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Abstract. We extend classical force-on-force combat models to study the attrition dynam-
ics of three-way and multilateral war. We introduce a new multilateral combat model—the
multiduel—which generalizes the Lanchester models, and we solve it under an objective
function that values one’s own surviving force minus that of one’s enemies. The outcome
is stark: either one side is strong enough to destroy all the others combined, or all sides
are locked in a stalemate, which results in collective mutual annihilation. The situation in
Syria fits this paradigm.

Keywords: Lanchester model • multiplayer nonzero-sum game

1. Introduction
Conventional attrition models of armed conflicts
(Ancker Jr 1995, Washburn and Kress 2009, Kress 2012)
usually feature a duel between two sides (or coalitions
thereof) out of which only one side eventually prevails
as the victor. Such models have been extensively used to
evaluate force structure, military operational concepts,
and tactics (Bracken et al. 1995). The most common com-
bat attrition models are Lanchester’s aimed-fire (square
law) and ancient (linear law) models (Washburn and
Kress 2009). Another combat attrition model is the salvo
model (Hughes 1995, Armstrong 2004), which captures
the attrition process due to an exchange of fire salvos
typical mostly in modern missile warfare.

In this paper, we define and solve a new model of
multilateral war, the Lanchester aimed-fire multiduel,
in which each player’s objective is to maximize the dif-
ference between its own numbers and the sum of its
enemies’ numbers when the war ends. We show that
unless there exists a player so strong that it can guar-
antee to win regardless of what the others do, the out-
come is a gradual stalemate that culminates in mutual
annihilation of all players. This remarkable conclusion
is independent of the number of players and attri-
tion data of a conflict. In the case of three players—
known as truel—our conclusion stands in contrast to a
range of results for sequential-engagement scenarios in
which one player, often the weakest, can achieve a clear
advantage (Kilgour and Brams 1997, Caplow 1956).

The war in Syria since 2011 serves as a moti-
vating example for our model. This war presents a

different paradigm than typical two-sided, force-on-
force engagements, with several players—the Assad
regime and its Iranian and Hezboulla affiliates, Free
Syrian Army, Kurdish militia, ISIS, and Jabhat al-
Nusra—fighting each other for dominance over terri-
tory and people. This paradigm leads to an all-out war
in which each player chooses how it divides its combat
effort among its foes. Based on our multiduel attrition
model, we cautiously speculate that absent an overall
agreement among the various players, the war in Syria
will prolong toward mutual annihilation, unless a sig-
nificant and largely invulnerable external force such as
Russia intervenes to make one player dominant.

The rest of this paper proceeds as follows. Section 2
introduces the Lanchester aimed-fire multiduel model
and identifies situations where one player can guar-
antee itself a win. Section 3 shows that if no player is
strong enough to guarantee a win, then the only possi-
ble outcome—assuming players are selfish—is mutual
annihilation of all players. Section 4 offers a conclusion.

2. The Lanchester Model
Consider a conflict situation comprising n players who
fight each other and delineate the state of the war by
x ⇤ (x1 , . . . , xn), the players’ current force sizes. The
attrition (kill rate) caused by player i to player j is ✓i j ,
for i , j; i , j ⇤ 1, . . . , n. A fire allocation rule is an n ⇥ n
matrix ↵ ⇤ [↵i j], with which player i allocates a frac-
tion ↵i j of its firepower at player j. A policy for player
i is a state-dependent firepower allocation rule ↵i j(x).
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For a given initial state (x1(0), . . . , xn(0)), a set of poli-
cies induces a force trajectory {(x1(t), . . . , xn(t)), t > 0},
according to the Lanchester model (Lanchester 1916):

dxj(t)
dt

⇤�
nX

i, j, i⇤1
↵i j(x(t))✓i j xi(t), j ⇤ 1, . . . , n , (1)

while x(t) > 0. These differential equations imply that
the attrition continues unless all players die out, possi-
bly except for one. In other words, either a player will
emerge as the only survivor while all other players die
out, or all players head for mutual annihilation.

We say a player is dominant if it can defeat the alliance
of all other players. In other words, a dominant player
can guarantee a win regardless of what the other play-
ers do. A player is pseudodominant if it can guarantee a
tie for itself—no other players can win—regardless of
what the other players do.

If all players but one effectively act in alliance—con-
centrating all their fire on the remaining one player—
then the multiduel model reduces to a two-player
model with one side consisting of many heterogeneous
force types. Lin and MacKay (2014) characterizes the
optimal policy in this situation, which can be used
to derive conditions for dominance in our multiduel
model.

Figure 1. The Case with n ⇤ 3 Players
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Note. The sphere octant is divided into four triangular cones D1 ,D2 ,D3 ,N , separated by surfaces OPQ, OQR, and ORP, where x marks initial
state and the dashed trajectory marks a path to mutual annihilation.

Lemma 1. Consider the standpoint of player �, and without

loss of generality rearrange players 2, . . . , n such that

✓12✓21 6 ✓13✓31 6 · · · 6 ✓1n✓n1.

For given initial forces x1 , . . . , xn , player � dominates if and

only if

x2
1 >

nX
i⇤2

✓i1

✓1i
x2

i + 2
nX

i< j; i , j⇤2

✓i1

✓1 j
xi x j . (2)

Player � is pseudodominant, if the preceding is changed to

an equality.

Proof. Assuming that players 2, . . . , n form an alliance
and allocate all their fire to player 1 at all times, we
want to determine the minimal initial force required
of player 1 in order to dominate. According to Lin
and MacKay (2014, Theorem 5), player 1’s optimal pol-
icy is to allocate all its fire at player n, then player
n � 1, and so on, in order to eliminate players n , n �
1, . . . , 2 in sequence. The result then follows by apply-
ing player 1’s optimal policy in Lin and MacKay (2014,
Theorem 1). ⇤

The condition in Equation (2), when applied to
each of the n players, divides the state space ⌦ ⌘
{(x1 , . . . , xn): xi > 0, i ⇤ 1, . . . , n} into n + 1 disjoint
regions D1 , . . . ,Dn ,N such that player i is dominant
in Di , i ⇤1, . . . , n, and N ⌘⌦\Sn

i⇤1 Di is the nondominant
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region in which no player is dominant. The case n ⇤ 3 is
illustrated in Figure 1. The surface OQR separates D1
from N , and, likewise, ORP and OPQ separate D2
and D3 from N , respectively. The line OR defines the
states where a duel between players 1 and 2 heads
for mutual annihilation; that is, x3 ⇤ 0 and ✓12x2

1 ⇤

✓21x2
2 (see Lanchester (1916)). Thus, ⌦ has three dom-

inant triangular cones D1 ,D2 ,D3, which meet at three
lines—OP, OQ, and OR—and surround the nondomi-
nant region N .

If a state belongs to a dominant region, then the
corresponding dominant player will use its optimal
sequential strategy described in Lemma 1 to guaran-
tee a win. But if a state belongs to the nondominant
region, what will happen? To study this question, we
first prove that if the state belongs to the nondominant
region N , then there exists a fire allocation rule↵⇤ [↵i j]
that decreases each player’s number at the same pro-
portional rate, namely, xi(t)⇤ xi(0)e��t for some � > 0.

Lemma 2. For every fire allocation rule ↵ ⇤ [↵i j], there

exists a state sA(↵) 2⌦, the annihilating state, from which

the outcome is mutual annihilation for all players.

Proof. The Perron-Frobenius (PF) theorem asserts for
any positive matrix the existence of a largest real eigen-
value � and a corresponding PF eigenvector whose
entries may be chosen to be positive. The annihilating
state sA(↵) is then the left PF eigenvector of the matrix

©≠≠≠≠≠
´

0 ✓12↵12 ✓13↵13 . . . ✓1n↵1n
✓21↵21 0 ✓23↵23 . . . ✓2n↵2n
✓31↵31 ✓32↵32 0 . . . ✓3n↵3n
...

...
...

...
...

✓n1↵n1 ✓n2↵n2 ✓n3↵n3 . . . 0

™ÆÆÆÆÆ
¨
.

As the state evolves according to Equation (1), the
force numbers decline as (x1(t), . . . , xn(t)) ⇤ (x1(0),
. . . , xn(0))e��t , which approaches (0, . . . ,0) as t !1. ⇤

The set � ⌘ {sA(↵) | ↵ii ⇤ 0;↵i j > 0;P j,i ↵i j ⇤ 1, i ⇤
1, . . . , n} contains the range of sA for all possible fire
allocation rules ↵. To prove that there exists a fire allo-
cation rule↵ for every state in N such that the n players
head for mutual annihilation, we show next that N ✓ �.

Theorem 1. N ✓ �.

Proof. We first consider the standpoint of player 1, and
without loss of generality rearrange players 2, . . . , n
such that

✓12✓21 6 ✓13✓31 6 · · · 6 ✓1n✓n1. (3)

Consider a fire allocation rule, with player 1 dis-
tributing its fire over the other n�1 players, while each

of the other n � 1 players direct all their fire at player 1,
as follows:

©≠≠≠≠≠
´

0 ↵12 ↵13 . . . ↵1n
1 0 0 . . . 0
1 0 0 . . . 0
...
...

...
...

...
1 0 0 . . . 0

™ÆÆÆÆÆ
¨
. (4)

The set
T1 ⌘ {sA(↵) | ↵ takes form (4)}

forms a boundary of �. Intuitively, if all other play-
ers form an alliance against player 1, and player 1 can
ensure mutual annihilation with some fire allocation
rule, then player 1 can defeat the alliance with its opti-
mal policy. We show next that player 1 dominates at
any point in T1.

Any point (x1 , x2 , . . . , xn) 2 T1 must satisfy

(x1 x2 · · · xn)
©≠≠≠≠≠
´

0 ✓12↵12 ✓13↵13 . . . ✓1n↵1n
✓21 0 0 . . . 0
✓31 0 0 . . . 0
...

...
...

...
...

✓n1 0 0 . . . 0

™ÆÆÆÆÆ
¨

⇤ �(x1 x2 · · · xn),

which is equivalent to
nX

i⇤2
✓i1xi ⇤ �x1 , (5)

✓1i↵1i x1 ⇤ �xi , i ⇤ 2, . . . , n. (6)

From Equation (6), we get

xi ⇤
✓1i↵1i x1

�
, i ⇤ 2, . . . , n , (7)

and substitute it into Equation (5) to get

�2
⇤

nX
i⇤2
↵1i✓1i✓i1. (8)

We next show that if (x1 , . . . , xn) 2 T1, then it satisfies
Equation (2). Using Equation (7), the right-hand side
of Equation (2) becomes

nX
i⇤2

✓i1

✓1i

✓
✓1i↵1i x1

�

◆2

+2
nX

i< j; i , j⇤2

✓i1

✓1 j

✓
✓1i↵1i x1

�

◆ ✓
✓1 j↵1 j x1

�

◆

⇤
x2

1

�2

✓ nX
i⇤2
↵2

1i✓1i✓i1 +2
nX

i< j; i , j⇤2
↵1i↵1 j✓1i✓i1

◆

6
x2

1

�2

✓ nX
i⇤2
↵2

1i✓1i✓i1 +
nX

i< j; i , j⇤2
↵1i↵1 j(✓1i✓i1 +✓1 j✓j1)

◆
, (9)

where the inequality follows because of Equation (3),
since i < j in the summation. The inequality is strict,
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unless ✓1i✓i1 is the same for all i ⇤ 2, . . . , n. Further-
more,

nX
i< j; i , j⇤2

↵1i↵1 j(✓1i✓i1 + ✓1 j✓j1)

⇤

nX
i< j; i , j⇤2

↵1 j(↵1i✓1i✓i1)+
nX

i< j; i , j⇤2
↵1i(↵1 j✓1 j✓j1)

⇤

nX
i⇤2

✓✓ nX
j⇤1, j,i

↵1 j

◆
↵1i✓1i✓i1

◆

⇤

nX
i⇤2

(1� ↵1i)↵1i✓1i✓i1.

Therefore, the right-hand side of Equation (9) becomes

x2
1

�2

✓ nX
i⇤2
↵2

1i✓1i✓i1 +
nX

i⇤2
(1� ↵1i)↵1i✓1i✓i1

◆

⇤
x2

1

�2

✓ nX
i⇤2
↵1i✓1i✓i1

◆
⇤ x2

1 ,

which proves Equation (2), where the last equality is
due to Equation (8). In other words, player 1 dominates
at any point in T1.

From each player’s standpoint, we can repeat the
same argument to arrive at the same conclusion. That
is, by defining T2 , . . . ,Tn analogously, we can show that
player i dominates at any point in Ti , for i ⇤ 1, . . . , n.
Because � is enclosed by the union of T1 , . . . ,Tn , it fol-
lows that N ✓ �. ⇤

Theorem 1 shows that for any state x 2 N , there exists
a fire allocation ↵ such that xi(t) ⇤ xi e��t for some
� > 0. In fact, there are almost always infinitely many
such fire allocations, aside from singular cases. In other
words, it is always possible—and fairly easy—for the n
players to find a fire allocation that does not shift the
current balance of power, by keeping the ratios xi(t)/xj(t)
fixed throughout. If all players collectively adopt such
a fire allocation, then the resulting force trajectory is
a straight line toward (0, . . . , 0). If some players are
unhappy with the status quo and try to shake up the
balance of power, then the relative force sizes xi(t)/xj(t)
may change over time, for some i and j. Is it possible
for a player to outwit the others to become the sole win-
ner? We next define an n-person nonzero-sum game
and use Nash equilibria to show that the only possible
outcome is mutual annihilation, as long as each player
is selfish.

3. A Nonzero-Sum Game and Its
Nash Equilibria

The Lanchester multiduel model in Section 2 has in
general no analogue of the square law that charac-
terizes the Lanchester duel. Instead, consider it as a

nonzero-sum game, where player i freely chooses its
policy ↵i j(x) and seeks to maximize its payoff

Vi ⇤ xi(1)�
X
j,i

x j(1), i ⇤ 1, . . . , n.

In other words, each player wants to maximize its
remaining force size at the end of the war, if it wins. If
a player is annihilated, then its goal is to minimize the
remaining force size of the eventual winner. If the play-
ers head for mutual annihilation, then each player’s
payoff is 0.

In a nonzero-sum game, a set of individual play-
ers’ policies form a Nash equilibrium if no player can
improve its payoff by switching to a different policy
on its own (Nash 1950). Write S1 for the set where
the inequality in Equation (2) holds with equality and
define S2 , . . . , Sn analogously. In other words, player i
is pseudodominant in Si , which separates Di from N ,
and {S1 , . . . , Sn} form the boundaries of N . In Figure 1,
S1 is the surface OQR.
Theorem 2. In the multiduel game, a set of policies [↵i j(x)]
forms a Nash equilibrium, if and only if, for x 2 Di [ Si ,

i ⇤ 1, . . . , n, we have that

↵ ji(x)⇤ 1, (10)

for all j , i, and

↵ik(x)⇤ 1, (11)
where k ⇤ argmax j,i , xj>0{✓i j✓ji}. The values of [↵i j(x)] for

x 2 N\Sn
i⇤1 Si are irrelevant.

Proof. First, we prove Equations (10) and (11) are suffi-
cient conditions. Suppose [↵i j(x)] meets Equations (10)
and (11).

1. If x 2 Di [ Si , then because of Equation (11), it
follows from Lin and MacKay (2014) that player i’s
policy maximizes xi(1); in other words, Vi decreases
if player i does not use this policy. In addition, if
player j , i does not allocate all its fire at player i as
instructed in Equation (10), then xi(1) will increase,
so Vj decreases.

2. If x 2 N , then ↵i j(x) ensures a force trajectory that
converges to (x1(1), . . . , xn(1))⇤ (0, . . . , 0), which gives
(V1 , . . . ,Vn) ⇤ (0, . . . , 0). No matter what player i does,
the state x(t), t > 0, will never cross over Si to Di . Hence,
Vi 6 0, for i ⇤ 1, . . . , n. In other words, player i cannot
improve Vi by deviating from its policy.

Since no player can improve its payoff by switching
to a different policy, [↵i j(x)] forms a Nash equilibrium.

Next, we prove Equations (10) and (11) are neces-
sary conditions. Suppose [↵i j(x)] does not meet Equa-
tions (10) and (11).

1. There exists some state x, such that x 2 Di [Si , but
↵i j(x) does not satisfy Equation (11). Player i can switch
to Equation (11) to increase xi(1) because of Lin and
MacKay (2014), thus increasing Vi .
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2. There exists some state x, such that x 2 Di [Si , but
↵ ji(x) does not satisfy Equation (10); that is, ↵ ji(x) < 1
for some j , i. Player j can switch to ↵ ji(x) ⇤ 1 to bring
down xi(1), thus increasing Vj .
Hence, [↵i j(x)] does not form a Nash equilibrium, if it
violates Equations (10) or (11). ⇤

In other words, if x 2 Di [ Si , then the dominant (or
pseudodominant) player will kill off the other play-
ers according to the optimal order, while all the other
players will fire at the dominant (or pseudodomi-
nant) player. In state x 2 N\Sn

i⇤1 Si , surprisingly, it does
not matter what a player does. The final outcome is
the same—mutual annihilation—for any starting point
in N , and no player can do anything to evade it. It is
always possible for the players to adopt a fire allocation
that keeps xi(t)/xj(t) unchanged for all pairs i and j. It
is also possible that some player—by itself or through
cooperation with the others—tries to tilt xi(t)/xj(t) in
its favor. The crucial observation is that x(t) may take
a variety of paths toward the point of mutual annihila-
tion, but it will never step outside of N . The case n ⇤ 3
can be visualized in Figure 1, which depicts a trajectory
of x(t) approaching the origin, while staying in N at all
times. If x(t) gets close to S1 (surface OQR in Figure 1),
then the other players are motivated to allocate more
fire at player 1 to pull the state away from it. If x(t) ever
reaches S1, where player 1 is pseudodominant, then the
Nash equilibrium policies described in Theorem 2 will
ensure mutual annihilation to yield Vi ⇤ 0 for all i. In
other words, no player can develop a strategy to out-
wit the others to score a win; instead, all players are
doomed to mutual annihilation.

Thus, the outcome of the game is either a win by
a dominant player who is capable of defeating the
alliance formed by all other players or an attritional
stalemate leading to mutual annihilation without a
winner. This conclusion does not rely on any specific
mathematical assumptions in the model; it is much
more general. For instance, any objective function that
is monotonically increasing in a player’s own surviv-
ing number and decreasing in its opponents’ would
give the same results. The same conclusion also holds
if there are small perturbations, such as a small misstep
by a player, a small force-recruitment effort by a player,
a small change in the attrition rate ✓i j , a small random
event, or an introduction of additional nondominant
players. As long as the small perturbation moves the
state to another point still in the nondominant region,
the result of mutual annihilation will remain true. In
practice, each player is motivated to move the state
toward the center part of the nondominant region—
away from its boundaries Sn

i⇤1 Si—so as to keep the
mutual annihilation result as robust as possible against
potential unpredictable events.

Is it possible for some players to form a temporary
alliance to eliminate some other players first, before

fighting it out among themselves? In theory, Nash equi-
librium does not preclude alliances, but it is practically
impossible when only three players remain. If players
1 and 2 form a temporary alliance with the goal to
eliminate player 3, then player 3’s best response is to
allocate its fire carefully so that at its own demise, play-
ers 1 and 2 head for mutual annihilation—tracking the
straight line OR in Figure 1. However, pushing the state
toward the straight line OR in Figure 1 with precision is
practically impossible, if we allow small perturbations
in the system. When the state gets very close to the line
OR, or to any boundary of N , a small perturbation will
tip the state outside of N , which is undesirable for all
but one player. What is more likely to happen in the
real world is, again, for all players to keep the state in
the center part of the nondominant region in order to
avoid the emergence of a dominant player.

4. Conclusion
Models are abstractions of realities (Epstein 2008),
and our model is no exception. However, with all
the caveats associated with Lanchester modeling, we
believe that the model realistically captures the essen-
tial dynamics of multilateral war. The results are gen-
eral and robust: they also apply to Lanchester’s lin-
ear model where attrition is fixed (see Appendix A).
The insight is crystal clear: either a single player is
strong enough to beat all other opponents combined
or all players share an ineluctable fate of a prolonged
attritional stalemate that will culminate in mutual
annihilation.

These two possible outcomes are in contrast to the
conventional Lanchester aimed-fire duel and stochas-
tic duels (Kikuta 1986, Lin 2014), which always (except
for singular cases) uniquely determine a winner. They
also contrast those in the salvo duel model (Arm-
strong 2004), which allows the possibility of no attri-
tion at all, if each player has a strong defensive mecha-
nism, such as using surface-to-air missiles to intercept
the enemy’s incoming missiles. The two possible out-
comes of our multiduel model are also strikingly dif-
ferent from those in three-way fights—known as truels

(Kilgour and Brams 1997)—where a common feature,
with survival as everyone’s goal, is that the appar-
ently weakest player has a surprisingly high chance of
being the last man standing. Similar situations have
long been known in sociology, where “the triadic situ-
ation often favors the weak over the strong” (Caplow
1956, p. 490). This result can be recovered in our model
with a different, more tactical and defensive objective,
in which each player has the instantaneous goal of
maximizing only the decline of its own casualty rate
(see Appendix B). The central insight to emerge from
our model is that, in a war of attrition, as long as
each player values its opponents’ destruction as well
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as its own survival, the players are destined for mutual
annihilation.

The situation in Syria since 2011 appears to conform
more to our model than to truels or more nuanced
coalitional models (Mesterton-Gibbons et al. 2011). The
various players in this conflict—the Assad regime, Free
Syrian Army, ISIS, and others—have been entangled
in a violent conflict, killing each other, with no end
in sight. In terms of our model, all the Syrian play-
ers have been in the nondominant region. Based on
the insights gleaned from our model, and absent any
external “shock” such as an effective introduction of
nonconventional weapons by one of the players, we
speculate that there are only two ways to stop the attri-
tional process before all players become dysfunctional:
(a) a political agreement that stops the violence or (b)
an intervention by a significant external force that sup-
ports one of the players and pushes the state to a dom-
inant region of our model. The intervention of Russia
in supporting the Assad regime suggests that the latter
solution may prevail.

Appendix A. The Lanchester Ancient Model
The article mainly concerns the Lanchester aimed-fire
(square law) model, but an analogous result holds for the
Lanchester ancient (linear law) model (Lanchester 1916). In
the Lanchester ancient model, a player has constant fire
power as long as it is still alive. We use the same notation as in
the article, but in the ancient warfare model with n players,
the state evolution is governed by

dxj(t)
dt

⇤�
X

i, j, xi>0
↵i j(x(t))✓i j , j ⇤ 1, . . . , n. (A.1)

The counterpart to Lemma 1 is presented below.

Lemma 3. For the given initial forces x1 , . . . , xn , consider the

standpoint of player � and, without loss of generality, rearrange

players 2, . . . , n such that

✓12✓21
x2

6
✓13✓31

x3
6 · · · 6 ✓1n✓n1

xn
.

Player � dominates if and only if

x1 >
nX

j⇤2

✓ nX
k⇤ j

xk

✓1k
✓j1

◆
. (A.2)

In addition, the optimal policy is for player � to allocate all its fire at

player n, then player n � 1, and so on, in order to eliminate players

n , n � 1, . . . , 2 in sequence.

Proof. Assuming that players 2, . . . , n form an alliance and
allocate all their fire to player 1 at all times, we want to deter-
mine the minimal initial force required for player 1 to win.
Among all policies that end up killing off the other play-
ers in an arbitrary order i1 , i2 , . . . , in�1, the policy that min-
imizes player 1’s loss is the one that allocates all its fire at
player i1, then player i2, and so on, in order to eliminate play-
ers i1 , . . . , in�1 in sequence. Therefore, it remains to be found
which of the (n � 1)! sequences is optimal. By comparing

the two sequences i , j, . . . and j, i , . . ., it is straightforward to
show the optimal sequence as stated.

Using the optimal policy, the time it takes to eliminate
player j is

nX
k⇤ j

xk

✓1k
,

during which time player 1’s loss because of player j’s fire is✓ nX
k⇤ j

xk

✓1k

◆
✓j1.

Hence, the right-hand side in Equation (A.2) is the total loss
of player 1 until it eliminates all other players, which con-
cludes the proof.

The counterpart to Lemma 2 is presented below.
Lemma 4. For every fire allocation rule ↵ ⇤ [↵i j], there exists a

state sA(↵) 2⌦, the annihilating state, from which the outcome is

annihilation for all players.

Proof. According to Equation (A.1), for a fire allocation
rule ↵, the n players head for mutual annihilation if

xjP
i, j ↵i j✓i j

⇤ �, j ⇤ 1, . . . , n , (A.3)

for some � > 0. Therefore, for an arbitrary � > 0, let xj ⇤

�
P

i, j ↵i j✓i j , and the state (x1 , . . . , xn) is an annihilating state
of ↵. ⇤

The set � ⌘ {sA(↵) | ↵ii ⇤ 0;↵i j > 0;P j,i ↵i j ⇤ 1, i ⇤ 1, . . . , n}
contains the range of sA for all possible fire allocation rules ↵.
The counterpart to Theorem 1 is presented below.
Theorem 3. N ✓ �.
Proof. We first consider the standpoint of player 1, and with-
out loss of generality rearrange players 2, . . . , n such that

✓12✓21
x2

6
✓13✓31

x3
6 · · · 6 ✓1n✓n1

xn
.

Consider a policy, with player 1 distributing ↵1i of its fire
at player i , 1, while each of the other n � 1 players direct all
their fire at player 1. According to Equation (A.3), for the n
players to head for mutual annihilation, we require that

x1P
i,1 ✓i1

⇤
x2
↵12✓12

⇤
x3

↵13✓13
⇤ · · · ⇤ xn

↵1n✓1n
⇤ � > 0. (A.4)

The set
T1 ⌘ {sA(↵) | ↵ satisfies (A.4)}

forms a boundary of �. We next show that player 1 dominates
at any point in T1.

Using Equation (A.4), the right-hand side of Equa-
tion (A.2) is

nX
j⇤2

✓ nX
k⇤ j

xk

✓1k
✓j1

◆
⇤ �

nX
j⇤2

✓ nX
k⇤ j
↵1k✓j1

◆
6 �

nX
j⇤2
✓j1 ⇤ x1 ,

with equality if and only if ↵1n ⇤ 1. Thus, according to Equa-
tion (A.2), player 1 dominates at any point in T1.

From each player’s standpoint, we can repeat the same
argument to arrive at the same conclusion. That is, by defin-
ing T2 , . . . ,Tn analogously, we can show that player i dom-
inates at any point in Ti , for i ⇤ 1, . . . , n. Because � is the
enclosure of T1 , . . . ,Tn , it follows that N ✓ �. ⇤
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Appendix B. A Defensive Tactical Objective
In various multiduel models with three players—known as
truels—in which survival is the common goal, the apparently
weakest player has a surprisingly high chance of winning,
since that player presents the least threat to the others. Sim-
ilar ideas and results can be recovered in our aimed-fired
model via a different objective function, where player i maxi-
mizes the rate of reduction of its casualty rate, namely, ‹xi . We
make a simplification in which player i has kill rate ✓i against
either opponent, i ⇤ 1, 2, 3, and let ✓1 > ✓2 > ✓3 without loss
of generality. Player 1 is the strongest player, while player 3
is the weakest.

Taking the second derivative of x1 with respect to t yields

‹x1 ⇤ ✓1(↵12✓2↵21 + ↵13✓3↵31)x1 + ↵12-independent terms,

which player 1 wants to maximize, and similarly for x2
and x3. Hence, the players’ best responses are

• Player 1: Choose ↵12 ⇤ 1 (respectively, ↵12 ⇤ 0) according
as ✓2↵21 � ✓3↵31 > 0 (respectively, < 0).

• Player 2: Choose ↵23 ⇤ 1 (respectively, ↵23 ⇤ 0) according
as ✓3↵32 � ✓1↵12 > 0 (respectively, < 0).

• Player 3: Choose ↵31 ⇤ 1 (respectively, ↵31 ⇤ 0) according
as ✓1↵13 � ✓2↵23 > 0 (respectively, < 0).

In terms of (↵12 , ↵23 , ↵31), the line from (1, 0, 0) to (1, 0, 1),
in which players 1 and 2 fight each other while player 3 is
neutral between them, is stable, since ✓1 > ✓2 > ✓3. The only
other semistable point is (0, 1, 1), at which players 1 and 2
attack player 3, but player 2 is then neutral between attacking
player 1 and attacking player 3.

One could go further and make the determination of poli-
cies a differential game, in which the players all rapidly adjust
their policies, on a timescale much smaller than that of the
attrition, in proportion to the advantage gained by doing so.
With ⌧ ⇤ t2

attrition/tadaptive, we have

1
⌧

d↵12
dt

⇤ ✓1(✓2↵21 � ✓3↵31),
1
⌧

d↵23

dt
⇤ ✓2(✓3↵32 � ✓1↵12),

1
⌧

d↵31

dt
⇤ ✓3(✓1↵13 � ✓2↵23).

This is a dynamical system within the unit cube of admissible
policies. An analysis of the system’s stable regions and basins
of attraction again shows an advantage for player 3. The line
from (1, 0, 0) to (1, 0, 1), in which players 1 and 2 fight each
other while player 3 is neutral between them, is again stable.
There is a stable line segment from (0, 1�✓3/✓2 , 1) to (0, 1, 1),
with a smaller basin, along which players 1 and 3 fight while
player 2 divides its fire. If ✓2 + ✓3 > ✓1, there is also a short
stable segment from (1� ✓2/✓1 , 1, 0) to (✓3/✓1 , 1, 0) in which
players 2 and 3 fight, while player 1’s fire is finely balanced

between players 2 and 3 in such a way that neither player 2
nor player 3 is suffering so badly from that fire as to wish to
attack player 1 instead. If ✓2 + ✓3 < ✓1, no such region exists,
and player 1 is never left unattacked.

This scenario most closely matches the typical insights
associated with classic truels (Kilgour and Brams 1997): The
(in some sense) weakest player gains advantage from being
the least immediate threat to the others. However, note that
this only applies because of our choice of objective function,
in which each player cares only for its own losses, in contrast
to the objective in the main article, which was not merely to
win but, if winning was impossible, to cause as many casual-
ties as possible to opponents.
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