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ABSTRACT 
 

Demand for supplies, such as ammunition, during a military operation is a 

scenario-dependent random variable that may be subject to high variance.  The challenge 

is to design an efficient military logistics supply chain that satisfies uncertain, non-

stationary demands, while taking into account the volatility and singularity of military 

operations.  This research focuses on the development of a modeling framework that 

determines the optimal deployment of transportation assets and supplies at the 

operational level, with possible interdiction by enemy forces.  We term this model, 

Optimal Military Logistics Supply Chain (OPTiMiLSC).  This is a two-level, multiple 

time period scenario-based stochastic model.  OPTiMiLSC uses a combination of 

optimization, scenario-based simulation and statistical analysis.  We use a “scenario tree” 

method to generate the demand scenarios.  The results show a positive correlation 

between the number of demand scenarios and the probability that a random demand 

scenario is satisfied.  We compare OPTiMiLSC with two deterministic optimization 

approaches.  The first approach is where demands are fixed at the 90th percentile, which 

tends to over-supply when compared to OPTiMiLSC. The mean value approach, on the 

other hand, tends to under-supply.  OPTiMiLSC enables military planners to establish a 

robust logistic plan that responds more adequately to an intra-theater operation.  
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EXECUTIVE SUMMARY 
 

Demand for supplies, such as ammunition, during a military operation is a 

scenario-dependent random variable that may be subject to high variance.  Other 

uncertainties in military operations are associated with the malevolent nature of the 

environment – attrition, interdiction and friction.  An effective military logistic supply 

plan should reflect explicitly these uncertainties, and in particular, the stochastic nature of 

a military logistics network.   

In this research, we develop a stochastic, two-level, multiple-period logistics 

model that considers supplies, means of transportation and possible interdiction of supply 

lines by the enemy.  The model uses a relatively simple optimization problem within a 

scenario-based simulation setting, and obtains pertinent statistics for analysis.  We use a 

scenario tree method to generate the reference set of demand scenarios, with each branch 

giving k scenarios.  The reference set is then used to obtain an optimal deployment that 

satisfies all the demand scenarios in the set.  This model, called the Optimal Military 

Logistics Supply Chain model (OPTiMiLSC), helps to determine the optimal deployment 

of transportation assets and supplies at the two levels.   

We make the following assumptions.  First, we assume that demands are normally 

distributed and are dependent on the operational plans.  Next, we assume that the 

transitions in demand between successive time periods are Markovian, that is, that they 

depend on the last time period only.  We also assume that there are no capacity 

constraints.  Last, we assume that transportation times are fixed, but supply routes may be 

subject to interdiction. 

We seek a least-cost deployment that satisfies the demand of the reference set.  

Once this deployment is obtained, we randomly draw additional scenarios and, utilizing 

Bernoulli experiments, we estimate the probability that this deployment is adequate for 

any scenario.  We seek an optimal deployment for which this probability satisfies some 

required operational threshold.  The optimization procedure comprises two steps.  First, 

we determine the initial deployment of supply and the required periodic supply that meets 

xv 



all demand at the points of demand.  The results are then fed as inputs into the second 

stage of the optimization, where transportation needs are determined.   

The OPTiMiLSC is implemented using a reference data set for the demand and 

the cost parameters.  As expected, the results show a positive correlation between the size 

of the reference set of demand scenarios and the probability that an arbitrary demand 

scenario is satisfied.  This probability is called the “responsiveness probability.”  

The results obtained are analyzed statistically to determine whether the size of the 

reference set is sufficient to achieve a certain responsiveness probability (say, 0.90).  The 

null hypothesis, , is that the responsiveness probability is 0.90 or less.  We use a 

sample size of 60 randomly generated independent demand scenarios.  We find that for 

values of k, the number of draws at each branch of the scenario tree, greater or equal than 

11, we consistently reject the null hypothesis  when this is tested at the 10% 

significance level.  We infer that to obtain, for our data set, a deployment plan with at 

least 90% probability of success, k has to be at least 11.   

0H

0H

We also compare the OPTiMiLSC with two deterministic approaches: one which 

fixes demands at the 90th percentile and another which fixes them at the mean values.  

Using the 90th percentile deterministic approach gives approximately the same 

responsiveness probability (0.98) as the OPTiMiLSC model, but it requires more supply 

and trucks to obtain this result.  The deterministic approach using mean values gives only 

a 0.10 responsiveness probability.  We infer that the use of deterministic optimization 

approaches produces results that are misleading and unreliable.   

xvi 

The OPTiMiLSC, being a stochastic model, enables military planners to establish 

a robust logistic plan that responds closely to the intra-theater situation while hedging 

against future demand scenarios.  It combines optimization, simulation and statistical 

analysis in a novel, simple and easily applicable way.  The model as presented here 

considers only a few selected parameters, so it does not cover all the possible 

requirements of battle.  But it can provide a foundation for a more general planning 

framework for operational logistics.  Subsequent studies can extend for multiple 

commodities, to allow for multiple interdictions, or to factor in different supply methods, 

means of transportation, and capacity constraints for logistic nodes and edges. 



I. INTRODUCTION  
 

Military operational logistics constitutes one of the most important and essential 

components of warfare (Kress 2002).  In a military operation, deployed combat units 

consume supplies.  And the demand for supplies, such as ammunition, is scenario-

dependent and subject to high variance.  Any military logistic supply plan should directly 

address the stochastic nature of the military logistics network.  While mean values may 

be appropriate estimates for commercial supply chains (e.g. manufacturing operations), 

these measures may not be appropriate in the military context, which is typically transient 

and singular (Kress 2002).  An approach that aims only at meeting the average demand 

for supplies could lead the military operation to fail at a moment of critical need. 

The challenge is how to design, deploy and employ a military supply chain which 

satisfies uncertain non-stationary demands in the most efficient manner, taking into 

account the risks, high stakes and singularity of military operations. 

In this research we embed a relatively simple optimization scheme within a 

scenario-based simulation setting to obtain pertinent statistics for analysis.  We develop a 

stochastic, two-level, multiple-period logistics model that considers supplies, means of 

transportation and possible interdiction of supply lines by the enemy.  We assume 

demands to be normally distributed and dependent on the operational plan.  We also 

assume that transitions in demand scenarios between successive time periods are 

Markovian.   

 

A. BACKGROUND 
Military logistics, which comprises movement, supply and maintenance of forces 

during military operations, is one of the most important and essential components of 

warfare.  It consists of the following functions (Mason 2003): 

• Supply – This refers to the processes of acquisition, management, storage 

and issuance of material.   

• Transportation – Movement of units, personnel, equipment, and supplies. 
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• Maintenance – Actions that are taken to keep weapons and other 

equipment in usable condition. 

• General Engineering – Construction, repair, and operation of facilities for 

logistic operations. 

• Health Services – Evacuation, treatment, hospitalization, medical supplies 

and other medical services to the battle troops. 

• Other Services – Troop support functions like aerial delivery, laundry, 

clothing, meals and graves registration. 

 

Three Levels of Logistics 

There are three levels of logistics that correspond to the three levels of war – 

strategic, operational and tactical, as shown in Figure 1 (Kress 2002).   

 

 
 

Figure 1.   Logistic Network From Kress (2002) 
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Strategic logistics concerns the build-up and maintenance of the national military-

related infrastructure.  This infrastructure includes technology, industry, inventory, 

storage and transportation.  At this level, major defense-related decisions have long-

lasting impact on national security as well as the economy.  Some of these decisions 

include investments in defense-related research and development, procurement plans and 

replenishment policies.  Economic constraints drive the logistics capabilities and the 

interplay of these two factors determines operational capabilities.  (Kress 2002) 

Operational logistics (OpLog) is a collection of means, resources, organizations 

and processes whose common goal is to sustain campaigns and large-scale military 

operations.  Campaign leaders use this collection, an output of strategic logistics, as input 

for tactical logistics.  The purpose of OpLog is to sustain battles across time and space; it 

focuses primarily on theater-level activities and operational moves, not combat units.  

(Kress 2002) 

Tactical logistics, which lies at the other end of the logistic spectrum, affects the 

battle in progress.  Tactical logistics involves basic and practical activities that facilitate 

the “production” of military gains.  These activities are generally technical, prescriptive, 

normative and easily quantified.  Examples of theses activities include the replenishment 

of ammunition, maintenance and repair of equipment, supply of personal needs items 

(e.g.  rations), supply of medical aid and support in the event of evacuation needs. (Kress 

2002) 

Strategic logistical decisions are made during peacetime.  They concern national 

supply levels for the force, doctrine and operational plans.  Operational decisions, on the 

other hand, are taken with respect to a certain operational scenario.  Different operational 

scenarios require different logistics infrastructure and it is imperative that the supply 

chain, resource allocation and deployment be optimized (Kress 2002).  The current 

research focuses on the operational level. 
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B. THE STRUCTURE AND FEATURES OF OPERATIONAL-LEVEL 
SUPPLY CHAINS 

MLSC is a conceptual cyclic sequence of logistics related processes and events 

(Kress 2002).  The objective of the MLSC is to sustain the military operation.  The 

MLSC encapsulates both the demand and supply functions.  At the demand side, the 

tactical units convey their requirements, to the operational or strategic logistic sources.  

At the supply side, supplies flow through the logistics network which links the source or 

intermediate nodes to the tactical destinations as shown in Figure 1. 

During a military operation, the deployed combat unit consumes a variety of 

supplies that range from basic amenities like food and clothing to weaponry and 

ammunition.  The wide range of supplies also means varying levels of demands for the 

supplies.  The demand for basic amenities like food and clothing is relatively stable, as it 

is dependent on the number of troops deployed, which generally remains constant.  The 

demand for supplies like ammunition, on the other hand, is highly scenario-dependent 

and as a result, has a larger variance.  Another dimension that contributes to the high 

variance of the demand is the high-risk nature of the combat environment where supply 

lines may be interdicted.  In such situations demand may not be satisfied and thus will 

accumulate.  Therefore demand in any military operation is random, non-stationary and 

affected by possible (random) attrition.  

 

C. PROBLEM DEFINITION 
This research looks at the design and the deployment of a MLSC in the theater of 

operations.  This is a least-cost deployment model that satisfies, in the probabilistic sense, 

uncertain and non-stationary demands.  Cost minimization, in this context, refers not only 

to quantifiable costs but also to the operational burden created by the logistic tail. 

The situation we look at is a single depot (e.g, a theater level supply unit), which 

provides logistic support to several battalions through the MLSC.  Because the demand 

for supplies, such as ammunition, is scenario-dependent and subject to high variance, we 

employ a two-level multiple time period logistics model which represents the time-

dependent dynamics of the logistics flow.  We consider two types of flows: the supplies 

 4



and the transportation trucks.  We also consider the possibility of interdiction to the 

supply line by the enemy.   

 

D. OBJECTIVE AND SIGNIFICANCE 
 The model developed in this research provides a structure for determining the 

optimal deployment of transportation assets and supplies at the operational levels of a 

hierarchy.  At the same time, it takes into account the imbedded uncertainties of any 

given military operation.  We refer to this model as The Optimal Military Logistic Supply 

Chain (OPTiMiLSC) from this point onward.  The results of this research may help 

military planners to establish an optimal, robust plan for logistics deployment in a theater 

of operations.   
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II. LITERATURE REVIEW 
 

The focus of this research is to design, deploy and employ a MLSC, which 

satisfies uncertain non-stationary stochastic demands in the most efficient way.  This 

chapter provides the literature review of some of the relevant subjects that are useful to 

this thesis. 

 

A. INVENTORY MODELS FOR STOCHASTIC NON-STATIONARY 
DEMAND 

There are inherent difficulties when dealing with uncertain and non-stationary 

demands.  Hadley and Whitin (1963) provide one of the earliest references to a stochastic 

non-stationary demand problem and its solution.  They formulate a solution to a finite 

inventory problem for which there is a known obsolescence date and whose demand 

function follows a Poisson distribution.   

Karlin (1960) analyzed a dynamic (non-stationary and stochastic) system in which 

the demand distribution varies in each time period, an extension of the classical Arrow-

Harris-Marshak dynamic inventory model.  This model’s main characteristic is its ability 

to show in a quantitative manner how the optimal inventory level varies over time, which 

is a function of the various demand densities.  The Arrow-Harris-Marshak model has 

shown that as demand densities decrease stochastically in consecutive periods, the 

optimal inventory level also decreases.  On the other hand, when the demand densities 

increase, the optimal inventory level may or may not increase.  And if the optimal 

inventory level decreases while the demand densities increase in successive periods, the 

optimal inventory level decreases further in the following period.   

Graves and Willems (2002) propose an adaptive base-stock inventory policy for a 

non-stationary, single item when there is a deterministic lead time problem.  This demand 

model produces an integrated moving average based upon the assumed inventory policy.  

Rather than pursuing optimality, their heuristic, determines a required safety stock level, 

and  they  refer  to  their  policy  as  a  critical  fractal  policy.   The  periodic  demand  is 
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estimated using an exponential smoothing procedure.  With the emphasis on current 

period demand and assumptions made on the demand model, the model predicts the 

distribution of the next demand.   

Song and Zipkin (1992) discuss a general modeling framework operating in a 

fluctuating demand environment.  They also define the characteristics of optimal policies.  

They show that optimal policies are dependant on the unit cost, holding cost and penalty 

cost.  They have suggested two different algorithms to solve a linear cost problem.  Song 

and Zipkin also demonstrated how inventories should be managed in the face of possible 

obsolescence.  One critical assumption they make is that the current Markov chain is 

always known exactly and it describes the current demand process.  The optimal policy is 

then calculated using two heuristics.  The first heuristic, a blind policy, forecasts demand 

over a lead time, assuming no change in the demand over the lead time.  The second 

heuristic, a myopic policy, manages demand over a lead time and accounts for changes in 

demand over the lead time but not beyond. 

 

B. SCENARIO-BASED STOCHASTIC PROGRAMMING APPROACH  
The modeling framework we adopt for our research is a scenario-based, multi-

stage linear programming optimization model.  Stochastic models differ from 

deterministic models in that the selection of decision variables comes with imperfect 

knowledge of the future, as there are a number of possible futures.  As such, an important 

requirement of these models is non-anticipativity.  This means that at each stage, 

decisions have to be made without the luxury of knowing the exact value of the random 

variables in future stages.  We find applications of stochastic optimization models in 

numerous commercial operations studies.   

We find alternative approaches to scenario-based stochastic programming in 

Kelman, et al.  (1990), Stochastic Dynamic Programming and Hooper, et al.  (1991), 

Stochastic Optimal Control.  The advantage of scenario-based stochastic programming 

over these alternatives lays in its flexibility in the decision process and scenario 

definitions.  The disadvantage is the complexity and size of the programming models, 

which then require special solution algorithms.  A common algorithm for two-stage and 
 8



multi-stage stochastic programming is based on the L-shaped method (Benders 1962) 

which is applied to demand management.  This method is useful because it allows for 

scenario analysis within a large-scale problem.  In addition, the technique if used in a 

nested manner allows for multi-stage problems to be decomposed by both scenario and 

decision period.   

Alternative solution techniques for multi-stage stochastic programs include 

decomposition via augmented Lagrangian methods and direct solution by interior point 

methods (Carpenter et al.  1991; Lustig et al.  1994). In these techniques, the scenarios 

are generated prior to the solution procedure.  Alternative approaches, as found in 

Dantzig and Glynn (1990) and Higle and Sen (1991) sampling-based cutting plane 

methods and Gaivoronski (1988) stochastic quasi-gradient algorithms, are based on 

“internal” sampling where new scenarios are generated in each iteration of the algorithm.  

The texts of Infanger (1994), Higle and Sen (1996), and Birge and Louveaux (1997) 

provide more discussion on sampling-based methods and other modern developments in 

stochastic programming. 

 

C. CHANCE-CONSTRAINED PROGRAMMING 

Chance constrained programming is a type of mathematical programming which 

incorporates stochastic elements into the constraint functions (Birge 1997).  Charnes and 

Cooper (1959) introduced chance constraint programming as a means of handling 

randomness or uncertainty in data in an optimization setting.   

Chance-constrained programming specifies a confidence level α  for each 

constraint such that it can be violated only ( )1 α−  percent of the time.  The operator 

assigns to α  a value he deems to be an appropriate safety margin.   

In the chance-constrained approach, the focus is on the system’s ability to meet 

feasibility in an uncertain environment, in other words, system reliability.  This reliability 

is expressed as a minimum requirement on the probability, that satisfying the constraints.  

A chance constraint can be converted into a deterministic form in which a solution can be 
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found using standard linear programming formulation.  If the random variables follow a 

multivariate normal distribution, there are solution methods readily available.  (Charnes 

and Cooper 1959) 

The objective function in chance constrained programming may contain expected 

values.  However, in our application the objective function is deterministic.  This method 

has been used in such other stochastic programming problems as supply chain operation, 

portfolio selection and reservoir management (Hooper 1991).  The approach to model the 

random variables in a mathematical program is one of several approaches we have 

explored that is relevant and useful to the thesis topic. 
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III. THE OPTIMIZATION MODELS 
 

A. OPTiMiLSC STRUCTURE 

A military logistics system has a hierarchical structure, where logistics facilities at 

the higher echelon feed supplies to subordinate units (lower echelons) through the 

MLSC.  Figure 2 shows a basic two-level network model that depicts this hierarchy. 

 
 

Figure 2.   Basic Two-Level Logistic Network  

 

The single node at the top represents the logistics source, which supplies the 

logistic flow.  The destination nodes are combat units (battalions).  They constitute the 

demand nodes of the MLSC.  From now on, we refer to these demand nodes as Demand 

Points (DPs). 

We consider a two-level logistics system with multiple time periods that supports 

an operation that lasts through several phases.  To model the time-phased flow of 

logistics supply during a military operation, we expand the graph of the basic logistic 

network in Figure 2 to create a dynamic multiple-periods network model.  The nodes of 

OPTiMiLSC are created from the basic logistic network by duplicating its nodes for each 

time period of the planning horizon.  The edges of the OPTiMiLSC reflect the inter-nodal 

directions of the flow in the basic logistic network.  Figure 3 shows a two-level 

OPTiMiLSC in three periods.  
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The node at the first level represents the supplier (depot) node, while each node at 

the second level corresponds to a DP.  The time periods in this case are t = 1,..,3.   

OPTiMiLSC consists of two types of edges: horizontal edges and diagonal edges.  

A horizontal edge (labeled by H in Figure 3) represents flow that stays in a certain node 

from one time period to the next.  A diagonal edge (Labeled by D in Figure 3) represents 

a flow from the supplier to a DP across at least one time period.  In this model, we 

assume that each diagonal edge connects nodes in two consecutive time periods. 

With reference to Figure 3, U  denotes the supply to be deployed at the depot and 

nX  denotes the supply to be deployed at DP n at the beginning of the military operation.  

 denotes the supply sent from the depot to DP n for scenario s at the beginning of 

period t.  d  denotes the demand by DP n for scenario s at period t. 

, ,n sY t

, ,n s t

In general, the size and intensity of the operation determine the number of nodes, 

levels (two in our case) and edges in each period, while the length of the operation and 

the time resolution determine the number of time periods.   

 

 
 

Figure 3.   Two-Level Three Periods OPTiMiLSC After Kress (2002)  
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B. OPTiMiLSC CHARACTERISTICS 

 

1. The Flow 

The flow in the logistics network comprises two types: 

• Supply (e.g, ammunition) 

• Transportation vehicles that carry the supply (e.g, Trucks). 

From now on we use the terms supply and trucks to denote these two types of flow, 

respectively.  The two types of flow are not independent.  The flow of supply is 

contingent on the availability of the trucks which carry it.   

 

2. Time Periods 

A military operation is typically divided into time periods (days, hours) requiring 

different levels of supply.  The OPTiMiLSC we develop here encompasses this 

characteristic, reflecting the time-dependent dynamics of the logistics flow.  The base-

line period (t = 0) corresponds to the time period prior to the beginning of the military 

operation.  It represents the logistic situation of the forces at the staging area.  Time 

periods 1,…,T correspond to the active combat phase while (t = T + 1) corresponds to the 

end state of the MLSC after the operation is over.  The outflow from the end-state nodes 

represents operational requirements to insure the force retains logistic readiness at the end 

of the operation.   

The time resolution is a key parameter in OPTiMiLSC.  It is determined by the 

operational and logistic considerations that reflect typical time parameters of various 

processes such as movement, transportation and unloading.  The time resolution is 

usually determined according to the frequency of the logistics “pulses,” or the tempo of 

the logistics support chain.  A typical length of a time period at the operational level is 24 

hours (Kress 2002, p.  224). 

 

3. Means of Transportation 

We consider only ground transportation for the OPTiMiLSC.  We consider two 

types of trucks – regular and armored.  When the transportation route has been assessed 

to be relatively safe, that is, it has a low probability of being interdicted by enemy forces, 
 13



regular trucks are used.  On the other hand, if the transportation route is assessed to be of 

high risk, the armored trucks are used.  We assume that the armored trucks have only half 

the carrying capacity of the regular trucks.   

Neither the regular nor the armored trucks are assigned to specific battalion units 

and, unlike the flow of supply, they can move from lower echelon to higher echelon.  

Specifically, unloaded trucks travel back to the depot after completing the transportation 

mission.   

There are two transportation deployment methods – “pull” and “push.”  A “pull” 

method implies a relatively larger deployment of vehicles at the receiving end, the DPs, 

while a “push” method implies a larger deployment at the supplying end, the depot 

(Kress 2002, p.  219).  For OPTiMiLSC, we are only concerned with the “push” method.  

Figure 4 shows the truck routing network between the two levels. 

 

 
 

Figure 4.   Trucks Routing Network After Kress (2002) 
 

In Figure 4, V  denotes regular trucks and R AV  the armored trucks.  V  and 0R 0AV  

denote the initial deployment for the regular and the armored trucks, respectively, at the 

depot level.  V  and , ,
R

n s t , ,
A

n s tV  denote the number of regular trucks and armored trucks 

required to deliver the supply from the depot to DP n during period t for scenario s.  V R
t

+  
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and A
tV +  denote the excess flows of regular and armored trucks that stay in the depot 

from time period t to the next period t + 1.   

 

C. OPTiMiLSC ASSUMPTIONS 
To simplify the model, we make the following assumptions: 

• Transportation routes have no capacity constraints. 

• The duration of a transportation mission between the depot and a DP is 

one time period. 

• During each time period, one randomly selected route between the depot 

and a DP is interdicted.  The interdiction factor ( , ,n s tδ ) is equal to “1,” if 

the edge to DP n for scenario s at period t is interdicted; if it is not, this 

factor equals “0.” We assume that the selection of the interdicted edge is 

uniformly distributed among the DPs. 

• The demands in a given period t are normally distributed random variables 

( ,t t
n nN )µ σ  where and t

n
t
nµ σ  are the mean and standard deviation of the 

demand at DP n at time t.  The parameters of the distribution are 

dependent on the battle intensity at each time period t.   

• No transshipment of flow is allowed among DPs.  This assumption reflects 

common practice at the tactical logistics level.   

 

D. OPTiMiLSC SCENARIO TREE GENERATION  

The demands at a certain time period are associated with a scenario.  Each 

scenario induces a vector of demand values – one for each DP.  Therefore demands in our 

model are discrete random variables. 

Given the scenario history up to a particular time, the uncertainty in the next 

period is characterized by several possible demand scenarios.  To obtain discrete 

outcomes for the demand we use scenario tree generation (Nalan, Rustem, and Settergren 

2001).  In multistage models, at each time period new scenarios branch from the old, 

creating a scenario tree.  Using this scenario generating procedure we can preserve the 
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historical spatial correlation of demand.  We denote the number of scenario branches that 

emerge from any given scenario at time t-1 by k for all t, as shown in Figure 4.  

Therefore, the total number of scenarios at a period t is .   tk

A scenario is defined as a possible realization of the stochastic variables .  

Hence, the set of scenarios 

, ,n s td

{ }1,.....,s ∈ S  is in a one-to-one correspondence with the set of 

leaves of the scenario tree.  We associate scenario { }1,.....,s ∈ S  with the sth leaf of the 

scenario tree at period T.   

 The root node in the scenario tree represents the demand realization of “present 

period" and the nodes further down represent conditional realizations of demand values.  

The arcs linking the nodes represent various realizations of the uncertain variables.  

Ideally, a generated set of scenarios would represent the whole universe of possible 

outcomes of the random variable.  To approximate this ideal, scenarios include both 

optimistic and pessimistic projections. 

A scenario in the model is considered to be a sequence of periodic demand in 

which present demand distribution at period t is dependent on the actual realization of the 

demand at period (t-1) (Nalan, Rustem, and Settergren 2001).  
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Figure 5.   Demand Scenarios Tree Generation (For k = 12 and T = 3)  
 

1. Simulation and Probabilistic Approach 
To generate the event tree of demand, we use simulation and a probabilistic 

approach.  The generated demands are then fed as input for the solving of first stage 

optimization.  The basic data structure is the scenario tree node, which contains a cluster 

of various generated demands scenarios.  The nodes of the tree correspond to the random 

variable, , which correspond to the possible realizations of demand at DP n during 

period t (For t ).  These sets of possible realizations at period t are, in general, 

dependent on the preceding observations of 

, ,n s td

1≥

, , 1n s td − .  The transitions in demands between 

successive time periods are as discussed below.   
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2. Demand Categories 

Three categories of demand levels are being considered and they are “High,” 

“Nominal” and “Low.” A realized demand is considered to be “Low” if it is lower than 

the mean value by 10%.  It is considered to be “Nominal” if it is within a deviation of 

10% from the mean.  It is considered to be “High” if it is higher than the mean value by 

10%.   

Formally, at period t-1, 

• 1
, , 1 0.9 t

n s t nd µ −
− < , Implies Low (L) demand. 

• 1
, , 10.9 1.1t

n n s td 1t
nµ µ−

−≤ ≤ − , Implies Nominal (N) demand. 

• 1
, , 1 1.1 t

n s t nd µ −
− > , Implies High (H) demand. 

 

3. Transition Probabilities 
The nodes in the scenario tree are associated with the sequential transition 

process, so that each node at period t corresponds to a demand scenario, which is 

dependent on the demand scenario in the previous period.  That mean the transitions in 

demands between successive time periods are Markovian.  We use the following 

transition matrix:   

      L N       H 

0.1 0.6 0.3
0.05 0.9 0.05
0.3 0.6 0.1

L
N
H

 
 
 
  

 

 
The above transition matrix reads as follows:  

LLP = 0.1 - Probability that the demand in period t is “Low,” 

given that the demand at previous period (t-1) is 

“Low.” 

LNP = 0.6 - Probability that the demand in period t is 

“Nominal,” given that the demand at previous 

period (t-1) is “Low.” 
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LHP = 0.3 - Probability that the demand in period t is “High,” 

given that the demand at previous period (t-1) is 

“Low.” 

 

4. Scenario Generation Algorithm 

To obtain the demand realizations, we use an algorithm outlined in the following 

steps: 

Step 1:  (Initialization) Create a root node, with k scenarios.  

Initialize all the scenarios with the desired starting point 

(“Present” demand).  That is, draw for each DP n, the 

demand value, , from , ,1n sd ( )1 ,I I
n nF N µ σ∼  and obtain a 

realization .  Repeat the drawing k times.   ,1,nd 1

Step 2:  (Transition) For a given demand realization at each one 

of the k newly branched nodes in the scenario tree 

, check if the demand is “Low,” “Nominal” or 

“High.” At each of these nodes of the scenario tree, 

conduct a random number draw to obtain the transition 

probability for the next stage of the scenario-generation 

(simulation) process.   

, , 1n s td −

Step 3:  (Simulation) At each node of scenario tree, based on the 

transition probabilities matrix generated in Step 2, draw 

the next demand value from ( )
L or N or H

,t t
t n nF N µ σ∼

, ,n s td

 and 

obtain a demand realization .  Repeat the drawing 

k times. 

Step 4:  (Termination) Repeat Step 2 and 3.  Terminate the 

algorithm when we have reached the specified time 

period T. 
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E. OPTiMiLSC OPTIMIZATION MODELS  

OPTiMiLSC consists of two stages.  First, we solve the logistic supply problem to 

determine the supply to be deployed at the depot and at the DPs before the start of the 

operation.  In this stage we also determine the required periodic supply to the depot and 

from the depot to each of the DPs such that the demands (based on all the scenarios 

generated) are satisfied.  The results are then fed as input into the second stage of the 

optimization, in which we determine the optimal initial deployment of the transportation 

trucks, both regular and armored.   

We formulate the models as follows: 

 

Sets and Indices 

T   Set of time periods, t T{1,... }∈  

N  Set of battalion nodes in the network, Nn ∈  

S  Set of scenarios, s S∈  

 

1. First Stage Optimization 

 

a. Data 

, ,n s td  Realized demand by DP n for scenario s at period t. 

 
U
tC  Cost of unit deployment of supply at the depot at the beginning of 

period t. 
X
nC  Cost of unit deployment at DP n at the beginning of the operation. 

 

b.   Variables 

tU  The supply to be delivered at depot at beginning of period t. 

 

, ,n s tY  The supply from the depot to DP n for scenario s at the beginning 

of period t. 
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nX  The supply to be deployed at DP n before 

the operation. 

 

c. Objective Function 

Min ( ) ( )U X
t t n n

t n
C U C X∗ + ∗∑∑   (1) 

 

d. Constraints 

, ,1n n sX d≥   n, , 1s t∀ =  (2) 

1

, , ' , ,
' 1 ' 1

t t

n n s t n
t t

s tX Y d
−

= =

+ ≥∑ ∑   n, , 1s t∀ >  (3) 

1 1

' ,
' 1 ' 1

t t

t n
t t n

U Y
− −

= =

≥∑ ∑∑ , 's t  s, t∀  (4) 

 

e.   Description of the Formulation 

The objective function (1) expresses the cost of unit deployment at DP n at 

the beginning of the operation and the cost of unit deployment of supply at the depot at 

the beginning of period t.  With C  for 21
U
t C− < U

t t T≤ ≤ , supply is not sent before it is 

required.  Constraint (2) requires that the supply to node n at the beginning of the 

operation must be greater or equal to the realized demand at period 1 for each scenario s.  

Constraint (3) ensures that for each period t, the total accumulated supply received by DP 

n at beginning of period t is not less than the total accumulated demand up to period t, for 

each scenario s.  This constraint ensures that the demand for each DP is satisfied and any 

excess supply would be brought forward and consumed in subsequent periods.  

Constraint (4) ensures that the total accumulated supply to the depot level at beginning of 

period t is not less than the total accumulated supply to all the DPs for each scenario s. 
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2. Second Stage Optimization 

 

a. Data 

, ,n s tY  The supply from depot to DP n for scenario s at the beginning of 

period t, which equals the output from the first stage of 

optimization. 

, ,n s tδ  As noted above, the interdiction factor ( , ,n s tδ ) is equal to “1,” if the 

route from the depot to DP n for scenario s at period t is interdicted 

and “0,” otherwise.  We assume that the selection of the possible 

interdiction route is uniformly distributed among the DPs, [1, N].  

If the randomly drawn number is equal to n, then , , 1n s tδ = .  We 

also assume that at each time period, there is only one random 

possible interdiction to the routes from the sources node to any of 

the destination nodes ( , , 1n s t
n

δ =∑ ). 

RC  Cost of a regular truck. 

 
AC  Cost of an armored truck. 

 

RCap  Capacity of a regular truck. 

 

ACap  Capacity of an armored truck. 

 

b. Variables  
0RV  Initial total number of regular trucks to be deployed at the depot 

before the operation. 

,
R

s tV +  Total number of excess regular trucks for scenario s at the end of 

period t. 
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, ,
R

n s tV  Number of regular trucks required for DP n for scenario s at period 

t. 
0AV  Initial total number of armored trucks to be deployed at the depot 

before the operation. 

,
A

s tV +  Total number of excess armored trucks for scenario s at the end of 

period t. 

, ,
A

n s tV  Number of armored trucks required for DP n for scenario s at 

period t. 

 

c. Objective Function 
0 0R * *R AAMin C V C V+    (5) 

 

d. Constraints 
0

, , , 0R R R
n s t s t

n
V V V +− −∑ = 1 , =∀ ts   (6) 

, 1 , , , 0R R R
s t n s t s t

n
V V V+ +

− − −∑ = 2 , =∀ ts   (7) 

, 1 , , 2 , , , 0R R R R
s t n s t n s t s t

n n
V V V V+ +

− −+ − −∑ ∑ =  , 2,...., 1s t T∀ = −

=

  (8) 

0
, , 2 , , 1 , 1 0R R R R

n s T n s T s T
n n

V V V V +
− − −− − −∑ ∑  Tts =∀ ,   (9) 

0
, , , 0A A A

n s t s t
n

V V V +− −∑ = 1 , =∀ ts   (10) 

, 1 , , , 0A A A
s t n s t s t

n
V V V+ +

− − −∑ = 2 , =∀ ts   (11) 

, 1 , , 1 , , , 0A A A A
s t n s t n s t s t

n n
V V V V+ +

− −+ − −∑ ∑ =  2, >∀ ts   (12) 

0
, , 2 , , 1 , 1 0A A A A

n s T n s T s T
n n

V V V V +
− − −− − −∑ ∑ =  Tts =∀ ,   (13) 

( ) , ,, , , , , , , ,1 R A
n s tn s t n s t n s t n s tV RCap V ACap Yδ δ− ∗ ∗ + ∗ ∗ ≥      , ,n s t∀   (14) 
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e.   Description of the Formulation 

The objective function (5) for the second-stage optimization is the 

minimization of the total number of trucks, both the regular and the armored types, to be 

deployed at the depot level before the operation.  Constraints (6) to (8) ensure that for 

each scenario s, the total inflow and outflow of normal trucks at all nodes and periods are 

balanced.  Constraint (13) ensures that the total number of trucks, both regular and 

armored, is greater or equal to the number required to bring supplies  from the depot to 

each battalion unit n.   
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IV. DESIGN OF EXPERIMENT AND RESULTS 
 

A. OVERVIEW OF OPTiMiLSC ANALYSIS 

The analysis procedure comprises three stages: 

• Sampling:  We generate a sample set of demand scenarios ( d ) with 

respect to the number of draws (k) at each branch of the scenario tree as 

input to the optimization models.   

, ,n s t

 

• Optimization:  We solve the optimization models and obtain a 

deployment for the supply and the trucks that meets the demands at the 

depot and DPs. 

 

• Test of Robustness:  We generate a sample set of m number of 

independent demand scenarios.  We check for feasibility and obtain an 

estimate for the probability that a randomly selected demand scenario is 

satisfied.  Next, we conduct a statistical analysis to determine the number 

of draws (k) at each branch of the scenario tree sufficient to achieve the 

estimated responsiveness probability. 

 

1. Generating the Sample Set for Optimization 

a. Demand Distribution 
The demand for each combat unit at each period in a certain demand 

scenario is a normally distributed random variable with mean of t
nµ  and standard 

deviation of t
nσ .  Each random variable corresponds to the battle intensity (Low, Normal 

or High) at each period.  The demand distribution can be estimated based on an 

operational plan, past experience and statistical data.  In this research, we consider five 

DPs and three time periods.  The following table presents the distributions data: 
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 Period 1 Period 2 Period 3 

nDP  ( ),I I
n nN µ σ  ( )II

n
II

nN σµ ,  ( )III
n

III

nN σµ ,  

1DP  N(100, 10) N(90, 10) N(80, 10) 

2DP  N(90, 10) N(85, 10) N(75, 10) 

3DP  N(100, 10) N(90, 10) N(80, 10) 

4DP  N(90, 10) N(85, 10) N(75, 10) 

5DP  N(110, 10) N(100, 10) N(95, 10) 

 

Table 1.   Demand Data for Combat Units at each Period  
 

b. Cost Function 
The operational plans of the combat units drive the cost parameters.  In 

this research, we assume the “supply” deployment cost at the depot level is relatively 

lower than that at the DPs (C ).  Specifically for this research, we assume the 

following: 

U
t C< X

n

n

A

100  t 1, 2,3 

120  n 1,..., .

U
t
X
n

C for

C for

= =

= =
 

Because we only have three time periods and travel times will not permit 

us using a truck more than once, can be the same for all t. The deployment cost for an 

armored truck is twice the cost of a regular truck ( ).  Specifically for this 

research, we assume the following: 

U
tC

RC C<

100

200 

R

A

C

C

=

=  
 

c.   Generating the Demand Scenarios 
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We use the scenario tree as shown and discussed in Chapter III to generate 

the demand scenarios.  One critical factor in the scenario generation process is the 

number of draws (k) at each branch of the scenario tree.  The number of draws 



determines the total number of demand scenarios in the reference set of the optimization 

problem.   

 

2. Optimization 
At the optimization stage, we utilize a two-step optimization approach.  

Reiterating the model formulation outlined in Chapter III, we first determine the initial 

supply deployment and the required periodic supply that meets all demands at the DPs, 

based on all the scenarios generated.  The results are then fed as inputs into the second 

optimization stage.  The outcomes generated in the second stage provide the optimal 

deployment for the supply trucks, regular and armored, prior to the operation.   

The OPTiMiLSC is coded in General Algebraic Modeling System (GAMS) and 

solved using the Optimization Solutions Library (OSL) solver (Brooke, Kendrick, 

Meeraus, Raman 1998).  The size of an OPTiMiLSC instance depends on k, the number 

of draws at each branch of the scenario tree.  First stage optimization problem (Supply) 

consists of about 150 constraints and 250 variables when k = 2 and 60,000 constraints 

and 80,000 variables when k = 15.  Second stage optimization problem (Trucks) consists 

of about 200 constraints and 300 variables when k = 2 and 80,000 constraints and 

100,000 variables when k = 15.  The run-time for both problems takes as little as one 

minute, for the smaller scale problem, to approximately 45 minutes for the larger scale 

problem.  Of the total run-time taken, the second stage optimization problem constitutes 

60% of the time.    

 

3. Test of Robustness  

In order to evaluate the robustness of the planned logistic deployment one needs 

to define appropriate measures of effectiveness (MOE).  These measures must be 

quantifiable, so that assessments can be objectively made and tracked.  The MOE used in 

our analysis is the probability that a randomly selected demand scenario is satisfied.  We 

call this measure the “responsiveness probability.”  
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The following table outlines the steps of this process:  

 

(a) Fix the optimal deployment plan obtained from the reference set of 

demand scenarios. 

(b) Generate (simulate) a sample of m independent demand scenarios.  For 

each scenario compute the respective deployment requirements for the 

depot and the DPs.   

(c) For each sampled scenario, check if it is “feasible” or “infeasible.” A 

scenario is said to be “logistically feasible,” or in short, “feasible,” if the 

demand of at least 80% of the DPs (in our example, four DPs out of five) 

and the initial deployment for both the regular and armored trucks at the 

depot are satisfied.  Otherwise, a demand scenario is “infeasible.” 

(d) Compute the estimate   for the responsiveness probability.  We estimate 

the responsiveness probability by computing the fraction of the feasible 

ones among the m number of independent demand scenarios.   

P̂

  " "ˆ
  " " &  " "
Number of feasible scenariosP

Number of feasible infeasible scenarios
=  

 
Table 2.   Steps for Robustness Check 

 

4. Statistical Analysis   

The next step for the experiment is the statistical analysis.  The statistical test is 

based on the Binomial probability distribution.  It describes the probability of obtaining a 

given number of successes or “feasible” outcomes in a fixed number of independent 

trials.  The sample consists of the outcomes of m independent trials.  Each outcome is 

either “feasible” with probability p, or “infeasible,” with probability .  We use 

the exact binomial test to establish the test statistic.  For a 10% test level, using a sample 

size m = 60 and probability of “feasible” set as p = 0.90, the critical value (t) is 57.  We 

reject the null hypothesis if the number of observed “feasible” outcomes (T) is greater 

1q = − p
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than t = 57.  When we reject the null hypothesis for a particular number of randomly 

generated draws (k) at each branch of the scenario tree, we can conclude that the optimal 

deployment corresponding to the draws k is able to satisfy the requirement of having the 

responsiveness probability greater than 0.90.   

Two statistical issues relevant to OPTiMiLSC are discussed.  They are (a) sample 

size and (b) types of hypothesis testing. 

 

a. Sample Size 
The sample size is crucial to any experimental design as it influences 

whether or not a false null hypothesis will be rejected.  A type II error is more likely to be 

committed if the sample size is too small.  When choosing a sample size for any 

experimental design, we need to consider the significance level (α ), the Type II error 

rate ( β ) we wish to achieve and the value ( 'p ) we wish to detect.  For the purpose of our 

analysis, the Type II error rate is set to 20%β = .  The power of the test is referred to as 

1 80%β− = .  In other words, the study has enough power to detect the smallest 

worthwhile effects 80% of the time. 

Table 3 shows the required sample size correspond to the value to detect 

( 'p ), such that  for the significance level ( )' 20%pβ = 0.05α =  and 0.10α =

'

, as 

provided by the S-Plus statistical package (Crawley  2002).  The lower the p  value, the 

more stringent the conditions will be for the test.  For example, assume we want to 

conduct a hypothesis test in which  

0

1

: 0.9
: 0.90.

H p
H p

0≤
>

 

 

For 0.10α =

0.05

 and with , we would require a sample size of .  For ' 0.96p = 60m =

α =  and with , we would require a sample size of m .  This 

illustrates that the required sample size increases as the conditions for the test becomes 

more stringent.  There is a trade-off between the precision and the sample size we can 

'p = 0.92 1200=
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generate for our experiment.  For this research, we use the sample size of m = 60, when 

 and ' 0.96p = 0.10α = .  

p

Plot of Detection Value Vs Sample Size (90% CI)
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Value to Detect 
( ' ) 

Sample Size  
(m) 

Value to Detect 
( 'p ) 

Sample Size  
(m) 

0.92 950 0.92 1200 

0.93 350 0.93 500 

0.94 180 0.94 250 

0.95 100 0.95 150 

0.96 60 0.96 100 

0.97 40 0.97 60 

0.98 20 0.98 30 
 

Table 3.   Sample Size for 20%β =  

 

 

Plot of Detection Value Vs Sample Size (95% CI)
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Figure 6.   Plots of Detection Value Versus Sample Size for 20%β =  
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b. Hypothesis Tests (Upper-Tailed or Lower-Tailed) 

The alternative hypotheses represent the condition we are investigating.  

For this research, we want to know whether the optimal deployment we have obtained, 

based on a number of draws (k) at each branch of the scenario tree, is sufficient  to 

achieve  a responsiveness probability greater than 0.90. 

In the statistical test, we control the probability of a Type I error by 

specifying its value (the significance level).  There are two possible errors: concluding 

that a deployment plan corresponding to the number of draws (k) is sufficient when it is 

not, and concluding that the optimal deployment corresponding to the number of draws 

(k) is not sufficient when it is.  Suppose we believe that the risk of underestimating the 

optimal deployment corresponding to a number of draws (k) is higher than the potential 

loss of not having the model.  Then the error we wish to avoid is the erroneous 

conclusion that the optimal deployment based on a particular number of draws is 

sufficient.  We define this as Type I error.  As the result, the burden of proof is placed on 

the system to deliver sufficient statistical evidence that the responsiveness probability is 

greater than 0.90.   

For this research, since we are developing a new model to be used in 

military logistic planning which is mission-critical, we would want the risk of an 

incorrect conclusion to be small enough that we can feel confident we are not observing a 

freak random event; rather, we are seeing strong evidence against the null hypothesis.  It 

is important that we have sufficient statistical evidence to infer that the optimal 

deployment corresponding to the number of draws (k) is sufficient to achieve a 

responsiveness probability greater than 0.90.  Thus the upper-tailed test is more 

appropriate for our analysis.  The null and alternative hypotheses are formulated as 

follows: 

0

1

: 0.9
: 0.9

H p
H p

0
0

≤
>  

 

 

 31



B.   IMPLEMENTATION AND RESULTS  

The situation we consider here is a single depot (e.g, a theater level supply unit), 

which provides logistic support to several DPs.  We simulate, and then optimize, a two-

level, three-time period logistics system, which is subject to possible interdiction.   

 

1. Optimal Deployment 

Solving the optimization problem generates the optimal initial deployment for two 

types of resources: supply in the depot and in the DPs, and trucks at the depot.  The 

optimization is performed with respect to a set of k  randomly generated scenarios, 

where t is the number of time periods in the planning horizon.  Recall that k is the 

expansion rate of the scenario generation process (the number of draws at each branch of 

the scenario tree).  In our numerical analysis k ranges between 2 and 15.  The following 

table presents an optimal deployment for a sample of scenarios when k = 12. 

t

   
First Stage Optimization 

Optimal Deployment of Supply at the Depot (U ) *t

0*U  916 

Optimal Deployment of Supply at the DPs ( *
nX ) 

*
1X  ( ) 1DP 118 
*
2X  ( ) 2DP 107 
*
3X  ( ) 3DP 120 
*
4X  ( ) 5DP 103 
*
5X  ( ) 5DP 126 

Second Stage Optimization 

Optimal Deployment of Trucks at the Depot (V ) 0 *

0*RV   74 
0*AV  42 

 

Table 4.   Optimal Deployment of Supply and Trucks (For k = 12) 
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The optimal deployment plan in Table 4 shows that in the theater of operations 

the depot requires an initial supply of 916 units.  The five DPs require an initial supply 

ranging from 103 units to 126 units.  The total numbers of trucks to be deployed at the 

depot are 74 regular trucks and 42 armored trucks.   

 
2. Robustness Test 
In order to evaluate the robustness of the optimal deployment we generate sixty 

independent new demand scenarios and for each scenario we compute the respective 

deployment requirement for the depot and the DPs.  We use  to denote the demand at 

depot for a random selection m of demand scenarios.  We use 

U
md

nDP

VR
m

md  to denote the demand 

at  for a random selection m of demand scenarios.  Then d  and d denote the 

required number of regular and armored trucks, respectively, for a random selection m of 

demand scenarios.   

nDP VA
m

Each newly drawn demand scenario m is checked for feasibility with respect to 

the optimal deployment obtained for each k ranging between two and fifteen.  Table 5, 

column (OpD), shows the sample results of the robustness test for the optimal 

deployment obtained when k = 12.  Columns (d1) to (d60) are the required demands with 

respect to each of the demand scenarios m.  If the optimal deployment obtained can 

satisfy the demand, (e.g, U ), it is measured as “1.” Otherwise, it is considered 

equal to“0.”   

0* U
md≥

A randomly drawn scenario is said to be “feasible” if  

• The demands for the depot are met (U ),  0* U
md≥

• The demand for 80% of the DPs (four out of five DPs) are met 

( * nDP
n mX d≥ ) and  

• The demands for both regular and armored trucks are met (V and 

).   

0 *R VR
md≥

0 *A VA
mV d≥
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Otherwise the scenario is said to be “infeasible.” Table 5 presents the results of 

the robustness test with respect to the example shown in Table 4.  Out of 60 randomly 

generated scenarios 59 were feasible, which gives a responsiveness probability of 0.98.   



 

Optimal 
Deployment 

Sixty Independent Demand Scenarios 

k = 12  m1 m2  m58 m59 m60 

 (OpD)  (d1)  (d2)   (d58)  (d59)  (d60)  

0*U  916 U
md  828 1 845 1 … 881 1 804 1 804 1 

*
1X  118 1DP

md  95 1 107 1 … 100 1 112 1 119 0 

*
2X  107 2DP

md  100 1 88 1 … 86 1 104 1 117 0 

*
3X  120 3DP

md  115 1 93 1 … 103 1 101 1 111 1 

*
4X  103 4DP

md  78 1 85 1 … 96 1 86 1 90 1 

*
5X  126 5DP

md  121 1 99 1 … 119 1 92 1 108 1 

0*RV  74 VR
md  67 1 69 1 … 73 1 63 1 64 1 

0*AV  42 VA
md  32 1 32 1 … 30 1 35 1 34 1 

   Feasible Feasible  Feasible Feasible Infeasible 
 

Table 5.   Sample Results for the Robustness Test (For k =12) 

 

3. Statistical Analysis 
In this research, we want to know whether there is sufficient statistical evidence to 

infer that the number of draws at each branch of the scenario tree (k) is sufficient to 

achieve a responsiveness probability greater than 0.90.  At each robustness test for each 

number of k from two to fifteen, there is a hypothesis test.  Table 6 presents the results of 

the hypothesis tests.  There is a positive correlation between the number of observed 

“feasible” scenarios and the number of draws, as observed in Figure 8. 
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Number of 

Draws 
( ) k

Number of 
Scenarios 

( ) Tk

Number of 
Feasible 

Scenarios 

Responsiveness 
Probability 

( ) P̂

Hypothesis 
Test 

2 8 23 0.38 Not Reject  0H

3 27 24 0.40 Not Reject  0H

4 64 27 0.45 Not Reject  0H

5 125 30 0.50 Not Reject  0H

6 216 50 0.83 Not Reject  0H

7 343 53 0.88 Not Reject  0H

8 512 54 0.90 Not Reject  0H

9 729 58 0.97 Reject  0H

10 1000 57 0.95 Not Reject  0H

11 1331 58 0.97 Reject  0H

12 1728 59 0.98 Reject  0H

13 2197 58 0.97 Reject  0H

14 2744 59 0.98 Reject  0H

15 3375 59 0.98 Reject  0H

 

Table 6.   Results of Hypothesis Test 
 

We note a positive relationship between the number of feasible scenarios and the 

number of draws (k) at each branch of the scenario tree as shown in Figure 7.  The 

optimal deployment plan is more robust with a wider coverage of scenarios.  For 

example, when k = 2, eight scenarios are generated whereas when k = 15, total of 3,375 

scenarios are generated.  We can expect that the greater the number of branches for each 

scenario tree, the more robust the solution.   
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Figure 7.   Plot of Number of Feasible Scenarios Versus Number of Draws (k) 

 

The critical test statistic for this experiment is t = 57 using a significance level of 

10%.  This means that we reject the null hypothesis, , for values of t greater than 57.  

This translates to a required responsiveness probability of 0.90 or greater.  We find that 

for values of k greater or equal than 11, we consistently reject .  This implies that to 

obtain a deployment plan with at least a 90% responsiveness probability, we need, in our 

case, to determine the optimal deployment on a model in which k is at least 11.   

0H

0H

 

C. EXPLORATORY ANALYSIS  

 

1. Comparison with Deterministic Approaches 

The deterministic optimization approach assumes that future demands are known 

with certainty.  We gain interesting insights when we compare the OPTiMiLSC to two 

deterministic approaches.   
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In the first approach we use the mean values of the demands to determine the 

optimal deployment plan.  In the second approach we use the 90th percentile of the 

demand distribution.  Table 7 compares the optimal deployment plans using the three 

approaches, where the OPTiMiLSC refers to the results of the k = 12 case presented in 

Table 2.   

 

 OPTiMiLSC        
(k=12) 

Using  
Mean Value  

Using  
90th Percentile 

Optimal Deployment of Supply at Depot Level (U ) *t

0*U  916 855 1094 

Optimal Deployment of Supply at DPs ( *
nX ) 

*
1X  ( ) 1DP 118 100 128 
*
2X  ( ) 2DP 107 90 115 
*
3X  ( ) 3DP 120 100 128 
*
4X  ( ) 4DP 103 90 115 
*
5X  ( ) 5DP 126 110 141 

Total Supply 1490 1345 1721 

Optimal Deployment of Trucks at Depot Level (V ) 0 *

0*RV   74 69 88 
0*AV  42 34 44 

 

Table 7.   Optimal Deployment for the OPTiMiLSC and the Two Deterministic Approaches 

 

Table 8 gives a summary of the results of responsiveness probability and the 

percentage difference in supply and trucks among the three approaches.  We see that both 

the OPTiMiLSC and the deterministic approach using the 90th percentiles give the same 

responsiveness probability (0.98).  The deterministic approach using mean values gives a 

0.10 probability of success, which is not acceptable for any military operation. 
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 OPTiMiLSC 
Using  

Mean Value  
Using  

90th Percentile 

Probability of 
Success  0.98 0.10 0.98 

Percentage Difference 

- Supply - -9.73% 15.50% 

- Regular Truck - -6.76% 18.92% 

- Armored Truck - -19.05 4.76% 

 

Table 8.   Comparison of Results for OPTiMiLSC and Two Deterministic Approaches 

 

In terms of the requirements for supply and trucks, we observe that the 

deterministic approach using the 90th percentile requires more as compared to the 

OPTiMiLSC.   

We infer that the use of deterministic optimization approaches produces results 

that are misleading and unreliable.  The use of the 90th percentile approach seems to yield 

an excess of supply in most cases while the mean value approach provides inadequate 

responsiveness.   

 

2. Change in Battle Intensity 
This research considers two cases of demand variation such that the demand 

values are 20% above and below the mean demand value obtained.  This is part of the 

sensitivity analysis, which reflects an expected change in the battle intensity from the 

normal operational plan.  Table 9 shows the results of the sensitivity analysis with respect 

to the three levels of battle intensity – Low (decrease demand by 20%), Normal, and 

High (increase demand by 20%). 
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 Demand Low Demand Normal Demand High 

Number of 
Draws       

(K) 

Number of 
Feasible 

Observations  

Hypothesis 
Test 

Number of 
Feasible 

Observations 

Hypothesis 
Test 

Number of 
Feasible 

Observations  

Hypothesis 
Test 

2 23 
Not Reject 

 0H 23 
Not Reject 

 0H 22 
Not Reject 

 0H

3 31 
Not Reject 

 0H 24 
Not Reject 

 0H 32 
Not Reject 

 0H

4 27 
Not Reject 

 0H 27 
Not Reject 

 0H 32 
Not Reject 

 0H

5 33 
Not Reject 

 0H 30 
Not Reject 

 0H 33 
Not Reject 

 0H

6 51 
Not Reject 

 0H 50 
Not Reject 

 0H 50 
Not Reject 

 0H

7 51 
Not Reject 

 0H 53 
Not Reject 

 0H 52 
Not Reject 

 0H

8 54 
Not Reject 

 0H 54 
Not Reject 

 0H 54 
Not Reject 

 0H

9 57 
Not Reject 

 0H 58 
Reject    

 0H 56 
Not Reject 

 0H

10 53 
Not Reject 

 0H 57 
Not Reject 

 0H 55 
Not Reject 

 0H

11 57 
Not Reject 

 0H 58 
Reject    

 0H 57 
Not Reject 

 0H

12 59 
Reject    

 0H 59 
Reject    

 0H 56 
Not Reject 

 0H

13 58 
Reject    

 0H 58 
Reject    

 0H 56 
Not Reject 

 0H

14 59 
Reject    

 0H 59 
Reject    

 0H 58 
Reject     

 0H

15 58 
Reject    

 0H 59 
Reject    

 0H 59 
Reject     

 0H

 
Table 9.   Results of Hypothesis Test for Three Different Level of Demands  

(Normal, Low and High) 
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Figure 8 shows the relationship between the number of feasible scenarios and the 

number of draws for the three levels of battle intensity.  From the plot, we see that all 

three levels of battle intensity give similar upward trends.  We infer that the probability of 

success is not sensitive to variations in the mean value of demand – that is, the 

OPTiMiLSC is not sensitive to overall changes in demand profiles.   
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Figure 8.   Plot of Number of Feasible Scenarios Versus Number of Draws (k) for Three 
Different Level of Demands (Normal, Low and High) 
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V. CONCLUSIONS AND RECOMMENDATIONS 
 

A. CONCLUSIONS 

This research presents a general model for determining a two-level optimal 

deployment of transportation assets and supplies in a theater of operation.  The proposed 

model, called the optimal military logistics supply chain model (OPTiMiLSC),  takes into 

consideration  the imbedded uncertainties in military operations.  This research explores 

the control of a military supply system in a dynamic setting, where demand is random, 

non-stationary and scenario dependent. 

OPTiMiLSC is a two-stage scenario-based multi-period optimization problem.  It 

can help military logistics planners determine how much supply and transport to deploy 

at each logistic node or DP before the start of the operation.  This type of model can 

provide insights different from a purely deterministic optimization model.  By explicitly 

considering a number of demand scenarios, the stochastic model can determine a 

deployment plan that responds to demand requirements with a certain and prespecified 

confidence level (probability).  Thus the modeling framework of OPTiMiLSC may 

enable military planners to establish a robust plan for a logistics force structure at the 

theater of operations.   

This model may be used as a first step or a building block in a more general 

planning framework for operational logistics.  The methodology is new and novel in the 

sense that it combines optimization, simulation and statistical analysis in a simple and 

easily applicable way.  We embed a relatively simple optimization scheme within a 

scenario-based simulation setting and obtain pertinent statistics for analysis.  The demand 

scenarios are generated based on operational plans and their transitions between 

successive time periods are assumed to be Markovian.  The model also reflects the 

malevolent environment in which military supply chains operate.  Possible threats to 

supply lines are explicitly represented by an “interdiction” variable.   
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B. USE OF MODEL RESULTS  
OPTiMiLSC is a stochastic planning and simulation model.  It helps to provide an 

estimate of the risks involved in the MLSC.  It also determines the appropriate level of 

supply to enable the military units to hedge against future demand scenarios.  The most 

attractive feature of the OPTiMiLSC developed in this research is the flexibility 

introduced in the operational logistic planning procedure.   

We have to bear in mind that the OPTiMiLSC is not a prescriptive model.  It 

serves more as a guide to translating demand profiles and operational parameters to 

logistic design requirements.  Care must be taken not to overstate the benefits of the 

stochastic optimization model, since it considers only a moderate number of scenarios, 

and these are constructed from a rather small data set.  We have also made some 

assumptions in order to simplify the OPTiMiLSC.  We assume that there are no capacity 

constraints at either the logistic nodes (Depot and DPs) or on the transportation routes.  

We also assume that the logistic nodes are well protected and are robust in protecting 

against any possible enemy attack.  Finally, we assume that there is a guaranteed 

transportation time between the depot and a DP.   

Therefore the contribution of such a modeling approach can be evaluated only 

with time, after it is accepted by commanders and logistics planners and proves capable 

of identifying worthy alternatives that might otherwise have been overlooked.  In the 

typical real world, the OPTiMiLSC probably comprises  many times more variables than 

those outlined in this research, together with a greater number of constraints.  To obtain 

realistic results, one should incorporate into the model multiple commodity demands, 

more logistic levels, different means of transportation and capacity constraints for logistic 

nodes and edges.   

 

C. RECOMMENDATIONS FOR FUTURE RESEARCH 
The focus of this research was to develop a modeling framework for analyzing 

concepts used in military logistic operation, and an initial model was developed.  This 

initial model may be a first  step in what should become a continuing study of military 

operational logistics.  More detailed analysis and model formulation will assist in the 
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ongoing development of new MLSC concepts.  The following are just a few directions in 

which this work may be taken in future research: 

 

1. Extensions and Modifications 

The basic OPTiMiLSC that has been presented so far may be extended and 

modified in several directions. 

 

a. Multiple Commodities 

The single supply (ammunition) in the current model can be extended to 

several types of supply (including, for example, rations and spare-parts) that share a 

common fleet of trucks.  The basic structure of the OPTiMiLSC will not be changed but 

the size of the problem may be increased considerably. 

 

b.   Multiple Level s 

The current model represents a logistics system that consists of only two 

levels.  The model can be expanded to represent more logistic levels, including the 

strategic level.   

 

c. Multiple Interdictions 

We consider a single possible flow interdiction in each period.  Given the 

current interdiction modeling, it is easy to expand the model to take into account multiple 

random flow interdictions at each period. 

 

d. Different Supply Methods 

The current model considers only the “push” method for the employment 

of the trucks.  This means that the trucks belong to the depot, which allocates them 

among the transportation missions.  Another (more realistic) transport deployment would 

combine “push” and “pull” methods.  In this case nX  can be viewed as trucks that are 

initially loaded with the supply that is needed by the DPs in the first few periods and 

then, after being unloaded, are used to “pull” supply from the depot to the DPs. 
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e. Different Means of Transportations 

The current model assumes only two types of trucks are used and it does 

not take into account the possibility of variable delivery times.  Other modes of 

transportation such as  air transportation may also be incorporated into the model in order 

to add more realism to it. 

 

f. Capacity Constraints for Logistic Nodes and Edges 
The current model assumes that there are no capacity constraints, neither 

at  the logistic nodes (the depot and the DPs)  nor at the edges.  Capacity constraints for 

both logistic nodes and edges should be considered in the model in order to add more 

realism to it.  However, unlike the capacity of a logistic node, which is a static attribute 

that is measured in terms of storage area or volume, edge capacity is a dynamic attribute 

that represents the rate at which the logistic flow can move through that edge.  The 

capacity of an edge depends on the type, width and topography of the corresponding 

LOC, and on the number, capacity and speed of the means of transportation that are 

assigned to that edge.  The capacity of an edge is measured by the maximum possible 

throughput of flow on that edge.   

 

2. Using Actual Field Data 
The thrust of the research is modeling and not analysis.  Therefore the data set is 

invented, not drawn from actual field data.  A real world application will require an effort 

to generate realistic scenarios and estimate the probability distributions of a more 

complex set of demand vectors.   
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