
�&�D�O�K�R�X�Q�����7�K�H���1�3�6���,�Q�V�W�L�W�X�W�L�R�Q�D�O���$�U�F�K�L�Y�H

�'�6�S�D�F�H���5�H�S�R�V�L�W�R�U�\

�7�K�H�V�H�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q�V �������7�K�H�V�L�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q���&�R�O�O�H�F�W�L�R�Q�����D�O�O���L�W�H�P�V

��������������

�$�6�6�(�6�6�,�1�*���7�+�(���(�)�)�(�&�7�,�9�(�1�(�6�6���2�)���$

�&�2�0�%�$�7���8�*�9���6�:�$�5�0���,�1���8�5�%�$�1���2�3�(�5�$�7�,�2�1�6

�7�H�R�Z�����%�R�R�Q���+�R�Q�J���$�D�U�R�Q

�0�R�Q�W�H�U�H�\�����&�$�����1�D�Y�D�O���3�R�V�W�J�U�D�G�X�D�W�H���6�F�K�R�R�O

�K�W�W�S�������K�G�O���K�D�Q�G�O�H���Q�H�W������������������������

�'�R�Z�Q�O�R�D�G�H�G���I�U�R�P���1�3�6���$�U�F�K�L�Y�H�����&�D�O�K�R�X�Q

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

ASSESSING THE EFFECTIVENESS OF A COMBAT
UGV SWARM IN URBAN OPERATIONS

by

Boon Hong Aaron Teow

September 2018

Thesis Advisor: Oleg A. Yakimenko
Second Reader: Fotis A. Papoulias

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2018

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
ASSESSING THE EFFECTIVENESS OF A COMBAT UGV SWARM IN
URBAN OPERATIONS

5. FUNDING NUMBERS

6. AUTHOR(S) Boon Hong Aaron Teow

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

 Due to its complexity, an urban area is a challenging multi-dimensional environment for ground
warfare. Recent technological advancements have enabled militaries to utilize different-size unmanned
ground vehicles (UGV) to support a variety of missions. This thesis presents guidance algorithms for a
search and kill mission developed for some generic UGV swarms, which may be an attractive application,
particularly for smaller UGVs operating in an urban environment. Through a series of computer simulations,
the research evaluates the feasibility and effectiveness of the algorithms in executing such a mission in
indoor and outdoor urban environments. The developed simulation allows varying many parameters, thus
achieving closeness to the real-world situation when different environments, platforms, sensors, and
weapons are used. Computer simulations presented in this paper may also assist military leaders in choosing
key mission parameters to maximize the outcome of potential future engagements.

14. SUBJECT TERMS
swarm, unmanned ground vehicle, UGV, Particle Swarm Optimization, modeling and
simulation

15. NUMBER OF
PAGES

1����

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

ASSESSING THE EFFECTIVENESS OF A COMBAT UGV SWARM IN URBAN
OPERATIONS

Boon Hong Aaron Teow
Major, Singapore Army

B.Eng., Nanyang Technological University, 2010

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2018

Approved by: Oleg A. Yakimenko
 Advisor

 Fotis A. Papoulias
 Second Reader

 Ronald E. Giachetti
 Chair, Department of Systems Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Due to its complexity, an urban area is a challenging multi-dimensional

environment for ground warfare. Recent technological advancements have enabled

militaries to utilize different-size unmanned ground vehicles (UGV) to support a variety

of missions. This thesis presents guidance algorithms for a search and kill mission

developed for some generic UGV swarms, which may be an attractive application,

particularly for smaller UGVs operating in an urban environment. Through a series of

computer simulations, the research evaluates the feasibility and effectiveness of the

algorithms in executing such a mission in indoor and outdoor urban environments. The

developed simulation allows varying many parameters, thus achieving closeness to the

real-world situation when different environments, platforms, sensors, and weapons are

used. Computer simulations presented in this paper may also assist military leaders in

choosing key mission parameters to maximize the outcome of potential future

engagements.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. BACKGROUND ..1
B. OBJECTIVES ..4
C. RESEARCH QUESTIONS ...4
D. SCOPE ..5

1. Functional Analysis and Allocation ..5
2. Functional Flow Block Diagram ...6

E. ASSUMPTIONS ...7

II. LITERATURE REVIEW ...9
A. SEARCH ALGORITHMS ..9

1. Exhaustive Search ..9
2. Heuristic Search ...13
3. Summary of Search and Swarm Optimization Algorithms

Used in this Research ...15
B. APPLICATIONS OF SWAR M ALGORITHMS 16
C. MACH INE VISION ...17
D. HOLONOMIC BEHAVIOR ...18

III. MODELING ...19
A. MOTION PRIMITIVES ...19

B. MOTION CONSTRAINTS ..21
1. Least Visited Cell Guidance ..21
2. Advanced Least Visited Cell Guidance23

C. PARTICLE SWARM OPTIM IZATION ..25
D. ENGAGEMENT RULES ..26
E. OPERATIONAL ENVIRONM ENT ..27

IV. SEARCH PHASE STUDY ..29
A. EFFECT OF SWARM SIZE ..29
B. AREA COVERAGE VERSUS THE NUMBER OF

ITERATIONS ..31
C. SWARM SIZE VERSUS NUMBER OF ITERATIONS 34
D. EFFECT OF STARTING C ONFIGURATION 36

1. Effect of Swarm Size on Starting Configurations38
2. Effect of Maximum Number of Iterations on Starting

Configurations ..39

viii

E. EFFECT OF THE COLLIS ION AVOIDANCE CONSTR AINT 40
F. EFFECT OF THE NON-HOLONOMICITY CONSTRAIN T43
G. URBAN OUTDOOR SEARCH OPERATIONS51

1. Effect of Various Starting Configurations52
2. Effect of the Non-Holonomicity Constraint53

H. INDOOR SEARCH OPERATIONS ..56
I. EFFECTIVENESS OF ALV C GUIDANCE ...59

1. Holonomic Drive ..60
2. Environment ...62

V. STUDY OF THE TRACK A ND ENGAGE PHASE ..63
A. EFFECTIVENESS OF ADDED PSO GUIDANCE64

B. EFFECTS OF VARYI NG DETECTION RANGE 68
C. EFFECTS OF THE HOLON OMICITY CONSTRAINT

DURING TRACKING ..69
D. EFFECTS OF PROBABILI TY OF KILL ..72
E. EFFECTS OF KILL DIST ANCE ..78
F. EFFECTS OF KILL SEQU ENCE ...79
G. URBAN OUTDOOR ENGAGEMENTS ...82
H. INDOOR ENGAGEMENTS ...84
I. EFFECTIVENESS OF ALV C GUIDANCE ...88
J. LIMITATIONS OF ALVC GUIDA NCE ..90

VI. CONCLUSION ..93
A. SUMMARY ..93
B. MAIN FINDINGS ..93
C. RECOMMENDATIONS FOR FUTURE WORK 95

APPENDIX A. SEARCH PHASE WITH LV C GUIDANCE 97

APPENDIX B. SEARCH PHASE WITH ALVC GUID ANCE105

APPENDIX C. TRACK A ND ENGAGE PHASE WITH LVC GUIDANCE 117

APPENDIX D. TRACK A ND ENGAGE PHASE WIT H ALVC GUIDANCE 133

APPENDIX E. COORDINA TES FOR OUTDOOR OBSTACLES151

APPENDIX F. COORDINA TES FOR INDOOR OBSTACLES153

ix

LIST OF REFERENCES ..155

INITIAL DISTRIBUTION LIST ...159

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. DoD Army UGV campaign plan. Source: U.S. Department of
Defense (2011). ..2

Figure 2. DoD Army UGV capability timeline. Source: U.S. Department of
Defense (2011). ..2

Figure 3. Functional decomposition of swarm combat UGV system.5

Figure 4. FFBD for swarm combat UGVs. ...7

Figure 5. �5�R�E�R�W���P�R�Y�L�Q�J���L�Q���D���³�O�D�Z�Q���P�R�Z�H�U�´���S�D�W�W�H�U�Q���W�K�U�R�X�J�K���W�K�H���F�H�O�O�V�����6�R�X�U�Fe:
Galceran and Carreras (2013). ...10

Figure 6. Broken up cells in the trapezoidal decomposition. Source: Galceran
and Carreras (2013)..11

Figure 7. Assigned values for each cell using the wavefront algorithm. Source:
Zelinsky et al. (1993). ..12

Figure 8. Path of complete coverage using wavefront algorithm. Source:
Zelinsky et al. (1993). ..12

Figure 9. Agent surrounding cells. ..20

Figure 10. �$�J�H�Q�W�¶�V���V�X�U�U�R�X�Q�G�L�Q�J���Y�L�V�L�W�H�G���D�Q�G���X�Q�Y�L�V�L�W�H�G���F�H�O�O�V��21

Figure 11. Surroundings visited, unvisited, and occupied cells.22

Figure 12. Surrounding cells with a non-holonomicity constraint of 90 degrees.23

Figure 13. Surrounding cells with a non-holonomicity constraint of 90 degrees
and obstacles. ...23

Figure 14. Illustrations of improved algorithm with non-holonomicity constraint
of 90 degrees. ...24

Figure 15. Example of a swarm pursuing two Red agents. ...26

Figure 16. Model simulation of Impossible City at Fort Ord, California (right)
and Google map view (left). ..28

Figure 17. Indoor floorplan of a room. ..28

Figure 18. Effect of swarm size on area coverage. ...29

xii

Figure 19. Average number of visits and number of cells for a swarm size of 10
agents with 1,000 iterations. ..30

Figure 20. Average number of visits and number of cells for a swarm size of 70
agents with 1,000 iterations. ..31

Figure 21. Effects of the maximum number of iterations on area coverage.32

Figure 22. Trajectory plot of 19 percent coverage for 20 agents on 200
iterations. ..33

Figure 23. Trajectory plot of 70 percent coverage for 20 agents on 1,000
iterations. ..33

Figure 24. Effects of swarm size on area coverage with iteration comparison.34

Figure 25. Estimated swarm size or number of iterations needed to achieve
required area coverage. ..35

Figure 26. Various starting configurations. ...36

Figure 27. Snapshot of Corner starting configuration. ..36

Figure 28. Snapshot of Center starting configuration. ..37

Figure 29. Snapshot of Two-Corners starting configuration.37

Figure 30. Snapshot of Four-Corners starting configuration.38

Figure 31. Snapshot of Row starting configuration. ...38

Figure 32. Coverage of various starting configurations by swarm size.39

Figure 33. Coverage of various starting configurations by number of iterations
(duration)..40

Figure 34. Maximum and minimum distances between any two agents.....................41

Figure 35. Effect of starting positions on coverage when incorporating collision
avoidance. ..42

Figure 36. Heat map comparison of 50 iterations for collision avoidance (left)
and without collision avoidance (right). ..43

Figure 37. Non-holonomicity constraint of 90 degrees. ..44

Figure 38. Non-holonomicity constraint of 180 degrees. ..44

xiii

Figure 39. Non-holonomicity constraint of 270 degrees. ..44

Figure 40. Non-holonomicity constraint of 90 degrees. ..46

Figure 41. Non-holonomicity constraint of 180 degrees. ..47

Figure 42. Non-holonomicity constraint of 270 degrees. ..48

Figure 43. No non-holonomicity angle constraint...49

Figure 44. Effect on various non-holonomic angle constraints...................................50

Figure 45. Effect of a non-holonom�Lcity constraint of 180 degrees and various
starting configurations. ..51

Figure 46. Starting configurations of UGV agents for urban outdoor operations.52

Figure 47. Effect of starting configuration on area coverage for urban operation.53

Figure 48. Effect of non-holonomic angle restriction on area coverage for urban
scenario. ...54

Figure 49. Holonomic (left) versus non-holonomic drive with a 90-degree
constraint (right)...55

Figure 50. Starting position (entrance) to the indoor environment.57

Figure 51. Effect of non-holonomic drive on area coverage for indoor
operations. ..58

Figure 52. Snapshot of the last 100 iterations of a simulated run using ALVC
guidance. ..60

Figure 53. Infinite circle loop around an unvisited square. ...61

Figure 54. Effect of non-holonomic drive on the ALVC algorithm.61

Figure 55. Comparison between results of LVC and ALVC algorithms for three
environments. ...62

Figure 56. Starting configurations of Blue and Red forces for open space (left),
outdoor (center), and indoor (right) urban operations.63

Figure 57. Trajectory comparison between LVC (left) and PSO (right) guidance
during the track and engage phase. ..65

Figure 58. Number of iterations needed for a battle with and without PSO
guidance. ..66

xiv

Figure 59. Number of casualties with and without PSO guidance.66

Figure 60. ANOVA table for the number of iterations needed for a battle with
and without PSO guidance. ..67

Figure 61. Testing for significant different result. ..67

Figure 62. Number of iterations corresponding to various detection ranges.68

Figure 63. Number of casualties corresponding to various detection ranges.69

Figure 64. Comparison of holonomic and non-holonomic drive during tracking
phase under PSO guidance...70

Figure 65. Snapshot of two consecutive iterations during tracking phase with a
90-degree non-holonomicity constraint. ..71

Figure 66. Snapshot of two consecutive iterations during tracking phase with
holonomic drive. ..71

Figure 67. Effects of time with fixed enemy offensive capability of 0.1 and
varying UGV �D�J�H�Q�W�V�¶���R�I�I�H�Q�V�L�Y�H���F�D�S�D�E�L�O�L�W�\�� ...72

Figure 68. Effects of time with fixed enemy offensive capability of 0.5 and
�Y�D�U�\�L�Q�J���8�*�9���D�J�H�Q�W�V�¶���R�I�I�H�Q�V�L�Y�H���F�D�S�D�E�L�O�L�W�\�� ...73

Figure 69. Effects of time with fixed enemy offensive capability of 0.9 and
�Y�D�U�\�L�Q�J���8�*�9���D�J�H�Q�W�V�¶���R�I�I�H�Q�V�L�Y�H���F�D�S�D�E�L�O�L�W�\�� ...73

Figure 70. Effects on casualty rate with fixed enemy offensive capability of 0.1
�D�Q�G���Y�D�U�\�L�Q�J���8�*�9���D�J�H�Q�W�V�¶���R�I�I�H�Q�V�L�Y�H���F�D�S�D�E�L�O�L�W�\�� ...74

Figure 71. Effects on casualty rate with fixed enemy offensive capability of 0.5
�D�Q�G���Y�D�U�\�L�Q�J���8�*�9���D�J�H�Q�W�V�¶���R�I�I�H�Q�V�L�Y�H���F�D�S�D�E�L�O�L�W�\�� ...75

Figure 72. Effects on casualty rate with fixed enemy offensive capability of 0.9
and varying UGV agen�W�V�¶���R�I�I�H�Q�V�L�Y�H���F�D�S�D�E�L�O�L�W�\�� ...75

Figure 73. Effects of kill distance on number of iterations. ..78

Figure 74. Effects of kill distance on number of casualties.79

Figure 75. Effects of kill sequence on the number of iterations.80

Figure 76. Effects of kill sequence on the number of Blue force causalities.81

Figure 77. Effects of kill sequence on the number of Red force causalities.81

xv

Figure 78. Starting configuration for outdoor urban operation.82

Figure 79. Effects on number of iterations with and without PSO guidance for
outdoor operation. ..83

Figure 80. Effects on number of casualties with and without PSO guidance for
outdoor operation. ..84

Figure 81. Starting configurations for indoor operation..85

Figure 82. Effects on number of iterations, with and without PSO guidance, for
indoor operation. ..86

Figure 83. Effects on number of casualties, with and without PSO guidance, for
indoor operation. ..86

Figure 84. Inability to avoid obstacles with low detection range (left) and high
detection range (right). ...87

Figure 85. Effects of LVC with ALVC algorithms, with and without PSO
guidance, on number of iterations. ...89

Figure 86. Effects of LVC with ALVC algorithms, with and without PSO
guidance, on number of casualties. ..90

Figure 87. Limitations of the improved LVC algorithm in urban and indoor
operations. ..91

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

LIST OF TABLES

Table 1. Technology areas that require growth to meet future capabilities of
U.S. Army UGV campaign plan. Source: U.S. Department of
Defense (2011). ..3

Table 2. Summary of search algorithms ..15

Table 3. Comparison of the improvement (area coverage) in open space and
outdoor urban environments with the effect of non-holonomicity
constraint. ...56

Table 4. Comparison of the improvement (area coverage) in open space and
indoor environments with effects of non-holonomic constraint.58

Table 5. Simulation results for �2�G�4�\ �$ = 0.5 and �2�G�$�\ �4 = 0.9.76

Table 6. Summary of results for �2�G�4�\ �$ = 0.5 and �2�G�$�\ �4 = 0.9.77

Table 7. Summary of algorithms and input parameters investigated.93

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

xix

LIST OF ACRONYMS AND ABBREVIATIONS

ACO Ant Colony Optimization

ALVC Advance Least Visited Cell

ANOVA Analysis of Variance

DoD Department of Defense

FFBD Functional Flow Block Diagram

LSD Least Significant Difference

LVC Least Visited Cell

PSO Particle Swarm Optimization

RS JPO Robotic Systems Joint Project Office

MM-UGV Multi Mission Unmanned Ground Vehicle

UGV Unmanned Ground Vehicle

xx

THIS PAGE INTENTIONALLY LEFT BLANK

xxi

EXECUTIVE SUMMARY

Fighting in urban areas is extremely complex and challenging due to the multi-story

structures, new engagement conditions, as well as the consideration of civilian-military

relations. Recent technological advancements have enabled the military to employ robotic

platforms such as explosive ordinance disposal, heavy items loading, repairing ground

conditions under fire, to help overcome operational challenges in the urban environment

(Gage 1995). An emerging trend in the realm of military robotics is swarm robotics. Based

on the unmanned ground systems roadmap report by the Robotic Systems Joint Project

Office (RS JPO) of the U.S. Department of Defense (DoD) published in 2011, there are

plans to develop armed UGVs with combat abilities within the next 25 years (Department

of Defense 2011, 41).

This thesis assesses the suitability of three algorithms (Table 1), the Least Visited

Cell (LVC) guidance, the Advanced Least Visited Cell (ALVC) guidance, and the Particle

Swarm Optimization (PSO) algorithm, in three different environments�• open space,

outdoor, and indoor�• in meeting �D���8�*�9�¶�V mission of search and destroy. The mission of

the UGV is broken down into two phases. The first phase is the search phase and its

measure of effectiveness is area coverage. The second phase is the track and engage phase

and its measures of effectiveness are the time (the number of iterations) required to end an

engagement as well as the number of casualties for Blue and Red forces.

Table 1. Summary of input parameters investigated in this thesis.

Phase Algorithm Input Parameters

Search

LVC Number of UGV agents
LVC Number of maximum iterations
LVC Starting configuration
LVC Collision avoidance constraints
LVC, ALVC Non-holonomicity constraints
LVC, ALVC Outdoor and indoor urban environments

Track and Engage

LVC, PSO Non-holonomicity constraints
LVC, PSO Detection range
LVC, PSO Probability of kill
LVC, PSO Kill distance
LVC, PSO Kill sequence
LVC, ALVC, PSO Outdoor and indoor urban environments

xxii

The LVC guidance algorithm that is develop in this thesis works well for all three

operations; open space, outdoor, and indoor urban operation. The introduction of the PSO

algorithm further enhances and reduces the time taken to locate targets during the track and

engage phase by approximately five times. Nonetheless, the PSO algorithm encounters

difficulty in indoor operations where it is unable to overcome obstacles between the UGV

agents and the detected enemy agent. As the PSO algorithm does not change the

engagement sequence or probability of kill, it does not affect the number of causalities

sustained. The ALVC guidance algorithm developed as an improvement to the LVC

guidance works well and has a significant impact on area coverage, but only in the search

phase. Similar to the PSO algorithm, the ALVC guidance algorithm�¶�V���L�Q�D�E�L�O�L�W�\ to overcome

obstacles makes it unsuitable for outdoor and indoor urban operations. Thus, further

modifications for the PSO and ALVC guidance algorithm is required.

Analysis of the simulation results reveals that increasing the number of UGVs

would assist in locating targets in a shorter period of time and would also lead to a higher

probability of win in the track and engage phase. Analysis also shows that the availability

of multiple entry points into the operational area is beneficial as it allows the UGVs to

locate the enemy in less time. Further, results from the introduction of the non-

holonomicity constraint show that non-holonomic drive improves area coverage and thus

allows the UGVs to locate targets in a shorter amount of time. The non-holonom�Lcity

constraint, however, proves to be a disadvantage for UGVs tracking a moving target. It is

more beneficial to increase detection range, as better situational awareness for the UGVs

allows for earlier activation of the PSO algorithm, which would reduce the total

engagement time.

The three input parameters affecting the number of casualties are the probability of

kill, kill distance, and kill sequence. The number of casualties of Blue forces increases or

decreases depending on these three factors. Blue forces suffer fewer casualties with a

higher probability of kill of Red forces, Blue forces require a longer kill distance, and Blue

forces are first to engage in the battle.

xxiii

In this thesis, modeling and simulations are done in MATLAB. The kinematics for

all agents are defined in Equations (1) and (2), where �E represents iterations and �¿�T and �¿�U

represent the change in the respective coordinates.

; 1i j ij ij�� � �� �'P P P
(1)

The concept of modeling follows a grid-based system in which the operational area

is broken down into 100 by 100 cells. In each iteration, each agent would determine its

next position by evaluating the immediate eight surrounding cells. Depending on the

input parameters, such as non-holonom�Lcity drive behaviors and collision avoidance, and

environment conditions, such as obstacles, some of the surrounding cells would be

restricted. Depending on the algorithm choice, some of the unrestricted cells would be

preferred over the others. Engagement between the UGV agents and the enemy agents was

modeled as probability events.

References

�*�D�J�H�����'�R�X�J�O�D�V���:�����������������³UGV History 101: A Brief History of Unmanned Ground
Vehicle (UGV) Development Efforts.� ́Unmanned Systems Magazine 13, no. 3
(January): 9�±32. http://www.dtic.mil/dtic/tr/fulltext/u2/a422845.pdf.

United Nations, Department of Economic and Social Affairs, Population Division. 2014.
World Urbanization Prospects: The 2014 Revision, Highlights
(ST/ESA/SER.A/352). https://esa.un.org/unpd/wup/publications/files/wup2014-
highlights.pdf.

xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

xxv

ACKNOWLEDGMENTS

First, I would like to express my deepest gratitude to Professor Oleg Yakimenko

for his guidance. His support and commitment allowed me to develop my research in the

area of my interest and complete this challenging but rewarding journey at the Naval

Postgraduate School. I am extremely proud of the work we managed to accomplish.

I am truly grateful to the Singapore Armed Forces for providing me this opportunity

to further my studies and to enrich my life experience. I have been blessed to work

alongside the 2017 cohort of the Temasek Defense Systems Institute.

Finally, I would like to thank Claire, for her unwavering love and support

throughout this journey.

xxvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND

The global trend of urbanization that began after World War II continues to grow

rapidly (Glenn ������������ �������� �,�Q�� ������������ ������ �S�H�U�F�H�Q�W���R�I�� �W�K�H�� �Z�R�U�O�G�¶�V�� �S�R�S�X�O�D�W�L�R�Q�� �U�H�V�L�G�Hd in urban

areas, compared to only 30 percent in 1950, and the United Nations estimates that by 2050,

that number will reach 66 percent (United Nations 2014). This global trend necessarily

contributes to a shift in the characteristics of any future potential conflicts, and as a result,

in the way urban warfare would be conducted.

Fighting in urban areas is extremely complex and challenging. The third dimension

in urban areas, such as subterranean and multi-story structures, affects the line of sight and

engagement conditions, thus increasing the complexity of the environment. In addition, the

presence of civilians introduces constraints, such as reduced air or artillery support for

ground troops, to minimize non-combatant causalities and collateral damage. The

complexity of the environment requires better situational awareness, equipment, and

training to overcome these challenges.

Technological advancements in recent years have equipped armed forces to meet

these challenging demands. Such advancements include military robotic platforms, which

are now frequently employed by troops for explosive ordinance disposal, loading and

carrying heavy items, and repairing ground conditions under fire (Gage 1995).

Furthermore, according to the 2011 unmanned ground systems roadmap report by the

Robotic Systems Joint Project Office (RS JPO) of the United States Department of Defense

(DoD), there are plans to develop armed unmanned ground vehicles (UGV) with combat

abilities within the next 25 years (Department of Defense 2011, 41). Figure 1 shows a

variety of the UGVs being developed.

One of the emerging concepts that the RS JPO is actively tracking is the Multi-

Mission Unmanned Ground Vehicle (MM-UGV). MM-UGVs possess armed unmanned

capability as well as the capability to deal with improvised explosive devices. As seen in

2

Figure 2, full autonomy for an unmanned combat ground vehicle such as the MM-UGV is

a far-term capability anticipated by the U.S. Army.

Figure 1. DoD Army UGV campaign plan. Source: U.S. Department of
Defense (2011).

Figure 2. DoD Army UGV capability timeline. Source: U.S. Department of
Defense (2011).

3

To meet the future capabilities requirement as identified in the U.S. Army UGV

campaign plan (Figure 1), unmanned ground vehicles require further technological

advancement. Table 1, which is drawn from the RS JPO report, summarizes the technology

growth needed.

Table 1. Technology areas that require growth to meet future capabilities of
U.S. Army UGV campaign plan. Source: U.S. Department of

Defense (2011).

Priority Technology Area

1 Autonomy

1 Obstacle detection and Avoidance
2 Interoperability
2 Commonality
3 Increased NLOS and LOS capability (COMS)
3 Improved Culvert Interrogation Ability
4 Frequency Spectrum Adaptability
5 Extended Mission Duration
6 COMSEC Encryption Capability
6 Net-Ready KPP
7 Common Controller
8 Improved Optics
9 Health Management System
10 Render Useless Mechanism
11 Layered, Escalating Defense Mechanisms
12 Audio Directional Detection
13 Explosive Detection
14 Embedded Training Capability
15 Location Reporting
16 Integrated Tool Kit
17 Dismounted Mission Enabling Robotics

For the micro- and nano-bots depicted in Figure 1, swarming is considered to be

one of the most promising capabilities to be developed, according to Vasily Kashin of the

Higher School of Economics in Moscow and �D�Q�� �H�[�S�H�U�W�� �R�Q�� �&�K�L�Q�D�¶�V�� �P�L�O�L�W�D�U�\��(Feng and

4

Clover 2017). Swarm intelligence is an artificial intelligence discipline that consists of a

multi-agent system that takes inspiration from the behavior of colonies of social insects

and animal societies, such as flocks of birds or schools of fish (Blum and Li 2008, 43). The

word �³swarm�´��is an appropriate word because it has special characteristics not found in

related terms such as �³group��� ́ The three key special characteristics of a swarm are

decentralized control, lack of synchronicity, and the simplicity and homogeneity of the

swarm; additionally, the �V�Z�D�U�P�¶�V algorithms run in an asynchronous and decentralized

fashion (Beni 2004, 2).

This thesis explores the area of UGV autonomy, investigating the effects of

kinematics inputs�• such as movement behavior, swarm size, detection range�• and

engagement inputs�• such as sensors and weapon range�• with an assumption that the

hardware and software capabilities requirements mentioned previously are met.

B. OBJECTIVES

This thesis aims at developing and testing swarming algorithms as applied to

combat UGVs to execute a search and destroy mission in an urban environment. The search

phase of the mission focuses on exploring a given area in order to find all potential threats.

The track and engage phase focuses on eliminating these threats. Furthermore, the thesis

addresses three algorithms�• the Least Visited Cell (LVC) guidance, the Advanced Least

Visited Cell (ALVC) guidance, and the Particle Swarm Optimization (PSO)�• developed

for both outdoor and indoor environments in an urban area.

C. RESEARCH QUESTIONS

In order to meet the thesis objectives, this thesis strives to answer three critical

questions:

�x Is the algorithm developed suitable for the swarm of UGVs to achieve its

mission?

�x What are the strengths and weaknesses of the algorithms used in this

thesis?

5

�x What are the factors that affect the UGV �V�Z�D�U�P�¶s ability to achieve its

mission?

D. SCOPE

In order to gain a holistic view of and insights on the UGV �V�Z�D�U�P�¶s system, a

simple functional analysis at the engineering conceptual design level was conducted using

the systems engineering approach.

1. Functional Analysis and Allocation

A functional analysis on the UGV combat swarm was performed to determine what

the system needs to do. This analysis is depicted in Figure 3 and explained in more detail

in the subsequent paragraphs.

Figure 3. Functional decomposition of swarm combat UGV system.

(1) Move

First, the system requires the swarm of UGVs to move in the area of operation. In

order to do that, the system needs the ability to compute �W�K�H���V�Z�D�U�P�¶�V��current as well as its

next position. It also needs to produce a force for motion in order to physically move itself.

6

(2) Sense

The system needs to be able to sense its surroundings. The sub-level of this function

would be to detect obstacles so as not to collide with them, detect the enemy for

engagement, and detect other UGVs for collision avoidance as well as for computation of

�W�K�H���V�Z�D�U�P�¶�V��next position. An important sub-level of detecting the enemy is the ability to

discern its status as dead or alive.

(3) Engage

A main purpose for the swarm UGV is to take down the enemy. To do that, each

UGV within the swarm must be able to shoot. A sub-level of the shoot function includes

computing range and aiming point. In the event that the shot failed, the swarm must be able

to continue to pursue the enemy and continue to shoot.

(4) Communicate

For an algorithm such as the Particle Swarm Optimization (PSO) algorithm to work,

the swarm must have the ability to communicate information such as its own position and

the position of its target. In addition, information of visited locations would assist in an

effective algorithm.

2. Functional Flow Block Diagram

The functional flow block diagram (FFBD) is shown in Figure 4. This process is

categorized into two phases: search, and track and engage. The search phase focuses on the

maneuvers of the swarm in order to find the enemy. The track and engage phase focuses

on eliminating the enemy after the swarm has successfully found the enemy.

7

Figure 4. FFBD for swarm combat UGVs.

This thesis focuses on the creation and discussion of algorithms for both operation

phases highlighted in the FFBD diagram in Figure 4 and offers insights on the input

parameters from the research model. This thesis does not discuss hardware and software

capabilities of the UGVs themselves.

E. ASSUMPTIONS

As such, the assumptions made for this thesis are as follows.

�x The UGVs are able communicate with each other and will not experience

any information delay or distortion.

�x The UGVs are able to correctly identify obstacles, UGVs, and enemies all

the time.

�x There are no positional errors for UGVs and the �H�Q�H�P�\�¶�V��location or

positions.

Although these assumptions might not accurately reflect conditions in the real

world, they allowed the author to simplify the model so as to gain insights into the

algorithm built.

8

THIS PAGE INTENTIONALLY LEFT BLANK

9

II. LITERATURE REVIEW

This chapter details the review of literature from previous studies conducted by

scholars and researchers. The chapter starts by reviewing various search algorithms for the

search phase, followed by a consideration of the two-swarm optimization approach for the

track and engage phase. Thereafter, existing applications of swarm algorithms and UGVs

sensors and movement are discussed briefly.

A. SEARCH ALGORITHM S

Search algorithms are generally classified into exhaustive and heuristic search

types. The exhaustive search algorithm explores all the possible options in the network

during its execution to find the solution, and as such, it is time consuming. The heuristic

search algorithm employs rules at every branching step and, in contrast to the exhaustive

search algorithm, often includes some form of randomization to find the solution. In the

case of coverage, exhaustive search guarantees complete coverage of the free space while

the heuristic search approach does not. In short, heuristic approaches often trade accuracy

for speed.

1. Exhaustive Search

A common exhaustive search is the classical exact cellular decomposition. This

method breaks the examined space into strips called cells and proceeds to cover these cells

via simple motions like �³lawn mower� ́pattern (Galceran and Carreras 2013, 3). As shown

in Figure 5, the space is broken down into six cells (vertical strips) and coverage would be

complete after the robot finish�H�G�� �L�W�V�� �³�O�D�Z�Q�� �P�R�Z�H�U�´ pattern. Two popular cellular

decomposition approaches that incorporate obstacle avoidance are discussed next.

10

Figure 5. Robot moving in a �³�Oawn mowe�U�´ pattern through the cells.
Source: Galceran and Carreras (2013).

a. Trapezoidal Decomposition

Galceran and Carreras (2013) mention that the cellular decomposition technique is

simple and able to yield a complete solution. As shown in Figure 6, each cell is broken up

into a trapezoid shape once the robot encounters an obstacle and merges the cell once the

robot gets past the obstacle, and in this case, 12 cells are generated and complete coverage

is achieved once all cells are visited (Galceran and Carreras 2013, 3). They also mention

the drawback of this technique is that it requires many back and forth motions to achieve

completeness as well as requires the obstacle to be polygonal.

11

Figure 6. Broken up cells in the trapezoidal decomposition. Source:
Galceran and Carreras (2013).

b. Boustrophedon Decomposition

Choset�¶�V (2000) work on boustrophedon cellular decomposition is an improvement on

the trapezoidal cellular decomposition. Compared to the trapezoidal decomposition technique,

his work is able to reduce the number of overlapping motions by setting critical points to mark

the start and end of an obstacle and therefore reduce the number of cells. For example, for the

case shown in Figure 6, the critical points would be at C1 and C8. Thus, C2, C4, and C6 and

C3, C5, and C7 would be a single cell instead of three.

c. Grid-based Coverage using the Wavefront Algorithm

�$�F�F�R�U�G�L�Q�J�� �W�R�� �*�D�O�F�H�U�D�Q�� �D�Q�G�� �&�D�U�U�H�U�D�V�� ���������������� �³Grid-based methods use a

representation of the environment decomposed into a collection of uniform grid cells� ́(13).

They mention that grid cell are most commonly represented by a square; however, a

different grid cell type, such as triangles or trapezoids, can also be used.

Zelinsky et al. (1993) work on grid-based coverage using the wavefront algorithm.

This method assigns a specific number to each grid cell based on the distance between the

start and goal cell, which is known. As seen in Figure 7, the nearest cells to the goal are

assigned lower values, while the furthest cells are assigned higher values.

12

Figure 7. Assigned values for each cell using the wavefront algorithm.
Source: Zelinsky et al. (1993).

As shown in Figure 8, the path is created by selecting the unvisited neighboring cell

with the highest value. A random decision would be made if there are two unvisited

neighboring cells with same highest value.

Figure 8. Path of complete coverage using wavefront algorithm. Source:
Zelinsky et al. (1993).

Zelinsky et al. (1993) also presented a second distance transform generation using

a new cost function instead of full coverage in order to find the shortest path. In this case,

13

the path is selected based on the lowest value instead of the highest. The advantage of the

grid-based method for coverage is simplicity of implementation; however, this method

suffers from memory issues as the environment gets larger and more complex (Galceran

and Carreras 2013, 13).

2. Heuristic Search

The heuristic search algorithm is an approach that employs rules at every branching

step and often includes some form of randomization in attempting to reach a solution. Two

common heuristic search algorithms discussed in this section are the greedy and swarm

algorithms.

a. Greedy Algorithm

A popular and well-�N�Q�R�Z�Q�� �K�H�X�U�L�V�W�L�F�� �V�H�D�U�F�K�� �L�V�� �W�K�H�� �J�U�H�H�G�\�� �D�O�J�R�U�L�W�K�P���� �&�K�D�U�O�L�H�U�¶�V��

(1995) report on the greedy algorithms class states that the greedy algorithm must satisfy

two conditions. One, the algorithm has to construct the solution step by step. Two, at each

step, the best possible local choice is made. Its aim is to find a global optimum by

performing a succession of local optimizations. In many cases, the greedy algorithm does

not produce a global optimal solution. Nevertheless, a relatively approximate solution

(locally optimal solution) could be found in a reasonably shorter period of time.

b. Swarm Algorithm

Blum and Li (2008) recognize Ant Colony Optimization (ACO) and Particle Swarm

Optimization (PSO) as the two notable swarm intelligence techniques for producing

approximate solutions in a reasonable computation time period.

(1) Ant Colony Optimization

Dorigo et al. (1996) introduce ACO based on the behavior of ants in which they

leave traces (pheromones) as they mark the route for their colony. The work of Goss et al.

(1989) on the double bridge demonstrates an optimization method for finding the shortest

path. Initially, the ants would explore both the long and the short bridges to a food source.

Since the ants that took shorter bridge return to the colony faster than those on the longer

14

path, more pheromones are laid on the shorter path, hence encouraging the other members

of the ant colony to use the shortest path. The limitation in this optimization method, as the

paper noted, is that once a path is established, the introduction of a new bridge would not

be explored due to the overwhelming number of pheromones existing in the original chosen

path (Goss et al. 1989). This would prove to be a huge limitation in the context of this

thesis as the objective (enemy) is constantly moving.

(2) Particle Swarm Optimization

Kennedy and Eberhart�¶�V (1995) work on particle swarm optimization (PSO) is a

popular algorithm for swarm research. The two main component methodologies for this

work correspond to artificial life, such as bird-flocking or fish-schooling, as well as work

on genetic algorithms and evolutionary programming (Kennedy and Eberhart 1995). To

explain the essence of the PSO algorithm, let us assume that each agent evaluates its current

distance from {���T�á�U } = [100,100] point. An important factor to note is that the agents

require an objective in order to be able to evaluate their position.

 �'�R�=�HL��¥�:�TF�s�r�r�;�6 E��¥�:�UF�s�r�r�;�6 (1)

�7�K�H�� �3�6�2�� �F�R�Q�F�H�S�W�� �L�V�� �W�K�H�Q�� �W�R�� �F�K�D�Q�J�H�� �W�K�H�� �D�J�H�Q�W�¶�V�� �Y�H�O�R�F�L�W�\�� ���8�Ü) at every time step

towards its personal best position (Pbest) and global best position (Gbest).

�8�ÜL���8�Ü�?�5 E�>�#�?�?�A�H�A�N�=�P�E�K�J�������:�4�=�J�@���K�B���r���P�K���s�;���ä�:�2�>�A�O�PF�%�Q�N�N�A�J�P���L�K�O�E�P�E�K�J�;�?

E���>�#�?�?�A�H�A�N�=�P�E�K�J�������:�4�=�J�@���K�B���r���P�K���s�;���ä�:�)�>�A�O�PF�%�Q�N�N�A�J�P���L�K�O�E�P�E�K�J�;�?
(2)

In Equation (2), Pbest is defined as the closest position from the goal that a

particular agent has been and Gbest is the closest position from the goal that any agent has

been. At any one time, there would be an agent whose Pbest is the Gbest. Acceleration

represents the weight that pulls each agent towards the Pbest and Gbest.

The research of Shi and Eberhart (1998) improves the PSO algorithm by

introducing inertia weight (�+) to act as a constraint to control the global exploration ability

of an agent.

15

�8�ÜL���+���ä�8�Ü�?�5 E�>�#�?�?�A�H�A�N�=�P�E�K�J�������:�4�=�J�@���K�B���r���P�K���s�;���ä�:�2�>�A�O�PF�%�Q�N�N�A�J�P���L�K�O�E�P�E�K�J�;�?

E���>�#�?�?�A�H�A�N�=�P�E�K�J�������:�4�=�J�@���K�B���r���P�K���s�;���ä�:�)�>�A�O�PF�%�Q�N�N�A�J�P���L�K�O�E�P�E�K�J�;�?
(3)

The advantages of PSO are that it is simple, having very few parameters to adjust.

It is effective and works well in a wide variety of applications. Thus, PSO seems to be a

viable option in the context of this thesis for a swarm of UGVs moving towards an enemy

once it is located.

3. Summary of Search and Swarm Optimization Algorithm s Used in this
Research

Table 2 shows a summary of the search algorithms discussed previously.

Table 2. Summary of search algorithms

Category Approach Advantages Disadvantages

Exhaustive
Search

Trapezoidal
Decomposition

Simple and easy to
implement.

Requires knowledge of
environment.
Might not work well in dense
environment with complex
structures.

Boustrophedon
Decomposition

Reduced processing
time compared

Grid-based
Wavefront
Algorithm

Simple and easy to
implement.

Requires knowledge of
environment.
Suffer from exponential
growth of memory usage as
environment becomes
complex.

Heuristic
Search

Greedy
Algorithm

Simple and easy to
implement.

Might not find global optimal
solution.

Heuristic
Search
(Swarm
Optimization)

Ant Colony
Optimization

Able to find local
optimal solution in a
short time.

Poor ability to adapt or
change route.
Does not work for moving
objective.

Particle Swarm
Optimization

Able to find local
optimal solution in a
short time.
Works for moving
objective.

Easy to fall into local optimal
solution.

16

For the purposes of this thesis focusing on a search and destroy mission, the

complexity of finding a moving target mitigates the main disadvantage of a heuristic search

not being able to locate the global optimal solution. Thus, the heuristic search approach

might yield better results in a shorter time. Furthermore, full knowledge of the environment

in many scenarios, especially for this research, is unrealistic. Even if a blueprint of the area

of operations is available, it cannot depict all the potential obstacles, natural or man-made,

in any urban environment. As such, the exhaustive search algorithm is not suitable.

Although the Grid-based Wavefront algorithm is not suitable either, as shown

previously, this thesis does employ a grid-based concept for the foundation of the

developed algorithm because of its potential and simplicity. For the search phase, the

greedy algorithm based on a grid concept is employed.

For the track and engage phase, this thesis employs the PSO algorithm instead of

the ACO algorithm. ACO was rejected because of the algor�L�W�K�P�¶�V��lack of flexibility to

change objectives once it establishes a path. However, the concept of pheromones from the

ACO algorithm is employed together with the greedy algorithm in the search phase in order

explore the least visited areas.

B. APPLICATIONS OF SWARM ALGORITHM S

Quite a few research studies have been conducted to develop swarming algorithms

and assess their effectiveness in a variety of possible real-world applications. Among these

studies, the PSO algorithm emerged as one of the simplest and yet effective ones. For

example, the implementation of PSO to fine-tune a profile-matching algorithm to learn

�X�V�H�U�V�¶���S�U�H�I�H�U�H�Q�F�H�V���D�Q�G���P�Dke suggestions in E-commerce was studied (Ujjin and Bentley

2003). This research concluded that in the majority of cases, the PSO system obtained

better prediction accuracy than non-adaptive approaches �V�X�F�K�� �D�V�� �J�H�Q�H�W�L�F�� �D�Q�G�� �3�H�D�U�V�R�Q�¶�V��

algorithms.

In another study, a PSO-based image clustering method was developed and

compared with K-means, fuzzy C-means, K-harmonic means, and genetic algorithm

approaches (Omran et al. 2005). Experimental results provided in this study showed that

17

the PSO image classifier produced better results than the other image classifiers for all

measured criteria.

In a similar domain, another swarm algorithm, Ant Colony Clustering, was

employed to discover Web usage patterns. The empirical results demonstrated that the

ACO algorithm performed well compared to a self-organizing map neural network

(Abraham and Ramos 2003). Swarm algorithms have also been used for forecasting. For

example, the ACO approach was used to estimate energy demand (Toksari 2007). For the

same problem, a combined ACO-PSO model was also developed (Ünler 2008).

C. MACHINE VISION

In order for a UGV to perform its tasks, it requires the ability to sense and gain

situational awareness through the inputs of its sensors. Vision, among all the other senses,

undoubtedly provides the most data and is most appropriate in this context. According to

the unmanned ground systems roadmap report by the Robotic Systems Joint Project Office

of the DoD (2011), the image sensors for UGVs currently operate in three spectrums;

visible, near infrared, and thermal infrared (Department of Defense 2011, 28). This

roadmap reports that from 2009 to 2011, significant improvements in technology related

to image sensors and vision capabilities have been fostered by research and development

within both the United States government and industry in various critical areas:

�x Demonstrated obstacle detection and avoidance, visual odometry, lane

detection, and sensor fusion

�x Investigated stereoscopic vision and terrain classification technologies

�x Matured vision-based navigation and learning technologies

�x Matured vision technologies that enable UGVs to safely operate within

urban environments among humans, animals, and vehicles (U.S.

Department of Defense 2011, 29)

This roadmap also describes future developments the DoD plans to pursue. In the

short term, it aims to improve imaging in order to increase the number of pixels for more

image detail or wider field of view to include 360-degree images. Since the publication of

18

the 2011 roadmap, not only have 360-degree field of view cameras been developed, they

have become so affordable that they have been launched as consumer products. An article

written by Goldman (2016) on CNET reviews ten of these cameras and their prices for

consumers in 2016, which signals the prospect of rapid success in technological

�D�G�Y�D�Q�F�H�P�H�Q�W�V���U�H�T�X�L�U�H�G���I�R�U���W�K�H���U�R�D�G�P�D�S�¶�V���S�U�R�S�R�V�H�G���J�R�D�O�V��

D. HOLONOMIC BEHAVIOR

In robotics, holonomic drive refers to the relationship between controllable and

total degrees of freedom of a vehicle. If the controllable degree of freedom is equal to total

degrees of freedom, then the robot is said to be holonomic (Robot Platform n.d.).

According to Morin and Samson (2004), the control of non-holonomic vehicles is a very

active research field because automated wheeled vehicles are now envisioned for use in

daily life and the military.

Naffin and Sukhatme�¶�V (2004) work studies the problem of assembling and

maintaining formations of robot. Their approach was to dynamically create a formation

from wandering individual robots by establishing and negotiating protocols and rules when

the robots encounter each other. The four objective formations of choice for their study

were the column, line, wedge, and diamond, and the three metrics used to determine

performance were positional error, duration of time required to form the required

formation, and duration of time the formation could be maintained. Their result shows that

compared to robots with non-holonomic drives, robots equipped with holonomic drives

were able to get together in three out of the four formations in the study. This field of work

is related to this thesis topic in terms of UGV motion and the insights gained from the

effects of non-holonomic and holonomic drive, and can act as a good data reference for

this thesis.

19

III. MODELING

This chapter discusses several aspects of urban environment engagement modeling

starting from modeling motion primitives in the open-space obstacle-free environment and

gradually proceeding to the specifics of the track and engage phase modeling.

Hereinafter, the UGV swarm executing the mission is referred to as the Blue forces,

while the threats are referred to as the Red forces. Simulations are bounded by the following

assumptions:

�x Blue agents are able communicate with each other without any

information delay or distortion.

�x Blue agents are able to correctly identify obstacles, other Blue and Red

agents.

�x The starting position for the Blue forces is fixed to several feasible

options, dependent on the actual urban environment.

�x �(�U�U�R�U�V���L�Q���H�V�W�L�P�D�W�L�Q�J���D�J�H�Q�W�V�¶���S�R�V�L�W�L�R�Q�V���D�U�H���Q�H�J�O�L�J�L�E�O�H��

�x Blue agents are in the offensive mode while Red agents are in defensive

posture.

A. MOTION PRIMITIVES

Without loss of generality, agent motion is considered to be conducted along the

edges of the grid. In all simulations of this paper a square 100-by-100 cell grid was used

���D�F�W�X�D�O�� �J�U�L�G�� �V�L�]�H�� �G�H�S�H�Q�G�V�� �R�Q�� �W�K�H�� �D�U�H�D�� �W�R�� �F�R�Y�H�U�� �D�Q�G�� �D�J�H�Q�W�V�¶�� �P�R�E�L�O�L�W�\������ �:�L�W�K��

representing the current (ith iteration) two-dimensional cell position of the jth agent, their

kinematics are defined as

 ; 1i j ij ij�� � �� �'P P P (4)

20

The assumptions are that

�x distance traveled per iteration for each agent is limited to its eight

surrounding cells so that the change in x or y coordinates is either 1 or 0

(Figure 9);

�x each agent is able to broadcast and receive its coordinates as well as keep

track of the previously visited cells (maintain visitation map); and

�x simulation scoring is based on the status of Blue and Red agents (either

dead or alive).

At each iteration, every Blue agent determines its next position by evaluating the

immediate surrounding cells (Cells 1 to 8), as shown in Figure 9, and randomly picking

one of them.

Figure 9. Agent surrounding cells.

The velocity vector is then computed based on the change in the x and y coordinates

 (5)

where kt is some scaling factor that can be used to account for the physical size of the cell

and number of interactions representing one second (kt = 1 means that velocity components

are expressed in cells per iteration).

21

Compared to the Blue agents pursuing an exploration or elimination objective

(based on the phase of engagement) and therefore moving around, the Red agents are in a

defensive posture and are likely not to move around too much. Hence, while maintaining

the same kinematics, the Re�G�� �D�J�H�Q�W�V�¶�� �Q�H�[�W�� �S�R�V�L�W�L�R�Q�� �L�V�� �G�H�W�H�U�P�L�Q�H�G�� �U�D�Q�G�R�P�O�\�� �D�P�R�Q�J�� �L�W�V��

surrounding obstacle-free cells.

B. MOTION CONSTRAINTS

In this chapter, the motion constraints of two guidance algorithm, Least Visited Cell

Guidance and Advance Least Visited Cell guidance, that was developed for this thesis

would be discussed.

1. Least Visited Cell Guidance

To achieve the maximum coverage of the area of operations while searching for

Red agents, the Blue agents employ the Least Visited Cell (LVC) guidance. This guidance

dictates for each Blue agent to access eight surrounding cells, identifying those that have

been visited by itself or other agents. Each Blue agent then randomly selects one of the

unvisited cells as a next move. For example, in the situation shown in Figure 10, any one

of Cells 2, 3, 6, or 8 would randomly be selected as �D���%�O�X�H���D�J�H�Q�W�¶�V��next designation. In the

event that all surrounding cells have been visited already, the agent randomly selects one

of them.

Figure 10. �$�J�H�Q�W�¶�V���V�X�U�U�R�X�Q�G�L�Q�J���Y�L�V�L�W�H�G���D�Q�G���X�Q�Y�L�V�L�W�H�G���F�H�O�O�V.

22

a. Collision Avoidance

Collision avoidance is modeled in such a manner that a UGV agent cannot move to

a cell that is occupied by other agents. The cell that is occupied by other agents would not

be considered as a possible designation. The logic for the remaining cells would follow the

sequence described in the preceding paragraph. For example, in Figure 11, either Cell 2 or

Cell 6 would randomly be selected as �W�K�H���D�J�H�Q�W�¶�V��next designation. In an event that all cells

are occupied, the agent would remain in its current position until a cell is unoccupied.

Figure 11. Surroundings visited, unvisited, and occupied cells.

b. Non-Holonomicity Constraint

Another constraint is imposed to represent a particular vehicle dynamics. While

some UGVs may be holonomic, meaning that they can move in any direction at any

instance of time, other UGVs are not holonomic and have certain turn rate limitations. The

choice of a particular dynamic is modeled using a non-holonomicity constraint limiting the

direction of the age�Q�W�¶�V��next move relative to the direction of the previous move. For

example, Figure 12 shows a situation of imposing a 90-degree non-holonomicity constraint

limiting the �8�*�9�¶�V��next move to just three cells (corresponding to the maximum turn rate

of ±45 degrees per iteration). In this particular situation, the agent would pick Cell 4 as its

destination. In the event where Cells 2, 3, and 4 are visited, the agent would randomly

select among them.

23

Figure 12. Surrounding cells with a non-holonomicity constraint of 90
degrees.

c. Obstacles

Similar to collision avoidance, obstacles such as boundaries or building walls are

programmed as occupied cells and the UGV agent would not be able to move to those cells.

For example, in Figure 13, the agent would select Cell 4 as its designation as Cells 1, 2,

and 8 are the map boundaries; Cell 3 is occupied; and Cells 5, 6, and 7 are restricted because

of the non-holonomicity constraint of 90 degrees.

Figure 13. Surrounding cells with a non-holonomicity constraint of 90
degrees and obstacles.

2. Advanced Least Visited Cell Guidance

Advanced Least Visited Cell (ALVC) guidance is a modification of LVC guidance

aimed at achieving better performance. According to ALVC guidance when all the

24

surrounding cells are visited, instead of randomly choosing a cell as its designation, the

UGV agent extends its search scope beyond its immediate surrounding cells until it finds

an unvisited cell. Its designation among the eight cells would be prioritized based on the

direction of the nearest unvisited cell identified. Figure 14 shows two illustrations of a

UGV agent with a non-holonomicity constraint of 90 degrees. In both illustrations, after

the closest unvisited cell is identified, Cell 5 is given priority 1, followed by Cells 4 and 6

assigned priority 2, Cells 3 and 7 assigned priority 3, followed by Cells 2 and 8 assigned

priority 4. Finally, the last priority is assigned to the cell in the opposite direction from the

target. To illustrate, on the left side of Figure 14, as there are no obstacles or other agents

in the surrounding cells, the UGV agent would select either Cell 4 or Cell 6 (priority 2) as

its designation as Cell 5 (priority 1) cannot be accessed due to the non-holonomicity

constraint. In the example on the right side of Figure 14, the UGV agent would select Cell

3 (priority 3) as its designation because all priority 1 and 2 designations are restricted. The

entire process repeats itself once 100 percent area coverage is achieved.

Figure 14. Illustrations of improved algorithm with non-holonomicity
constraint of 90 degrees.

25

C. PARTICLE SWARM OPTIMIZATION

Once the track and engage phase of the mission is triggered, the Blue forces

exercise the Particle Swarm Optimization (PSO) algorithm�����,�Q���W�K�L�V���F�D�V�H�����W�K�H���%�O�X�H���D�J�H�Q�W�V�¶��

velocity vectors are computed according to Equation (6) (Shi and Eberhart 1998):

 (6)

In this equation, the first term on the right-hand side is responsible for global search

�D�E�L�O�L�W�\���Z�L�W�K���W�K�H���³�L�Q�H�U�W�L�D�´���Z�H�L�J�K�W �S�ÂL �s, the second (cognition) term represents the private

thinking of each agent trying to steer towards an individual best position from the past,

�þ�Ü�Ý
�Õ�Ø�æ�ç, and the third (social) term represents collaboration among all agents accommodating

the knowledge of the best global position with respect to the detected Red agent, �õ�Ü
�Õ�Ø�æ�ç

(where �õ�Ü
�Õ�Ø�æ�ç is one of the position vectors �þ�Ü�Ý

�Õ�Ø�æ�ç closest to the detected Red agent). The

�4�=�J�@�Ü�Ý��and �4�=�J�@�Ü�Ý are two random generators in the range [0;1] and the weighting

coefficients �S�T and �S�K are chosen to be 2 to make the average weight of the second and

third terms to be 1 (Shi and Eberhart 1998).

Once the track and engage phase is triggered, the values of �þ�Ü�Ý
�Õ�Ø�æ�ç are chosen

between the current and previous position by evaluating their distance from the Red agent

that was detected. The cell position vector for the jth agent is computed as:

 (7)

The PSO guidance goal is to steer the swarm towards a detected Red agent to

increase the overall probability of kill, while still searching the area for other Red agents.

In an event that two or more Blue agents encounter different Red agents and these

Blue agents are equidistant from their detected Red agents, there will be two �õ�Ü
�Õ�Ø�æ�ç

positions, hence two goals. In this case each swarm agent adopts the �õ�Ü
�Õ�Ø�æ�ç of the Blue

agent closest to it. This splits the swarm allowing it to pursue two or more Red agents at

the same time, as seen in the example shown in Figure 15. Muhammad Raza (2018) wrote

a MATLAB script for particle swarm optimization that is referenced in this thesis.

26

Figure 15. Example of a swarm pursuing two Red agents.

During the track and engage phase (PSO guidance), the algorithm can switch back

to the search phase (LVC guidance) in the case of one of the following three events:

�x The Blue agents lose track of the Red agent(s) because of the Red agent�¶s

maneuvers.

�x The Blue agent tracking the Red agent is eliminated (killed).

�x The Red agent that is being tracked is eliminated.

D. ENGAGEMENT RULES

Engagement between the Blue and Red agents is modeled as a probability event

defined by five varied parameters:

�x Detection range, �@�×
�»�\ �Ë

�x Engagement range, �@�Þ
�»�\ �Ë and �@�Þ

�Ë�\ �», respectively

�x Offensive capability, �2�Þ
�»�\ �Ë and �2�Þ

�Ë�\ �», respectively

27

The nominal values are �@�×
�»�\ �Ë L �w���?�A�H�H�O, �@�Þ

�»�\ �Ë L �s���?�A�H�H, �@�Þ
�Ë�\ �» L �t���?�A�H�H�O, and

�2�Þ
�»�\ �Ë L �2�Þ

�Ë�\ �» L �r�ä�s. If one of the Blue agents comes closer than �@�×
�»�\ �Ë to any Red agent,

the track and engage phase of the mission is triggered.

At each iteration when agents are within their respective engagement range, a

random number from zero to one is generated. If this number happens to be less than the

corresponding probability of kill, it is considered as a successful kill.

The Red agent always has a priority to shoot first. The reason for the Red forces to

strike first is that in the considered scenario the Red forces are in a defensive position and

likely to spot the Blue agent first. The difference in the engagement distance is caused by

the same consideration.

E. OPERATIONAL ENVIRONM ENT

The modeling aspect of the three operational environments, open space, outdoor as

well as indoor urban environment would be discussed in this section.

a. Open Space Environment

The open space environment is a 100-by-100 cell operational area that does not

consist of any obstacles. It is used to study the effects of various parameters without the

interference of obstacles.

b. Mapping of Outdoor Urban Operational Area

An urban facility named, the impossible city, in Monterey, California, was chosen

as an operational scenario and modeled to verify and evaluate the developed algorithm as

well as the findings made in the early sections of this thesis. Figure 16 shows the model

built in MATLAB in comparison with Google satellite images. While green boxes

represent vegetation areas and blue boxes are buildings, the UGV and the enemy recognize

both as obstacles and do not differentiate between them.

28

Figure 16. Model simulation of Impossible City at Fort Ord, California (right)
and Google map view (left).

c. Indoor Operational Area

Indoor search is inevitable in any urban operation. Figure 17 shows an example of

an indoor floorplan that was built to verify and evaluate the developed algorithm.

Figure 17. Indoor floorplan of a room.

29

IV. SEARCH PHASE STUDY

This chapter explores the developed search-phase guidance based on the LVC

algorithm. The goal of this phase is to provide full coverage of the operational area. First,

this section shows the effects of the swarm size, number of iterations, and starting

configuration while operating in the obstacle-free environment. Then, the real-world

constraints are added. The discussion ends with examples of full-scale simulations in the

outdoor and indoor urban environments.

A. EFFECT OF SWARM SIZE

The effect of a swarm size with a fixed number of iterations was investigated first.

To this end, Figure 18 shows the error plot of varying swarm size for 1,000 iterations based

on 30 runs. It demonstrates an obvious result that with a fixed number of iterations or, in

other words, within the same fixed time frame, having more agents leads to more thorough

coverage of a given area following the logarithmic law.

Figure 18. Effect of swarm size on area coverage.

30

As swarm size reaches beyond its saturation point, further increase of swarm size

yields a diminishing return of area coverage. Thus, it would be ineffective to achieve

maximum coverage purely by increasing the swarm size.

Figure 19 shows the 3D mesh plot for a swarm size of 10 agents with 55 percent

area coverage while Figure 20 shows the 3D mesh plot for a swarm size of 70 agents with

94.8 percent area coverage.

Figure 19. Average number of visits and number of cells for a swarm size of
10 agents with 1,000 iterations.

31

Figure 20. Average number of visits and number of cells for a swarm size of
70 agents with 1,000 iterations.

All Blue agents enter the area from the furthest entry point, then spread around the

area. That is why the number of visits at the entry point shows a spike.

B. AREA COVERAGE V ERSUS THE NUMBER OF ITER ATIONS

The effect of limiting the maximum number of iterations is shown in Figure 21. In

this specific case, simulations were conducted with a fixed swarm size of 20 agents.

32

Figure 21. Effects of the maximum number of iterations on area coverage.

As seen in Figure 21, using the maximum number of iterations seems to have a

linear effect on coverage. As expected, more iterations result in a fuller area coverage. It is

also observed, however, that the variance increases with an increase in the number of

iterations. This is likely due to the increased number of possible solutions as more iterations

are performed, therefore increasing uncertainty in area coverage.

Figure 22 shows the trajectory plot of 19 percent area coverage on 200 iterations,

and Figure 23 shows the trajectory plot of 70 percent area coverage on 1,000 iterations.

Both simulations have a swarm size of 20 agents, where different colors in the plot

correspond to different agents.

33

Figure 22. Trajectory plot of 19 percent coverage for 20 agents on 200
iterations.

Figure 23. Trajectory plot of 70 percent coverage for 20 agents on 1,000
iterations.

34

C. SWARM SIZE VERSUS NUMBER OF ITERATION S

Combining the results from the simulations in the previous sections allows

investigation of the effect of varying both the maximum number of iterations and the

swarm size simultaneously. Figure 24 shows the effect of iteration and swarm size on area

coverage. This figure also shows the net effect of increasing the number of iterations for

the different-size swarm.

Figure 24. Effects of swarm size on area coverage with iteration comparison.

The increase in iterations from 200 to 400 yields the best improvement at 20

percent. By contrast, there is a diminishing return as the number of iterations is increased

for a particular swarm size, as discussed in the previous section. As can be seen, achieving

100 percent area coverage is not as feasible or effective due to saturation of both swarm

size and number of iterations.

35

Users of the developed system would likely be more interested in the required

swarm size or number of iterations needed to achieve a pre-determined amount of area

coverage. Figure 25 shows a chart that provides an estimate of swarm size or number of

iterations needed given a required percentage of area coverage.

Figure 25. Estimated swarm size or number of iterations needed to achieve
required area coverage.

Figure 25 shows a couple of points exhibiting a different relative improvement

along the both coordinates needed to achieve a higher area coverage value. Particularly,

the improvement in area coverage from 70 percent to 80 percent (i.e., a 10 percent

improvement) requires an 18 percent to 34 percent increase in the number of agents within

the 300 to 800 iterations range, or an 17 percent increase of the number of iterations for a

30- and 100-agent swarms.

36

D. EFFECT OF STARTING C ONFIGURATION

Depending on the actual conditions, multiple entry points may be available. For

example, an urban environment might feature several roads leading to the center of a

village. The UGV swarm could also be delivered from an aerial platform. For the indoor

engagement, multiple doors and windows could be used. As such, previous simulations

were repeated for several representative starting configurations, which are depicted in

Figure 26 through 31.

Figure 26. Various starting configurations.

Figure 27. Snapshot of Corner starting configuration.

37

Figure 28. Snapshot of Center starting configuration.

Figure 29. Snapshot of Two-Corners starting configuration.

38

Figure 30. Snapshot of Four-Corners starting configuration.

Figure 31. Snapshot of Row starting configuration.

1. Effect of Swarm Size on Starting Configurations

Figure 32 shows the effect of varying the starting configuration with 10-, 20- and

30-agent swarms. The relative effect on the lower plot is computed with respect to the

single-corner entry, which happens to have the worst performance among all starting

configurations.

39

Figure 32. Coverage of various starting configurations by swarm size.

The starting configuration with all four corners as entry points turned to be the best,

followed by the center and two-corner entries. Even a row-entry configuration exhibited a

5�±10 percent improvement compared to a one-corner entry, which is an expected result as

the agents are split into different areas thus reducing time for them to get to the unexplored

area. The results also demonstrate some optimum values for swarm size, after which the

positive effect seems to degrade. For this particular simulation, it was a 20-agent swarm.

2. Effect of Maximum Number of Iterations on Starting Configurations

The effect of varying the number of iterations is shown in Figure 33. Five different

values�• 200, 400, 600, 800, and 1,000�• were used in simulations with a fixed swarm size

of 20 agents and the starting configurations from Figure 26.

40

Figure 33. Coverage of various starting configurations by number of iterations
(duration).

As can be seen, the simulation results are consistent with those of Figure 32. The

four-corners starting configuration proved to be the best yet again. The one-corner-entry

starting configuration achieved the lowest coverage regardless the number of iterations.

The results beyond the 600-iteration simulation seem to yield diminishing returns for all

starting configurations.

Reviewing all the findings up to this point leads one to the conclusion that a swarm

consisting of 20 agents using multiple entry points into an operation area yields the best

area coverage with 600 iterations. Beyond these values, saturation occurs.

E. EFFECT OF THE COLLISION AVOIDANCE CONSTRAINT

It would be interesting to see whether the inclusion of real-world constraints

changes any of the aforementioned conclusions. This section shows simulation results that

include collision avoidance. To assure that the collision-avoidance guidance does work,

Figure 34 shows the spread of the cell distances between any two agents in a 20-agent

41

swarm simulation. The lower plot of Figure 34 shows the minimum distance, proving that

not a single collision (distance of zero) has occurred during this simulation.

Figure 34. Maximum and minimum distances between any two agents.

The effects of various starting positions when collision avoidance is considered are

presented in Figure 35. The lower plot shows some negative effects that accounting for

collision avoidance produces.

42

Figure 35. Effect of starting positions on coverage when incorporating
collision avoidance.

Generally speaking, for most starting configurations (except single- and two-point

entry types) this effect is negligible. This is likely because with the multiple starting points

agents have more space to maneuver out of their initial positions. The difference in the area

coverage growth rate in the beginning of the single- and two-point entry simulations

suggests that the reduction is likely due to congestion that results in a queue to get out of

the corner. In addition, the agents that started to move out of the corner after queuing

recognize the surrounding cells as being visited, thus discouraging exploration. By

comparison, the agents without collision avoidance are able to get out of the corner right

from the beginning. The similar growth rate as time progresses suggests that the effect of

queuing is mitigated over time after the agents spread out from their starting configuration.

This conclusion is supported by Figure 36, which shows the heat map comparison of results

of with collision avoidance (on the left) and without collision avoidance (on the right) for

the first 50 iterations.

43

Figure 36. Heat map comparison of 50 iterations for collision avoidance (left)
and without collision avoidance (right).

The queue in the four-corners starting configuration is significantly lower

compared to the one-corner and two-corners configurations because fewer agents are in

each corner, and therefore, these simulations are not as significantly affected by the

imposition of the collision-avoidance constraint. Obviously, this conclusion might change

for the larger-size swarms.

F. EFFECT OF THE NON-HOLONOMICITY CON STRAINT

This subsection explores the effect of imposing one more real-world constraint

introduced previously �W�K�D�W�� �K�D�V�� �W�R�� �G�R�� �Z�L�W�K�� �D�J�H�Q�W�¶�V�� �W�X�U�Q�� �U�D�W�H���� �7�K�U�H�H non-holonomicity

constraints of 90 degrees, 180 degrees, and 270 degrees were studied. Figure 37 to 39 show

the results of UGV agents�¶���P�R�Y�H�P�H�Q�W�V under the various holonomic parameters for 100

iterations.

44

Figure 37. Non-holonomicity constraint of 90 degrees.

Figure 38. Non-holonomicity constraint of 180 degrees.

Figure 39. Non-holonomicity constraint of 270 degrees.

45

It is observed that a non-holonom�Lcity constraint of 90 degrees encourages

exploration as it propels the UGV agent forward as compared to holonomic drive, where

the agent tends to maneuver around the starting configuration.

Figures 40 to 43 show four subplots, each depicting the different non-holonomicity

constraints. The first subplot in each figure shows UGV agent movement from the plan

view. The second subplot shows the movement direction with reference to the map

according to the following angles:

�x 90 degrees (north)

�x 45 degrees (north-east)

�x 0 degrees (east)

�x -45 degrees (south-east)

�x -90 degrees (south)

�x -125 degrees (south-west)

�x 180 degrees (west

�x 125 degrees (north-west)

The third subplot indicates the difference in rotation angle per iteration from the

agent perspective. If the agent is not turning, the rotation angle at that iteration would be

zero�² regardless of direction in which the agent is heading. The final subplot shows the

total number of rotations made by the agent. It is generally evenly distributed since there

are no obstacles and the probability of choosing an unvisited cell is random.

46

Figure 40. Non-holonomicity constraint of 90 degrees.

47

Figure 41. Non-holonomicity constraint of 180 degrees.

48

Figure 42. Non-holonomicity constraint of 270 degrees.

49

Figure 43. No non-holonomicity angle constraint.

50

Figure 44 shows the effect of various restriction angles of non-holonomicity

constraints on coverage with a swarm size of 20 agents in the one-corner starting

configuration.

Figure 44. Effect on various non-holonomic angle constraints.

Surprisingly, area coverage increases as the non-holonomicity constraint becomes

tighter. Simulation with the non-holonomicity constraint of 90 degrees provides the highest

area coverage and the holonomic drive provides the lowest area coverage. This finding

suggests that this constraint actually encourages exploration, and thus leads to fuller

coverage over time.

51

The effect of non-holonomic drive on various starting positions is also investigated.

Figure 45 shows that the non-holonomicity constraint of 180 degrees improves area

coverage on all starting configurations.

Figure 45. Effect of a non-holonom�Lcity constraint of 180 degrees and various
starting configurations.

We can conclude in this section that for the purpose of exploration, non-holonomic

drive behaviors should not be seen as a limitation but a tool to encourage either global

exploration or local area search. Holonomic drive behaviors is subsequently investigated

in an urban area as well as an indoor simulation in the next sections.

G. URBAN OUTDOOR SEARCH OPERATIONS

Now that all aspects of the developed algorithm have been studied in the open-

space environment, the LVC guidance needs to be evaluated for a more realistic

environment like the ones shown in Figure 16 and 17.

52

1. Effect of Various Starting Configurations

These simulations involve a 20-agent swarm obeying collision-free operations.

Three possible starting configurations for the outdoor environment are depicted in Figure

46. Configuration 1 (left) represents a scenario where all agents are deployed from the same

location, while Configuration 3 (right) utilizes three entry points.

Figure 46. Starting configurations of UGV agents for urban outdoor
operations.

The result shown in Figure 47 supports the previous findings that multiple launch

sites encourage faster and, therefore, better area coverage compared to a single entry. For

1,000 iterations, there is a 40 percent improvement for Configuration 3 (multiple launch

sites) compared to Configuration 1 (single launch site). The improvement for four- corners

and one-corner starting configurations in an open space environment is approximately 20

percent. This finding seems to suggest that the benefit of multiple launch sites is amplified

when obstacles are present in the environment.

53

Figure 47. Effect of starting configuration on area coverage for urban
operation.

2. Effect of the Non-Holonomicity Constraint

The effects of non-holonomicity constraint were also studied for a single launch

site. The effect of imposing the non-holonomicity constraint in this case, presented in

Figure 48, is similar to that of the open-space case of Figure 44.

54

Figure 48. Effect of non-holonomic angle restriction on area coverage for
urban scenario.

The effect of non-holonomicity constraint is clearly seen in Figure 49, which shows

�W�K�H�� �E�L�U�G�¶�V-eye-view trajectories of all 20 agents being holonomic (on the left) and non-

holonomic (on the right). Yet again, imposing the non-holonomicity constraint leads to the

fuller area coverage across all iterations.

55

Figure 49. Holonomic (left) versus non-holonomic drive with a 90-degree
constraint (right).

Compared to the results of the open-space simulation depicted in Figure 44, the

positive effect is more pronounced. The holonomic Blue agents (left of Figure 49) tend to

stay within a confined area as they are further restricted by obstacles. This seems to suggest

that the benefit of tightening the non-holonomicity constraint is amplified when obstacles

are present. Table 3 compares the improvement from holonomic to non-holonomic drive

for both open space and urban operations.

56

Table 3. Comparison of the improvement (area coverage) in open space and
outdoor urban environments with the effect of non-holonomicity

constraint.

Improvement (% of area
coverage) from no

constraint to 270�q non-
holonomic constraint

Improvement (% of area
coverage) from no

constraint to 180�q non-
holonomic constraint

Improvement (% of area
coverage) from no

constraint to 90�q non-
holonomic constraint

Iteration Open Space
Urban

outdoor Open Space
Urban

outdoor Open Space
Urban

outdoor

200 0.50 0.10 2.78 4.33 7.57 10.59

400 1.30 1.62 6.38 10.03 18.23 21.71

600 2.27 2.93 10.45 14.45 24.17 30.42

800 4.46 4.82 15.29 18.46 25.30 34.60

1000 1.13 8.03 13.76 22.07 19.34 37.62

H. INDOOR SEARCH OPERATIONS

The effect of non-holonomic drive for indoor operations is discussed in this section.

The assumption for indoor the environment would be that there is only one entrance into

the room and thus there would only be one starting configuration. Figure 50 shows the

entrance to the room, which would be the starting configuration for the UGV agents.

57

Similar to the urban environment, analysis was done using a fixed swarm size of 20 agents

with collision avoidance.

Figure 50. Starting position (entrance) to the indoor environment.

Figure 51 shows the results of the effect of non-holonomic drive for indoor

operations, and Table 4 compares the improvement from holonomic drive to non-

holonomic drive for open space and indoor operations.

58

Figure 51. Effect of non-holonomic drive on area coverage for indoor
operations.

Table 4. Comparison of the improvement (area coverage) in open space and
indoor environments with effects of non-holonomic constraint.

Improvement (% of area
coverage) from no
constraint to non-

holonomic drive (270�q)

Improvement (% of area
coverage) from no
constraint to non-

holonomic drive (180�q)

Improvement (% of area
coverage) from no
constraint to non-

holonomic drive (90�q)

Iteration Open Space Indoor Open Space Indoor Open Space Indoor

200 0.50 0.00 2.78 2.38 7.57 8.19

59

Improvement (% of area
coverage) from no
constraint to non-

holonomic drive (270�q)

Improvement (% of area
coverage) from no
constraint to non-

holonomic drive (180�q)

Improvement (% of area
coverage) from no
constraint to non-

holonomic drive (90�q)

400 1.30 0.67 6.38 8.81 18.23 22.43

600 2.27 4.36 10.45 13.98 24.17 31.90

800 4.46 2.52 15.29 15.54 25.30 34.21

1000 1.13 4.79 13.76 19.71 19.34 37.94

As seen from the results shown in Figure 50 and Table 4, a similar conclusion can

be drawn in the case of indoor search operations as well.

The results from the previous two sections reveal that the non-holonomic drive is

able to produce even better results when obstacles are introduced. The UGV agents with

holonomic drive tend to stay within a confined area as they are further restricted by

obstacles.

I. EFFECTIVENESS OF ALV C GUIDANCE

This section investigates the effect on area coverage when the ALVC algorithm is

used. Figure 52 shows a snapshot at the 700th iteration, with the trail appearing from 550th

iteration onwards. The behavior of the UGV agents heading towards the remaining few

unvisited cells in the grid can be observed.

60

Figure 52. Snapshot of the last 100 iterations of a simulated run using ALVC
guidance.

1. Holonomic Drive

During the study of this section, a limitation of the ALVC algorithm was identified.

Imposing a non-holonomic drive restriction of 90 degrees would cause the algorithm to

enter an infinite circle loop�• in some cases, around an unvisited square�• as shown in

Figure 53. The LVC algorithm would not enter such a state because the UGV agents access

only to the allowed cells. By contrast, the ALVC algorithm grants UGV agents access to

all surrounding cells and targets the closest one. Thus, only the effect of non-holonomicity

constraints of 180 degrees and 270 degrees were explored.

61

Figure 53. Infinite circle loop around an unvisited square.

The effects of non-holonomicity constraints of 180 degrees and 270 degrees on area

coverage are shown in Figure 54, where subplot 2 shows the difference in area coverage

from holonomic drive.

Figure 54. Effect of non-holonomic drive on the ALVC algorithm.

62

The data suggest that the introduction of non-holonomic drive decreases area

coverage slightly unlike previous findings for the LVC algorithm. This is likely due to the

fact that the non-holonomicity constraints imposed restricts the freedom to move directly

to the targeted cell in every iteration for the ALVC.

2. Environment

As was done to evaluate the LVC guidance algorithm, three different

environments�• open space, outdoor, and indoor urban environments�• were simulated for

the ALVC guidance algorithm, and the results were compared against those for the LVC

algorithm, as shown in Figure 55.

Figure 55. Comparison between results of LVC and ALVC algorithms for
three environments.

The results suggest that despite the limitation of the non-holonomicity constraint of

90 degrees, the ALVC algorithm is able achieve greater area coverage in all three

environments. Further analysis on the ALVC guidance is discussed in the next chapter.

63

V. STUDY OF THE TRACK A ND ENGAGE PHASE

The previous chapter dealt with an area coverage as a single swarm objective. Now,

we extend the aforementioned simulations to include the Red forces, thus adding one more

objective of engaging an opponent. Because of this, once any Red agent is detected the

Blue agents largely abandon the primary objective and pursue the second one. As a result

of engagements, the swarm size becomes variable (decreasing).

All simulations presented in this section were conducted for a 20-agent Blue swarm

acting against five Red agents. Figure 56 shows the initial setup for the open-space,

outdoor, and indoor urban environments. Blue agents had a 90-degree non-holonomic drive

restriction and obeyed the collision-free constraint during the search phase.

Figure 56. Starting configurations of Blue and Red forces for open space
(left), outdoor (center), and indoor (right) urban operations.

The two measures of effectiveness in this case were the number of iterations

required to kill all agents of the either side as well as the number of agents that survived

the engagement.

The following parameters are varied and their effects on the two measures of

effectiveness are investigated.

�x Addition of PSO guidance

64

�x Varying Blue forces detection range

�x Varying holonomicity constraint (tracking) for Blue forces

�x Varying probability of kill (�2�Þ) for both forces

�x Varying kill distance

�x Changing kill sequence

�x Introduction of outdoor and indoor urban environment

�x Effectiveness of the Advanced Least Visited Cell guidance

A. EFFECTIVENE SS OF ADDED PSO GUIDANCE

In this section, the effect of the addition of the PSO guidance component is

investigated against the original LVC algorithm during the track and engage phase. PSO

guidance would be triggered for Blue forces when a Red agent is within any Blue agent�¶s

detection range. The Blue forces will evaluate their current positions with the detected

enemy and compute its velocity vector accordingly to swarm towards the detected enemy.

As an illustrative example Figure 57 presents snapshots of open-space simulations

during the track and engage phase featuring trajectories of 10 agents in the case PSO

guidance is not activated (on the left) and is activated (on the right). In the first case, Blue

agents simply wander around providing fuller area coverage but not necessarily staying

engaged with Red agents when they are detected; in the second case, three Red agents have

been engaged within the same number of iterations.

65

Figure 57. Trajectory comparison between LVC (left) and PSO (right)
guidance during the track and engage phase.

Running this simulation 30 times produces a statistically-verified estimate of the

PSO algorithm addition effectiveness. To this end, the box plot of Figure 58 shows the

number of iterations needed to end the engagement (when all agents of either side are

destroyed), and Figure 59 compares the number of casualties sustained at the end of the

battle. The green crosses in the box plot show the mean values while the red lines denote

the median values.

66

Figure 58. Number of iterations needed for a battle with and without PSO
guidance.

Figure 59. Number of casualties with and without PSO guidance.

67

Figure 60 and 61 show the pairwise comparison done by analysis of variance

(ANOVA)�• specifically, �W�K�H�� �)�L�V�K�H�U�¶�V�� �O�H�D�V�W�� �V�Lgnificant difference (LSD) test�• on the

number of iterations needed for a battle with and without PSO guidance.

Figure 60. ANOVA table for the number of iterations needed for a battle with
and without PSO guidance.

Figure 61. Testing for significant different result.

68

The simulation data presented show that the introduction of PSO guidance results

in a significant reduction in the number of iterations needed to conclude the battle.

As can be seen, the addition of the PSO guidance definitely leads to a faster location

of all known Red agents. At the same time, simulations have not revealed any significant

impact on the number of casualties for both sides because PSO guidance by itself does not

change the engagement sequence or probability of kill.

B. EFFECTS OF VARYING DETECTION RANGE

The value of the detection range, �@�×
�»�\ �Ë, obviously plays a major role in the success

of the mission because it defines the LVC-PSO guidance switching moment. Figure 62 and

63 show the effect of varying �@�×
�»�\ �Ë on the number of iterations needed to end the

engagement and the number of casualties for both Blue and Red forces, respectively, at the

end of the battle.

Figure 62. Number of iterations corresponding to various detection ranges.

69

Figure 63. Number of casualties corresponding to various detection ranges.

Obviously, the number of iterations required to end the engagement decreases as

the detection range increases. A small detection range means that the probability of losing

track of a Red agent after it has been found increases. With a larger detection range, the

Blue agents are able to start tracking Red agents earlier and thus longer, giving the rest of

the Blue forces time to swarm towards the target.

Figure 63 demonstrates a significant difference between a detection range of five

and 25 cells, after which the improvement starts reaching its saturation point (for a specific

100-by-100 grid setup and swarm size). Similar to the reasons for adding PSO guidance

described the previous section, varying detection range does not seem to impact the number

of casualties.

C. EFFECTS OF THE HOLONOMICITY CONSTRA INT DURING
TRACKING

The findings of the previous chapter suggest that non-holonomic drive encourages

exploration, thus increasing the coverage area. In this section, we explore the effects of

holonomic drive during tracking with PSO guidance.

Figure 64 shows the effects of non-holonomic drive on the left and holonomic drove

on the right during PSO guidance.

70

Figure 64. Comparison of holonomic and non-holonomic drive during
tracking phase under PSO guidance.

Although non-holonomic constraint limits the Blue force�¶s agility (Figure 65 and

66), it leads to only a slight increase in the number of iterations needed to end the

engagement. This is due to the fact that during tracking, holonomic drive would give the

Blue agents the freedom to reach the targeted cell more quickly, as seen in Figure 64;

however, the benefits did not lead to any significant reduction of the number of iterations

required for the entire battle.

71

Figure 65. Snapshot of two consecutive iterations during tracking phase with
a 90-degree non-holonomicity constraint.

Figure 66. Snapshot of two consecutive iterations during tracking phase with
holonomic drive.

x Iteration x + 1 Iteration

x Iteration x + 1 Iteration

72

D. EFFECTS OF PROBABILI TY OF KILL

This section studies the engage phase. Specifically, it examines the probability of

kill (�2�Þ) without PSO guidance, which reflects the offensive capability. The effects of

varying �2�Þ for both forces is investigated. Figure 67, 68 and 69 show the box plots for the

effects on number of iterations required to end the engagement with a fixed enemy

offensive capability of 0.1, 0.5, and 0.9 in each figure while varying the Blue force�¶s

offensive capability of 0.1, 0.5, and 0.9, respectively.

Figure 67. Effects of time with fixed enemy offensive capability of 0.1 and
varying UGV agents�¶ offensive capability.

73

Figure 68. Effects of time with fixed enemy offensive capability of 0.5 and
varying UGV agent�V�¶��offensive capability.

Figure 69. Effects of time with fixed enemy offensive capability of 0.9 and
varying UGV agent�V�¶��offensive capability.

74

Figure 67, 68 and 69 are complemented by Figure 70, 71 and 72 showing the

number of causalities for both Blue and Red forces at the end of the battle.

Figure 70. Effects on casualty rate with fixed enemy offensive capability of
0.1 and varying UGV agent�V�¶��offensive capability.

75

Figure 71. Effects on casualty rate with fixed enemy offensive capability of
0.5 and varying UGV agent�V�¶���Rffensive capability.

Figure 72. Effects on casualty rate with fixed enemy offensive capability of
0.9 and varying UGV agent�V�¶���Rffensive capability.

Median of 18.5 for UGV
and 4.5 enemy indicates
an inconclusive outcome
of the battle.

76

There is no doubt that the values of �2�Þ
�»�\ �Ë and �2�Þ

�Ë�\ �» play a major role in the

engagement outcome. Figure 67 shows that when the enemy offensive capability is low

(�2�Þ
�Ë�\ �» L �r�ä�s), the number of iterations changes significantly depending on the Blue force�¶s

offensive capability (�2�Þ
�»�\ �Ë). This is expected as the increase in the Blue force�¶s offensive

capability would kill the enemy faster, leading to the smaller number of iterations. This is

confirmed by Figure 70, where the number of the Blue force�¶s casualties decreases as its

offensive capability increases. Figure 72 shows that with �2�Þ
�Ë�\ �» L �r�ä�{ because of the

tactical advantages given to the defending Red force (discussed in Section II .C), the Blue

force has no chance of winning. If the value of �2�Þ
�Ë�\ �» L �r�ä�{ is reduced to 0.5 (Figure 71)

then the Blue force can possibly win with �2�Þ
�»�\ �Ë P �r�ä�w, though suffering from heavy

casualties. The small nominal values of probability to kill (0.1), therefore, were chosen to

better demonstrate the effectiveness of swarming. As seen in Figure 70, the Red force starts

winning even with equal probabilities to kill, but a significant increase of �2�Þ
�Ë�\ �» is required

to win unconditionally with a low casualty rate.

Table 5 shows the simulation result for the case of �2�Þ
�Ë�\ �» = 0.5 and �2�Þ

�»�\ �Ë = 0.9,

where we observed an inconclusive outcome.

Table 5. Simulation results for �2�Þ
�Ë�\ �» = 0.5 and �2�Þ

�»�\ �Ë = 0.9.

Run
UGV

Survivors
Enemy

Survivors

Number of
Iteration s

Taken

Winning
Force

1 9 0 921 Blue
2 3 0 6,444 Blue
3 8 0 2,243 Blue
4 12 0 1,416 Blue
5 5 0 4,660 Blue
6 1 1 10,000 Red
7 7 0 1,656 Blue
8 5 0 3,383 Blue
9 0 1 9,600 Red
10 4 0 4,956 Blue
11 7 0 1,924 Blue

77

Run UGV
Survivors

Enemy
Survivors

Number of
Iteration s

Taken

Winning
Force

12 0 3 2,069 Red
13 0 2 2,319 Red
14 0 1 7,872 Red

15 0 3 2,251 Red

16 0 1 4,714 Red

17 6 0 1,677 Blue
18 0 2 1,758 Red
19 15 0 921 Blue
20 9 0 2,310 Blue
21 0 3 1,488 Red
22 6 0 2,123 Blue
23 0 1 5,158 Red

24 1 1 10,000 Red

25 0 3 3,198 Red

26 0 1 5,029 Red

27 2 0 4,111 Blue
28 1 0 5,816 Blue
29 2 1 10,000 Blue
30 0 1 3,464 Red

Table 6. Summary of results for �2�Þ
�Ë�\ �» = 0.5 and �2�Þ

�»�\ �Ë = 0.9.

 Number of wins Percentage of wins
UGV win 16 53.33%
Enemy win 14 46.67%

Table 6 shows a stand-still result where there is almost an equal probability of either

the Red or the Blue force emerging victorious. For this specific context, the ratio of

approximately 0.5 to 0.9 probability of kill results in about equal chances to win.

Based on these dynamics, the results presented in Figure 62 can now be explained

even further. Being able to swarm towards the target earlier means that even with a small

individual probability to kill, more agents taking a shot at the target increases the overall

78

probability of success to �sF �:�sF �2�Þ
�»�\ �Ë�;�à , where m is the number of attacking agents.

For example, with a nominal value of �2�Þ
�»�\ �Ë L �r�ä�s and m=5 the chances to kill quadruple.

E. EFFECTS OF KILL DIST ANCE

Kill distances �@�Þ
�»�\ �Ë and �@�Þ

�Ë�\ �» are defined as minimum distances required to engage

(fire) at the opponent. Larger kill distance allows for engagement at a longer range, which

provides an advantage over the opponent. As a baseline for all previous simulations, the

Red force was assigned a kill distance of two cells compared to the Blue force with a kill

distance of one cell (which was an advantage purposely given to the Red force because its

defensive posture). Figure 73 and 74 show the effect of varying the �@�Þ
�»�\ �Ë���@�Þ

�Ë�\ �» ratio while

assuming �2�Þ
�»�\ �Ë L �2�Þ

�Ë�\ �» L �r�ä�w.

Figure 73. Effects of kill distance on number of iterations.

79

Figure 74. Effects of kill distance on number of casualties.

As seen, the baseline situation (1:2 ratio) results in the high number of iterations to

end the engagement (Figure 73) and leads to the Blue force�¶s defeat (Figure 74). Relaxing

this ratio to 2:2 decreases the number of iterations and changes the outcome of engagement.

The 2:1 ratio results in the smallest number of iterations and the unconditional win of the

Red force.

F. EFFECTS OF KILL SEQU ENCE

Continuing the results from simulations of the previous section, the effects of

change in kill sequence to allow the Blue force to fire first instead of the Red force was

investigated; thus, giving the Blue force the advantage. In previous sections, the ability to

engage first is an advantage given to the Red force due to its defensive posture. The box

plot in Figure 75 shows the effect on the number of iterations required to end the

engagement for the same three kill distance setups from the previous section.

80

Figure 75. Effects of kill sequence on the number of iterations.

The box plots in Figure 74 and 75 show the effect on the number of Blue force

casualties and Red force casualties at the end the engagement for the same three kill

distance setups presented in the previous section.

81

Figure 76. Effects of kill sequence on the number of Blue force causalities.

Figure 77. Effects of kill sequence on the number of Red force causalities.

82

The results shows that for cases when the Blue force is not at an advantage in kill

distance (plots on the left and center), the change in kill sequence gives the Blue force the

ability to engage first, allowing the Blue force to sustain fewer casualties and increasing

the win rate for the Blue force. In a case where the Blue force already gains an advantage

in kill distance (on the right), the added advantage in kill sequence does not further improve

the number of iterations or the number of Blue force casualties.

G. URBAN OUTDOOR ENGAGEMENTS

The effects of PSO guidance and detection range on outdoor urban operations is

studied in the section. Figure 78 shows the starting configuration of both Blue and Red

forces.

Figure 78. Starting configuration for outdoor urban operation.

The use of PSO guidance in outdoor urban operations demonstrates tendencies

somewhat similar to those of the open-space engagement. To this end, the following figures

83

demonstrate the effect of varying the detection range with and without PSO guidance on

the number of iterations (Figure 79) and number of casualties (Figure 80).

Figure 79. Effects on number of iterations with and without PSO guidance for
outdoor operation.

84

Figure 80. Effects on number of casualties with and without PSO guidance for
outdoor operation.

The tendency to decrease the number of iterations required to end the engagement

with an increase in the detection range holds. The effect of switching to PSO guidance is

also positive (Figure 79). However, the introduction of PSO guidance at the detection range

of five cells seems to have little effect on the number of casualties (Figure 80).

This study concludes that it is beneficial for the Blue force to have as wide a

detection range as possible so as to locate the enemy and trigger the PSO algorithm in a

shorter time. However, further enhancement of detection sensors might entail technical and

cost challenges. Furthermore, the dampening of the detection sensors due to the urban

environment itself have not been considered in this study but would increase its complexity

and benefits.

H. INDOOR ENGAGEMENTS

In this section, the effects of PSO guidance on indoor operation is studied. Figure

81 shows the starting configuration of both the Blue and Red forces.

85

Figure 81. Starting configurations for indoor operation.

The effects on the number of iterations and casualties corresponding to various

detection ranges with and without PSO guidance can be seen in Figure 82 and 83.

86

Figure 82. Effects on number of iterations, with and without PSO guidance,
for indoor operation.

Figure 83. Effects on number of casualties, with and without PSO guidance,
for indoor operation.

87

The tendencies revealed for the urban outdoor engagements do not exactly match

those of indoor engagements (compare Figure 82 and 83 with Figure 79 and 80).

A closer look allows one to determine that this is due to the inability of the Blue

force�¶s agents to avoid concave obstacles typical for the indoor environment. As seen from

illustrations presented in Figure 84, the increase in detection range causes the Blue agents

to employ PSO guidance earlier and longer, thus fixing on the shortest path to the target

and getting stuck behind an obstacle (on the right). With the smaller detection range (on

the left), the probability of reverting from PSO guidance to LVC guidance is higher, thus

allowing the Blue agents to possibly maneuver to a position where there are no obstructions

before PSO guidance is triggered again.

Figure 84. Inability to avoid obstacles with low detection range (left) and high
detection range (right).

Being stuck behind an obstacle is a known problem for almost any algorithm, and

as a result certain remedies allowing addressing it have been developed already (Wang et

al. 2018). It should be noted thought that for this particular application the Blue agents may

�J�H�W���µ�X�Q�V�W�X�F�N�¶���E�\���W�K�H�P�V�H�O�Y�H�V���H�Y�H�Q���Z�L�W�K�R�X�W���D�Q�\���D�G�G�L�W�L�R�Q�D�O���P�H�D�V�X�U�H�V���X�Q�G�H�U�W�D�N�H�Q�����7�K�H���W�K�U�H�H��

opportunities include the following:

UGV agents exit PSO faster
because the probability of an
enemy maneuver out of
detection range is higher.

UGV agents exit PSO slower
because probability of an enemy
maneuver out of detection range
is lower.

88

�x Red agent �P�D�Q�H�X�Y�H�U�L�Q�J���R�X�W���R�I���%�O�X�H���D�J�H�Q�W�V�¶���G�H�W�H�F�W�L�R�Q���U�D�Q�J�H, causing the

latter to exit the PSO guidance phase.

�x Red agent being destroyed by other Blue agents that approached it via a

different path, thus allowing stuck agents to exit the PSO guidance phase.

�x Another Red agent closer to the stuck Blue agent is detected, thus

triggering a change of �õ�Ü
�Õ�Ø�æ�ç.

While this problem could possibly happen in an outdoor operation as well, the

probability that a Blue agent gets �³�V�W�X�F�N�´ is lower due to the different construct of obstacles

in both op�H�U�D�W�L�R�Q�V�����0�R�V�W���%�O�X�H���D�J�H�Q�W�V���J�H�W���³stuck� ́behind an indoor obstacle because of its

concave features. By contrast, in the outdoor operation most obstacles have convex features

and thus allow the Blue agent to maneuver past them much more easily and quickly when

the detected Red agent maneuvers slightly.

I. EFFECTIVENESS OF ALVC GUIDANCE

This section studies the effects of introducing ALVC guidance and then compares

those to the effects of PSO guidance, or lack thereof. Figure 85 shows the box plots,

comparing the LVC and ALVC algorithms, with and without PSO guidance, and the effects

on the number of iterations required to end an engagement. The effects on casualties of the

LVC and ALVC algorithms, with and without PSO, are shown in Figure 86.

89

Figure 85. Effects of LVC with ALVC algorithms, with and without PSO
guidance, on number of iterations.

90

Figure 86. Effects of LVC with ALVC algorithms, with and without PSO
guidance, on number of casualties.

The introduction of PSO guidance for both algorithms improved the number of

iterations required to end the engagement. This supports the previous conclusion that the

introduction of PSO guidance reduces the number of iterations. However, there are no

significant improvements when the ALVC algorithm is compared to the LVC algorithm.

While the ALVC algorithm improves area coverage, as shown in the previous chapter, it

does not aid in an operation where searching, tracking, and engaging is the priority. There

is no significant effect on the number of casualties for both the Blue and Red forces with

the introduction of the ALVC algorithm. This result is somewhat expected as ALVC does

not change the sequence or probability of kill and thus should not affect the battle outcome.

J. LIMITATION S OF ALVC GUIDANCE

A discovered limitation of the ALVC algorithm was that the Blue agents were not

programmed to avoid obstacles and thus would always choose the shortest path to reach

their goal. This resulted in the Blue agents being stuck behind the obstacles and unable to

proceed as shown in Figure 87.

91

Figure 87. Limitations of the improved LVC algorithm in urban and indoor
operations.

On the surface, the inability to avoid obstacles seems similar to the limitation found

for PSO guidance in indoor operations (Figure 84). On further investigation, however, the

problem with the ALVC algorithm is more severe. This is because it is impossible for the

Blue agents to maneuver away once they �D�U�H���µ�V�W�X�F�N�¶���E�H�K�L�Q�G���D�Q���R�E�V�W�D�F�O�H��because the target

(closest unvisited cell) is stationary compared to the previous case where the target (Red

agent) is moving. �,�Q���W�K�D�W���F�D�V�H�����W�K�H���W�D�U�J�H�W�¶�V���P�R�Y�H�P�H�Q�W��allowed the possibility of a change

in shortest path.

92

THIS PAGE INTENTIONALLY LEFT BLANK

93

VI. CONCLUSION

A. SUMMARY

This paper presented and evaluated guidance algorithms for a UGV swarm

operating in the urban environment, using MATLAB for simulations. The mission of the

UGVs is broken down into two phases. The first phase is identified as the search phase and

its measure of effectiveness is area coverage. The second phase is the track and engage

phase and its measures of effectiveness are the time (the number of iterations) required to

end an engagement as well as number of casualties for the Blue and Red forces. A summary

of the investigated algorithms and input parameters is shown in Table 7.

Table 7. Summary of algorithms and input parameters investigated.

Phase Algorithm Input Parameters

Search

LVC Number of UGV agents
LVC Maximum number of iterations
LVC Starting configuration
LVC Collision avoidance constraints
LVC, ALVC Non-holonomicity constraints
LVC, ALVC Outdoor and indoor urban environments

Track and
Engage

LVC, PSO Non-holonomicity constraints
LVC, PSO Detection range
LVC, PSO Probability of kill
LVC, PSO Kill distance
LVC, PSO Kill sequence
LVC, ALVC, PSO Outdoor and indoor urban environments

B. MAIN FINDINGS

This section attempts to answer the two research questions introduced in Chapter I.

1. Are the algorithms developed suitable for the swarm UGVs to achieve
their mission?

In the developed simulation environment, it was shown that employing the LVC

guidance algorithm during the area search phase of the mission works well for the open-

space and urban (both outdoor and indoor) operational environments. The addition of PSO-

94

based guidance at the track and engage phase has a positive effect, resulting in about a

fivefold reduction in the time required to locate and destroy all known targets. Since PSO

guidance does not change the engagement sequence or probability of kill explicitly, it

seems to have little effect on the number of causalities of the attacking side. Furthermore,

in indoor operations featuring concave obstacles, PSO guidance needs more improvement

so that Blue agents avoid being stuck behind an obstacle with no way out.

2. What are the factors that affect the UGV swarm�¶�V ability to achieve its
mission?

First, increasing the number of UGVs in the swarm would assist in locating targets

in a shorter amount of time. Nonetheless, there is a saturation point beyond which any

increase would result in diminishing returns. Although increasing the number UGVs would

also lead to a higher probability of win in the track and engage phase, the number of UGVs

deployed might be constrained by budget and technology.

Secondly, multiple entry points into the operational area is beneficial by

encouraging exploration, which in turn improves area coverage and thus allows the UGVs

to locate the enemy in a shorter period of time. Multiple entry points, however, are not

always possible due to terrain or approach constraints.

Third, the findings related to the non-holonomicity constraint show that non-

holonomic drive improves area coverage and thus locating the targets in less time. The

results also seem to suggest the benefits of non-holonom�Lcity constraints are amplified

when obstacles are present. While narrower constraints encourage exploration, which is

ideal for area coverage, they seem to be a hindrance while the swarm is tracking a moving

target as its degree of freedom is limited.

Fourth, increased detection range leads to better situational awareness for the UGVs

and allows for earlier activation of PSO guidance, which reduces the total engagement

time. On the other hand, increasing detection range might be challenging due to

technological and budget constraints.

Finally, the three input parameters affecting the number of casualties are the

probability of kill, kill distance, and kill sequence. These parameters in the operational

95

context refer to the combination of the ability of each UGV�¶s sensors to shoot, �W�K�H���8�*�9�¶�V��

weapon range, and its ability to detect, respectively. Despite advancements in the

technology and this field of research today, human sensors combined with cognitive

abilities still prove superior to a machine in such a complex environment, and thus, to

successfully meet their mission the UGVs must outnumber the humans.

C. RECOMMENDATIONS FOR FUTURE WORK

Future work is recommended to improve on the ALVC guidance algorithm so that

it is able to overcome obstacles. This would allow for the comparison of the LVC and

ALVC guidance algorithms and generate more insights.

It is also recommended that a weighted approach be implemented for LVC

guidance. This approach would assign values to the cells depending on the number of visits

made. As more UGV agents enter a cell, this value would increase. UGV agents are

programmed to move to neighboring cells with the lowest value. This approach might help

solve the limitations of the ALVC guidance algorithm and allow the UGV agents to

overcome obstacles.

Varying the distance of collision avoidance constraints could also be further

investigated. Intuitively, one can surmise that increasing the distance in the collision

avoidance constraint might encourage exploration and hence improve area coverage.

Nevertheless, similar to the effects of the holonom�Lcity drive, an increase in the distance

in the collision avoidance constraint might affect the tracking phase when the UGV agents

swarm towards a target.

Lastly, it is recommended that further work reduce the number of cells for indoor

operations for a more realistic simulation. The effects of the input parameters might be

different in a reduced cell operational area.

96

THIS PAGE INTENTIONALLY LEFT BLANK

97

APPENDIX A. SEARCH PHASE WITH LV C GUIDANCE

for SS = 10 00;

ml = 1;
for Mainloop = 1 : ml
close all

%% Defining swarm
% Neighboring cells numeration
% 4 3 2
% 5 X 1
% 6 7 8
N=SS; %number of iterations
SwarmSize = 20; %number of agents in a swarm
collisionavoidance = 1; %1 for on, 0 for off
holonomicity = 90; %360 for "off", 90, 1 80 270 degree for "ON"

% Swarm Starting position
Center = 0;
Cornertopright = 0;
Cornebttlefttopright = 0;
Cornerallsides = 0;
Row = 0;
Bttrightcorner = 0;
%for indoor / outdoor starting configuration
configuration = 1; %1 2 and 3 for outdoor, 4 for indoor

CelSz=1; % cell size
GrSiz=99; % grid size
A = zeros(1,8);
swarm=zeros(SwarmSize,9);

%choose map
outdoor = 1; % outdoor map, impossible city
indoor = 0; % indoor floorplan of one building
\

%% Defining buildings
if outdoor == 1,
run('Buildings_Obstacles.m')
else if indoor == 1,
run('indoor_floorplan.m')
 end
end

%% Initial conditions

for s = 1:SwarmSize

 if configuration == 1;
 swarm(s,1) = 1;
 swarm(s,2) = 85;
 end

 if configuration == 2;
 if s <= (SwarmSize /2)
 swarm(s,1) = 1;
 swarm(s,2) = 85;

98

 else
 swarm(s,1) = (GrSiz);
 swarm(s,2) = 85;
 end
 end

 if configuration == 3;
 if s <= (SwarmSize/3)
 swarm(s,1) = (GrSiz);
 swarm(s,2) = 85;
 else if s > (SwarmSize /3) & s <= 2*(SwarmSize /3)
 swarm(s,1) = 1;
 swarm(s,2) = 20;
 else if s > (2*(SwarmSize /3))
 swarm(s,1) = 1;
 swarm(s,2) = 85;
 end
 end
 end
 end

 if Center == 1;
 swarm(s,1) = (GrSiz+1)/2;
 swarm(s,2) = (GrSiz+1)/2;
 end

 if Bttrightcorner == 1;
 swarm(s,1) = (GrSiz);
 swarm(s,2) = 1;
 end

 if Cornertopright == 1;
 swarm(s,1) = (GrSiz);
 swarm(s,2) = (G rSiz);
 end

 if Cornerallsides == 1;
 if s <= (SwarmSize/4)
 swarm(s,1) = (GrSiz);
 swarm(s,2) = (GrSiz);
 else if s > (SwarmSize /4) & s <= 2*(SwarmSize /4)
 swarm(s,1) = (GrSiz);
 swarm(s,2) = 1;
 else if s > (2*(SwarmSize /4)) & s <= 3*(SwarmSize /4)
 swarm(s,1) = 1;
 swarm(s,2) = (GrSiz);
 else if s > 3*(SwarmSize /4)
 swarm(s,1) = 1;
 swarm(s,2) = 1;
 end
 end
 end
 end
 end
 if Row == 1 ;
 swarm(s,1) = round(((GrSiz)/SwarmSize) * s) ;
 swarm(s,2) = 1;
 end

 if Cornebttlefttopright == 1;
 if s <= (SwarmSize /2)
 swarm(s,1) = 1;

99

 swarm(s,2) = 1;
 else
 swarm(s,1) = (GrSiz);
 swarm(s,2) = (GrSiz);
 end
 end

end
swarm(:,5) = 0; %initial x transition
swarm(:,6) = 0; %initial y transition

%% Building block calucations
if indoor == 1 | outdoor ==1
buildings = size(blowerleft,1);

for bb = 1:buildings;
bupperg(bb) = (bupperright(bb,2) - bupperleft(bb,2))/(bupperright(bb,1) -
bupperleft(bb,1));
bupperintercept(bb) = bupperleft(bb,2) - (bupperg(bb) * bupperleft(bb,1));
blowerg(bb) = (blowerright(bb,2) - blowerleft(bb,2))/(blowerright(bb,1) -
blowerleft(bb,1));
blowerintercept(bb) = blowerleft (bb,2) - (blowerg(bb) * blowerleft(bb,1));
bleftg(bb) = (bupperleft(bb,1) - blowerleft(bb,1))/(bupperleft(bb,2) -
blowerleft(bb,2));
bleftintercept(bb) = bupperleft(bb,1) - (bleftg(bb) * bupperleft(bb,2));
brightg(bb) = (bupperright(bb,1) - blowerright(bb,1))/(bupperright(bb,2) -
blowerright(bb,2)) ;
brightintercept(bb) = bupperright(bb,1) - (brightg(bb) * bupperright(bb,2));
end
end

%% Plotting
h1 = plot(swarm(:,1), swarm(:,2), 'x' , 'LineWidth' ,2, 'markersize' ,8);
hold on
axis([1 GrSiz 1 GrSiz]), axis square , grid minor
xlabel('Crossrange cell'), ylabel('Downrange cell')
h2=text(0.85*GrSiz,0.95*GrSiz,[int2str(0) ' (' int2str(0/N*100) '%)']);

%% Swarm evolution
for iter = 1 : N %run N evolutions

swarmx(:,iter) = swarm(:,1);
swarmy(:,iter) = swarm(:,2);

for i = 1 : SwarmSize %determine the next move for each agent

% building limits
if indoor == 1 | outdoor ==1
for bb = 1:buildings
 bupperL(bb) = bupperg(bb) * swarm(i,1) + bupperintercept(bb);
 blowerL(bb) = blowerg(bb) * swarm(i,1) + blowerintercept(bb);
 bleftL(bb) = bleftg(bb) * swarm(i,2) + bleftintercept(bb);
 brightL(bb) = brightg(bb) * swarm(i,2) + brightintercept(bb);
end
end

 if iter > 1 %analyze neighboring cells visitati ons
 A=zeros(1,8); %assume none of the neighboring cells is visited
 for j=1:8
 if indoor == 1 | outdoor ==1

 % Boundaries and buildings

100

 if find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarmx(:,:) & ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))
 A(j) = 1; %cell has been visited already
 elseif find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > GrSiz | ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...
 swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) < 1 | ...
 (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) >= bleftL & ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) >= blowerL) & ...
 (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) <= brightL) & ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) <= bupperL);
 A(j) = 9; %prohibited area
 end

 else
 % Boundaries
 if find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarmx(:,:) & ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))
 A(j) = 1; % cell has been visited already
 elseif find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > GrSiz | ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...
 swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) < 1);
 A(j) = 9;
 end
 end

 % Collision avoidance
 if collisionavoidance == 1;
 if find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarm(:,1) &

swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarm(:,2))
 A(j) = 9; %set to prohibited area if there is an exisiting UGV
 end
 end
 end

 % Non Holonomic @ 180
 if holonomicity == 180;
 if (swarm(i,5) == 1 & swarm(i,6) == 1)
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == 0)
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == 1)
 A(6) = 9;
 A(7) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == - 1)
 A(1) = 9;
 A(2) = 9;
 A(3) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 0)
 A(1) = 9;

101

 A(2) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == - 1)
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 1)
 A(1) = 9;
 A(7) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == - 1)
 A(3) = 9;
 A(4) = 9;
 A(5) = 9;
 end
 end

 % Non Holonomic @ 90
 if holonomicity == 90;
 if (swarm(i,5) == 1 & swarm(i,6) == 1)
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == 0)
 A(3) = 9;
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == 1)
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 A(8) = 9;
 A(1) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == - 1)
 A(1) = 9;
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 0)
 A(3) = 9;
 A(1) = 9;
 A(2) = 9;
 A(8) = 9;
 A(7) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == - 1)
 A(1) = 9;
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;

102

 A(5) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 1)
 A(2) = 9;
 A(1) = 9;
 A(7) = 9;
 A(8) = 9;
 A(6) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == - 1)
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 end
 end

 % Non Holonomic @ 270
 if holonomicity == 270;
 if (swarm(i,5) == 1 & swarm(i,6) == 1)
 A(6) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == 0)
 A(5) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == 1)
 A(7) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == - 1)
 A(2) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 0)
 A(1) = 9;

 end
 if (sw arm(i,5) == 0 & swarm(i,6) == - 1)
 A(3) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 1)
 A(8) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == - 1)
 A(4) = 9;
 end
 end

 if min(A) == 0; %check if there are unvisited cells around
 B = find(A==0); %find not visited cell(s)
 C = B(randi(numel(B))); %randomly pick one of them
 NM = 1;
 elseif min(A) == 9; %if all of next block is restricted
 NM = 0; %set velocity to 0
 C = 0;
 else
 B = find(A==9); %check prohibited zones
 ind=setdiff(1:8,B); %exclude directions towards prohibited zones
 D = randi(length(ind));
 C = ind(D); %randomly pick any allowed cell
 NM = 1;
 end

103

 swarm(i,5) = NM*CelSz*round(cosd((C - 1)*45)); %compute x transition
 swarm(i,6) = NM*Ce lSz*round(sind((C - 1)*45)); %compute y transition
 swarm(i,1) = swarm(i,1) + swarm(i,5); %update x position
 swarm(i,2) = swarm(i,2) + swarm(i,6); %update y position
 end
end

%% Plot swarm evolutions
h1.XData=swarm(:,1);
h1.YData=swarm(:,2);
h2.St ring=[int2str(iter) ' (' int2str(iter/N*100) '%)'];
pause(0.000001/iter^3)
if iter > 5
for ii=1:SwarmSize
h4=plot(swarmx(ii,(iter - 2:iter)),swarmy(ii,(iter -
2:iter)), ' - .g' , 'LineWidth' ,0.2);
end
end
end

%% Show all trajectories

figure
hold on
for ii=1:SwarmSize
Cl=rand(3,1);
plot(swarmx(ii,:),swarmy(ii,:), ' - .' , 'color' ,Cl, 'LineWidth' ,1)
plot(swarmx(ii,end),swarmy(ii,end), 'x' , 'color' ,Cl, 'LineWidth' ,1)

if outdoor == 1,
 for bb = 1:23;
 fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1)
bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2)
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'g')
 end
 for bb = 24:31;
 fill([blowerleft (bb,1) blowerright(bb,1) bupperright(bb,1)
bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2)
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'k')
 end
else if indoor == 1,
 for bb = 1:12;
 fill([blowerleft(bb, 1) blowerright(bb,1) bupperright(bb,1)
bupperleft(bb,1) blowerleft(bb,1)], [blowerleft(bb,2) blowerright(bb,2)
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'k')
 end
 end
end

end
hold off
axis([1 GrSiz 1 GrSiz]), axis square , grid minor
xlabel('Crossrange cell'), ylabel('Downrange cell')

%% Compute the occupancy matrix
OcM=zeros(GrSiz,GrSiz);
for ix=1:GrSiz
 for iy=1:GrSiz
 for is=1:SwarmSize
 for it=1:N
 if swarmx(is,it) == iy & swarmy(is,it) == ix
 OcM(ix,iy)=OcM(ix,iy)+1;

104

 end
 end
 end
 end
end

%% Show the occupancy matrix
figure
spy(OcM), set(gca,'YDir','normal'), axis square
figure
imagesc(OcM), set(gca,'YDir','normal'), axis square, colorbar
xlabel('Crossrange cell'), ylabel('Downrange cell')
figure
mesh(OcM)
xlabel('Crossrange cell'), ylabel('Downrange cell')
zlabel('Number of cell visitations')

mOcM=mean(mean(OcM));
Fv=find(~OcM); pFv=numel(Fv)/GrSiz/GrSiz*100;
text(0.6*GrSiz,0.6*GrSiz,2*SwarmSize,['Av. # of visitations ' num2str(mOcM,
3)])
text(0.6*GrSiz,0.6*GrSiz,2*SwarmSize - 10,['Unvisited cells ' num2str(pFv, 3)
'%'])

visitdata(Mainloop,1) = mOcM;
visitdata(Mainloop,2) = 100 - pFv;

%reset swarmx and swarmy
clear swarmx
clear swarmy
end
end

105

APPENDIX B. SEARCH PHASE WITH ALVC GUI DANCE

for SS = 1000;

ml = 1;
for Mainloop = 1 : ml
close all

%% Defining swarm
% Neighboring cells numeration
% 4 3 2
% 5 X 1
% 6 7 8
N=SS; %number of iterations
SwarmSize = 20; %number of agents in a swarm
collisionavoidance = 1; %1 for on, 0 for off
holonomicity = 90; %360 for "off", 90, 180 270 degree for "ON"

% Swarm Starting position
Center = 0;
Cornertopright = 0;
Cornebttlefttopright = 0;
Cornerallsides = 0;
Row = 0;
Bttrightcorner = 0;
%for indoor / outdoor starting configuration
configuration = 1; %1 2 and 3 for outdoor, 4 for indoor

CelSz=1; % cell size
GrSiz=99; % grid size
A = zeros(1,8);
swarm=zeros(SwarmSize,9);

%choose map
outdoor = 1; % outdoor map, impossible city
indoor = 0; % indoor floorplan of one building
\

%% Defining buildings
if outdoor == 1,
run('Buildings_Obstacles.m')
else if indoor == 1,
run('indoor_floorplan.m')
 end
end

%% Initial conditions

for s = 1:SwarmSize

 if configuration == 1;
 swarm(s,1) = 1;
 swarm(s,2) = 85;
 end

 if configuration == 2;
 if s <= (SwarmSize /2)
 swarm(s,1) = 1;
 swarm(s,2) = 85;

106

 else
 swarm(s,1) = (GrSiz);
 swarm(s,2) = 85;
 end
 end

 if configuration == 3;
 if s <= (SwarmSize/3)
 swarm(s,1) = (GrSiz);
 swarm(s,2) = 85;
 else if s > (SwarmSize /3) & s <= 2*(SwarmSize /3)
 swarm(s,1) = 1;
 swarm(s,2) = 20;
 else if s > (2*(SwarmSize /3))
 swarm(s,1) = 1;
 swarm(s,2) = 85;
 end
 end
 end
 end

 if Center == 1;
 swarm(s,1) = (GrSiz+1)/2;
 swarm(s,2) = (GrSiz+1)/2;
 end

 if Bttrightcorner == 1;
 swarm(s,1) = (GrSiz);
 swarm(s,2) = 1;
 end

 if Cornertopright == 1;
 swarm(s,1) = (GrSiz);
 swarm(s,2) = (GrSiz);
 end

 if Cornerallsides == 1;
 if s <= (SwarmSize/4)
 swarm(s,1) = (G rSiz);
 swarm(s,2) = (GrSiz);
 else if s > (SwarmSize /4) & s <= 2*(SwarmSize /4)
 swarm(s,1) = (GrSiz);
 swarm(s,2) = 1;
 else if s > (2*(SwarmSize /4)) & s <= 3*(SwarmSize /4)
 swarm(s,1) = 1;
 swarm(s,2) = (GrSiz);
 else if s > 3*(SwarmSize /4)
 swarm(s,1) = 1;
 swarm(s,2) = 1;
 end
 end
 end
 end
 end
 if Row == 1 ;
 swarm(s,1) = round(((GrSiz)/SwarmSize) * s) ;
 swarm(s,2) = 1;
 end

 if Cornebttlefttopright == 1;
 i f s <= (SwarmSize /2)
 swarm(s,1) = 1;

107

 swarm(s,2) = 1;
 else
 swarm(s,1) = (GrSiz);
 swarm(s,2) = (GrSiz);
 end
 end

end
swarm(:,5) = 0; %initial x transition
swarm(:,6) = 0; %initial y transition

%% Building block calucations
if indoor == 1 | outdoor ==1
buildings = size(blowerleft,1);

for bb = 1:buildings;
bupperg(bb) = (bupperright(bb,2) - bupperleft(bb,2))/(bupperright(bb,1) -
bupperleft(bb,1));
bupperintercept(bb) = bupperleft(bb,2) - (bupperg(bb) * bupperleft(b b,1));
blowerg(bb) = (blowerright(bb,2) - blowerleft(bb,2))/(blowerright(bb,1) -
blowerleft(bb,1));
blowerintercept(bb) = blowerleft(bb,2) - (blowerg(bb) * blowerleft(bb,1));
bleftg(bb) = (bupperleft(bb,1) - blowerleft(bb,1))/(bupperleft(bb,2) -
blowerleft(b b,2));
bleftintercept(bb) = bupperleft(bb,1) - (bleftg(bb) * bupperleft(bb,2));
brightg(bb) = (bupperright(bb,1) - blowerright(bb,1))/(bupperright(bb,2) -
blowerright(bb,2)) ;
brightintercept(bb) = bupperright(bb,1) - (brightg(bb) * bupperright(bb,2));

 for ux = 1:99;
 for uy = 1:99;
 if ux > (bleftg(bb) * uy + bleftintercept(bb))
 if ux < (brightg(bb) * uy + brightintercept(bb));
 if uy > (blowerg(bb) * ux + blow erintercept(bb))
 if uy < (bupperg(bb) * ux + bupperintercept(bb))
 unvisited2(round(ux)+1,round(uy)+1) = 99;
 end
 end
 end
 end
 end
 end
end
end

%% Plotting

h1=plot(swarm(:,1), swarm(:,2), 'x' , 'LineWidth' ,1);
axis([1 GrSiz 1 GrSiz]), axis square , grid minor
xlabel('Crossrange cell'), ylabel('Downrange cell')
h2=text(0.8*GrSiz,0. 95*GrSiz,[int2str(0) ' (' int2str(0/N*100) '%)']);

%% Swarm evolution
for iter = 1 : N % run N evolutions

swarmx(:,iter) = swarm(:,1);
swarmy(:,iter) = swarm(:,2);

%% Improved search algo (record all unvisited square coordinates)
clear uvsquares
[m,n] = size(swarmx);
for iterrow = 1:n

108

 for swarmcol = 1:m
unvisited2(swarmx(swarmcol,iterrow)+1,swarmy(swarmcol,iterrow)+1) = 9; %set
those visited to 9
 end
end
unvisited = unvisited2([2:100],[2:100]);

if sum(sum(unvisited(:,:) == 0)) >= 1 %first round
 for x = 1:GrSiz
 for y = 1:GrSiz
 if find(unvisited(x,y) == 0)
 uvsy = y;
 uvsx = x;
 else
 uvsy = 0;
 uvsx = 0;
 end

 uv1(y,:) = uvsy;
 uv2(y,:) = uvsx;
 end
 uvx(:,x) = uv1;
 uvy(:,x) = uv2;
 end

 if sum(sum(unvisited(:,:) == 0)) == 1;
 nn = iter; %record the iteration number when all cell but one is zero
 end

else %Second round (when all the cell has been found, reset and being from
scratch)
 for iterrow = 1:n
 for swarmcol = 1:m
 unvisited2(swarmx(swarmcol,iterrow)+1,swarmy(swarmcol,iterrow)+1) = 0; %set
those visited in first round to 0
 end
 end
 for iterrow = nn:n %start the recording from iter nn
 for swarmcol = 1:m
 unvisited2(swarmx(swarmcol,iterrow)+1,swarmy(swarmcol,iterrow)+1) = 9; %set
those visited to 9
 end
 end

 unvisited = unvisited2([2:100],[2:100]);

 for x = 1:GrSiz
 for y = 1:GrSiz
 if find(unvisited(x,y) == 0)
 uvsy = y;
 uvsx = x;
 else
 uvsy = 0;
 uvsx = 0;
 end

 uv1(y,:) = uvsy;
 uv2(y,:) = uvsx;
 end
 uvx(:,x) = uv1;
 uvy(:,x) = uv2;
 end

109

end

uvsquares(:,2) = uvx(uvx~=0) ; %records all unvisited square x and y axis
uvsquares(:,1) = uvy(uvy~=0) ;

for i = 1 : SwarmSize %determine the next move for each agent

% building limits
if indoor == 1 | outdoor ==1
for bb = 1:buildings
 bupperL(bb) = bupperg(bb) * swarm(i,1) + bupperintercept(bb);
 blowerL(bb) = blowerg(bb) * swarm(i,1) + blowerintercept(bb);
 bleftL(bb) = bleftg(bb) * swarm(i,2) + bleftintercept(bb);
 brightL(bb) = brightg(bb) * swarm(i,2) + brightintercept(bb);
end
end

 if iter > 1 %analyze neighboring cells visitat ions
 A=zeros(1,8); %assume none of the neighboring cells is visited
 for j=1:8
 if indoor == 1 || outdoor ==1
 % Boundaries and buildings
 if find(swarm(i,1)+CelSz*round(cosd((j - 1)* 45)) == swarmx(:,:) &
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))
 A(j) = 1; %cell has been visited already
 elseif find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > GrSiz | ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...
 swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) < 1 | ...
 (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > bleftL &
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) > blowerL) &
 (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < brightL) &
 swarm(i, 2)+CelSz*round(sind((j - 1)*45)) < bupperL);
 A(j) = 9; %prohibited area
 end
 else
 % Boundaries
 if find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarmx(:,:) &

swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))
 A(j) = 1; %cell has been visited already
 elseif find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > GrSiz | ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...
 swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) < 1);
 A(j) = 9; %prohibited area
 end
 end

 % Collision avoidance
 if collisionavoidance == 1;
 if find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarm(:,1) &

swarm(i,2)+CelSz*r ound(sind((j - 1)*45)) == swarm(:,2))
 A(j) = 9; %set to prohibited area if there is an exisiting UGV
 end
 end
 end

%% Improved search algo (find angle)
clear distoswarm2
clear distoswarm
distoswarm = (sqrt(((swarm(i,1) - uvsquares(:,1)).^2) + ((swarm(i,2) -
uvsquares(:,2)).^2)));

110

distoswarm2 = find(distoswarm == min(distoswarm(distoswarm > 0)));
DD = randi(length(distoswarm2));
uvsquareselect = uvsquares(dis toswarm2(DD),:);

y_opp = uvsquareselect(1,2) - swarm(i,2);
x_adj = uvsquareselect(1,1) - swarm(i,1);

uvsquareselectangle = atand(y_opp/x_adj);
uvsqaureselectangle2(i,iter) = uvsquareselectangle;

% define quarter of unvisited square
% quarter 2 q uarter 1
% x
% quarter 2 quarter 1

if (y_opp >= 0 && x_adj >= 0) || (y_opp < 0 && x_adj >= 0)
quarter = 1;
else
quarter = 2;
end
randpir = randi(2);
if quarter == 1 %right side
 if uvsquareselectangle <= 90 && uvsquareselectangle >= 67.5
 p1 = 3;
 p2 = [2;4];
 p3 = [1;5];
 p4 = [6;8];
 p5 = 7;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4 (randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselectangle < 67.5 && uvsquareselectangle >= 22.5
 p1 = 2;
 p2 = [1;3];
 p3 = [4;8];
 p4 = [5;7];
 p5 = 6;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(r andpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselectangle < 22.5 && uvsquareselectangle >= - 22.5
 p1 = 1;
 p2 = [2;8];
 p3 = [3;7];
 p4 = [4;6];
 p5 = 5;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselectangle < - 22.5 && uvsquareselectangle >= - 67.5
 p1 = 8;
 p2 = [1;7];
 p3 = [2;6];
 p4 = [3;5];
 p5 = 4;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselectangle < - 67.5 && uvsquareselectangle >= - 90
 p1 = 7;
 p2 = [6;8];
 p3 = [1;5];
 p4 = [2;4];
 p5 = 3;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p 4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];

111

 end

elseif quarter == 2 %left side
 if uvsquareselectangle <= 90 && uvsquareselectangle >= 67.5
 p1 = 7;
 p2 = [6;8];
 p3 = [1;5];
 p4 = [2;4];
 p5 = 3;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselectangle < 67.5 && uvsquareselectangle >= 22.5
 p1 = 6;
 p2 = [5;7];
 p3 = [4;8];
 p4 = [1;3];
 p5 = 2;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselectangle < 22.5 && uvsquares electangle >= - 22.5
 p1 = 5;
 p2 = [4;6];
 p3 = [3;7];
 p4 = [2;8];
 p5 = 1;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselectangle < - 22.5 && uvsquareselectangle >= - 67.5
 p1 = 4;
 p2 = [3;5];
 p3 = [2;6];
 p4 = [1;7];
 p5 = 8;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p 3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselectangle < - 67.5 && uvsquareselectangle >= - 90
 p1 = 3;
 p2 = [2;4];
 p3 = [1;5];
 p4 = [6;8];
 p5 = 7;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 end
end

 % Non Holonomic @ 180
 if holonomicity == 180;
 if (swarm(i,5) == 1 & swarm(i,6) == 1)
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == 0)
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == 1)
 A(6) = 9;
 A(7) = 9;

112

 A(8) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == - 1)
 A(1) = 9;
 A(2) = 9;
 A(3) = 9;
 end
 i f (swarm(i,5) == - 1 & swarm(i,6) == 0)
 A(1) = 9;
 A(2) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == - 1)
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 1)
 A(1) = 9;
 A(7) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == - 1)
 A(3) = 9;
 A(4) = 9;
 A(5) = 9;
 end
 end

 % Non Holonomic @ 90
 if holonomicity == 90;
 if (swarm(i,5) == 1 & swarm(i,6) == 1)
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == 0)
 A(3) = 9;
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == 1)
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 A(8) = 9;
 A(1) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == - 1)
 A(1) = 9;
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 0)
 A(3) = 9;
 A(1) = 9;

113

 A(2) = 9;
 A(8) = 9;
 A(7) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == - 1)
 A(1) = 9;
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;
 A(5) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 1)
 A(2) = 9;
 A(1) = 9;
 A(7) = 9;
 A(8) = 9;
 A(6) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == - 1)
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 end
 end

 % Non Holonomic @ 270
 if holonomicity == 270;
 if (swarm(i,5) == 1 & swarm(i,6) == 1)
 A(6) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == 0)
 A(5) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == 1)
 A(7) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == - 1)
 A(2) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 0)
 A(1) = 9;

 end
 if (swarm(i,5) == 0 & swarm(i,6) == - 1)
 A(3) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 1)
 A(8) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == - 1)
 A(4) = 9;
 end
 end

 if min(A) == 0 ; %check if there are unvisited cells around
 B = find(A==0); %find not visited cell(s)
 C = B(randi(numel(B))); %randomly pick one of them
 NM = 1;
 elseif min(A) == 9; %if all of next block is restricted
 NM = 0; %set velocity to 0

114

 C = 0;
 else
 B = find(A==9); %check prohibited zones
 ind=setdiff(1:8,B); %exclude directions towards prohibited zones
 for indi = 1:length(ind)
 C1(1,indi) = find(ind(1,indi) == piroritycell);
 end
 [temp2 C2] = min(C1);
 C = ind(C2);
 NM = 1;
 end
 swarm(i,5) = NM*CelSz*round(cosd((C - 1)*45)); %compute x transition
 swarm(i,6) = NM*CelSz*round(sind((C - 1)*45)); %compute y transition
 swarm(i,1) = swarm(i,1) + swarm(i,5); %update x position
 swarm(i,2) = swarm(i,2) + swarm(i,6); %update y position
 clear C1
 end
swarmx(:,iter) = swarm(:,1);
swarmy(:,iter) = swarm(:,2);
dirswarmx(:,iter) = swarm(:,5);
dirswarmy(:,iter) = swarm(:,6);
end
%% Plot swarm evolutions

h1.XData=swarm(:,1);
h1.YData=swarm(:,2);
h2.String=[int2str(iter) ' (' int2str(iter/N*100) '%)'];
pause(0.000001/iter^3)
%% Add a couple of trajectories

hold
L=10;
for ii=1:L
LL=randi(SwarmSize);
Cl=rand(3,1);
plot(swarmx(LL,:),swarmy(LL,:), ' - .' , 'color' ,Cl)
plot(swarmx(LL,end),swarmy(LL,end), 'x' , 'color' ,Cl, 'LineWidth' ,2)
end

%% Show all trajectories

figure
hold on
for ii=1:SwarmSize
Cl=rand(3,1);
plot(swarmx(ii,:),swarmy(ii,:), ' - .' , 'color' ,Cl, 'LineWidth' ,1)
plot(swarmx(ii,end),swarmy(ii,end), 'x' , 'color' ,Cl, 'LineWidth' ,1)

if outdoor == 1,
 for bb = 1:23;
 fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1)

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2)
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'g')

 end
 for bb = 24:31;
 fill([blowerleft (bb,1) blowerright(bb,1) bupperright(bb,1)

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2)
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'k')

 end
else if indoor == 1,
 for bb = 1:12;

115

 fill([dblowerleft(bb ,1) dblowerright(bb,1) dbupperright(bb,1)
dbupperleft(bb,1) dblowerleft(bb,1)],[dblowerleft(bb,2)
dblowerright(bb,2) dbupperright(bb,2) dbupperleft(bb,2)
dblowerleft(bb,2)], 'k')

 end
 end
end

end
hold off
axis([1 GrSiz 1 GrSiz]), axis square , grid minor
xlabel('Crossrange cell'), ylabel('Downrange cell')

%% Compute the occupancy matrix
OcM=zeros(GrSiz,GrSiz);
for ix=1:GrSiz
 for iy=1:GrSiz
 for is=1:SwarmSize
 for it=1:N
 if swarmx(is,it) == iy & swarmy(is,it) == ix
 OcM(ix,iy)=OcM(ix,iy)+1;
 end
 end
 end
 end
end

%% Show the occupancy matrix

figure
spy(OcM), set(gca, 'YDir' , 'normal'), axis square
figure
imagesc(OcM), set(gca, 'YDir' , 'normal'), axis square , colorbar
xlabel('Crossrange cell'), ylabel('Downrange cell')
figure
mesh(OcM)
xlabel('Crossrange cell'), ylabel('Downrange cell')
zlabel('Number of cell visitations')
mOcM=mean(mean(OcM));
Fv=find(~OcM); pFv=numel(Fv)/GrSiz/GrSiz*100;
visitdata(Mainloop,1) = mOcM;
visitdata(Mainloop,2) = 100 - pFv;

%reset swarmx and swarmy
clear swarmx
clear swarmy
end
end

116

THIS PAGE INTENTIONALLY LEFT BLANK

117

APPENDIX C. TRACK AND ENGAGE PHA SE WITH LVC
GUIDANCE

for SS = 1000; %iteration

ml = 30; %number of runs
for Mainloop = 1 : ml
close all

%% Defining initial conditions
% Neighboring cells numeration
% 4 3 2
% 5 X 1
% 6 7 8

N=SS; %number of iterations
SwarmSize = 20; %number of agents in swarm
enemies = 5; %number of enemies
sensor = 15; %ability for UGV to detect enemy
killdis = 1; %how far UGV can shoot
killdise = 2; %how far enemy can shoot
collisionavoidance = 1; %1 for on, 0 for off
holonomicityint = 90; %360 for "off", 90, 180 270 degree for "ON"
holonomicityduringtrack = 90;
PSO = 1; %"1 for on, 0 for off"
pkillswarm = 0.1; %prob that enemy will kill UGV
pkillenemy = 0.1; %prob that UGV will kill enemy
shootsequence = 0; %1 for red shoot first(baseline) / 0 for blue shoot first

%choose map
outdoor = 0; %outdoor map, impossible city
indoor = 0; %indoor floorplan of one building

% Swarm Starting position
Center = 0;
Cornertopright = 0;
Cornebttlefttopright = 0;
Cornerallsides = 0;
Row = 0;
Bttrightcorner = 0;

% for indoor and outdoor starting configuration
configuration = 1; %1, 2, 3 for outdoor and 4 for indoor

inertia = 1;
correction_factor = 2;

CelSz = 1; %cell size
GrSiz = 99; %grid size
A = zeros(1,8);
swarm = zeros(SwarmSize,9);
swarm(:,5) = 0; %initial x transition
swarm(:,6) = 0; %initial y transition
RM = 0;

%% Defining enemies starting positions
enemy = zeros(enemies,6);
enemy(1, 1) = 90; %starting x
enemy(1, 2) = 80; %starting y

118

enemy(2, 1) = 73; %starting x
enemy(2, 2) = 20; %starting y

enemy(3, 1) = 55; %starting x
enemy(3, 2) = 98; %starting y

enemy(4, 1) = 25; %starting x
enemy(4, 2) = 40; %starting y

enemy(5, 1) = 45; %starting x
enemy(5, 2) = 60; %starting y

%% Load map
if outdoor == 1,
run('Buildings_Obstacles.m')
else if indoor == 1,
run('indoor_floorplan.m')
end
end

%% Swarm starting positions code

for s = 1:SwarmSize

 if configuration == 1;
 swarm(s,1) = 1;
 swarm(s,2) = 85;
 end

 if configuration == 2;
 if s <= (SwarmSize /2)
 swarm(s,1) = 1;
 swarm(s,2) = 85;
 else
 swarm(s,1) = (GrSiz);
 swarm(s,2) = 85;
 end
 end

 if configuration == 3;
 if s <= (SwarmSize/3)
 swarm(s,1) = (GrSiz);
 swarm(s,2) = 85;
 else if s > (SwarmSize /3) & s <= 2*(SwarmSize /3)
 swarm(s,1) = 1;
 swarm(s,2) = 20;
 else if s > (2*(SwarmSize /3))
 swarm(s,1) = 1;
 swarm(s,2) = 85;
 end
 end
 end
 end

 if configuration == 4;
 swarm(s,1) = 1;
 swarm(s,2) = 10;
 end

 if Center == 1;
 swarm(s,1) = (GrSiz+1)/2;

119

 swarm(s,2) = (GrSiz+1)/2;
 end

 if Bttrightcorner == 1;
 swarm(s,1) = (GrSiz);
 swarm(s,2) = 1;
 end

 if Cornertopright == 1;
 swarm(s,1) = (GrSiz);
 swarm(s,2) = (GrSiz);
 end

 if Cornerallsides == 1;
 if s <= (SwarmSize/4)
 swarm(s,1) = (GrSiz);
 swarm(s,2) = (GrSiz);
 else i f s > (SwarmSize /4) & s <= 2*(SwarmSize /4)
 swarm(s,1) = (GrSiz);
 swarm(s,2) = 1;
 else if s > (2*(SwarmSize /4)) & s <= 3*(SwarmSize /4)
 swarm(s,1) = 1;
 swarm(s,2) = (GrSiz);
 else if s > 3*(SwarmSize /4)
 swarm(s,1) = 1;
 swarm(s,2) = 1;
 end
 end
 end
 end
 end
 if Row == 1 ;
 swarm(s,1) = round(((GrSiz)/SwarmSize) * s) ;
 swarm(s,2) = 1;
 end

 if Cornebttlefttopright == 1;
 if s <= (SwarmSize /2)
 swarm(s,1) = 1;
 swarm(s,2) = 1;
 else
 swarm(s,1) = (GrSiz);
 swarm(s,2) = (GrSiz);
 end
 end
end

%% Building block calucations
if indoor == 1 | outdoor ==1
buildings = size(blowerleft,1);

for bb = 1:buildings;
bupperg(bb) = (bupperright(bb,2) - bupperleft(bb,2))/(bupperright(bb,1) -
bupperleft(bb,1));
bupperintercept(bb) = bupperleft(bb,2) - (bupperg(bb) * bupperleft(bb,1));
blowerg(bb) = (blowerright(bb,2) - blowerleft(bb,2))/(blowerright(bb,1) -
blowerleft(bb,1));
blowerinter cept(bb) = blowerleft(bb,2) - (blowerg(bb) * blowerleft(bb,1));
bleftg(bb) = (bupperleft(bb,1) - blowerleft(bb,1))/(bupperleft(bb,2) -
blowerleft(bb,2));
bleftintercept(bb) = bupperleft(bb,1) - (bleftg(bb) * bupperleft(bb,2));

120

brightg(bb) = (bupperright(bb,1) - blowerright(bb,1))/(bupperright(bb,2) -
blowerright(bb,2)) ;
brightintercept(bb) = bupperright(bb,1) - (brightg(bb) * bupperright(bb,2));
end
end

%% Plotting

h1 = plot(swarm(:,1), swarm(:,2), 'x' , 'LineWidth' ,1);
hold on
h2 = plot(en emy(:,1), enemy(:,2), 'xr' , 'LineWidth' ,1);
hold on

if outdoor == 1,

 for bb = 1:23;
fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1) bupperleft(bb,1)
blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2) bupperright(bb,2)
bupperleft(bb,2) blowerleft(bb,2)], 'k')
 end

 for bb = 24:31;
fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1) bupperleft(bb,1)
blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2) bupperright(bb,2)
bupperleft(bb,2) blowerleft(bb, 2)], 'g')
 end

else if indoor == 1,
 for bb = 1:12;
fill([dblowerleft(bb,1) dblowerright(bb,1) dbupperright(bb,1) dbupperleft(bb,1)
dblowerleft(bb,1)],[dblowerleft(bb,2) dblowerright(bb,2) dbupperright(bb,2)
dbupperleft(bb,2) dblowerleft(bb,2)], 'k')
 end
 end
end

axis([1 GrSiz 1 GrSiz]), axis square , grid minor
xlabel('Crossrange cell'), ylabel('Downrange cell')
h3=text(0.85*GrSiz,0.95*GrSiz,[int2str(0) ' (' int2str(0/N*100) '%)']);

%% Swarm evolution
for iter = 1 : N % run N evolutions

swarmx(:,iter) = swarm(:,1);
swarmy(:,iter) = swarm(:,2);

% Enemy movement
for e = 1 : enemies; % position of Swarms

 % enemies space boundaries and building limits
 if indoor == 1 | outdoor ==1
 for bb = 1:buildings
 bupperLLL(bb) = bupperg(bb) * enemy(e,1) + bupperintercept(bb);
 blowerLLL(bb) = blowerg(bb) * enemy(e,1) + blowerintercept(bb);
 bleftLLL(bb) = bleftg(bb) * enemy(e,2) + bleftintercept(bb);
 brightLLL(bb) = br ightg(bb) * enemy(e,2) + brightintercept(bb);
 end
 end

 if iter > 1 % analyze neighboring cells visitations
 AA=zeros(1,8); % assume none of the neighboring cells is visited

121

 for jj=1:8
 if indoor == 1 | outdoor ==1
 if find(enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) > GrSiz | ...
 enemy(e,2)+CelSz*round(sind((jj - 1)*45)) > GrSiz | ...
 enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) < 1 | ...
 enemy(e,2)+CelSz*round(sind((jj - 1)*45)) < 1 | ...
 (enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) > bleftLLL & ...
 enemy(e,2)+CelSz*round(sind((jj - 1)*45)) > blowerLLL) & ...
 (enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) < brightLLL) & ...
 enemy(e,2)+CelSz*round(sind((jj - 1)*45)) < bupperLLL);

AA(jj) = 9; % prohibi ted area
 end

 elseif find(enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) > GrSiz | ...
 enemy(e,2)+CelSz*round(sind((jj - 1)*45)) > GrSiz | ...
 enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) < 1 | ...
 enemy(e,2)+CelSz*round(sind((jj - 1)*45)) < 1);

 AA(jj) = 9;
 end
 end

 if enemy(e,1) == - 54321; % dead position
 enemy(e,5) = 0;
 enemy(e,6) = 0;
 elseif min(AA) == 9;
 NMM = 1;
 CC = randi([1 8]);
 else
 BB = find(AA==9); % check prohibited zones
 ind=setdiff(1:8,BB); % exclude directions towards prohibited zones
 DD = randi(length(ind));
 CC = ind(DD); % randomly pick any allowed cell
 NMM = 1;
 enemy(e,5) = NMM*CelSz*round(cosd((CC - 1)*45)); %compute x transition
 enemy(e,6) = NMM *CelSz*round(sind((CC - 1)*45)); %compute y transition
 end

 enemy(e,1) = enemy(e,1) + enemy(e,5); %update x position
 enemy(e,2) = enemy(e,2) + enemy(e,6); %update y position
 end
end

%Swarm movement
for i = 1 : SwarmSize % determine the next move for each agent

% building limits
if indoor == 1 | outdoor ==1
for bb = 1:buildings
 bupperL(bb) = bupperg(bb) * swarm(i,1) + bupperintercept(bb);
 blowerL(bb) = blowerg(bb) * swarm(i,1) + b lowerintercept(bb);
 bleftL(bb) = bleftg(bb) * swarm(i,2) + bleftintercept(bb);
 brightL(bb) = brightg(bb) * swarm(i,2) + brightintercept(bb);

end
end
 if iter > 1 % analyze neighboring cells visitations
 A=zeros(1,8); % assume none of the neighboring cells is visited
 for j=1:8
 if indoor == 1 | outdoor ==1

122

 % Boundaries and buildings
 if find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarmx(:,:) & ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))
 A(j) = 1; % cell has been visited already
 elseif find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > GrSiz | ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...
 swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) < 1 | ...
 (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > bleftL & ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) > blowerL) & ...
 (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < brightL) & ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) < bupperL);
 A(j) = 9; % prohibited area
 end

 else
 % Boundaries
 if find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarmx(:,:) & ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))
 A(j) = 1; % cell has been visited already
 elseif find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > GrSiz | ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...
 swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) < 1);
 A(j) = 9;
 end
 end

 % Collision avoidance
 if collisionavoidance == 1;
 if find(swarm(i,1)+CelSz*r ound(cosd((j - 1)*45)) == swarm(:,1)
&... %find other UGV in surrounding
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarm(:,2))
 A(j) = 9; %set to prohibited area if there is an existing UGV
 end
 end
 end

 if RM == 1 %holo 360 during track
 holonomicity = holonomicityduringtrack;
 else
 holonomicity = holonomicityint;
 end

 % Non Holonomic @ 180
 if holonomicity == 180;
 if (swarm(i,5) == 1 & swarm(i,6) == 1)
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == 0)
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == 1)
 A(6) = 9;
 A(7) = 9;
 A(8) = 9;
 end

123

 if (swarm(i,5) == - 1 & swarm(i,6) == - 1)
 A(1) = 9;
 A(2) = 9;
 A(3) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 0)
 A(1) = 9;
 A(2) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == - 1)
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 1)
 A(1) = 9;
 A(7) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == - 1)
 A(3) = 9;
 A(4) = 9;
 A(5) = 9;
 end
 end

 % Non Holonomic @ 90
 if holonomicity == 90;
 if (swarm(i,5) == 1 & swarm(i,6) == 1)
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == 0)
 A(3) = 9;
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == 1)
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 A(8) = 9;
 A(1) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == - 1)
 A(1) = 9;
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 0)
 A(3) = 9;
 A(1) = 9;
 A(2) = 9;
 A(8) = 9;

124

 A(7) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == - 1)
 A(1) = 9;
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;
 A(5) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 1)
 A(2) = 9;
 A(1) = 9;
 A(7) = 9;
 A(8) = 9;
 A(6) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == - 1)
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 end
 end

 % Non Holonomic @ 270
 if holonomicity == 270;
 if (swarm(i,5) == 1 & swarm(i,6) == 1)
 A(6) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == 0)
 A(5) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == 1)
 A(7) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == - 1)
 A(2) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 0)
 A(1) = 9;

 end
 if (swarm(i,5) == 0 & swarm(i,6) == - 1)
 A(3) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 1)
 A(8) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == - 1)
 A(4) = 9;
 end
 end

 if PSO == 0 %no PSO, use LVS
 if min(A) == 0; %check if there are unvisited cells aro und
 B = find(A==0); %find not visited cell(s)
 C = B(randi(numel(B))); %randomly pick one of them
 NM = 1;
 elseif min(A) == 9; %if all of next block is restricted
 NM = 0; %set velocity to 0

125

 C = 0;
 else
 B = find(A==9); %check prohibited zones
 ind=setdiff(1:8,B); %exclude directions towards proh ibited zones
 D = randi(length(ind));
 C = ind(D); %randomly pick any allowed cell
 NM = 1;
 end
 else %PSO function is on
 if RM == 1;
% x vel vector
pr iorityx = inertia*swarm(i, 5) + correction_factor*rand*(swarm(i, 3) -
swarm(i, 1)) + correction_factor*rand*(swar m(swarm(i,9), 1) - swarm(i, 1)) ;
% y vel vector
priorityy = inertia*swarm(i, 6) + correction_factor*rand*(swarm(i, 4) ...
- swarm(i, 2)) + corre ction_factor*rand*(swarm(swarm(i,9), 2) - swarm(i, 2));

% Maximum distance swarm able to move per time step
 if priorityx >= 0.5;
 priorityx = 1;
 else if priorityx <= - 0.5;
 priorityx = - 1;
 else
 priorityx = 0;
 end
 end

 if priorityy >= 0.5;
 priorityy = 1;
 else if priorityy <= 0.5;
 priorityy = - 1;
 else
 priorityy = 0;
 end
 end

 randp ir = randi(2);
 if priorityx == 0 && priorityy == 1
 p1 = 3;
 p2 = [2;4];
 p3 = [1;5];
 p4 = [6;8];
 p5 = 7;
piroritycel l = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif priorityx == 1 && priorityy == 1
 p1 = 2;
 p2 = [1;3];
 p3 = [4;8];
 p4 = [5;7];
 p5 = 6;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif priorityx == 1 && priorityy == 0
 p1 = 1;
 p2 = [2;8];
 p3 = [3;7];
 p4 = [4;6];
 p5 = 5;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif priorityx == 1 && priorityy == - 1

126

 p1 = 8;
 p2 = [1;7];
 p3 = [2;6];
 p4 = [3;5];
 p5 = 4;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(rand pir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif priorityx == 0 && priorityy == - 1
 p1 = 7;
 p2 = [6;8];
 p3 = [1;5];
 p4 = [2;4];
 p5 = 3;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif priorityx == - 1 && priorityy == - 1
 p1 = 6;
 p2 = [5;7];
 p3 = [4;8];
 p4 = [1;3];
 p5 = 2;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif priorityx == - 1 && priorityy == 0
 p1 = 5;
 p2 = [4;6];
 p3 = [3;7];
 p4 = [2;8];
 p5 = 1;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif priorityx == - 1 && priorityy == 1
 p1 = 4;
 p2 = [3;5];
 p3 = [2;6];
 p4 = [1;7];
 p5 = 8;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 end

 if min(A) == 9; %if all of next block is restricted
 NM = 0; %set velocity to 0
 C = 0;
 else
 B = find(A==9); %check prohibited zones
 ind = setdiff(1:8,B); %exclude directions towards
prohibited zones
 for indi = 1:length(ind)
 C1(1,indi) = find(ind(1,indi) == piroritycell);
 end
 [temp2 C2] = min(C1);
 C = ind(C2);
 NM = 1;
 end

 else
 if min(A) == 0; %check if there are unvisited cells around
 B = find(A==0); %find not visited cell(s)
 C = B(randi(numel(B))); %randomly pick one of them
 NM = 1;

127

 elseif min(A) == 9; %if all of next block is either
occupied or in prohibited zone
 NM = 0; %set velocity to 0
 C = 0 ;
 else
 B = find(A==9); %check prohibited zones
 ind=setdiff(1:8,B); %exclude directions towards
prohibited zones
 D = randi(length(ind));
 C = ind(D); %randomly pick any allowed cell
 NM = 1;
 end
 end
 end

 if swarm(i,1) == NaN
 swarm(i,5) = 0;
 swarm(i,6) = 0;
 else
 swarm(i,5) = NM*CelSz*round(cosd((C - 1)*45)); %compute x transition
 swarm(i,6) = NM*CelSz*round(sind((C - 1)*45)); %compute y transition
 swarm(i,1) = swarm(i,1) + swarm(i,5); %update x position
 swarm(i,2) = swarm(i ,2) + swarm(i,6); %update y position
 clear C1
 end
 end
 % Finding enemy

if find((swarm(i,1) >= enemy(:, 1) - sensor & swarm(i,1) <= enemy(:, 1)+
sensor) & (swarm(i,2) >= enemy(:, 2) - sensor & swarm(i,2) <= enemy(:, 2)+
sensor));
 %to solve if sensor found 2 target
 G = find((swarm(i,1) >= (enemy(:, 1) - sensor) & swarm(i,1) <=
(enemy(:, 1)+ sensor)) & (swarm(i,2) >= (enemy(:, 2) - sensor) & swarm(i,2) <=
(enemy(:, 2)+ sensor))); %find and record which enemy is found

 G2 = sqrt((enemy(G,1) - swarm(i,1)).^2 + (enemy(G,2) -
swarm(i,2)).^2); %calculate distance from enemy found
 [temp, G3] = min(G2); %take shorter distance
 enemyfound(i,1) = G(G3,1); %record enemynumber as enemyfound
 enemytarget(i,1) = G(G3,1);
 else
 enemyfound(i,1) = 0;
 end

 if enemyfound(i,1) > 0;
 closestEposu(i,1) = ene my(enemyfound(i,1),1);
 closestEposv(i,1) = enemy(enemyfound(i,1),2);
 else
 closestEposu(i,1) = 0;
 closestEposv(i,1) = 0;
 end
end

%% Allocating closest ally's PBEST and GBEST that manage to find enemy
 if PSO == 1
 if max(enemyfound(:,1)) > 0
 x = find(enemyfound > 0); %other swarm found enemy

 for i = 1:SwarmSize;
 if enemyfound(i,1) == 0;

128

 [temp G5] = min(sqrt(((swarm(i,1) - swarm(x,1)).^2) +
((swarm(i,2) - swarm(x,2)).^2))); % finding which enemy closest ally (min hypo)
found
 G4 = x(G5,1);
 closestEposu(i,1) = closestEposu(G4,1); %allocate e nemy

target position to swarm that did not find enemy
 closestEposv(i,1) = closestEposv(G4,1); %allocate enemy

target position to swarm that did not find enemy
 enemytarget(i,1) = enemyfound(G4,1); %record which enemy

ta rgeted by swarm that did not find enemy
 end

 swarm(i,7) = sqrt(((swarm(i,1) - closestEposu(i,1)).^2) +

((swarm(i,2) - closestEposv(i,1)).^2)); %dis from all swarm
position to target enemy position

 end
 end

 %% Pbest
 % comparing previous and current position relative to pbest
 for i = 1:SwarmSize;
 if iter > 1; %only after 1st iter we will have old swarm

position to compare
 valueO (i,1) = sqrt(((swarmx(i,iter - 1) - closestEposu(i,1))^2) +

((swarmy(i,iter - 1) - closestEposv(i,1))^2)); %old position wrt new
enemy targeted pos

 valueN(i,1) = sqrt(((swarm(i,1) - closestEposu(i,1))^2) +
((swarm(i,2) - closestEposv(i,1))^2)); %new position wrt new enemy
targeted pos

 if valueN(i,1) < valueO(i,1); %if new position is better,

record it as pbest
 swarm(i, 3) = swarm(i, 1); %update best position of u,
 swarm(i, 4) = swarm(i, 2); %update best postions of v,
 else
 swarm(i,3) = swarmx(i,iter - 1);
 swarm(i,4) = swarmy(i,iter - 1);
 end
 end
 end

 if max(enemyfound(:,1)) > 0; %trigger random walk or PSO
 RM = 1; %trigger PSO
% Group similar targeted enemy and assign gbest to min value in each group
 uv = unique(enemytarget); %remove duplic ate
 B = size(uv,1);

 for Q = 1:B; %sorting on target found
 A = find(enemytarget(:,1) == uv(Q,1));
 swarm(A,8) = min(swarm(A,7)) ; %min value is Gbest value
 end
 for i = 1:SwarmSize;
 choosegbest = (find(swarm(i,8) == swarm(:,7)));
 randomIndex = randi(length(choosegbest),1);
 swarm(i,9) = choosegbest(randomIndex); %finding which swarm

holds G best value recording in 9
 clear choosegbest
 clear randomIndex
 end
 else
 RM = 0; % trigger random walk if no enemy found at all
 end

129

 end
%% Engage
for i = 1 : SwarmSize;
if shootsequence == 1 %red to shoot first
 if find((swarm(i,1) >= enemy(:, 1) - killdise & swarm(i,1) <= enemy(:, 1)+

killdise) & ...
 (swarm(i,2) >= enemy(:, 2) - killdise & swarm(i,2) <= enemy(:, 2)+

killdise));
 if rand <= pkillswarm;
 swar m(i,1) = NaN;
 swarm(i,2) = NaN;
 end
 end

 if find((swarm(i,1) >= enemy(:, 1) - killdis & swarm(i,1) <= enemy(:, 1)+

killdis) & (swarm(i,2) >= enemy(:, 2) - killdis & swarm(i,2) <= enemy(:, 2)+
killdis));

 K = find((swarm(i,1) >= (ene my(:, 1) - killdis) & swarm(i,1) <= (enemy(:,

1)+ killdis)) & (swarm(i,2) >= (enemy(:, 2) - killdis) & swarm(i,2) <=
(enemy(:, 2)+ killdis))); %find and record which enemy is found

 if rand <= pkillenemy;
 enemy(K,1) = - 54321;
 enemy(K,2) = - 54321;
 end
 end
else %blue to shoot first (reverse order)
 if find((swarm(i,1) >= enemy(:, 1) - killdis & swarm(i,1) <= enemy(:, 1)+

killdis) & (swarm(i,2) >= enemy(:, 2) - killdis & swarm(i,2) <= enemy(:, 2)+
killdis));

 K = find((swarm(i,1) >= (enemy(:, 1) - killdis) & swarm(i,1) <= (enemy(:,

1)+ killdis)) & (swarm(i,2) >= (enemy(:, 2) - killdis) & swarm(i,2) <=
(enemy(:, 2)+ killdis))); %find and record which enemy is found

 if rand <= pkillenemy;
 enemy(K,1) = - 54321;
 enemy(K,2) = - 54321;
 end
 end

 if find((swarm(i,1) >= enemy(:, 1) - killdise & swarm(i,1) <= enemy(:, 1)+

killdise) & (swarm(i,2) >= enemy(:, 2) - killdise & swarm(i,2) <= enemy(:,
2)+ killdise));

 if rand <= pkillswarm;
 swarm(i,1) = NaN;
 swarm(i,2) = NaN;
 end
 end
end
end

%% Plot swarm evolutions

h1.XData=swarm(:,1);
h1.YData=swarm(:,2);
h2.XData=enemy(:,1);
h2.YData=enemy(:,2);
h3.String=[int2str(iter) ' (' int2str(iter/N*100) '%)'];

130

pause(0.000001/iter^3)

% break if all swarm or enemy killed
outcome(Mainloop,2) = sum(enemy(:,1)>=0);
outcome(Mainloop,3) = iter;
outcome(Mainloop,1) = sum(swarm(:,1)>=0); %blue left

if max(~isnan(swarm(:,1))) == 0
break
end

if (sum(enemy(:,1)>=0)) == 0
break
end

end

figure
hold on
for ii=1:SwarmSize
Cl=rand(3,1);
plot(swarmx(ii,:),swarmy(ii,:), ' - .' , 'color' ,Cl, 'LineWidth' ,1)
plot(swarmx(ii,end),swarmy(ii,end), 'x' , 'color' ,Cl, 'LineWidth' ,1)

if outdoor == 1,
 for bb = 1:23;
 fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1)

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2)
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'k')

 end
 for bb = 24:31;
 fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1)

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2)
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'g')

 end
else if indoor == 1,
 for bb = 1:12;
 fill([dblowerleft(bb,1) dblowerright(bb,1) dbupperright(bb,1)

dbupperleft(bb,1) dblowerleft(bb,1)],[dblowerleft(bb,2)
dblowerright(bb,2) dbupperright(bb,2) dbupperleft(bb,2)
dblowerleft(bb,2)], 'k')

 end
 end
end

end
hold off
axis([1 GrSiz 1 GrSiz]), axis square , grid minor
xlabel('Crossrange cell'), ylabel('Downrange cell')

%% Compute the occupancy matrix
OcM=zeros(GrSiz,GrSiz);
for ix=1:GrSiz
 for iy=1:GrSiz
 for is=1:SwarmSize
 for it=1:iter
 if swarmx(is,it) == iy & swarmy(is,it) == ix
 OcM(ix,iy)=OcM(ix,iy)+1;
 end
 end
 end
 end

131

end

%% Show the occupancy matrix

figure
spy(OcM), set(gca,'YDir','normal'), axis square
figure
imagesc(OcM), set (gca,'YDir','normal'), axis square, colorbar
xlabel('Crossrange cell'), ylabel('Downrange cell')
figure
mesh(OcM)
xlabel('Crossrange cell'), ylabel('Downrange cell')
zlabel('Number of cell visitations')
mOcM=mean(mean(OcM));
% find percentage in terms of a vailable cells(removing buildings)
if outdoor == 0 && indoor == 0
Fv=find(~OcM); pFv=numel(Fv)/GrSiz/GrSiz*100;
else if outdoor == 1
Fv=find(~OcM); pFv=((((numel(Fv)/GrSiz/GrSiz)*GrSiz^2) - 4674)/((GrSiz^2) -
4674))*100;
 else if indoor == 1
Fv=find(~OcM); pFv=((((numel(Fv)/GrSiz/GrSiz)*GrSiz^2) - 768)/((GrSiz^2) -
768))*100;

% ((total unvisited * totalgridarea) - building area)/available area *
100%
%building area of 4674 is known by running full coverage and finding out the
max
%amt of percentage that the UGV can cover
 end
 end
end

clear swarmx
clear swarmy

end
end

132

THIS PAGE INTENTIONALLY LEFT BLANK

133

APPENDIX D. TRACK AND ENGAGE PHA SE WITH ALVC
GUIDANCE

for SS = 1000; %iteration

ml = 30; %number of runs
for Mainloop = 1 : ml
close all

%% Defining initial conditions
% Neighboring cells numeration
% 4 3 2
% 5 X 1
% 6 7 8

N=SS; %number of iterations
SwarmSize = 20; %number of agents in swarm
enemies = 5; %number of enemies
sensor = 15; %ability for UGV to detect enemy
killdis = 1; %how far UGV can shoot
killdise = 2; %how far enemy can shoot
collisionavoidance = 1; %1 for on, 0 for off
holonomicityint = 90; %360 for "off", 90, 180 270 degree for "ON"
holonomicityduringtrack = 90;
PSO = 1; %"1 for on, 0 for off"
pkillswarm = 0.1; %prob that enemy will kill UGV
pkillenemy = 0.1; %prob that UGV will kill enemy
shootsequence = 0; %1 for red shoot first(baseline) / 0 for blue shoot first

%choose map
outdoor = 0; %outdoor map, impossible city
indoor = 0; %indoor floorplan of one building

% Swarm Starting position
Center = 0;
Cornertopright = 0;
Cornebttlefttopright = 0;
Cornerallsides = 0;
Row = 0;
Bttrightcorner = 0;

% for indoor and outdoor starting configuration
configuration = 1; %1, 2, 3 for outdoor and 4 for indoor

inertia = 1;
correction_factor = 2;

CelSz = 1; %cell size
GrSiz = 99; %grid size
A = zeros(1,8);
swarm = zeros(SwarmSize,9);
swarm(:,5) = 0; %initial x transition
swarm(:,6) = 0; %initial y transition
RM = 0;

%% Defining enemies starting positions
enemy=zeros(enemies,6);

enemy(1, 1) = 90; %starting x

134

enemy(1, 2) = 80; %starting y

enemy(2, 1) = 73; %starting x
enemy(2, 2) = 20; %starting y

enemy(3, 1) = 55; %starting x
enemy(3, 2) = 98; %starting y

enemy(4, 1) = 25; %starting x
enemy(4, 2) = 40; %starting y

enemy(5, 1) = 45; %starting x
enemy(5, 2) = 60; %starting y

%% Load map
if outdoor == 1,
run('Buildings_Obstacles.m')
else if indoor == 1,
run('indoor_floorplan.m')
end
end

%% Swarm starting positions code

for s = 1:SwarmSize

 if configuration == 1;
 swarm(s,1) = 1;
 swarm(s,2) = 85;
 end

 if configuration == 2;
 if s <= (SwarmSize/2)
 swarm(s,1) = 1;
 swarm(s,2) = 85;
 else
 swarm(s,1) = (GrSiz);
 swarm(s,2) = 85;
 end
 end

 if configuration == 3;
 if s <= (SwarmSize/3)
 swarm(s,1) = (GrSiz);
 swarm(s,2) = 85;
 else if s > (SwarmSize /3) & s <= 2*(SwarmSize /3)
 swarm(s,1) = 1;
 swarm(s,2) = 20;
 else if s > (2*(SwarmSize /3))
 swarm(s,1) = 1;
 swarm(s,2) = 85;
 end
 end
 end
 end

 if configuration == 4;
 swarm(s,1) = 1;
 swarm(s,2) = 10;
 end

 if Center == 1;

135

 swarm(s,1) = (GrSiz+1)/2;
 swarm(s,2) = (GrSiz+1)/2;
 end

 if Bttrightcorner == 1;
 swarm(s,1) = (GrSiz);
 swarm(s,2) = 1;
 end

 if Cornertopright == 1;
 swarm(s,1) = (GrSiz);
 swarm(s,2) = (GrSiz);
 end

 if Cornerallsides == 1;
 if s <= (SwarmSize/4)
 swarm(s,1) = (GrSiz);
 swarm(s,2) = (GrSiz);
 else if s > (SwarmSize /4) & s <= 2*(SwarmSize /4)
 swarm(s,1) = (GrS iz);
 swarm(s,2) = 1;
 else if s > (2*(SwarmSize /4)) & s <= 3*(SwarmSize /4)
 swarm(s,1) = 1;
 swarm(s,2) = (GrSiz);
 else if s > 3*(SwarmSize /4)
 swarm(s,1) = 1;
 swarm(s,2) = 1;
 end
 end
 end
 end
 end
 if Row == 1 ;
 swarm(s,1) = round(((GrSiz)/SwarmSize) * s) ;
 swarm(s,2) = 1;
 end

 if Cornebttlefttopright == 1;
 if s <= (SwarmSize /2)
 swarm(s,1) = 1;
 swarm(s,2) = 1;
 else
 swarm(s,1) = (GrSiz);
 swarm(s,2) = (GrSiz);
 end
 end
end

%% Building block calucations
if indoor == 1 | outdoor ==1
buildings = size(blowerleft,1);

for bb = 1:buildings;
bupperg(bb) = (bupperright(bb,2) - bupperleft(bb,2))/(bupperright(bb,1) -
bupperleft(bb,1));
bupperintercept(bb) = bupperleft(bb,2) - (bupperg(bb) * bupperleft(bb,1));
blowerg(bb) = (blowerright(bb,2) - blowerleft(bb,2))/(blowerright(bb,1) -
blowerleft(bb,1));
blowerintercept(bb) = blowerleft(bb,2) - (blowerg(bb) * blowerleft(bb,1));
bleftg(bb) = (bupperleft(bb,1) - blowerleft(bb,1))/(bupperleft(bb,2) -
blowerleft(bb,2));
bleftintercept(bb) = bupperleft(bb,1) - (bleftg(bb) * bupperleft(bb,2));

136

brightg(bb) = (bupperright(bb,1) - blowerright(bb,1))/(bupperright(bb,2) -
blowerright(bb,2)) ;
brightintercept(bb) = bupperright(bb,1) - (brightg(bb) * bupperright(bb,2));
 for ux = 1:99;
 for uy = 1:99;
 if ux > (bleftg(bb) * uy + bleftintercept(bb))
 if ux < (brightg(bb) * uy + brightintercept(bb));
 if uy > (blowerg(bb) * ux + blowerintercept(bb))
 if uy < (bupperg(bb) * ux + bupperintercept(bb))
 unvisited2(round(ux)+1,round(uy)+1) = 99;
 end
 end
 end
 end
 end
 end

end
end

%% Plotting

h1 = plot(swarm(:,1), swarm(:,2), 'x' , 'LineWidth' ,1);
hold on
h2 = plot(enemy(:,1), enemy(:,2), 'xr' , 'LineWidth' ,1);
hold on

%plot map on figure
if outdoor == 1,
 for bb = 1:23;
 fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1)

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2)
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'k')

 end
 for bb = 24:31;
 fill([blowerleft (bb,1) blowerright(bb,1) bupperright(bb,1)

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2)
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'g')

 end
else if indoor == 1,
 for bb = 1:12;
 fill([dblowerleft(bb ,1) dblowerright(bb,1) dbupperright(bb,1)

dbupperleft(bb,1) dblowerleft(bb,1)],[dblowerleft(bb,2)
dblowerright(bb,2) dbupperright(bb,2) dbupperleft(bb,2)
dblowerleft(bb,2)], 'k')

 end
 end
end

axis([1 GrSiz 1 GrSiz]), axis square , grid minor
xlabel('Crossrange cell'), ylabel('Downrange cell')
h3=text(0.85*GrSiz,0.95*GrSiz,[int2str(0) ' (' int2str(0/N*100) '%)']);

%% Swarm evolution
for iter = 1 : N %run N evolutions

swarmx(:,iter) = swarm(:,1);
swarmy(:,iter) = swarm(:,2);

137

%% Improved search algo (record all unvisited sqare coordinates)
clear uvsquares
[m,n] = size(swarmx);
swarmxx = swarmx;
swarmyy = swarmy;
swarmxx(isnan(swarmxx)) = 0;
swarmyy(isnan(swarmyy)) = 0;
for iterrow = 1:n
 for swarmcol = 1:m
unvisited2(swarmx x(swarmcol,iterrow)+1,swarmyy(swarmcol,iterrow)+1) = 9; %set
those visited to 9
 end
end
unvisited = unvisited2([2:100],[2:100]);

if sum(sum(unvisited(:,:) == 0)) >= 1 %first round
 for x = 1:GrSiz
 for y = 1:GrSiz
 if find(unvisited(x,y) == 0)
 uvsy = y;
 uvsx = x;
 else
 uvsy = 0;
 uvsx = 0;
 end

 uv1(y,:) = uvsy;
 uv2(y,:) = uvsx;
 end
 uvx(:,x) = uv1;
 uvy(:,x) = uv2;
 end
 nn = iter+1;

else %Second round (when all the cell has been found, reset and being from
scratch)

 for iterrow = 1:n
 for swarmcol = 1:m
 unvisited2(swarmxx(swarmcol,iterrow)+1,swarmyy(swarmcol,iterrow)+1) =
0; %set those visited in first round to 0
 end
 end
 for iterrow = nn:n %start the recording from iter nn
 for swarmcol = 1:m
 unvisited2(swarmxx(swarmcol,iterrow)+1,s warmyy(swarmcol,iterrow)+1) =
9; %set those visited to 9
 end
 end

 unvisited = unvisited2([2:100],[2:100]);

 if sum(sum(unvisited(:,:) == 0)) == 0;
 nn = iter %record the iteration number when all cell is zero
 end
 if sum(su m(unvisited(:,:) == 0)) == 1; %loop to reset
 nn = iter+1 %record the iteration number when all cell is zero
 end
 if sum(sum(unvisited(:,:) == 0)) == 2; %loop to reset
 nn = iter+1 %record the iteration number when all cell is zero
 end

138

 for x = 1:GrSiz
 for y = 1:GrSiz
 if find(unvisited(x,y) == 0)
 uvsy = y;
 uvsx = x;
 else
 uvsy = 0;
 uvsx = 0;
 end

 uv1(y,:) = uvsy;
 uv2(y,:) = uvsx;
 end
 uvx(:,x) = uv1;
 uvy(:,x) = uv2;
 end
end

uvsquares(:,2) = uvx(uvx~=0) ; %records all unvisited square x and y axis
uvsquares(:,1) = uvy(uvy~=0) ;

% enemy move ment
for e = 1 : enemies; % position of Swarms

 % enemies space boundaries
 % building limits
 if indoor == 1 | outdoor ==1
 for bb = 1:buildings
 bupperLLL(bb) = bupperg(bb) * enemy(e,1) + bupperintercept(bb);
 blowerLLL(bb) = blowerg(bb) * enemy(e,1) + blowerintercept(bb);
 bleftLLL(bb) = bleftg(bb) * enemy(e,2) + bleftintercept(bb);
 brightLLL(bb) = brightg(bb) * enemy(e,2) + brightintercept(bb);
 end
 end

 if iter > 1 %analyze neighboring cells visitations
 AA=zeros(1,8); %assume none of the neighboring cells is visited
 for jj=1:8
 if indoor == 1 | outdoor ==1
 if find(enemy(e,1)+CelSz*r ound(cosd((jj - 1)*45)) > GrSiz | ...
 enemy(e,2)+CelSz*round(sind((jj - 1)*45)) > GrSiz | ...
 enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) < 1 | ...
 enemy(e,2)+CelSz*round(sind((jj - 1)*45)) < 1 | ...
 (enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) > bleftLLL & ...
 enemy(e,2)+CelSz*round(sind((jj - 1)*45)) > blowerLLL) & ...
 (enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) < brightLLL) & ...
 enemy(e,2)+CelSz*round(sind((jj - 1)*45)) < bupperLLL);
 AA(jj) = 9; %prohibited area
 end

 elseif find(enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) > GrSiz | ...
 enemy(e,2)+CelSz*round(sind((jj - 1)*45)) > GrSiz | ...
 enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) < 1 | ...
 enemy(e,2)+CelSz*round(sind((jj - 1)*45)) < 1);
 AA(jj) = 9;
 end
 end

 if enemy(e,1) == - 54321; %dead position
 enemy(e,5) = 0;
 enemy(e,6) = 0;

139

 elseif min(AA) == 9;
 NMM = 1;
 CC = randi([1 8]);
 else
 BB = find(AA==9); %check prohibited zones
 ind=setdiff(1:8,BB); %exclude directions towards prohibited
zones
 DD = randi(length(ind));
 CC = ind(DD); %randomly pick any allowed cell
 NMM = 1;

 enemy(e,5) = NMM*CelSz*round(cosd((CC - 1)*45)); %compute x transition
 enemy(e,6) = NMM*CelSz*round(sind((CC - 1)*45)); %compute y transition
 end

 enemy(e,1) = enemy(e,1) + enemy(e,5); %update x position
 enemy(e,2) = enemy(e,2) + enemy(e,6); %update y position
 end
end

%Swarm movement
for i = 1 : SwarmSize % determine the next move for each agent

% building limits
if indoor == 1 | outdoor ==1
for bb = 1:buildings
 bupperL(bb) = bupperg(bb) * swarm(i,1) + bupperintercept(bb);
 blowerL(bb) = blowerg(bb) * swarm(i,1) + blowerintercept(bb);
 bleftL(bb) = bleftg(bb) * swarm(i,2) + bleftintercept(bb);
 brightL(bb) = brightg(bb) * swarm(i,2) + brightintercept(bb);

end
end
 if iter > 1 % analyze neighboring cells visitations
 A = zeros(1,8); % assume none of the neighboring cells is visited
 for j = 1:8
 if indoor == 1 | outdoor ==1

 % Boundaries and buildings
 if find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarmx(:,:) & ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))
 A(j) = 1; % cell has been visited already
 elseif find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > GrSiz | ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...
 swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) < 1 | ...
 (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > bleftL & ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) > blowerL) & ...
 (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < brightL) & ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) < bupperL);
 A(j) = 9; % prohibited area
 end

 else
 % Boundaries
 if find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarmx(:,:) & ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))
 A(j) = 1; % cell has been visited already
 elseif find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > GrSiz | ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...

140

 swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...
 swarm(i,2)+CelSz*round(si nd((j - 1)*45)) < 1);
 A(j) = 9;
 end
 end

 % Collision avoidance
 if collisionavoidance == 1;
 if find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarm(:, 1) & ...
 swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarm(:,2))
 A(j) = 9; %set to prohibited area if there is an exisiting UGV
 end
 end
 end

 %% Improved search algo (find angle)
clear distoswarm2
clear distoswarm
if sum(swarm(i,1)) > 0
distoswarm = (sqrt(((swarm(i,1) - uvsquares(:,1)).^2) + ((swarm(i,2) -
uvsquares(:,2)).^2)));
distoswarm2 = find(distoswarm == min(dis toswarm(distoswarm > 0)));DD =
randi(length(distoswarm2));
uvsquareselect = uvsquares(distoswarm2(DD),:);

y_opp = uvsquareselect(1,2) - swarm(i,2);
x_adj = uvsquareselect(1,1) - swarm(i,1);

uvsquareselectangle = atand(y_opp/x_adj);
uvsqaureselect angle2(i,iter) = uvsquareselectangle;

% define quarter of unvisited square
% quarter 2 quarter 1
% x
% quarter 2 quarter 1

if (y_opp >= 0 && x_adj >= 0) || (y_opp < 0 && x_adj >= 0)
quarter = 1;
else
quarter = 2;
end
randpir = randi(2);
if quarter == 1 %right side
 if uvsquareselectangle <= 90 && uvsquareselectangle >= 67.5
 p1 = 3;
 p2 = [2;4];
 p3 = [1;5];
 p4 = [6;8];
 p5 = 7;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselectangle < 67.5 && uvsquareselectangle >= 22.5
 p1 = 2;
 p2 = [1;3];
 p3 = [4;8];
 p4 = [5;7];
 p5 = 6;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselectangle < 22.5 && uvsquareselectangle >= - 22.5
 p1 = 1;
 p2 = [2;8];

141

 p3 = [3;7];
 p4 = [4;6];
 p5 = 5;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselecta ngle < - 22.5 && uvsquareselectangle >= - 67.5
 p1 = 8;
 p2 = [1;7];
 p3 = [2;6];
 p4 = [3;5];
 p5 = 4;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p 4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselectangle < - 67.5 && uvsquareselectangle >= - 90
 p1 = 7;
 p2 = [6;8];
 p3 = [1;5];
 p4 = [2;4];
 p5 = 3;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 end

elseif quarter == 2 %left side
 if uvsquareselectangle <= 90 && uvsquareselectan gle >= 67.5
 p1 = 7;
 p2 = [6;8];
 p3 = [1;5];
 p4 = [2;4];
 p5 = 3;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselectangle < 67.5 && uvsquareselectangle >= 22.5
 p1 = 6;
 p2 = [5;7];
 p3 = [4;8];
 p4 = [1;3];
 p5 = 2;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(rand pir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselectangle < 22.5 && uvsquareselectangle >= - 22.5
 p1 = 5;
 p2 = [4;6];
 p3 = [3;7];
 p4 = [2;8];
 p5 = 1;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselectangle < - 22.5 && uvsquareselectangle >= - 67.5
 p1 = 4;
 p2 = [3;5];
 p3 = [2;6];
 p4 = [1;7];
 p5 = 8;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif uvsquareselectangle < - 67.5 && uvsquareselectangle >= - 90
 p1 = 3;
 p2 = [2;4];
 p3 = [1;5];
 p4 = [6;8];
 p5 = 7;

142

piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 end
end
 i f RM == 1
 holonomicity = 360;
 else
 holonomicity = holonomicityint;
 end

 % Non Holonomic @ 180
 if holonomicity == 180;
 if (swarm(i,5) == 1 & swarm(i,6) == 1)
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == 0)
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == 1)
 A(6) = 9;
 A(7) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == - 1)
 A(1) = 9;
 A(2) = 9;
 A(3) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 0)
 A(1) = 9;
 A(2) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == - 1)
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 1)
 A(1) = 9;
 A(7) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == - 1)
 A(3) = 9;
 A(4) = 9;
 A(5) = 9;
 end
 end

 % Non Holonomic @ 90
 if holonomicity == 90;
 if (swarm(i,5) == 1 & swarm(i,6) == 1)
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 A(8) = 9;

143

 end
 if (swarm(i,5) == 1 & swarm(i,6) == 0)
 A(3) = 9;
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == 1)
 A(5) = 9;
 A(6) = 9;
 A(7) = 9;
 A(8) = 9;
 A(1) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == - 1)
 A(1) = 9;
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;
 A(8) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 0)
 A(3) = 9;
 A(1) = 9;
 A(2) = 9;
 A(8) = 9;
 A(7) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == - 1)
 A(1) = 9;
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;
 A(5) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 1)
 A(2) = 9;
 A(1) = 9;
 A(7) = 9;
 A(8) = 9;
 A(6) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == - 1)
 A(2) = 9;
 A(3) = 9;
 A(4) = 9;
 A(5) = 9;
 A(6) = 9;
 end
 end

 % Non Holonomic @ 270
 if holonomicity == 270;
 i f (swarm(i,5) == 1 & swarm(i,6) == 1)
 A(6) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == 0)
 A(5) = 9;
 end
 if (swarm(i,5) == 0 & swarm(i,6) == 1)
 A(7) = 9;

144

 end
 if (swa rm(i,5) == - 1 & swarm(i,6) == - 1)
 A(2) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 0)
 A(1) = 9;

 end
 if (swarm(i,5) == 0 & swarm(i,6) == - 1)
 A(3) = 9;
 end
 if (swarm(i,5) == - 1 & swarm(i,6) == 1)
 A(8) = 9;
 end
 if (swarm(i,5) == 1 & swarm(i,6) == - 1)
 A(4) = 9;
 end
 end

 if PSO == 0 %no PSO, use LVS
 if min(A) == 0; %check if there are unvisited cells around
 B = find(A==0); %find not visited cell(s)
 C = B(randi(numel(B))); %randomly pick one of them
 NM = 1;
 elseif min(A) == 9; %if all of next block is either occupied or in
prohibited zone
 NM = 0; %set velocity to 0
 C = 0;
 else
 B = find(A==9); %check prohibited zones
 ind=setdiff(1:8,B); %exclude directions to wards prohibited zones
 for indi = 1:length(ind)
 C1(1,indi) = find(ind(1,indi) == piroritycell);
 end
 [temp2 C2] = min(C1);
 C = ind(C2);
 NM = 1;
 end

 else %PSO function is on
 if RM == 1;
% x vel vector
priorityx = inertia*swarm(i, 5) + correction_factor*rand*(swarm(i, 3) -
swarm(i, 1)) + correction_factor*rand*(swarm(swarm(i,9), 1) - swarm(i,
1))+rand() - 1/2 ;
% y vel vector
priorityy = inertia*swarm(i, 6) + correction_factor*rand*(swarm(i, 4) -
swarm(i, 2)) + correction_factor*rand*(swarm(swarm(i,9), 2) - swarm(i,
2))+rand() - 1/2;
 % Maximum distance swarm able to move pe r time step
 if priorityx >= 0.5;
 priorityx = 1;
 else if priorityx <= - 0.5;
 priorityx = - 1;
 else
 priorityx = 0;
 end
 end

 if priorityy >= 0.5;
 priorityy = 1;

145

 else if priorityy <= 0.5;
 priorityy = - 1;
 else
 priorityy = 0;
 end
 end

 randpir = randi(2);
 if priorityx == 0 && priorityy == 1
 p1 = 3;
 p2 = [2;4];
 p3 = [1;5];
 p4 = [6;8];
 p5 = 7;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpi r) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif priorityx == 1 && priorityy == 1
 p1 = 2;
 p2 = [1;3];
 p3 = [4;8];
 p4 = [5;7];
 p5 = 6;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif priorityx == 1 && priorityy == 0
 p1 = 1;
 p2 = [2;8];
 p3 = [3;7];
 p4 = [4;6];
 p5 = 5;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif priorityx == 1 && priorityy == - 1
 p1 = 8;
 p2 = [1;7];
 p3 = [2;6];
 p4 = [3;5];
 p5 = 4;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif priorityx == 0 && priorityy == - 1
 p1 = 7;
 p2 = [6;8];
 p3 = [1;5];
 p4 = [2;4];
 p5 = 3;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~ =p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif priorityx == - 1 && priorityy == - 1
 p1 = 6;
 p2 = [5;7];
 p3 = [4;8];
 p4 = [1;3];
 p5 = 2;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif priorityx == - 1 && priorityy == 0
 p1 = 5;
 p2 = [4;6];
 p3 = [3;7];
 p4 = [2;8];

146

 p5 = 1;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 elseif priorityx == - 1 && priorityy == 1
 p1 = 4;
 p2 = [3;5];
 p3 = [2;6];
 p4 = [1;7];
 p5 = 8;
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ; p3(randpir) ;
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];
 end

 if min(A) == 9; %if all of next block is either occupied or
in prohibited zone
 NM = 0; %set velocity to 0
 C = 0; %doesnt matter
 else
 B = find(A==9); %check prohibited zones
 ind=setdiff(1:8,B); %exclude directions towards
prohibited zones
 for indi = 1:length(ind)
 C1(1,indi) = find(ind(1,indi) == piroritycell);
 end
 [temp2 C2] = min(C1);
 C = ind(C2);
 NM = 1;
 end

 else
 if min(A) == 0; %check if there are unvisited cells around
 B = find(A==0); %find not visited cell(s)
 C = B(randi(numel(B))); %randomly pick one of them
 NM = 1;
 elseif min(A) == 9; %if all of next block is either
occupied or in prohibited zone
 NM = 0; %set velocity to 0
 C = 0; %doesnt matter
 else
 B = find(A==9); %check prohibited zones
 in d=setdiff(1:8,B); %exclude directions towards
prohibited zones
 for indi = 1:length(ind)
 C1(1,indi) = find(ind(1,indi) == piroritycell);
 end
 [temp2 C2] = min(C1);
 C = ind(C2);
 NM = 1;
 end
 end
 end
end

 if swarm(i,1) == NaN
 swarm(i,5) = 0;
 swarm(i,6) = 0;
 else
 swarm(i,5) = NM*CelSz*round(cosd((C - 1)*45)); %compute x transition
 swarm(i,6) = NM*CelSz*round(sind((C - 1)*45)); %compute y transition
 swarm(i,1) = swarm(i,1) + swarm(i,5); %update x position
 swarm(i,2) = swarm(i,2) + swarm(i,6); %update y position
 clear C1

147

 end
 end
 % Finding enemy
 if find((swarm(i,1) >= enemy(:, 1) - sensor & swarm(i,1) <= enemy(:, 1)+

sensor) & (swarm(i,2) >= enemy(:, 2) - sensor & swarm(i,2) <= enemy(:, 2)+
sensor));

 %To solve if sensor found 2 target
 G = find((swarm(i,1) >= (enemy(:, 1) - sensor) & swarm(i,1) <=
(enemy(:, 1)+ sensor)) & (swarm(i,2) >= (enemy(:, 2) - sensor) & s warm(i,2) <=
(enemy(:, 2)+ sensor))); %find and record which enemy is found
 G2 = sqrt((enemy(G,1) - swarm(i,1)).^2 + (enemy(G,2) -
swarm(i,2)).^2); %calculate distance from enemy found
 [temp, G3] = min(G2); %take shorter distance
 enemyfound(i, 1) = G(G3,1); %record enemynumber as enemyfound
 enemytarget(i,1) = G(G3,1);
 else
 enemyfound(i,1) = 0;
 end

 if enemyfound(i,1) > 0;
 closestEposu(i,1) = enemy(enemyfound(i,1),1);
 closestEposv(i,1) = enemy(enemyfound(i,1),2);
 else
 closestEposu(i,1) = 0;
 closestEposv(i,1) = 0;
 end
end

%% Allocating closest ally's PBEST and GBEST that manage to find enemy
 if PSO == 1
 if max(enemyfound(: ,1)) > 0
 x = find(enemyfound > 0); %ally that found enemy

 for i = 1:SwarmSize;
 if enemyfound(i,1) == 0;
 [temp G5] = min(sqrt(((swarm(i,1) - swarm(x,1)).^2) +

((swarm(i,2) - swarm(x,2)).^2))); %G5 - finding which enemy
closest ally (min hypo) found

 G4 = x(G5,1);
 closestEposu(i,1) = closestEposu(G4,1); % allocate enemy

target position to swarm that did not find enemy
 closestEposv(i,1) = closestE posv(G4,1); % allocate enemy

target position to swarm that did not find enemy
 enemytarget(i,1) = enemyfound(G4,1); %record which enemy

targeted by swarm that did not find enemy
 end

swarm(i,7) = sqrt(((swarm(i,1) - closestEposu(i,1)).^2) + ((swarm(i,2) -
closestEposv(i,1)).^2)); %dis from all swarm poisiton to target enemy position
 end
 end

 %% Pbest
 %comparing previous and current position relative to pbest
 for i = 1:SwarmSize;
 if iter >1; %only after 1st iter we will have old swarm

position to compare

148

 valueO(i,1) = sqrt(((swarmx(i,iter - 1) - closestEposu(i,1))^2) +
((swarmy(i,iter - 1) - closestEposv(i,1))^2)); %old position wrt new
enemy targeted pos

 valueN(i,1) = sqrt(((swarm(i,1) - closestEposu(i,1))^2) +
((swarm(i,2) - closestEp osv(i,1))^2)); %new position wrt new enemy
targeted pos

 if valueN(i,1) < valueO(i,1); %if new position is better,
record it as pbest
 swarm(i, 3) = swarm(i, 1); %update best position of u,
 swarm(i, 4) = swarm(i, 2); %update best postions of v,
 else
 swarm(i,3) = swarmx(i,iter - 1);
 swarm(i,4) = swarmy(i,iter - 1);
 end
 end
 end

 if max(enemyfound(:,1)) > 0; %trigger random walk or PSO
 RM = 1; %trigger PSO

 % Group similar targeted enemy and assign gbest to min value in each group
 uv = unique(enemytarget); %remove duplicate
 B = size(uv,1);

 for Q = 1:B; % sorting on target found
 A = find(enemytarget(:,1) == uv(Q,1));
 swarm(A,8) = min(swarm(A,7)) ; %min value is Gbest value
 end

 for i = 1:SwarmSize;
 choosegbest = (find(swarm(i,8) == swarm(:,7)));
 randomIndex = randi(length(choosegbest),1);
 swarm(i,9) = choosegbest(randomIndex); % finding which

swarm holds Gbest value recording in 9
 clear choosegbest
 clear randomIndex
 end
 else
 RM = 0; % trigger random walk if no enemy found at all
 end

 end

%% Engage
for i = 1 : SwarmSize;

if find((swarm(i,1) >= enemy(:, 1) - killdise & swarm(i,1) <= enemy(:, 1)+
killdise) & (swarm(i,2) >= enemy(:, 2) - killdise & swarm(i,2) <= enemy(:, 2)+
killdise));

if rand <= pkillswarm;
swarm(i,1) = NaN;
swarm(i,2) = NaN;
end
end

if find((swarm(i,1) >= enemy(:, 1) - killdis & swarm(i,1) <= enemy(:, 1)+
killdis) & (swarm(i,2) >= enemy(:, 2) - killdis & swarm(i,2) <= enemy(:, 2)+
killdis));

149

K = find((swarm(i,1) >= (enemy(:, 1) - killdis) & swarm(i,1) <= (enemy(:, 1)+
killdis)) & (swarm(i,2) >= (enemy(:, 2) - killdis) & swarm(i,2) <= (enemy(:,
2)+ killdis))); %find and record which enemy is found

if rand <= pkillenemy;
enemy(K,1) = - 54321;
enemy(K,2) = - 54321;
end
end
end

%% Plot swarm evolutions

h1.XData= swarm(:,1);
h1.YData=swarm(:,2);
h2.XData=enemy(:,1);
h2.YData=enemy(:,2);
h3.String=[int2str(iter) ' (' int2str(iter/N*100) '%)'];
pause(0.000001/iter^3)

% break if all swarm or enemy killed
outcome(Mainloop,2) = sum(enemy(:,1)>=0);
outcome(Mainloop,3) = iter;
outcome(Mainloop,1) = sum(swarm(:,1)>=0); %blue left

if max(~isnan(swarm(:,1))) == 0
break
end

if (sum(enemy(:,1)>=0)) == 0
break
end
end
outcome

figure
hold on
for ii=1:SwarmSize
Cl=rand(3,1);
plot(swarmx(ii,:),swarmy(ii,:), ' - .' , 'color' ,Cl, 'LineWidth' ,1)
plot(swarmx(ii,end),swarmy(ii,end), 'x' , 'color' ,Cl, 'LineWidth' ,1)

if outdoor == 1,
 for bb = 1:23;
 fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1)

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerrigh t(bb,2)
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'k')

 end
 for bb = 24:31;
 fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1)

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2)
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'g')

 end
else if indoor == 1,
 for bb = 1:12;
 fill([dblowerleft(bb,1) dblowerright(bb,1) dbupperright(bb,1)

dbupperleft(bb,1) dblowerleft(bb,1)],[dblowerleft(bb,2)
dblowerright(bb,2) dbupperright(bb,2) dbupperleft(bb,2)
dblowerleft(bb,2)], 'k')

 end
 end

150

end

end
hold off
axis([1 GrSiz 1 GrSiz]), axis square , grid minor
xlabel('Crossrange cell'), ylabel('Downrange cell')

%% Compute the occupancy matrix
OcM=zeros(GrSiz,GrSiz);
for ix=1:GrSiz
 for iy=1:GrSiz
 for is=1:SwarmSize
 for it=1:iter
 if swarmx(is,it) == iy & swarmy(is,it) == ix
 OcM(ix,iy)=OcM(ix,iy)+1;
 end
 end
 end
 end
end

%% Show the occupancy matrix

figure
spy(OcM), set(gca, 'YDir' , 'normal'), axis square
figure
imagesc(OcM), set(gca, 'YDir' , 'normal'), axis square , colorbar
xlabel('Crossrange cell'), ylabel('Downrange cell')
figure
mesh(OcM)
xlabel('Crossrange cell'), ylabel('Downrange cell')
zlabel('Number of cell visitations')

mOcM=mean(mean(OcM));
% find percentage in terms of available cells(removing buildings)
if outdoor == 0 && indoor == 0
Fv=find(~OcM); pFv=numel(Fv)/GrSiz/GrSiz*100;
else if outdoor == 1
Fv=find(~OcM) ; pFv=((((numel(Fv)/GrSiz/GrSiz)*GrSiz^2) - 4674)/((GrSiz^2) -
4674))*100;
else if indoor == 1
Fv=find(~OcM); pFv=((((numel(Fv)/GrSiz/GrSiz)*GrSiz^2) - 768)/((GrSiz^2) -
768))*100;
 end
 end
end
clear swarmx
clear swarmy
end
enc

151

APPENDIX E. COORDINATES FOR OUTDOOR OBSTACLES

 Lower Left Lower Right Upper Left Upper Right

Building 1
x axis 47 57 56 46
y axis 89 90 97 96

Building 2
x axis 42.5 49.5 49 42
y axis 82 83 87 86

Building 3
x axis 33 36 47 44
y axis 67 64 72 75

Building 4
x axis 22 28 28 22
y axis 70 70 74 74

Building 5
x axis 26 38 37 25
y axis 75 80 84 79

Building 6
x axis 18 24 31 25
y axis 58 54 62 66

Building 7
x axis 34 40 46 40
y axis 47 43 52 56

Building 8
x axis 49 54 50 45
y axis 51 53 66 64

Building 9
x axis 50 54 58 54
y axis 46 44 50 52

Building 10
x axis 45 50 53 48
y axis 29 27 35 37

Building 11
x axis 30 35 38 33
y axis 17 12 15 20

Building 12
x axis 41 51 51 41
y axis 15 15 19 19

Building 13
x axis 52 59 59 52
y axis 10 10 17 17

Building 14
x axis 60 64 70 66
y axis 17 14 20 23

Building 15
x axis 70 74 80 76
y axis 27 24 30 33

Building 16
x axis 53 62 62 53
y axis 32 32 40 40

Building 17
x axis 62 68 68 62
y axis 36 36 43 43

152

 Lower Left Lower Right Upper Left Upper Right

Building 18
x axis 56.5 59.5 63 60
y axis 44.5 43 49 50.5

Building 19
x axis 61 66 69 64
y axis 56 54 60 62

Building 20
x axis 66 70 76 72
y axis 52 50.5 62.5 64

Building 21
x axis 71 79 81 73
y axis 70 66 70 74

Building 22
x axis 84 91 93 86
y axis 63 59 63 67

Building 23
x axis 83.5 89.5 92 86
y axis 74 70.5 75.5 79

Obstacle 1
x axis 56 100 100 58
y axis 63 92 100 100

Obstacle 2
x axis 15 46 45 28
y axis 77 90 100 100

Obstacle 3
x axis 0 21 21 0
y axis 86 99 100 100

Obstacle 4
x axis 0 20 13 0
y axis 21 32 74 63

Obstacle 5
x axis 4 22 40 33
y axis 20 15 30 36

Obstacle 6
x axis 0 60 60 0
y axis 0 0 2 18

Obstacle 7
x axis 54 100 100 100
y axis 0 0 46 45.5

Obstacle 8
x axis 72 76 89 81
y axis 41 40 57 61

153

APPENDIX F. COORDINATES FOR INDOOR OBSTACLE S

 Lower Left Lower Right Upper Left Upper Right

Wall 1
x axis 0 31 31 0
y axis 18 18 22 22

Wall 2
x axis 28 32 32 28
y axis 20 20 30 30

Wall 3
x axis 28 32 32 28
y axis 40 40 60 60

Wall 4
x axis 0 30 30 0
y axis 48 48 52 52

Wall 5
x axis 28 32 32 28
y axis 70 70 80 80

Wall 6
x axis 29 60 60 29
y axis 78 78 82 82

Wall 7
x axis 58 62 62 58
y axis 30 30 100 100

Wall 8
x axis 59 70 70 59
y axis 38 38 42 42

Wall 9
x axis 80 100 100 80
y axis 38 38 42 42

Wall 10
x axis 79 100 100 79
y axis 73 73 77 77

Wall 11
x axis 78 82 82 78
y axis 75 75 80 80

Wall 12
x axis 78 82 82 78
y axis 90 90 100 100

154

THIS PAGE INTENTIONALLY LEFT BLANK

155

LIST OF REFERENCES

Abraham, Ajith, and Vitorino Ramos. 2003. �³�:�H�E���8�V�D�J�H���0�L�Q�L�Q�J��Using Artificial Ant
Colony Clustering �D�Q�G���/�L�Q�H�D�U���*�H�Q�H�W�L�F���3�U�R�J�U�D�P�P�L�Q�J���´��In The 2003 Congress on
Evolutionary Computation 2: 1384�±1391.
https://doi.org/10.1109/CEC.2003.1299832.

Charlier, Bernadette. 1995. �³The Greedy Algorithms Class: Formalization, Synthesis and
Generalization.� ́Lecture at UCL, Belgium.
https://pdfs.semanticscholar.org/0375/63cfe4d9bed811b49b7eeed202ac80e497b2.
pdf.

�%�H�Q�L�����*�H�U�D�U�G�R�����������������³From Swarm Inte�O�O�L�J�H�Q�F�H���W�R���6�Z�D�U�P���5�R�E�R�W�L�F�V���´ In Swarm
Robotics, edited by �ù�D�K�L�Q���(�U�R�O���D�Q�G���6�S�H�D�U�V���:�L�O�O�L�D�P���0�������±9. Berlin, Heidelberg:
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-30552-1_1.

Blanchard, Benjamin S., and Wolter J. Fabrycky. 2011. Systems Engineering and
Analysis, 5th ed. Upper Saddle River, NJ: Prentice Hall.

Blum, Christian, and Xiaodong Li �����������������³�6�Z�D�U�P���,�Q�W�H�O�O�L�J�H�Q�F�H���L�Q���2�S�W�L�P�L�]�D�W�L�R�Q���´���,�Q��
Swarm Intelligence: Introduction and Application, edited by Christian Blum and
Daniel Merkle, 43�±85. Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-74089-6_2.

Choset, Howie�����������������³�&�R�Y�H�U�D�J�H���R�I���.�Q�R�Z�Q���6�S�D�F�H�V�����7�K�H���%�R�X�V�W�U�R�S�K�H�G�R�Q���&�H�O�O�X�O�D�U��
�'�H�F�R�P�S�R�V�L�W�L�R�Q���´��Autonomous Robots 9, no. 3 (December): 247�±253.
https://doi.org/10.1023/A:1008958800904.

Dorigo, Marco, Vittorio Maniezzo, and Alberto �&�R�O�R�U�Q�L�����������������³�$�Q�W���6�\�V�W�H�P����
Optimization �E�\���D���&�R�O�R�Q�\���R�I���&�R�R�S�H�U�D�W�L�Q�J���$�J�H�Q�W�V���´��IEEE Transactions on
Systems, Man, and Cybernetics Part B (Cybernetics) 26, no. 1 (February): 29�±41.
https://doi.org/10.1109/3477.484436.

Feng, Emily, �D�Q�G���&�K�D�U�O�H�V���&�O�R�Y�H�U�����������������³�'�U�R�Q�H��Swarms vs. Conventional A�U�P�V�����&�K�L�Q�D�¶�V��
Military D�H�E�D�W�H���´���/�D�V�W���P�R�G�L�I�L�H�G���$�X�J�X�V�W����������������������
https://www.ft.com/content/302fc14a-66ef-11e7-8526-7b38dcaef614.

Gage, Dougla�V���:�����������������³UGV History 101: A Brief History of Unmanned Ground
Vehicle (UGV) Development Efforts.� ́Unmanned Systems Magazine 13, no. 3
(January): 9�±32. http://www.dtic.mil/dtic/tr/fulltext/u2/a422845.pdf.

Galceran, Enric, �D�Q�G���0�D�U�F���&�D�U�U�H�U�D�V�����������������³�$��Survey on Coverage Path Planning for
R�R�E�R�W�L�F�V���´��Robotics and Autonomous Systems 61, no. 12 (August): 1258�±1276.
https://doi.org/10.1016/j.robot.2013.09.004.

156

Glenn, Russell W. 1996. Combat in Hell: A Consideration of Constrained Urban
Warfare. Washington, DC: RAND.

Goldman, Joshua�����������������³�6�W�U�H�H�W���9�L�H�Z��Your Life: These Are the 360-Degree Cameras
�&�R�P�L�Q�J���I�R�U�������������´���&�1�(�7�� Last modified February 23, 2016.
https://www.cnet.com/news/360-degree-cameras-2016/.

Goss, Simon, Serge Aron., Jean L. Deneubourg, and Jacques M. Pasteels�����������������³�6�H�O�I-
�2�U�J�D�Q�L�]�H�G���6�K�R�U�W�F�X�W�V���L�Q���W�K�H���$�U�J�H�Q�W�L�Q�H���$�Q�W���´��Naturwissenschaften 76, no. 12
(December): 579�±581. https://doi.org/10.1007/BF00462870.

Kennedy, James, and Russell C. �(�E�H�U�K�D�U�W�����������������³�3�D�U�W�L�F�O�H���6�Z�D�U�P���2�S�W�L�P�L�]�D�W�L�R�Q���´���,�Q��
Proceeding of the IEEE International Conference on Neural Networks 6: 1942�±
1948. https://doi.org/10.1109/ICNN.1995.488968.

Morin, Pascal, and Claude Samson. 2004. Trajectory Tracking for Non-Holonomic
Vehicles. In Robot Motion and Control, edited by Krzysztof Kozlowski, 3�±23.
London: Springer. https://doi.org/10.1007/978-1-84628-405-2_1.

Naffin, David J., and Gaurav S. Sukhatme. 2004�����³�1�H�J�R�W�L�D�W�H�G���I�R�U�P�D�W�L�R�Q�V���´���,�Q��
Proceedings of the Eighth Conference on Intelligent Autonomous Systems: 181�±
190.
https://pdfs.semanticscholar.org/c5f8/c452592054817793d25e1b573c3e377ee8de.
pdf.

Omran, Mahamed, Andries P. Engelbrecht, and Ayed Salman. 2005. �³�3�D�U�W�L�F�O�H���6�Z�D�U�P��
Optimization for Image Clustering.�´��International Journal of Pattern Recognition
and Artificial Intelligence 19, no. 3 (May): 297�±321.
https://doi.org/10.1142/S0218001405004083.

Raza�����0�X�K�D�P�P�D�G�����������������³Minimize Function using Particle Swarm Optimization���´��
Mathworks. Last modified June 21, 2017.
https://www.mathworks.com/matlabcentral/fileexchange/67804-particle-swarm-
optimization-pso-matlab-code-explanation?s_tid=prof_contriblnk.

Robot Platform. n.d. �³�5�R�E�R�W���/�R�F�R�P�R�W�L�R�Q���´���$�F�F�H�V�V�H�G���$�S�U�L�O��������������18.
http://www.robotplatform.com/knowledge/Classification_of_Robots/Holonomic_
and_Non-Holonomic_drive.html.

Shi, Yuhui, and Russell C. �(�E�H�U�K�D�U�W�����������������³�$���0�R�G�L�I�L�H�G���3�D�U�W�L�F�O�H���6�Z�D�U�P���2�S�W�L�P�L�]�H�U���´���,�Q��
Proceedings of the IEEE Conference on Evolutionary Computation 6: 69�±73.
https://doi.org/10.1109/ICEC.1998.699146.

Toksari, M. Duran. 2007. �³�$�Q�W���&�R�O�R�Q�\���2�S�W�L�P�L�]�D�W�L�R�Q���$�S�S�U�R�D�F�K���W�R���(stimate Energy
Demand of Turkey.�´��Energy Policy 35, no. 8 (August): 3984�±3990.
https://doi.org/10.1016/j.enpol.2007.01.028.

157

Ujjin , Supiya, and Peter J. Bentley�����������������³Particle Swarm Optimization Recommender
System���´���,�Q��Proceedings of the IEEE Swarm Intelligence Symposium: 124�±131.
https://doi.org/10.1109/SIS.2003.1202257.

United Nations, Department of Economic and Social Affairs, Population Division. 2014.
World Urbanization Prospects: The 2014 Revision, Highlights
(ST/ESA/SER.A/352). https://esa.un.org/unpd/wup/publications/files/wup2014-
highlights.pdf.

Ünler, Alper. 2008. �³�,�P�S�U�R�Y�H�P�H�Q�W���R�I���(�Q�H�U�J�\���'�H�P�D�Q�G���)�R�U�H�F�D�V�W�V���8�V�L�Q�J���6�Z�D�U�P��
Intelligence: The Case of Turkey with Projections to 2025.�´��Energy Policy 36, no.
6 (June): 1937�±1944. https://doi.org/10.1016/j.enpol.2008.02.018.

U.S. Department of Defense, Robotic Systems Joint Project Office. 2011. Unmanned
Ground Systems Roadmap. Washington, DC.
http://www.dtic.mil/dtic/tr/fulltext/u2/a570570.pdf.

Wang, Han, Muqing Cao, Hao Jiang, and Lihua Xie. 2018. �³�)�H�D�V�L�E�O�H��Computationally
Efficient Path Planning �I�R�U���8�$�9���&�R�O�O�L�V�L�R�Q���$�Y�R�L�G�D�Q�F�H���´��Paper presented at IEEE
14th International Conference on Control and Automation, Anchorage, AK.

Zelinsky, Alexander, Ray Jarvis, Jennifer Byrne, and Shin'ichi Yuta�����������������³�3�O�D�Q�Q�L�Q�J��
Paths of Complete Coverage of an Unstructured Environment by a Mobile
R�R�E�R�W���´���,�Q��Proceedings of International Conference on Advanced Robotics 13:
533�±538.
http://pinkwink.kr/attachment/cfile3.uf@1354654A4E8945BD13FE77.pdf.

158

THIS PAGE INTENTIONALLY LEFT BLANK

159

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	18Sep_Teow_Boon Hong Aaron_First8
	18Sep_Teow_Aaron

