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Charge depletion mechanism operative in space-charge flows 
Oscar Biblarz and Carl M. Bohley* 
Naval Postgraduate School, Monterey, Ca/Jfornia 93940 
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Charge depletion is considered for negatively charged particles flowing with a dielectric medium 
(air). The problem is representative of those encountered in electrogasdynamic devices. A 
mechanism is proposed wherein electrons are depleted from the particles by the formation of 0i· 
These ions, being some 100 times more mobile than the particles, are essentially lost from the 
flow because of their high slip. Axisymmetric jets mixing with ambient air are investigated, and 
a computer program is used to solve the combined Poisson/Laplace equations. Results ranging 
from no-charge depletion to total depletion are presented. 

I. INTRODUCTION 
A basic ingredient in electrogasdynamic (EGD) gen-
erators is the convection of charged particles against 
an electric field. Typically, these particles are neg-
atively charged and, because their size is in the micron 
range, each can have many electrons. For example, the 
Rayleigh or stability limit for a micron-size water drop-
let is about 6 x 10· electrons. Charging may range from 
a single electron per particle to the Rayleigh limit; the 
actual particle size and charge are optimized1 ,2 for each 
individual application. In this paper, water droplets in 
air at standard conditions will be considered. 

The question arises as to what charge depletion mech-
anisms are operative in such a space-charge flow. If 
wall effects are discarded, the choice is narrowed down 
considerably. Electron emission3 ,4 from the droplet can 
be ruled out in a straightforward way; the fields that the 
dielectric fluid may withstand are just too small for 
substantial electron emission and the droplet tem-
perature is, of course, too low for thermionic emission. 
Charge break up or coalescence may be significant (as 
it is in thunder clouds5) but only if the particles are 
originally charged to the Rayleigh limit. Droplet stabil-
ity is very difficult to discuss in general6 and it will be 
assumed that the droplets are stable (in EGD, solid 
particles may be used, in which case size stability is 
assured). 

One important mechanism for charge depletion that 
appears to be overlooked,,8 is the formation of negative 
ions. Even though free electrons have the highest mobil-
ity in an electric field, ion mobilities are also high 
compared to those of the particulates. This is the very 
reason why molecular ions are not used in EGD. In fact, 
unless the charged particules have a mobility less than 
100 times that of the ions, they will not couple the 
electric field to the flow field efficiently. 9 If the forma-
tion of negative ions may occur in substantial numbers 
at the charged droplet surface, the original space-
charge density in the flow may diminish noticeably from 
the region of charge injection to the region of collection. 
We shall consider oxygen ions only, because their 
formation is more probable than those of nitrogen in 
air at standard conditions. 4 

The proposed depletion mechanism operative in space-
charge flows is discussed next. This is followed by 
solutions to the combined POisson/Laplace equation for 
varying degrees of charge depletion in a specific flow 
configuration. 
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II. PROPOSED MECHANISM 
It will be assumed that the charged particles under 
consideration are large enough to be describable with 
continuum concepts. That is, the mean free path of the 
oxygen molecules is at least a factor of 10 smaller than 
the diameter of the particle (which restricts this discus-
sion to particles above 1 /lm). In this case, the colli-
sion of molecules with a given particle is comparable to 
the collision of molecules with a wall. If the charged 
particles have a large excess of electrons, some elec-
trons should be relatively available for attachment with 
O2 molecules. Rather than attempting to predict the 
associated Fermi levels, a value for the attachment 
probability on an electron with an oxygen molecule at the 
droplet surface will be assumed. This probability (P a) 
should be of the order of 10-' (a value somewhat smaller 
than those quoted for the capture of a free electron by 
an O2 molecule10). In addition to P a' a probability 
denoting the availability of the electron population it-
self should be included. Clearly, if there are no excess 
electrons in the droplet, ions would not be antiCipated 
to form. It is expected that the latter probability be 
given by Z/Zma:z., where Z denotes the number of elec-
trons per droplet and Zma:z. the Rayleigh limit (which is 
a function of the droplet radius). Thus, the total 
probability for ion formation becomes 

Pa(Z/Zma:z.)· 
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FIG. 2. Centerline potential for straight jet. 

Even though the probability of attachment is low, the 
collision frequency of the molecules with the droplet 
is very high at standard conditions (over 1015 collisions/ 
sec). The collision frequency will be calculated from 
tncA,,, where n is the number density of O2, c the 
thermal speed of O2, and Ap the area of the particle. 
Now, the depletion rate for electrons from a particle 
becomes 

(1) 

It is interesting to note that the above equation has the 
standard form of a recombination equation since it is 
proportional to the concentrations of two combining 
species. 

The space-charge denSity is given by 

p=enpZ , 

where np is the number density of the particles and e is 
the charge of an electron. 

Now, assuming a steady incompressible axisymmetric 
free jet, the left-hand side of Eq. (1) may be trans-
formed into 

dZ dZ 
Tt=vPdx' (2) 

where vp is the particle velocity in the flow direction and, 
x is the axial on the flow coordinate. ConSidering a uni-
form velocity across the jet, vp may be written as 
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FIG. 3. Centerline potential for expanding jet. 

vp= vpo(r/ro)2, 

where vPo is the initial particle (jet) velocity, ro the 
initial jet radius, and r= r(x) , the jet radius. 

The present model is one where the slip of the particles 
is negligible so that they move at the jet velocity, where-
as the ion slip is so high that upon formation ions essen-
tially disappear upstream of the jet. 

Combining Eqs. (1) and (2) and integrating, one gets 

(Z) nc dx In - =-p - -Zo a 4 Zmax Vp 

o 0.5 
X/L---

FIG. 4. Potential map (O! = 0, (3 = 0). 
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FIG. 5. Electric field map (a = 0, (3 = 0). 

or 

(3) 

where 

L is the channel length and Zo is the initial charge per 
particle. 

The variation of the jet radius with x remains to be 
defined. 

III. GEOMETRY 
For simplicity, a free jet between two infinite parallel 
grids a distance L apart will be considered. Thus, this 
case is an extension of the Laplacian solution for the 
infinite parallel charged plates where now a jet con-
taining space charge is present. 

The most common, though not the Simplest, jet shape 
is one where the radius expands due to mixing with the 
surrounding gas. It turns out that for both laminar and 
turbulent jets, the growth of the jet boundaries due to 
mixing is proportional to the axial distance from some 
virtual origin. 11 This is shown in Fig. 1. Even though 
this description is quite unrestricted, the value of the 
virtual origin as well as of the expansion angle O! can 
only be given from experiments. Two cases will be 
treated, namely, a straight jet and one which is of con-
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FIG. 6. Potential map (a = 0, (3 = 2) . 
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FIG. 7. Electric field map (a = 0, (3 '" 2). 

stant radius until iL, whereupon it grows to twice the 
radius in a linear fashion. In the latter case, a reduc-
tion of the space-charge denSity due to jet spreading 
will affect the potential profiles. It should be mentioned 
here that since a boundary-value problem is being 
solved, these results will only apply to cases where the 
domain is similar to ours. 

When the jet radius is constant, Eq. (3) becomes 

Z/Zo= exp(- (3x/ L) , 

and in the expanding section, Eq. (3) becomes 

Z {[x-* + ro 1 
Zo = exp -f\T L tanO! -3 L3 tanO! 

+.!. (x - X*)3 t 2 J} 3 V anO! , 

where x* is the virtual origin and O! is the expansion 
angle. 

Even though the velocity profile of the jet is nonuniform, 
it will be assumed that the mass-mean-velocity rep-
resentation is suffiCient for the present purposes. 

IV. RESULTS 
The potential distribution within an EGD device is 
described by a "combined Laplace-Poisson" equation. 
The two equations are required by the two-phase 
space-charge nature of the EGD environment. Poisson's 
equation models the space-charge region, while 
Laplace's equation models the space-charge-free region. 
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FIG. 8. Potential map (a = 26. 5·, (3 = 0). 
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A numerical solution method (successive overrelaxation) 
for these equations was programmed for the IBM 360 
computer system. 12 Finite-difference equations, de-
rived from a Taylor-series expansion about the point in 
question, were used to build the numerical model. Of 
importance in the computer modeling of the EGD device 
is the fluid dynamics involved. By means of a similar 
program, 13 it has been shown that for particle sizes of 
interest, the fluid dynamics may be uncoupled from the 
electrodynamics, Thus, it is possible to limit model-
ing of the dielectric gas flow to a constant rate of jet 
expansion and ensure conservation of charge within 
the jet. 

Input variables to the program typically include those 
describing the electrode geometry, dielectric char-
acteristics, charged-particle characteristics, flow 
control, variable matrix dimensions, and the output 
desired. The program generates the jet radius and fills 
in the space-charge value corresponding to cells within 
the jet. Outside the space charge is zero but conditions 
are matched at the boundaries, Similarly, the boundary 
conditions at the grids are superimposed, The program 
simulates a steady-state picture of the entire EGDsit-
uation by the superposition of two separate matrices, 
One matrix will carryall potential information, while 
the other matrix carries both charge distribution and 
some flow control information. The initial part of the 
program is devoted to setting up these matrices. 

Once the above has been accomplished, the program 
calls for an iterative calculation to determine the 
potential distribution and a calculation for the I E I -field 
distribution. The remainder of the program is devoted 
to the output of these results. 

The nondimensional form of Poisson's equation used is 

'i1 2¢ = C(Z/ Zo), 

where ¢ is the dimensionless potential, and 

C=L2poIEVo, 

where Po is the initial space-charge denSity, Vo the over-
all or electrode voltage, and E the permittivity of free 
space, 

The following parameters are used in these calculations 
(the reason is given in Sec, V): 

rolL:= 0, 25 and C == 23.145, 
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FIG. 10. Potential map (a =26. 5·, (3=2). 

Other values of the constant C would merely scale the 
potential ¢ provided that the domain is the same, 

Results for the straight jet are shown in Fig, 2 and for 
the expanding jet in Fig. 3. For {3 < 10-2 the results are 
very close to the (3 == 0 or Poisson solution. Similarly, 
for {3 > 102 the curves are very close to the (3 = 00 or 
Laplace solution. {3 == 2. 0 represents a convenient inter-
mediate case. Here, results start out close to the no-
charge-depletion case but bend over toward the Lap-
lacian due to the loss of charge. There is little differ-
ence between the straight jet and the expanding jet for 
(3 == 2. 0 because the diverging portion happens where the 
charge has been substantially depleted. Moreover, for 
f3> 2. 0 no maxima appear. 14 Figures 4-11 showequi-
potential and electric field maps of the cases considered 
as generated by the computer. The potential comes out 
of the solution to the equation. The electric field is the 
magnitude of the field normalized with the breakdown 
value; this feature of the program is useful because re-
gions where the maximum electric field is exceeded are 
easily recognized. 

V. CONCLUSIONS 
The specific values of the parameters used here are 
representative of an electrogasdynamic generator. 1) 

For example, C== 23.146 corresponds to an initial 
space-charge denSity of 1. 03 x 10-3 C/m3, a length of 
1 cm, and a Vo of 5000 V. Also, {3= 2. 0 corresponds 
to the number denSity of oxygen at standard conditions 
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FIG. 11. Electric field map (a = 26. 5·, (3 = 2). 
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(10Z5/m3), a 10-J.Lm spherical water droplet, and a Mach 
number of about O. 7 for the droplets (which is represent-
ative of the ratio vIc. The maximum charge that a 
10- J.Lm droplet may have is 2 x 106 electrons and, as 
stated earlier, the attachment probability used was 10-1 

(which is a conservative value). 

The mobility of a 10- J.Lm particle changed to the diffu-
sion limit (corona charging15) is about to-6 mZ/V sec, 
whereas ionic mobilities are above 10-4 m2/V sec. These 
data are consistent with the assumptions fed into the 
calculations. 

It may be concluded, therefore, that the charge deple-
tion mechanism presented herein has a substantial 
influence in the performance of the EGD generator 
modeled. If anything, the fact that the space-charge 
density is reduced by a factor of 7.4 for the straight jet 
and for J3 = 2. 0 is significant (the output current woold 
be reduced by the same amount). Moreover, in the 
application of voltage scheduling electrodes, 16 for EGD 
generators, the distribution of the potential dictates 
where these electrodes are placed and charge depletion 
may have a Significant effect in such a voltage distribu-
tion. It should also be mentioned that charge depletion 
acts the same way as charge spreading does in displac-
ing the high-electric-field regions toward the injector 
plate. 

The proposed mechanism for charge depletion could be 
checked experimentally by running a space-charge jet 

J. Appl. Phys., Vol. 44, No.7, July 1973 

into pure Oz and then pure Nz or argon under otherwise 
similar conditons and noting the effect on the over-all 
current. 
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