
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2018-01-15

Operating with an incomplete checklist

Atkinson, Michael P.; Kress, Moshe
Taylor & Francis Online

Atkinson, Michael P., and Moshe Kress. "Operating with an incomplete checklist."
IISE Transactions 50.4 (2018): 307-315.
https://hdl.handle.net/10945/60910

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



IISE TRANSACTIONS
, VOL. , NO. , –
https://doi.org/./..

Operating with an incomplete checklist

Michael P. Atkinson and Moshe Kress

Operations Research Department, Naval Postgraduate School, Monterey, CA, USA

ARTICLE HISTORY
Received  September 
Accepted  October 

KEYWORDS
Dynamic programming;
optimal stopping; myopic
policy

ABSTRACT
We consider a time-critical operation that is contingent on completing a preliminary set of actions in a
checklist. Aerial combat missions, emergency surgeries, launching a new product, and rescuing hostages
are a few examples of such situations. The operationmay be executed before the full checklist is completed
but then it may fail. The failure probability depends on the uncompleted actions. The question is when to
abort the checklist and initiate the operation. In this article, we study this problem and prove that in certain
realistic cases a simple myopic approach is optimal.

1. Introduction

Many time-critical operations must be preceded by a set of
checks and actions specified in a checklist. For example, when
launching an aerial combat mission, several technical, oper-
ational, and logistical checks and actions must be performed
before the aircraft can take off. If the time window for executing
the mission is limited and the mission is critical, it is possible
that the aircraft will take off before the checklist is completed.
Another example is a critically wounded casualty whomay enter
the operating room and start surgery without completing all of
the necessary medical examinations and procedures that nor-
mally precede a surgery. A suspected location where terrorists
hold hostages may be raided before the complete intelligence
picture becomes available, if it is feared that the hostages are at
imminent risk. A final application would involve the decision
to launch a new product. The company should complete quality
control checks, stress tests, and focus group research before
unveiling the product. However, the company may decide to
launch early in fears that a competitor may introduce a similar
product and gain control of the marketplace.

In this article, we model and analyze this situation and
develop optimal stopping rules for when to abandon the check-
list and immediately move forward to execute the operation.
In particular, we show that there are situations where simple
myopic policies are optimal.

The problem studied in this article belongs to the general
family of stopping rule problems, which has been extensively
studied in the literature. From the Secretary Problem (Freeman,
1983; Ferguson, 1989), to debugging and testing of new software
(Jelinski and Moranda, 1972; Forman and Singpurwalla, 1977),
to test and evaluation (Gaver and Jacobs, 1997; Gaver et al.,
2003), to estimating tolerated dosage in clinical trials (O’Quigley
and Reiner, 1998) and information acquisition (Browne and
Pitts, 2004), the question is when to stop a sequence of actions
such that a certain objective attains its best expected reward.
Stopping rules are also used in statistical analysis such as the
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sequential testing of two hypotheses (Wald, 1945). The classic
book by Shiryaev (2007) presents a general theory of optimal
stopping policies for the case ofMarkov processes. Other impor-
tant references include Chow et al. (1971) and Ferguson (2004).

The most similar strand of literature to our work focuses on
when to stop proofreading a manuscript for typos (see Chow
and Schechner (1985); Ferguson and Hardwick (1989)) and
when to stop debugging software (see Jelinski and Moranda
(1972); Forman and Singpurwalla (1977); Dalal and Mallows
(1988)). Early in the debugging/proofreading process, errors
are found quickly, but later in the process the detection rate
decreases as fewer errors remain. In our model, if the actions on
the checklist can be completed in parallel, the completion rate
similarly decreases over time. Most prior work assumes homo-
geneity of the bugs in terms of detection rate and importance
and a linear cost function that only depends upon the number
of detected and undetected bugs. Although a handful of articles
relax some of these assumptions (see Ross (1985); Dalal and
Mallows (1988); Ferguson and Hardwick (1989); Morali and
Soyer (2003)), none take as general an approach to the problem
as we do, especially with regard to the cost function. We allow
the stopping cost to depend upon the identity of the completed
checklist items, rather than just the number of completed items.
Fakhre-Zakeri and Slud (1996) and Dobson and Tezcan (2015)
examine when to stop in a classic coupon collection problem,
which is similar to our context and the debugging scenario.
However, these coupon collection papers also take a more nar-
row approach to the problem and primarily focus on the asymp-
totic regime.One key aspectwhere our approach differs from the
models in the debugging, proofreading, and coupon collection
literature is that our model incorporates a window of opportu-
nity that may close as we wait for more checks to complete.

A model that does incorporate a random window of oppor-
tunity is the search-and-interdiction scenario in Atkinson et al.
(2016). In that setting, a searcher can potentially receive an
unlimited stream of intelligence messages and she must decide
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when to act upon them. The differences between Atkinson
et al. (2016) and the present study is in the operational setting
and, more important, in the nature of the stopping rule that
has in this article more distinctive and elegant features and is
more easily implementable. Some articles that examine when
a business should launch a product also include a limited
window of opportunity before a competitor enters the market
(Armstrong and Lévesque, 2002; Golany and Rothblum, 2008).
However, most of these articles include many factors, such as
the type of financing, interest rates, and research burn rates, and
formulate continuous-time optimal control models (Roberts
and Weitzman, 1981; Armstrong and Lévesque, 2002; Golany
and Rothblum, 2008; Lon and Zervos, 2011). Our approach is
less complex and more analytically tractable.

In Section 2 we describe the general setup of the problem.
We then examine the special cases of performing the actions
in parallel or in sequence in Sections 3 and 4, respectively. In
Section 5 we allow for a mixture of both parallel and sequential
actions. Section 6 presents some extensions to the basic model
and Section 7 contains concluding remarks. Proofs appear in the
Online Supplement.

2. Setting

In order to successfully execute an operation, the operator must
complete n preliminary checks or procedures called henceforth
simply actions. The durations of the actions are independent,
exponentially distributed random variables, and themean dura-
tion of action i is 1/λi. The operation is time critical; it must
be executed before a certain window of opportunity expires. The
duration of the window of opportunity is exponentially dis-
tributed with rate parameter µ and is independent of the dura-
tions of the actions on the checklist. The decision maker can
execute the operation before all actions are complete, but the
operation will then fail with a certain probability. The actions on
the checklist are not necessarily equally important; some actions
may bemore critical than others for the success of the operation.
A function f (·)maps a list of incomplete actions to the probabil-
ity of mission failure. Without loss of generality, we assume that
if the entire checklist is completed within the window of oppor-
tunity, then the probability of failure is zero. The cost of a failed
operation is one. If the window of opportunity expires before
initiating the operation (e.g., the patient dies during a computed
tomography scan), then there is a cost d, which may be higher
or lower than one.We consider two types of checklists: a parallel
list in which all actions start at the same time and are executed
simultaneously and a sequential list in which action i can start
only upon the completion of action i − 1 and the order of the
actions is fixed and given. The operator must decide whether to
execute the operation before all the actions complete and, if so,
when to initiate the operation. Due to the memoryless property
of the exponential distribution, decisions need only be made at
completion times of actions.

3. Parallel checklist

All n actions start at the same time and are executed simulta-
neously. Obviously, as the durations of the actions are random,
each actionmay end at a different time.Wemotivate the general

model with the special case of homogeneous actions. That is,
λi = λ for all i, and the failure probability only depends upon
the number of incomplete actions. Specifically, if we denote j
as the number of incomplete actions (henceforth called state j)
and the dependence is linear, then f ( j) = a j + b. According
to our assumption, f (0) = 0, hence b = 0, and without loss
of generality we assume a = 1/n. We next define the dynamic
program formulation for the cost functionC( j):

C( j) = min
(
j
n
,

µ

λ j + µ
d + λ j

λ j + µ
C( j − 1)

)
1 ≤ j ≤ n,

C(0) = 0.
(1)

The first term of the min function in Equation (1) repre-
sents the expected cost of executing the operation in state j, and
the second term represents the cost of waiting for the comple-
tion of the next action. As there are currently j ongoing actions,
the time until the next action completion is an exponential ran-
dom variable with rate parameter λ j and thus we have a “race
of exponentials”: with probability µ/(λ j + µ) the window of
opportunity closes before the next action (out of the j actions
yet to be completed) completes, which results in a cost of d,
and with probability λ j/(λ j + µ), one of the j ongoing actions
completes within the window of opportunity, which yields the
recursive expected cost C( j − 1). The operator chooses one of
the two options—execute the operation noworwait for the com-
pletion of the next action—that minimizes the expected cost.
Because n is finite, solving Equation (1) via backward induction
will produce an optimal policy. We specify that if the operator
is indifferent between executing the operation and waiting, she
will execute. Using this tie-breaking rule, the optimal policy is
well defined and unique. The homogeneous model defined in
Equation (1)makes similar assumptions to the debuggingmodel
of Jelinski and Moranda (1972), although the debugging model
does not consider a window of opportunity.

Although problems of the type described by Equation (1) are
usually solved via backward induction, this particular problem
has a simple and elegant solution that boils down to a myopic
policy (also called the one-stage look-ahead policy; see Ferguson
(2004)). Using this policy, the operator compares the expected
cost of executing the operation immediately to the cost of wait-
ing for the completion of the next action and then executing the
operation. If the expected cost of the latter (waiting for the next
completed action in the checklist) is smaller than the expected
cost of the former (executing the operation), then the opera-
tor waits, observes the next completed action (if the window
of opportunity has not expired), and then repeats the myopic
comparison. This myopic comparison is optimal and results in
a threshold policy summarized in the following proposition.

Proposition 1. In the homogeneous case with f ( j) = j/n, the
optimal policy for the problem defined by Equation (1) is to exe-
cute the operation if and only if

j
n

≤ µ

λ + µ
d.

The operator should execute the operation as soon as at least
a fraction 1 − µ/(µ + λ)d of the actions on the checklist have
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been completed. The proof of Proposition 1 appears in SectionA
of the Online Supplement. The optimality of the myopic policy
follows from the monotone property introduced in chapter 3.5
of Chow et al. (1971) (see also chapter 5 of Ferguson (2004)).

Not surprisingly, the operator ismore likely to execute sooner
when the window of opportunity is short (largeµ) and/or if fail-
ing to execute may result in severe consequences (large d). If the
checklist can be completed very fast (very largeλ), then the oper-
ator can afford to wait until a large portion of the checklist is
completed.

3.1. General model

We now present a more general model. Let x denote an
n-dimensional binary state vector, where x(i) = 0 if action i has
been completed and x(i) = 1 otherwise. The mean completion
time of action i is 1/λi. In this case, the cost function becomes

C(x) = min

(

f (x),
µ∑

k : x(k)=1 λk + µ
d

+
∑

i : x(i)=1

λiC(x−i)∑
k : x(k)=1 λk + µ

⎞

⎠, (2)

C(⃗0) = 0,

where 0⃗ is an n-dimensional vector of all zeros (i.e., all actions
have been completed) and x−i is the state vector obtained from
state x if x(i) = 1 and action i is the next completed action.
Formally,

x−i( j) =
{
0 if j = i
x( j) if j ̸= i .

The function f (·) is the failure probability, which depends on
which actions remain incomplete. As with the homogeneous
case, we can solve this problem via backward induction. How-
ever, the size of the state space is 2n, which may lead to compu-
tational difficulties for even moderate values of n. The ease of
solving the problem depends on the nature of the failure proba-
bility function f (·). For certain scenarios, we can determine the
optimal policy without using backward induction. In the follow-
ing subsections we consider several forms of f (·).

... Failure probability withmarginally decreasing effect
It is reasonable to expect that the failure probability decreases
if one additional action is completed. Formally, if x > y—that
is, x(i) ≥ y(i), i = 1, . . . , n—with at least one sharp inequality,
then f (x) > f (y). It is also reasonable to assume, in some
situations, a marginally decreasing effect of completed actions.
Formally, we say that f (·) exhibits amarginally decreasing effect
if x > y and x(i) = y(i) = 1 for some i = 1, . . . , n, implies
that f (x) − f (x−i) ≥ f (y) − f (y−i). If we view f (·) as a set
function, then the marginally decreasing effect is equivalent to
f (·) being a supermodular function. This property says that
earlier completed actions are more effective than later ones in
enhancing the probability of a successful operation. The next

proposition states that if the failure probability satisfies these
conditions, the myopic policy is optimal.

Proposition 2. If f (·) satisfies the following two conditions:! x > y implies f (x) > f (y),! x > y and x(i) = y(i) = 1 imply f (x) − f (x−i) ≥ f (y) −
f (y−i),

then the optimal stopping rule is the myopic policy where the oper-
ator immediately executes the operation in state x if and only if

f (x) ≤ µ∑
k : x(k)=1 λk + µ

d +
∑

i : x(i)=1

λi f
(
x−i)

∑
k : x(k)=1 λk + µ

.

The proofs of Proposition 2 andCorollary 1 appear in Section
B of the Online Supplement.

In practice, this simple policy is very valuable when n is large
(e.g., n > 30) because the state space blows up quickly, which
renders standard dynamic programming techniques impracti-
cal. With the aforementioned myopic policy, decisions could be
made in real time. The following corollary connects the optimal
action in state x with the optimal actions in future states or pre-
vious states.

Corollary 1. If f (·) satisfies the conditions of Proposition 2, then
the following relationships hold:! If the optimal decision is to execute in state x, then that deci-

sion is optimal for any state y where y ≤ x.! If the optimal decision is to wait in state x, then that decision
is optimal for any state y where y ≥ x.

Corollary 1 states that the optimal policy can be viewed as a
generalized threshold policy; as soon as there is a state x inwhich
it is optimal to immediately execute the operation, then it is also
optimal to execute in any state in which the completed actions
include all of the completed actions in x.

... Weighted actions
In this section, we assume that each action i has a weight wi >

0,
∑n

i=1 wi = 1, representing the relative contribution of that
action to the success of the operation. The failure probability
f (·) is monotone increasing in the sum of the wis correspond-
ing to the incomplete actions. We can now rewrite Equation (2)
as

C(x) = min

⎛

⎝ f

⎛

⎝
∑

k : x(k)=1

wk

⎞

⎠,
µ∑

k : x(k)=1 λk + µ
d

+
∑

i : x(i)=1

λiC(x−i)∑
k : x(k)=1 λk + µ

⎞

⎠, (3)

C(⃗0) = 0.

If the (now with unidimensional domain) failure probability
f (·) is also convex, then the myopic policy is optimal.

Corollary 2. If f (·) is increasing and convex, then the optimal
stopping rule is the myopic policy where the operator immediately
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executes the operation in state x if and only if

f

⎛

⎝
∑

k : x(k)=1

wk

⎞

⎠≤ µ∑
k : x(k)=1 λk + µ

d

+
∑

i : x(i)=1

λi f
(∑

k : x(k)=1 wk − wi
)

∑
k : x(k)=1 λk + µ

.

If we further assume that the failure probability is simply the
total value of wi for the incomplete actions, f (z) = z, then the
condition in Corollary 2 simplifies significantly.

Corollary 3. If f (z) = z, then the optimal decision is to immedi-
ately execute the operation if and only if

∑

k : x(k)=1

(λk + µ)wk ≤ µd.

If we also assume that the nature of the actions is simi-
lar (e.g., technical checks) and therefore λk = λ for all actions
k = 1, . . . , n, then the optimal decision is obtained as a simple
threshold policy that is determined by the total relative contri-
bution of the incomplete actions on the checklist. Specifically:

Corollary 4. If f (z) = z and λk = λ for all k = 1, . . . , n, then
the optimal decision is to immediately execute the operation if and
only if

∑

k : x(k)=1

wk ≤ µ

λ + µ
d.

If in addition we assume that all actions on the checklist are
equally critical—that is, wk = 1/n, k = 1, . . . , n—we are back
to the simple homogeneous model from Proposition 1.

... Concave failure probability
Unfortunately, the myopic policy will not always be optimal for
general failure probability functions. In this section, we illus-
trate the suboptimality of the myopic policy when f (·) violates
the conditions of Proposition 2. We maintain the assumption
that each action has a weight wi associated with it and that f (·)
is increasing in the sum of wi corresponding to the incomplete
actions. The convex failure probability f (·), studied in Sections
3.1.1 and 3.1.2 implies that the first few completed actions on the
checklist are more significant for the success of the operations
than later actions. Although this may be the case in some situ-
ations, there may be other situations where the opposite is true
and a concave failure probability f (·) will be more appropriate.
This could occur in situations where significant confidence in
the success of the operation hinges on the few final actions in
the list.

The following example illustrates how the optimal stopping
rule can deviate from themyopic one specified in Proposition 2–
Corollary 4. Let n = 6, µ = 0.4, d = 1.8, λi = 1, and wi = 1/6
for all i = 1, . . . , 6.We use the concave function f (z) = z0.2 for
the failure probability. In this case, the cost function is a slight

Table . Solution to the scenariowith f (z) = z0.2 ,n = 6,µ = 0.4, d = 1.8,λi = 1,
and wi = 1/6. The last two columns specify whether the operator executes (E) or
waits (W).

State Cost to Cost to Myopic Optimal Myopic
j execute wait waiting cost decision decision

  . . E E
 . . . W W
 . . . W E
 . . . W E
 . . . E E
 . . . E E
  . . E E

modification of Equation (1):

C( j) = min

((
j
n

)0.2

,
µ

λ j + µ
d + λ j

λ j + µ
C( j − 1)

)

1 ≤ j ≤ n, (4)

C(0) = 0.

Table 1 presents the differences between the optimal and the
myopic decisions. Each row in the table corresponds to a state
j—the number of checklist actions yet to be completed. The
second column is the cost to immediately execute in that state.
This is the first term on the right-hand side of Equation (4). The
third column is the cost of waiting and reassessing after the next
action completion, which corresponds to the second term on
the right-hand side of Equation (4). The fourth column is the
cost if the operator executes exactly after one additional action
is completed. This is the right-hand side of the condition in
Corollary 2 and requires replacingC( j − 1) in Equation (4)with
(( j − 1)/n)0.2. The final two columns report the decision—
execute (E) or wait (W)—when using the optimal or myopic
policy, respectively. Evidently, the myopic policy is no longer
optimal.With a concave function, the probability ofmission fail-
ure drops quickly as j gets closer to zero and the checklist is
close to completion but is relatively flat for larger j. The myopic
policy, in this concave case, may miss the potential benefits of
waiting for several more action completions, which may sub-
stantially reduce the failure probability down the road. Conse-
quently, the myopic policy is more apt to execute the operation
than the optimal decision, which may prefer to wait. Note that
the optimal decisionmay oscillate betweenwaiting (W) and exe-
cuting (E) as j changes. For example, in Table 1 it is optimal to
execute for larger j and j = 0 but wait for moderate values of j.
This oscillating behavior occurs because of (i) potentially great
benefits for waiting close to j = 0 due to the sharp decrease of
f (·) in that region and (ii) the risk to waiting for very large j
as the window of opportunity may close before the benefits of
waiting can be realized. Starting from a void checklist, the opti-
mal policy in this scenario is to execute immediately. It is still
useful to know the optimal policy in future states (that theo-
retically should never be reached if the operator starts afresh)
in case the operator takes over the decision-making duties after
several actions have been completed or perhaps some external
force requires that some minimum number of actions needs to
be completed before execution.
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4. Sequential actions

If the actions must be completed sequentially in a certain pre-
defined order of the checklist, then the state variable is simply
the index of the next action to be completed. For consistency
with Section 3, we use the reverse ordering of the indices; e.g.,
action 1 is the last action on the checklist and action n is the
first item in the checklist. The state variable is j, the number of
remaining incomplete actions. The cost function in this case is

C( j) = min
(
f ( j),

µ

λ j + µ
d +

λ j

λ j + µ
C( j − 1)

)

1 ≤ j ≤ n, (5)
C(0) = 0.

The general parallel model defined by Equation (2) becomes
computationally intractable for larger n. However, there are
no such issues for the general sequential model, which can
easily be solved numerically via backward induction. Unlike
the parallel case, convexity of f (·) is generally insufficient for
the myopic policy to be optimal. However, if we require the
completion intensities λi to be monotone non-decreasing in i
(i.e., earlier actions have higher values of λi), then the myopic
policy becomes optimal. This result is summarized in the fol-
lowing proposition.

Proposition 3. If f (·) is increasing and convex and λi is non-
decreasing in i, the operator should use the myopic policy. That
is, the operator should execute in state j if and only if

f ( j) ≤ µ

λ j + µ
d +

λ j

λ j + µ
f ( j − 1).

The proof of Proposition 3 and the related corollaries appear
in Section C of the Online Supplement.

The condition on λi implies that the earlier actions finish
more quickly. The optimal policy can be rephrased as a thresh-
old policy in j.

Corollary 5. If f (·) is increasing and convex and λi is non-
decreasing in i, then there is a threshold τ ∗ such that the operator
should execute in state j if and only if j ≤ τ ∗, where

τ ∗ = max
{
j | f ( j) ≤ µ

λ j + µ
d +

λ j

λ j + µ
f ( j − 1)

}
.

We now assume that the failure probability function takes
the form f ( j) = f (

∑ j
i=1 wi), where wi are the weights intro-

duced in Section 3.1.2 that represent the relative contribution
of action i. The conditions for Proposition 3 and Corollary 5
will be satisfied if f (·) is convex and the weights wi are non-
decreasing in i. This condition on the weights implies that the
earlier actions are more important than the later actions. As in
the parallel case, when the failure probability is f (z) = z, the
threshold in Corollary 5 simplifies greatly.

Corollary 6. If f (z) = z and the wi and λi are both non-
decreasing in i, the operator should execute in state j ≤ τ ∗ if and
only if

τ ∗ = max

{

j | λ jw j + µ

j∑

i=1

wi ≤ µd

}

.

Table . Solution to the scenario with f (z) = z, n = 9, µ = 0.1, d = 0.9, wi =
1/9. The last two columns specify whether the operator executes (E) or waits (W).

State Cost to Cost to Myopic Optimal Myopic
j λi execute wait waiting cost decision decision

   . . E E
  . . . W W
 . . . . E E
 . . . . E E
  . . . W W
  . . . W W
 . . . . W E
 . . . . E E
  . . . W W
   . . W W

If all of the actions are homogeneous—that is, wi = 1/n and
λi = λ for all i = 1, . . . , n—then the threshold becomes even
simpler.

Corollary 7. If f (z) = z, wi = 1/n, and λi = λ for all i =
1, . . . , n, then

τ ∗ = max(0, dn − λ/µ).

The final corollary compares the stopping rule (execute the
operation) in the two sequential and parallel cases when the
actions are homogeneous.

Corollary 8. If f (z) = z,wi = 1/n, and λi = λ for all i, the oper-
ator should execute sooner (i.e., larger j) in the sequential case
than in the parallel case.

Corollary 8 is not surprising. The total completion rate of
actions is slower in the sequential case compared with the par-
allel case; therefore, it is more likely that the window of oppor-
tunity will close before many actions on the list are completed.

We conclude this section with an example where f (z) = z,
wi = 1/n, but the λis are non-monotonic. Thus, the results
from Proposition 3–Corollary 8 do not apply. Namely, the
myopic policy is not necessarily optimal, nor is the optimal
policy a threshold policy. The results appear in Table 2, which
has a format similar to Table 1. The optimal policy oscillates
between executing and waiting, due to the oscillations of the λi.
It is risky to wait for an action with a small λi, as the window of
opportunity is more likely to close while waiting.

5. Mix of parallel and sequential actions

What happens if the checklist contains a mixture of parallel and
sequential actions? We assume that there are np parallel homo-
geneous actions and ns sequential homogeneous actions. For
simplicity, we assume that both parallel and sequential actions
share the same completion intensity λ. We also assume that
the failure probability is a function of the sum of the weights
of the incomplete actions and that all actions have the same
weight 1/(np + ns). A state in the decision process is a pair
( jp, js), where jp and js are the remaining incomplete par-
allel and sequential actions, respectively. As in Section 4, the
sequential actions must be completed in reverse order of the
index: action ns is the first action on the sequential checklist and
action 1 is the last. Furthermore, we assume that the parallel and
sequential actions are completed on two independent tracks.
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That is, completion of sequential action js only requires that
sequential action js + 1 be performed first; it does not depend
on the completion of any parallel action. The cost function is

C( jp, js) = min
(
f
( jp + js
np + ns

)
,

µd
λ( jp + 1) + µ

+
λ jpC( jp − 1, js)
λ( jp + 1) + µ

+
λC( jp, js − 1)
λ( jp + 1) + µ

)

1 ≤ jp ≤ np, 1 ≤ js ≤ ns,

C( jp, 0) = min
(
f
( jp
np + ns

)
,

µd
λ jp + µ

+
λ jpC( jp − 1, 0)

λ jp + µ

)

1 ≤ jp ≤ np,

C(0, js) = min
(
f
(

js
np + ns

)
,

µd
λ + µ

+ λC(0, js − 1)
λ + µ

)

1 ≤ js ≤ ns,
C(0, 0) = 0.

In this setup, convexity is sufficient for the optimality of the
myopic policy. This result appears in the following proposition.

Proposition 4. If f (·) is increasing and convex, then the opti-
mal policy is myopic. That is, the operator should execute in state
( jp, js) if and only if

f
( jp + js
np + ns

)
≤ µd

λ( jp + I( js > 0)) + µ

+
λ( jp + I( js > 0)) f

(
jp+ js−1
np+ns

)

λ( jp + I( js > 0)) + µ
,

where I(·) is the indicator function.

The proofs of Proposition 4 and Corollary 9 appear in Sec-
tionD of theOnline Supplement. As with the purely parallel and
sequential cases, when f (z) = z, the condition simplifies. We
have a threshold policy for jp, but the threshold depends upon
the value of js.

Corollary 9. If f (z) = z, the operator should execute if and only
if jp ≤ τ ∗( js), where

τ ∗( js) = µd
µ + λ

(np + ns) − λI( js > 0) + µ js
µ + λ

.

For js = 0, the threshold in Corollary 9 is equivalent to
the threshold in Corollary 4. As we increase js, the threshold
decreases. However, the total number of checklist actions on the
stopping boundary (τ ∗( js) + js) does increase with js, which
implies that the operator is more likely to execute if there are
more sequential actions in the checklist.

6. Extensions

We analyze four extensions in this section. Section 6.1 incorpo-
rates a cost to complete each action. In Section 6.2 we assume
that when the window of opportunity closes, the decisionmaker
rushes to execute the operation. In this case, the cost to rush the
operation depends on the number of actions completed. Section
6.3 considers a form of dependency between the action comple-
tion times and the window of opportunity. Finally, in Section

6.4, we allow for general distributions for the action completion
time and the window of opportunity. We focus only on the par-
allel case from Section 3; the sequential model has very similar
results.

6.1. Costs associatedwith action completion

In our base analysis we consider two costs: the cost of a failed
operation (normalized to one) and the cost if the window of
opportunity closes (d). In addition, it may cost κi to complete
action i. In this situation, Equation (2) transforms to

C(x) = min

(

f (x),
µ∑

k : x(k)=1 λk + µ
d

+
∑

i : x(i)=1

λi(κi +C(x−i))∑
k : x(k)=1 λk + µ

⎞

⎠, (6)

C(⃗0) = 0.

The myopic policy discussed in Section 3 (Proposition 2) may
not be optimal for an arbitrary action cost κi. If one of the incom-
plete actions is quite expensive, the myopic policy may recom-
mend to stop immediately, whereas the optimal policy will wait
as all other incomplete actions are much less costly. Below we
state the modified version of Proposition 2 with the required
restrictions on action costs κi.

Proposition 5. If f (·) satisfies the conditions in Proposition 2 and
satisfies

f (x) − f (x−i) ≥ κi, for all x such that x(i) = 1,

then the optimal stopping rule is the myopic policy.

The proof appears in Section E of the Online Supplement.
The new condition in Proposition 5 limits the cost of action i.
If action i completes, then the stopping cost drops from f (x) to
f (x−i), and this differential captures the marginal operational
benefit from completing action i. If that benefit exceeds the cost
to complete action i, then the myopic policy remains optimal.

In the homogeneous action case (constant λ)with linear fail-
ure probability f ( j) = j/n and constant action cost κ , the new
condition in Proposition 5 corresponds to κ < 1/n. If this con-
dition is met, then including the action cost modifies the stop-
ping condition in Proposition 1 to

j
n

≤ µ

λ(1 − κn) + µ
d.

6.2. Rushed operation

The parameter d captures the expected cost when the window
of opportunity closes before the operator executes the opera-
tion. In the base model, the operator cannot execute the oper-
ation after the window closes and hence the cost d does not
depend upon the completed actions. However, in some applica-
tions thewindow closingmight actually represent the timewhen
the operator is forced into executing the operation. For example,
a doctor, observing that the condition of a patient has deterio-
rated to a critical point, may rush her into surgery, or a com-
mander may scramble aircraft to provide immediate support to
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ambushed ground forces under heavy fire. In this situation, d is
the expected cost to rush the operation due to the window clos-
ing. Since the operation is executed, albeit in a rushed fashion,
the cost d may depend on the state x. We modify our cost func-
tion slightly to account for this:

C(x) = min

(

f (x),
µ∑

k : x(k)=1 λk + µ
d(x)

+
∑

i : x(i)=1

λiC(x−i)∑
k : x(k)=1 λk + µ

⎞

⎠, (7)

C(⃗0) = 0.

The myopic policy may no longer be optimal because d(x) may
change drastically as actions complete. The following proposi-
tion imposes restrictions on d(x).

Proposition 6. If f (·) satisfies the conditions in Proposition 2 and
satisfies

x > y implies d(x) − f (x) ≤ d(y) − f (y),

then the optimal stopping rule is the myopic policy.

The proof appears in Section F of the Online Supplement.
We can view f (x) as the expected cost to deliberately execute
the operation in state x and d(x) as the expected cost to rush to
execute the operation when the window of opportunity closes.
The condition d(x) − f (x) ≤ d(y) − f (y) when x > y implies
that as more actions complete, it becomes more costly to exe-
cute a rushed operation relative to a deliberate execution. This
is a reasonable assumption in many cases. Early in the process,
there is often not much difference between a deliberate and a
rushed operation, as both have little chance of succeeding. How-
ever, near the end after many actions have completed, there may
be a significant difference between the success probability of a
deliberate operation compared to a rushed one.

In the homogeneous action case (constant λ)with linear fail-
ure probability f ( j) = j/n, the function d( j) = (1 − α)

j
n + α

forα ∈ [0, 1] satisfies the new condition in Proposition 6. In this
special case, the stopping condition in Proposition 1 changes to

j
n

≤ µα

λ + µα
.

When α = 1, we revert back to the base model where d is a con-
stant. For smaller α, the operator is less likely to execute the
operation, as waiting also reduces the cost associated with the
window of opportunity closing.

6.3. Actions–window dependence

In this section we present a possible manifestation of depen-
dence between actions and the window of opportunity and
define conditions when the myopic policy is optimal. We limit
ourselves to the setup in Proposition 1: constant completion
intensity λ and linear failure probability ( f ( j) = j/n).

The underlying operation is one of two types: “routine” or
“urgent.” The action completion times have parameters λR and
λU for routine and urgent operations, respectively. Similarly, we

define the parameters for the window closure time as µR and
µU . We assume that

µU

λU
>

µR

λR
,

which implies that the window of opportunity is more likely to
close before the next action completion for urgent operations;
that is,

µU

λU j + µU
>

µR

λR j + µR
.

At the beginning of the process, the operator has a prior belief
pU about the likelihood that the operation is urgent. As the
operator observes action completion times, the probability pU
updates in aBayesian fashion.Conditioned on a routine (urgent)
action completing before the window closes, the action comple-
tion time has an exponential distribution with rate λR j + µR
(λU j + µU ). If we observe action interarrival time x, then we
denote the updated probability that the operation is urgent by
p̃(x, j, pU ):

p̃(x, j, pU )

= pU (λU j + µU )e−(λU j+µU )x

pU (λU j + µU )e−(λU j+µU )x + (1 − pU )(λR j + µR)e−(λR j+µR )x .

We augment our state space j with the probability that the oper-
ation is urgent pU :

C( j, pU ) = min
(
j
n
,

(
pU

µU

λU j + µU
+ (1 − pU )

µR

λR j + µR

)
d

+ pU
λU j

λU j + µU

∫ ∞

0
(λU j + µU )e−(λU j+µU )xC

( j − 1, p̃(x, j, pU ))dx

+ (1 − pU )
λR j

λR j + µR

∫ ∞

0
(λR j + µR)e−(λR j+µR )xC

( j − 1, p̃(x, j, pU ))dx
)

1 ≤ j ≤ n, pU ∈ [0, 1],

C(0, pU ) = 0, pU ∈ [0, 1].

If the parameters for the routine and urgent operations dif-
fer substantially, we cannot guarantee the optimality of the
myopic policy. The following proposition formalizes how close
the parameters need to be for the myopic policy to be optimal.

Proposition 7. If

µR

λR + µR

(
λR

µR
− λU

µU

)
<

1
n
,

then the optimal stopping rule is the myopic policy where the oper-
ator immediately executes the operation in state ( j, pU ) if and
only if

j
n

≤
(
pU

µU

λU j + µU
+ (1 − pU )

µR

λR j + µR

)
d

+
(
pU

λU j
λU j + µU

+ (1 − pU )
λR j

λR j + µR

)
j − 1
n

.

The proof appears in Section G of the Online Supplement.
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6.4. General probability distributions

Generalizing beyond the exponential distribution makes the
analysis much more complicated. With the memoryless prop-
erty, we only had to evaluate the operator’s decision at action
completion times. For general distributions, it might be optimal
to execute the operation mid-action and thus we must track the
current time and residual lifetimes of the incomplete actions. As
with the dependent case in Section 6.3, for simplicity we focus
on the homogeneous actions case (constant λ) and linear failure
probability ( f ( j) = j/n). To simplify the analysis, we discretize
time and allow decisions every %t time period. The bookkeep-
ing required to analyze%t → 0 is unwieldy and, we believe, will
not add any significant insight.

Let the window of opportunity have probability distribution
G and the completion times of the n actions be independent and
identically distributed (i.i.d.) randomvariables with distribution
H . Without loss of generality, we set time to zero at the lower
bound of the support of G, as the operator would never exe-
cute the operation before this time.We assume that the distribu-
tions have a finite support with upper bounds uG and uH , with
u = min(uG, uH ). The operator can only execute the operation
at discrete time points i%t for i = 0, 1, 2, . . . , u/%t , for some
fixed time step %t . The hazard functions play a significant role
in our analysis, as we consider the probability that thewindow of
opportunity will expire in the near future, given that the window
has not closed by a certain time. We next define the discretized
version of the hazard function for the window of opportunity:

rG(t,%t ) =
G(t+%t )−G(t )

%t
1 − G(t )

.

The function rH (t,%t ) related to the action completion time is
defined similarly. The expression rH (t,%t )%t is the probability
that an action completes in (t, t + %t], given that the action has
not completed by time t .

We now account for both the number of remaining actions j
and the current time t when making our decision. If the opera-
tor executes the operation in state ( j, t ), the expected cost is j/n.
If the operator waits, with probability rG(T,%t )%t , the window
expires before the next decision epoch, which results in cost d.
Otherwise, if the window does not close, some number of the
remaining j actions will complete in the next%t time. Combin-
ing these pieces yields the cost function

C( j, t ) = min
(
j
n
, rG(t,%t )%t × d

+ (1 − rG(t,%t )%t )
j∑

k=0

(
j
k

)
(rH (t,%t )%t )k

× (1 − rH (t,%t )%t ) j−k C( j − k, t + %t )
)

1 ≤ j ≤ n, t ≤ u − %,

C( j, u) = d if uG ≤ uH , 0 ≤ j ≤ n,
C( j, u) = 0 if uG > uH, 0 ≤ j ≤ n,
C(0, t ) = 0 t ≤ u − %t.

If the window does not close, a binomial number of actions will
complete in (t, t + %t] because the remaining j actions are i.i.d.
random variables. The base case value ofC( j, u) depends upon

whether G or H has the smaller upper bound on the support. If
uG ≤ uH , then the window will close with certainty in the last
time period, whereas if uG > uH , all actions are guaranteed to
complete by the last time period.

The myopic policy is optimal if the hazard functions meet
certain conditions.

Proposition 8. If! rH (t,%t ) + rG(t,%t ) > 0 for all t ∈ [0, u],! rH (t,%t ) is non-decreasing for all t ∈ [0, u],! rH (t,%t )
rG(t,%t ) is non-increasing for all t ∈ [0, u],

then the optimal stopping rule is the myopic policy where the oper-
ator immediately executes the operation in state ( j, t ) if and only
if

j
n

<
rG(t,%t )

rG(t,%t ) + rH (t,%t ) − rG(t,%t )rH (t,%t )%t
d.

The proof appears in Section H of the Online Supplement.
The first condition of Proposition 8 ensures that before the next
decision epoch, there is some possibility that either an action
will complete or the window will close. The main condition for
Proposition 8 is the last one, which effectively states that the haz-
ard function for the window of opportunity must increase at a
faster relative rate than the hazard function of the action com-
pletion times. For small %t , the last term in the denominator of
the stopping condition in Proposition 8 becomes negligible, and
the stopping rule simplifies into a ratio of hazard functions. This
produces a nice generalization of the result in Proposition 1.

If the action completion times are i.i.d. uniform random vari-
ables on [0, a] and the time until the window of opportunity
closes is a uniform random variable on [0, b], then the condi-
tions of Proposition 8 are satisfied for b < a. In this case, the
stopping condition is

j
n

<
a − t

a + b− 2t − %t
d.

7. Conclusion

Initiating an operation may be contingent on completing a set
of preliminary actions listed in a checklist. Sometimes, when
the operation is time critical, the operator may opt to stop the
preliminary actions and start the operation before the checklist
is complete. There are many relevant applications—e.g., in
defense, industry, and healthcare—where such decisions are
made. In this article, we study various manifestations of this
situation and develop optimal stopping rules for when to aban-
don the checklist and execute the operation. Whereas in the
most general case the stopping rule must be solved computa-
tionally using backward induction, we identify several realistic
cases where myopic, and even threshold, policies are optimal.
These policies allow the operator to make optimal decisions
in real time. Future work could further develop the extensions
introduced in Sections 6, especially the general distribution and
dependence scenarios. The sequential model assumes that the
ordering of actions is exogenously given. Future work could
analyze situations where the operator chooses the ordering of
actions ahead of time.



IISE TRANSACTIONS 315

Funding

This work was funded by the Office of Naval Research (ONR).

Notes on contributors

Michael P. Atkinson is an associate professor in the Operations Research
Department at the Naval Postgraduate School. His research focuses on
applying stochastic models to study homeland security and military
applications.

Moshe Kress is a professor in the Operations Research Department at the
Naval Postgraduate School. His general research area is defense operations
research with focus on combat and counter-terror modeling and opera-
tional logistics.

References

Armstrong, M. and Lévesque, M. (2002) Timing and quality decisions for
entrepreneurial product development. European Journal of Operational
Research, 141(1), 88–106.

Atkinson, M.P., Kress, M. and Langer, R.J. (2016)When is information suf-
ficient for action? Search with unreliable yet informative intelligence.
Operations Research, 64(2), 315–328.

Browne, G.J. and Pitts, M.G. (2004) Stopping rule use during information
search in design problems. Organizational Behavior and Human Deci-
sion Processes, 95(2), 208–224.

Chow, C.W. and Schechner, Z. (1985) On stopping rules in proofreading.
Journal of Applied Probability, 22(4), 971–977.

Chow, Y.S., Robbins, H. and Siegmund, D. (1971) Great Expectations: The
Theory of Optimal Stopping, Houghton Mifflin, Boston, MA.

Dalal, S.R. and Mallows, C.L. (1988) When should one stop testing
software?Journal of the American Statistical Association, 83(403),
872–879.

Dobson, G. and Tezcan, T. (2015) Optimal sampling strategies in the
coupon collector’s problem with unknown population size. Annals of
Operations Research, 233(1), 77–99.

Fakhre-Zakeri, I. and Slud, E. (1996) Optimal stopping of sequential size-
dependent search. The Annals of Statistics, 24(5), 2215–2232.

Ferguson, T.S. (1989)Who solved the secretary problem? Statistical Science,
4(3), 282–289.

Ferguson, T.S. (2004) Optimal stopping and applications. Mathematics
Department, UCLA, Los Angeles, CA. Available at: https://www.math.
ucla.edu/!tom/Stopping/Contents.html [Accessed 14 Dec 2017].

Ferguson, T.S. and Hardwick, J.P. (1989) Stopping rules for proofreading.
Journal of Applied Probability, 26(2), 304–313.

Forman, E.H. and Singpurwalla, N.D. (1977) An empirical stopping rule
for debugging and testing computer software. Journal of the American
Statistical Association, 72(360), 750–757.

Freeman, P.R. (1983) The secretary problem and its extensions: A review.
International Statistical Review/Revue Internationale de Statistique,
51(2), 189–206.

Gaver, D.P. and Jacobs, P.A. (1997) Testing or fault-finding for reliability
growth: A missile destructive-test example. Naval Research Logistics,
44(7), 623–637.

Gaver, D.P., Jacobs, P.A., Glazebrook, K.D. and Seglie, E.A. (2003) Proba-
bility models for sequential-stage system reliability growth via failure
mode removal. International Journal of Reliability, Quality and Safety
Engineering, 10(1), 15–40.

Golany, B. and Rothblum, U.G. (2008) Optimal investment in development
projects. Operations Research Letters, 36(6), 657–661.

Jelinski, Z. and Moranda, P.B. (1972) Software reliability research, in W.
Freiberger (ed), Statistical Computer Performance Evaluation, Aca-
demic Press, New York, NY, pp. 465–484.

Lon, P.C. and Zervos, M. (2011) A model for optimally advertising
and launching a product. Mathematics of Operations Research, 36(2),
363–376.

Morali, N. and Soyer, R. (2003) Optimal stopping in software testing.Naval
Research Logistics, 50(1), 88–104.

O’Quigley, J. and Reiner, E. (1998) A stopping rule for the continual
reassessment method. Biometrika, 85(3), 741–748.

Roberts, K. andWeitzman,M.L. (1981) Funding criteria for research, devel-
opment, and exploration projects. Econometrica, 49(5), 1261–1288.

Ross, S.M. (1985) Software reliability: The stopping rule problem. IEEE
Transactions on Software Engineering, 11(12), 1472–1476.

Shiryaev, A.N. (2007) Optimal Stopping Rules, volume 8, Springer, Berlin,
Germany.

Wald, A. (1945) Sequential tests of statistical hypotheses. The Annals of
Mathematical Statistics, 16(2), 117–186.

https://www.math.ucla.edu/~tom/Stopping/Contents.html

	Abstract
	1.Introduction
	2.Setting
	3.Parallel checklist
	3.1.General model

	4.Sequential actions
	5.Mix of parallel and sequential actions
	6.Extensions
	6.1.Costs associated with action completion
	6.2.Rushed operation
	6.3.Actions–window dependence
	6.4.General probability distributions

	7.Conclusion
	Funding
	Notes on contributors
	References

