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Full Viscous Modeling in Generalized Coordinates
of Heat Conducting Flows in Rotating Systems

Upender K. Kaul* and Raymond P. Shreevet
U.S. Naval Postgraduate School, Monterey, California 94303

A computational and analytical study has been carried out that assesses viscous formulations used
currently in the state-of-the-art and widely used incompressible viscous flow solution methodologies in
generalized curvilinear coordinates. These methodologies use a powerful and simple approximate factor-
ization delta scheme. The conventional thin (viscous) layer form used for steady-state flows is analyzed
and is then improved to extend its applicability, in general, to the solution of unsteady incompressible
flows. Then, this improved thin-layer formulation is further extended to include more terms of the same
order that are ignored in the thin-layer approximation because of the limitation imposed by the use of a
conservation form of the viscous flux vector. This is achieved by recasting the viscous vector in noncon-
servation form. The resulting formulation represents the full-viscous (FV) formulation (except for higher-
order cross-derivative terms). Solutions with the full-viscous, improved, and conventional thin-layer for-
mulations are shown to be different, even for laminar heat conducting flow. Also, the steady state
full-viscous solutions with and without the cross-derivative terms are compared and are found to be
practically the same. This delineates the need, in general, for the FV formulation for turbulent flows,
where turbulent viscosity variation in space is large. The methodology developed here is then used to
compute flow in a rotating square duct with fast and slow rotation. The limiting solutions obtained are
compared with the analytic limiting solutions and previously obtained reduced numerical solutions. Agree-
ment is shown to be very good.

Introduction

T HE thin-layer (TL) form of viscous terms in the Navier-
Stokes equations in body-conforming grids neglects the

viscous diffusion that is not normal to the surface along which
there is a flow, and it is an acceptable approximation for flows
at a high Reynolds number and without the effects of major
flow separation from the surface. The TL form must be in-
voked so as to incorporate the viscous terms on the implicit
side [left-hand side (LHS)] of the approximate factorization
(AF) delta scheme1 in conservation form.

In some incompressible TL methodologies, incomplete TL
terms on the LHS (implicit side) have been considered (terms
involving cross-metric derivatives are neglected) while seek-
ing a steady-state (SS) solution because the implicit side
approaches zero during convergence. This SS solution is
achieved as an asymptotic solution in physical time,2 or as an
asymptotic solution in artificial time at each physical time step3

to obtain a time-accurate solution. In the former case, local
linearization is done in physical time; in the latter, local line-
arization is carried out in artificial time and not in physical
time.

The-SS formulation is correct in such solution methodolo-
gies,23 provided complete TL terms are considered on the
right-hand side (RHS) of the scheme. It is not correct, in gen-
eral, when seeking a solution to the unsteady problem by other
methodologies such as those in which local linearization is
carried out in physical time.4 5 In addition, the SS formulation
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can slow down the convergence rate of the solution to steady-
state because of imbalance in the diffusion terms on the LHS
and RHS of the AF delta scheme.

Therefore, an improved TL formulation has been devel-
oped,6 which can be used in methodologies4'5 where local lin-
earization is carried out in physical time and not in artificial
time. The results with the improved TL formulation are pre-
sented here.

For applications, where the TL approximation breaks down,
the TL restriction as entailed by use of the conservation form
of the viscous flux vector is removed here by considering the
viscous terms in nonconservation form, since the conservation
form of the viscous fluxes is not necessary as is that of inviscid
fluxes for proper resolution of discontinuities such as shear
layers, shock waves, etc. This results in a full-viscous (FV)
formulation where all of the lowest-order terms are considered,
many of which are neglected in the TL formulation. The cross-
derivative terms are found to be of no consequence in the
present study. This is observed by comparing the SS results
with and without the cross-derivative terms on the right-hand
(explicit) side.

The improved TL formulation6 as well as the FV formula-
tion developed here are incorporated in a 5 X 5 temperature-
dependent incompressible flow solver developed earlier,7
which is based on the widely used AF scheme18 and the arti-
ficial compressibility approach.9

In internal flows such as that of coolant flow in rotating
turbine blade passages, viscous effects are of primary interest.
Such a flow is highly three dimensional in nature because of
the complex internal geometry (confined serpentine passages
with turbulators, pin fins, etc.) and low Reynolds effects (ow-
ing to the presence of a high-temperature environment).

Because of the presence of high temperature, numerical
study of these flows can be adequately done with an incom-
pressible flow prediction methodology. Therefore, the present
formulation will be discussed mostly in the context of incom-
pressible flows. The results on the extension of the present
formulation to compressible flows will be reported in a later
study.
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622 KAUL AND SHREEVE

The main goal of the present study is to provide a consistent,
accurate, and reliable unsteady computational methodology10

to predict internal flows, especially internal coolant flows in
turbine blades of new-generation jet aircraft engines.

Governing Equations
An incompressible temperature-dependent laminar flow (ig-

noring buoyancy effects) in a rotating frame of reference is
given by the following system of equations11:

the inviscid flux vector Eh by

d t u f

where

X r|2/2)

H is constant angular velocity, 8/j is the Kronecker delta, and
Pfj represents the stress tensor, and the second and third terms
on the RHS represent the centrifugal and Coriolis forces as-
sociated with the rotating frame of reference. All of the other
terms and symbols have their usual meaning.

The continuity equation via the concept of artificial com-
pressibility9 is

d,p* + /3w* = 0

where /3 is the artificial compressibility parameter.
The temperature equation (assuming perfect gas and ignor-

ing viscous dissipation) is

pCvd,r* + pCvu?T*j = (kT*)j

After normalization, these equations take the following form:

dtp + puu = 0

X r\2!2}l(Ro)2 + 2sijkuj£lk/Ro

d,T + UjTj = (kTj)j/(RePr)

where Ro = U0/£IL is the Rossby number, Re = p0U0L//ji0 is
the Reynolds number, and Pr - CVop,0/k0 is the Prandtl number.

Normalization reference velocity, length, density, viscosity,
thermal conductivity, specific heat at constant volume are £/0,
L, po, />t0, k0, and CVo, respectively, and the temperature is nor-
malized as

T = (T* - T0)/(TW - To)

where Tw is the wall temperature.
In the present study, heating caused by viscous dissipation

and the buoyancy effects are neglected, although these terms
are considered in the flow solver.7 Only laminar flow will be
considered in the present study. This corresponds to a benign
case for comparing the SS, improved TL, and FV formulations.
This is* to avoid any uncertainty in the predictions that may
arise using a phenomenological turbulence model. However,
even in the temperature-dependent laminar case, the predic-
tions will be shown to be different with the three formulations.

Introducing a compact form,7 the system of the normalized
governing equations can be expressed in conservation form as

dtU + EU = Evi4 + S

where the solution vector U is given by

Ui +

Ui + 5/2/7

and the viscous flux vector Evi, by

Evi =

and the source terms S by

0

(iu, + v-)
'dzUi + VV/)
kTJPr

where 5cor and 5cen represent Coriolis and centrifugal terms,
respectively.

The implicit treatment of source terms within the AF scheme
is similar to that described in Ref. 12. Here, only the viscous
fluxes will be considered.

Analysis
Consider a viscous flux vector in any given generalized cur-

vilinear coordinate direction /

Ft - Evi = (1)

where ajk are the coefficients containing metric terms and dif-
fusion coefficients. The representation given previously is also
true for any flux vector describing transport of appropriately
defined physical variables.

Incompressible Formulation
For incompressible flow without viscous dissipation, we can

write the viscous flux vector directly as

F, = (2)

This is possible because without viscous dissipation, the viscous
flux vector is quasilinear for incompressible flow, i.e., A/ can be
functions of uk and perhaps uk

ti for turbulent flows, depending
upon the level of complexity of turbulence modeling. But, for
compressible flow and incompressible flow with viscous dissi-
pation, the viscous vector being nonlinear, we cannot write it in
the form given in Eq. (2); we need to locally linearize the flux
vector in Eq. (1). First, we can write Eq. (2) as

where the operator A</> = </> /7+1 — (/>"; n is the time index.
Further, locally linearizing in time, we have

AF/

where U denotes the vector uk.
For the present analysis, let A/ be independent of U. For

laminar and those turbulent flows assumed to satisfy local me-
chanical equilibrium conditions, one can make an acceptable
approximation that A/ are weak functions of U. But, for high
temperature and especially complex turbulent flows, this ap-
proximation often breaks down. Therefore, the dependence of
A/ on temperature (for thermal diffusivity and laminar viscos-
ity) through, for example, the Sutherland formula and the de-
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KAUL AND SHREEVE 623

pendence of A, on the transport variables k and e (for turbulent
viscosity and turbulent diffusivities), through, for example, the
Boussinesq approximation and mixing length approximation,
respectively, can be incorporated into Eq. (3).

The full form of Eq. (3) for viscous modeling is considered
in Ref. 7. For the analysis of the full form of Eq. (3) in the
case of transport equations, see Ref. 12.

Then

or

AF,. « A,. -77

or

2] (4)

The previous representation of F, is suitable for incorpora-
tion into the AF delta algorithm in any generalized coordinate
direction / for incompressible flow without viscous dissipation.
In Eq. (4), coefficients A,- are independent of U, but are func-
tions of metrics and diffusion coefficients. The second term on
the RHS of Eq. (4) drops out, since for incompressible flow,
AJ exists such that

/(£/,) = U,

Therefore, Eq. (4) becomes

AF,- = A,.

(5)

where / is an identity matrix, or

AF, - A,/At7, = A.A/;

Equation (5) can be derived directly from Eq. (2) when A,
is independent of U. However, in general, when A, is a function
of U and possibly £/,, local linearization of F,- becomes nec-
essary even for incompressible flow7'12 and, therefore, we must
follow steps such as leading from Eq. (3) to Eq. (4).

The TL form of matrix A, for incompressible flows as used
in the SS formulation13 is not complete because, although the
viscous terms are represented completely by the full viscous
vector in Ref. 13, the thin-layer approximation is not applied
correctly, so that A/ for the implicit side of the scheme is de-
fined incorrectly. The neglected terms are of the form

and are of the same order of magnitude as the included terms
for flows where viscosity variation in space is not negligible,
such as turbulent flows and strongly temperature-dependent
flows, etc., as discussed in Ref. 6, even after incorporating the
divergence-free condition for the velocity field. It is only for
isothermal laminar flow that these off-diagonal terms vanish
along with an additional component of the diagonal for a so-
lenoidal velocity field so that Eq. (8) in Ref. 2 holds. Details
pertaining to this discussion are given in Ref. 6.

Compressible Formulation
The solution of thin-layer compressible flow equations in

generalized curvilinear coordinates using the AF scheme1 has
received a great deal of attention since the TL approach in
generalized coordinates was introduced in Ref. 14.

However, in an attempt to cast the compressible viscous
vector in a conservation form, the linearization of the TL vis-
cous vector in Ref. 14 has been presented ambiguously. The
definition of matrix M in Eq. (21), as it is written in Ref. 14,
is not clear as it relates to Eq. (20), since M is written and
referred to as a coefficient matrix therein and, additionally, also
as a Jacobian matrix in other subsequent related publications.15

Also, it may be noted here that the relation

A'FV = C[(A;c)2

[Eq. (8-83)] on page 445 of Ref. 15, is not complete if [V]
is defined to be a Jacobian matrix [dFv/8U], as is done in Ref.
15; the matrix [V] is really an operator matrix that is eventually
correctly defined on page 447 of Ref. 15, but whose derivation
still remains cloudy.

To avoid the ambiguity in this linearization process, a
straightforward approach is taken that will also be helpful in
deriving the FV formulation.

From the thin-layer form of Eq. (1), we can express each
subelement of vector F, as

e, 55 E(F{) = afa

where (/> = (f>(U).
Then, locally linearizing </> in time, we have

M
[dU\'^^

(6)

(7)

Also

assuming a is a weak function of time, or

(8)

(9)

Eq. (8) is the conservative form of the linearization relation
for the TL viscous flux vector F(- element-by-element.

It would appear that the first term on the RHS of Eq. (9)
corresponds to the coefficient or Jacobian matrix M in Ref. 14.
However, that is not correct, as seen in the following text.

It will be shown that Eq. (9) is the nonconservative form of
the linearization relation for the F/ element-by-element, and is,
therefore, useful in developing the FV formulation.

To arrive at the nonconservative form corresponding to F,, a
straightforward approach based on the Taylor series expansion
is adopted to derive the TL form of the viscous Jacobian matrix
(matrices) in a clear manner. Since from various studies in the
past, it has been shown that the viscous terms can be cast in
the nonconservative form without any appreciable change in the
solution from that arising out of the conservative form of the
viscous vector, either the conservative or nonconservative form
can be employed for the TL approximation.

This approach is also useful for the FV (as opposed to the
TL) formulation for compressible flows, results that will be
reported in a later study. This is important for flows where the
TL approximation breaks down, such as those with low Reyn-
olds number and complex geometry effects.

Also, this alternate formulation is not limited by the as-
sumption of constant diffusion coefficients, as is the case with
the linearization process shown in Ref. 14. For the treatment
of variable diffusion coefficients, see Ref. 12.
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624 KAUL AND SHREEVE

Following the linearization process, we can write

+ 0[(Af)2]AF, = (G -

where the Jacobian matrices G = dFJdU and H =
the matrix H^ = SH/dr] and 17 is a coordinate direction /.

The Jacobian matrices H and (G — H^) are given in Ref. 6.
It can be seen on inspection that the nonconservative form
derived earlier is equivalent to the one given by Eq. (9), ele-
ment-by-element.

Note that the matrix G (see Ref. 6) looks like the same as
matrix M in Ref. 14, but here G is a Jacobian (coefficient)
matrix as resulting from the Taylor series expansion, where-
as in Ref. 15, M is defined to be an operator matrix [also see
Eq. (8)].

Results
Various test cases were considered to assess the differences

in predictions with the SS, the improved TL, and the FV for-
mulations as discussed earlier (also see Ref. 10).

The first case was that of a flow in a duct with a square
cross section with uniform cooling at a laminar Reynolds num-
ber Re = 1.0 X 102. Because of uniform cooling, the temper-
ature gradient along the length of the duct wall was held con-
stant. Both the heat transfer and the skin friction distribution
along the cross-section boundary were computed. The predic-
tions are compared in Figs. 1 and 2, respectively, with the fully
developed exact solution.16 An excellent comparison in both
cases is demonstrated.

A simulation each with the improved TL formulation [Eq.
(5)], the SS formulation, and the FV formulation was carried
out. The laminar viscosity was calculated using the Sutherland
formula. No appreciable difference was seen among the three
predictions. Since there was no crossflow or any axial sepa-
ration in this case, it was expected that the improved TL and
the FV formulations would yield about the same result in the
square duct case. Since the generalized coordinate grid lines
were parallel to the corresponding base coordinate (Cartesian)
grid lines, the SS and the improved TL formulations would,
in fact, yield identical results since the cross metric derivative
terms vanish in this case.6

Another simulation, that of a laminar flow in a curved square
duct at Re = 7.9 X 102, based on the bulk inflow velocity, was
carried out with the duct walls at a uniform cooling, except the
outer curved wall that was kept insulated downstream of the

exact
computed

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

Fig. 1 Heat transfer distribution in a square duct.

point where the curved wall begins. For this case, some differ-
ences among the predictions corresponding to three viscous for-
mulations as mentioned earlier were noted as shown in Fig. 3a.
The same comparison is shown magnified in Fig. 3b. That a
temperature-dependent laminar flow (where the temperature de-
pendence of laminar viscosity is known to be mild) can produce
such a difference in the predictions shows that for a turbulent
flow where the wall gradients are very large and where turbulent
viscosity varies between one and two orders of magnitude spa-
tially, the type of viscous formulation used will have an appre-
ciable effect on the accuracy of the solution. This underscores
the need for the FV form of viscous terms in simulating such
flows. As seen in Fig. 3, the qualitative trend corresponding to

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

y
Fig. 2 Skin friction distribution in a square duct.
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Fig. 3 Heat transfer along the side wall next to the outer curved
wall.

D
ow

nl
oa

de
d 

by
 N

A
V

A
L

 P
O

ST
G

R
A

D
U

A
T

E
 S

C
H

O
O

L
 o

n 
A

pr
il 

8,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/3

.8
38

 



KAUL AND SHREEVE 625

the predictions with the improved TL form and the FV form is
similar. But, the third prediction, that with the SS formulation,
tends to be qualitatively different, as expected, since the grid
lines are not parallel to the base (Cartesian) coordinate system.

Finally, a rotating square duct case was considered. The flow
was kept isothermal. The centrifugal force term was lumped
with the pressure gradient term. The purpose of this test case
was to test the code under fast and slow rotation when inertia
is weak, since then a comparison can be made readily with the
limiting analytical solutions.

A 31 X 31 crossflow grid was used with an axis system
defined in Fig. 4. The axis about which the rotation takes place
and the sense of rotation is shown. The crossflow grid was
chosen fine enough to resolve the Ekman layers in the fast
rotation case.

In the limit of small Rossby number, Ro = 0.01, two cases
were calculated. The first was at Ekman number Ek = 0.1. This
is a slow rotation case. The second was at Ek - 0.001 and this
is a fast rotation case. Axial flow velocity profiles are shown
in Figs. 5a and 5b, respectively. The slow rotation case, where
essentially pressure gradient balances the viscous force, shows
a nearly rectilinear velocity profile (corresponding to a fully
developed case) and the fast rotation case, where essentially
pressure gradient balances the Coriolis force, shows quite a
different profile. This profile looks very similar to the one ob-
tained in Fig. 3c, from Ref. 17, where the numerical solution
was obtained corresponding to the reduced limiting problem.

Fig. 4 Axis system for a rotating square channel.

The crossflow velocity vectors corresponding to the two
cases are shown in Figs. 6 and 7. In the former, a double-
vortex secondary flow is seen in the limit of creeping rectilin-
ear axial flow. In the latter, a strong crossflow pattern is ob-
served that is unlike any secondary flow. Since the magnitude
of the crossflow velocity is of the same order as that of the
primary flow in this case, the crossflow does not classify as a
secondary flow. It is seen that the Ekman layers close to the
walls perpendicular to the axis of rotation carry a high-velocity
fluid. For a detailed analysis of this flow, see Ref. 17.

It is pointed out here though that in the interior, the cross-
flow velocity component u attains a magnitude of 0.5 accord-
ing to the analytical solution, and in the case of present com-
putations, this value was found to be 0.49. Similarly, crossflow
velocity component v was numerically found to be negligible
in the interior in agreement with the exact solution, v = 0.

In Fig. 8, axial velocity along the centerplane parallel to the
rotation axis is plotted for both slow and fast rotation cases,
i.e., for Ek = 0.1 and 0.001, respectively. The predictions are
compared with the limiting analytical solution. As seen, the

-0.5 0.5

Fig. 6 Rotating channel crossflow velocity vectors: slow rotation
(Ek - 0.1), limit of rectilinear flow.

: • ••

-0.5 0.5

Fig. 5 Rotating channel axial velocity profile over a cross section:
a) slow rotation (Ek = 0.1) and b) fast rotation (Ek = 0.001).

Fig. 7 Rotating channel crossflow velocity vectors: fast rotation
(Ek = 0.001), Ekman limit.
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626 KAUL AND SHREEVE
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y
Fig. 8 Axial velocity profile along the centerplane parallel to the
axis of rotation.

0.01

x 0.005

E

> 0.001

Q0005

Rectilinear Flow /
Limit, Ek »1

Rapid Rotation
Limit, Ek « 1 *

'&•—Finite Element Solutions

D Present Solution

10 10 10 c

Ekman Number, Ek
10

Fig. 9 Volumetric flux through a rotating square duct (Ro =
0.01).

agreement turns out to be very good. For Ek = 0.1, the solution
tends to the rectilinear flow limit as shown.

Finally, Fig. 9 (taken directly from Ref. 17, Fig. 5) shows
the volumetric flux through the rotating channel. Although Fig.
5 in Ref. 17 corresponds to Ro = 0, two numerical data points
from the present simulation shown inserted in the figure cor-
respond to Ro = 0.01 and not Ro = 0. Owing to a remarkable
agreement between the present computed solution and the
computed solution of Ref. 17 at Ro = 0, it is concluded that
Ro = 0.01 is small enough for the limiting solutions to hold
when either Ek = 0.1 or 0.001.

Concluding Remarks
A FV formulation developed here as well as the improved

TL formulation developed earlier6 for incompressible flows have
been used with the widely used Beam and Warming AF delta
scheme. In the TL formulation, some diffusive terms of the same
order as those included in the FV formulation are neglected on
the implicit side because of the thin-layer approximation. This
can result in errors in the time-accurate predictions of skin fric-
tion and heat transfer, depending on the nature of the flow.

The FV formulation has been developed by casting the vis-
cous terms on the implicit side of the scheme in the noncon-
servation form. Measurable differences in the predictions of
heat transfer for a temperature-dependent laminar flow have
been observed corresponding to the FV formulation, the con-
ventional TL formulation, i.e., SS formulation, and the im-
proved TL formulation. These differences are clearly a result

of different viscous modeling approaches adopted in the SS,
the improved TL, and the FV formulations. Consequently, the
predictions will progressively improve from the SS to the im-
proved TL to the FV formulations.

Therefore, for unsteady temperature-dependent and/or turbu-
lent flows, in general, it is expected that the predictions with
the FV formulation will be more accurate over those corre-
sponding to the TL formulations, especially in rotating systems.
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