 

algorithms. The dataset consists of 60,000 32 x 32 color images in 10 different classes, with 6,000 images 
per class (Krizhevsky 2010). 
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scores, structured along the depth dimension (Li et al. 2017). Figure 26 illustrates the 

architecture of a regular neural network (left) versus a convolutional neural network (right).  

 

Figure 26.  Illustration of the Regular Neural Network versus Convolution Neural 
Network. Adapted from Li (2017). 

 

Figure 27.  Pipeline of a Convolutional Neural Network. Source: Geitgey (2016). 

Figure 27 illustrates the five-step pipeline overview of a CNN. It can be seen that 

the main building block of the CNN is the convolution layer. In mathematical terms, 

convolution refers to the integral of the amount of overlap between two functions to 

produce a third function (Weisstein 2018). Hence, the convolution process in a CNN will  

be performed on the input image with the use of a moving convolution filter, which slides 

over the image to produce a feature map. At each location on the image, the matrix 

multiplication is executed, and the results are summed to create a feature map.  
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Figure 28.  Convolution Process. Source: Dertat (2017). 

This convolution process is repeated on the input image with different filters to 

generate different feature maps. These feature maps are passed through the rectified linear 

unit (ReLU) activation function to make them non-linear. The ReLU replaces the negative 

pixel value found in the feature map to zero. Subsequently, these rectified feature maps are 

stacked together to form the final output of the convolution layer. Figure 29 shows 

examples of the visual representation of the convolution process layer. 
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Figure 29.  Visual Representation of Convolution Process Layer. Source: 
Fergus (2015). 

The outputs from the convolution layer are then passed through the pooling layer. 

The function of this pooling layer is to reduce the dimensionality; hence, it is intended to 

achieve a reduction in the number of parameters, which shortens the training time and 

mitigates overfitting of the algorithm (Dertat 2017). CNNs typically use max pooling, 

which returns the max value in the pooling window. Hence, the pooling layer is able to 

down sample each feature map, leading to a reduction in height and width while keeping 

the depth. Figure 30 illustrates the pooling process, whereby the results of max pooling 

using a 2-by-2 window are passed over the feature map. The max pooling process decreases 

the feature map size without losing the significant information.  
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Figure 30.  Pooling Process. Adapted from Dertat (2017). 

After the convolution and pooling process layer, the fully connected neural network 

is used for classification process. Similar to the working principle of the regular neural 

network, the neurons are trained to classify and tell the probability of the object within the 

input image (Li et al. 2017). Figure 31 shows an example of a typical CNN architecture. 

 

Figure 31.  Example of CNN Architecture. Source: Li et al. (2017). 
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2. Object Detection Algorithm  

The CNN provides the foundation for image classification. Nevertheless, in order 

to perform object detection, the algorithm should have the ability to locate the object of 

interest and define a bounding box containing it within the image. Furthermore, the ability 

to define many bounding boxes representing the different objects within the image is also 

required. Considering the classification of “duck” in Figure 32, the standard CNN will have 

issues processing and performing image classification, due to the multiple occurrences of 

the object (Gandhi 2017). In the native approach, the image is broken up into multiple 

regions, and the CNN will then perform the image classification task on each specific 

region. However, the objects of interest might have different spatial locations and aspect 

ratios within the image. Thus, a multiple number of regions with overlap will be defined, 

making the CNN computationally intensive and, therefore, less efficient.  For this reason, 

algorithms like the Region-based Convolutional Neural Network (R-CNN) and the You 

Only Look Once (YOLO) algorithm are designed to search rapidly for these occurrences. 

 

Figure 32.  Representation of CNN Architecture. Source: Gandhi (2017). 

a. Region-Based Convolutional Neural Network (R-CNN) 

The R-CNN model proposed by Ross Girshick et al. (2014) was one of the earliest 

works to overcome the problem of multiple occurrences of the same object within an 

image. The R-CNN combines the selective search method to extract 2,000 regions and the 
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CNN to localize and classify the objects in the defined region. The selective search method 

proposed by Jasper Uijlings et al. (2013) begins by defining a small region in the image, 

before merging them according to the color spaces and similarity metrics within the 

hierarchical grouping. The output of this selective search method is a variety of region 

proposals containing the objects. Figure 33 illustrates the visualization of the selective 

search method, whereby the top shows the region proposals and bottom shows the results 

of object segmentation and localization. 

 

Figure 33.  Visualization of the Selective Search Method. Source: 
Uijlings et al. (2013). 

 

Each of the region proposals is resized to the input requirement of the CNN, 

producing a 4,096-dimensional features vector. The CNN acting as the feature extractor 

passes the extracted feature to a support vector machine (SVM)2 classifier to classify the 

                                                 
2 According to Rohith Gandhi (2017), the objective of the support vector machine algorithm is to find a 

hyperplane in an N-dimensional space ���1�Ø—�Ø�W�K�H���Q�X�P�E�H�U���R�I���I�H�D�W�X�U�H�V�����W�K�D�W���G�L�V�W�L�Q�F�W�O�\���F�O�D�V�V�L�I�L�H�V���W�K�H���G�D�W�D���S�R�L�Q�W�V�� 
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presence and predict the probabilities of objects within the region proposal (Girshick et al. 

2014). In addition, the algorithm predicts four values through a linear repressor to adapt 

the shapes and to increase the precision of the bounding box. This in turn reduces 

localization errors of the objects. Figure 34 shows the architecture of the R-CNN. Despite 

its success at more efficient image processing, the R-CNN still takes up significant 

computing resources to train the network, and real-time system performance requirements 

cannot be met. 

 

Figure 34.  Architecture of R-CNN. Source: Girshick et al. (2014). 

b. Fast R-CNN 

The same author, Girshick, of the R-CNN paper improves the algorithm in his 

follow-on research to reduce the time consumption on processing a high number of models 

and analyzing all region proposals (Girshick 2015). Since the objective is to develop a 

faster object detection algorithm, the Fast R-CNN follows a similar approach as the R-

CNN algorithm. Instead of extracting 2,000 region proposals from an input image, the 

image is passed through the CNNs to generate a convolutional feature map. Regions of 

Interest (RoI) are identified using the selective search method applied on the feature maps. 

Through the use of the RoI pooling layer, the size of the feature maps is reduced, and each 

RoI layer with fixed height is fed into the fully-connected neural network layer. A feature 

vector is created through this RoI pooling layer, which is used for prediction of the object 

class of the proposed region and adapting bounding box localizations (offset values for the 



 50 

bounding box). Figure 35 shows the architecture of the Fast R-CNN. Although the Fast R-

CNN is significantly faster in training and testing sessions than the R-CNN, the 

performance of the Fast R-CNN is affected by the generation of RoIs on the selective 

search method (Gandhi 2017). Therefore, generating RoIs / region proposals becomes a 

challenge to improve the algorithm performance. 

 

Figure 35.  Architecture of Fast R-CNN. Source: Girshick (2015). 

c. Faster R-CNN 

In the R-CNN and Fast R-CNN algorithms just discussed, the selective search 

method was used to determine the region proposals. As noted in the discussion, the 

selective search method was inefficient and computationally expensive, which affected the 

overall performance of the algorithms. Shaoqing Ren et al. (2016) introduced the Region 

Proposal Networks (RPN) to replace the selective search method, with the aim to generate 

directly the region proposals within the image and bounding boxes around the detected 

objects. The Faster R-CNN, as illustrated in Figure 36, takes on the previous work of the 

Fast R-CNN and combines this with the RPN algorithm. Similar to Fast R-CNN, the 

algorithm produces convolutional feature maps based on the entire image. Next, the RPN 

generates the features vector connected to two fully-connected neural network layers, 

whereby one is for the box regression (coordinates of the bounding box, its height and 

width) and one is for box classification (probabilistic score to determine if an object is 
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within the box). The RPN is trained to generate high quality region proposals; hence, its 

usage in Faster R-CNN accelerates the computation process and improves the algorithm 

performance in object detection as compared to Fast R-CNN. 

 

Figure 36.  Architecture of Faster R-CNN. Source: Xu (2017). 

d. You Only Look Once (YOLO) Algorithm 

All of the previous CNN algorithms are designed to use regions proposal to localize 

objects within the image. By contrast, the You Only Look Once (YOLO) algorithm, 

developed by Joseph Redmon et al. (2016), predicts bounding boxes and object class 

probabilities using a single convolutional network. The architecture of the YOLO 

algorithm, as illustrated in Figure 37, shows the process flow of the algorithm. The 

algorithm takes in the whole input image and splits it into an S x S grid. Each grid cell 

predicts B bounding boxes with C class probabilities and an offset value for the bounding 
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box. The bounding boxes with probabilistic scores above the threshold value are processed, 

and object localization within the image is performed. In the final layer, the algorithm 

outputs a ( 5)S S C B� u � u � � � u tensor, which represents the predictions for each grid cell 

(Redmon et al. 2016). 

 

Figure 37.  Architecture of YOLO Algorithm. Source: Redmon et al. (2016). 

Furthermore, Redmon et al. (2016) highlighted that one potential drawback with 

the YOLO algorithm is the strong spatial constraint on bounding box prediction. Therefore, 

this limits the algorithm’s ability to predict small objects appearing in groups (e.g., flocks 

of birds). In addition, although the YOLO algorithm is orders of magnitude faster, it might 

not be as accurate as the Faster R-CNN (Li et al. 2017). Similar to the R-CNN, the YOLO 

algorithm was fine-tuned and improved in subsequent ongoing research. As of this writing, 

the latest YOLOv3 had worked toward faster and more accurate object detection.   
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3. Performance 

The recent excitement about deep machine learning has attracted different neural 

network related research. Subject matter experts in this area have been improving their 

algorithms for higher precision in object detection prediction and for achieving near real-

time performance. Beside the R-CNN and YOLO algorithms, researchers have developed 

other object detection algorithms such as the single shot detector (SSD), region-based fully 

convolutional network (R-FCN), and the neural architecture search net (NASNet). Hence, 

the computer vision researchers use a standard dataset as a challenge to evaluate the 

performance of their algorithms. The commonly used metric in object detection challenges 

is mean Average Precision (mAP), providing the mean value of the average precision 

generated from all the class objects within the dataset challenge. From the performance 

results shown in Table 7, it is evident that the YOLO algorithm achieves a better frame per 

second (FPS) performance, which is critical for systems that need real-time object detection 

capabilities. Nevertheless, the better FPS rates do come with a cost to the mAP. Using the 

PASCAL VOC dataset, YOLO has a mAP score of 63.7 percent versus the Faster R-CNN, 

which has a mAP score of 78.8 percent. Hence, it will be important for designers to 

consider the system trade-off in deciding on the use of these generic algorithms for their 

applications. 

Table 7.   Performance of Algorithm Model. Adapted from Ouaknine (2017). 

Algorithm 
Model 

Mean Average Precision 

Estimated FPS 
Real Time 

Speed PASCAL VOC 
2007 

PASCAL VOC 
2012 

Fast R-CNN 70.0% 68.4% ~ 0.5 No 

Faster R-CNN 78.8% 75.9% ~ 5 No 

YOLO 63.7% 57.9% ~21 Yes 
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IV.  ADVANCED SYSTEM DESIGN 

This chapter reviews the architecture, including the hardware and software 

configurations of the advanced system. 

A. SYSTEM ARCHITECTURE  

Based on the system considerations presented in Chapter III, the improvements to 

the baseline system are made. Figure 38 shows an overview of the advanced M100 system. 

As compared to Figure 1, it can be seen that the main refinement is on the inclusion of the 

DJI Manifold (processor element) to support the CV algorithm (application), with the video 

data stream from the DJI Zenmuse X3 (sensors payload). 

 

Figure 38.  Overview of Advanced System 

In terms of weight and dimensions, the proposed changes on the system have 

minimal effect. Hence, the flight performance of the new system setup will not be 

compromised. Based on the measurement of the system, the weight is 2.75 kilograms (Kg), 

and it has dimensions of  22 in (L) * 20 in (W) * 14.2 in (H). 
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B. HARDWARE CONFIGURATI ON 

The hardware configuration of the M100 system consists of the base unit and the 

payload electronics. As discussed in Chapter II, the base unit employs only the fewest and 

most essential hardware items necessary for the M100 to operate in a flight environment. 

This includes modules such as N1 flight controllers, INS sensor suite, GPS receiver, ESC, 

DC brushless motors, propellers, battery pack, and gimbal camera. The payload electronic 

package is the experimental hardware installed as an additional feature to support 

autonomous system behavior research. For the new system’s development, the main 

changes are the installation of propeller guards and the DJI manifold system. The propeller 

guards are additional safety considerations for future test and evaluation of semi/fully 

autonomous flight. The DJI manifold system replaces the Odroid-XU4 hardware and 

enables us to utilize the onboard Zenmuse X3 camera. Figure 39 illustrates the 

interconnection among the payload electronics package. The payload electronics package 

is defined as the modules required by the system to achieve autonomy, and it consists of 

N1 flight controller, Zenmuse X3 gimbal mount, and the DJI manifold processor.   

 

Figure 39.  Interconnection for Flight Controller, Zenmuse X3 Gimbal Mount, and 
DJI Manifold 
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The entire imagery data flow commences with the payload sensor (Zenmuse X3), 

which is responsible for capturing the flight scene. The sensor will send this imagery data 

via a DJI proprietary interface on an eight-pin port into the DJI manifold CAM_IN port. 

Through this CAM_IN port, a software application will be executed to decode and convert 

the raw data into the required format for processing (RGB video) prior to publishing the 

video stream as an ROS node for either required CV algorithm processing or preparing the 

data for RF data downlink. The algorithm application can subscribe directly to the ROS 

node to process the imagery data.  

Once the CV algorithm detects and tracks the desired object, the M100 system can 

be commanded to perform specific flight maneuver actions. Examples of flight maneuver 

actions could be the following: (1) Evading the object if it is too close – SWARM UAV 

concept; (2) Moving toward the object – Homing of the weaponized UAV onto target; and 

(3) Monitoring and following the object – Surveillance. The DJI manifold, however, has a 

resource limitation for computationally intensive algorithms. As such, the DJI Manifold 

will be able to convert the video stream to the Real-Time Streaming Protocol (RTSP), 

which essentially is an internet protocol (IP) video. This provides opportunities for an 

external hardware module to be connected for further experimental testing with the system 

video stream. 

For the RF downlink data to ground control station, the data will be forwarded to 

the N1 flight controllers via the CAM_OUT port on the DJI Manifold. This video data 

stream will be compressed within the N1 flight controller and sent by RF downlink to the 

ground control station for piloting or mission tasking purposes. The ground operator can 

control the viewing angle of the gimbal camera (Zenmuse X3) using his or her remote 

controller. Together with the control actions from ground control, the data are sent by RF 

uplink back to the M100 platform. This data is interpreted by the N1 controller to perform 

the required changes in motor speed or the gimbal motor. This establishes a man-in-the-

loop function between human and machine. The RF controller at the ground control station 

remains as the single input/output source to the UAV system. 

Figure 40 illustrates the signal and power connection required for the payload 

electronics package, namely the Zenmuse X3, DJI Manifold, and N1 flight controller. The 
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signal and power for the DJI manifold, a key element for CV applications, is described 

here:  

�x CAM_IN: Receives raw video data from the payload sensor. The interface 

protocol is undisclosed by DJI. However, the manifold and its associated 

library will be able to read in the raw video data. Its connection is through 

an 8-pin cable.  

�x CAM_OUT: Transmits the decoded video in RGB format to the N1 flight 

controller. Similar to CAM_IN, the interface protocol is undisclosed by DJI, 

but the manifold has been designed to perform the required functions. Its 

connection is through an 8-pin cable. 

�x UART 2: Transmits/receives flight data from the N1 flight controller. The 

DJI SDK must be set up in order to perform communication linkup between 

the devices. In order to receive data from the N1 flight controller, the 

interface protocol must be able to subscribe to the ROS topic. For the 

transmission of data, the manifold uses the published ROS node function. 

Its connection is through a 6-pin cable. 

�x Power: Provides the main power input to the DJI manifold. The output 

voltage level from the XT30 (source) is 20V ~ 26V, while the DJI manifold 

accepts an input voltage of 14V ~ 26V. Its connection is through a XT60 

power cable. 

�x Ethernet: Is an expansion port for additional experimental hardware or data 

transfer. This port can be used to broadcast IP video from the Zenmuse X3 

or to perform secure login via another Ubuntu device. Its connection is 

through a CAT5 or better Ethernet cable. 



 59 

 

Figure 40.  Schematic Overview of DJI Manifold Interface (top) and M100 
Reserved Ports (bottom). Adapted from DJI (2017). 

C. SOFTWARE CONFIGURATI ON 

Similar to the existing setup, the software configuration for the refined M100 

system is broken down into software modules residing within the base unit, the N1 flight 

controller, and the payload processor, the DJI Manifold. The software architecture of the 

M100 system is illustrated in Figure 41. In the earlier section on hardware configuration, 

it is discussed that the DJI Manifold is tasked to execute imagery data crunching and pre-

processing of the raw data. Given that the Zenmuse X3 data uses a propriety interface, 
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decoding of this raw imagery data stream requires a specific camera driver library in the 

manifold. The decoded data will be sent to the video compression algorithm that resides 

within the DJI N1 flight controller for the RF video downlink to the ground control station. 

The N1 flight controller software, however, is protected from modification by the user. 

Appendix A presents the setup procedures for the software libraries and tools to support 

algorithm usage on the DJI Manifold. 

DJI N1 Flight Controller

Operating System (Undisclosed)

ROS (Undisclosed)

DJI Manifold

Operating System (Ubuntu 14.04)

ROS (Indigo)

OpenCV4Tegra

Zenmuse X3
Application

DJI Zenmuse X3 Imagery Data

Proprietary Interface

FC_AlgoUser Flight Actions

Video Compression

Flight Control Python 3

CV Algorithm

Gimbal Control

Propriety Interface

 

Figure 41.  Software Architecture for Refined DJI Matrice 100 

The CV algorithm is another beneficiary of the decoded imagery data, whereby 

different algorithms can be executed according to the system mission plan and its intended 

application. As an example of object detection and tracking, a CNN type of algorithm such 

as YOLO can be executed to perform detection on certain object categories. The output 

from the CV algorithm is combined with the results from other tracking applications and 
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sensor readings for the flight control application. This flight control process is taken care 

of by the FC_Algo residing on the DJI manifold system.  

The FC_Algo is responsible for computing and generating the required flight 

control actions. For the M100 system, however, the N1 flight controller controls the actual 

execution of flight control in terms of changing the motor speed. The DJI N1 flight 

controller does not, however, allow for user modification of the software applications. For 

this reason, the M100’s flight controller defined the specific ROS commands to control the 

flight dynamics and maneuvering of the system. The user-developed FC_Algo will 

communicate to the user flight action application via the UART interface pipeline. 

The inputs of the user flight actions and the system sensor suite influences the flight 

control application. Since users are not allowed to modify the software layer on the N1 

flight controller, DJI provides regular interval firmware updates to support additional 

stability for system performance. Hence, it is necessary to ensure the firmware version 

supports the correct DJI SDK package. 

1. Software Integration 

The DJI system software consists of the software package supporting the basic 

operating functions of the M100 system. The main focus of the software package is the DJI 

flight controller software, which was pre-loaded into the system. This software package, 

also known as the firmware, is maintained by DJI, and users are notified about updates 

through the DJI Go application. In order to achieve the full functional capabilities of the 

system, the firmware must handle the communication transactions from the aerial vehicles 

to the ground control station and the necessary debugging. A description of how to update 

the firmware can be found on the DJI website. Table 8 documents the summary of the DJI 

System software utilized to support the thesis research.  
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Table 8.   Summary of DJI System Software 

Description Version 

M100 Flight Controller  1.3.1.00+ 

Zenmuse X3 1.8.1.00 

DJI Remote Control 1.7.80 

DJI Go (IOS Application) 3.1.42 

DJI Assistant (PC Desktop Application) 1.2.4 

 

(1) DJI Software Development Kit 

The DJI SDK is an open source software library provided by DJI for enabling direct 

communication with the M100 system and N1 flight controller over a UART interface. 

Through the SDK, a fully featured ROS wrapper compatible with ROS standards gives 

read/write access to aircraft telemetry, flight control dynamics, and other aircraft functions. 

When the system is connected to the Windows PC-based DJI Assistant, the DJI SDK 

provides a toolkit for the system simulator and situation visualization. Figure 42 illustrates 

the hierarchy of the DJI SDK software package. The SDK package consists of ten classes 

of functions to support various types of user-defined FC_Algo application development. 

Assuming there is interest in developing specific flight control, the DJI SDK 

enables users to define low level flight dynamics and control using altitude, system 

velocity, and position commands. In addition, the system can be programmed to execute 

system take-off, system landing, and return to home point.3 With the availability of these 

basic flight control functions, users can develop their required algorithms for different 

missions and applications. 

                                                 
3 Home point refers to the programmed GPS coordinate location of the system prior to take-off. 



 63 

  

Figure 42.  Hierarchy of DJI SDK Application. Source: DJI (2017). 

Appendix B documents the procedure for the DJI SDK setup. In this research, the 

DJI SDK software package is installed for the Manifold hardware, and the SDK is activated 

(licensed) to utilize the flight control algorithm application. One can follow a similar setup 

procedure for any other ROS-enabled payload processor. In order to execute the DJI SDK 

core, the commands shown in Table 9 are utilized to launch the ROS server: 

Table 9.   Commands for Running the DJI SDK Server 

cd ~/DJI_SDK/catkin_ws/ //Browse to Directory 

source devel/setup.bash //Load Setup Configuration 

roslaunch dji_sdk sdk_manifold.launch //Launch DJI Server 

 

If the DJI SDK ROS server is executed correctly, a system status of “STATUS 

activateCallback, line 911: Activated successfully”  is displayed on the system terminal. 

Figure 43 presents the screen capture of the successful execution of the DJI SDK ROS 
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server on the Manifold. In other words, the Manifold has completed the communication 

handshake with the DJI N1 flight controller and is ready for FC_Algo application. 

 

Figure 43.  Successful Execution of the DJI SDK ROS Server 
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Alternatively, the DJI SDK demo client software can initialize simulation testing 

of the M100 system. In order to execute the DJI SDK demo client, the commands shown 

in Table 10 are utilized: 

Table 10.   Commands for Running the DJI Demo Client 

cd ~/DJI_SDK/catkin_ws/ //Browse to Directory 

source devel/setup.bash //Load Setup Configuration 

roslaunch dji_sdk_demo dji_sdk_client.launch //Launch DJI Client 

 

Once the demo client is launched, a variety of flight control functions is made available for 

simulation testing of the M100 system. Figure 44 presents the simulator environment for 

the DJI M100 system. By using the simulator, the user can test the FC_Algo application 

prior to the actual flight test, which can reduce the risk of algorithm error in flight.  
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Figure 44.  DJI M100 Simulator Environment 
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2. User Applications  

The FC Algorithm is programmed using the DJI SDK ROS wrapper, which is 

enabled through the execution of the DJI SDK ROS server. Assuming there is a need for 

the flight control application to move the system to a specific GPS coordinate, a sampling 

code as illustrated in Figure 45 enables the objective. By initializing the ROS publishers, 

the ctrlPosYawPub publishes command for the x, y, z position, and the yaw angle of the 

system w.r.t the ground truth coordinate through the use of “/dji_sdk/

flight_control_setpoint_ ENUposition_yaw.” When used with the velocity ROS function 

of “ /dji_sdk/ flight_control_setpoint_generic,” the ctrlVelYawRatePub publishes 

commands for the X, Y, Z velocity, and the rate of change of the yaw angle of the vehicle 

w.r.t. the ground truth coordinate.  

 

Figure 45.  Example of Flight Control Coding. Source: ROS WIKI (2017). 

The DJI ROS wrapper, presented in Appendix C, provides a different system 

control and telemetry to be read or written by the external payload processor. The ROS 

architecture simplifies the development process and enables various missions to be 

developed.  

For the Zenmuse X3 software application, the imagery data from the Zenmuse X3 

is contained within a proprietary interface that requires specific software driver libraries to 

be accessed and decoded. Using the “dji_cam_transport,” the imagery data is decoded and 

converted to RGB video format. Subsequently, the user can choose to have RGB video 

data displayed on the graphic interface on the Manifold, stored to NV12 memory, or 

transferred to the N1 flight controller for video downlink to the ground control station. 
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Appendix D contains the setup procedures and coding of the Zenmuse X3 software 

application. In order to execute application, the commands listed in Table 11 are utilized: 

Table 11.   Commands for Running the Zenmuse X3 Software Application 

roscore //Launch ROS server 

sudo su //Root Access 

cd ~/zenmuse_ws/ //Browse to Directory 

source devel/setup.bash //Load Setup Configuration 

rosrun dji_cam_transport [-dgt] // Execute Camera Interface 

 

The usage of -dgt depends on the required ROS image interface, where -d is display video 

stream, -g is store video in NV12 memory, and –t is transfer video data to the N1 flight 

controller. The d and g attributes cannot be used at the same time. Assuming there is a need 

to process the image on the CV algorithm, the application is required to place the imagery 

data in the memory buffer, or option “–g.” Figure 46 presents a screen capture of the 

successful execution of the ROS server and the publishing of the Zenmuse image as an 

ROS image node for further algorithm processing. 

 

Figure 46.  Successful Execution of ROS Server (left) and Publishing of ROS 
Image Node (right) 
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The system is also designed to enable users to debug the video stream by projecting the 

RGB video contents onto a ROS image viewer. This can be achieved through the use of a 

separate command terminal, using the command shown in Table 12: 

Table 12.   Command for Running the ROS Image Visualizer 

rosrun image_view image:=/camera/image  //Launch Visualizer 

 

Figure 47 presents a screen capture of the image viewer displaying the ROS image node in 

real time on the Manifold, followed by the video transmission displayed on the DJI Go 

application located at the ground control station.  
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Figure 47.  Visualizer of ROS Image Node (top) and Video Transmission Display 
on DJI Go Application (bottom) 

3. State-of-the-Art Deep Learning–Based CV Algorithm 

As discussed in Chapter III, it is evident that CV algorithm has a major role in 

supporting autonomous behavior for the unmanned system. Given that a wide variety of 

algorithms can be implemented to serve different applications, this thesis focuses on object 
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detection and tracking. Hence, the algorithm that is implemented on the system must be 

able to meet this criterion. Also, among the performance of different open-source CV 

algorithms, it is shown that YOLO is the better choice to achieve real-time embedded 

performance. The real-time performance will ensure timely updates on critical data for 

dynamic UAV flight control. 

The YOLO algorithm is written in a custom deep learning architecture, Darknet, 

which enables acceleration of object detection capabilities in the CPU + GPU setting. The 

GPU core in the Nvidia embedded processor creates the framework favorable for the thesis 

research. Hence, it will be important to utilize the GPU and OpenCV software libraries 

support while compiling the YOLO algorithm. Appendix E presents the setup procedures 

for the building of the algorithm into the Manifold or similar GPU architecture-based 

processor system. Once the YOLO algorithm is built using the supporting software library, 

the algorithm is launched using a single line command, as illustrated in Figure 48. The 

command allows users to select the required dataset, YOLO configuration file, YOLO 

weights, and the type of input data (image or video).  

 

Figure 48.  Decomposition of the YOLO (CV Algorithm) Command 

For example, to test the performance of the YOLO algorithm, a single sample image 

can be loaded into the algorithm for object detection. Using the command shown in Table 

13, the YOLO algorithm performs the object detection using the convolutional technique 

to classify the objects in the image. 
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Table 13.   Command for Running the YOLO Algorithm 

./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights data/horse.jpg 

 

Figure 49 presents the screen capture of a successful execution of the YOLO algorithm. As 

discussed in an earlier section, the convolutional network can be stacked to form different 

layers for object detection. It is observed that the “yolov3.cfg” configuration executes 106 

process layers on a single image. In addition, the algorithm took 0.30275 seconds to detect 

a horse, dog, and person at respective confidence levels of 100, 99, and 100 percent. 

 

Figure 49.  Successful Execution of the YOLO Algorithm 
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Figure 50 illustrates the prediction results for object detection on the sample image 

that is loaded into the YOLO algorithm. The three objects are detected and bounded within 

their individual bounding box. 

 

Figure 50.  Predictions for Objects Detection on Sample Image 

The dataset and pre-trained model used by the YOLO algorithm, however, are not 

comprehensive enough to provide object detection for all category classes. Hence, for 

specific object categories, the YOLO algorithm allows end users to perform the required 

training to achieve adequate object detection. For object detection training, it is necessary 

to determine the object of interest, which in this case is a quadcopter UAV. The complexity 

and precision of the object detection depends on the number of available image data sets 

that will be used to train the algorithm. As discussed by YOLO authors, the recommended 
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image data set for training is about 300–400 different images per category. Figure 51 

illustrates a small subset of the image data for the quadcopter UAV. 

 

Figure 51.  Image Data Set for the Quadcopter UAV 

Next, each individual object is annotated to identify it in each individual image data 

set. The data annotation can be completed using software tools such as the BBox Label 

Tool. Figure 52 illustrates the data annotation of a quadcopter in a single image, whereby 

the object is bounded within a box of pixels from (307,545) to (817,238). 

 

Figure 52.  Data Annotation of Quadcopter in a Single Image 
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Hence, once the object within all the image data sets is annotated with the bounding 

box information, the data of the bounding box is stored in a data text file. This text file is 

subsequently converted to the YOLO required format as a preparation for YOLO algorithm 

training. The third step is to prepare the configuration files for the YOLO algorithm by 

defining the object names, the label to be shown, the convolutional weights, and the 

relevant computation setting. The final step is to use the algorithm to complete the training 

of the image data set in the data model, which can be used for testing the algorithm against 

detection of the desired object.  
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V. T&E OF THE ADVANCED SYSTEM 

This chapter discusses the results of T&E of the advanced system in a SAR mission. 

As introduced in the section I.A, the SAR mission can be a tedious and stressful task for 

human operators who need to locate potential survivors of a disaster as quickly as possible. 

Hence, the utilization of unmanned systems in the SAR mission reduces the workload for 

the human operator and enables prolonged mission time in finding the targets (i.e., the 

survivors). Following T&E of the advanced system, we collected and analyzed the test 

results from the system, and those results and their subsequent analysis are presented in 

this chapter. 

A. EXPERIMENT SETUP 

The focus of the experiment is to examine the relevant unmanned technologies and 

feasibility of the M100 system in supporting a SAR mission. The imagery data obtained 

from the aerial surveys during the mission can be processed by CV algorithms and 

applications to extract the critical information that can assist decision makers in allocating 

resources for the rescue operations. Depending on the complexity of the CV algorithm, 

different resource requirements are needed to process the imagery data. A combination of 

onboard and offline computation can provide the architecture to fulfill the requirements to 

effectively run the CV algorithm.   

a. Mission Scenario 

In the SAR mission, the unmanned system is capable to support human operators 

in numerous operational tasks. These tasks can be grouped into three key areas, which are 

defined as the mapping, search, and surveillance.  

Prior to the search operation, it is essential to map out the area to gather critical 

information about the terrain or environment. The UAV system can provide the advantage 

for situational awareness mapping through its payload sensors. The M100’s EO sensor is 

a form of remote sensing capability, which can enable the human operator to look beyond 

his or her visual limitations. Through the use of flight/mission planning tools, the flight 
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control algorithm on the M100 is programmed to perform the necessary waypoints flight 

to a specific location for imagery data collection. These imagery data are processed using 

the CV algorithm to generate 3D and 2D aerial maps or models for initial search and 

unmanned system navigation capabilities.    

The purpose of a search operation is to achieve target identification at a close-in 

angle and assessment of the surrounding threat environments. Without this critical 

“ground” information, decision makers might not be in a good position to plan for further 

operations. Using the resultant outputs from the mapping operation, it is possible to develop 

an algorithm for obstacle avoidance to enable the M100 to execute flight in-between the 

buildings of an urban environment. Hence, the EO sensor can provide this optical flow to 

support this visual-to-flight-control algorithm. Currently, there are many ongoing research 

efforts to utilize EO sensors for UAV flight guidance in an urban environment. An example 

of the popular CV algorithm is visual SLAM, which provides UAV localization with and 

without the support of a GPS and mapping of the flight environment. A common issue with 

the implementation of the CV algorithm is the embedded processor’s computing power 

requirements. Therefore, a small, embedded processor unit is typically not suitable to run 

such a demanding algorithm. 

In the surveillance operation, the system is required to supply the situational 

awareness about the designated area to ground control commanders. One of the strengths 

with the M100 UAV is its ability to hold its flight position (GPS coordinates and flight 

altitude). When combined with the RF data downlink, the system provides a continuous 

video stream for decision makers to monitor and plan the rescue activities. Nevertheless, 

the video quality can be affected by the parameters that defined the UAV flight mission. 

The flight altitude affects the GSD of the image, whereby the higher the altitude, the lower 

the GSD per pixels. For small objects (i.e., those objects with a small surface area), there 

is a need for higher GSD to achieve more pixels of objects. The video resolution affects 

the total ground area that can be monitored in a single snapshot and the data size of the 

video must be sent via downlink to the ground control. Hence, it is important to perform a 

trade-off study to achieve a balance between the desired video quality and system 

performance. 
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b. Operating Environment 

The test and evaluation of the M100 system is conducted in Fort Ord’s Impossible 

City. Figure 53 shows the aerial view (top) and elevated view (bottom) of Impossible City 

at Fort Ord, which provides an urban setting for the unmanned system to test different 

unmanned technologies in crafting the autonomous system’s behavior. The system is tested 

during the period of January to June 2018. The environmental conditions were favorable 

and within the system specifications of the UAV for flight test execution.  

 

Figure 53.  Fort Ord’s Impossible City. Source: Google Earth (top). 
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B. FIELD TRIALS  RESULTS 

In this section, the typical missions performed in SAR, namely mapping, search, 

and surveillance are simulated to demonstrate the capabilities of the advanced COTS UAV 

design and setup. 

1. 3D Mapping 

The first task of this field trial is to perform the aerial mapping of the desired 

operational area that might be defined by the ground control commanders. Using the 

number of pixels’ representation for the object, as defined in Figure 19, the M100 is 

programmed to fly at an optimum flight altitude to (1) perform target detection from an 

aerial view (fly-pass mode) and (2) collect imagery data for modeling of the dense urban 

environment for unmanned system navigation. 

In the mapping field experimentation, the UAV system is tasked to fly at an altitude 

of 50 m and execute imagery data collection over the area. The imagery data are stored in 

high resolution in the micro storage device, and compressed snapshots are sent from the 

system to the ground control station. The mission-planning tool used for this mapping task 

is the Pix4DCapture.  

The Pix4DCapture is a third-party application developed by PIX4D to support a 

variety of DJI drones (such as the DJI Matrice 100 and Inspire 1). The strength of the 

PIX4D is its ability to do 2D aerial imagery and 3D mapping over the area of interest. In 

terms of its user friendliness, the application is easy to operate, and untrained users can 

learn the functions of the application within 1–2 hours of experimenting with it. On the 

Pix4DCapture user interface, the mission selection allows for mapping of the area in single 

or double grid manner upon entering the application.  

The search area is established via the selection of the polygon or by dragging the 

search box over the template. Next, users are allowed to determine the desired flight 

altitude, angle of the camera, front and side overlap of the images captured, and the drone 

speed moving along the waypoints in the search area. Figure 54 shows the screen capture 

of the area waypoint mapping of 210 m x 210 m for Fort Ord’s Impossible City. At the 

flight altitude of 50 m, angle of the camera at 90 degrees, front overlap of 80 percent and 
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side overlap of 70 percent for capturing the images, and the drone speed of fast, the 

estimated flight time for this image-mapping mission will be approximately 16 minutes 41 

seconds. In addition, one other feature that is the strength of this application is its ability to 

provide the ground sample distance (GSD) measured as centimeters/pixels. This gives the 

operator a quick reference guide to determine the performance of the imaging when flying 

at a certain flight altitude. 

 

Figure 54.  Illustration of Area Mapping in Pix4DCapture 

Once the M100 system completed its imagery data collection, the imagery data are 

extracted from the system and processed on an offline computing system to generate the 

3D mapping. The 3D mapping of the search area is an extension to the SLAM concept, 

where the image snapshots captured by the UAV during the aerial fly-over of the desired 

area are post-processed to generate a 3D point cloud for unmanned system navigation in 

the urban environment. Agisoft Photoscan software was selected as the primary solution to 
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fulfill the geo-referencing task for aligning the imagery data (with overlap) using the 

metadata for airborne GPS data and its proprietary point-cloud technology algorithm. 

Figure 55 shows an illustration of the 3D point cloud for Impossible City generated from 

the imagery data of the UAV. 

 
Image Credit: Jeremy Metcalf 

Figure 55.  3D Point Cloud Model of Impossible City 

However, the amount of detail in the 3D point cloud is simply too much for the 

embedded processor within the unmanned system to perform meaningful machine learning 

for feasible navigation. Furthermore, the file size of a typical 3D point cloud model is in 

the order of 10–15 GB per 10000 m2. For the mapping area of 210 m by 210 m, the expected 

file-size will be between 20 and 30 GB. Thus, the 3D point model is simplified into a 3D 
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mesh model by converting the points into vertex and reduced points, achieving significant 

file-size reduction. Figure 56 shows the screen capture of the 3D mesh model that had been 

further processed from the 3D point cloud model. The mesh model is the targeted end 

products, which can be used by the computer-vision algorithm to perform the required 

unmanned system navigation. 

 

Figure 56.  3D Mesh Model of Impossible City 

In general, the mesh model will enable the unmanned system to perform 

localization of its position in the model, determine the critical dimensions (length, width, 

and height) and location of the obstacles (i.e., building, tree), and perform the distance to 

go/avoid. All of these concepts are aimed at machine learning for the required vision-based 

navigation of the system. 
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2. 2D Aerial Imagery 

The next product that can be extracted from the imagery data is the 2D aerial 

imagery. The 2D aerial imagery is used as the basis in the CV algorithm for target detection, 

and identification of the road/tracks from the 2D aerial mapping. Figures 57 and 58 show 

the 2D aerial imagery data in X-and Y-orientation generated from the image snapshots 

captured by the UAV. In order to preserve the clarity and precision of the GSD resolution 

per pixel, the images are stitched together to form a high-resolution map. When the map is 

zoomed in, the GSD resolution per pixel will be the same as the parameters that had been 

considered. 

 

Figure 57.  2D Aerial Imagery of Impossible City (in X-Orientation) 
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Figure 58.  2D Aerial Imagery of Impossible City (in Y-Orientation) 

Using a target detection algorithm or man-in-the-loop operation technique, the 

targets within the 2D aerial imagery data can be detected (as shown in Figure 59). The 

imagery data provides a quick mean to detect the targets within the first fly-pass mission. 

If the targets are not detected in the images, areas that provide a high confidence level that 

the targets do not exist are isolated. This reduces the overall operation lead-time in the 

search and rescue mission. 
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Figure 59.  Targets Detection on the 2D Aerial Imagery Map
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Since the 2D aerial imagery exists in the X-and-Y orientation, the same process can 

be applied to the 2D aerial imagery data in a Y-axis orientation. The resultants will provide 

the opportunity to the ground control commanders and operators for alternative views of 

the targets and can provide the man-in-the-loop identification process for confirmation. For 

example, Figure 60 shows the screen capture of the targets found from the 2D aerial 

imagery in the X-and Y-axis orientation. The first row illustrates the detection of a friendly 

trooper; one can see that the Y-axis provides an alternative view to the soldier conditions. 

Similarly, the second row illustrates a civilian awaiting rescue support; when comparing 

the snapshots from X-axis versus Y-axis, one can see that the Y-axis image provides 

slightly more information about what the civilian victim is doing and perhaps the 

immediate threats in his surroundings. 

 

Figure 60.  Target Detection on the 2D Aerial Imagery for X- and Y-Axis 
Orientation 
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Furthermore, using the 2D aerial imagery, the algorithm for probability road map 

will generate the possible track/road visible from the 2D aerial imagery data. The 

identification of the road/track will enable the unmanned system to plan for the required 

movement path in the search area. Figure 61 shows the representation of the probability 

road map in image form for Impossible City. It is evident that the tracks in the image are 

shown in white, which provides a high contrast perspective of the possible movement track 

within Impossible City. 

 

Figure 61.  Representation of Probability Road Map for Impossible City 

3. Simulation of a Search Mission 

 The second task of this field trial is to perform a target search via execution of a 

low-altitude flight along the identified tracks/road from the possibility road map to look 

for potential targets between buildings, along the side of a building, and outside building 

entrances/exits. The speed of the target search is dependent on the platform velocity and 

the field-of-view of the EO sensor. The imagery data is processed by the objects detection 

CV algorithm embedded in the onboard computer for real-time performance. Furthermore, 

there might be situation in which the UGV can be deployed to complement the search 

tasking by looking into areas that the UAV cannot access. 
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Since the purpose of the search operation is to perform target detection, a CV 

algorithm such as YOLO is used to search for objects of interest. As discussed in an earlier 

section, the CPU+GPU hardware architecture on the Nvidia processor enables a CNN-

based algorithm to accelerate its image processing functions. The M100 with the payload 

hardware is utilized to test the YOLO algorithm. As for the flight-path planning to conduct 

the search, mission-planning tools can use the generated 2D aerial imagery to create a 

waypoints flight path for the M100 system. In the case of this thesis, the application that is 

used to define the target search flight is DJI Ground Station Pro. 

The DJI GS Pro developed by DJI allows users to set the desired flight location for 

the UAV flight operation. Based on the 3D point cloud and 2D aerial imagery map result, 

the UAV is programmed to fly along the movement path into the desired area to look for 

the target. Figure 62 shows the screen capture of the target search mission waypoints for 

the UAV to look for the target in the pre-defined mission set. 

 

Figure 62.  Screen Capture of the Target Search Mission Waypoints 
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In the field trials, it is discovered that the mission-planning tool lacks in ability to 

read in the 3D point cloud model terrain information. Due to the terrain of Impossible City, 

the flight altitude of the UAV should not be constant throughout the flight. An additional 

modeling tool is used to extract the terrain information from the 3D model. Given that the 

3D model is not survey grade, though, the elevation information lacks in precision. Thus, 

a tolerance of 5 m is used as a safety margin in the flight trial. To cater to the terrain 

changes, if the desired flight altitude is 10 m off the ground, the UAV performs continuous 

adjustment in its flight altitude as the terrain under its flight path changes. Hence, in the 

case of the flight mission, if the starting altitude is 10 m and the ending altitude is defined 

as 20 m, the flight altitude is increased by 10 m gradually as the terrain elevation changes. 

The DJI UAV system is also designed to operate with two sets of remote controllers 

for independent control over the flight dynamics and the gimbal camera on the UAV. Due 

to flight safety considerations, the master controller will always have unique control over 

the flight dynamics and shared control over the gimbal control. On the other hand, the slave 

controller does not have control over the flight dynamics of the UAV, but just the control 

of the gimbal camera. 

During the target detection operation, the gimbal camera is pointed forward at the 

heading angle of the UAV forward flight. As discussed in an earlier section on object 

resolution, the change in distance of the objects to the EO sensor will change the number 

of pixels’ representation for the objects, as seen in Figure 19. Hence, the YOLO algorithm 

will require a specific pixel threshold for successful target detection. Figure 63 shows the 

viewing scenario from the UAV during the Target Search mission. It is evident that the per 

pixel resolution of the objects decreases as the distance from the camera to the object 

increases. Thus, a complex problem results if the resolution is required to be predicted. 
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Figure 63.  Viewing Scene of the UAV during Target Search 

When the imagery data is decoded and processed by the YOLO algorithm, the 

algorithm utilizes the CNN architecture framework to process the data in each individual 

frame. In the field trial, two different object categories (person and car) are used to 

represent the target. Figure 64 presents the snapshot of the processed imagery data for 

target detection with the YOLO algorithm. The four snapshots represent various scenarios 

that the UAV might encounter during its mission. The top row images represent detection 

of a single individual object category (i.e., person and car) within a single image. The 

bottom left image represents the detection of two different object categories separated by 

a specific distance, and the bottom right image represents the detection of two different 

object categories overlapping each other. It is evident that the YOLO algorithm works well 

in the four scenarios and is able to detect the object as captured by the EO sensor on the 

M100 system. It is also observed that the YOLO has little probability (confidence) in object 

classification when the object appears to be small (far from the system). The probability in 

object classification increases as the object gets nearer to the system (pixel resolution 

increases). 
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Figure 64.  Snapshot of the Target Detection in YOLO Algorithm
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4. Simulation of a Surveillance Mission 

The third and final task of this field trial is to provide a means for the ground control 

commander to monitor the activities occurring over the desired SAR mission area. The 

UAV is programmed to hover in position over the designated area at a defined flight 

altitude. The RF data downlink will be responsible to send the data and video telemetry 

from the UAV to the ground control station. 

In the surveillance field experiment, the UAV is programmed to hover at different 

flight altitudes to perform an assessment of its effect on the viewable ground area. By using 

the same mission planning tools (DJI GS Pro), the M100 system is programmed to hover 

at the defined flight altitude. The imagery data are compressed and sent at full HD video 

resolution of 1920 x 1280 pixels, and the recorded videos are stored at the 4K video 

resolution of 4096 x 2160 pixels. The compression of the video bitrate helps to reduce the 

latency in video transmission, thus enabling the real-time updates of events to the ground 

control station. Figure 65 shows the illustration of the video resolution of the Zenmuse X3 

when operated in 4K or HD mode. 

 

Figure 65.  Representation of Video Resolution Based on Generic Pictorial. 
Source: DJI (2017). 
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Similar to the mapping operation, the surveillance coverage (ground distance) can 

be estimated from the flight altitude using the ground sample distance. Figure 66 shows 

the viewable ground area versus the flight altitude of the UAV. Assuming that the ground 

control commander will need to view an area of 125m-by-125m (total surface area 

=15625m2), the minimum flight altitude of the UAV will be approximately 200 m with full 

HD real-time video stream. On the other hand, for still image snapshots, the UAV can be 

operated at a flight altitude of around 82.5 m to achieve the same ground coverage. 

 

Figure 66.  Plot for Ground Area versus Flight Altitude 

As part of the field trial, the effect of the viewable ground area against the flight 

altitude is studied. The UAV is programmed to hover at different flight altitudes (50 m, 

100 m, 150 m, 200 m). Figure 67 shows various image snapshots over Impossible City at 

different flight altitudes. It is evident that the viewable area increases in a slightly 

exponential relationship as the flight altitude increases. Also, as expected, the GSD 

resolution decreases due to the increase in the flight altitude. Therefore, it will be necessary 

to perform trade-off studies between the GSD resolution and the viewable ground area 

prior to the decision on the flight altitude. 
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Figure 67.  Snapshot of Impossible City at Different Flight Altitudes 
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VI.  CONCLUSIONS AND RECOMMENDATIONS  

A. SUMMARY 

This thesis explored areas for advancement in COTS UAV capability to provide 

vision-based SA/ISR data through the use of an EO sensor and image processing algorithm. 

Prior to addressing the system improvements, the problems with the baseline platform were 

systematically identified and analyzed. Through the analysis, the three identified problems 

(i.e., Sensitivity of Classifier Parameter, Overlap in Bounding Box, and Rolling Shutter 

Effects) were attributed to the performance of the CV algorithm and EO sensor. 

The rolling shutter effects degraded the quality of the captured image and affected 

the overall performance of the Purdue/NPS CV algorithm. Since the rolling shutter 

capturing mechanism is an inherent property of the existing EO sensor (Logitech C920 

webcam), it became necessary to develop and integrate new payload electronics on the 

UAV to support the advanced vision-based capability. Given that the M100 baseline 

platform supports a DJI Zenmuse X3 gimbal camera (global shutter EO sensor), it is 

necessary to deploy the relevant electronics to decode and process the imagery data from 

the new EO sensor. Therefore, system considerations for the EO senor and computing 

hardware technologies were conducted to understand the technologies’ expected 

performance and limitations.  

Besides the identified problems with the Purdue/NPS CV algorithm, the algorithm 

required the EO sensor to be stationary for capturing of the objects’ scene. Hence, the 

algorithm also limits the capability of the M100 system. As such, the current advancement 

in the CV algorithm is reviewed. The convolutional-based algorithm is found to have the 

best computational effectiveness in object detection. In a comparison of the architecture 

and performance of various CNN algorithms, the YOLO algorithm is selected due to its 

ability to perform object detection in a real-time manner.  

The new advanced system is tested and evaluated for its capability in a simulated 

SAR mission. In order to establish a realistic mission scenario, the SAR mission was 

broken down into three operating phases, such as mapping, target search, and surveillance. 
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In the mapping operation, the system was programmed to capture imagery data over the 

operational area (Impossible City, Fort Ord). The imagery data were processed by CV-

based software to generate a 3D mapping model, 2D aerial imagery, and probability road 

map, which can be utilized to support autonomous navigation in unmanned system. 

Furthermore, an additional CV algorithm can be executed to perform a first-pass target 

search based on the initial imagery data. In the search operation, the system is tasked to fly 

along the tracks in the built-up urban environment. Based on the collected imagery data, 

YOLO (CV algorithm) is able to perform object detection (human and vehicle) in four 

different scenarios. The successful detection indicated that the newly added payload 

electronics (Zenmuse X3 and Manifold) resolved the rolling shutter effects in the captured 

data. Finally, in the surveillance operation, the system was programmed to provide imagery 

data over a specific designated area. The imagery data were then fed to the ground control 

station as live video. 

In conclusion, this thesis demonstrated advancements in COTS UAV capability 

through the use of an EO sensor and CV algorithm to fulfill mission needs. With the 

improvements pursued in this thesis, the M100 platform (COTS UAV) can be quickly 

adapted for military missions. Furthermore, the use of unmanned technology increases 

situational awareness and reduces the workload for its users. Hence, the operation of 

unmanned systems can likely provide users with an advantage in modern warfare.  

B. RECOMMENDATIONS FOR FUTURE WORK  

As this research demonstrated, the added payload electronics resolved the issue of 

rolling shutter effects on degraded imagery data. Along with the generic software 

architecture designed for the computing element, the new payload electronics will enable 

a wide variety of algorithms or software applications to be executed. With this in mind, 

future research areas can involve: 

�x Training of the YOLO algorithm—Research into machine learning has 

attracted interest for numerous civilian and military applications. The 

YOLO algorithm is designed for highly efficient processing of object 

detection using embedded processor electronics. Therefore, the ability to 
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define the object model, training of the CV algorithm, and detection of a 

specific object facilitates customized system development. 

�x Optimization of optical flow for EO sensors—New payload electronics 

convert the imagery data from the memory buffer to the ROS image node. 

However, ROS is not optimized for image processing, and it induces minor 

latency in the optical flow chain. Hence, one of the potential means for 

optimization is to utilize the OpenCV software library to handle all imagery 

data processing requirements.  

�x Flight control algorithm—Research and development of the flight control 

algorithm will be relevant for customized missions and applications. Since 

the M100 platform can utilize ROS commands for user-defined flight 

applications, the DJI ROS SDK has been setup in the new payload 

electronics. Thus, this algorithm can provide the ability to control the M100 

system to users’ requirements.   
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APPENDIX A.  DJI MANIFOLD SETUP  

This appendix presents the setup procedures for the DJI Manifold. To reduce the 

installation effort for future development, the setup codes have been written as script files 

for quick installation. 

A. CODE FOR CUDA INSTALLATION  

1.  ###################################### 
2.  #   INSTALL CUDA 6.5 on Nvidia TK1   # 
3.  ######################################   
4.     
5.  # 1.  Download Nvidia  CUDA 6.5  Repository    
6.     
7.  Wget http: //developer.download.nvidia.co m/embedded/ L4T/ r 21_Release_v3. 0/ cuda- repo - l4t-

r21.3 - 6- 5- prod_6.5 - 42_armhf.deb    
8.    
9.  # 2.  INSTALL THE Repository    
10.     
11.  sudo dpkg - i  cuda- repo - l4t- r21.3- 6- 5- prod_6.5 - 42_armhf.deb   
12.  sudo apt- get  update   
13.  sudo apt- get  install cuda- toolkit - 6–5 
14.   
15.  # 3.  SET THE AUTHORITY OF USER   
16.   
17.  sudo usermod -  a -  G video Ubuntu 
18.   
19.  # 4.  SET THE ENVIRONMENT VARIABLES OF SYSTEM AND TAKE THEM INTO EFFECTS  
20.   
21.  echo '  '  >> ~/.bashrc    
22.  echo '#  Cuda dependencies'  >> ~/.bashrc    
23.  echo 'export  PATH=/usr/ l ocal/ cuda- 6. 5/b in:$PATH'  >> ~/.bashrc    
24.  echo 'export  LD_LIBRARY_PATH=/usr/ l ocal/ cuda- 6. 5/ l ib:$LD_LIBRARY_PATH' >> ~/.bashrc  
25.   
26.  # 5.  RUN CHECK  
27.   
28.  nvcc -  V   

B. CODE FOR OPENCV INSTALLATION  

1.  ###################################### 
2.  # INSTALL OPENCV ON UBUNTU 14.04 LTS # 
3.  ######################################   
4.    
5.  # VERSION TO BE INSTALLED   
6.     
7.  OPENCV_VERSION = '3.0.0'    
8.    
9.  #  1.  KEEP UBUNTU OR DEBIAN UP TO DATE   
10.     
11.  sudo apt- get  - y update    
12.  sudo apt- get  - y upgrade    
13.  sudo apt- get  - y dist - upgrade   
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14.  sudo apt- get  - y autoremove    
15.     
16.  # 2.  INSTALL THE DEPENDENCIES   
17.    
18.  # Build  tools:    
19.      sudo  apt - get install  - y build - essential  cmake gif    
20.    
21.  # GUI(  if  you want to  use GTK instead of  Qt,  replace  'qt5 - default'    
22.          with  'libgtkglext1- dev'  and remove ' - DWITH_QT=ON' option  in  CMake):   
23.  sudo apt- get  install - y qt5 - default  libvtk6 - dev qtbase5 - dev   
24.    
25.  # Media I  /  O:   
26.  sudo apt- get  install - y zlib1g- dev libjpeg- dev libwebp- dev libpng - dev libtiff5 -

dev libjasper - dev libopenexr - dev libgdal- dev   
27.    
28.  # Video  I  /  O:   
29.  sudo apt- get  install - y libdc1394 - 22- dev libavcodec - dev li bavformat - dev libswscale-

dev lib theora - dev libvorbis - dev libxvidcore - dev libx264 - dev yasm libopencore- amrnb-
dev libopencore - amrwb- dev libv4l - dev libxine2 - dev   

30.    
31.  # Parallelism  and linear  algebra libraries:    
32.  sudo apt- get  install - y libtbb- dev libeigen3- dev   
33.    
34.  # Python:    
35.  sudo apt- get  install - y python- dev python - tk  python - numpy python3 - dev python3 -

tk python3- numpy   
36.    
37.  # Java:    
38.  sudo apt- get  install - y ant  default - jdk    
39.    
40.  # Documentation:    
41.  sudo apt- get  install - y doxygen   
42.    
43.    
44.  # 3.  INSTALL THE LIBRARY   
45.     
46.  sudo apt- get  install- y unzip wget   
47.  wget https:  //github.co m/opencv/ opencv/ archive/${OPENCV_VERSION}.zip    
48.  unzip  ${OPENCV_VERSION}.zip   
49.  rm ${OPENCV_VERSION}.zip   
50.  mv opencv- ${OPENCV_VERSION} OpenCV   
51.  cd OpenCV   
52.  mkdir  build    
53.  cd build   
54.  cmake -  DCMAKE_BUILD_TYPE = Release  -  DCUDA_GENERATION = Kepler  -  DWITH_OPENMP = ON..    
55.  make -  j2    
56.  sudo make install    
57.  sudo ldconfig    

C. CODE FOR ROS INDIGO INSTALLATION 

1.  ###################################### 
2.  # INSTALL ROS INDIGO ON Ubuntu 14.04  # 
3.  ######################################   
4.     
5.  # 1.  Setup ROS sources list    
6.     
7.  sudo sh -  c 'echo  "deb  http://packages.ros.or g/ r os/ ubuntu  $(lsb_release  -

sc)  main"  > /et c/ apt/ sources.list. d/ r os- latest.list'  
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8.   
9.  # 2.  SETUP your  Keys   
10.     
11.  sudo apt -  key adv-- keyserver  hkp:  //ha.pool.sks - keyservers.net:80 -- recv -

key 421C365BD9FF1F717815A3895523BAEEB01FA116   
12.   
13.  # 3.  INSTALLATION   
14.   
15.  sudo apt- get  update   
16.  sudo apt- get  install ros - indigo - desktop  
17.  # sudo apt- get install ros- indigo - ros - base 
18.   
19.  # 4.  INITIALIZE  ROSDEP  
20.   
21.  sudo rosdep  init rosdep  update  
22.   
23.  # 5.  ENVIRONMENT SETUP  
24.   
25.  echo "source  /opt/ r os/ i ndig o/ setup.bash"  >> ~/.bashrc    
26.  source~/.bashrc  
27.   
28.  # 6.  GETTING ROSINSTALL 
29.    
30.  sudo apt- get  install python - rosinstall    
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APPENDIX B.  DJI ONBOARD SDK 

This appendix presents the setup procedures for the SDK software package that is 

used for the development of the flight controller algorithm. The setup procedures are 

extracted from DJI Onboard SDK documentation.4 We recommend that the SDK packages 

be processed and executed from a common folder (i.e., DJI_SDK) within the Manifold. 

A. INSTALLING  THE SDK CORE  

1. Clone the DJI OSDK from Github.5 In this research, we used Onboard-

SDK 3.2 as the version for the DJI SDK. 

2. Open the terminal and locate the SDK folder. 

3. Execute the following commands to build the SDK: 

mkdir 
cd build 
cmake .. 
make djiosdk-core 

4. Perform installation of the osdk-core library to the Manifold system, 

sudo make install djiosdk-core 

B. INSTALLING THE SDK ROS NODES  

5. Create a catkin workspace using the following commands: 

mkdir catkin_ws 
cd catkin_ws 
mkdir src 
cd src 
catkin_init_workspace 

                                                 
4 DJI Onboard SDK information is located at https://developer.dji.com/onboard-

sdk/documentation/introduction/homepage.html. 
5 The GitHub repository for DJI OSDK is found at https://github.com/dji-sdk/Onboard-SDK/tree/3.2 
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6. Clone the DJI OSDK-ROS from GitHub.6 In this research, we used 

Onboard-SDK-ROS 3.2 as the version for DJI SDK. 

7. Execute the following commands to build the SDK ROS package and 

SDK Demo ROS package: 

cd .. 
catkin_make 

C. CONFIGURATION OF THE DJI SDK  

8. Source the catkin workspace setup.bash file using the following command: 

source devel/setup.bash 

9. Edit the launch files and enter the App ID, Key, Baudrate, and Port Name 

in the designated place using the following command: 

rosed dji_sdk sdk_manifold.launch 

10. Use the following information for the launch files. 

Description Values 

App Name Manifold_OpenCV 

App ID 1055627 

App Key a070e74ad43621a75b65ade05b82b6bd4bc406aa8778b946ec90cbd10ffab7e7 

Baudrate 115200 

Port Name /dev/ttyTHS1 (UART2) 

 

D. EXECUTION OF THE SDK PROGRAM  

11. Start up the SDK ROS core package using the following command: 

roslaunch dji_sdk sdk.launch 

 

                                                 
6 GitHub repository for DJI OSDK-ROS is https://github.com/dji-sdk/Onboard-SDK-ROS/tree/3.2 
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12. Open up another terminal (Ctrl+T), and cd into the catkin workspace 

location. 

13. Execute the following commands to start the demo client software: 

source devel/setup.bash 
roslaunch dji_sdk_demo dji_sdk_client.launch 

14. Choose the demo application for the UAV to execute, as illustrated in 

Figure 68. 

 

Figure 68.  Successful Execution of the DJI SDK Demo Client 
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APPENDIX C.  DJI SDK ROS WRAPPER 

This appendix presents the DJI SDK software package that can be utilized for the 

development of a user-specified flight controller algorithm. All  information of the DJI SDK 

ROS wrappers and their functional descriptions are copied directly from the wiki site of 

ROS.org.7 

A. OVERVIEW  

This package provides a ROS interface for the DJI onboard SDK and 
enables the users to take full control of supported platforms (DJI M100, M600, 
M210, or drones equipped with A3/N3 flight controllers) using ROS messages and 
services. 

B. SUBSCRIBED TOPICS 

1. Flight Control Topics 

The user sends flight control setpoints to the drone by publishing one of the 
following topics, which are subscribed by the dji_sdk node. All the flight control 
topics have message type sensor_msg/Joy. Among the flight control topics, the 
dji_sdk/flight_control_setpoint_generic is the most general one and requires the 
user to provide the control flag which dictates how the inputs are interpreted by the 
flight controller, while the rest are wrappers for the convenience of users and don’t 
need the flag. All supported flags are listed in dji_sdk.h. 
 

/dji_sdk/flight_control_setpoint_generic (sensor_msgs/Joy) 

�x General setpoint where axes[0] to axes[3] stores set-point data for 
the 2 horizontal channels, the vertical channel, and the yaw channel, 
respectively. The meaning of the set-point data will be interpreted 
based on the control flag which is stored in axes[4]. 

/dji_sdk/flight_control_setpoint_ENUposition_yaw (sensor_msgs/Joy) 

�x Command the X, Y position offset, Z position (height) and yaw 
angle in ENU ground frame. 

/dji_sdk/flight_control_setpoint_ENUvelocity_yawrate (sensor_msgs/Joy) 

�x Command the X, Y, Z velocity in ENU ground frame, and yaw rate. 

                                                 
7 The Wiki site of the DJI_SDK is http://wiki.ros.org/dji_sdk. 
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/dji_sdk/flight_control_setpoint_rollpitch_yawrate_zposition 
(sensor_msgs/Joy) 

�x Command the roll pitch angle, height, and yaw rate. 

2. Gimbal Control  

The subscriber that takes the input for Gimbal arm controls. 

/dji_sdk/gimbal_angle_cmd (dji_sdk/Gimbal) 

�x Gimbal control command: Controls the Gimbal roll pitch and yaw 
angles (unit: 0.1 deg). mode: 0 - incremental control, the angle 
reference is the current Gimbal location. 1 - absolute control, the 
angle reference is related to configuration in DJI Go App. 

 

/dji_sdk/gimbal_speed_cmd (geometry_msgs/Vector3Stamped) 

�x Gimbal speed command: Controls the Gimbal rate of change for roll 
pitch and yaw angles (unit: 0.1 deg/sec). 

C. PUBLISHED TOPICS 

/dji_sdk/attitude (geometry_msgs/QuaternionStamped) 

�x Vehicle attitude represented as quaternion for the rotation from FLU 
body frame to ENU ground frame, published at 100 Hz. 

/dji_sdk/battery_state (sensor_msgs/BatteryState) 

�x Report the current battery voltage at 10 Hz. 

/dji_sdk/flight_status (std_msgs/UInt8) 

�x Simple status of the vehicle published at 50 Hz, detailed status is 
listed in dji_sdk.h. Note that status for M100 and A3/N3 are 
different. 

/dji_sdk/from_mobile_data (std_msgs/UInt8[]) 

�x Data received from mobile device to the vehicle. 

/dji_sdk/gimbal_angle (geometry_msgs/Vector3Stamped) 

�x Current gimbal joint angles, published at 50 Hz. If no gimbal 
present, default publishes all zeros. 

/dji_sdk/gps_health (std_msgs/UInt8) 

�x GPS signal health is between 0 and 5, 5 is the best condition. Use 
gps_position for control only if gps_health >= 3. Published at 50 Hz. 



 111 

/dji_sdk/gps_position (sensor_msgs/NavSatFix) 

�x Fused global position of the vehicle in latitude, longitude, and 
altitude(m). Position in WGS 84 reference ellipsoid, published at 50 
Hz. If no gps present, default publishes longitude and latitude equal 
zeros. 

/dji_sdk/imu (sensor_msgs/Imu) 

�x IMU data including raw gyro reading in FLU body frame, raw 
accelerometer reading in FLU body frame, and attitude estimation, 
published at 100 Hz for M100, and 400 Hz for other platforms. 
Note that raw accelerometer reading will give a Z direction 9.8 m/
s2 when the drone is put on a level ground statically. 

/dji_sdk/rc (sensor_msgs/Joy) 

�x Reading of the 6 channels of the remote controller, published at 50 
Hz. 

sensor_msgs/Joy 
description  

(LB2, M100) 
description 
(SBUS) 

Range (LB2) Range (SBUS) Range (M100) 

axes[0] Roll Channel Channel A -1 to +1 -1 to +1 -1 to +1 

axes[1] Pitch Channel Channel E -1 to +1 -1 to +1 -1 to +1 

axes[2] Yaw Channel Channel R -1 to +1 -1 to +1 -1 to +1 

axes[3] Throttle Channel Channel T -1 to +1 -1 to +1 -1 to +1 

axes[4] Mode switch Channel U -10000, 0, 
10000 

-10000, 0, 
10000 -8000, 0, 8000 

axes[5] Landing gear (H) 
switch Channel Gear -5000, -10000 -10000, 10000 -4545, -10000 

Known bug 
For SBUS controllers, the gear output depends on the channel mapping. Please refer to DJI 
Assistant 2 Remote controller settings. 

/dji_sdk/velocity (geometry_msgs/Vector3Stamped) 

�x Velocity in ENU ground frame, published at 50 Hz. The velocity is 
valid only when gps_health >= 3. 

/dji_sdk/height_above_takeoff (std_msgs/Float32) 

�x Height above takeoff location. It is only valid after drone is armed, 
when the flight controller has a reference altitude set. 
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/dji_sdk/local_position (geometry_msgs/PointStamped) 

�x Local position in Cartesian ENU frame, of which the origin is set by 
the user by calling the /dji_sdk/set_local_pos_ref service. Note that 
the local position is calculated from GPS position, so good GPS 
health is needed for the local position to be useful. 

D. SERVICES 

/dji_sdk/activation (dji_sdk/Activation) 

�x The service to activate the drone with app ID and key pair. The 
activation arguments should be specified in launch files. 

�x Usage: 

Response 

bool result true--succeed false--invalid action 

/dji_sdk/camera_action (dji_sdk/CameraAction) 

�x Take photo or video via service, return true if successful. 

�x Usage: 

Request 

Uint8 
Camera_action 

0--Shoot 
Photo 

1--Start video 
taking 

2--Stop video 
taking 

Response 

bool result true--succeed 
false--invalid 
action  

/dji_sdk/drone_arm_control (dji_sdk/DroneArmControl) 

�x Enable or disable vehicle’s arm motors. 

�x Usage: 

Request 

uint8 arm 1--enable vehicle arm motor else: disable arm motor 

Response 

bool result true--succeed false--invalid action 



 113 

/dji_sdk/drone_task_control (dji_sdk/DroneTaskControl) 

�x Execute takeoff, landing or go home. 

�x Usage: 

Request 

uint8 task 4--takeoff 6--landing 1--gohome 

Response 

bool result true--succeed false--failed  

/ dji_sdk/mission_hotpoint_action (dji_sdk/MissionHpAction) 

�x Service that start/stop/pause/resume the hotpoint mission. 

�x Usage: 

Request 

uint8 action 0--start 1--stop 2--pause 3--resume 

Response 

bool result true--succeed false--failed   

/dji_sdk/mission_hotpoint_getInfo (dji_sdk/MissionHpGetInfo) 

�x Return the hotpoint tasks info. Use rosmsg show dji_sdk/
MissionHotpointTask for more detail. 

�x Usage: 

Response 

MissionHotpointTask hotpoint_task 

/dji_sdk/mission_hotpoint_resetYaw (dji_sdk/MissionHpResetYaw) 

�x Resets the Yaw position of the vehicle 

�x Usage: 

Response 

bool result true--succeed false--failed 
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/dji_sdk/mission_hotpoint_updateRadius (dji_sdk/
MissionHpUpdateRadius) 

�x Update the radius of the hot point mission 

�x Usage: 

Request 

float32 radius 

Response 

bool result true--succeed false--failed 

/dji_sdk/mission_hotpoint_updateYawRate (dji_sdk/
MissionHpUpdateYawRate) 

�x Update the rate of change for Yaw and the direction of the change. 

�x Usage: 

Request 

float32 yaw_rate 

uint8 direction 

Response 

bool result true--succeed false--failed 

/dji_sdk/mission_hotpoint_upload (dji_sdk/MissionHpUpload) 

�x Upload a set of hotpoint tasks to the vehicle. Use rosmsg show 
dji_sdk/MissionHotpointTask for more detail 

�x Usage: 

Request 

MissionHotpointTask hotpoint_task 

Response 

bool result true--succeed false--failed 
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/dji_sdk/mission_waypoint_action (dji_sdk/MissionWpAction) 

�x Start/stop/pause/resume waypoint action. 

�x Usage: 

Request 

uint8 action 0--start 1--stop 2--pause 3--resume 

Response 

bool result true--succeed false--failed  

/dji_sdk/mission_waypoint_getInfo (dji_sdk/MissionWpGetInfo) 

�x Get the current waypoint tasks. Use rosmsg show dji_sdk/
MissionWaypointTask for more detail. 

�x Usage: 

Response 

MissionWaypointTask waypoint_task 

/dji_sdk/mission_waypoint_getSpeed (dji_sdk/MissionWpGetSpeed) 

�x Return the waypoint velocity. 

�x Usage: 

Response 

float32 speed 

/dji_sdk/mission_waypoint_setSpeed (dji_sdk/MissionWpSetSpeed) 

�x Set the waypoint velocity. 

�x Usage: 

Request 

float32 speed 

Response 

bool result true--succeed false--failed 
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/dji_sdk/mission_waypoint_upload (dji_sdk/MissionWpUpload) 

�x Upload a new waypoint task, return true if successful. Use rosmsg 
show dji_sdk/MissionWaypointTask for more detail. 

�x Usage: 

Request 

MissionWaypointTask waypoint_task 

Response 

bool result true--succeed false--failed 

/dji_sdk/sdk_control_authority (dji_sdk/SDKControlAuthority) 

�x Request/release the control authority. 

�x Usage: 

Request 

uint8 control_enable 1--request control 0--release control 

Response 

bool result true--succeed false--failed 

/dji_sdk/send_data_to_mobile (dji_sdk/SendMobileData) 

�x Send data to the mobile side. The length of the data is upper-limited 
to 100. 

�x Usage: 

Request 

uint8[] data length(data) <= 100 

Response 

bool result true--succeed false--failed 

/dji_sdk/query_drone_version (dji_sdk/QueryDroneVersion) 

�x Query drone firmware version. Available version list can be found 
in dji_sdk.h 
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/dji_sdk/set_local_pos_ref (dji_sdk/SetLocalPosRef) 

�x Set the origin of the local position to be the current GPS coordinate. 
Fail if GPS health is low (<=3). 

E. PARAMETERS 

~/dji_sdk/app_id (int) 

�x You must register as a developer with DJI and create an onboard 
SDK application ID and Key pair. Please go 
to https://developer.dji.com/register/ to complete registration. 

~/dji_sdk/baud_rate (int, default: 921600) 

�x Baud rate should be set to match that is displayed in DJI Assistant 2 
SDK settings. 

~/dji_sdk/enc_key (string, default: Enter your enc key here) 

�x You must register as a developer with DJI and create an onboard 
SDK application ID and Key pair. Please go 
to https://developer.dji.com/register/ to complete registration. 

~/dji_sdk/serial_name (string, default: /dev/ttyUSB0) 

�x The serial port name that the USB is connected with. Candidates can 
be /dev/ttyUSBx, /dev/ttyTHSx, etc. 

~/dji_sdk/use_broadcast (, default: false) 

�x Choose to use subscription (supported only on A3/N3) or broadcast 
method (supported by both M100 and A3/N3) for accessing 
telemetry data. 

F. DETAILS  ON FLIGHT CONTROL S ETPOINT  

All the above flight control topics take setpoint values of the X, Y, Z, and 
Yaw channels in axes[0]-axes[3]. In addition, the /dji_sdk/
flight_control_setpoint_generic topic requires a control flag as axes[4] of the input. 
The control flag is an UInt8 variable that dictates how the inputs are interpreted by 
the flight controller. It is the bitwise OR of 5 separate flags defined as enums in 
dji_sdk.h, including Horizontal, Vertical, Yaw, Coordinate Frame, and the 
Breaking Mode. 

 

Horizontal description reference limit 

0x00 Command roll and pitch angle Ground/Body 0.611 rad (35 degree) 
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0x40 Command horizontal velocities Ground/Body 30 m/s 

0x80 Command position offsets Ground/Body N/A 

0xC0 Command angular rates Ground/Body ���»���Œ���U�Dd/s 

Vertical description reference limit 

0x00 Command the vertical speed Ground -5 to 5 m/s 

0x10 Command altitude Ground 0 to 120 m 

0x20 Command thrust Body 0% to 100% 

 

Yaw description reference limit 

0x00 Command yaw angle Ground -�Œ���W�R���Œ 

0x08 Command yaw rate Ground ���»���Œ���U�Dd/s 

Coordinate description 

0x00 Horizontal command is ground_ENU frame 

0x02 Horizontal command is body_FLU frame 

 

Active Break description 

0x00 No active break 

0x01 Actively break to hold position after stop sending setpoint 
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APPENDIX D.  DJI MANIFOLD CAMERA 

This appendix presents the setup and coding of the dji_cam_transport that is utilized 

by the Manifold to decode and convert the image data for the CV algorithm application. 

The procedures for setup and execution of the dji_cam_transport are as follows: 

A. BUILDING THE DJI_CAM _TRANSPORT 

1. Create a catkin workspace to store the coding using the following 

command: 

mkdir zenmuse_ws  
cd zenmuse_ws 
mkdir src 
catkin_init_workspace 

2. Clone the dji_cam_transport from Github using the following command. 

git clone https://github.com/guanfuchen/dji_cam_transport 

3. Ensure that the following software package is installed in the Manifold 

system: roscpp, rospy, std_msgs, image_transport, cv_bridge 

4. Execute the following commands to build the dji_cam_transport: 

cd ~/zenmuse_ws 
catkin_make 

B. RUNNING THE DJI_CAM _TRANSPORT 

5. In order to execute the software application, ROS sever must be launched 

with the following command. 

roscore 

6. Next, provide root access rights for the dji_cam_transport using the 

following command: 
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sudo su 
cd zenmuse_ws 
source devel/setup.bash 

7. Execute the following commands to run the dji_cam_transport: 

rosrun dji_cam_transport [-dgt] 

8. The usage of –dgt depends on the required ROS image interface where –d 

is display video stream, -g is store video into NV12 memory, and –t is 

transfer video data to N1 flight controller. The d and g attributes cannot be 

used at the same time. 

9. If data is placed into the NV12 memory data stream, the following 

commands will enable the image to be displayed on the ROS image 

viewer. 

rosrun image_view image:=/camera/image 
 

C. CODES FOR DJI_CAM_TRANSPORT  

The code is adapted from DJI’s Manifold_Cam8 and Guan’s DJI_Cam_Transport9 

GitHub source code repository. The coding for the dji_cam_transport is as follows: 

1.  #include  < stdio.h >  
2.  #include  < setjmp.h >  
3.  #include  < stdlib.h >  
4.  #include  < malloc.h >  
5.  #include  < string.h >  
6.  #include  < unistd.h >  
7.  #include  < signal.h >  
8.  #include  < assert.h >  
9.  #include  < sys /  types.h  >  
10.  #include  < sys /  stat.h >  
11.  #include  < unistd.h >  
12.  #include  < getopt.h >  
13.  #include  < pthread.h >  
14.  #include  < string.h >  
15.  #include  < stdio.h >  
16.  #include  < stdlib.h >  
17.  #include  < unistd.h >  

                                                 
8 The GitHub repository for Manifold_Cam is available at https://github.com/dji-sdk/Manifold-Cam. 
9 The GitHub repository for DJI_Cam_Transport is available at 

https://github.com/guanfuchen/dji_cam_transport. 
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18.  #include  < errno.h >  
19.  #include  < ctype.h >  
20.  #include  ” djicam.h”  
21.  #include  < opencv /  cv.h  >  
22.  #include  < opencv2 /  core /  core.hpp >  
23.  #include  < opencv2 /  highgui /  highgui.hpp >  
24.  #include  < opencv2 /  imgproc /  imgproc.hpp >  
25.  #include  < ros /  ros.h >  
26.  #include  < cv_bridge /  cv_bridge.h  >  
27.  #include  < image_transport  /  image_transport.h >  
28.   
29.  using namespace cv;  
30.   
31.  #define FRAME_SIZE(1280 *  720 *  3 /  2)  /*format  NV12*/   
32.  # define  BLOCK_MODE 1  
33.   
34.  static unsigned char  buffer[FRAME_SIZE]  = {0};   
35.  static unsigned int  nframe  = 0;    
36.  static int  mode = 0;  
37.  //ros::NodeHandle  nh;    
38.  image_transport::Publisher  pub;   
39.  sensor_msgs::ImagePtr  msg;  
40.  //ros::Rate  loop_rate(5);    
41.   
42.  IplImage  *  rgb = cvCreateImage(cvSize(1280,  720), IPL_DEPTH_8U, 3);   
43.  IplImage  *  src = cvCreateImage(cvSize(1280,  1080),  IPL_DEPTH_8U, 1);   
44.   
45.  static void  print_usage( const char  *  prog)  
46.  {    
47.      printf( “ Usage: sudo %s [ - dgt]\ n,”  prog);   
48.      puts( “   - d -- display     display vedio strea m\ n”    
49.           ”   - g -- getbuffer   get NV12 format  buffer \ n”    
50.           ”   - t  -- transfer   transfer vedio datas to  RC\ n”    
51.           ”   Note:  - d and - g cannot  be set at  the same time \ n” );    
52.  }    
53.   
54.  static void  parse_opts(int  argc, char  *  *  argv)   
55.  {    
56.      int  c;   
57.      static    
58.      const  struct option lopts[] =  
59.      {    
60.           { “ display,”  0,  0,  ’ d’ },  
61.     { “ getbuffer ,”  0, 0, ’ g’ },   
62.     { “ transfer,”  0, 0,  ’ t ’ },   
63.     {NULL, 0,  0,  0},   
64.      };   
65.       
66.      while ((c  = getopt_long(argc, argv,  ” dgt,”  lopts, NULL)) !=  - 1)  
67.      {    
68.          switch  (c)  
69.          {    
70.              case ’ d’ :    
71.                  mode |= DISPLAY_MODE;   
72.                  break ;    
73.              case ’ g’ :    
74.                  mode |= GETBUFFER_MODE;   
75.                  break ;    
76.              case ’ t ’ :    
77.                  mode |= TRANSFER_MODE;   
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78.                  break ;    
79.              default :    
80.                  print_usage(argv[0]);    
81.                  exit(0);    
82.          }    
83.      }    
84.  }    
85.   
86.  static void  *  get_images_loop( void  *  data)  
87.  {  
88.      int  ret;   
89.      while (!ma nifold_cam_exit()) /*Ctrl+c to  break  out*/   
90.      {    
91.          if  (mode & GETBUFFER_MODE)  
92.          {  
93.      #if  BLOCK_MODE ret = manifold_cam_read(buffer,  & nframe,  CAM_BLOCK);  
94.      /*blocking read*/    
95.              if  (ret < 0)   
96.        {    
97.                  printf( “ manifold_cam_read error  \ n” );    
98.                  break ;    
99.              }  else  {   
100.                  cvSetData(src,  buffer, src -  > widthStep);   
101.                  cvCvtColor(src, rgb, CV_YUV2BGRA_NV12);   
102.                  msg = cv_bridge::CvImage(std_msgs::Header(),  ” bgr8 ,”  rgb).toImageMsg();  
103.                  for ( int  i  = 0;  i  < 3;  ++i)  {    
104.                      pub.publish(msg);    
105.                      ros::Duration(0.1).sleep();   
106.                  }   
107.              }  
108.  #else   
109.              

ret = manifold_cam_read( buffer, & nframe, CAM_NON_BLOCK); /*non_blocking read*/    
110.              if  (ret < 0)  {    
111.                  printf( “ manifold_cam_read error  \ n” );    
112.                  break ;    
113.              }  
114.  #endif   
115.          }    
116.          usleep(1000);    
117.      }    
118.      printf( “ get_images_loop thread  exit! \ n” );   
119.  }    
120.   
121.  int main(int argc, char  *  *  argv)  
122.  {    
123.      ros::init(argc, argv, ” image_publisher” );   
124.      ros::NodeHandle nh;   
125.      image_transport::ImageTransport it(nh);    
126.      pub = it.advertise( “ camera/ i mage,”  1);   
127.      int  ret;   
128.      pthread_attr_t attr;    
129.      struct sched_param schedparam;    
130.      pthread_t  read_thread;    
131.       
132.      if  (0  !=  geteuid())  
133.      {    
134.          printf( “ Please run  ./test as root!\ n” );    
135.          print_usage(argv[0]);   
136.          return  - 1;    
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137.      }    
138.       
139.      parse_opts(argc, argv); /*get parameters*/    
140.      if (0  == mode || 3 == mode || 7 == mode) /*invalid mode*/   
141.      {    
142.          print_usage(argv[0]);   
143.          return  - 1;    
144.      }    
145.   
146.      ret = manifold_cam_init(mode);    
147.      if  ( - 1 == ret)  
148.      {    
149.          printf( “ manifold  init error \ n” );   
150.          return  - 1;    
151.      }    
152.   
153.      /*      
154.       *  if  the  cpu usage is  high, the scheduling  policy of  the read  thread       
155.       *  is  recommended setting to FIFO, and also, the  priority of  the thread  
156.       *  should  be high  enough.      
157.       */    
158.       
159.      pthread_attr_init( & attr);   
160.      pthread_attr_setinheritsched( & attr, PTHREAD_EXPLICIT_SCHED);   
161.      pthread_attr_setschedpolicy((pthread_attr_t  *  )  & attr, SCHED_FIFO);   
162.      schedparam.sched_priority = 90;   
163.      pthread_attr_setschedparam( & attr,  & schedparam);   
164.      pthread_attr_setscope(  & attr,  PTHREAD_SCOPE_SYSTEM);   
165.       
166.      if  (pthread_create( & read_thread, & attr, get_images_loop,  NULL) != 0)  
167.      {    
168.          perror( “ usbRead_thread  create ” );    
169.          assert(0);   
170.      }    
171.       
172.      if  (pthread_attr_destroy( & attr)  !=  0)   
173.      {    
174.          perror( “ pthread_attr_destroy error” );   
175.      }    
176.      pthread_join(read_thread, NULL); /*wait  for  read_thread exit*/    
177.       
178.      while  (!manifold_cam_exit())  
179.      {    
180.          sleep(1);    
181.      }    
182.      return  0;    
183.  }    
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APPENDIX E.  YOLO 

This appendix presents the setup procedures for YOLOv3, which provided the 

object detection and tracking capability to the UAV system. The setup procedures are 

extracted from the YOLO website.10 The procedures for the setup of the YOLOv3 are as 

follows: 

A. INSTALLING  THE BASE SYSTEM  

1. Clone the Darknet(YOLOv3) from Github.11 

2. Open the terminal and locate the Darknet folder. 

3. Execute the following commands to build the Darknet: 

git clone https://github.com/pjreddie/darknet.git 
cd darknet 
make 

B. COMPILING WITH CUDA AND OPENCV 

4. Although Darknet is relatively fast on a CPU, the speed of the algorithm is 

enhanced through the use of GPU processing on the Nvidia processor. 

Follow the guide to install CUDA on the Nivdia chipset. 

5. Change the first line of the Makefile in the base directory to:  

GPU = 1 

6. Similarly, the OpenCV compilation enabled support for various image/

video formats. Follow the guide to install OpenCV on the Nvidia chipset. 

7. Change the second line of the Makefile in the base directory to: 

OPENCV = 1 

                                                 
10 Information on YOLO is found at https://pjreddie.com/darknet/yolo/. 
11 The GitHub repository for Darknet is available at https://github.com/pjreddie/darknet.git. 
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8. Recompile the YOLO algorithm using the following command: 

make 

C. SETUP OF PRE-TRAINED MODEL INTO ALGORITH M 

9. For quick algorithm testing, download the following pre-trained model 

(weights) into the Darknet folder: 

cd ~/Darknet 
wget https://pjreddie.com/media/files/yolov3.weights 
wget https://pjreddie.com/media/files/yolov3-tiny.weights 
wget https://pjreddie.com/media/files/yolov2.weights 
wget https://pjreddie.com/media/files/yolov2-tiny.weights 

10. To perform object detection on a sample image, use the following 

commands: 

./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg 

11. If the compilation of the algorithm was done correctly, the screen capture 

in the following figure will be displayed from the payload hardware: 

 

Figure 69.  Output Data from the Algorithm 
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Figure 70.  Prediction Data of the Sample Image. Source: Redmon et al. (2016). 
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