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ABSTRACT 

 Due to its complexity, an urban area is a challenging multi-dimensional 

environment for ground warfare. Recent technological advancements have enabled 

militaries to utilize different-size unmanned ground vehicles (UGV) to support a variety 

of missions. This thesis presents guidance algorithms for a search and kill mission 

developed for some generic UGV swarms, which may be an attractive application, 

particularly for smaller UGVs operating in an urban environment. Through a series of 

computer simulations, the research evaluates the feasibility and effectiveness of the 

algorithms in executing such a mission in indoor and outdoor urban environments. The 

developed simulation allows varying many parameters, thus achieving closeness to the 

real-world situation when different environments, platforms, sensors, and weapons are 

used. Computer simulations presented in this paper may also assist military leaders in 

choosing key mission parameters to maximize the outcome of potential future 

engagements. 

v 



THIS PAGE INTENTIONALLY LEFT BLANK 

vi 



vii  

TABLE OF  CONTENTS 

I.  INTRODUCTION ..................................................................................................1 
A. BACKGROUND  ........................................................................................1 
B. OBJECTIVES ............................................................................................4 
C. RESEARCH QUESTIONS .......................................................................4 
D. SCOPE ........................................................................................................5 

1. Functional Analysis and Allocation ..............................................5 
2. Functional Flow Block Diagram ...................................................6 

E. ASSUMPTIONS .........................................................................................7 

II.  LITERATURE REVIEW  .....................................................................................9 
A. SEARCH ALGORITHMS  ........................................................................9 

1. Exhaustive Search ..........................................................................9 
2. Heuristic Search ...........................................................................13 
3. Summary of Search and Swarm Optimization Algorithms 

Used in this Research ...................................................................15 
B. APPLICATIONS OF SWAR M ALGORITHMS  .................................16 
C. MACH INE VISION .................................................................................17 
D. HOLONOMIC BEHAVIOR ...................................................................18 

III.  MODELING  .........................................................................................................19 
A. MOTION PRIMITIVES  .........................................................................19 

B. MOTION CONSTRAINTS  ....................................................................21 
1. Least Visited Cell Guidance ........................................................21 
2. Advanced Least Visited Cell Guidance ......................................23 

C. PARTICLE SWARM OPTIM IZATION  ..............................................25 
D. ENGAGEMENT RULES  ........................................................................26 
E. OPERATIONAL ENVIRONM ENT ......................................................27 

IV.  SEARCH PHASE STUDY ..................................................................................29 
A. EFFECT OF SWARM SIZE  ..................................................................29 
B. AREA COVERAGE VERSUS THE NUMBER OF 

ITERATIONS  ..........................................................................................31 
C. SWARM SIZE VERSUS NUMBER OF ITERATIONS  .....................34 
D. EFFECT OF STARTING C ONFIGURATION  ...................................36 

1. Effect of Swarm Size on Starting Configurations .....................38 
2. Effect of Maximum Number of Iterations on Starting 

Configurations ..............................................................................39 



viii  

E. EFFECT OF THE COLLIS ION AVOIDANCE CONSTR AINT  .......40 
F. EFFECT OF THE NON-HOLONOMICITY CONSTRAIN T ...........43 
G. URBAN OUTDOOR SEARCH OPERATIONS ..................................51 

1. Effect of Various Starting Configurations .................................52 
2. Effect of the Non-Holonomicity Constraint ...............................53 

H. INDOOR SEARCH OPERATIONS ......................................................56 
I.  EFFECTIVENESS OF ALV C GUIDANCE  .........................................59 

1. Holonomic Drive ..........................................................................60 
2. Environment .................................................................................62 

V. STUDY OF THE TRACK A ND ENGAGE PHASE ........................................63 
A. EFFECTIVENESS OF ADDED PSO GUIDANCE .............................64 

B. EFFECTS OF VARYI NG DETECTION RANGE  ..............................68 
C. EFFECTS OF THE HOLON OMICITY CONSTRAINT 

DURING TRACKING  ............................................................................69 
D. EFFECTS OF PROBABILI TY OF KILL  ............................................72 
E. EFFECTS OF KILL DIST ANCE ..........................................................78 
F. EFFECTS OF KILL SEQU ENCE .........................................................79 
G. URBAN OUTDOOR ENGAGEMENTS ...............................................82 
H. INDOOR ENGAGEMENTS ...................................................................84 
I.  EFFECTIVENESS OF ALV C GUIDANCE  .........................................88 
J. LIMITATIONS OF ALVC GUIDA NCE ..............................................90 

VI.  CONCLUSION ....................................................................................................93 
A. SUMMARY  ..............................................................................................93 
B. MAIN FINDINGS  ....................................................................................93 
C. RECOMMENDATIONS FOR FUTURE WORK  ................................95 

APPENDIX A.  SEARCH PHASE WITH LV C GUIDANCE  ....................................97 

APPENDIX B.  SEARCH PHASE WITH ALVC GUID ANCE ................................105 

APPENDIX C.  TRACK A ND ENGAGE PHASE WITH  LVC GUIDANCE  .........117 

APPENDIX D.  TRACK A ND ENGAGE PHASE WIT H ALVC GUIDANCE  ......133 

APPENDIX E. COORDINA TES FOR OUTDOOR OBSTACLES .........................151 

APPENDIX F. COORDINA TES FOR INDOOR OBSTACLES ..............................153 



ix 

LIST OF REFERENCES ..............................................................................................155 

INITIAL DISTRIBUTION  LIST  .................................................................................159 

 

  



x 

THIS PAGE INTENTIONALLY LEFT BLANK  



xi 

LIST OF FIGURES  

Figure 1. DoD Army UGV campaign plan. Source: U.S. Department of 
Defense (2011). ............................................................................................2 

Figure 2. DoD Army UGV capability timeline. Source: U.S. Department of 
Defense (2011). ............................................................................................2 

Figure 3. Functional decomposition of swarm combat UGV system. ........................5 

Figure 4. FFBD for swarm combat UGVs. .................................................................7 

Figure 5. �5�R�E�R�W���P�R�Y�L�Q�J���L�Q���D���³�O�D�Z�Q���P�R�Z�H�U�´���S�D�W�W�H�U�Q���W�K�U�R�X�J�K���W�K�H���F�H�O�O�V�����6�R�X�U�Fe: 
Galceran and Carreras (2013). ...................................................................10 

Figure 6. Broken up cells in the trapezoidal decomposition. Source: Galceran 
and Carreras (2013)....................................................................................11 

Figure 7. Assigned values for each cell using the wavefront algorithm. Source: 
Zelinsky et al. (1993). ................................................................................12 

Figure 8. Path of complete coverage using wavefront algorithm. Source: 
Zelinsky et al. (1993). ................................................................................12 

Figure 9. Agent surrounding cells. ............................................................................20 

Figure 10. �$�J�H�Q�W�¶�V���V�X�U�U�R�X�Q�G�L�Q�J���Y�L�V�L�W�H�G���D�Q�G���X�Q�Y�L�V�L�W�H�G���F�H�O�O�V�� .......................................21 

Figure 11. Surroundings visited, unvisited, and occupied cells. .................................22 

Figure 12. Surrounding cells with a non-holonomicity constraint of 90 degrees. ......23 

Figure 13. Surrounding cells with a non-holonomicity constraint of 90 degrees 
and obstacles. .............................................................................................23 

Figure 14. Illustrations of improved algorithm with non-holonomicity constraint 
of 90 degrees. .............................................................................................24 

Figure 15. Example of a swarm pursuing two Red agents. .........................................26 

Figure 16. Model simulation of Impossible City at Fort Ord, California (right) 
and Google map view (left). ......................................................................28 

Figure 17. Indoor floorplan of a room. ........................................................................28 

Figure 18. Effect of swarm size on area coverage. .....................................................29 



xii  

Figure 19. Average number of visits and number of cells for a swarm size of 10 
agents with 1,000 iterations. ......................................................................30 

Figure 20. Average number of visits and number of cells for a swarm size of 70 
agents with 1,000 iterations. ......................................................................31 

Figure 21. Effects of the maximum number of iterations on area coverage. ..............32 

Figure 22. Trajectory plot of 19 percent coverage for 20 agents on 200 
iterations. ....................................................................................................33 

Figure 23. Trajectory plot of 70 percent coverage for 20 agents on 1,000 
iterations. ....................................................................................................33 

Figure 24. Effects of swarm size on area coverage with iteration comparison. ..........34 

Figure 25. Estimated swarm size or number of iterations needed to achieve 
required area coverage. ..............................................................................35 

Figure 26. Various starting configurations. .................................................................36 

Figure 27. Snapshot of Corner starting configuration. ................................................36 

Figure 28. Snapshot of Center starting configuration. ................................................37 

Figure 29. Snapshot of Two-Corners starting configuration. ......................................37 

Figure 30. Snapshot of Four-Corners starting configuration. .....................................38 

Figure 31. Snapshot of Row starting configuration. ...................................................38 

Figure 32. Coverage of various starting configurations by swarm size. .....................39 

Figure 33. Coverage of various starting configurations by number of iterations 
(duration)....................................................................................................40 

Figure 34. Maximum and minimum distances between any two agents.....................41 

Figure 35. Effect of starting positions on coverage when incorporating collision 
avoidance. ..................................................................................................42 

Figure 36. Heat map comparison of 50 iterations for collision avoidance (left) 
and without collision avoidance (right). ....................................................43 

Figure 37. Non-holonomicity constraint of 90 degrees. ..............................................44 

Figure 38. Non-holonomicity constraint of 180 degrees. ............................................44 



xiii  

Figure 39. Non-holonomicity constraint of 270 degrees. ............................................44 

Figure 40. Non-holonomicity constraint of 90 degrees. ..............................................46 

Figure 41. Non-holonomicity constraint of 180 degrees. ............................................47 

Figure 42. Non-holonomicity constraint of 270 degrees. ............................................48 

Figure 43. No non-holonomicity angle constraint.......................................................49 

Figure 44. Effect on various non-holonomic angle constraints...................................50 

Figure 45. Effect of a non-holonom�Lcity constraint of 180 degrees and various 
starting configurations. ..............................................................................51 

Figure 46. Starting configurations of UGV agents for urban outdoor operations. ......52 

Figure 47. Effect of starting configuration on area coverage for urban operation. .....53 

Figure 48. Effect of non-holonomic angle restriction on area coverage for urban 
scenario. .....................................................................................................54 

Figure 49. Holonomic (left) versus non-holonomic drive with a 90-degree 
constraint (right).........................................................................................55 

Figure 50. Starting position (entrance) to the indoor environment. ............................57 

Figure 51. Effect of non-holonomic drive on area coverage for indoor 
operations. ..................................................................................................58 

Figure 52. Snapshot of the last 100 iterations of a simulated run using ALVC 
guidance. ....................................................................................................60 

Figure 53. Infinite circle loop around an unvisited square. .........................................61 

Figure 54. Effect of non-holonomic drive on the ALVC algorithm. ..........................61 

Figure 55. Comparison between results of LVC and ALVC algorithms for three 
environments. .............................................................................................62 

Figure 56. Starting configurations of Blue and Red forces for open space (left), 
outdoor (center), and indoor (right) urban operations. ..............................63 

Figure 57. Trajectory comparison between LVC (left) and PSO (right) guidance 
during the track and engage phase. ............................................................65 

Figure 58. Number of iterations needed for a battle with and without PSO 
guidance. ....................................................................................................66 



xiv 

Figure 59. Number of casualties with and without PSO guidance. .............................66 

Figure 60. ANOVA table for the number of iterations needed for a battle with 
and without PSO guidance. ........................................................................67 

Figure 61. Testing for significant different result. ......................................................67 

Figure 62. Number of iterations corresponding to various detection ranges. .............68 

Figure 63. Number of casualties corresponding to various detection ranges. .............69 

Figure 64. Comparison of holonomic and non-holonomic drive during tracking 
phase under PSO guidance.........................................................................70 

Figure 65. Snapshot of two consecutive iterations during tracking phase with a 
90-degree non-holonomicity constraint. ....................................................71 

Figure 66. Snapshot of two consecutive iterations during tracking phase with 
holonomic drive. ........................................................................................71 

Figure 67. Effects of time with fixed enemy offensive capability of 0.1 and 
varying UGV �D�J�H�Q�W�V�¶���R�I�I�H�Q�V�L�Y�H���F�D�S�D�E�L�O�L�W�\�� ...............................................72 

Figure 68. Effects of time with fixed enemy offensive capability of 0.5 and 
�Y�D�U�\�L�Q�J���8�*�9���D�J�H�Q�W�V�¶���R�I�I�H�Q�V�L�Y�H���F�D�S�D�E�L�O�L�W�\�� ...............................................73 

Figure 69. Effects of time with fixed enemy offensive capability of 0.9 and 
�Y�D�U�\�L�Q�J���8�*�9���D�J�H�Q�W�V�¶���R�I�I�H�Q�V�L�Y�H���F�D�S�D�E�L�O�L�W�\�� ...............................................73 

Figure 70. Effects on casualty rate with fixed enemy offensive capability of 0.1 
�D�Q�G���Y�D�U�\�L�Q�J���8�*�9���D�J�H�Q�W�V�¶���R�I�I�H�Q�V�L�Y�H���F�D�S�D�E�L�O�L�W�\�� .........................................74 

Figure 71. Effects on casualty rate with fixed enemy offensive capability of 0.5 
�D�Q�G���Y�D�U�\�L�Q�J���8�*�9���D�J�H�Q�W�V�¶���R�I�I�H�Q�V�L�Y�H���F�D�S�D�E�L�O�L�W�\�� .........................................75 

Figure 72. Effects on casualty rate with fixed enemy offensive capability of 0.9 
and varying UGV agen�W�V�¶���R�I�I�H�Q�V�L�Y�H���F�D�S�D�E�L�O�L�W�\�� .........................................75 

Figure 73. Effects of kill distance on number of iterations. ........................................78 

Figure 74. Effects of kill distance on number of casualties. .......................................79 

Figure 75. Effects of kill sequence on the number of iterations. .................................80 

Figure 76. Effects of kill sequence on the number of Blue force causalities. .............81 

Figure 77. Effects of kill sequence on the number of Red force causalities. ..............81 



xv 

Figure 78. Starting configuration for outdoor urban operation. ..................................82 

Figure 79. Effects on number of iterations with and without PSO guidance for 
outdoor operation. ......................................................................................83 

Figure 80. Effects on number of casualties with and without PSO guidance for 
outdoor operation. ......................................................................................84 

Figure 81. Starting configurations for indoor operation..............................................85 

Figure 82. Effects on number of iterations, with and without PSO guidance, for 
indoor operation. ........................................................................................86 

Figure 83. Effects on number of casualties, with and without PSO guidance, for 
indoor operation. ........................................................................................86 

Figure 84. Inability to avoid obstacles with low detection range (left) and high 
detection range (right). ...............................................................................87 

Figure 85. Effects of LVC with ALVC algorithms, with and without PSO 
guidance, on number of iterations. .............................................................89 

Figure 86. Effects of LVC with ALVC algorithms, with and without PSO 
guidance, on number of casualties. ............................................................90 

Figure 87. Limitations of the improved LVC algorithm in urban and indoor 
operations. ..................................................................................................91 



xvi 

THIS PAGE INTENTIONALLY LEFT BLANK  



xvii  

LIST OF TABLES  

Table 1. Technology areas that require growth to meet future capabilities of 
U.S. Army UGV campaign plan. Source: U.S. Department of 
Defense (2011). ............................................................................................3 

Table 2. Summary of search algorithms ..................................................................15 

Table 3. Comparison of the improvement (area coverage) in open space and 
outdoor urban environments with the effect of non-holonomicity 
constraint. ...................................................................................................56 

Table 4. Comparison of the improvement (area coverage) in open space and 
indoor environments with effects of non-holonomic constraint. ...............58 

Table 5. Simulation results for �2�G�4�\ �$ = 0.5 and �2�G�$�\ �4 = 0.9. .....................76 

Table 6. Summary of results for �2�G�4�\ �$ = 0.5 and �2�G�$�\ �4 = 0.9. ...................77 

Table 7. Summary of algorithms and input parameters investigated. ......................93 

 



xviii  

THIS PAGE INTENTIONALLY LEFT BLANK  



xix 

LIST OF ACRONYMS AND ABBREVIATIONS  

ACO Ant Colony Optimization 

ALVC Advance Least Visited Cell 

ANOVA Analysis of Variance 

DoD Department of Defense  

FFBD Functional Flow Block Diagram 

LSD Least Significant Difference  

LVC Least Visited Cell 

PSO Particle Swarm Optimization 

RS JPO  Robotic Systems Joint Project Office 

MM-UGV Multi Mission Unmanned Ground Vehicle 

UGV Unmanned Ground Vehicle 

 



xx 

THIS PAGE INTENTIONALLY LEFT BLANK  

  



xxi 

EXECUTIVE SUMMARY  

Fighting in urban areas is extremely complex and challenging due to the multi-story 

structures, new engagement conditions, as well as the consideration of civilian-military 

relations. Recent technological advancements have enabled the military to employ robotic 

platforms such as explosive ordinance disposal, heavy items loading, repairing ground 

conditions under fire, to help overcome operational challenges in the urban environment 

(Gage 1995). An emerging trend in the realm of military robotics is swarm robotics. Based 

on the unmanned ground systems roadmap report by the Robotic Systems Joint Project 

Office (RS JPO) of the U.S. Department of Defense (DoD) published in 2011, there are 

plans to develop armed UGVs with combat abilities within the next 25 years (Department 

of Defense 2011, 41).  

This thesis assesses the suitability of three algorithms (Table 1), the Least Visited 

Cell (LVC) guidance, the Advanced Least Visited Cell (ALVC) guidance, and the Particle 

Swarm Optimization (PSO) algorithm, in three different environments�• open space, 

outdoor, and indoor�• in meeting �D���8�*�9�¶�V mission of search and destroy. The mission of 

the UGV is broken down into two phases. The first phase is the search phase and its 

measure of effectiveness is area coverage. The second phase is the track and engage phase 

and its measures of effectiveness are the time (the number of iterations) required to end an 

engagement as well as the number of casualties for Blue and Red forces.  

Table 1.  Summary of input parameters investigated in this thesis. 

Phase Algorithm  Input Parameters 

Search 

LVC Number of UGV agents 
LVC Number of maximum iterations 
LVC Starting configuration 
LVC Collision avoidance constraints 
LVC, ALVC Non-holonomicity constraints 
LVC, ALVC Outdoor and indoor urban environments 

Track and Engage  

LVC, PSO Non-holonomicity constraints 
LVC, PSO Detection range 
LVC, PSO Probability of kill 
LVC, PSO Kill distance 
LVC, PSO Kill sequence 
LVC, ALVC, PSO Outdoor and indoor urban environments 



xxii  

The LVC guidance algorithm that is develop in this thesis works well for all three 

operations; open space, outdoor, and indoor urban operation. The introduction of the PSO 

algorithm further enhances and reduces the time taken to locate targets during the track and 

engage phase by approximately five times. Nonetheless, the PSO algorithm encounters 

difficulty in indoor operations where it is unable to overcome obstacles between the UGV 

agents and the detected enemy agent. As the PSO algorithm does not change the 

engagement sequence or probability of kill, it does not affect the number of causalities 

sustained. The ALVC guidance algorithm developed as an improvement to the LVC 

guidance works well and has a significant impact on area coverage, but only in the search 

phase. Similar to the PSO algorithm, the ALVC guidance algorithm�¶�V���L�Q�D�E�L�O�L�W�\ to overcome 

obstacles makes it unsuitable for outdoor and indoor urban operations. Thus, further 

modifications for the PSO and ALVC guidance algorithm is required. 

Analysis of the simulation results reveals that increasing the number of UGVs 

would assist in locating targets in a shorter period of time and would also lead to a higher 

probability of win in the track and engage phase. Analysis also shows that the availability 

of multiple entry points into the operational area is beneficial as it allows the UGVs to 

locate the enemy in less time. Further, results from the introduction of the non-

holonomicity constraint show that non-holonomic drive improves area coverage and thus 

allows the UGVs to locate targets in a shorter amount of time. The non-holonom�Lcity 

constraint, however, proves to be a disadvantage for UGVs tracking a moving target. It is 

more beneficial to increase detection range, as better situational awareness for the UGVs 

allows for earlier activation of the PSO algorithm, which would reduce the total 

engagement time.  

The three input parameters affecting the number of casualties are the probability of 

kill, kill distance, and kill sequence. The number of casualties of Blue forces increases or 

decreases depending on these three factors. Blue forces suffer fewer casualties with a 

higher probability of kill of Red forces, Blue forces require a longer kill distance, and Blue 

forces are first to engage in the battle.  
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In this thesis, modeling and simulations are done in MATLAB. The kinematics for 

all agents are defined in Equations (1) and (2), where �E represents iterations and �¿�T and �¿�U 

represent the change in the respective coordinates. 

; 1i j ij ij�� � �� �'P P P
(1) 

The concept of modeling follows a grid-based system in which the operational area 

is broken down into 100 by 100 cells. In each iteration, each agent would determine its 

next position by evaluating the immediate eight surrounding cells. Depending on the 

input parameters, such as non-holonom�Lcity drive behaviors and collision avoidance, and 

environment conditions, such as obstacles, some of the surrounding cells would be 

restricted. Depending on the algorithm choice, some of the unrestricted cells would be 

preferred over the others. Engagement between the UGV agents and the enemy agents was 

modeled as probability events.  
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I. INTRODUCTION  

A. BACKGROUND  

The global trend of urbanization that began after World War II continues to grow 

rapidly (Glenn ������������ �������� �,�Q�� ������������ ������ �S�H�U�F�H�Q�W���R�I�� �W�K�H�� �Z�R�U�O�G�¶�V�� �S�R�S�X�O�D�W�L�R�Q�� �U�H�V�L�G�Hd in urban 

areas, compared to only 30 percent in 1950, and the United Nations estimates that by 2050, 

that number will reach 66 percent (United Nations 2014). This global trend necessarily 

contributes to a shift in the characteristics of any future potential conflicts, and as a result, 

in the way urban warfare would be conducted. 

Fighting in urban areas is extremely complex and challenging. The third dimension 

in urban areas, such as subterranean and multi-story structures, affects the line of sight and 

engagement conditions, thus increasing the complexity of the environment. In addition, the 

presence of civilians introduces constraints, such as reduced air or artillery support for 

ground troops, to minimize non-combatant causalities and collateral damage. The 

complexity of the environment requires better situational awareness, equipment, and 

training to overcome these challenges.  

Technological advancements in recent years have equipped armed forces to meet 

these challenging demands. Such advancements include military robotic platforms, which 

are now frequently employed by troops for explosive ordinance disposal, loading and 

carrying heavy items, and repairing ground conditions under fire (Gage 1995). 

Furthermore, according to the 2011 unmanned ground systems roadmap report by the 

Robotic Systems Joint Project Office (RS JPO) of the United States Department of Defense 

(DoD), there are plans to develop armed unmanned ground vehicles (UGV) with combat 

abilities within the next 25 years (Department of Defense 2011, 41). Figure 1 shows a 

variety of the UGVs being developed. 

One of the emerging concepts that the RS JPO is actively tracking is the Multi-

Mission Unmanned Ground Vehicle (MM-UGV). MM-UGVs possess armed unmanned 

capability as well as the capability to deal with improvised explosive devices. As seen in 
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Figure 2, full autonomy for an unmanned combat ground vehicle such as the MM-UGV is 

a far-term capability anticipated by the U.S. Army.  

 

Figure 1.  DoD Army UGV campaign plan. Source: U.S. Department of 
Defense (2011). 

 

Figure 2.  DoD Army UGV capability timeline. Source: U.S. Department of 
Defense (2011). 
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To meet the future capabilities requirement as identified in the U.S. Army UGV 

campaign plan (Figure 1), unmanned ground vehicles require further technological 

advancement. Table 1, which is drawn from the RS JPO report, summarizes the technology 

growth needed.  

Table 1.   Technology areas that require growth to meet future capabilities of 
U.S. Army UGV campaign plan. Source: U.S. Department of 

Defense (2011). 

Priority  Technology Area 

1 Autonomy 

1 Obstacle detection and Avoidance 
2 Interoperability 
2 Commonality 
3 Increased NLOS and LOS capability (COMS) 
3 Improved Culvert Interrogation Ability 
4 Frequency Spectrum Adaptability 
5 Extended Mission Duration 
6 COMSEC Encryption Capability 
6 Net-Ready KPP 
7 Common Controller 
8 Improved Optics 
9 Health Management System 
10 Render Useless Mechanism 
11 Layered, Escalating Defense Mechanisms 
12 Audio Directional Detection 
13 Explosive Detection 
14 Embedded Training Capability 
15 Location Reporting 
16 Integrated Tool Kit 
17 Dismounted Mission Enabling Robotics 

 

For the micro- and nano-bots depicted in Figure 1, swarming is considered to be 

one of the most promising capabilities to be developed, according to Vasily Kashin of the 

Higher School of Economics in Moscow and �D�Q�� �H�[�S�H�U�W�� �R�Q�� �&�K�L�Q�D�¶�V�� �P�L�O�L�W�D�U�\��(Feng and 
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Clover 2017). Swarm intelligence is an artificial intelligence discipline that consists of a 

multi-agent system that takes inspiration from the behavior of colonies of social insects 

and animal societies, such as flocks of birds or schools of fish (Blum and Li 2008, 43). The 

word �³swarm�´��is an appropriate word because it has special characteristics not found in 

related terms such as �³group��� ́ The three key special characteristics of a swarm are 

decentralized control, lack of synchronicity, and the simplicity and homogeneity of the 

swarm; additionally, the �V�Z�D�U�P�¶�V algorithms run in an asynchronous and decentralized 

fashion (Beni 2004, 2). 

This thesis explores the area of UGV autonomy, investigating the effects of 

kinematics inputs�• such as movement behavior, swarm size, detection range�• and 

engagement inputs�• such as sensors and weapon range�• with an assumption that the 

hardware and software capabilities requirements mentioned previously are met. 

B. OBJECTIVES 

This thesis aims at developing and testing swarming algorithms as applied to 

combat UGVs to execute a search and destroy mission in an urban environment. The search 

phase of the mission focuses on exploring a given area in order to find all potential threats. 

The track and engage phase focuses on eliminating these threats. Furthermore, the thesis 

addresses three algorithms�• the Least Visited Cell (LVC) guidance, the Advanced Least 

Visited Cell (ALVC) guidance, and the Particle Swarm Optimization (PSO)�• developed 

for both outdoor and indoor environments in an urban area.  

C. RESEARCH QUESTIONS 

In order to meet the thesis objectives, this thesis strives to answer three critical 

questions:  

�x Is the algorithm developed suitable for the swarm of UGVs to achieve its 

mission? 

�x What are the strengths and weaknesses of the algorithms used in this 

thesis? 
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�x What are the factors that affect the UGV �V�Z�D�U�P�¶s ability to achieve its 

mission? 

D. SCOPE 

In order to gain a holistic view of and insights on the UGV �V�Z�D�U�P�¶s system, a 

simple functional analysis at the engineering conceptual design level was conducted using 

the systems engineering approach. 

1. Functional Analysis and Allocation 

A functional analysis on the UGV combat swarm was performed to determine what 

the system needs to do. This analysis is depicted in Figure 3 and explained in more detail 

in the subsequent paragraphs. 

 

Figure 3.  Functional decomposition of swarm combat UGV system. 

(1) Move 

First, the system requires the swarm of UGVs to move in the area of operation. In 

order to do that, the system needs the ability to compute �W�K�H���V�Z�D�U�P�¶�V��current as well as its 

next position. It also needs to produce a force for motion in order to physically move itself. 



6 

(2) Sense 

The system needs to be able to sense its surroundings. The sub-level of this function 

would be to detect obstacles so as not to collide with them, detect the enemy for 

engagement, and detect other UGVs for collision avoidance as well as for computation of 

�W�K�H���V�Z�D�U�P�¶�V��next position. An important sub-level of detecting the enemy is the ability to 

discern its status as dead or alive. 

(3)  Engage 

A main purpose for the swarm UGV is to take down the enemy. To do that, each 

UGV within the swarm must be able to shoot. A sub-level of the shoot function includes 

computing range and aiming point. In the event that the shot failed, the swarm must be able 

to continue to pursue the enemy and continue to shoot. 

(4) Communicate 

For an algorithm such as the Particle Swarm Optimization (PSO) algorithm to work, 

the swarm must have the ability to communicate information such as its own position and 

the position of its target. In addition, information of visited locations would assist in an 

effective algorithm. 

2. Functional Flow Block Diagram 

The functional flow block diagram (FFBD) is shown in Figure 4. This process is 

categorized into two phases: search, and track and engage. The search phase focuses on the 

maneuvers of the swarm in order to find the enemy. The track and engage phase focuses 

on eliminating the enemy after the swarm has successfully found the enemy. 
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Figure 4.  FFBD for swarm combat UGVs. 

This thesis focuses on the creation and discussion of algorithms for both operation 

phases highlighted in the FFBD diagram in Figure 4 and offers insights on the input 

parameters from the research model. This thesis does not discuss hardware and software 

capabilities of the UGVs themselves.  

E. ASSUMPTIONS 

As such, the assumptions made for this thesis are as follows.  

�x The UGVs are able communicate with each other and will not experience 

any information delay or distortion. 

�x The UGVs are able to correctly identify obstacles, UGVs, and enemies all 

the time. 

�x There are no positional errors for UGVs and the �H�Q�H�P�\�¶�V��location or 

positions. 

Although these assumptions might not accurately reflect conditions in the real 

world, they allowed the author to simplify the model so as to gain insights into the 

algorithm built. 
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II.  LITERATURE REVIEW  

This chapter details the review of literature from previous studies conducted by 

scholars and researchers. The chapter starts by reviewing various search algorithms for the 

search phase, followed by a consideration of the two-swarm optimization approach for the 

track and engage phase. Thereafter, existing applications of swarm algorithms and UGVs 

sensors and movement are discussed briefly. 

A. SEARCH ALGORITHM S 

Search algorithms are generally classified into exhaustive and heuristic search 

types. The exhaustive search algorithm explores all the possible options in the network 

during its execution to find the solution, and as such, it is time consuming. The heuristic 

search algorithm employs rules at every branching step and, in contrast to the exhaustive 

search algorithm, often includes some form of randomization to find the solution. In the 

case of coverage, exhaustive search guarantees complete coverage of the free space while 

the heuristic search approach does not. In short, heuristic approaches often trade accuracy 

for speed. 

1. Exhaustive Search 

A common exhaustive search is the classical exact cellular decomposition. This 

method breaks the examined space into strips called cells and proceeds to cover these cells 

via simple motions like �³lawn mower�  ́pattern (Galceran and Carreras 2013, 3). As shown 

in Figure 5, the space is broken down into six cells (vertical strips) and coverage would be 

complete after the robot finish�H�G�� �L�W�V�� �³�O�D�Z�Q�� �P�R�Z�H�U�´ pattern. Two popular cellular 

decomposition approaches that incorporate obstacle avoidance are discussed next. 
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Figure 5.  Robot moving in a �³�Oawn mowe�U�´ pattern through the cells. 
Source: Galceran and Carreras (2013). 

a. Trapezoidal Decomposition 

Galceran and Carreras (2013) mention that the cellular decomposition technique is 

simple and able to yield a complete solution. As shown in Figure 6, each cell is broken up 

into a trapezoid shape once the robot encounters an obstacle and merges the cell once the 

robot gets past the obstacle, and in this case, 12 cells are generated and complete coverage 

is achieved once all cells are visited (Galceran and Carreras 2013, 3). They also mention 

the drawback of this technique is that it requires many back and forth motions to achieve 

completeness as well as requires the obstacle to be polygonal. 
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Figure 6.  Broken up cells in the trapezoidal decomposition. Source: 
Galceran and Carreras (2013). 

b. Boustrophedon Decomposition  

Choset�¶�V (2000) work on boustrophedon cellular decomposition is an improvement on 

the trapezoidal cellular decomposition. Compared to the trapezoidal decomposition technique, 

his work is able to reduce the number of overlapping motions by setting critical points to mark 

the start and end of an obstacle and therefore reduce the number of cells. For example, for the 

case shown in Figure 6, the critical points would be at C1 and C8. Thus, C2, C4, and C6 and 

C3, C5, and C7 would be a single cell instead of three.  

c. Grid-based Coverage using the Wavefront Algorithm 

�$�F�F�R�U�G�L�Q�J�� �W�R�� �*�D�O�F�H�U�D�Q�� �D�Q�G�� �&�D�U�U�H�U�D�V�� ���������������� �³Grid-based methods use a 

representation of the environment decomposed into a collection of uniform grid cells�  ́(13). 

They mention that grid cell are most commonly represented by a square; however, a 

different grid cell type, such as triangles or trapezoids, can also be used. 

Zelinsky et al. (1993) work on grid-based coverage using the wavefront algorithm. 

This method assigns a specific number to each grid cell based on the distance between the 

start and goal cell, which is known. As seen in Figure 7, the nearest cells to the goal are 

assigned lower values, while the furthest cells are assigned higher values.  
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Figure 7.  Assigned values for each cell using the wavefront algorithm. 
Source: Zelinsky et al. (1993). 

As shown in Figure 8, the path is created by selecting the unvisited neighboring cell 

with the highest value. A random decision would be made if there are two unvisited 

neighboring cells with same highest value.  

 

Figure 8.  Path of complete coverage using wavefront algorithm. Source: 
Zelinsky et al. (1993). 

Zelinsky et al. (1993) also presented a second distance transform generation using 

a new cost function instead of full coverage in order to find the shortest path. In this case, 
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the path is selected based on the lowest value instead of the highest. The advantage of the 

grid-based method for coverage is simplicity of implementation; however, this method 

suffers from memory issues as the environment gets larger and more complex (Galceran 

and Carreras 2013, 13). 

2. Heuristic Search 

The heuristic search algorithm is an approach that employs rules at every branching 

step and often includes some form of randomization in attempting to reach a solution. Two 

common heuristic search algorithms discussed in this section are the greedy and swarm 

algorithms. 

a. Greedy Algorithm 

A popular and well-�N�Q�R�Z�Q�� �K�H�X�U�L�V�W�L�F�� �V�H�D�U�F�K�� �L�V�� �W�K�H�� �J�U�H�H�G�\�� �D�O�J�R�U�L�W�K�P���� �&�K�D�U�O�L�H�U�¶�V��

(1995) report on the greedy algorithms class states that the greedy algorithm must satisfy 

two conditions. One, the algorithm has to construct the solution step by step. Two, at each 

step, the best possible local choice is made. Its aim is to find a global optimum by 

performing a succession of local optimizations. In many cases, the greedy algorithm does 

not produce a global optimal solution. Nevertheless, a relatively approximate solution 

(locally optimal solution) could be found in a reasonably shorter period of time.   

b. Swarm Algorithm 

Blum and Li (2008) recognize Ant Colony Optimization (ACO) and Particle Swarm 

Optimization (PSO) as the two notable swarm intelligence techniques for producing 

approximate solutions in a reasonable computation time period. 

(1) Ant Colony Optimization 

Dorigo et al. (1996) introduce ACO based on the behavior of ants in which they 

leave traces (pheromones) as they mark the route for their colony. The work of Goss et al. 

(1989) on the double bridge demonstrates an optimization method for finding the shortest 

path. Initially, the ants would explore both the long and the short bridges to a food source. 

Since the ants that took shorter bridge return to the colony faster than those on the longer 
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path, more pheromones are laid on the shorter path, hence encouraging the other members 

of the ant colony to use the shortest path. The limitation in this optimization method, as the 

paper noted, is that once a path is established, the introduction of a new bridge would not 

be explored due to the overwhelming number of pheromones existing in the original chosen 

path (Goss et al. 1989). This would prove to be a huge limitation in the context of this 

thesis as the objective (enemy) is constantly moving. 

(2) Particle Swarm Optimization 

Kennedy and Eberhart�¶�V (1995) work on particle swarm optimization (PSO) is a 

popular algorithm for swarm research. The two main component methodologies for this 

work correspond to artificial life, such as bird-flocking or fish-schooling, as well as work 

on genetic algorithms and evolutionary programming (Kennedy and Eberhart 1995). To 

explain the essence of the PSO algorithm, let us assume that each agent evaluates its current 

distance from {���T�á�U } = [100,100] point. An important factor to note is that the agents 

require an objective in order to be able to evaluate their position. 

 

 �'�R�=�HL��¥�:�TF�s�r�r�;�6 E��¥�:�UF�s�r�r�;�6 (1) 

 

�7�K�H�� �3�6�2�� �F�R�Q�F�H�S�W�� �L�V�� �W�K�H�Q�� �W�R�� �F�K�D�Q�J�H�� �W�K�H�� �D�J�H�Q�W�¶�V�� �Y�H�O�R�F�L�W�\�� ���8�Ü) at every time step 

towards its personal best position (Pbest) and global best position (Gbest). 

  

�8�ÜL���8�Ü�?�5 E�>�#�?�?�A�H�A�N�=�P�E�K�J�������:�4�=�J�@���K�B���r���P�K���s�;���ä�:�2�>�A�O�PF�%�Q�N�N�A�J�P���L�K�O�E�P�E�K�J�;�?

E���>�#�?�?�A�H�A�N�=�P�E�K�J�������:�4�=�J�@���K�B���r���P�K���s�;���ä�:�)�>�A�O�PF�%�Q�N�N�A�J�P���L�K�O�E�P�E�K�J�;�? 
(2) 

 

In Equation (2), Pbest is defined as the closest position from the goal that a 

particular agent has been and Gbest is the closest position from the goal that any agent has 

been. At any one time, there would be an agent whose Pbest is the Gbest. Acceleration 

represents the weight that pulls each agent towards the Pbest and Gbest. 

The research of Shi and Eberhart (1998) improves the PSO algorithm by 

introducing inertia weight (�+) to act as a constraint to control the global exploration ability 

of an agent. 
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�8�ÜL���+���ä�8�Ü�?�5 E�>�#�?�?�A�H�A�N�=�P�E�K�J�������:�4�=�J�@���K�B���r���P�K���s�;���ä�:�2�>�A�O�PF�%�Q�N�N�A�J�P���L�K�O�E�P�E�K�J�;�?

E���>�#�?�?�A�H�A�N�=�P�E�K�J�������:�4�=�J�@���K�B���r���P�K���s�;���ä�:�)�>�A�O�PF�%�Q�N�N�A�J�P���L�K�O�E�P�E�K�J�;�? 
(3) 

 

The advantages of PSO are that it is simple, having very few parameters to adjust. 

It is effective and works well in a wide variety of applications. Thus, PSO seems to be a 

viable option in the context of this thesis for a swarm of UGVs moving towards an enemy 

once it is located.  

3. Summary of Search and Swarm Optimization Algorithm s Used in this 
Research 

Table 2 shows a summary of the search algorithms discussed previously.  

Table 2.   Summary of search algorithms 

Category Approach Advantages Disadvantages 

Exhaustive 
Search 

Trapezoidal 
Decomposition 

Simple and easy to 
implement. 

Requires knowledge of 
environment. 
Might not work well in dense 
environment with complex 
structures. 

Boustrophedon 
Decomposition 

Reduced processing 
time compared 

Grid-based 
Wavefront 
Algorithm 

Simple and easy to 
implement. 

Requires knowledge of 
environment. 
Suffer from exponential 
growth of memory usage as 
environment becomes 
complex. 

Heuristic 
Search 

Greedy 
Algorithm 

Simple and easy to 
implement. 

Might not find global optimal 
solution. 

Heuristic 
Search 
(Swarm 
Optimization) 

Ant Colony 
Optimization 

Able to find local 
optimal solution in a 
short time. 

Poor ability to adapt or 
change route. 
Does not work for moving 
objective. 

Particle Swarm 
Optimization 

Able to find local 
optimal solution in a 
short time. 
Works for moving 
objective. 

Easy to fall into local optimal 
solution. 

 



16 

For the purposes of this thesis focusing on a search and destroy mission, the 

complexity of finding a moving target mitigates the main disadvantage of a heuristic search 

not being able to locate the global optimal solution. Thus, the heuristic search approach 

might yield better results in a shorter time. Furthermore, full knowledge of the environment 

in many scenarios, especially for this research, is unrealistic. Even if a blueprint of the area 

of operations is available, it cannot depict all the potential obstacles, natural or man-made, 

in any urban environment. As such, the exhaustive search algorithm is not suitable.  

Although the Grid-based Wavefront algorithm is not suitable either, as shown 

previously, this thesis does employ a grid-based concept for the foundation of the 

developed algorithm because of its potential and simplicity. For the search phase, the 

greedy algorithm based on a grid concept is employed. 

For the track and engage phase, this thesis employs the PSO algorithm instead of 

the ACO algorithm. ACO was rejected because of the algor�L�W�K�P�¶�V��lack of flexibility to 

change objectives once it establishes a path. However, the concept of pheromones from the 

ACO algorithm is employed together with the greedy algorithm in the search phase in order 

explore the least visited areas.  

B. APPLICATIONS  OF SWARM ALGORITHM S 

Quite a few research studies have been conducted to develop swarming algorithms 

and assess their effectiveness in a variety of possible real-world applications. Among these 

studies, the PSO algorithm emerged as one of the simplest and yet effective ones. For 

example, the implementation of PSO to fine-tune a profile-matching algorithm to learn 

�X�V�H�U�V�¶���S�U�H�I�H�U�H�Q�F�H�V���D�Q�G���P�Dke suggestions in E-commerce was studied (Ujjin and Bentley 

2003). This research concluded that in the majority of cases, the PSO system obtained 

better prediction accuracy than non-adaptive approaches �V�X�F�K�� �D�V�� �J�H�Q�H�W�L�F�� �D�Q�G�� �3�H�D�U�V�R�Q�¶�V��

algorithms. 

In another study, a PSO-based image clustering method was developed and 

compared with K-means, fuzzy C-means, K-harmonic means, and genetic algorithm 

approaches (Omran et al. 2005). Experimental results provided in this study showed that 
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the PSO image classifier produced better results than the other image classifiers for all 

measured criteria. 

In a similar domain, another swarm algorithm, Ant Colony Clustering, was 

employed to discover Web usage patterns. The empirical results demonstrated that the 

ACO algorithm performed well compared to a self-organizing map neural network 

(Abraham and Ramos 2003). Swarm algorithms have also been used for forecasting. For 

example, the ACO approach was used to estimate energy demand (Toksari 2007). For the 

same problem, a combined ACO-PSO model was also developed (Ünler 2008). 

C. MACHINE VISION  

In order for a UGV to perform its tasks, it requires the ability to sense and gain 

situational awareness through the inputs of its sensors. Vision, among all the other senses, 

undoubtedly provides the most data and is most appropriate in this context. According to 

the unmanned ground systems roadmap report by the Robotic Systems Joint Project Office 

of the DoD (2011), the image sensors for UGVs currently operate in three spectrums; 

visible, near infrared, and thermal infrared (Department of Defense 2011, 28). This 

roadmap reports that from 2009 to 2011, significant improvements in technology related 

to image sensors and vision capabilities have been fostered by research and development 

within both the United States government and industry in various critical areas:  

�x Demonstrated obstacle detection and avoidance, visual odometry, lane 

detection, and sensor fusion 

�x Investigated stereoscopic vision and terrain classification technologies 

�x Matured vision-based navigation and learning technologies 

�x Matured vision technologies that enable UGVs to safely operate within 

urban environments among humans, animals, and vehicles (U.S. 

Department of Defense 2011, 29) 

This roadmap also describes future developments the DoD plans to pursue. In the 

short term, it aims to improve imaging in order to increase the number of pixels for more 

image detail or wider field of view to include 360-degree images. Since the publication of 
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the 2011 roadmap, not only have 360-degree field of view cameras been developed, they 

have become so affordable that they have been launched as consumer products. An article 

written by Goldman (2016) on CNET reviews ten of these cameras and their prices for 

consumers in 2016, which signals the prospect of rapid success in technological 

�D�G�Y�D�Q�F�H�P�H�Q�W�V���U�H�T�X�L�U�H�G���I�R�U���W�K�H���U�R�D�G�P�D�S�¶�V���S�U�R�S�R�V�H�G���J�R�D�O�V��  

D. HOLONOMIC BEHAVIOR  

In robotics, holonomic drive refers to the relationship between controllable and 

total degrees of freedom of a vehicle. If the controllable degree of freedom is equal to total 

degrees of freedom, then the robot is said to be holonomic (Robot Platform n.d.). 

According to Morin and Samson (2004), the control of non-holonomic vehicles is a very 

active research field because automated wheeled vehicles are now envisioned for use in 

daily life and the military. 

Naffin and Sukhatme�¶�V (2004) work studies the problem of assembling and 

maintaining formations of robot. Their approach was to dynamically create a formation 

from wandering individual robots by establishing and negotiating protocols and rules when 

the robots encounter each other. The four objective formations of choice for their study 

were the column, line, wedge, and diamond, and the three metrics used to determine 

performance were positional error, duration of time required to form the required 

formation, and duration of time the formation could be maintained. Their result shows that 

compared to robots with non-holonomic drives, robots equipped with holonomic drives 

were able to get together in three out of the four formations in the study. This field of work 

is related to this thesis topic in terms of UGV motion and the insights gained from the 

effects of non-holonomic and holonomic drive, and can act as a good data reference for 

this thesis.  
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III.  MODELING  

This chapter discusses several aspects of urban environment engagement modeling 

starting from modeling motion primitives in the open-space obstacle-free environment and 

gradually proceeding to the specifics of the track and engage phase modeling. 

Hereinafter, the UGV swarm executing the mission is referred to as the Blue forces, 

while the threats are referred to as the Red forces. Simulations are bounded by the following 

assumptions: 

�x Blue agents are able communicate with each other without any 

information delay or distortion. 

�x Blue agents are able to correctly identify obstacles, other Blue and Red 

agents. 

�x The starting position for the Blue forces is fixed to several feasible 

options, dependent on the actual urban environment. 

�x �(�U�U�R�U�V���L�Q���H�V�W�L�P�D�W�L�Q�J���D�J�H�Q�W�V�¶���S�R�V�L�W�L�R�Q�V���D�U�H���Q�H�J�O�L�J�L�E�O�H�� 

�x Blue agents are in the offensive mode while Red agents are in defensive 

posture. 

A. MOTION PRIMITIVES  

Without loss of generality, agent motion is considered to be conducted along the 

edges of the grid. In all simulations of this paper a square 100-by-100 cell grid was used 

���D�F�W�X�D�O�� �J�U�L�G�� �V�L�]�H�� �G�H�S�H�Q�G�V�� �R�Q�� �W�K�H�� �D�U�H�D�� �W�R�� �F�R�Y�H�U�� �D�Q�G�� �D�J�H�Q�W�V�¶�� �P�R�E�L�O�L�W�\������ �:�L�W�K��  

representing the current (ith iteration) two-dimensional cell position of the jth agent, their 

kinematics are defined as 

 ; 1i j ij ij�� � �� �'P P P  (4) 
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The assumptions are that 

�x distance traveled per iteration for each agent is limited to its eight 

surrounding cells so that the change in x or y coordinates is either 1 or 0 

(Figure 9); 

�x each agent is able to broadcast and receive its coordinates as well as keep 

track of the previously visited cells (maintain visitation map); and 

�x simulation scoring is based on the status of Blue and Red agents (either 

dead or alive). 

At each iteration, every Blue agent determines its next position by evaluating the 

immediate surrounding cells (Cells 1 to 8), as shown in Figure 9, and randomly picking 

one of them. 

 

Figure 9.  Agent surrounding cells. 

The velocity vector is then computed based on the change in the x and y coordinates 

  (5) 

where kt is some scaling factor that can be used to account for the physical size of the cell 

and number of interactions representing one second (kt = 1 means that velocity components 

are expressed in cells per iteration). 
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Compared to the Blue agents pursuing an exploration or elimination objective 

(based on the phase of engagement) and therefore moving around, the Red agents are in a 

defensive posture and are likely not to move around too much. Hence, while maintaining 

the same kinematics, the Re�G�� �D�J�H�Q�W�V�¶�� �Q�H�[�W�� �S�R�V�L�W�L�R�Q�� �L�V�� �G�H�W�H�U�P�L�Q�H�G�� �U�D�Q�G�R�P�O�\�� �D�P�R�Q�J�� �L�W�V��

surrounding obstacle-free cells. 

B. MOTION CONSTRAINTS  

In this chapter, the motion constraints of two guidance algorithm, Least Visited Cell 

Guidance and Advance Least Visited Cell guidance, that was developed for this thesis 

would be discussed. 

1. Least Visited Cell Guidance 

To achieve the maximum coverage of the area of operations while searching for 

Red agents, the Blue agents employ the Least Visited Cell (LVC) guidance. This guidance 

dictates for each Blue agent to access eight surrounding cells, identifying those that have 

been visited by itself or other agents. Each Blue agent then randomly selects one of the 

unvisited cells as a next move. For example, in the situation shown in Figure 10, any one 

of Cells 2, 3, 6, or 8 would randomly be selected as �D���%�O�X�H���D�J�H�Q�W�¶�V��next designation. In the 

event that all surrounding cells have been visited already, the agent randomly selects one 

of them. 

 

Figure 10.  �$�J�H�Q�W�¶�V���V�X�U�U�R�X�Q�G�L�Q�J���Y�L�V�L�W�H�G���D�Q�G���X�Q�Y�L�V�L�W�H�G���F�H�O�O�V. 
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a. Collision Avoidance 

Collision avoidance is modeled in such a manner that a UGV agent cannot move to 

a cell that is occupied by other agents. The cell that is occupied by other agents would not 

be considered as a possible designation. The logic for the remaining cells would follow the 

sequence described in the preceding paragraph. For example, in Figure 11, either Cell 2 or 

Cell 6 would randomly be selected as �W�K�H���D�J�H�Q�W�¶�V��next designation. In an event that all cells 

are occupied, the agent would remain in its current position until a cell is unoccupied.  

 

Figure 11.  Surroundings visited, unvisited, and occupied cells. 

b. Non-Holonomicity Constraint 

Another constraint is imposed to represent a particular vehicle dynamics. While 

some UGVs may be holonomic, meaning that they can move in any direction at any 

instance of time, other UGVs are not holonomic and have certain turn rate limitations. The 

choice of a particular dynamic is modeled using a non-holonomicity constraint limiting the 

direction of the age�Q�W�¶�V��next move relative to the direction of the previous move. For 

example, Figure 12 shows a situation of imposing a 90-degree non-holonomicity constraint 

limiting the �8�*�9�¶�V��next move to just three cells (corresponding to the maximum turn rate 

of ±45 degrees per iteration). In this particular situation, the agent would pick Cell 4 as its 

destination. In the event where Cells 2, 3, and 4 are visited, the agent would randomly 

select among them. 
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Figure 12.  Surrounding cells with a non-holonomicity constraint of 90 
degrees. 

c. Obstacles 

Similar to collision avoidance, obstacles such as boundaries or building walls are 

programmed as occupied cells and the UGV agent would not be able to move to those cells. 

For example, in Figure 13, the agent would select Cell 4 as its designation as Cells 1, 2, 

and 8 are the map boundaries; Cell 3 is occupied; and Cells 5, 6, and 7 are restricted because 

of the non-holonomicity constraint of 90 degrees.  

 

Figure 13.  Surrounding cells with a non-holonomicity constraint of 90 
degrees and obstacles. 

2. Advanced Least Visited Cell Guidance  

Advanced Least Visited Cell (ALVC) guidance is a modification of LVC guidance 

aimed at achieving better performance. According to ALVC guidance when all the 
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surrounding cells are visited, instead of randomly choosing a cell as its designation, the 

UGV agent extends its search scope beyond its immediate surrounding cells until it finds 

an unvisited cell. Its designation among the eight cells would be prioritized based on the 

direction of the nearest unvisited cell identified. Figure 14 shows two illustrations of a 

UGV agent with a non-holonomicity constraint of 90 degrees. In both illustrations, after 

the closest unvisited cell is identified, Cell 5 is given priority 1, followed by Cells 4 and 6 

assigned priority 2, Cells 3 and 7 assigned priority 3, followed by Cells 2 and 8 assigned 

priority 4. Finally, the last priority is assigned to the cell in the opposite direction from the 

target. To illustrate, on the left side of Figure 14, as there are no obstacles or other agents 

in the surrounding cells, the UGV agent would select either Cell 4 or Cell 6 (priority 2) as 

its designation as Cell 5 (priority 1) cannot be accessed due to the non-holonomicity 

constraint. In the example on the right side of Figure 14, the UGV agent would select Cell 

3 (priority 3) as its designation because all priority 1 and 2 designations are restricted. The 

entire process repeats itself once 100 percent area coverage is achieved. 

 

Figure 14.  Illustrations of improved algorithm with non-holonomicity 
constraint of 90 degrees. 
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C. PARTICLE  SWARM OPTIMIZATION  

Once the track and engage phase of the mission is triggered, the Blue forces 

exercise the Particle Swarm Optimization (PSO) algorithm�����,�Q���W�K�L�V���F�D�V�H�����W�K�H���%�O�X�H���D�J�H�Q�W�V�¶��

velocity vectors are computed according to Equation (6) (Shi and Eberhart 1998): 

  (6) 

In this equation, the first term on the right-hand side is responsible for global search 

�D�E�L�O�L�W�\���Z�L�W�K���W�K�H���³�L�Q�H�U�W�L�D�´���Z�H�L�J�K�W �S�ÂL �s, the second (cognition) term represents the private 

thinking of each agent trying to steer towards an individual best position from the past, 

�þ�Ü�Ý
�Õ�Ø�æ�ç, and the third (social) term represents collaboration among all agents accommodating 

the knowledge of the best global position with respect to the detected Red agent, �õ�Ü
�Õ�Ø�æ�ç 

(where �õ�Ü
�Õ�Ø�æ�ç is one of the position vectors �þ�Ü�Ý

�Õ�Ø�æ�ç closest to the detected Red agent). The 

�4�=�J�@�Ü�Ý��and �4�=�J�@�Ü�Ý are two random generators in the range [0;1] and the weighting 

coefficients �S�T and �S�K are chosen to be 2 to make the average weight of the second and 

third terms to be 1 (Shi and Eberhart 1998). 

Once the track and engage phase is triggered, the values of �þ�Ü�Ý
�Õ�Ø�æ�ç are chosen 

between the current and previous position by evaluating their distance from the Red agent 

that was detected. The cell position vector for the jth agent is computed as: 

  (7) 

The PSO guidance goal is to steer the swarm towards a detected Red agent to 

increase the overall probability of kill, while still searching the area for other Red agents. 

In an event that two or more Blue agents encounter different Red agents and these 

Blue agents are equidistant from their detected Red agents, there will be two �õ�Ü
�Õ�Ø�æ�ç 

positions, hence two goals. In this case each swarm agent adopts the �õ�Ü
�Õ�Ø�æ�ç of the Blue 

agent closest to it. This splits the swarm allowing it to pursue two or more Red agents at 

the same time, as seen in the example shown in Figure 15. Muhammad Raza (2018) wrote 

a MATLAB script for particle swarm optimization that is referenced in this thesis. 
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Figure 15.  Example of a swarm pursuing two Red agents. 

During the track and engage phase (PSO guidance), the algorithm can switch back 

to the search phase (LVC guidance) in the case of one of the following three events: 

�x The Blue agents lose track of the Red agent(s) because of the Red agent�¶s 

maneuvers. 

�x The Blue agent tracking the Red agent is eliminated (killed). 

�x The Red agent that is being tracked is eliminated. 

D. ENGAGEMENT RULES  

Engagement between the Blue and Red agents is modeled as a probability event 

defined by five varied parameters: 

�x Detection range, �@�×
�»�\ �Ë   

�x Engagement range, �@�Þ
�»�\ �Ë and �@�Þ

�Ë�\ �», respectively 

�x Offensive capability, �2�Þ
�»�\ �Ë and �2�Þ

�Ë�\ �», respectively 



27 

The nominal values are �@�×
�»�\ �Ë L �w���?�A�H�H�O, �@�Þ

�»�\ �Ë L �s���?�A�H�H, �@�Þ
�Ë�\ �» L �t���?�A�H�H�O, and 

�2�Þ
�»�\ �Ë L �2�Þ

�Ë�\ �» L �r�ä�s. If one of the Blue agents comes closer than �@�×
�»�\ �Ë to any Red agent, 

the track and engage phase of the mission is triggered. 

At each iteration when agents are within their respective engagement range, a 

random number from zero to one is generated. If this number happens to be less than the 

corresponding probability of kill, it is considered as a successful kill. 

The Red agent always has a priority to shoot first. The reason for the Red forces to 

strike first is that in the considered scenario the Red forces are in a defensive position and 

likely to spot the Blue agent first. The difference in the engagement distance is caused by 

the same consideration. 

E. OPERATIONAL ENVIRONM ENT  

The modeling aspect of the three operational environments, open space, outdoor as 

well as indoor urban environment would be discussed in this section.  

a. Open Space Environment 

The open space environment is a 100-by-100 cell operational area that does not 

consist of any obstacles. It is used to study the effects of various parameters without the 

interference of obstacles. 

b. Mapping of Outdoor Urban Operational Area 

An urban facility named, the impossible city, in Monterey, California, was chosen 

as an operational scenario and modeled to verify and evaluate the developed algorithm as 

well as the findings made in the early sections of this thesis. Figure 16 shows the model 

built in MATLAB in comparison with Google satellite images. While green boxes 

represent vegetation areas and blue boxes are buildings, the UGV and the enemy recognize 

both as obstacles and do not differentiate between them.  
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Figure 16.  Model simulation of Impossible City at Fort Ord, California (right) 
and Google map view (left). 

c. Indoor Operational Area  

Indoor search is inevitable in any urban operation. Figure 17 shows an example of 

an indoor floorplan that was built to verify and evaluate the developed algorithm. 

 

Figure 17.  Indoor floorplan of a room. 
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IV.  SEARCH PHASE STUDY 

This chapter explores the developed search-phase guidance based on the LVC 

algorithm. The goal of this phase is to provide full coverage of the operational area. First, 

this section shows the effects of the swarm size, number of iterations, and starting 

configuration while operating in the obstacle-free environment. Then, the real-world 

constraints are added. The discussion ends with examples of full-scale simulations in the 

outdoor and indoor urban environments. 

A. EFFECT OF SWARM SIZE 

The effect of a swarm size with a fixed number of iterations was investigated first. 

To this end, Figure 18 shows the error plot of varying swarm size for 1,000 iterations based 

on 30 runs. It demonstrates an obvious result that with a fixed number of iterations or, in 

other words, within the same fixed time frame, having more agents leads to more thorough 

coverage of a given area following the logarithmic law. 

 

Figure 18.  Effect of swarm size on area coverage. 
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As swarm size reaches beyond its saturation point, further increase of swarm size 

yields a diminishing return of area coverage. Thus, it would be ineffective to achieve 

maximum coverage purely by increasing the swarm size. 

Figure 19 shows the 3D mesh plot for a swarm size of 10 agents with 55 percent 

area coverage while Figure 20 shows the 3D mesh plot for a swarm size of 70 agents with 

94.8 percent area coverage.  

 

Figure 19.  Average number of visits and number of cells for a swarm size of 
10 agents with 1,000 iterations. 
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Figure 20.  Average number of visits and number of cells for a swarm size of 
70 agents with 1,000 iterations. 

All Blue agents enter the area from the furthest entry point, then spread around the 

area. That is why the number of visits at the entry point shows a spike. 

B. AREA COVERAGE V ERSUS THE NUMBER OF ITER ATIONS 

The effect of limiting the maximum number of iterations is shown in Figure 21. In 

this specific case, simulations were conducted with a fixed swarm size of 20 agents.  
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Figure 21.  Effects of the maximum number of iterations on area coverage. 

As seen in Figure 21, using the maximum number of iterations seems to have a 

linear effect on coverage. As expected, more iterations result in a fuller area coverage. It is 

also observed, however, that the variance increases with an increase in the number of 

iterations. This is likely due to the increased number of possible solutions as more iterations 

are performed, therefore increasing uncertainty in area coverage. 

Figure 22 shows the trajectory plot of 19 percent area coverage on 200 iterations, 

and Figure 23 shows the trajectory plot of 70 percent area coverage on 1,000 iterations. 

Both simulations have a swarm size of 20 agents, where different colors in the plot 

correspond to different agents.  
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Figure 22.  Trajectory plot of 19 percent coverage for 20 agents on 200 
iterations. 

 

Figure 23.  Trajectory plot of 70 percent coverage for 20 agents on 1,000 
iterations. 
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C. SWARM SIZE VERSUS NUMBER OF ITERATION S 

Combining the results from the simulations in the previous sections allows 

investigation of the effect of varying both the maximum number of iterations and the 

swarm size simultaneously. Figure 24 shows the effect of iteration and swarm size on area 

coverage. This figure also shows the net effect of increasing the number of iterations for 

the different-size swarm. 

 

Figure 24.  Effects of swarm size on area coverage with iteration comparison. 

The increase in iterations from 200 to 400 yields the best improvement at 20 

percent. By contrast, there is a diminishing return as the number of iterations is increased 

for a particular swarm size, as discussed in the previous section. As can be seen, achieving 

100 percent area coverage is not as feasible or effective due to saturation of both swarm 

size and number of iterations. 
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Users of the developed system would likely be more interested in the required 

swarm size or number of iterations needed to achieve a pre-determined amount of area 

coverage. Figure 25 shows a chart that provides an estimate of swarm size or number of 

iterations needed given a required percentage of area coverage.  

 

Figure 25.  Estimated swarm size or number of iterations needed to achieve 
required area coverage. 

Figure 25 shows a couple of points exhibiting a different relative improvement 

along the both coordinates needed to achieve a higher area coverage value. Particularly, 

the improvement in area coverage from 70 percent to 80 percent (i.e., a 10 percent 

improvement) requires an 18 percent to 34 percent increase in the number of agents within 

the 300 to 800 iterations range, or an 17 percent increase of the number of iterations for a 

30- and 100-agent swarms. 
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D. EFFECT OF STARTING C ONFIGURATION  

Depending on the actual conditions, multiple entry points may be available. For 

example, an urban environment might feature several roads leading to the center of a 

village. The UGV swarm could also be delivered from an aerial platform. For the indoor 

engagement, multiple doors and windows could be used. As such, previous simulations 

were repeated for several representative starting configurations, which are depicted in 

Figure 26 through 31. 

 

Figure 26.  Various starting configurations. 

 

Figure 27.  Snapshot of Corner starting configuration. 
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Figure 28.  Snapshot of Center starting configuration. 

 

Figure 29.  Snapshot of Two-Corners starting configuration. 
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Figure 30.  Snapshot of Four-Corners starting configuration. 

 

Figure 31.  Snapshot of Row starting configuration. 

1. Effect of Swarm Size on Starting Configurations 

Figure 32 shows the effect of varying the starting configuration with 10-, 20- and 

30-agent swarms. The relative effect on the lower plot is computed with respect to the 

single-corner entry, which happens to have the worst performance among all starting 

configurations. 
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Figure 32.  Coverage of various starting configurations by swarm size. 

The starting configuration with all four corners as entry points turned to be the best, 

followed by the center and two-corner entries. Even a row-entry configuration exhibited a 

5�±10 percent improvement compared to a one-corner entry, which is an expected result as 

the agents are split into different areas thus reducing time for them to get to the unexplored 

area. The results also demonstrate some optimum values for swarm size, after which the 

positive effect seems to degrade. For this particular simulation, it was a 20-agent swarm. 

2. Effect of Maximum Number of Iterations on Starting Configurations 

The effect of varying the number of iterations is shown in Figure 33. Five different 

values�• 200, 400, 600, 800, and 1,000�• were used in simulations with a fixed swarm size 

of 20 agents and the starting configurations from Figure 26. 
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Figure 33.  Coverage of various starting configurations by number of iterations 
(duration). 

As can be seen, the simulation results are consistent with those of Figure 32. The 

four-corners starting configuration proved to be the best yet again. The one-corner-entry 

starting configuration achieved the lowest coverage regardless the number of iterations. 

The results beyond the 600-iteration simulation seem to yield diminishing returns for all 

starting configurations. 

Reviewing all the findings up to this point leads one to the conclusion that a swarm 

consisting of 20 agents using multiple entry points into an operation area yields the best 

area coverage with 600 iterations. Beyond these values, saturation occurs. 

E. EFFECT OF THE COLLISION AVOIDANCE CONSTRAINT  

It would be interesting to see whether the inclusion of real-world constraints 

changes any of the aforementioned conclusions. This section shows simulation results that 

include collision avoidance. To assure that the collision-avoidance guidance does work, 

Figure 34 shows the spread of the cell distances between any two agents in a 20-agent 
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swarm simulation. The lower plot of Figure 34 shows the minimum distance, proving that 

not a single collision (distance of zero) has occurred during this simulation. 

 

Figure 34.  Maximum and minimum distances between any two agents. 

The effects of various starting positions when collision avoidance is considered are 

presented in Figure 35. The lower plot shows some negative effects that accounting for 

collision avoidance produces. 



42 

 

Figure 35.  Effect of starting positions on coverage when incorporating 
collision avoidance. 

Generally speaking, for most starting configurations (except single- and two-point 

entry types) this effect is negligible. This is likely because with the multiple starting points 

agents have more space to maneuver out of their initial positions. The difference in the area 

coverage growth rate in the beginning of the single- and two-point entry simulations 

suggests that the reduction is likely due to congestion that results in a queue to get out of 

the corner. In addition, the agents that started to move out of the corner after queuing 

recognize the surrounding cells as being visited, thus discouraging exploration. By 

comparison, the agents without collision avoidance are able to get out of the corner right 

from the beginning. The similar growth rate as time progresses suggests that the effect of 

queuing is mitigated over time after the agents spread out from their starting configuration. 

This conclusion is supported by Figure 36, which shows the heat map comparison of results 

of with collision avoidance (on the left) and without collision avoidance (on the right) for 

the first 50 iterations. 
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Figure 36.  Heat map comparison of 50 iterations for collision avoidance (left) 
and without collision avoidance (right). 

The queue in the four-corners starting configuration is significantly lower 

compared to the one-corner and two-corners configurations because fewer agents are in 

each corner, and therefore, these simulations are not as significantly affected by the 

imposition of the collision-avoidance constraint. Obviously, this conclusion might change 

for the larger-size swarms. 

F. EFFECT OF THE NON-HOLONOMICITY CON STRAINT  

This subsection explores the effect of imposing one more real-world constraint 

introduced previously �W�K�D�W�� �K�D�V�� �W�R�� �G�R�� �Z�L�W�K�� �D�J�H�Q�W�¶�V�� �W�X�U�Q�� �U�D�W�H���� �7�K�U�H�H non-holonomicity 

constraints of 90 degrees, 180 degrees, and 270 degrees were studied. Figure 37 to 39 show 

the results of UGV agents�¶���P�R�Y�H�P�H�Q�W�V under the various holonomic parameters for 100 

iterations. 
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Figure 37.  Non-holonomicity constraint of 90 degrees. 

 

Figure 38.  Non-holonomicity constraint of 180 degrees. 

 

Figure 39.  Non-holonomicity constraint of 270 degrees. 
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It is observed that a non-holonom�Lcity constraint of 90 degrees encourages 

exploration as it propels the UGV agent forward as compared to holonomic drive, where 

the agent tends to maneuver around the starting configuration. 

Figures 40 to 43 show four subplots, each depicting the different non-holonomicity 

constraints. The first subplot in each figure shows UGV agent movement from the plan 

view. The second subplot shows the movement direction with reference to the map 

according to the following angles: 

�x 90 degrees (north)

�x 45 degrees (north-east)

�x 0 degrees (east)

�x -45 degrees (south-east)

�x -90 degrees (south)

�x -125 degrees (south-west)

�x 180 degrees (west

�x 125 degrees (north-west)

The third subplot indicates the difference in rotation angle per iteration from the 

agent perspective. If the agent is not turning, the rotation angle at that iteration would be 

zero�² regardless of direction in which the agent is heading. The final subplot shows the 

total number of rotations made by the agent. It is generally evenly distributed since there 

are no obstacles and the probability of choosing an unvisited cell is random. 
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Figure 40.  Non-holonomicity constraint of 90 degrees. 
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Figure 41.  Non-holonomicity constraint of 180 degrees. 
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Figure 42.  Non-holonomicity constraint of 270 degrees. 
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Figure 43.  No non-holonomicity angle constraint. 
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Figure 44 shows the effect of various restriction angles of non-holonomicity 

constraints on coverage with a swarm size of 20 agents in the one-corner starting 

configuration.  

 

Figure 44.  Effect on various non-holonomic angle constraints. 

Surprisingly, area coverage increases as the non-holonomicity constraint becomes 

tighter. Simulation with the non-holonomicity constraint of 90 degrees provides the highest 

area coverage and the holonomic drive provides the lowest area coverage. This finding 

suggests that this constraint actually encourages exploration, and thus leads to fuller 

coverage over time. 
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The effect of non-holonomic drive on various starting positions is also investigated. 

Figure 45 shows that the non-holonomicity constraint of 180 degrees improves area 

coverage on all starting configurations.  

Figure 45.  Effect of a non-holonom�Lcity constraint of 180 degrees and various 
starting configurations. 

We can conclude in this section that for the purpose of exploration, non-holonomic 

drive behaviors should not be seen as a limitation but a tool to encourage either global 

exploration or local area search. Holonomic drive behaviors is subsequently investigated 

in an urban area as well as an indoor simulation in the next sections.  

G. URBAN OUTDOOR SEARCH OPERATIONS 

Now that all aspects of the developed algorithm have been studied in the open-

space environment, the LVC guidance needs to be evaluated for a more realistic 

environment like the ones shown in Figure 16 and 17. 
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1. Effect of Various Starting Configurations 

These simulations involve a 20-agent swarm obeying collision-free operations. 

Three possible starting configurations for the outdoor environment are depicted in Figure 

46. Configuration 1 (left) represents a scenario where all agents are deployed from the same 

location, while Configuration 3 (right) utilizes three entry points. 

 

Figure 46.  Starting configurations of UGV agents for urban outdoor 
operations. 

The result shown in Figure 47 supports the previous findings that multiple launch 

sites encourage faster and, therefore, better area coverage compared to a single entry. For 

1,000 iterations, there is a 40 percent improvement for Configuration 3 (multiple launch 

sites) compared to Configuration 1 (single launch site). The improvement for four- corners 

and one-corner starting configurations in an open space environment is approximately 20 

percent. This finding seems to suggest that the benefit of multiple launch sites is amplified 

when obstacles are present in the environment.  
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Figure 47.  Effect of starting configuration on area coverage for urban 
operation. 

2. Effect of the Non-Holonomicity Constraint 

The effects of non-holonomicity constraint were also studied for a single launch 

site. The effect of imposing the non-holonomicity constraint in this case, presented in 

Figure 48, is similar to that of the open-space case of Figure 44. 
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Figure 48.  Effect of non-holonomic angle restriction on area coverage for 
urban scenario. 

The effect of non-holonomicity constraint is clearly seen in Figure 49, which shows 

�W�K�H�� �E�L�U�G�¶�V-eye-view trajectories of all 20 agents being holonomic (on the left) and non-

holonomic (on the right). Yet again, imposing the non-holonomicity constraint leads to the 

fuller area coverage across all iterations. 
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Figure 49.  Holonomic (left) versus non-holonomic drive with a 90-degree 
constraint (right). 

Compared to the results of the open-space simulation depicted in Figure 44, the 

positive effect is more pronounced. The holonomic Blue agents (left of Figure 49) tend to 

stay within a confined area as they are further restricted by obstacles. This seems to suggest 

that the benefit of tightening the non-holonomicity constraint is amplified when obstacles 

are present. Table 3 compares the improvement from holonomic to non-holonomic drive 

for both open space and urban operations.  
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Table 3.   Comparison of the improvement (area coverage) in open space and 
outdoor urban environments with the effect of non-holonomicity 

constraint. 

 

Improvement (% of area 
coverage) from no 

constraint to 270�q non-
holonomic constraint 

Improvement (% of area 
coverage) from no 

constraint to 180�q non-
holonomic constraint 

Improvement (% of area 
coverage) from no 

constraint to 90�q non-
holonomic constraint 

Iteration Open Space 
Urban 

outdoor Open Space 
Urban 

outdoor Open Space 
Urban 

outdoor 

200 0.50 0.10 2.78 4.33 7.57 10.59 

400 1.30 1.62 6.38 10.03 18.23 21.71 

600 2.27 2.93 10.45 14.45 24.17 30.42 

800 4.46 4.82 15.29 18.46 25.30 34.60 

1000 1.13 8.03 13.76 22.07 19.34 37.62 

 

H. INDOOR SEARCH OPERATIONS 

The effect of non-holonomic drive for indoor operations is discussed in this section. 

The assumption for indoor the environment would be that there is only one entrance into 

the room and thus there would only be one starting configuration. Figure 50 shows the 

entrance to the room, which would be the starting configuration for the UGV agents. 
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Similar to the urban environment, analysis was done using a fixed swarm size of 20 agents 

with collision avoidance.  

 

Figure 50.  Starting position (entrance) to the indoor environment.  

Figure 51 shows the results of the effect of non-holonomic drive for indoor 

operations, and Table 4 compares the improvement from holonomic drive to non-

holonomic drive for open space and indoor operations. 
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Figure 51.  Effect of non-holonomic drive on area coverage for indoor 
operations. 

Table 4.   Comparison of the improvement (area coverage) in open space and 
indoor environments with effects of non-holonomic constraint. 

 

Improvement (% of area 
coverage) from no 
constraint to non-

holonomic drive (270�q) 

Improvement (% of area 
coverage) from no 
constraint to non-

holonomic drive (180�q) 

Improvement (% of area 
coverage) from no 
constraint to non-

holonomic drive (90�q) 

Iteration Open Space Indoor Open Space Indoor Open Space Indoor 

200 0.50 0.00 2.78 2.38 7.57 8.19 
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Improvement (% of area 
coverage) from no 
constraint to non-

holonomic drive (270�q) 

Improvement (% of area 
coverage) from no 
constraint to non-

holonomic drive (180�q) 

Improvement (% of area 
coverage) from no 
constraint to non-

holonomic drive (90�q) 

400 1.30 0.67 6.38 8.81 18.23 22.43 

600 2.27 4.36 10.45 13.98 24.17 31.90 

800 4.46 2.52 15.29 15.54 25.30 34.21 

1000 1.13 4.79 13.76 19.71 19.34 37.94 

 

As seen from the results shown in Figure 50 and Table 4, a similar conclusion can 

be drawn in the case of indoor search operations as well.  

The results from the previous two sections reveal that the non-holonomic drive is 

able to produce even better results when obstacles are introduced. The UGV agents with 

holonomic drive tend to stay within a confined area as they are further restricted by 

obstacles. 

I. EFFECTIVENESS OF ALV C GUIDANCE  

This section investigates the effect on area coverage when the ALVC algorithm is 

used. Figure 52 shows a snapshot at the 700th iteration, with the trail appearing from 550th 

iteration onwards. The behavior of the UGV agents heading towards the remaining few 

unvisited cells in the grid can be observed. 
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Figure 52.  Snapshot of the last 100 iterations of a simulated run using ALVC 
guidance. 

1. Holonomic Drive 

During the study of this section, a limitation of the ALVC algorithm was identified. 

Imposing a non-holonomic drive restriction of 90 degrees would cause the algorithm to 

enter an infinite circle loop�• in some cases, around an unvisited square�• as shown in 

Figure 53. The LVC algorithm would not enter such a state because the UGV agents access 

only to the allowed cells. By contrast, the ALVC algorithm grants UGV agents access to 

all surrounding cells and targets the closest one. Thus, only the effect of non-holonomicity 

constraints of 180 degrees and 270 degrees were explored.  
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Figure 53.  Infinite circle loop around an unvisited square. 

The effects of non-holonomicity constraints of 180 degrees and 270 degrees on area 

coverage are shown in Figure 54, where subplot 2 shows the difference in area coverage 

from holonomic drive. 

 

Figure 54.  Effect of non-holonomic drive on the ALVC algorithm. 
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The data suggest that the introduction of non-holonomic drive decreases area 

coverage slightly unlike previous findings for the LVC algorithm.  This is likely due to the 

fact that the non-holonomicity constraints imposed restricts the freedom to move directly 

to the targeted cell in every iteration for the ALVC. 

2. Environment 

As was done to evaluate the LVC guidance algorithm, three different 

environments�• open space, outdoor, and indoor urban environments�• were simulated for 

the ALVC guidance algorithm, and the results were compared against those for the LVC 

algorithm, as shown in Figure 55. 

 

Figure 55.  Comparison between results of LVC and ALVC algorithms for 
three environments. 

The results suggest that despite the limitation of the non-holonomicity constraint of 

90 degrees, the ALVC algorithm is able achieve greater area coverage in all three 

environments. Further analysis on the ALVC guidance is discussed in the next chapter.  
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V. STUDY OF THE TRACK A ND ENGAGE PHASE 

The previous chapter dealt with an area coverage as a single swarm objective. Now, 

we extend the aforementioned simulations to include the Red forces, thus adding one more 

objective of engaging an opponent. Because of this, once any Red agent is detected the 

Blue agents largely abandon the primary objective and pursue the second one. As a result 

of engagements, the swarm size becomes variable (decreasing). 

All simulations presented in this section were conducted for a 20-agent Blue swarm 

acting against five Red agents. Figure 56 shows the initial setup for the open-space, 

outdoor, and indoor urban environments. Blue agents had a 90-degree non-holonomic drive 

restriction and obeyed the collision-free constraint during the search phase. 

 

Figure 56.  Starting configurations of Blue and Red forces for open space 
(left), outdoor (center), and indoor (right) urban operations. 

The two measures of effectiveness in this case were the number of iterations 

required to kill all agents of the either side as well as the number of agents that survived 

the engagement. 

The following parameters are varied and their effects on the two measures of 

effectiveness are investigated.  

�x Addition of PSO guidance  
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�x Varying Blue forces detection range  

�x Varying holonomicity constraint (tracking) for Blue forces 

�x Varying probability of kill (�2�Þ) for both forces 

�x Varying kill distance 

�x Changing kill sequence 

�x Introduction of outdoor and indoor urban environment 

�x Effectiveness of the Advanced Least Visited Cell guidance 

A. EFFECTIVENE SS OF ADDED PSO GUIDANCE  

In this section, the effect of the addition of the PSO guidance component is 

investigated against the original LVC algorithm during the track and engage phase. PSO 

guidance would be triggered for Blue forces when a Red agent is within any Blue agent�¶s 

detection range. The Blue forces will evaluate their current positions with the detected 

enemy and compute its velocity vector accordingly to swarm towards the detected enemy.  

As an illustrative example Figure 57 presents snapshots of open-space simulations 

during the track and engage phase featuring trajectories of 10 agents in the case PSO 

guidance is not activated (on the left) and is activated (on the right). In the first case, Blue 

agents simply wander around providing fuller area coverage but not necessarily staying 

engaged with Red agents when they are detected; in the second case, three Red agents have 

been engaged within the same number of iterations. 
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Figure 57.  Trajectory comparison between LVC (left) and PSO (right) 
guidance during the track and engage phase. 

Running this simulation 30 times produces a statistically-verified estimate of the 

PSO algorithm addition effectiveness. To this end, the box plot of Figure 58 shows the 

number of iterations needed to end the engagement (when all agents of either side are 

destroyed), and Figure 59 compares the number of casualties sustained at the end of the 

battle. The green crosses in the box plot show the mean values while the red lines denote 

the median values.  
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Figure 58.  Number of iterations needed for a battle with and without PSO 
guidance. 

 

Figure 59.  Number of casualties with and without PSO guidance. 
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Figure 60 and 61 show the pairwise comparison done by analysis of variance 

(ANOVA)�• specifically, �W�K�H�� �)�L�V�K�H�U�¶�V�� �O�H�D�V�W�� �V�Lgnificant difference (LSD) test�• on the 

number of iterations needed for a battle with and without PSO guidance. 

 

Figure 60.  ANOVA table for the number of iterations needed for a battle with 
and without PSO guidance. 

 

Figure 61.  Testing for significant different result. 
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The simulation data presented show that the introduction of PSO guidance results 

in a significant reduction in the number of iterations needed to conclude the battle.  

As can be seen, the addition of the PSO guidance definitely leads to a faster location 

of all known Red agents. At the same time, simulations have not revealed any significant 

impact on the number of casualties for both sides because PSO guidance by itself does not 

change the engagement sequence or probability of kill. 

B. EFFECTS OF VARYING DETECTION  RANGE 

The value of the detection range, �@�×
�»�\ �Ë, obviously plays a major role in the success 

of the mission because it defines the LVC-PSO guidance switching moment. Figure 62 and 

63 show the effect of varying �@�×
�»�\ �Ë on the number of iterations needed to end the 

engagement and the number of casualties for both Blue and Red forces, respectively, at the 

end of the battle. 

  

Figure 62.  Number of iterations corresponding to various detection ranges. 
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Figure 63.  Number of casualties corresponding to various detection ranges. 

Obviously, the number of iterations required to end the engagement decreases as 

the detection range increases. A small detection range means that the probability of losing 

track of a Red agent after it has been found increases. With a larger detection range, the 

Blue agents are able to start tracking Red agents earlier and thus longer, giving the rest of 

the Blue forces time to swarm towards the target. 

Figure 63 demonstrates a significant difference between a detection range of five 

and 25 cells, after which the improvement starts reaching its saturation point (for a specific 

100-by-100 grid setup and swarm size). Similar to the reasons for adding PSO guidance 

described the previous section, varying detection range does not seem to impact the number 

of casualties. 

C. EFFECTS OF THE HOLONOMICITY CONSTRA INT DURING 
TRACKING  

The findings of the previous chapter suggest that non-holonomic drive encourages 

exploration, thus increasing the coverage area. In this section, we explore the effects of 

holonomic drive during tracking with PSO guidance.  

Figure 64 shows the effects of non-holonomic drive on the left and holonomic drove 

on the right during PSO guidance.  
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Figure 64.  Comparison of holonomic and non-holonomic drive during 
tracking phase under PSO guidance. 

Although non-holonomic constraint limits the Blue force�¶s agility (Figure 65 and 

66), it leads to only a slight increase in the number of iterations needed to end the 

engagement. This is due to the fact that during tracking, holonomic drive would give the 

Blue agents the freedom to reach the targeted cell more quickly, as seen in Figure 64; 

however, the benefits did not lead to any significant reduction of the number of iterations 

required for the entire battle.  
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Figure 65.  Snapshot of two consecutive iterations during tracking phase with 
a 90-degree non-holonomicity constraint. 

 

Figure 66.  Snapshot of two consecutive iterations during tracking phase with 
holonomic drive. 

 

x Iteration x + 1 Iteration 

x Iteration x + 1 Iteration 
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D. EFFECTS OF PROBABILI TY OF KILL  

This section studies the engage phase. Specifically, it examines the probability of 

kill ( �2�Þ) without PSO guidance, which reflects the offensive capability. The effects of 

varying �2�Þ for both forces is investigated. Figure 67, 68 and 69 show the box plots for the 

effects on number of iterations required to end the engagement with a fixed enemy 

offensive capability of 0.1, 0.5, and 0.9 in each figure while varying the Blue force�¶s 

offensive capability of 0.1, 0.5, and 0.9, respectively. 

 

Figure 67.  Effects of time with fixed enemy offensive capability of 0.1 and 
varying UGV agents�¶ offensive capability. 
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Figure 68.  Effects of time with fixed enemy offensive capability of 0.5 and 
varying UGV agent�V�¶��offensive capability. 

 

Figure 69.  Effects of time with fixed enemy offensive capability of 0.9 and 
varying UGV agent�V�¶��offensive capability. 
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Figure 67, 68 and 69 are complemented by Figure 70, 71 and 72 showing the 

number of causalities for both Blue and Red forces at the end of the battle. 

 

Figure 70.  Effects on casualty rate with fixed enemy offensive capability of 
0.1 and varying UGV agent�V�¶��offensive capability. 
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Figure 71.  Effects on casualty rate with fixed enemy offensive capability of 
0.5 and varying UGV agent�V�¶���Rffensive capability. 

 

Figure 72.  Effects on casualty rate with fixed enemy offensive capability of 
0.9 and varying UGV agent�V�¶���Rffensive capability. 

Median of 18.5 for UGV 
and 4.5 enemy indicates 
an inconclusive outcome 
of the battle. 
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There is no doubt that the values of �2�Þ
�»�\ �Ë and �2�Þ

�Ë�\ �» play a major role in the 

engagement outcome. Figure 67 shows that when the enemy offensive capability is low 

(�2�Þ
�Ë�\ �» L �r�ä�s), the number of iterations changes significantly depending on the Blue force�¶s 

offensive capability (�2�Þ
�»�\ �Ë). This is expected as the increase in the Blue force�¶s offensive 

capability would kill the enemy faster, leading to the smaller number of iterations. This is 

confirmed by Figure 70, where the number of the Blue force�¶s casualties decreases as its 

offensive capability increases. Figure 72 shows that with �2�Þ
�Ë�\ �» L �r�ä�{ because of the 

tactical advantages given to the defending Red force (discussed in Section II .C), the Blue 

force has no chance of winning. If the value of �2�Þ
�Ë�\ �» L �r�ä�{ is reduced to 0.5 (Figure 71) 

then the Blue force can possibly win with �2�Þ
�»�\ �Ë P �r�ä�w, though suffering from heavy 

casualties. The small nominal values of probability to kill (0.1), therefore, were chosen to 

better demonstrate the effectiveness of swarming. As seen in Figure 70, the Red force starts 

winning even with equal probabilities to kill, but a significant increase of �2�Þ
�Ë�\ �» is required 

to win unconditionally with a low casualty rate. 

Table 5 shows the simulation result for the case of �2�Þ
�Ë�\ �» = 0.5 and �2�Þ

�»�\ �Ë = 0.9, 

where we observed an inconclusive outcome.  

Table 5.   Simulation results for �2�Þ
�Ë�\ �» = 0.5 and �2�Þ

�»�\ �Ë = 0.9. 

Run 
UGV 

Survivors 
Enemy 

Survivors 

Number of 
Iteration s 

Taken 

Winning 
Force 

1 9 0 921 Blue 
2 3 0 6,444 Blue 
3 8 0 2,243 Blue 
4 12 0 1,416 Blue 
5 5 0 4,660 Blue 
6 1 1 10,000 Red 
7 7 0 1,656 Blue 
8 5 0 3,383 Blue 
9 0 1 9,600 Red 
10 4 0 4,956 Blue 
11 7 0 1,924 Blue 
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Run UGV 
Survivors 

Enemy 
Survivors 

Number of 
Iteration s 

Taken 

Winning 
Force 

12 0 3 2,069 Red 
13 0 2 2,319 Red 
14 0 1 7,872 Red 

15 0 3 2,251 Red 

16 0 1 4,714 Red 

17 6 0 1,677 Blue 
18 0 2 1,758 Red 
19 15 0 921 Blue 
20 9 0 2,310 Blue 
21 0 3 1,488 Red 
22 6 0 2,123 Blue 
23 0 1 5,158 Red 

24 1 1 10,000 Red 

25 0 3 3,198 Red 

26 0 1 5,029 Red 

27 2 0 4,111 Blue 
28 1 0 5,816 Blue 
29 2 1 10,000 Blue 
30 0 1 3,464 Red 

 

Table 6.   Summary of results for �2�Þ
�Ë�\ �» = 0.5 and �2�Þ

�»�\ �Ë = 0.9. 

 Number of wins Percentage of wins 
UGV win 16 53.33% 
Enemy win 14 46.67% 

 

Table 6 shows a stand-still result where there is almost an equal probability of either 

the Red or the Blue force emerging victorious. For this specific context, the ratio of 

approximately 0.5 to 0.9 probability of kill results in about equal chances to win. 

Based on these dynamics, the results presented in Figure 62 can now be explained 

even further. Being able to swarm towards the target earlier means that even with a small 

individual probability to kill, more agents taking a shot at the target increases the overall 
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probability of success to �sF �:�sF �2�Þ
�»�\ �Ë�;�à , where m is the number of attacking agents. 

For example, with a nominal value of �2�Þ
�»�\ �Ë L �r�ä�s and m=5 the chances to kill quadruple. 

E. EFFECTS OF KILL DIST ANCE 

Kill distances �@�Þ
�»�\ �Ë and �@�Þ

�Ë�\ �» are defined as minimum distances required to engage 

(fire) at the opponent. Larger kill distance allows for engagement at a longer range, which 

provides an advantage over the opponent. As a baseline for all previous simulations, the 

Red force was assigned a kill distance of two cells compared to the Blue force with a kill 

distance of one cell (which was an advantage purposely given to the Red force because its 

defensive posture). Figure 73 and 74 show the effect of varying the �@�Þ
�»�\ �Ë���@�Þ

�Ë�\ �» ratio while 

assuming �2�Þ
�»�\ �Ë L �2�Þ

�Ë�\ �» L �r�ä�w. 

 

Figure 73.  Effects of kill distance on number of iterations. 
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Figure 74.  Effects of kill distance on number of casualties. 

As seen, the baseline situation (1:2 ratio) results in the high number of iterations to 

end the engagement (Figure 73) and leads to the Blue force�¶s defeat (Figure 74). Relaxing 

this ratio to 2:2 decreases the number of iterations and changes the outcome of engagement. 

The 2:1 ratio results in the smallest number of iterations and the unconditional win of the 

Red force. 

F. EFFECTS OF KILL SEQU ENCE 

Continuing the results from simulations of the previous section, the effects of 

change in kill sequence to allow the Blue force to fire first instead of the Red force was 

investigated; thus, giving the Blue force the advantage. In previous sections, the ability to 

engage first is an advantage given to the Red force due to its defensive posture. The box 

plot in Figure 75 shows the effect on the number of iterations required to end the 

engagement for the same three kill distance setups from the previous section. 
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Figure 75.  Effects of kill sequence on the number of iterations. 

The box plots in Figure 74 and 75 show the effect on the number of Blue force 

casualties and Red force casualties at the end the engagement for the same three kill 

distance setups presented in the previous section. 
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Figure 76.  Effects of kill sequence on the number of Blue force causalities. 

 

Figure 77.  Effects of kill sequence on the number of Red force causalities. 
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The results shows that for cases when the Blue force is not at an advantage in kill 

distance (plots on the left and center), the change in kill sequence gives the Blue force the 

ability to engage first, allowing the Blue force to sustain fewer casualties and increasing 

the win rate for the Blue force. In a case where the Blue force already gains an advantage 

in kill distance (on the right), the added advantage in kill sequence does not further improve 

the number of iterations or the number of Blue force casualties.  

G. URBAN OUTDOOR ENGAGEMENTS 

The effects of PSO guidance and detection range on outdoor urban operations is 

studied in the section. Figure 78 shows the starting configuration of both Blue and Red 

forces.   

 

Figure 78.  Starting configuration for outdoor urban operation. 

The use of PSO guidance in outdoor urban operations demonstrates tendencies 

somewhat similar to those of the open-space engagement. To this end, the following figures 
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demonstrate the effect of varying the detection range with and without PSO guidance on 

the number of iterations (Figure 79) and number of casualties (Figure 80). 

 

Figure 79.  Effects on number of iterations with and without PSO guidance for 
outdoor operation. 
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Figure 80.  Effects on number of casualties with and without PSO guidance for 
outdoor operation. 

The tendency to decrease the number of iterations required to end the engagement 

with an increase in the detection range holds. The effect of switching to PSO guidance is 

also positive (Figure 79). However, the introduction of PSO guidance at the detection range 

of five cells seems to have little effect on the number of casualties (Figure 80). 

This study concludes that it is beneficial for the Blue force to have as wide a 

detection range as possible so as to locate the enemy and trigger the PSO algorithm in a 

shorter time. However, further enhancement of detection sensors might entail technical and 

cost challenges. Furthermore, the dampening of the detection sensors due to the urban 

environment itself have not been considered in this study but would increase its complexity 

and benefits.  

H. INDOOR ENGAGEMENTS 

In this section, the effects of PSO guidance on indoor operation is studied. Figure 

81 shows the starting configuration of both the Blue and Red forces.   
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Figure 81.  Starting configurations for indoor operation. 

The effects on the number of iterations and casualties corresponding to various 

detection ranges with and without PSO guidance can be seen in Figure 82 and 83. 
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Figure 82.  Effects on number of iterations, with and without PSO guidance, 
for indoor operation. 

 

Figure 83.  Effects on number of casualties, with and without PSO guidance, 
for indoor operation. 
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The tendencies revealed for the urban outdoor engagements do not exactly match 

those of indoor engagements (compare Figure 82 and 83 with Figure 79 and 80). 

A closer look allows one to determine that this is due to the inability of the Blue 

force�¶s agents to avoid concave obstacles typical for the indoor environment. As seen from 

illustrations presented in Figure 84, the increase in detection range causes the Blue agents 

to employ PSO guidance earlier and longer, thus fixing on the shortest path to the target 

and getting stuck behind an obstacle (on the right). With the smaller detection range (on 

the left), the probability of reverting from PSO guidance to LVC guidance is higher, thus 

allowing the Blue agents to possibly maneuver to a position where there are no obstructions 

before PSO guidance is triggered again. 

 

Figure 84.  Inability to avoid obstacles with low detection range (left) and high 
detection range (right). 

Being stuck behind an obstacle is a known problem for almost any algorithm, and 

as a result certain remedies allowing addressing it have been developed already (Wang et 

al. 2018). It should be noted thought that for this particular application the Blue agents may 

�J�H�W���µ�X�Q�V�W�X�F�N�¶���E�\���W�K�H�P�V�H�O�Y�H�V���H�Y�H�Q���Z�L�W�K�R�X�W���D�Q�\���D�G�G�L�W�L�R�Q�D�O���P�H�D�V�X�U�H�V���X�Q�G�H�U�W�D�N�H�Q�����7�K�H���W�K�U�H�H��

opportunities include the following: 

UGV agents exit PSO faster 
because the probability of an 
enemy maneuver out of 
detection range is higher. 

UGV agents exit PSO slower 
because probability of an enemy 
maneuver out of detection range 
is lower. 
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�x Red agent �P�D�Q�H�X�Y�H�U�L�Q�J���R�X�W���R�I���%�O�X�H���D�J�H�Q�W�V�¶���G�H�W�H�F�W�L�R�Q���U�D�Q�J�H, causing the 

latter to exit the PSO guidance phase. 

�x Red agent being destroyed by other Blue agents that approached it via a 

different path, thus allowing stuck agents to exit the PSO guidance phase. 

�x Another Red agent closer to the stuck Blue agent is detected, thus 

triggering a change of �õ�Ü
�Õ�Ø�æ�ç. 

While this problem could possibly happen in an outdoor operation as well, the 

probability that a Blue agent gets �³�V�W�X�F�N�´ is lower due to the different construct of obstacles 

in both op�H�U�D�W�L�R�Q�V�����0�R�V�W���%�O�X�H���D�J�H�Q�W�V���J�H�W���³stuck�  ́behind an indoor obstacle because of its 

concave features. By contrast, in the outdoor operation most obstacles have convex features 

and thus allow the Blue agent to maneuver past them much more easily and quickly when 

the detected Red agent maneuvers slightly.  

I. EFFECTIVENESS OF ALVC  GUIDANCE  

This section studies the effects of introducing ALVC guidance and then compares 

those to the effects of PSO guidance, or lack thereof. Figure 85 shows the box plots, 

comparing the LVC and ALVC algorithms, with and without PSO guidance, and the effects 

on the number of iterations required to end an engagement. The effects on casualties of the 

LVC and ALVC algorithms, with and without PSO, are shown in Figure 86. 
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Figure 85.  Effects of LVC with ALVC algorithms, with and without PSO 
guidance, on number of iterations. 
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Figure 86.  Effects of LVC with ALVC algorithms, with and without PSO 
guidance, on number of casualties. 

The introduction of PSO guidance for both algorithms improved the number of 

iterations required to end the engagement. This supports the previous conclusion that the 

introduction of PSO guidance reduces the number of iterations. However, there are no 

significant improvements when the ALVC algorithm is compared to the LVC algorithm. 

While the ALVC algorithm improves area coverage, as shown in the previous chapter, it 

does not aid in an operation where searching, tracking, and engaging is the priority. There 

is no significant effect on the number of casualties for both the Blue and Red forces with 

the introduction of the ALVC algorithm. This result is somewhat expected as ALVC does 

not change the sequence or probability of kill and thus should not affect the battle outcome. 

J. LIMITATION S OF ALVC  GUIDANCE  

A discovered limitation of the ALVC algorithm was that the Blue agents were not 

programmed to avoid obstacles and thus would always choose the shortest path to reach 

their goal. This resulted in the Blue agents being stuck behind the obstacles and unable to 

proceed as shown in Figure 87. 
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Figure 87.  Limitations of the improved LVC algorithm in urban and indoor 
operations. 

On the surface, the inability to avoid obstacles seems similar to the limitation found 

for PSO guidance in indoor operations (Figure 84). On further investigation, however, the 

problem with the ALVC algorithm is more severe. This is because it is impossible for the 

Blue agents to maneuver away once they �D�U�H���µ�V�W�X�F�N�¶���E�H�K�L�Q�G���D�Q���R�E�V�W�D�F�O�H��because the target 

(closest unvisited cell) is stationary compared to the previous case where the target (Red 

agent) is moving. �,�Q���W�K�D�W���F�D�V�H�����W�K�H���W�D�U�J�H�W�¶�V���P�R�Y�H�P�H�Q�W��allowed the possibility of a change 

in shortest path.  
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VI.  CONCLUSION 

A. SUMMARY  

This paper presented and evaluated guidance algorithms for a UGV swarm 

operating in the urban environment, using MATLAB for simulations. The mission of the 

UGVs is broken down into two phases. The first phase is identified as the search phase and 

its measure of effectiveness is area coverage. The second phase is the track and engage 

phase and its measures of effectiveness are the time (the number of iterations) required to 

end an engagement as well as number of casualties for the Blue and Red forces. A summary 

of the investigated algorithms and input parameters is shown in Table 7. 

Table 7.   Summary of algorithms and input parameters investigated. 

Phase Algorithm Input Parameters 

Search 

LVC Number of UGV agents 
LVC Maximum number of iterations 
LVC Starting configuration 
LVC Collision avoidance constraints 
LVC, ALVC Non-holonomicity constraints 
LVC, ALVC Outdoor and indoor urban environments 

Track and 
Engage  

LVC, PSO Non-holonomicity constraints  
LVC, PSO Detection range 
LVC, PSO Probability of kill 
LVC, PSO Kill distance 
LVC, PSO Kill sequence 
LVC, ALVC, PSO Outdoor and indoor urban environments 

 

B. MAIN FINDINGS  

This section attempts to answer the two research questions introduced in Chapter I. 

1. Are the algorithms developed suitable for the swarm UGVs to achieve 
their mission? 

In the developed simulation environment, it was shown that employing the LVC 

guidance algorithm during the area search phase of the mission works well for the open-

space and urban (both outdoor and indoor) operational environments. The addition of PSO-
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based guidance at the track and engage phase has a positive effect, resulting in about a 

fivefold reduction in the time required to locate and destroy all known targets. Since PSO 

guidance does not change the engagement sequence or probability of kill explicitly, it 

seems to have little effect on the number of causalities of the attacking side. Furthermore, 

in indoor operations featuring concave obstacles, PSO guidance needs more improvement 

so that Blue agents avoid being stuck behind an obstacle with no way out. 

2. What are the factors that affect the UGV swarm�¶�V  ability to achieve its
mission?

First, increasing the number of UGVs in the swarm would assist in locating targets 

in a shorter amount of time. Nonetheless, there is a saturation point beyond which any 

increase would result in diminishing returns. Although increasing the number UGVs would 

also lead to a higher probability of win in the track and engage phase, the number of UGVs 

deployed might be constrained by budget and technology.  

Secondly, multiple entry points into the operational area is beneficial by 

encouraging exploration, which in turn improves area coverage and thus allows the UGVs 

to locate the enemy in a shorter period of time. Multiple entry points, however, are not 

always possible due to terrain or approach constraints.  

Third, the findings related to the non-holonomicity constraint show that non-

holonomic drive improves area coverage and thus locating the targets in less time. The 

results also seem to suggest the benefits of non-holonom�Lcity constraints are amplified 

when obstacles are present. While narrower constraints encourage exploration, which is 

ideal for area coverage, they seem to be a hindrance while the swarm is tracking a moving 

target as its degree of freedom is limited. 

Fourth, increased detection range leads to better situational awareness for the UGVs 

and allows for earlier activation of PSO guidance, which reduces the total engagement 

time. On the other hand, increasing detection range might be challenging due to 

technological and budget constraints.  

Finally, the three input parameters affecting the number of casualties are the 

probability of kill, kill distance, and kill sequence. These parameters in the operational 
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context refer to the combination of the ability of each UGV�¶s sensors to shoot, �W�K�H���8�*�9�¶�V��

weapon range, and its ability to detect, respectively. Despite advancements in the 

technology and this field of research today, human sensors combined with cognitive 

abilities still prove superior to a machine in such a complex environment, and thus, to 

successfully meet their mission the UGVs must outnumber the humans.  

C. RECOMMENDATIONS FOR FUTURE WORK  

Future work is recommended to improve on the ALVC guidance algorithm so that 

it is able to overcome obstacles. This would allow for the comparison of the LVC and 

ALVC guidance algorithms and generate more insights.  

It is also recommended that a weighted approach be implemented for LVC 

guidance. This approach would assign values to the cells depending on the number of visits 

made. As more UGV agents enter a cell, this value would increase. UGV agents are 

programmed to move to neighboring cells with the lowest value. This approach might help 

solve the limitations of the ALVC guidance algorithm and allow the UGV agents to 

overcome obstacles.  

Varying the distance of collision avoidance constraints could also be further 

investigated. Intuitively, one can surmise that increasing the distance in the collision 

avoidance constraint might encourage exploration and hence improve area coverage. 

Nevertheless, similar to the effects of the holonom�Lcity drive, an increase in the distance 

in the collision avoidance constraint might affect the tracking phase when the UGV agents 

swarm towards a target.  

Lastly, it is recommended that further work reduce the number of cells for indoor 

operations for a more realistic simulation. The effects of the input parameters might be 

different in a reduced cell operational area. 



96 

THIS PAGE INTENTIONALLY LEFT BLANK  

 
 



97 

APPENDIX A.  SEARCH PHASE WITH LV C GUIDANCE 

for  SS = 10 00;  
    
ml = 1;  
for  Mainloop = 1 : ml  
close all   
 
%% Defining swarm  
%  Neighboring cells numeration  
%      4   3   2  
%      5   X   1  
%      6   7   8  
N=SS; %number of iterations  
SwarmSize = 20; %number of agents in a swarm  
collisionavoidance = 1; %1 for on, 0 for off  
holonomicity = 90; %360 for "off", 90, 1 80 270 degree for "ON"  
  
% Swarm Starting position  
Center = 0;  
Cornertopright = 0;  
Cornebttlefttopright = 0;  
Cornerallsides = 0;  
Row = 0;  
Bttrightcorner = 0;  
%for indoor / outdoor starting configuration  
configuration = 1; %1 2 and 3 for outdoor, 4 for indoor   
  
CelSz=1;            % cell size  
GrSiz=99;           % grid size  
A = zeros(1,8);  
swarm=zeros(SwarmSize,9);  
  
%choose map  
outdoor = 1; % outdoor map, impossible city  
indoor = 0; % indoor floorplan of one building  
\  
 
%% Defining buildings  
if  outdoor == 1,  
run( 'Buildings_Obstacles.m' )  
else  if  indoor == 1,  
run( 'indoor_floorplan.m' )  
    end   
end  
  
%% Initial conditions  
  
for  s = 1:SwarmSize  
     
    if  configuration == 1;  
    swarm(s,1) = 1;  
    swarm(s,2) = 85;  
    end    
     
    if  configuration == 2;  
    if  s <= (SwarmSize /2)  
    swarm(s,1) = 1;    
    swarm(s,2) = 85;    
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    else   
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = 85;  
    end  
    end  
     
    if  configuration == 3;  
    if  s <= (SwarmSize/3)  
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = 85;    
    else  if  s > (SwarmSize /3) & s <= 2*(SwarmSize /3)  
    swarm(s,1) = 1;    
    swarm(s,2) = 20;  
    else  if  s > (2*(SwarmSize /3))  
    swarm(s,1) = 1;    
    swarm(s,2) = 85;  
    end  
    end  
    end  
    end  
     
    if  Center == 1;  
    swarm(s,1) = (GrSiz+1)/2;  
    swarm(s,2) = (GrSiz+1)/2;  
    end   
     
    if  Bttrightcorner == 1;  
    swarm(s,1) = (GrSiz);  
    swarm(s,2) = 1;  
    end       
     
    if  Cornertopright == 1;  
    swarm(s,1) = (GrSiz);  
    swarm(s,2) = (G rSiz);  
    end   
     
    if  Cornerallsides == 1;  
    if  s <= (SwarmSize/4)  
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = (GrSiz);    
    else  if  s > (SwarmSize /4) & s <= 2*(SwarmSize /4)  
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = 1;  
    else  if  s > (2*(SwarmSize /4)) & s <= 3*(SwarmSize /4)  
    swarm(s,1) = 1;    
    swarm(s,2) = (GrSiz);  
    else  if  s > 3*(SwarmSize /4)  
    swarm(s,1) = 1;  
    swarm(s,2) = 1;  
    end  
    end  
    end  
    end   
    end  
    if  Row == 1 ;  
    swarm(s,1) = round(((GrSiz)/SwarmSize ) * s) ;  
    swarm(s,2) = 1;   
    end  
     
    if  Cornebttlefttopright == 1;  
    if  s <= (SwarmSize /2)  
    swarm(s,1) = 1;    
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    swarm(s,2) = 1;    
    else   
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = (GrSiz );  
    end  
    end  
  
end  
swarm(:,5) = 0; %initial x transition  
swarm(:,6) = 0; %initial y transition  
  
%% Building block calucations  
if  indoor == 1 | outdoor ==1  
buildings = size(blowerleft,1);  
  
for  bb = 1:buildings;  
bupperg(bb) = (bupperright(bb,2) -  bupperleft(bb,2))/(bupperright(bb,1) -
bupperleft(bb,1));  
bupperintercept(bb) = bupperleft(bb,2) -  (bupperg(bb) * bupperleft(bb,1));  
blowerg(bb) = (blowerright(bb,2) -  blowerleft(bb,2))/(blowerright(bb,1) -
blowerleft(bb,1));   
blowerintercept(bb) = blowerleft (bb,2) -  (blowerg(bb) * blowerleft(bb,1));  
bleftg(bb) = (bupperleft(bb,1) -  blowerleft(bb,1))/(bupperleft(bb,2) -
blowerleft(bb,2));  
bleftintercept(bb) = bupperleft(bb,1) -  (bleftg(bb) * bupperleft(bb,2));  
brightg(bb) = (bupperright(bb,1) -  blowerright(bb,1) )/(bupperright(bb,2) -
blowerright(bb,2))  ;  
brightintercept(bb) = bupperright(bb,1) -  (brightg(bb) * bupperright(bb,2));  
end  
end  
  
%% Plotting  
h1 = plot(swarm(:,1), swarm(:,2), 'x' , 'LineWidth' ,2, 'markersize' ,8);  
hold on 
axis([1 GrSiz 1 GrSiz]), axis square , grid minor  
xlabel( 'Crossrange cell' ), ylabel( 'Downrange cell' )  
h2=text(0.85*GrSiz,0.95*GrSiz,[int2str(0) ' ('  int2str(0/N*100) '%)' ]);  
  
%% Swarm evolution  
for  iter = 1 : N  %run N evolutions  
     
swarmx(:,iter) = swarm(:,1);  
swarmy(:,iter) = swarm(:,2);  
  
for  i = 1 : SwarmSize %determine the next move for each agent  
  
% building limits  
if  indoor == 1 | outdoor ==1  
for  bb = 1:buildings  
    bupperL(bb) = bupperg(bb) * swarm(i,1) + bupperintercept(bb);  
    blowerL(bb) = blowerg(bb) * swarm(i,1) + blowerintercept(bb);  
    bleftL(bb) = bleftg(bb) * swarm(i,2) + bleftintercept(bb);  
    brightL(bb) = brightg(bb) * swarm(i,2) + brightintercept(bb);  
end  
end  
  
    if  iter > 1 %analyze neighboring cells visitati ons  
        A=zeros(1,8); %assume none of the neighboring cells is visited  
        for  j=1:8                   
            if  indoor == 1 | outdoor ==1  
  
            % Boundaries  and buildings  
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            if  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarmx(:,:) & ...  
                    swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))  
            A(j) = 1; %cell has been visited already  
            elseif  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > GrSiz | ...   
                   swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...  
                   swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...  
                   swarm(i,2)+CelSz*round(sind((j - 1)*45)) < 1 | ...                            
                   (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) >= bleftL & ...   
                   swarm(i,2)+CelSz*round(sind((j - 1)*45)) >= blowerL) & ...  
                   (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) <= brightL) & ...  
                   swarm(i,2)+CelSz*round(sind((j - 1)*45)) <= bupperL);  
            A(j) = 9; %prohibited area  
            end     
          
             
            else  
            % Boundaries   
            if  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarmx(:,:) & ...  
                    swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))  
            A(j) = 1; % cell has been visited already  
            elseif  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45))  > GrSiz | ...   
                        swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...  
                        swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...  
                        swarm(i,2)+CelSz*round(sind((j - 1)*45)) < 1);  
            A(j) = 9;  
            end  
            end     
             
            % Collision avoidance  
            if  collisionavoidance == 1;                       
            if  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarm(:,1) &   

swarm(i,2)+CelSz*round(sind((j - 1)*45))  == swarm(:,2))  
                A(j) = 9; %set to prohibited area if there is an exisiting UGV  
            end    
            end                 
        end  
         
         
        % Non Holonomic @ 180  
        if  holonomicity == 180;  
        if  (swarm(i,5) == 1 & swarm(i,6) == 1)  
            A(5) = 9;  
            A(6) = 9;  
            A(7) = 9;  
        end   
        if  (swarm(i,5) == 1 & swarm(i,6) == 0)  
            A(4) = 9;  
            A(5) = 9;  
            A(6) = 9;             
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == 1)  
            A(6) = 9;  
            A(7) = 9;  
            A(8) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == - 1)  
            A(1) = 9;  
            A(2) = 9;  
            A(3) = 9;      
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 0)  
            A(1) = 9;  
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            A(2) = 9;  
            A(8) = 9;  
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == - 1)  
            A(2) = 9;  
            A(3) = 9;  
            A(4) = 9;    
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 1)  
            A(1) = 9;  
            A(7) = 9;  
            A(8) = 9;    
        end             
        if  (swarm(i,5) == 1 & swarm(i,6) == - 1)  
            A(3) = 9;  
            A(4) = 9;  
            A(5) = 9;    
        end  
        end   
         
        % Non Holonomic @ 90  
        if  holonomicity == 90;  
        if  (swarm(i,5) == 1 & swarm(i,6) == 1)  
            A(4) = 9;  
            A(5) = 9;  
            A(6) = 9;  
            A(7) = 9;  
            A(8) = 9;  
        end   
        if  (swarm(i,5) == 1 & swarm(i,6) == 0)  
            A(3) = 9;  
            A(4) = 9;  
            A(5) = 9;  
            A(6) = 9;  
            A(7) = 9;  
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == 1)  
            A(5) = 9;  
            A(6) = 9;  
            A(7) = 9;  
            A(8) = 9;  
            A(1) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == - 1)  
            A(1) = 9;  
            A(2) = 9;  
            A(3) = 9;     
            A(4) = 9;  
            A(8) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 0)  
            A(3) = 9;  
            A(1) = 9;  
            A(2) = 9;  
            A(8) = 9;  
            A(7) = 9;  
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == - 1)  
            A(1) = 9;  
            A(2) = 9;  
            A(3) = 9;  
            A(4) = 9;   
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            A(5) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 1)  
            A(2) = 9;  
            A(1) = 9;  
            A(7) = 9;  
            A(8) =  9;   
            A(6) = 9;  
        end             
        if  (swarm(i,5) == 1 & swarm(i,6) == - 1)  
            A(2) = 9;  
            A(3) = 9;  
            A(4) = 9;  
            A(5) = 9;    
            A(6) = 9;  
        end  
        end   
         
        % Non Holonomic @ 270  
        if  holonomicity == 270;  
        if  (swarm(i,5) == 1 & swarm(i,6) == 1)  
            A(6) = 9;  
        end   
        if  (swarm(i,5) == 1 & swarm(i,6) == 0)  
            A(5) = 9;       
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == 1)  
            A(7) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == - 1)  
            A(2) = 9;     
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 0)  
            A(1) = 9;  
  
        end  
        if  (sw arm(i,5) == 0 & swarm(i,6) == - 1)  
            A(3) = 9;   
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 1)  
            A(8) = 9;    
        end             
        if  (swarm(i,5) == 1 & swarm(i,6) == - 1)  
            A(4) = 9;  
        end  
        end   
         
         
        if  min(A) == 0; %check if there are unvisited cells around  
            B = find(A==0); %find not visited cell(s)  
            C = B(randi(numel(B))); %randomly pick one of them     
            NM = 1;  
        elseif  min(A) == 9; %if all of next block is restricted  
                NM = 0; %set velocity to 0  
                C = 0;               
            else      
            B = find(A==9); %check prohibited zones  
            ind=setdiff(1:8,B); %exclude directions towards prohibited zones  
            D = randi(length(ind));              
            C = ind(D); %randomly pick any allowed cell  
            NM = 1;  
        end   
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    swarm(i,5) = NM*CelSz*round(cosd((C - 1)*45)); %compute x transition  
    swarm(i,6) = NM*Ce lSz*round(sind((C - 1)*45)); %compute y transition  
    swarm(i,1) = swarm(i,1) + swarm(i,5); %update x position  
    swarm(i,2) = swarm(i,2) + swarm(i,6); %update y position  
    end  
end  
 
%% Plot swarm evolutions  
h1.XData=swarm(:,1);  
h1.YData=swarm(:,2);  
h2.St ring=[int2str(iter) ' ('  int2str(iter/N*100) '%)' ];  
pause(0.000001/iter^3)  
if  iter > 5  
for  ii=1:SwarmSize  
h4=plot(swarmx(ii,(iter - 2:iter)),swarmy(ii,(iter -
2:iter)), ' - .g' , 'LineWidth' ,0.2);  
end  
end  
end  
 
%% Show all trajectories  
  
figure  
hold on 
for  ii=1:SwarmSize  
Cl=rand(3,1);  
plot(swarmx(ii,:),swarmy(ii,:), ' - .' , 'color' ,Cl, 'LineWidth' ,1)  
plot(swarmx(ii,end),swarmy(ii,end), 'x' , 'color' ,Cl, 'LineWidth' ,1)  
  
if  outdoor == 1,  
        for  bb = 1:23;  
        fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1) 
bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2) 
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'g' )  
        end  
        for  bb = 24:31;  
        fill([blowerleft (bb,1) blowerright(bb,1) bupperright(bb,1) 
bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2) 
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'k' )  
        end  
else  if  indoor == 1,  
        for  bb = 1:12;  
        fill([blowerleft(bb, 1) blowerright(bb,1) bupperright(bb,1) 
bupperleft(bb,1) blowerleft(bb,1)], [blowerleft(bb,2) blowerright(bb,2) 
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'k' )  
        end  
    end   
end  
  
end  
hold off  
axis([1 GrSiz 1 GrSiz]), axis square , grid minor  
xlabel( 'Crossrange cell' ), ylabel( 'Downrange cell' )  
  
%% Compute the occupancy matrix  
OcM=zeros(GrSiz,GrSiz);  
for  ix=1:GrSiz  
    for  iy=1:GrSiz  
        for  is=1:SwarmSize  
            for  it=1:N  
                if  swarmx(is,it) == iy & swarmy(is,it) == ix  
                OcM(ix,iy)=OcM(ix,iy)+1;  
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                end  
            end  
        end  
    end  
end  
  
%% Show the occupancy matrix  
figure  
spy(OcM), set(gca,'YDir','normal'), axis square  
figure  
imagesc(OcM), set(gca,'YDir','normal'), axis square, colorbar  
xlabel('Crossrange cell'), ylabel('Downrange cell')  
figure  
mesh(OcM)  
xlabel('Crossrange cell'), ylabel('Downrange cell')  
zlabel('Number of cell visitations')  
  
mOcM=mean(mean(OcM));  
Fv=find(~OcM); pFv=numel(Fv)/GrSiz/GrSiz*100;  
text(0.6*GrSiz,0.6*GrSiz,2*SwarmSize,[ 'Av. # of visitations '  num2str(mOcM, 
3)])  
text(0.6*GrSiz,0.6*GrSiz,2*SwarmSize - 10,[ 'Unvisited cells '  num2str(pFv, 3) 
'%' ])  
  
visitdata(Mainloop,1) = mOcM;  
visitdata(Mainloop,2) = 100 - pFv;  
  
%reset swarmx and swarmy  
clear swarmx  
clear swarmy  
end  
end  
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APPENDIX B.  SEARCH PHASE WITH ALVC GUI DANCE 

for  SS = 1000;  
    
ml = 1;  
for  Mainloop = 1 : ml  
close all   
 
%% Defining swarm  
%  Neighboring cells numeration  
%      4   3   2  
%      5   X   1  
%      6   7   8  
N=SS; %number of iterations  
SwarmSize = 20; %number of agents in a swarm  
collisionavoidance = 1; %1 for on, 0 for off  
holonomicity = 90; %360 for "off", 90, 180 270 degree for "ON"  
  
% Swarm Starting position  
Center = 0;  
Cornertopright = 0;  
Cornebttlefttopright = 0;  
Cornerallsides = 0;  
Row = 0;  
Bttrightcorner = 0;  
%for indoor / outdoor starting configuration  
configuration = 1; %1 2 and 3 for outdoor, 4 for indoor  
  
CelSz=1;            % cell size  
GrSiz=99;           % grid size  
A = zeros(1,8);  
swarm=zeros(SwarmSize,9);  
  
%choose map  
outdoor = 1; % outdoor map, impossible city  
indoor = 0; % indoor floorplan of one building  
\  
 
%% Defining buildings  
if  outdoor == 1,  
run( 'Buildings_Obstacles.m' )  
else  if  indoor == 1,  
run( 'indoor_floorplan.m' )  
    end   
end  
  
%% Initial conditions  
  
for  s = 1:SwarmSize  
     
    if  configuration == 1;  
    swarm(s,1) = 1;  
    swarm(s,2) = 85;  
    end    
     
    if  configuration == 2;  
    if  s <= (SwarmSize /2)  
    swarm(s,1) = 1;    
    swarm(s,2) = 85;    
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    else   
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = 85;  
    end  
    end  
     
    if  configuration == 3;  
    if  s <= (SwarmSize/3)  
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = 85;    
    else  if  s > (SwarmSize /3) & s <= 2*(SwarmSize /3)  
    swarm(s,1) = 1;    
    swarm(s,2) = 20;  
    else  if  s > (2*(SwarmSize /3))  
    swarm(s,1) = 1;    
    swarm(s,2) = 85;  
    end  
    end  
    end  
    end  
     
    if  Center == 1;  
    swarm(s,1) = (GrSiz+1)/2;  
    swarm(s,2) = (GrSiz+1)/2;  
    end   
     
    if  Bttrightcorner == 1;  
    swarm(s,1) = (GrSiz);  
    swarm(s,2) = 1;  
    end       
     
    if  Cornertopright == 1;  
    swarm(s,1) = (GrSiz);  
    swarm(s,2) = (GrSiz);  
    end   
     
    if  Cornerallsides == 1;  
    if  s <= (SwarmSize/4)  
    swarm(s,1) = (G rSiz);    
    swarm(s,2) = (GrSiz);    
    else  if  s > (SwarmSize /4) & s <= 2*(SwarmSize /4)  
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = 1;  
    else  if  s > (2*(SwarmSize /4)) & s <= 3*(SwarmSize /4)  
    swarm(s,1) = 1;    
    swarm(s,2) = (GrSiz);  
    else  if  s > 3*(SwarmSize /4)  
    swarm(s,1) = 1;  
    swarm(s,2) = 1;  
    end  
    end  
    end  
    end   
    end  
    if  Row == 1 ;  
    swarm(s,1) = round(((GrSiz)/SwarmSize ) * s) ;  
    swarm(s,2) = 1;   
    end  
     
    if  Cornebttlefttopright == 1;  
    i f  s <= (SwarmSize /2)  
    swarm(s,1) = 1;    
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    swarm(s,2) = 1;    
    else   
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = (GrSiz);  
    end  
    end  
  
end  
swarm(:,5) = 0; %initial x transition  
swarm(:,6) = 0; %initial y transition  
  
%% Building block calucations  
if  indoor == 1 | outdoor ==1  
buildings = size(blowerleft,1);  
  
for  bb = 1:buildings;  
bupperg(bb) = (bupperright(bb,2) -  bupperleft(bb,2))/(bupperright(bb,1) -
bupperleft(bb,1));  
bupperintercept(bb) = bupperleft(bb,2) -  (bupperg(bb) * bupperleft(b b,1));  
blowerg(bb) = (blowerright(bb,2) -  blowerleft(bb,2))/(blowerright(bb,1) -
blowerleft(bb,1));   
blowerintercept(bb) = blowerleft(bb,2) -  (blowerg(bb) * blowerleft(bb,1));  
bleftg(bb) = (bupperleft(bb,1) -  blowerleft(bb,1))/(bupperleft(bb,2) -
blowerleft(b b,2));  
bleftintercept(bb) = bupperleft(bb,1) -  (bleftg(bb) * bupperleft(bb,2));  
brightg(bb) = (bupperright(bb,1) -  blowerright(bb,1))/(bupperright(bb,2) -
blowerright(bb,2))  ;  
brightintercept(bb) = bupperright(bb,1) -  (brightg(bb) * bupperright(bb,2));  
     
            for  ux = 1:99;  
                for  uy = 1:99;  
                    if  ux > (bleftg(bb) * uy + bleftintercept(bb))  
                        if  ux < (brightg(bb) * uy + brightintercept(bb));  
                       if  uy > (blowerg(bb) * ux + blow erintercept(bb))  
                           if  uy < (bupperg(bb) * ux + bupperintercept(bb))  
                            unvisited2(round(ux)+1,round(uy)+1) = 99;  
                           end  
                       end  
                        end  
                    end  
                end  
            end  
end  
end  
 
%% Plotting  
  
h1=plot(swarm(:,1), swarm(:,2), 'x' , 'LineWidth' ,1);  
axis([1 GrSiz 1 GrSiz]), axis square , grid minor  
xlabel( 'Crossrange cell' ), ylabel( 'Downrange cell' )  
h2=text(0.8*GrSiz,0. 95*GrSiz,[int2str(0) ' ('  int2str(0/N*100) '%)' ]);  
  
%% Swarm evolution  
for  iter = 1 : N                % run N evolutions  
     
swarmx(:,iter) = swarm(:,1);  
swarmy(:,iter) = swarm(:,2);  
  
%% Improved search algo (record all unvisited square coordinates)  
clear uvsquares  
[m,n] = size(swarmx);  
for  iterrow = 1:n  
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    for  swarmcol = 1:m  
unvisited2(swarmx(swarmcol,iterrow)+1,swarmy(swarmcol,iterrow)+1) = 9; %set 
those visited to 9  
    end  
end  
unvisited = unvisited2([2:100],[2:100]);  
  
if  sum(sum(unvisited(:,:) == 0)) >= 1 %first round  
    for  x = 1:GrSiz  
        for  y = 1:GrSiz  
            if  find(unvisited(x,y) == 0)  
            uvsy = y;  
            uvsx = x;  
            else   
                uvsy = 0;  
                uvsx = 0;  
            end  
         
    uv1(y,:) = uvsy;  
    uv2(y,:) = uvsx;  
        end   
    uvx(:,x) = uv1;  
    uvy(:,x) = uv2;  
    end  
     
    if  sum(sum(unvisited(:,:) == 0)) == 1;  
    nn = iter; %record the iteration number when all cell but one is zero  
    end      
     
else  %Second round (when all the cell has been found, reset and being from 
scratch)  
    for  iterrow = 1:n  
    for  swarmcol = 1:m  
    unvisited2(swarmx(swarmcol,iterrow)+1,swarmy(swarmcol,iterrow)+1) = 0; %set 
those visited in first round to 0  
    end  
    end  
    for  iterrow = nn:n %start the recording from iter nn  
    for  swarmcol = 1:m  
    unvisited2(swarmx(swarmcol,iterrow)+1,swarmy(swarmcol,iterrow)+1) = 9; %set 
those visited to 9  
    end  
    end  
  
    unvisited = unvisited2([2:100],[2:100]);  
  
           for  x = 1:GrSiz  
            for  y = 1:GrSiz  
                if  find(unvisited(x,y) == 0)  
                uvsy = y;  
                uvsx = x;  
                else   
                    uvsy = 0;  
                    uvsx = 0;  
                end  
  
        uv1(y,:) = uvsy;  
        uv2(y,:) = uvsx;  
            end   
        uvx(:,x) = uv1;  
        uvy(:,x) = uv2;  
           end  
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end  
  
uvsquares(:,2) = uvx(uvx~=0) ; %records all unvisited square x and y axis  
uvsquares(:,1) = uvy(uvy~=0) ;  
 
for  i = 1 : SwarmSize %determine the next move for each agent  
     
% building limits  
if  indoor == 1 | outdoor ==1  
for  bb = 1:buildings  
    bupperL(bb) = bupperg(bb) * swarm(i,1) + bupperintercept(bb);  
    blowerL(bb) = blowerg(bb) * swarm(i,1) + blowerintercept(bb);  
    bleftL(bb) =  bleftg(bb) * swarm(i,2) + bleftintercept(bb);  
    brightL(bb) = brightg(bb) * swarm(i,2) + brightintercept(bb);  
end  
end  
  
    if  iter > 1 %analyze neighboring cells visitat ions  
        A=zeros(1,8); %assume none of the neighboring cells is visited  
        for  j=1:8                   
            if  indoor == 1 || outdoor ==1  
                % Boundaries and buildings  
                if  find(swarm(i,1)+CelSz*round(cosd((j - 1)* 45)) == swarmx(:,:) &  
                   swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))  
                A(j) = 1; %cell has been visited already  
                elseif  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > GrSiz | ...   
                       swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...  
                       swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...  
                       swarm(i,2)+CelSz*round(sind((j - 1)*45)) < 1 | ...                            
                       (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > bleftL &  
                       swarm(i,2)+CelSz*round(sind((j - 1)*45)) > blowerL) &  
                       (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < brightL) &  
                       swarm(i, 2)+CelSz*round(sind((j - 1)*45)) < bupperL);  
                A(j) = 9; %prohibited area  
                end       
            else  
                % Boundaries  
                if  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarmx(:,:) & 

swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))  
                A(j) = 1; %cell has been visited already  
                elseif  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > GrSiz | ...   
                            swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...  
                            swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...  
                            swarm(i,2)+CelSz*round(sind((j - 1)*45)) < 1);  
                A(j) = 9; %prohibited area  
                end  
            end     
             
            % Collision avoidance  
            if  collisionavoidance == 1;                       
            if  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarm(:,1) &  

swarm(i,2)+CelSz*r ound(sind((j - 1)*45)) == swarm(:,2))  
                A(j) = 9; %set to prohibited area if there is an exisiting UGV  
            end    
            end                 
        end  
         
%% Improved search algo (find angle)        
clear distoswarm2  
clear distoswarm  
distoswarm = (sqrt(   ((swarm(i,1) -  uvsquares(:,1)).^2)  +  ((swarm(i,2) -  
uvsquares(:,2)).^2)    ));  
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distoswarm2 = find(distoswarm ==   min(distoswarm(distoswarm > 0))   );  
DD = randi(length(distoswarm2));        
uvsquareselect = uvsquares(dis toswarm2(DD),:);  
  
y_opp = uvsquareselect(1,2) - swarm(i,2);  
x_adj = uvsquareselect(1,1) - swarm(i,1);  
  
uvsquareselectangle = atand(y_opp/x_adj);  
uvsqaureselectangle2(i,iter) = uvsquareselectangle;  
  
% define quarter of unvisited square  
% quarter 2         q uarter 1  
%              x  
% quarter 2         quarter 1  
  
if  (y_opp >= 0 && x_adj >= 0)  ||  (y_opp < 0 && x_adj >= 0)  
quarter = 1;  
else   
quarter = 2;  
end  
randpir = randi(2);   
if  quarter == 1 %right side  
    if  uvsquareselectangle <= 90 && uvsquareselectangle >= 67.5  
        p1 = 3;  
        p2 = [2;4];  
        p3 = [1;5];  
        p4 = [6;8];  
        p5 = 7;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4 (randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
    elseif  uvsquareselectangle < 67.5 && uvsquareselectangle >= 22.5  
        p1 = 2;  
        p2 = [1;3];  
        p3 = [4;8];  
        p4 = [5;7];  
        p5 = 6;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(r andpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
    elseif  uvsquareselectangle < 22.5 && uvsquareselectangle >= - 22.5  
        p1 = 1;  
        p2 = [2;8];  
        p3 = [3;7];  
        p4 = [4;6];  
        p5 = 5;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
    elseif  uvsquareselectangle < - 22.5 && uvsquareselectangle >= - 67.5  
        p1 = 8;  
        p2 = [1;7];  
        p3 = [2;6];  
        p4 = [3;5];  
        p5 = 4;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];         
    elseif  uvsquareselectangle < - 67.5 && uvsquareselectangle >= - 90 
        p1 = 7;  
        p2 = [6;8];  
        p3 = [1;5];  
        p4 = [2;4];  
        p5 = 3;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p 4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];          
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    end  
     
elseif  quarter == 2 %left side  
    if  uvsquareselectangle <= 90 && uvsquareselectangle >= 67.5  
        p1 = 7;  
        p2 = [6;8];  
        p3 = [1;5];  
        p4 = [2;4];  
        p5 = 3;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
    elseif  uvsquareselectangle < 67.5 && uvsquareselectangle >= 22.5  
        p1 = 6;  
        p2 = [5;7];  
        p3 = [4;8];  
        p4 = [1;3];  
        p5 = 2;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
    elseif  uvsquareselectangle < 22.5 && uvsquares electangle >= - 22.5  
        p1 = 5;  
        p2 = [4;6];  
        p3 = [3;7];  
        p4 = [2;8];  
        p5 = 1;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
    elseif  uvsquareselectangle < - 22.5 && uvsquareselectangle >= - 67.5  
        p1 = 4;  
        p2 = [3;5];  
        p3 = [2;6];  
        p4 = [1;7];  
        p5 = 8;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p 3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
    elseif  uvsquareselectangle < - 67.5 && uvsquareselectangle >= - 90 
        p1 = 3;  
        p2 = [2;4];  
        p3 = [1;5];  
        p4 = [6;8];  
        p5 = 7;  
piroritycell = [p1; p2(randpir ) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];     
    end  
end  
         
         
        % Non Holonomic @ 180  
        if  holonomicity == 180;  
        if  (swarm(i,5) == 1 & swarm(i,6 ) == 1)  
            A(5) = 9;  
            A(6) = 9;  
            A(7) = 9;  
        end   
        if  (swarm(i,5) == 1 & swarm(i,6) == 0)  
            A(4) = 9;  
            A(5) = 9;  
            A(6) = 9;             
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == 1)  
            A(6) = 9;  
            A(7) = 9;  
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            A(8) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == - 1)  
            A(1) = 9;  
            A(2) = 9;  
            A(3) = 9;      
        end  
        i f  (swarm(i,5) == - 1 & swarm(i,6) == 0)  
            A(1) = 9;  
            A(2) = 9;  
            A(8) = 9;  
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == - 1)  
            A(2) = 9;  
            A(3) = 9;  
            A(4) = 9;    
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 1)  
            A(1) = 9;  
            A(7) = 9;  
            A(8) = 9;    
        end             
        if  (swarm(i,5) == 1 & swarm(i,6) == - 1)  
            A(3) = 9;  
            A(4) = 9;  
            A(5) = 9;    
        end  
        end   
         
        % Non Holonomic @ 90  
        if  holonomicity == 90;  
        if  (swarm(i,5) == 1 & swarm(i,6) == 1)  
            A(4) = 9;  
            A(5) = 9;  
            A(6) = 9;  
            A(7) = 9;  
            A(8) = 9;  
        end   
        if  (swarm(i,5) == 1 & swarm(i,6) == 0)  
            A(3) = 9;  
            A(4) = 9;  
            A(5) = 9;  
            A(6) = 9;  
            A(7) = 9;  
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == 1)  
            A(5) = 9;  
            A(6) =  9;  
            A(7) = 9;  
            A(8) = 9;  
            A(1) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == - 1)  
            A(1) = 9;  
            A(2) = 9;  
            A(3) = 9;     
            A(4) = 9;  
            A(8) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 0)  
            A(3) = 9;  
            A(1) = 9;  
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            A(2) = 9;  
            A(8) = 9;  
            A(7) = 9;  
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == - 1)  
            A(1) = 9;  
            A(2 ) = 9;  
            A(3) = 9;  
            A(4) = 9;   
            A(5) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 1)  
            A(2) = 9;  
            A(1) = 9;  
            A(7) = 9;  
            A(8) = 9;   
            A(6) = 9;  
        end             
        if  (swarm(i,5) == 1 & swarm(i,6) == - 1)  
            A(2) = 9;  
            A(3) = 9;  
            A(4) = 9;  
            A(5) = 9;    
            A(6) = 9;  
        end  
        end   
         
        % Non Holonomic @ 270  
        if  holonomicity == 270;  
        if  (swarm(i,5) == 1 & swarm(i,6) == 1)  
            A(6) = 9;  
        end   
        if  (swarm(i,5) == 1 & swarm(i,6) == 0)  
            A(5) = 9;       
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == 1)  
            A(7) =  9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == - 1)  
            A(2) = 9;     
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 0)  
            A(1) = 9;  
  
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == - 1)  
            A(3) = 9;   
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 1)  
            A(8) = 9;    
        end             
        if  (swarm(i,5) == 1 & swarm(i,6) == - 1)  
            A(4) = 9;  
        end  
        end   
      
        if  min(A) == 0 ; %check if there are unvisited cells around  
            B = find(A==0); %find not visited cell(s)  
            C = B(randi(numel(B))); %randomly pick one of them     
            NM = 1;  
        elseif  min(A) == 9; %if all of next block is restricted  
                NM = 0; %set velocity to 0  
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                C = 0;  
            else      
            B = find(A==9); %check prohibited zones  
            ind=setdiff(1:8,B); %exclude directions towards prohibited zones  
            for  indi = 1:length(ind)  
                C1(1,indi) = find(ind(1,indi) == piroritycell);  
            end  
                [temp2 C2] = min(C1);  
                C = ind(C2);  
            NM = 1;  
        end   
    swarm(i,5) = NM*CelSz*round(cosd((C - 1)*45)); %compute x transition  
    swarm(i,6) = NM*CelSz*round(sind((C - 1)*45)); %compute y transition  
    swarm(i,1) = swarm(i,1) + swarm(i,5); %update x position  
    swarm(i,2) = swarm(i,2) + swarm(i,6); %update y position  
    clear C1 
    end  
swarmx(:,iter) = swarm(:,1);  
swarmy(:,iter ) = swarm(:,2);  
dirswarmx(:,iter) = swarm(:,5);  
dirswarmy(:,iter) = swarm(:,6);  
end  
%% Plot swarm evolutions  
  
h1.XData=swarm(:,1);  
h1.YData=swarm(:,2);  
h2.String=[int2str(iter) ' ('  int2str(iter/N*100) '%)' ];  
pause(0.000001/iter^3)  
%% Add a couple of trajectories  
  
hold  
L=10;  
for  ii=1:L  
LL=randi(SwarmSize);  
Cl=rand(3,1);  
plot(swarmx(LL,:),swarmy(LL,:), ' - .' , 'color' ,Cl)  
plot(swarmx(LL,end),swarmy(LL,end), 'x' , 'color' ,Cl, 'LineWidth' ,2)  
end  
  
%% Show all trajectories  
  
figure  
hold on 
for  ii=1:SwarmSize  
Cl=rand(3,1);  
plot(swarmx(ii,:),swarmy(ii,:), ' - .' , 'color' ,Cl, 'LineWidth' ,1)  
plot(swarmx(ii,end),swarmy(ii,end), 'x' , 'color' ,Cl, 'LineWidth' ,1)  
  
if  outdoor == 1,  
        for  bb = 1:23;  
        fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1) 

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2) 
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'g' )  

        end  
        for  bb = 24:31;  
        fill([blowerleft (bb,1) blowerright(bb,1) bupperright(bb,1) 

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2) 
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'k' )  

        end  
else  if  indoor == 1,  
        for  bb = 1:12;  
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        fill([dblowerleft(bb ,1) dblowerright(bb,1) dbupperright(bb,1) 
dbupperleft(bb,1) dblowerleft(bb,1)],[dblowerleft(bb,2) 
dblowerright(bb,2) dbupperright(bb,2) dbupperleft(bb,2) 
dblowerleft(bb,2)], 'k' )  

        end  
    end   
end  
  
end  
hold off  
axis([1 GrSiz 1 GrSiz]), axis square , grid minor  
xlabel( 'Crossrange cell' ), ylabel( 'Downrange cell' )  
  
%% Compute the occupancy matrix  
OcM=zeros(GrSiz,GrSiz);  
for  ix=1:GrSiz  
    for  iy=1:GrSiz  
        for  is=1:SwarmSize  
            for  it=1:N  
                if  swarmx(is,it) == iy & swarmy(is,it) == ix  
                OcM(ix,iy)=OcM(ix,iy)+1;  
                end  
            end  
        end  
    end  
end  
  
%% Show the occupancy matrix  
  
figure  
spy(OcM), set(gca, 'YDir' , 'normal' ), axis square  
figure  
imagesc(OcM), set(gca, 'YDir' , 'normal' ), axis square , colorbar  
xlabel( 'Crossrange cell' ), ylabel( 'Downrange cell' )  
figure  
mesh(OcM)  
xlabel( 'Crossrange cell' ), ylabel( 'Downrange cell' )  
zlabel( 'Number of cell visitations' )  
mOcM=mean(mean(OcM));  
Fv=find(~OcM); pFv=numel(Fv)/GrSiz/GrSiz*100;  
visitdata(Mainloop,1) = mOcM;  
visitdata(Mainloop,2) = 100 - pFv;  
  
%reset swarmx and swarmy  
clear swarmx  
clear swarmy  
end  
end  
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APPENDIX C.  TRACK AND ENGAGE PHA SE WITH LVC 
GUIDANCE 

for SS = 1000; %iteration 
     
ml = 30; %number of runs  
for  Mainloop = 1 : ml  
close all   
 
%% Defining initial conditions  
%  Neighboring cells numeration  
%      4   3   2  
%      5   X   1  
%      6   7   8  
 
N=SS;               %number of iterations  
SwarmSize = 20;     %number of agents in swarm  
enemies = 5;        %number of enemies  
sensor = 15;        %ability for UGV to detect enemy  
killdis = 1;   %how far UGV can shoot  
killdise = 2;  %how far enemy can shoot  
collisionavoidance = 1; %1 for on, 0 for off  
holonomicityint = 90; %360 for "off", 90, 180 270 degree for "ON"  
holonomicityduringtrack = 90;  
PSO = 1; %"1 for on, 0 for off"  
pkillswarm = 0.1; %prob that enemy will kill UGV  
pkillenemy = 0.1; %prob that UGV will kill enemy  
shootsequence = 0; %1 for red shoot first(baseline) / 0 for blue shoot first  
 
%choose map  
outdoor = 0; %outdoor map, impossible city  
indoor = 0; %indoor floorplan of one building  
  
% Swarm Starting position  
Center = 0;  
Cornertopright = 0;  
Cornebttlefttopright = 0;  
Cornerallsides = 0;  
Row = 0;  
Bttrightcorner = 0;  
 
% for indoor and outdoor starting configuration  
configuration = 1; %1, 2, 3 for outdoor and 4 for indoor  
  
inertia = 1;  
correction_factor = 2;  
  
CelSz  = 1; %cell size  
GrSiz  = 99; %grid size  
A = zeros(1,8);  
swarm = zeros(SwarmSize,9);  
swarm(:,5) = 0; %initial x transition  
swarm(:,6) = 0; %initial y transition  
RM = 0;  
  
%% Defining enemies starting positions  
enemy = zeros(enemies,6);  
enemy(1, 1) = 90; %starting x  
enemy(1, 2) = 80; %starting y  
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enemy(2, 1) = 73; %starting x  
enemy(2, 2) = 20; %starting y  
     
enemy(3, 1) = 55; %starting x  
enemy(3, 2) = 98; %starting y  
  
enemy(4, 1) = 25; %starting x  
enemy(4, 2) = 40; %starting y  
  
enemy(5, 1) = 45; %starting x  
enemy(5, 2) = 60; %starting y  
  
%% Load map 
if  outdoor == 1,  
run( 'Buildings_Obstacles.m' )  
else  if  indoor == 1,  
run( 'indoor_floorplan.m' )  
end   
end  
  
%% Swarm starting positions code  
  
for  s = 1:SwarmSize  
     
    if  configuration == 1;  
    swarm(s,1) = 1;  
    swarm(s,2) = 85;  
    end    
     
    if  configuration == 2;  
    if  s <= (SwarmSize /2)  
    swarm(s,1) = 1;    
    swarm(s,2) = 85;    
    else   
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = 85;  
    end  
    end  
     
    if  configuration == 3;  
    if  s <= (SwarmSize/3)  
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = 85;    
    else  if  s > (SwarmSize /3) & s <= 2*(SwarmSize /3)  
    swarm(s,1) = 1;    
    swarm(s,2) = 20;  
    else  if  s > (2*(SwarmSize /3))  
    swarm(s,1) = 1;    
    swarm(s,2) = 85;  
    end  
    end  
    end  
    end  
     
    if  configuration == 4;  
    swarm(s,1) = 1;  
    swarm(s,2) = 10;  
    end    
     
    if  Center == 1;  
    swarm(s,1) = (GrSiz+1)/2;  
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    swarm(s,2) = (GrSiz+1)/2;  
    end   
     
    if  Bttrightcorner == 1;  
    swarm(s,1) = (GrSiz);  
    swarm(s,2) = 1;  
    end       
     
    if  Cornertopright == 1;  
    swarm(s,1) = (GrSiz);  
    swarm(s,2) = (GrSiz);  
    end   
     
    if  Cornerallsides == 1;  
    if  s <= (SwarmSize/4)  
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = (GrSiz);    
    else  i f  s > (SwarmSize /4) & s <= 2*(SwarmSize /4)  
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = 1;  
    else  if  s > (2*(SwarmSize /4)) & s <= 3*(SwarmSize /4)  
    swarm(s,1) = 1;    
    swarm(s,2) = (GrSiz);  
    else  if  s > 3*(SwarmSize /4)  
    swarm(s,1) = 1;  
    swarm(s,2) = 1;  
    end  
    end  
    end  
    end   
    end  
    if  Row == 1 ;  
    swarm(s,1) = round(((GrSiz)/SwarmSize ) * s) ;  
    swarm(s,2) = 1;   
    end  
     
    if  Cornebttlefttopright == 1;  
    if  s <= (SwarmSize /2)  
    swarm(s,1) = 1;    
    swarm(s,2) = 1;    
    else   
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = (GrSiz);  
    end  
    end  
end  
  
%% Building block calucations  
if  indoor == 1 | outdoor ==1  
buildings = size(blowerleft,1);  
  
for  bb = 1:buildings;  
bupperg(bb) = (bupperright(bb,2) -  bupperleft(bb,2))/(bupperright(bb,1) -
bupperleft(bb,1));  
bupperintercept(bb) = bupperleft(bb,2) -  (bupperg(bb) * bupperleft(bb,1));  
blowerg(bb) = (blowerright(bb,2) -  blowerleft(bb,2))/(blowerright(bb,1) -
blowerleft(bb,1));   
blowerinter cept(bb) = blowerleft(bb,2) -  (blowerg(bb) * blowerleft(bb,1));  
bleftg(bb) = (bupperleft(bb,1) -  blowerleft(bb,1))/(bupperleft(bb,2) -
blowerleft(bb,2));  
bleftintercept(bb) = bupperleft(bb,1) -  (bleftg(bb) * bupperleft(bb,2));  
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brightg(bb) = (bupperright(bb,1) -  blowerright(bb,1))/(bupperright(bb,2) -
blowerright(bb,2))  ;  
brightintercept(bb) = bupperright(bb,1) -  (brightg(bb) * bupperright(bb,2));  
end  
end  
  
%% Plotting  
  
h1 = plot(swarm(:,1), swarm(:,2), 'x' , 'LineWidth' ,1);  
hold on 
h2 = plot(en emy(:,1), enemy(:,2), 'xr' , 'LineWidth' ,1);  
hold on 
  
if  outdoor == 1,  
 
        for  bb = 1:23;  
fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1)  bupperleft(bb,1) 
blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2) bupperright(bb,2) 
bupperleft(bb,2) blowerleft(bb,2)], 'k' )  
        end  
 
        for  bb = 24:31;  
fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1) bupperleft(bb,1) 
blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2) bupperright(bb,2) 
bupperleft(bb,2) blowerleft(bb, 2)], 'g' )  
        end  
 
else  if  indoor == 1,  
        for  bb = 1:12;  
fill([dblowerleft(bb,1) dblowerright(bb,1) dbupperright(bb,1) dbupperleft(bb,1) 
dblowerleft(bb,1)],[dblowerleft(bb,2) dblowerright(bb,2) dbupperright(bb,2) 
dbupperleft(bb,2) dblowerleft(bb,2 )], 'k' )  
        end  
    end   
end  
  
axis([1 GrSiz 1 GrSiz]), axis square , grid minor  
xlabel( 'Crossrange cell' ), ylabel( 'Downrange cell' )  
h3=text(0.85*GrSiz,0.95*GrSiz,[int2str(0) ' ('  int2str(0/N*100) '%)' ]);  
  
 
%% Swarm evolution  
for  iter = 1 : N  % run N evolutions  
  
swarmx(:,iter) = swarm(:,1);  
swarmy(:,iter) = swarm(:,2);  
  
% Enemy movement  
for  e = 1 : enemies; % position of Swarms  
  
        % enemies space boundaries  and building limits  
        if  indoor == 1 | outdoor ==1  
        for  bb = 1:buildings  
            bupperLLL(bb) = bupperg(bb) * enemy(e,1) + bupperintercept(bb);  
            blowerLLL(bb) = blowerg(bb) * enemy(e,1) + blowerintercept(bb);  
            bleftLLL(bb) =  bleftg(bb) * enemy(e,2) + bleftintercept(bb);  
            brightLLL(bb) = br ightg(bb) * enemy(e,2) + brightintercept(bb);  
        end  
        end  
         
        if  iter > 1  % analyze neighboring cells visitations  
        AA=zeros(1,8);  % assume none of the neighboring cells is visited  
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        for  jj=1:8                   
            if  indoor == 1 | outdoor ==1  
                 if  find(enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) > GrSiz | ...   
                    enemy(e,2)+CelSz*round(sind((jj - 1)*45)) > GrSiz | ...  
                    enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) < 1 | ...  
                    enemy(e,2)+CelSz*round(sind((jj - 1)*45)) < 1 | ...                            
                    (enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) > bleftLLL & ...   
                    enemy(e,2)+CelSz*round(sind((jj - 1)*45)) > blowerLLL) & ...  
                    (enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) < brightLLL) & ...  
                    enemy(e,2)+CelSz*round(sind((jj - 1)*45)) < bupperLLL);  
                  

AA(jj) = 9;  % prohibi ted area  
                  end  
                             
            elseif  find(enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) > GrSiz | ...   
                enemy(e,2)+CelSz*round(sind((jj - 1)*45)) > GrSiz | ...  
                enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) < 1 | ...  
                enemy(e,2)+CelSz*round(sind((jj - 1)*45)) < 1);  
                 
      AA(jj) = 9;  
            end  
        end  
         
        if  enemy(e,1) == - 54321; % dead position  
            enemy(e,5) = 0;  
            enemy(e,6) = 0;   
        elseif  min(AA) == 9;          
            NMM = 1;              
            CC = randi([1 8]);             
            else      
            BB = find(AA==9);     % check prohibited zones  
            ind=setdiff(1:8,BB); % exclude directions towards  prohibited zones  
            DD = randi(length(ind));              
            CC = ind(DD);  % randomly pick any allowed cell  
            NMM = 1;  
            enemy(e,5) = NMM*CelSz*round(cosd((CC - 1)*45)); %compute x transition  
            enemy(e,6) = NMM *CelSz*round(sind((CC - 1)*45)); %compute y transition  
            end  
             
        enemy(e,1) = enemy(e,1) + enemy(e,5); %update x position  
        enemy(e,2) = enemy(e,2) + enemy(e,6); %update y position  
        end  
end              
  
%Swarm movement 
for  i = 1 : SwarmSize           % determine the next move for each agent  
  
% building limits  
if  indoor == 1 | outdoor ==1  
for  bb = 1:buildings  
    bupperL(bb) = bupperg(bb) * swarm(i,1) + bupperintercept(bb);  
    blowerL(bb) = blowerg(bb) * swarm(i,1) + b lowerintercept(bb);  
    bleftL(bb) =  bleftg(bb) * swarm(i,2) + bleftintercept(bb);  
    brightL(bb) = brightg(bb) * swarm(i,2) + brightintercept(bb);  
  
  
end  
end  
    if  iter > 1 % analyze neighboring cells visitations  
        A=zeros(1,8); % assume none of the neighboring cells is visited  
        for  j=1:8                   
            if  indoor == 1 | outdoor ==1  
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            % Boundaries  and buildings  
            if  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarmx(:,:) & ...  
                   swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))  
            A(j) = 1; % cell has been visited already  
            elseif  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > GrSiz | ...   
                   swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...  
                   swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...  
                   swarm(i,2)+CelSz*round(sind((j - 1)*45)) < 1 | ...                            
                   (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > bleftL & ...   
                   swarm(i,2)+CelSz*round(sind((j - 1)*45)) > blowerL) & ...  
                   (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < brightL) & ...  
                   swarm(i,2)+CelSz*round(sind((j - 1)*45)) < bupperL);  
                   A(j) = 9; % prohibited area  
            end     
 
            else  
            % Boundaries   
            if  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarmx(:,:) & ...  
                    swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))  
              A(j) = 1; % cell has been  visited already  
            elseif  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > GrSiz | ...   
                   swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...  
                   swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...  
                   swarm(i,2)+CelSz*round(sind((j - 1)*45)) < 1);  
                   A(j) = 9;  
            end  
            end     
             
            % Collision avoidance  
            if  collisionavoidance == 1;                       
            if  find(swarm(i,1)+CelSz*r ound(cosd((j - 1)*45)) == swarm(:,1) 
&...  %find other UGV in surrounding  
               swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarm(:,2))  
               A(j) = 9; %set to prohibited area if there is an existing  UGV 
            end    
            end                 
        end  
         
        if  RM == 1 %holo 360 during track  
           holonomicity = holonomicityduringtrack;  
        else  
           holonomicity = holonomicityint;  
        end  
         
        % Non Holonomic @ 180  
        if  holonomicity == 180;  
        if  (swarm(i,5) == 1 & swarm(i,6) == 1)  
            A(5) = 9;  
            A(6) = 9;  
            A(7) = 9;  
        end   
        if  (swarm(i,5) == 1 & swarm(i,6) == 0)  
            A(4) = 9;  
            A(5) = 9;  
            A(6) = 9;             
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == 1)  
            A(6) = 9;  
            A(7) = 9;  
            A(8) = 9;  
        end  
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        if  (swarm(i,5) == - 1 & swarm(i,6) == - 1)  
            A(1) = 9;  
            A(2) = 9;  
            A(3) = 9;      
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 0)  
            A(1) = 9;  
            A(2) = 9;  
            A(8) = 9;  
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == - 1)  
            A(2) = 9;  
            A(3) = 9;  
            A(4) = 9;    
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 1)  
            A(1) = 9;  
            A(7) = 9;  
            A(8) = 9;    
        end             
        if  (swarm(i,5) == 1 & swarm(i,6) == - 1)  
            A(3) = 9;  
            A(4) = 9;  
            A(5) = 9;    
        end  
        end   
         
        % Non Holonomic @ 90  
        if  holonomicity == 90;  
        if  (swarm(i,5) == 1 & swarm(i,6) == 1)  
            A(4) = 9;  
            A(5) = 9;  
            A(6) = 9;  
            A(7) = 9;  
            A(8) = 9;  
        end   
        if  (swarm(i,5) == 1 & swarm(i,6) == 0)  
            A(3) = 9;  
            A(4) = 9;  
            A(5) = 9;  
            A(6) = 9;  
            A(7) = 9;  
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == 1)  
            A(5) = 9;  
            A(6) = 9;  
            A(7) = 9;  
            A(8) = 9;  
            A(1) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == - 1)  
            A(1) = 9;  
            A(2) = 9;  
            A(3) = 9;     
            A(4) = 9;  
            A(8) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 0)  
            A(3) = 9;  
            A(1) = 9;  
            A(2) = 9;  
            A(8) = 9;  
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            A(7) = 9;  
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == - 1)  
            A(1) = 9;  
            A(2) = 9;  
            A(3) = 9;  
            A(4) = 9;   
            A(5) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 1)  
            A(2) = 9;  
            A(1) = 9;  
            A(7) = 9;  
            A(8) = 9;   
            A(6) = 9;  
        end             
        if  (swarm(i,5) == 1 & swarm(i,6) == - 1)  
            A(2) = 9;  
            A(3) = 9;  
            A(4) = 9;  
            A(5) = 9;    
            A(6) = 9;  
        end  
        end   
         
        % Non Holonomic @ 270  
        if  holonomicity == 270;  
        if  (swarm(i,5) == 1 & swarm(i,6) == 1)  
            A(6) = 9;  
        end   
        if  (swarm(i,5) == 1 & swarm(i,6) == 0)  
            A(5) = 9;       
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == 1)  
            A(7) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == - 1)  
            A(2) = 9;     
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 0)  
            A(1) = 9;  
  
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == - 1)  
            A(3) = 9;   
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 1)  
            A(8) = 9;    
        end             
        if  (swarm(i,5) == 1 & swarm(i,6) == - 1)  
            A(4) = 9;  
        end  
        end   
                                    
  
        if  PSO == 0 %no PSO, use LVS                             
            if  min(A) == 0;  %check if there are unvisited cells aro und  
                B = find(A==0); %find not visited cell(s)  
                C = B(randi(numel(B))); %randomly pick one of them     
                NM = 1;  
            elseif  min(A) == 9; %if all of next block is restricted   
                    NM = 0;  %set velocity to 0  
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                    C = 0;   
                else      
                B = find(A==9); %check prohibited zones  
                ind=setdiff(1:8,B); %exclude directions towards proh ibited zones  
                D = randi(length(ind));              
                C = ind(D);  %randomly pick any allowed cell  
                NM = 1;  
            end   
        else  %PSO function is on  
                if  RM == 1;  
% x vel vector  
pr iorityx = inertia*swarm(i, 5) + correction_factor*rand*(swarm(i, 3)  -  
swarm(i, 1)) + correction_factor*rand*(swar m(swarm(i,9), 1) -  swarm(i, 1)) ;  
% y vel vector  
priorityy = inertia*swarm(i, 6) + correction_factor*rand*(swarm(i, 4) ...  
-  swarm(i, 2)) + corre ction_factor*rand*(swarm(swarm(i,9), 2) -  swarm(i, 2));  
                  

% Maximum distance swarm able to move per time step  
                    if  priorityx >= 0.5;  
                       priorityx = 1;  
                    else  if  priorityx <= - 0.5;  
                            priorityx = - 1;  
                        else   
                            priorityx = 0;  
                    end  
                    end  
  
                    if  priorityy >= 0.5;  
                       priorityy = 1;  
                    else  if  priorityy <= 0.5;  
                            priorityy = - 1;  
                        else   
                            priorityy = 0;  
                    end  
                    end  
                    
                    randp ir = randi(2);   
                    if  priorityx == 0 && priorityy == 1  
                        p1 = 3;  
                        p2 = [2;4];  
                        p3 = [1;5];  
                        p4 = [6;8];  
                        p5 = 7;  
piroritycel l = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
                    elseif  priorityx == 1 && priorityy == 1  
                        p1 = 2;  
                        p2 = [1;3];  
                        p3 = [4;8];  
                        p4 = [5;7];  
                        p5 = 6;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
                    elseif  priorityx == 1 && priorityy == 0  
                        p1 = 1;  
                        p2 = [2;8];  
                        p3 = [3;7];  
                        p4 = [4;6];  
                        p5 = 5;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
                    elseif  priorityx == 1 && priorityy == - 1 
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                        p1 = 8;  
                        p2 = [1;7];  
                        p3 = [2;6];  
                        p4 = [3;5];  
                        p5 = 4;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(rand pir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];         
                    elseif  priorityx == 0 && priorityy == - 1 
                        p1 = 7;  
                        p2 = [6;8];  
                        p3 = [1;5];  
                        p4 =  [2;4];  
                        p5 = 3;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];    
                    elseif  priorityx == - 1 && priorityy == - 1 
                        p1 = 6;  
                        p2 = [5;7];  
                        p3 = [4;8];  
                        p4 = [1;3];  
                        p5 = 2;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
                    elseif  priorityx == - 1 && priorityy == 0  
                        p1 = 5;  
                        p2 = [4;6];  
                        p3 = [3;7];  
                        p4 = [2;8];  
                        p5 = 1;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
                    elseif  priorityx == - 1 && priorityy == 1  
                        p1 = 4;  
                        p2 = [3;5];  
                        p3 = [2;6];  
                        p4 = [1;7];  
                        p5 = 8;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
                    end  
                     
                    if  min(A) == 9;  %if all of next block is restricted  
                        NM = 0; %set velocity to  0 
                        C = 0;             
                    else      
                        B = find(A==9); %check prohibited zones  
                        ind  = setdiff(1:8,B); %exclude directions towards 
prohibited zones  
                        for  indi = 1:length(ind)  
                        C1(1,indi) = find(ind(1,indi) == piroritycell);  
                    end  
                        [temp2 C2] = min(C1);  
                        C = ind(C2);  
                        NM = 1;  
                    end   
                     
                else  
                     if  min(A) == 0;  %check if there are unvisited cells around  
                        B = find(A==0); %find not visited cell(s)  
                        C = B(randi(numel(B))); %randomly pick one of them     
                        NM = 1;  
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                        elseif  min(A) == 9; %if all of next block is either 
occupied or in prohibited zone  
                        NM = 0; %set velocity to 0  
                        C = 0 ;  
                        else      
                        B = find(A==9); %check prohibited zones  
                        ind=setdiff(1:8,B); %exclude directions towards 
prohibited zones  
                        D = randi(length(ind));              
                        C = ind(D); %randomly pick any allowed cell  
                        NM = 1;  
                    end   
                end  
        end  
             
        if  swarm(i,1) == NaN  
            swarm(i,5) = 0;     
            swarm(i,6) = 0;  
        else  
        swarm(i,5) = NM*CelSz*round(cosd((C - 1)*45)); %compute x transition  
        swarm(i,6) = NM*CelSz*round(sind((C - 1)*45)); %compute y transition  
        swarm(i,1) = swarm(i,1) + swarm(i,5); %update x position  
        swarm(i,2) = swarm(i ,2) + swarm(i,6); %update y position  
        clear C1 
        end  
    end  
    % Finding enemy  

if  find((swarm(i,1) >= enemy(:, 1) -  sensor & swarm(i,1) <= enemy(:, 1)+                     
sensor) &  (swarm(i,2) >= enemy(:, 2) -  sensor & swarm(i,2) <= enemy(:, 2)+ 
sensor));  
    %to solve if sensor found 2 target  
        G = find((swarm(i,1) >= (enemy( :, 1) -  sensor) & swarm(i,1) <= 
(enemy(:, 1)+ sensor)) & (swarm(i,2) >= (enemy(:, 2) -  sensor) & swarm(i,2) <= 
(enemy(:, 2)+ sensor))); %find and record which enemy is found  
         

 G2 = sqrt((enemy(G,1) - swarm(i,1)).^2 + (enemy(G,2) -
swarm(i,2)).^2); %calculate  distance from enemy found  
    [temp, G3] = min(G2); %take shorter distance  
    enemyfound(i,1) = G(G3,1); %record enemynumber as enemyfound  
    enemytarget(i,1) = G(G3,1);  
    else   
        enemyfound(i,1) = 0;  
    end  
  
    if  enemyfound(i,1) > 0;  
        closestEposu(i,1) = ene my(enemyfound(i,1),1);  
        closestEposv(i,1) = enemy(enemyfound(i,1),2);  
    else  
        closestEposu(i,1) = 0;  
        closestEposv(i,1) = 0;  
    end    
end 
 
%% Allocating closest ally's PBEST and GBEST that manage to find enemy  
     if  PSO == 1  
         if  max(enemyfound(:,1)) > 0  
                x = find(enemyfound > 0); %other swarm  found enemy  
  
            for  i = 1:SwarmSize;  
                if  enemyfound(i,1) == 0;  
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                [temp G5] = min(sqrt(((swarm(i,1) - swarm(x,1)).^2) + 
((swarm(i,2) - swarm(x,2)).^2))); % finding which enemy closest ally (min hypo) 
found  
                    G4 = x(G5,1);  
                   closestEposu(i,1) = closestEposu(G4,1); %allocate e nemy 

target position to swarm that did not find enemy  
                   closestEposv(i,1) = closestEposv(G4,1); %allocate enemy 

target position to swarm that did not find enemy  
                   enemytarget(i,1) = enemyfound(G4,1); %record which enemy 

ta rgeted by swarm that did not find enemy  
                end  
  
                swarm(i,7) = sqrt(((swarm(i,1) - closestEposu(i,1)).^2) + 

((swarm(i,2) - closestEposv(i,1)).^2)); %dis from all swarm 
position  to target enemy position  

            end  
          end   
  
        %% Pbest                         
        % comparing previous and current position relative to pbest  
            for  i = 1:SwarmSize;  
                if  iter >  1; %only after 1st iter we will have old swarm 

position to compare  
            valueO (i,1) = sqrt(((swarmx(i,iter - 1) -  closestEposu(i,1))^2) + 

((swarmy(i,iter - 1) -  closestEposv(i,1))^2)); %old position wrt new 
enemy targeted pos  

            valueN(i,1) = sqrt(((swarm(i,1) -  closestEposu(i,1))^2) + 
((swarm(i,2) -  closestEposv(i,1))^2)); %new position wrt new enemy 
targeted pos    

  
                    if  valueN(i,1) < valueO(i,1);  %if new position is better, 

record it as pbest      
                        swarm(i, 3) = swarm(i, 1); %update best position of u,  
                        swarm(i, 4) = swarm(i, 2); %update best postions of v,  
                    else   
                        swarm(i,3) = swarmx(i,iter - 1);  
                        swarm(i,4) = swarmy(i,iter - 1);  
                    end  
            end  
            end   
                
        if  max(enemyfound(:,1)) > 0;  %trigger random walk or PSO  
           RM = 1; %trigger PSO  
% Group similar targeted enemy and assign gbest to min value in each group  
           uv = unique(enemytarget); %remove duplic ate  
           B = size(uv,1);  
  
                for  Q = 1:B; %sorting on target found  
                     A = find(enemytarget(:,1) == uv(Q,1));  
                     swarm(A,8) = min(swarm(A,7)) ; %min value is Gbest value  
                end  
                for  i = 1:SwarmSize;  
                    choosegbest = (find(swarm(i,8) == swarm(:,7)));  
                    randomIndex = randi(length(choosegbest),1);  
                    swarm(i,9) = choosegbest(randomIndex); %finding which swarm 

holds G best value recording in 9  
                    clear choosegbest  
                    clear randomIndex  
                end   
        else   
           RM = 0; % trigger random walk if no enemy found at all  
        end     
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 end  
%% Engage 
for  i = 1 : SwarmSize;  
if  shootsequence == 1 %red to shoot first  
    if  find((swarm(i,1) >= enemy(:, 1) -  killdise & swarm(i,1) <= enemy(:, 1)+ 

killdise) & ...  
    (swarm(i,2) >= enemy(:, 2) -  killdise & swarm(i,2) <= enemy(:, 2)+ 

killdise));  
    if  rand <= pkillswarm;  
    swar m(i,1) = NaN;  
    swarm(i,2) = NaN;  
    end  
    end   
  
    if  find((swarm(i,1) >= enemy(:, 1) -  killdis & swarm(i,1) <= enemy(:, 1)+ 

killdis) &  (swarm(i,2) >= enemy(:, 2) -  killdis & swarm(i,2) <= enemy(:, 2)+ 
killdis));  

 
    K = find((swarm(i,1) >= (ene my(:, 1) -  killdis) & swarm(i,1) <= (enemy(:, 

1)+ killdis)) &  (swarm(i,2) >= (enemy(:, 2) -  killdis) & swarm(i,2) <= 
(enemy(:, 2)+ killdis))); %find and record which enemy is found  

  
    if  rand <= pkillenemy;  
    enemy(K,1) = - 54321;  
    enemy(K,2) = - 54321;  
    end  
    end  
else  %blue to shoot first (reverse order)  
    if  find((swarm(i,1) >= enemy(:, 1) -  killdis & swarm(i,1) <= enemy(:, 1)+ 

killdis) &  (swarm(i,2) >= enemy(:, 2) -  killdis & swarm(i,2) <= enemy(:, 2)+ 
killdis));  

 
    K = find((swarm(i,1) >= (enemy(:, 1) -  killdis) & swarm(i,1) <= (enemy(:, 

1)+ killdis)) & (swarm(i,2) >= (enemy(:, 2) -  killdis) & swarm(i,2) <= 
(enemy(:, 2)+ killdis))); %find and record which enemy is found  

  
    if  rand <= pkillenemy;  
    enemy(K,1)  = - 54321;  
    enemy(K,2) = - 54321;  
    end  
    end  
     
    if  find((swarm(i,1) >= enemy(:, 1) -  killdise & swarm(i,1) <= enemy(:, 1)+ 

killdise) & (swarm(i,2) >= enemy(:, 2) -  killdise & swarm(i,2) <= enemy(:, 
2)+ killdise));  

 
    if  rand <= pkillswarm;  
    swarm(i,1) = NaN;  
    swarm(i,2) = NaN;  
    end  
    end   
end  
end  
        
 
%% Plot swarm evolutions  
  
h1.XData=swarm(:,1);  
h1.YData=swarm(:,2);  
h2.XData=enemy(:,1);  
h2.YData=enemy(:,2);  
h3.String=[int2str(iter) ' ('  int2str(iter/N*100) '%)' ];  
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pause(0.000001/iter^3)  
  
% break if all swarm or enemy killed  
outcome(Mainloop,2) = sum(enemy(:,1)>=0);  
outcome(Mainloop,3) = iter;  
outcome(Mainloop,1) = sum(swarm(:,1)>=0); %blue left  
  
if  max(~isnan(swarm(:,1))) == 0  
break  
end  
  
if  (sum(enemy(:,1)>=0)) == 0  
break  
end     
  
end  
 
figure  
hold on 
for  ii=1:SwarmSize  
Cl=rand(3,1);  
plot(swarmx(ii,:),swarmy(ii,:), ' - .' , 'color' ,Cl, 'LineWidth' ,1)  
plot(swarmx(ii,end),swarmy(ii,end), 'x' , 'color' ,Cl, 'LineWidth' ,1)  
  
if  outdoor == 1,  
        for  bb = 1:23;  
        fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1) 

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2) 
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'k' )  

        end  
        for  bb = 24:31;  
        fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1) 

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2) 
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'g' )  

        end  
else  if  indoor == 1,  
        for  bb = 1:12;  
        fill([dblowerleft(bb,1) dblowerright(bb,1) dbupperright(bb,1) 

dbupperleft(bb,1) dblowerleft(bb,1)],[dblowerleft(bb,2) 
dblowerright(bb,2) dbupperright(bb,2) dbupperleft(bb,2) 
dblowerleft(bb,2)], 'k' )  

        end  
    end   
end  
  
end  
hold off  
axis([1 GrSiz 1 GrSiz]), axis square , grid minor  
xlabel( 'Crossrange cell' ), ylabel( 'Downrange cell' )  
  
%% Compute the occupancy matrix  
OcM=zeros(GrSiz,GrSiz);  
for  ix=1:GrSiz  
    for  iy=1:GrSiz  
        for  is=1:SwarmSize  
            for  it=1:iter  
                if  swarmx(is,it) == iy & swarmy(is,it) == ix  
                OcM(ix,iy)=OcM(ix,iy)+1;  
                end  
            end  
        end  
    end  
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end  
  
%% Show the occupancy matrix  
  
figure  
spy(OcM), set(gca,'YDir','normal'), axis square  
figure  
imagesc(OcM), set (gca,'YDir','normal'), axis square, colorbar  
xlabel('Crossrange cell'), ylabel('Downrange cell')  
figure  
mesh(OcM)  
xlabel('Crossrange cell'), ylabel('Downrange cell')  
zlabel('Number of cell visitations')  
mOcM=mean(mean(OcM));  
% find percentage in terms of a vailable cells(removing buildings)  
if  outdoor == 0 && indoor == 0  
Fv=find(~OcM); pFv=numel(Fv)/GrSiz/GrSiz*100;  
else  if  outdoor == 1  
Fv=find(~OcM); pFv=((((numel(Fv)/GrSiz/GrSiz)*GrSiz^2) - 4674)/((GrSiz^2) -
4674))*100;  
    else  if  indoor == 1  
Fv=find(~OcM); pFv=((((numel(Fv)/GrSiz/GrSiz)*GrSiz^2) - 768)/((GrSiz^2) -
768))*100;             
             
% (( total unvisited * totalgridarea ) -  building area)/available area   *   
100% 
%building area of 4674 is known by running full coverage and finding out the 
max 
%amt of percentage that the UGV can cover  
        end  
    end  
end  
 
clear swarmx  
clear swarmy  
  
end  
end  
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APPENDIX D.  TRACK AND ENGAGE PHA SE WITH ALVC 
GUIDANCE 

for  SS = 1000; %iteration  
     
ml = 30; %number of runs  
for  Mainloop = 1 : ml  
close all   
 
%% Defining initial conditions  
%  Neighboring cells numeration  
%      4   3   2  
%      5   X   1  
%      6   7   8  
 
N=SS;               %number of iterations  
SwarmSize = 20;     %number of agents in swarm  
enemies = 5;        %number of enemies  
sensor = 15;        %ability for UGV to detect enemy  
killdis = 1;   %how far UGV can shoot  
killdise = 2;  %how far enemy can shoot  
collisionavoidance = 1; %1 for on, 0 for off  
holonomicityint = 90; %360 for "off", 90, 180 270 degree for "ON"  
holonomicityduringtrack = 90;  
PSO = 1; %"1 for on, 0 for off"  
pkillswarm = 0.1; %prob that enemy will kill UGV  
pkillenemy = 0.1; %prob that UGV will kill enemy  
shootsequence = 0; %1 for red shoot first(baseline) / 0 for blue shoot first  
 
%choose map  
outdoor = 0; %outdoor map, impossible city  
indoor = 0; %indoor floorplan of one building  
  
% Swarm Starting position  
Center = 0;  
Cornertopright = 0;  
Cornebttlefttopright = 0;  
Cornerallsides = 0;  
Row = 0;  
Bttrightcorner = 0;  
 
% for indoor and outdoor starting configuration  
configuration = 1; %1, 2, 3 for outdoor and 4 for indoor  
  
inertia = 1;  
correction_factor = 2;  
  
CelSz = 1; %cell size  
GrSiz = 99; %grid size  
A = zeros(1,8);  
swarm = zeros(SwarmSize,9);  
swarm(:,5) = 0; %initial x transition  
swarm(:,6 ) = 0; %initial y transition  
RM = 0;  
 
%% Defining enemies starting positions  
enemy=zeros(enemies,6);  
  
enemy(1, 1) = 90; %starting x  
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enemy(1, 2) = 80; %starting y  
  
enemy(2, 1) = 73; %starting x  
enemy(2, 2) = 20; %starting y  
     
enemy(3, 1) = 55; %starting x  
enemy(3, 2) = 98; %starting y  
  
enemy(4, 1) = 25; %starting x  
enemy(4, 2) = 40; %starting y  
  
enemy(5, 1) = 45; %starting x  
enemy(5, 2) = 60; %starting y  
  
%% Load map 
if  outdoor == 1,  
run( 'Buildings_Obstacles.m' )  
else  if  indoor == 1,  
run( 'indoor_floorplan.m' )  
end   
end  
  
%% Swarm starting positions code  
  
for  s = 1:SwarmSize  
     
    if  configuration == 1;  
    swarm(s,1) = 1;  
    swarm(s,2) = 85;  
    end    
     
    if  configuration == 2;  
    if  s <= (SwarmSize/2)  
    swarm(s,1) = 1;    
    swarm(s,2) = 85;    
    else   
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = 85;  
    end  
    end  
     
    if  configuration == 3;  
    if  s <= (SwarmSize/3)  
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = 85;    
    else  if  s > (SwarmSize /3) & s <= 2*(SwarmSize /3)  
    swarm(s,1) = 1;    
    swarm(s,2) = 20;  
    else  if  s > (2*(SwarmSize /3))  
    swarm(s,1) = 1;    
    swarm(s,2) = 85;  
    end  
    end  
    end  
    end  
     
    if  configuration == 4;  
    swarm(s,1) = 1;  
    swarm(s,2) = 10;  
    end    
     
    if  Center == 1;  



135 

    swarm(s,1) = (GrSiz+1)/2;  
    swarm(s,2) = (GrSiz+1)/2;  
    end   
     
    if  Bttrightcorner == 1;  
    swarm(s,1) = (GrSiz);  
    swarm(s,2) = 1;  
    end       
     
    if  Cornertopright == 1;  
    swarm(s,1) = (GrSiz);  
    swarm(s,2) = (GrSiz);  
    end   
     
    if  Cornerallsides == 1;  
    if  s <= (SwarmSize/4)  
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = (GrSiz);    
    else  if  s > (SwarmSize /4) & s <= 2*(SwarmSize /4)  
    swarm(s,1) = (GrS iz);    
    swarm(s,2) = 1;  
    else  if  s > (2*(SwarmSize /4)) & s <= 3*(SwarmSize /4)  
    swarm(s,1) = 1;    
    swarm(s,2) = (GrSiz);  
    else  if  s > 3*(SwarmSize /4)  
    swarm(s,1) = 1;  
    swarm(s,2) = 1;  
    end  
    end  
    end  
    end   
    end  
    if  Row == 1 ;  
    swarm(s,1) = round(((GrSiz)/SwarmSize ) * s) ;  
    swarm(s,2) = 1;   
    end  
     
    if  Cornebttlefttopright == 1;  
    if  s <= (SwarmSize /2)  
    swarm(s,1) = 1;    
    swarm(s,2) = 1;    
    else   
    swarm(s,1) = (GrSiz);    
    swarm(s,2) = (GrSiz);  
    end  
    end  
end  
  
%% Building block calucations  
if  indoor == 1 | outdoor ==1  
buildings = size(blowerleft,1);  
  
for  bb = 1:buildings;  
bupperg(bb) = (bupperright(bb,2) -  bupperleft(bb,2))/(bupperright(bb,1) -
bupperleft(bb,1));  
bupperintercept(bb) = bupperleft(bb,2) -  (bupperg(bb) * bupperleft(bb,1));  
blowerg(bb) = (blowerright(bb,2) -  blowerleft(bb,2))/(blowerright(bb,1) -
blowerleft(bb,1));   
blowerintercept(bb) = blowerleft(bb,2) -  (blowerg(bb) * blowerleft(bb,1));  
bleftg(bb) = ( bupperleft(bb,1) -  blowerleft(bb,1))/(bupperleft(bb,2) -
blowerleft(bb,2));  
bleftintercept(bb) = bupperleft(bb,1) -  (bleftg(bb) * bupperleft(bb,2));  
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brightg(bb) = (bupperright(bb,1) -  blowerright(bb,1))/(bupperright(bb,2) -
blowerright(bb,2))  ;  
brightintercept(bb) = bupperright(bb,1) -  (brightg(bb) * bupperright(bb,2));  
            for  ux = 1:99;  
                for  uy = 1:99;  
                    if  ux > (bleftg(bb) * uy + bleftintercept(bb))  
                        if  ux < (brightg(bb) * uy + brightintercept(bb));  
                       if  uy > (blowerg(bb) * ux + blowerintercept(bb))  
                           if  uy < (bupperg(bb) * ux + bupperintercept(bb))  
                            unvisited2(round(ux)+1,round(uy )+1) = 99;  
                           end  
                       end  
                        end  
                    end  
                end  
            end  
  
  
end  
end  
  
%% Plotting  
  
h1 = plot(swarm(:,1), swarm(:,2), 'x' , 'LineWidth' ,1);  
hold on 
h2 = plot(enemy(:,1), enemy(:,2), 'xr' , 'LineWidth' ,1);  
hold on 
  
%plot map on figure  
if  outdoor == 1,  
        for  bb = 1:23;  
        fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1) 

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2) 
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'k' )  

        end  
        for  bb = 24:31;  
        fill([blowerleft (bb,1) blowerright(bb,1) bupperright(bb,1) 

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2) 
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'g' )  

        end  
else  if  indoor == 1,  
        for  bb = 1:12;  
        fill([dblowerleft(bb ,1) dblowerright(bb,1) dbupperright(bb,1) 

dbupperleft(bb,1) dblowerleft(bb,1)],[dblowerleft(bb,2) 
dblowerright(bb,2) dbupperright(bb,2) dbupperleft(bb,2) 
dblowerleft(bb,2)], 'k' )  

        end  
    end   
end  
  
axis([1 GrSiz 1 GrSiz]), axis square , grid minor  
xlabel( 'Crossrange cell' ), ylabel( 'Downrange cell' )  
h3=text(0.85*GrSiz,0.95*GrSiz,[int2str(0) ' ('  int2str(0/N*100) '%)' ]);  
  
 
 
 
%% Swarm evolution  
for  iter = 1 : N %run N evolutions  
  
swarmx(:,iter) = swarm(:,1);  
swarmy(:,iter) = swarm(:,2);  
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%% Improved search algo (record all unvisited sqare coordinates)  
clear uvsquares  
[m,n] = size(swarmx);  
swarmxx = swarmx;  
swarmyy = swarmy;  
swarmxx(isnan(swarmxx)) = 0;  
swarmyy(isnan(swarmyy)) = 0;  
for  iterrow = 1:n  
    for  swarmcol = 1:m  
unvisited2(swarmx x(swarmcol,iterrow)+1,swarmyy(swarmcol,iterrow)+1) = 9; %set 
those visited to 9  
    end  
end  
unvisited = unvisited2([2:100],[2:100]);  
 
if  sum(sum(unvisited(:,:) == 0)) >= 1 %first round  
    for  x = 1:GrSiz  
        for  y = 1:GrSiz  
            if  find(unvisited(x,y) == 0)  
            uvsy = y;  
            uvsx = x;  
            else   
                uvsy = 0;  
                uvsx = 0;  
            end  
         
    uv1(y,:) = uvsy;  
    uv2(y,:) = uvsx;  
        end   
    uvx(:,x) = uv1;  
    uvy(:,x) = uv2;  
    end  
    nn = iter+1;  
  
else  %Second round (when all the cell has been found, reset and being from 
scratch)  
     
    for  iterrow = 1:n  
    for  swarmcol = 1:m  
    unvisited2(swarmxx(swarmcol,iterrow)+1,swarmyy(swarmcol,iterrow)+1) = 
0; %set those visited in first round to 0  
    end  
    end  
    for  iterrow = nn:n %start the recording from iter nn  
    for  swarmcol = 1:m  
    unvisited2(swarmxx(swarmcol,iterrow)+1,s warmyy(swarmcol,iterrow)+1) = 
9; %set those visited to 9  
    end  
    end  
  
    unvisited = unvisited2([2:100],[2:100]);  
     
    if  sum(sum(unvisited(:,:) == 0)) == 0;  
    nn = iter %record the iteration number when all cell is zero  
    end   
    if  sum(su m(unvisited(:,:) == 0)) == 1; %loop to reset  
    nn = iter+1 %record the iteration number when all cell is zero  
    end   
    if  sum(sum(unvisited(:,:) == 0)) == 2; %loop to reset  
    nn = iter+1 %record the iteration number when all cell is zero  
    end   
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           for  x = 1:GrSiz  
            for  y = 1:GrSiz  
                if  find(unvisited(x,y) == 0)  
                uvsy = y;  
                uvsx = x;  
                else   
                    uvsy = 0;  
                    uvsx = 0;  
                end  
  
        uv1(y,:) = uvsy;  
        uv2(y,:) = uvsx;  
            end   
        uvx(:,x) = uv1;  
        uvy(:,x) = uv2;  
           end  
end  
  
uvsquares(:,2) = uvx(uvx~=0) ; %records all unvisited square x and y axis  
uvsquares(:,1) = uvy(uvy~=0) ;  
  
% enemy move ment  
for  e = 1 : enemies; % position of Swarms  
  
        % enemies space boundaries  
        % building limits  
        if  indoor == 1 | outdoor ==1  
        for  bb = 1:buildings  
            bupperLLL(bb) = bupperg(bb) * enemy(e,1) + bupperintercept(bb);  
            blowerLLL(bb) = blowerg(bb) * enemy(e,1) + blowerintercept(bb);  
            bleftLLL(bb) =  bleftg(bb) * enemy(e,2) + bleftintercept(bb);  
            brightLLL(bb) = brightg(bb) * enemy(e,2) + brightintercept(bb);  
        end  
        end  
         
        if  iter > 1 %analyze neighboring cells visitations  
        AA=zeros(1,8); %assume none of the neighboring cells is visited  
        for  jj=1:8                   
            if  indoor == 1 | outdoor ==1  
                 if  find(enemy(e,1)+CelSz*r ound(cosd((jj - 1)*45)) > GrSiz | ...   
                    enemy(e,2)+CelSz*round(sind((jj - 1)*45)) > GrSiz | ...  
                    enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) < 1 | ...  
                    enemy(e,2)+CelSz*round(sind((jj - 1)*45)) < 1 | ...                            
                    (enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) > bleftLLL & ...   
                    enemy(e,2)+CelSz*round(sind((jj - 1)*45)) > blowerLLL) & ...  
                    (enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) < brightLLL) & ...  
                    enemy(e,2)+CelSz*round(sind((jj - 1)*45)) < bupperLLL);  
                    AA(jj) = 9; %prohibited area  
                         end  
                             
            elseif  find(enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) > GrSiz | ...   
                enemy(e,2)+CelSz*round(sind((jj - 1)*45)) > GrSiz | ...  
                enemy(e,1)+CelSz*round(cosd((jj - 1)*45)) < 1 | ...  
                enemy(e,2)+CelSz*round(sind((jj - 1)*45)) < 1);  
                AA(jj) = 9;  
            end  
        end  
         
        if  enemy(e,1)  == - 54321; %dead position  
            enemy(e,5) = 0;  
            enemy(e,6) = 0;   



139 

        elseif  min(AA) == 9;          
            NMM = 1;              
            CC = randi([1 8]);             
                else      
                BB = find(AA==9); %check prohibited zones  
                ind=setdiff(1:8,BB); %exclude directions towards prohibited 
zones  
                DD = randi(length(ind));              
                CC = ind(DD); %randomly pick any allowed cell  
                NMM = 1;  
                      
            enemy(e,5) = NMM*CelSz*round(cosd((CC - 1)*45)); %compute x transition  
            enemy(e,6) = NMM*CelSz*round(sind((CC - 1)*45)); %compute y transition  
            end  
             
        enemy(e,1) =  enemy(e,1) + enemy(e,5); %update x position  
        enemy(e,2) = enemy(e,2) + enemy(e,6); %update y position  
        end  
end              
  
%Swarm movement 
for  i = 1 : SwarmSize % determine the next move for each agent  
  
% building limits  
if  indoor == 1 | outdoor ==1  
for  bb = 1:buildings  
    bupperL(bb) = bupperg(bb) * swarm(i,1) + bupperintercept(bb);  
    blowerL(bb) = blowerg(bb) * swarm(i,1) + blowerintercept(bb);  
    bleftL(bb) = bleftg(bb) * swarm(i,2) + bleftintercept(bb);  
    brightL(bb) = brightg(bb) * swarm(i,2) + brightintercept(bb);  
  
  
end  
end  
    if  iter > 1  % analyze neighboring cells visitations  
        A = zeros(1,8); % assume none of the neighboring cells is visited  
        for  j  = 1:8                   
            if  indoor == 1 | outdoor ==1  
  
            % Boundaries  and buildings  
            if  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarmx(:,:) & ...  
                    swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))  
            A(j) = 1; % cell has been visited already  
             elseif  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > GrSiz | ...  
                    swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...  
                    swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...  
                    swarm(i,2)+CelSz*round(sind((j - 1)*45)) < 1 | ...                            
                    (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > bleftL & ...   
                    swarm(i,2)+CelSz*round(sind((j - 1)*45)) > blowerL) & ...  
                    (swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < brightL) & ...  
                    swarm(i,2)+CelSz*round(sind((j - 1)*45)) < bupperL);  
              A(j) = 9; % prohibited area  
            end     
          
             
            else  
            % Boundaries   
            if  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarmx(:,:) & ...  
                    swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarmy(:,:))  
            A(j) = 1; % cell has been visited already  
            elseif  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) > GrSiz | ...   
                        swarm(i,2)+CelSz*round(sind((j - 1)*45)) > GrSiz | ...  
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                        swarm(i,1)+CelSz*round(cosd((j - 1)*45)) < 1 | ...  
                        swarm(i,2)+CelSz*round(si nd((j - 1)*45)) < 1);  
            A(j) = 9;  
            end  
            end     
             
            % Collision avoidance  
            if  collisionavoidance == 1;                       
            if  find(swarm(i,1)+CelSz*round(cosd((j - 1)*45)) == swarm(:, 1) & ...   
                    swarm(i,2)+CelSz*round(sind((j - 1)*45)) == swarm(:,2))  
                A(j) = 9; %set to prohibited area if there is an exisiting UGV  
            end    
            end                 
        end  
         
        %% Improved search algo (find angle)        
clear distoswarm2  
clear distoswarm  
if  sum(swarm(i,1)) > 0  
distoswarm = (sqrt(   ((swarm(i,1) -  uvsquares(:,1)).^2)  +  ((swarm(i,2) -  
uvsquares(:,2)).^2)    ));  
distoswarm2 = find(distoswarm ==   min(dis toswarm(distoswarm > 0))   );DD = 
randi(length(distoswarm2));        
uvsquareselect = uvsquares(distoswarm2(DD),:);  
  
y_opp = uvsquareselect(1,2) - swarm(i,2);  
x_adj = uvsquareselect(1,1) - swarm(i,1);  
  
uvsquareselectangle = atand(y_opp/x_adj);  
uvsqaureselect angle2(i,iter) = uvsquareselectangle;  
  
% define quarter of unvisited square  
% quarter 2         quarter 1  
%              x  
% quarter 2         quarter 1  
  
if  (y_opp >= 0 && x_adj >= 0)  ||  (y_opp < 0 && x_adj >= 0)  
quarter = 1;  
else   
quarter = 2;  
end  
randpir = randi(2);   
if  quarter == 1 %right side  
    if  uvsquareselectangle <= 90 && uvsquareselectangle >= 67.5  
        p1 = 3;  
        p2 = [2;4];  
        p3 = [1;5];  
        p4 = [6;8];  
        p5 = 7;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
    elseif  uvsquareselectangle < 67.5 && uvsquareselectangle >= 22.5  
        p1 = 2;  
        p2 = [1;3];  
        p3 = [4;8];  
        p4 = [ 5;7];  
        p5 = 6;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
    elseif  uvsquareselectangle < 22.5 && uvsquareselectangle >= - 22.5  
        p1 = 1;  
        p2 = [2;8];  
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        p3 = [3;7];  
        p4 = [4;6];  
        p5 = 5;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
    elseif  uvsquareselecta ngle < - 22.5 && uvsquareselectangle >= - 67.5  
        p1 = 8;  
        p2 = [1;7];  
        p3 = [2;6];  
        p4 = [3;5];  
        p5 = 4;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p 4(find(p4~=p4(randpir))) ; p5];         
    elseif  uvsquareselectangle < - 67.5 && uvsquareselectangle >= - 90 
        p1 = 7;  
        p2 = [6;8];  
        p3 = [1;5];  
        p4 = [2;4];  
        p5 = 3;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];          
    end  
     
elseif  quarter == 2 %left side  
    if  uvsquareselectangle <= 90 && uvsquareselectan gle >= 67.5  
        p1 = 7;  
        p2 = [6;8];  
        p3 = [1;5];  
        p4 = [2;4];  
        p5 = 3;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
    elseif  uvsquareselectangle < 67.5 && uvsquareselectangle >= 22.5  
        p1 = 6;  
        p2 = [5;7];  
        p3 = [4;8];  
        p4 = [1;3];  
        p5 = 2;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(rand pir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
    elseif  uvsquareselectangle < 22.5 && uvsquareselectangle >= - 22.5  
        p1 = 5;  
        p2 = [4;6];  
        p3 = [3;7];  
        p4 = [2;8];  
        p5 = 1;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
    elseif  uvsquareselectangle < - 22.5 && uvsquareselectangle >= - 67.5  
        p1 = 4;  
        p2 = [3;5];  
        p3 = [2;6];  
        p4 =  [1;7];  
        p5 = 8;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
    elseif  uvsquareselectangle < - 67.5 && uvsquareselectangle >= - 90 
        p1 =  3;  
        p2 = [2;4];  
        p3 = [1;5];  
        p4 = [6;8];  
        p5 = 7;  
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piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];     
    end  
end  
        i f  RM == 1  
            holonomicity = 360;  
        else  
            holonomicity = holonomicityint;  
        end  
         
        % Non Holonomic @ 180  
        if  holonomicity == 180;  
        if  (swarm(i,5) == 1 & swarm(i,6) == 1)  
            A(5) = 9;  
            A(6) = 9;  
            A(7) = 9;  
        end   
        if  (swarm(i,5) == 1 & swarm(i,6) == 0)  
            A(4) = 9;  
            A(5) = 9;  
            A(6) = 9;             
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == 1)  
            A(6) = 9;  
            A(7) = 9;  
            A(8) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == - 1)  
            A(1) = 9;  
            A(2) = 9;  
            A(3) = 9;      
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 0 )  
            A(1) = 9;  
            A(2) = 9;  
            A(8) = 9;  
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == - 1)  
            A(2) = 9;  
            A(3) = 9;  
            A(4) = 9;    
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 1)  
            A(1) = 9;  
            A(7) = 9;  
            A(8) = 9;    
        end             
        if  (swarm(i,5) == 1 & swarm(i,6) == - 1)  
            A(3) = 9;  
            A(4) = 9;  
            A(5) = 9;    
        end  
        end   
         
        % Non Holonomic @ 90  
        if  holonomicity == 90;  
        if  (swarm(i,5) == 1 & swarm(i,6) == 1)  
            A(4) = 9;  
            A(5) = 9;  
            A(6) = 9;  
            A(7) = 9;  
            A(8) = 9;  
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        end   
        if  (swarm(i,5) == 1 & swarm( i,6) == 0)  
            A(3) = 9;  
            A(4) = 9;  
            A(5) = 9;  
            A(6) = 9;  
            A(7) = 9;  
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == 1)  
            A(5) = 9;  
            A(6) = 9;  
            A(7) = 9;  
            A(8) = 9;  
            A(1) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == - 1)  
            A(1) = 9;  
            A(2) = 9;  
            A(3) = 9;     
            A(4) = 9;  
            A(8) = 9;  
        end  
        if  (swarm(i,5) ==  - 1 & swarm(i,6) == 0)  
            A(3) = 9;  
            A(1) = 9;  
            A(2) = 9;  
            A(8) = 9;  
            A(7) = 9;  
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == - 1)  
            A(1) = 9;  
            A(2) = 9;  
            A(3) = 9;  
            A(4) = 9;   
            A(5) = 9;  
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 1)  
            A(2) = 9;  
            A(1) = 9;  
            A(7) = 9;  
            A(8) = 9;   
            A(6) = 9;  
        end             
        if  (swarm(i,5) == 1 & swarm(i,6) == - 1)  
            A(2) = 9;  
            A(3) = 9;  
            A(4) = 9;  
            A(5) = 9;    
            A(6) = 9;  
        end  
        end   
         
        % Non Holonomic @ 270  
        if  holonomicity == 270;  
        i f  (swarm(i,5) == 1 & swarm(i,6) == 1)  
            A(6) = 9;  
        end   
        if  (swarm(i,5) == 1 & swarm(i,6) == 0)  
            A(5) = 9;       
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == 1)  
            A(7) = 9;  
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        end  
        if  (swa rm(i,5) == - 1 & swarm(i,6) == - 1)  
            A(2) = 9;     
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 0)  
            A(1) = 9;  
  
        end  
        if  (swarm(i,5) == 0 & swarm(i,6) == - 1)  
            A(3) = 9;   
        end  
        if  (swarm(i,5) == - 1 & swarm(i,6) == 1)  
            A(8) = 9;    
        end             
        if  (swarm(i,5) == 1 & swarm(i,6) == - 1)  
            A(4) = 9;  
        end  
        end   
 
        if  PSO == 0 %no PSO, use LVS                             
            if  min(A) == 0; %check if there are unvisited cells around  
                B = find(A==0); %find not visited cell(s)  
                C = B(randi(numel(B))); %randomly pick one of them     
                NM = 1;  
            elseif  min(A) == 9; %if all of next block is either occupied or in 
prohibited zone  
                    NM = 0; %set velocity to 0  
                    C = 0;  
            else     
            B = find(A==9); %check prohibited zones  
            ind=setdiff(1:8,B); %exclude directions to wards prohibited zones  
            for  indi = 1:length(ind)  
                C1(1,indi) = find(ind(1,indi) == piroritycell);  
            end  
                [temp2 C2] = min(C1);  
                C = ind(C2);  
            NM = 1;  
        end   
             
             
        else  %PSO function is on  
                if  RM == 1;  
% x vel vector         
priorityx = inertia*swarm(i, 5) + correction_factor*rand*(swarm(i, 3)  -  
swarm(i, 1)) + correction_factor*rand*(swarm(swarm(i,9), 1) -  swarm(i, 
1))+rand() - 1/2 ;  
% y vel vector                        
priorityy = inertia*swarm(i, 6) + correction_factor*rand*(swarm(i, 4)  -  
swarm(i, 2)) + correction_factor*rand*(swarm(swarm(i,9), 2) -  swarm(i, 
2))+rand() - 1/2;  
                    % Maximum distance swarm able to move pe r time step  
                    if  priorityx >= 0.5;  
                        priorityx = 1;  
                    else  if  priorityx <= - 0.5;  
                         priorityx = - 1;  
                        else   
                         priorityx = 0;  
                    end  
                    end  
  
                    if  priorityy >= 0.5;  
                        priorityy = 1;  
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                    else  if  priorityy <= 0.5;  
                        priorityy = - 1;  
                        else   
                        priorityy = 0;  
                    end  
                    end  
                     
                     
                    randpir = randi(2);   
                    if  priorityx == 0 && priorityy == 1  
                        p1 = 3;  
                        p2 = [2;4];  
                        p3 = [1;5];  
                        p4 = [6;8];  
                        p5 = 7;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpi r) ; p4(find(p4~=p4(randpir))) ; p5];  
                    elseif  priorityx == 1 && priorityy == 1  
                        p1 = 2;  
                        p2 = [1;3];  
                        p3 = [4;8];  
                        p4 = [5;7];  
                        p5 = 6;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
                    elseif  priorityx == 1 && priorityy == 0  
                        p1 = 1;  
                        p2 = [2;8];  
                        p3 = [3;7];  
                        p4 = [4;6];  
                        p5 = 5;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir)  ; p4(find(p4~=p4(randpir))) ; p5];  
                    elseif  priorityx == 1 && priorityy == - 1 
                        p1 = 8;  
                        p2 = [1;7];  
                        p3 = [2;6];  
                        p4 = [3;5];  
                        p5 = 4;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];         
                    elseif  priorityx == 0 && priorityy == - 1 
                        p1 = 7;  
                        p2 = [6;8];  
                        p3 = [1;5];  
                        p4 = [2;4];  
                        p5 = 3;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~ =p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];    
                    elseif  priorityx == - 1 && priorityy == - 1 
                        p1 = 6;  
                        p2 = [5;7];  
                        p3 = [4;8];  
                        p4 = [1;3];  
                        p5 = 2;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
                    elseif  priorityx == - 1 && priorityy == 0  
                        p1 = 5;  
                        p2 = [4;6];  
                        p3 = [3;7];  
                        p4 = [2;8];  
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                        p5 = 1;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
                    elseif  priorityx == - 1 && priorityy == 1  
                        p1 = 4;  
                        p2 = [3;5];  
                        p3 = [2;6];  
                        p4 = [1;7];  
                        p5 = 8;  
piroritycell = [p1; p2(randpir) ; p2(find(p2~=p2(randpir))) ;  p3(randpir) ; 
p3(find(p3~=p3(randpir))); p4(randpir) ; p4(find(p4~=p4(randpir))) ; p5];  
                    end  
                     
                    if  min(A) == 9; %if all of next block is either occupied or 
in prohibited zone  
                        NM = 0; %set velocity to 0  
                        C = 0; %doesnt matter  
                    else      
                        B = find(A==9); %check prohibited zones  
                        ind=setdiff(1:8,B); %exclude directions towards 
prohibited zones  
                        for  indi = 1:length(ind)  
                        C1(1,indi) = find(ind(1,indi) == piroritycell);  
                    end  
                        [temp2 C2] = min(C1);  
                        C = ind(C2);  
                        NM = 1;  
                    end   
  
                else  
                     if  min(A) == 0; %check if there are unvisited cells around  
                        B = find(A==0); %find not visited cell(s)  
                        C = B(randi(numel(B))); %randomly pick one of them     
                        NM = 1;  
                        elseif  min(A) == 9; %if all of next block is either 
occupied or in prohibited zone  
                        NM = 0; %set velocity to 0  
                        C = 0; %doesnt matter  
                      else      
                        B = find(A==9); %check prohibited zones  
                        in d=setdiff(1:8,B); %exclude directions towards 
prohibited zones  
                            for  indi = 1:length(ind)  
                            C1(1,indi) = find(ind(1,indi) == piroritycell);  
                            end  
                        [temp2 C2] = min(C1);  
                        C = ind(C2);  
                        NM = 1;  
                        end   
                end  
        end  
end      
         
        if  swarm(i,1) == NaN  
            swarm(i,5) = 0;     
            swarm(i,6) = 0;  
        else  
        swarm(i,5) = NM*CelSz*round(cosd((C - 1)*45)); %compute x transition  
        swarm(i,6) = NM*CelSz*round(sind((C - 1)*45)); %compute y transition  
        swarm(i,1) = swarm(i,1) + swarm(i,5); %update x position  
        swarm(i,2) = swarm(i,2) + swarm(i,6); %update y position  
        clear C1 
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        end  
    end  
    % Finding enemy  
    if  find((swarm(i,1) >= enemy(:, 1) -  sensor & swarm(i,1) <= enemy(:, 1)+ 

sensor) &  (swarm(i,2) >= enemy(:, 2) -  sensor & swarm(i,2) <= enemy(:, 2)+ 
sensor));  

        %To solve if sensor found 2 target  
        G = find((swarm(i,1) >= (enemy(:, 1) -  sensor) & swarm(i,1) <= 
(enemy(:, 1)+ sensor)) &  (swarm(i,2) >= (enemy(:, 2) -  sensor) & s warm(i,2) <= 
(enemy(:, 2)+ sensor))); %find and record which enemy is found  
        G2 = sqrt((enemy(G,1) - swarm(i,1)).^2 + (enemy(G,2) -
swarm(i,2)).^2); %calculate  distance from enemy found  
    [temp, G3] =  min(G2); %take shorter distance  
    enemyfound(i, 1) = G(G3,1); %record enemynumber as enemyfound  
    enemytarget(i,1) = G(G3,1);  
    else   
        enemyfound(i,1) = 0;  
    end  
  
    if  enemyfound(i,1) > 0;  
        closestEposu(i,1) = enemy(enemyfound(i,1),1);  
        closestEposv(i,1) = enemy(enemyfound(i,1),2);  
    else  
        closestEposu(i,1) = 0;  
        closestEposv(i,1) = 0;  
    end    
end  
 
%% Allocating closest ally's PBEST and GBEST that manage to find enemy  
     if  PSO == 1  
         if  max(enemyfound(: ,1)) > 0  
                x = find(enemyfound > 0); %ally that found enemy  
  
            for  i = 1:SwarmSize;  
                if  enemyfound(i,1) == 0;  
                [temp G5] = min(sqrt(((swarm(i,1) - swarm(x,1)).^2) + 

((swarm(i,2) - swarm(x,2)).^2))); %G5 -  finding which enemy 
closest ally (min hypo) found  

                    G4 = x(G5,1);  
                   closestEposu(i,1) = closestEposu(G4,1); % allocate enemy 

target position to swarm that did not find enemy  
                   closestEposv(i,1) = closestE posv(G4,1); % allocate enemy 

target position to swarm that did not find enemy  
                   enemytarget(i,1) = enemyfound(G4,1); %record which enemy 

targeted by swarm that did not find enemy  
                end  
  
swarm(i,7) = sqrt(((swarm(i,1) - closestEposu(i,1)).^2) + ((swarm(i,2) -
closestEposv(i,1)).^2)); %dis from all swarm poisiton to target enemy position  
            end  
          end   
  
        
 
 

 %% Pbest                         
        %comparing previous and  current position relative to pbest  
            for  i = 1:SwarmSize;  
                if  iter >1; %only after 1st iter we will have old swarm 

position to compare  
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            valueO(i,1) = sqrt(((swarmx(i,iter - 1) -  closestEposu(i,1))^2) + 
((swarmy(i,iter - 1) -  closestEposv(i,1))^2)); %old position wrt new 
enemy targeted pos  

            valueN(i,1) = sqrt(((swarm(i,1) -  closestEposu(i,1))^2) + 
((swarm(i,2) -  closestEp osv(i,1))^2));   %new position wrt new enemy 
targeted pos    

  
                    if  valueN(i,1) < valueO(i,1); %if new position is better, 
record it as pbest      
                        swarm(i, 3) = swarm(i, 1); %update best position of u,  
                        swarm(i, 4) = swarm(i, 2); %update best postions of v,  
                    else   
                        swarm(i,3) = swarmx(i,iter - 1);  
                        swarm(i,4) = swarmy(i,iter - 1);  
                    end  
            end  
            end   
                
        if  max(enemyfound(:,1)) > 0; %trigger random walk or PSO  
           RM = 1; %trigger PSO  
  
    % Group similar targeted enemy and assign gbest to min value in each group  
            uv = unique(enemytarget); %remove duplicate  
            B = size(uv,1);  
 
                for  Q = 1:B; % sorting on target found  
                     A = find(enemytarget(:,1) == uv(Q,1));  
                     swarm(A,8) = min(swarm(A,7)) ; %min value is Gbest value  
                end  
  
                for  i = 1:SwarmSize;  
                    choosegbest = (find(swarm(i,8) == swarm(:,7)));  
                    randomIndex = randi(length(choosegbest),1);  
                    swarm(i,9) = choosegbest(randomIndex); % finding which 

swarm holds Gbest value recording in 9  
                    clear choosegbest  
                    clear randomIndex  
                end   
        else   
           RM = 0; % trigger random walk if no enemy found at all  
        end  
         
 end  
 
 
%% Engage 
for  i = 1 : SwarmSize;  
     
if  find((swarm(i,1) >= enemy(:, 1) -  killdise & swarm(i,1) <= enemy(:, 1)+ 
killdise) &  (swarm(i,2) >= enemy(:, 2) -  killdise & swarm(i,2) <= enemy(:, 2)+ 
killdise));  
 
if  rand <= pkillswarm;  
swarm(i,1) = NaN;  
swarm(i,2) = NaN;  
end 
end   
  
if  find((swarm(i,1) >= enemy(:, 1) -  killdis & swarm(i,1) <= enemy(:, 1)+ 
killdis) &  (swarm(i,2) >= enemy(:, 2) -  killdis & swarm(i,2) <= enemy(:, 2)+ 
killdis));  
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K = find((swarm(i,1) >= (enemy(:, 1) -  killdis) & swarm(i,1) <= (enemy(:, 1)+ 
killdis)) &  (swarm(i,2) >= (enemy(:, 2) -  killdis) & swarm(i,2) <= (enemy(:, 
2)+ killdis))); %find and record which enemy is found  
  
if  rand <= pkillenemy;  
enemy(K,1) = - 54321;  
enemy(K,2) = - 54321;  
end  
end  
end  
        
  
%% Plot swarm evolutions  
  
h1.XData= swarm(:,1);  
h1.YData=swarm(:,2);  
h2.XData=enemy(:,1);  
h2.YData=enemy(:,2);  
h3.String=[int2str(iter) ' ('  int2str(iter/N*100) '%)' ];  
pause(0.000001/iter^3)  
  
% break if all swarm or enemy killed  
outcome(Mainloop,2) = sum(enemy(:,1)>=0);  
outcome(Mainloop,3)  = iter;  
outcome(Mainloop,1) = sum(swarm(:,1)>=0); %blue left  
 
if  max(~isnan(swarm(:,1))) == 0  
break  
end  
  
if  (sum(enemy(:,1)>=0)) == 0  
break  
end     
end  
outcome  
 
figure  
hold on 
for  ii=1:SwarmSize  
Cl=rand(3,1);  
plot(swarmx(ii,:),swarmy(ii,:), ' - .' , 'color' ,Cl, 'LineWidth' ,1)  
plot(swarmx(ii,end),swarmy(ii,end), 'x' , 'color' ,Cl, 'LineWidth' ,1)  
  
if  outdoor == 1,  
        for  bb = 1:23;  
        fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1) 

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerrigh t(bb,2) 
bupperright(bb,2) bupperleft(bb,2) blowerleft(bb,2)], 'k' )  

        end  
        for  bb = 24:31;  
        fill([blowerleft(bb,1) blowerright(bb,1) bupperright(bb,1) 

bupperleft(bb,1) blowerleft(bb,1)],[blowerleft(bb,2) blowerright(bb,2) 
bupperright(bb,2 ) bupperleft(bb,2) blowerleft(bb,2)], 'g' )  

        end  
else  if  indoor == 1,  
        for  bb = 1:12;  
        fill([dblowerleft(bb,1) dblowerright(bb,1) dbupperright(bb,1) 

dbupperleft(bb,1) dblowerleft(bb,1)],[dblowerleft(bb,2) 
dblowerright(bb,2) dbupperright( bb,2) dbupperleft(bb,2) 
dblowerleft(bb,2)], 'k' )  

        end  
    end   
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end  
  
end  
hold off  
axis([1 GrSiz 1 GrSiz]), axis square , grid minor  
xlabel( 'Crossrange cell' ), ylabel( 'Downrange cell' )  
  
%% Compute the occupancy matrix  
OcM=zeros(GrSiz,GrSiz);  
for  ix=1:GrSiz  
    for  iy=1:GrSiz  
        for  is=1:SwarmSize  
            for  it=1:iter  
                if  swarmx(is,it) == iy & swarmy(is,it) == ix  
                OcM(ix,iy)=OcM(ix,iy)+1;  
                end  
            end  
        end  
    end  
end  
  
%% Show the occupancy matrix  
  
figure  
spy(OcM), set(gca, 'YDir' , 'normal' ), axis square  
figure  
imagesc(OcM), set(gca, 'YDir' , 'normal' ), axis square , colorbar  
xlabel( 'Crossrange cell' ), ylabel( 'Downrange cell' )  
figure  
mesh(OcM)  
xlabel( 'Crossrange cell' ), ylabel( 'Downrange cell' )  
zlabel( 'Number of cell visitations' )  
  
mOcM=mean(mean(OcM));  
% find percentage in terms of available cells(removing buildings)  
if  outdoor == 0 && indoor == 0  
Fv=find(~OcM); pFv=numel(Fv)/GrSiz/GrSiz*100;  
else  if  outdoor == 1  
Fv=find(~OcM) ; pFv=((((numel(Fv)/GrSiz/GrSiz)*GrSiz^2) - 4674)/((GrSiz^2) -
4674))*100;  
else  if  indoor == 1  
Fv=find(~OcM); pFv=((((numel(Fv)/GrSiz/GrSiz)*GrSiz^2) - 768)/((GrSiz^2) -
768))*100;             
        end  
    end  
end  
clear swarmx  
clear swarmy  
end  
enc 
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APPENDIX E. COORDINATES FOR OUTDOOR OBSTACLES 

  Lower Left Lower Right Upper Left Upper Right 

Building 1 
x axis 47 57 56 46 
y axis 89 90 97 96 

Building 2 
x axis 42.5 49.5 49 42 
y axis 82 83 87 86 

Building 3 
x axis 33 36 47 44 
y axis 67 64 72 75 

Building 4 
x axis 22 28 28 22 
y axis 70 70 74 74 

Building 5 
x axis 26 38 37 25 
y axis 75 80 84 79 

Building 6 
x axis 18 24 31 25 
y axis 58 54 62 66 

Building 7 
x axis 34 40 46 40 
y axis 47 43 52 56 

Building 8 
x axis 49 54 50 45 
y axis 51 53 66 64 

Building 9 
x axis 50 54 58 54 
y axis 46 44 50 52 

Building 10 
x axis 45 50 53 48 
y axis 29 27 35 37 

Building 11 
x axis 30 35 38 33 
y axis 17 12 15 20 

Building 12 
x axis 41 51 51 41 
y axis 15 15 19 19 

Building 13 
x axis 52 59 59 52 
y axis 10 10 17 17 

Building 14 
x axis 60 64 70 66 
y axis 17 14 20 23 

Building 15 
x axis 70 74 80 76 
y axis 27 24 30 33 

Building 16 
x axis 53 62 62 53 
y axis 32 32 40 40 

Building 17 
x axis 62 68 68 62 
y axis 36 36 43 43 
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  Lower Left Lower Right Upper Left Upper Right 

Building 18 
x axis 56.5 59.5 63 60 
y axis 44.5 43 49 50.5 

Building 19 
x axis 61 66 69 64 
y axis 56 54 60 62 

Building 20 
x axis 66 70 76 72 
y axis 52 50.5 62.5 64 

Building 21 
x axis 71 79 81 73 
y axis 70 66 70 74 

Building 22 
x axis 84 91 93 86 
y axis 63 59 63 67 

Building 23 
x axis 83.5 89.5 92 86 
y axis 74 70.5 75.5 79 

Obstacle 1 
x axis 56 100 100 58 
y axis 63 92 100 100 

Obstacle 2 
x axis 15 46 45 28 
y axis 77 90 100 100 

Obstacle 3 
x axis 0 21 21 0 
y axis 86 99 100 100 

Obstacle 4 
x axis 0 20 13 0 
y axis 21 32 74 63 

Obstacle 5 
x axis 4 22 40 33 
y axis 20 15 30 36 

Obstacle 6 
x axis 0 60 60 0 
y axis 0 0 2 18 

Obstacle 7 
x axis 54 100 100 100 
y axis 0 0 46 45.5 

Obstacle 8 
x axis 72 76 89 81 
y axis 41 40 57 61 
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APPENDIX F. COORDINATES FOR INDOOR OBSTACLE S 

  Lower Left Lower Right Upper Left Upper Right 

Wall 1 
x axis 0 31 31 0 
y axis 18 18 22 22 

Wall 2 
x axis 28 32 32 28 
y axis 20 20 30 30 

Wall 3 
x axis 28 32 32 28 
y axis 40 40 60 60 

Wall 4 
x axis 0 30 30 0 
y axis 48 48 52 52 

Wall 5 
x axis 28 32 32 28 
y axis 70 70 80 80 

Wall 6 
x axis 29 60 60 29 
y axis 78 78 82 82 

Wall 7 
x axis 58 62 62 58 
y axis 30 30 100 100 

Wall 8 
x axis 59 70 70 59 
y axis 38 38 42 42 

Wall 9 
x axis 80 100 100 80 
y axis 38 38 42 42 

Wall 10 
x axis 79 100 100 79 
y axis 73 73 77 77 

Wall 11 
x axis 78 82 82 78 
y axis 75 75 80 80 

Wall 12 
x axis 78 82 82 78 
y axis 90 90 100 100 
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