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ABSTRACT 

Tropical cyclones and dynamically similar model vortices robustly maintain a near-axisymmetric horizontal 
structure where the vortex flow is strongly nonlinear in spite of persistent asymmetric forcing represented by 
horizontal variations in the environmental winds and the Coriolis parameter. Since tropical cyclone motion 
relative to environmental "steering" has been associated with vortex asymmetries in even the simplest numerical 
models, identification of a barotropic mechanism that stabilizes vortices to dispersive influences is important. 

A nondivergent, barotropic analytical model is used to identify the asymmetry-damping influence of symmetric 
angular windshear as the mechanism by which a barotropic vortex.resists asymmetric forcing. Solutions are 
obtained for the evolution oflinear asymmetric perturbations imposed as initial conditions on a steady, Rankine 
vortical flow. Perturbations combining various radial and azimuthal structures that might be expected from 
environmental and convective forcing are shown to damp with time in an algebraic "continuous spectrum" 
manner similar to perturbations imposed on fplane barotropic Couette flow. Closed-form solutions to the 
model are used to explain why the damping rate is proportional to perturbation azimuthal wavenumber and 
the local magnitude of the symmetric angular windshear. The damping process is formally shown to be a 
barotropically stable energy transfer from perturbation to symmetric vortex, and indepeqdent numerical evidence 
is presented to verify the accuracy of the model. The energy transfer process is used to explain barotropic vortex 
adjustment to changes in external forcing, particularly the initial adjustment phase of a symmetric vortex in 
response to steady asymmetric forcing that has been documented in various numerical simulations of tropical 
cyclqne motion. 

I. Introduction 

Many investigations of environmental influences on 
tropical cyclone (TC) motion, have been conducted 
using a variety of dynamical models. These studies have 
shown that the presence of vorticity gradients ( plane
tary and environmental) and any associated horizontal 
windshear will introduce asymmetries into an initially 
symmetric vortex scaled to approximate a TC. Al
though these asymmetries are relatively small, they can 
cause the motion of the vortex center to be different 
from that expected du~ to simple environmental 
"steering." Early examples of nondivergent, barotropic 
(NDBT) studies are Adem ( 1956) concerning the in
fluence of the earth's rotation as approximated by a 
,8-plane ( now commonly called the ",8-effect") and 
Kasahara (1957), who also noted the effect oflinear 
environmental windshear. By the 1970s, divergent 
barotropic ( Anthes and Hoke 197 5) and baroclinic 
( Madala and Piascek 197 5) numerical modeling stud
ies of TC motion were providing increasing evidence 
that vortex asymmetries due to the /3-effect tended to
ward a quasi-steady amplitude over the more intense 

Corresponding author address: LCDR L. E. Carr III, Dept. of Me
teorology, Code 63, Naval Postgraduate School, Monterey, CA 93943-
5000. 

region of the vortex, as manifested by an approximately 
steady 2-3 m s- 1 translation of the vortex in a quiescent 
environment. A later NDBT study by DeMaria ( 1985; 
hereafter referred to as OM) included steady, but spa
tially variable environmental winds, and again noted 
an approximately steady translation of the vortex after 
an initial 24 h adjustment period. By subtracting the 
symmetric vortex from the output of a NDBT nu
merical model, Fiorino and Elsberry ( 1989; hereafter 
referred to as FE) have explicitly demonstrated the 
quasi-steady nature of a /3-induced asymmetry in a TC 
vortex. Quasi-geostrophic (McWilliams and Flierl 
1979) and primitive equation (Mied and Lindemann 
1979) model vortices scaled to approximate ocean ed
dies have also been noted to translate while resisting 
/3-induced dispersion in a manner similar to the TC 
models. Since horizontal variability of the environment 
(including /3) represents persistent asymmetric forcing 
with respect to an embedded vortex, it is significant 
that the response of these model vortices to such forcing 
is one of minor, quasi-steady deformation and slow 
dispersion, rather than one of steadily increasing de
formation and rapid dispersion. 

Observations of TC and ocean eddy persistence are 
consistent with the results of the simple models. Gulf 
Stream cold-core rings have been observed to persist 
for over a year ( Cheney and Richardson 197 6) while 
moving through the horizontally sheared Gulf Stream 
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recirculation region. These rings are often highly ellip
tical immediately after being formed from pinched-off 
Gulf Stream meanders, but generally regain a near cir
cular shape within 2 weeks (McCalpin 1987). Tropical 
cyclones typically persist at or greater than tropical 
storm strength (>34 kt; 17 m s- 1

) for 4-6 days, and 
usually dissipate due to the loss of a low-level source 
of warm, moist air as they travel north or make landfall, 
rather than by being destroyed by dynamical disper
sion. For example, Typhoon Wayne ( 1987) persisted 
at or near typhoon strength ( >64 kt; 32 m s- 1

) for 20 
days while embedded in the strongly sheared environ
ment of the monsoon trough (JTWC 1987). 

Thus, both modeling and observation evidence sug
gests that some mechanism ( s) inherent to these at
mospheric and oceanic vortices renders them highly 
resistant to Rossby wave dispersion due to large-scale 
vorticity gradients and deformation due to horizontal 
shear in the environment. Although it might be argued 
that the strong thermodynamic forcing that maintains 
a TC would also promote horizontal axisymmetry, the 
generally asymmetric distribution of convection in the 
vicinity of the eyewall actually represents additional 
asymmetric forcing that should distort the inner wind
field. Thus, the prolonged persistance of ocean eddies 
in a near-symmetric state without thermodynamic 
forcing and the asymmetry-inducing influence of such 
forcing in TCs, suggests that the dispersion-resistant 
properties of these vortices must have a dynamical 
basis. 

It is known that nonlinear advection is necessary to 
permit dispersion-resistant movement of model' vor
tices in general ( e.g., Mc Williams and Flierl 1979; Chan 
and Williams 1987), or nondispersive movement in 
the case of very specialized entities known as either 
modons or solitary eddy solutions ( see Flierl et al. 
1980); however, the precise mechanism by which 
nonlinear advection stabilizes a vortex of arbitrary ra
dial structure has not been identified. Although Hol
land ( 1983) has suggested that inertial stability ac
counts for near axisymmetry in the inner 300 km of a 
TC, inertial stabilization cannot occur in the NDBT 
and quasi-geostrophic models cited above. Thus, the 
mechanism that accounts for vortex stability must be 
fundamentally a vorticity advection process, perhaps 
modified to some extent by more complex processes. 

The purpose of this paper is to identify this hypo
thetical vorticity advection stability mechanism using 
a NDBT analytical model that includes the asymmetry
inducing influence of {3 and environmental windshear. 
Thus, the dynamical situation will be equivalent to 
OM. Since a complete solution ( transients and quasi
steady-state) to that model is in all likelihood analyt
ically insolvable, this paper will address primarily the 
transient adjustment process toward the quasi-steady
state by transforming the forced problem into the re
lated unforced initial value problem. The model is de
veloped and solved in section 2, which also includes 

the identification of and preliminary justification for 
several simplifications used to obtain the analytical so.: 
lutions shown in section 3. Section 4 interprets the 
results in terms of traditional energy transfer principles, 
explains the temporal and spatial behavior of the sta
bilization process, and compares the results to inde
pendent numerical evidence to establiish the validity 
of the simplifications used in section 2. Section 5 ex
plains the basis for the forced transient adjustment in 
the numerical models in terms of the unforced transient 
adjustment analyzed herein. Section 6 briefly discusses 
the principal results of this work and the potential role 
of the barotropic stability mechanism in baroclinic 
vortex dynamics. 

2. The analytical model 

a. Background 

The motivation for the following analytical devel
opment is the study ofNDBT .f-plane Couette flow by 
Case ( 1960). He obtained an integral solution for the 
time evolution oflinear perturbations imposed as initial 
conditions on the NDBT Couette fliow, which is a 
steady, zonally uniform flow with constant latitudinal 
shear (Fig. la). Case's result may be interpreted as an 
infinite summation of a continuum of singular solu
tions, hereafter referred to as continuous spectrum 
modes ( Pedlosky 1964). For the NDBT .f-plane Couette 
flow problem, this continuous spectrum forms a com
plete basis, since discrete normal modes are eliminated 
by the lack of an environmental vorticity gradient. The 
superposition of these continuous spectrum modes re-
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FIG. I. Schematic portrayal of perturbation damping with time 
due to (a) a meridionally sheared Couette flow, and (b) a radially 
sheared axisymmetric vortical flow. 
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suits in a perturbation streamfunction structure that 
has an algebraic time dependence (i.e., depends on 
factors involving t to an integer power) as the pertur
bation is tilted down-shear by the Couette flow. Al
though the baroclinic Couette flow study of Farrell 
( 1982) showed that initial growth of the perturbation 
is possible for particular initial conditions, both Farrell 
( 1982) and Case ( 1960) showed that the response is 
asymptotically proportional to t- 2 fort - oo, as sche
matically portrayed in Fig. 1 a. In terms of instability 
theory, NDBT fplane Couette flow may be viewed as 
a barotropically stable "basic state" with respect to lin
ear perturbations. 

The NDBT fplane Couette flow model, as in the 
Eady or Charney models, may be viewed as an ideal
ization of the response of synoptic disturbances to a 
particular planetary-scale flow. Along with other lim
itations, the accuracy of this approach depends on the 
extent to which synoptic-scale disturbances may be re
garded as linear perturbations. In the case of an intense 
vortex such as a tropical cyclone, such an assumption 
would be clearly unjustified since the TC winds can be 
substantially stronger than the environmental flow at 
quite large distances from the center. The large mag
nitude and nearly circular structure of the TC windfield 
suggests, however, that a model analogous to NDBT 
f plane Couette flow could be developed in a polar co
ordinate system moving with the center of the TC. In 
such a model, the axisymmetric component of the TC 
outside the radius of maximum winds (RM*) may 
be regarded as a radially sheared NDBT "basic state" 
that is time-invariant in the moving reference frame, 
and the asymmetric component of the vortex may be 
regarded as a perturbation to the symmetric basic state. 
If the axisymmetric basic state has constant vorticity, 
then an initial perturbation can be expected to damp 
completely as it is tilted in the direction of the sym
metric radial shear ( Fig. 1 b). A vortex model based 
on a constant vorticity basic state and initial pertur
bations is clearly a special case, and the implications 
of such approximations will be addressed explicitly as 
the analysis proceeds. 

b. Model development 

The behavior of fluid motion in a NDBT system on 
a /J~plane is described by 

~; + V · V (f + I) = 0 

f=k•VXV 

I= lo+ /JY, 

( 1 ) 

(2) 

(3) 

where fis the local vertical component ofrelative vor
ticity, /J is the linearized latitudinal derivative of the 
Coriolis parameter J, and lo is the average value of I 
in the domain. Since a perturbed vortex generally will 
not remain stationary, a transformation to a reference 

frame moving with the center of the symmetric vortex 
component ( defined below) must be accomplished to 
take advantage of the near-axisymmetry of the vortex 
( e.g., Willoughby 1988). The following differentiation 
relationships apply: ' 

V = V' 

a a' - = --C•V', at at 

(4) 

(5) 

where C(t) is the velocity of the moving reference frame 
and the(') symbol denotes operations with respect to 
coordinates in the moving reference frame. Such a 
transformation permits the fluid to be conveniently 
partitioned into three parts, 

(6) 

according to the following definitions: ( i) Vs is a known 
symmetric (S) cyclone component that is steady in the 
moving reference frame; (ii) V £ is a known zonal en
vironmental ( E) flow that depends only on latitude 
and is steady in the stationary reference frame; and 
(iii) VA is an asymmetric (A) flow component that 
represents unknown perturbations to the symmetric 
cyclone produced by the environmental and vortex 
processes discussed in section 1. Subject to these def
initions, substituting ( 4 )-( 6) into (1 )-(3) gives 

a~~A +(Vs+VE-C)•V'fA 

+ (VA - C) • V' fs +VA· V'( fA + fr+ f') 

= -Vs· V'(fE + f') - Ve V'fs, (7) 

in which the various terms have been grouped so that 
the left side represents a nonlinear partial differential 
equation in terms of the perturbation flow. The terms 
on the right side of ( 7) represent forcing processes that 
act to generate fA. The terms Vs. V' rs and V £. V' r £ 

are absent because Vs and V £ are orthogonal to their 
respective vorticity gradients. It is important to note 
that in ( 7) a convention ofleaving the dependent vari
ables untransformed has been employed. Although 
relative vorticity and the gradient of the Coriolis pa
rameter are invariant with respect to the coordinate 
transformation, fluid velocity is not. Thus, the con
vention results in explicit advection by C in ( 7), but 
has the desirable property of avoiding an implicit de
pendence of the perturbation flow VA on C. Such a 
convention is necessary to justify the use of the ho
mogeneous boundary conditions that will be employed 
in this model. 

To transform ( 7) into an unforced problem, the ex
plicit dependence on environmental wind and variable 
f is removed to give 

arA at+ Vs• VfA + (VA - C)• Vfs 

+(VA-C)•VfA=O, (8) 
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in which the(') symbols have been omitted for clarity. 
In all subsequent analysis, independent variables will 
be relative to the moving coordinate system. Equation 
( 8) describes the evolution of an asymmetric pertur
bation ini.tially imposed on a symmetric basic state 
vortex in a quiescent environment and on anf-plane. 
With the addition of two homogeneous boundary con
ditions at specified radii, ( 8) becomes the homogenous 
counterpart to ( 7) over the enclosed domain. Since an 
assumption of linearity will be imposed later in the 
development [ i.e., (VA - C) • V r A is negligible], linear 
differential equation theory can be employed to show 
that certain relationships exist between the free-per
turbation response and the forced-perturbation re
sponse. This issue will be specifically addressed in sec
tion Sa within the context of the free-perturbation be
havior illustrated in section 3. 

The model development is continued by imposing 
a polar coordinate system on the moving reference 
frame. In this system 

Vs=Vs(r)0, (9a) 

VA= uA(r, 0, t)r + vA(r, 0, t)0, (9b) 

C = C[cos(0 - a)r - sin(0 - a)0], (9c) 

where r and 0 are unit vectors in the radial and azi
muthal directions, respectively, and C and a are the 
speed and direction of the coordinate system motion, 
respectively. The mathematical convention of mea
suring angles counterclockwise from east has also been 
used. Substituting ( 9a, b; c) into ( 8) gives 

afA• Vs• afA• afs• -- +-- + [uA. - C* cos(0 - a)]-
at* '* ao ar* 
(a) (b) (c) 

+(vA.~c*)•VfA•=O, (IO) 

(d) 

in which asterisked subscripts have been employed to 
denote dimensional variables. In all subsequent anal
ysis, the absence· of an asterisk will denote nondimen
sional variables. 

The advection of perturbation ·vorticity by the ra
dially variable symmetric flow in term ( b) of (10) is 
analogous to the shearing process that causes pertur
bation damping in the Couette flow model. In addition 
to manifesting vortex motion through the advection of 
symmetric vorticity, term ( c) permits the propagation 
of neutral and possibly exponentially growing discrete 
normal modes on the radial gradient of rs•. This term 
represents a serious obstacle to an analytical solution 
approach since fs• has a strong radial dependence that 
varies with the particular vortex structure specified. 
Thus, to facilitate analysis of the damping process as
sociated with term ( b), term ( c) will be removed 

by (i) requiring that Vs• have a Rankine radial depen
dence over a horizontal area bounded on the inside by 
the radius of maximum winds (RM•), and (ii) limiting 
the domain of the imposed perturbation to that region. 
To facilitate specification of initial conditions in section 
2c, the modified Rankine profile ( see Anthes 1982, p. 
22) will be used: 

(11) 

where V M• is the magnitude of the symmetric wind
speed for r * = RM•. The Rankine profile is the limiting 
value of ( 11) as X - 1. 

Choosing Vs• to be Rankine not only eliminates any 
discrete normal mode components from linear solu
tions to ( 10), but also may have a significant impact 
in the continuous spectrum response. Both these issues 
must be addressed before the results of this model can 
be used to interpret the numerical studies cited earlier 
that used non-Rankine vortices. The impact on the 
continuous spectrum can be assessed by drawing an 
analogy between ( 10) and NDBT Couette flow on a 
rotating sphere in the sense that the radial gradient of 
f s• has an influence analogous to the latitudinal vari
ation of the Coriolis parameter. For a /3-plane approx
imation, Kao ( 1955) and Boyd ('l 983) have shown 
that /3* has no influence on the rate of continuous 
spectrum damping, but rather causes the continuous 
spectrum wave to retrogress proportional to {3* in a 
manner related to the familiar discrete mode propa
gation. Because the retrogression is independent oflat-· 
itude for a constant /3*, the damping rate depends only 

. on the magnitude of the Couette flow shear. Since the 
radial gradient offs• is inward in the inner part of a 
typical vortical flow and decreases rapidly with in
creasing radius, it is anticipated that a continuous 
spectrum wave will retrogress (i.e., clockwise for a cy
clonic vortex) faster at smaller radii than it would at 
larger radii. The result would be slowi!r damping since 
the retrogression would tend to counter the tilting in
duced by Vs•. This effect should be negligible for any 
modified Rankine vortical flow with X = 1. The nu
merical results ofMcCalpin.( 1987) ciited in section 4b 
will indicate that significant perturbation retrogression 
can occur for a vortex that has a large highly variable 
symmetric vorticity gradient. Comparison of the results 
of this model with those of FE and DM, however, will 
suggest that the symmetric vorticity gradient of a tan
gential wind profile that approximates. a TC causes only 
minor slowing of perturbation dampiltlg due to variable 
retrogression. Analysis ofMcCalpin's results will also 
suggest that virtually no energy from an initial pertur
bation projects onto any discrete modes. Thus, the use 
of a Rankine vortex will be shown to be reasonable for 
analysis of unforced perturbation responses. 

Understanding the constraints on linearizing ( IO), 
an~ comparing solutions to this model with related 
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work, will be facilitated by nondimensionalizing ( 10) 
and ( 11 ) using the relationships 

RM· 
t* = --t 

VM* 

fA• = zA. rA, vA. = zA.RM• vA, c* == zA.RM. c, 
where ZA• is the maximum of the initial perturbation 
vorticity. This nondimensionalization gives 

Vs 1 
Ws=·- == -r ,1, ( 12b) 

where ws is the symmetric angular wind. The additional 
• parameter e provides a measure of linearity and is de
fined by 

(13) 

In principle, ( 12a) can be made linear over an arbi
trarily large domain by specifying e to be "sufficiently 
small." In practice, the anisotropic radial dependences 
of the symmetric angular wind and the various initial 
perturbations developed in Section 2b make it difficult 
to determine a priori an upper bound on e to insure 
( 12a) will be reasonably linear for a particular domain 
and time period. It will be assumed that requiring e 
~ 0.1 and r ~ 10 will be adequate to keep the model 
reasonably linear. With the nonlinear term removed, 
( 12a) represents a polar coordinate equivalent to 
NDBT f-plane Couette flow. 

The model may now be solved by defining a per
turbation streamfunction 

assigning homogeneous boundary conditions 

y;A(a, 0, t) == V!A(b, 0, t) = 0, 

(14a,b) 

(15a,b) 

to confine the perturbation to· the desired domain a 
== 1, b == 10, and removing the azimuthal dependence 
using the Fourier series 

00 

VIA(r; 0, t) == Re{ L 'Yk(r, t)eik 0
}. (16) 

k=I 

Substituting ( 14b) and the k th term of ( 16) into a linear 
( 12a) and integrating with respect to time gives 

[ 
a2 

1 a k
2

] f/= -+---- q,k(r,0). a,2 r ar r 2 

(17a) 

(17b) 

Substituting ( 16) into ( 15a, b) gives 

'Yk(a, t) == 'Yk(b, t) == 0. ( 17c,d) 

In ( 17 c,d) fo k is the radial structure of the azimuthal 
wavenumber k component of the initial asymmetric 
vorticity. Hereafter, the term "wavenumber" will mean 
"azimuthal wavenumber" unless stated otherwise. 

Equations ( l 7a-d) constitute a fully specified 
boundary value problem. The solution may be formally 
written in terms of a Green's function: 

'Yk( r, t) = Lb G( r, p) fok(p )e-iktws(p) dp. ( 18) 

Using standard techniques ( Case 1960), the Green's 
function is calculated to be 

G(r,p) 

2krk(azk - b2k) (p - b P ), a~ r~ P 

[ 

a2k - r2k k+I 2k -k+l 

b
2
k - r

2
k ( k+I 2k -k+I) 

P - a p p ~ r ~ b. 
2krk(a2k - b2k) , 

(19) 

Finally, substituting ( 18) into ( 16) gives 

V!A(r, (}, t) 

= Re{JI Lb G(r, p)fok(p)e-ik(B-tws(P)ldp}' (20) 

which represents a formal solution for the time evo
lution of the perturbation streamfunction. Although 
exact solutions to ( 20) do exist for certain initial con
ditions, the integral generally must be evaluated nu
merically. A simple trapezoidal scheme will be used. 

c. Initial condition specification 

To evaluate (20), an appropriate functional form 
for r/ and magnitude for zA. must be specified. It is 
not immediately clear what combination ofradial and 
azimuthal dependences to associate with asymmetries 
generated by the vortex-environment interactions 
identified in section 1. The right side of ( 7) is used for 
this purpose by writing in dimensional form 

arA• ( arE* ) 
at* OC - Vs• ay* + {J* cos(} 

(a) 

(21) ars• ars• 
- (Up - Cx•)-- cos(}+ Cy• -- sin0, 

ar* ar* 

(b) (c) 

where uE* is the zonal component of the environmental 
wind and ex• = C* cosa and Cy• = C* sina are the 
zonal and meridional components of the coordinate 
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system velocity, respectively. Advection by C* is pres
ent because the term -c. · V ts• from the left side of 
(7) has been included in (21) to properly reflect that 
the generation of asymmetries from symmetric vortic
ity depends on the difference between vortex motion 
and the environmental wind ( cf. Willoughby 1988). 
To determine the spatial structure of the forcing terms 
in ( 21 ) , first let uE* be approximated by a truncated 
Taylor series expansion in y* about the present position 
of the symmetric cyclone center 

(22a) 

(22b,c) 

where Sp and fJE* are the shear in the environmental 
wind and the latitudinal derivative of the environmen
tal relative vorticity respectively, which are evaluated 
at the center of the symmetric vortex. Second, let the 
radial gradient of symmetric vorticity be written in 
terms of( 11 ). Now a Rankine profile (X = l) has zero 
vorticity as desired to delete term ( c) from ( l O). As 
noted in section 2b, a small perturbation away from 
X = l may also be considered as a valid model exten
sion since the radial shear of Vs would be essentially 
unchanged, and the associated damping should be little 
affected by the small radial gradient of ts• that would 
be introduced. Thus, using ( 11 ) with X = 1 gives 

Considering only term (a) of ( 21 ) , substituting ( 11 ) 
and (22a) gives 

which represents the generation of a wavenumber 1 
asymmetry from the advection of absolute vorticity 
(fJ. + fJp) by the symmetric vortex. A nondimensional 
initial condition with equivalent spatial structure 
( hereafter referred to as a "_fl-induced asymmetry") for 
use in this unforced model would be 

(25) 

The quantity (fJ* + fJp) is assumed positive corre
sponding to a poleward gradient of environmental ab
solute vorticity. Such asymmetries represent the large 
gyres that have been identified in numerical models 
(FE) and in observations (Chan 1986). 

Considering only term ( b) of ( 21 ) , substituting ( 23) 
and only the two lowest order terms from (22a) gives 

[
(up(0)-Cx•) Sp. ] 

X 3 cos0+ -
2 2 sm20 , 

r* r* 
(26) 

in which the identities y* = r* sin0 and 2 sin0 cos0 
= sin20 have been used. The right side of ( 26) repre
sents the generation of a wavenumber 1 asymmetry 
due to vortex motion relative to the environment, and 
a wavenumber 2 asymmetry due to linear shearing of 
symmetric vorticity by the relative environmental 
wind. Appropriate initial conditions for this model 
(hereafter referred to as "motion-induced" and "shear
induced" asymmetries, respectively) would be 

k 1 
k = 1, (27) to (r) = 3 , 

r 

-i 
fok(r) = 2' k = 2. (28) 

r 

It has been assumed that ( i) Xis slightly less than 1 to 
give the symmetric vortex cyclonic vorticity; (ii) Sp 
is positive corresponding to anticyclonic shear equa
torward of the subtropical ridge; and (iii) the quantity 
[ Up ( 0) - c x• 1 is positive, which corresponds to the 
generally westward movement of TCs relative to "en
vironmental steering documented by composite studies 
( Chan and Gray 1982; Holland 1984). Term ( c) of 
( 21 ) will not be used, since it would re:sult in an initial 
condition identical to ( 28) except for the phase. 

It is inappropriate in this simple model to assign an 
individual perturbation vorticity scale ZA• to each of 
the above initial conditions based on the scales of the 
associated forcing terms. Instead, all but one of the 
following model solutions will use a value for ZA• such 
that E = 0.1 according to ( 13) to facilitate analyzing 
the dependence of vortex stability on perturbation spa
tial structure. The radial structures of the four initial 
perturbations defined above are shown in Fig. 2. 

3. Model results 

a. Perturbation damping 

Before numerically evaluating ( 20) using the initial 
conditions developed above, it is useful to obtain exact 
solutions by choosing initial conditions of the form 

k - 1 
to (r) - k+4 • , r , 

(29) 

An asymmetry of this type may be viewed as an ap
proximation to the wavenumber k component of a 
perturbation produced by localized asymmetric con
vection in a TC eyewall cloud ( hereafter refered to as 
a "convection-induced asymmetry"), Initial condition 
(29) fork= 1 and k = 2 is also shown in Fig. 2, and 
results in solutions to ( 20) of 
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1 [ a2(,2 _ b2) ,2(b2 _ a2) b2(a2 _ ,2) ] 
,J;A(r, 0, t) = 4t2 r(a 2 _ b 2 ) cos(0 - t/a

2
) + r(a 2 _ b 2 ) cos(0 - t/r

2
) + r(a 2 _ b2) cos(0 - t/b

2
) 

(30) 
and 

1 {a4(r4 -b4)[1 1 ] 
Y1A(r, 0, t) = 16t2 , 2 (a 4 _ b4 ) a2 cos2(0 - t/a 2) + lt sin2(0 - t/a 2) 

r
4
(b

4
-a

4
)[1 1 ] + 2( 4 b4 ) 2 cos2(0 - t/r 2) + - sin2(0 - t/r 2

) 
r a - r 2t 

respectively. 
Both ( 30) and ( 31 ) damp algebraically with time as 

is characteristic of continuous spectrum mode solu
tions. It should be noted that the wavenumber 2 per
turbation damps four times as rapidly as the wave
number l perturbation, which suggests that the damp
ing rate is proportional to the square of perturbation 
wavenumber. This result is analogous to the depen
dence of damping on the perturbation zonal wave
number for plane Couette flow (Case 1960). The evo
lution of ( 30) and ( 31 ) over a 2 hour period are shown 
in Figs. 3a-c and Figs. 3d-f respectively. Unless oth
erwise noted, all illustrated solutions use the following 
parameter specifications: a = 1, b = 10, V M* = 50 m 
s- 1

, RM* = 50 km and E = 0.1. The contour interval 
is the same for each row of panels to show clearly the 
damping process. This comparison emphasizes the 
strong dependence of the damping process on pertur
bation wavenumber, and also clearly illustrates how 
the radial variability of Vs tilts the perturbations down
shear. 

The perturbation streamfunctions for the motion
induced and shear-induced asymmetries ( not shown) 
undergo a similar, but slower shearing and damping 
process. A quantitative comparison of damping rates 
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b 0.4 ~ 
0 
> 

0.2 

0.0 -------
4 5 6 7 10 

RADIUS (R1,1,) 

FIG. 2. Radial dependence of initial perturbation vorticity 
(ZA, i'ok) for convection-induced (k = 2, dot; k = I, dash), motion
induced ( chaindot), shear-induced ( chaindash) and ti-induced (solid) 
asymmetries. 

(31) 

is facilitated by Fig. 4a, which shows the decay of per
turbation kinetic energy with time for each of the four 
cases. Although perturbations of the same wavenumber 
damp at nearly the same rate initially, the damping 
rates quickly diverge. As will be shown in section 4a, 
this property is due significant differences in the radial 
dependences of the initial conditions, e.g., ,- 6 for a 
wavenumber 2 convection-induced asymmetry as 
compared to ,- 2 for the shear-induced asymmetry. 
Thus, NDBT vortex stability to asymmetric pertur
bations is quite sensitive to the radial as well as azi-
muthal structure of the perturbation. · 

The kinetic energy decay for a /3-induced asymmetry 
is shown in Fig. 4b. Perturbation kinetic energy decays 
by approximately 80% in 24 h, which agrees quite well 
with the adjustment period observed in the NDBT nu
merical models of TC motion cited earlier. The much 
slower damping rate in Fig. 4b is consistent with the 
discussion in the preceding paragraph since the per
turbation vorticity associated with a /3-induced asym
metry decreases significantly slower with increasing ra
dius than any of the previous initial conditions (Fig. 
2). The evolution of both the total and perturbation 
streamfunction components over a 36-hour period is 
shown in Fig. 5. The value of E has been increased to 
0.5 in Fig. 5 to emphasize how an initially perturbed 
NDBT vortex is restored to axisymmetry. By 8 h, the 
inner part of the vortex has already regained an essen
tially axisymmetric structure ( Fig. Sb), while the outer 
vortex remains appreciably distorted. No analogy to 
this behavior exists in horizontal plane Couette flow, 
since the linear shear in that model renders the damping 
process independent of latitude. 

b. Influence of boundary conditions 

Boundary conditions ( 15a, b) were chosen to facil
itate development of the model and are clearly non
physical. Thus, it is important to determine the extent 
to which the boundary conditions may have influenced 
the results presented above. Two aspects of this prob
lem must be addressed. 
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First, boundary influences will become increasingly 
significant with time if there is a tendency for pertur
bation energy to propagate radially and cause a con
centration at either boundary. This problem may be 
formally addressed by considering 

which is obtained by substituting (l 4b) and ( 17 a, b) 
into the Lapl~cian of ( 16). Equation ( 32) indicates 
that perturbation vorticity is conserved following the 
symmetric angular wind, which is a purely azimuthal 
motion. This result depends on the model being linear 
and the symmetric vortex being Rankine, but does not 
depend on boundary conditions. Thus, no mechanism 
exists in this model to propagate perturbation energy 
radially, nor does an examination of Fig. 3 or Fig. 5 
indicate that such a process is taking place. 

Second, the presence of the inner domain boundary 
at the location of maximum perturbation vorticity may 
produce nonphysical results. A nonzero inner bound
ary was used because a Rankine vortex is singular at 
the origin. The inner boundary may be moved to the 
origin if the singularity is removed by modifying the 
wind profile to be solid body rotation at all radii less 
than RM• . Recall that the choice of radial structure for 
the various initial perturbations depends on the sym
metric vortex. Thus, the radial structure: for a /3-induced 
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asymmetry associated with a Rankine vortex altered 
as just suggested would be 

{

.-r, 
-1 

' r 

O~r<l 

1 ~ r ~ b. 
(33) 

Figure 4b shows that the kinetic energy for such an 
initial perturbation decays at virtually the same rate as 
the original /3-induced asymmetry. 

Modifying the symmetric wind as described above 
causes the radial gradient offs to be singular at r = 1. 
This singularity is equivalent to a large radial gradient 
of vorticity, which would tend to cause clockwise ret
rogression and somewhat slower damping of the con
tinuous spectrum solution as discussed earlier. Al
though the present model cannot give a quantitatively 
precise solution for the response of a perturbation to 
a Rankine vortex with solid body inner rotation, the 
response of the model to ( 33) is useful for demonstrat
ing that solutions are not unduly sensitive to the lo
cation of the inner boundary. 

4. Model interpretation 

a. The stabilization mechanism 

Within the context of fluid dynamical instability 
theory, the present stability of a linear perturbation 

with respect to some basic state may be assessed by 
computing the domain-averaged local time tendency 
of perturbation energy. For the particular boundary 
conditions used in this model, the familiar NDBT result 
is that domain-averaged perturbation kinetic energy 
must be presently increasing (decreasing) with time if 
the perturbation tilts against (with) the horizontal shear 
of the basic state. Such a result is readily obtainable 
for this model by substituting ( 14b) into ( 12a) with 
the nonlinear term omitted, multiplying by VIA, inte
grating over the domain, and performing a number of 
integrations by parts. Using ( 14a), the result may be 
expressed as · 

aE lb --- aws 2 - = - (vAuA) - r dr at a ar 

l b I 
E = - (uA2 + v})rdr 

a 2 

n =_!__ r2" < 
. 21r Jo )d0. 

(34a) 

(34b) 

(34c) 

Equation ( 34a) is analogous to the familiar result for 
stationary Cartesian coordinates ( e.g., Farrell 1987), 
except that in this case it is the shear of the axisym
metric angular wind that controls the energy transfer 
process. In (34a), a positive correlation develops be
tween the perturbation momentum flux and the sym
metric angular wind shear when initially "upright" 
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perturbations are tilted downshear. Since the radial 
shear of ws is negative for a cyclone, the average per
turbation momentum flux must also be negative. This 
flux represents an inward transport of cyclonic mo
mentum fhat tends to accelerate the symmetric basic 
state at the expense of asymmetric perturbation kinetic 
energy. 

Because the analysis thus far has been strictly linear, 
the symmetric vortex has been regarded as steady in 
the moving reference frame. Using the azimuthal mo
m~ntum equation and ( 34c), however, the influence 
of perturbation momentum flux on the symmetric ba
sic state is described by 

avs - 2--at - -f (UA!A). (35) 

This expression may be evaluated to lowest order in f 

using (20) and (32), and then integrated with respect 
to time to give 

,. _ f
2 

;-k( )lb G(r,p)fl(p) 
~vs - - )O r 

2r a Ws(r)-ws(P) 

X [coskt(ws(P) - ws(r)) - l]dp, 

AVs(r, t) = Vs(r, t) - Vs(r, 0). 

(36a) 

(36b) 

The time evolution of Avs is illustrated in Fig. 6 using 
the same initial condition as in Fig. 5 except that f has 
been reduced to 0.1, which corresponds to a more re
alistic asymmetric windspeed of approximately 2.8 m 

s- 1 near the domain center. Although a nearly complete 
transfer of perturbation kinetic energy occurs by 48 h, 
the majority of the transfer has taken place by 24 h as 
anticipated from the damping rate in Fig. 4b. The do
main-averaged sign of AVs is positive as required, but 
a slight decrease is evident for r ~ 6. Interestingly, the 
radius at which AVs changes sign corresponds precisely 
with the maximum in perturbation strnamfunction at 
any time (see Fig. 5f). It is also evident that the energy 
transfer begins initially at small radii and spreads out- -
ward with time. This aspect will be explained later in 
this subsection. 

The momentum flux associated with the convection
induced, motion-induced and shear-imduced asym
metries ( not shown) had a similar impact on the sym
metric basic state, with the changes in AVs becoming 
smaller, more concentrated at small radli and occurring 
over a shorter period of time for an initial condition 
that decreases more rapidly with radius. The extent to 
which perturbation flux tends to alter the basic state is 
one measure of model linearity. Thus, the results here 
show that the assumptions made in section 2b ( f 
~ 0.1, r ~ l O) were reasonable. This demonstration of 
how perturbation flux transfers energy fo the symmetric 
vortex will be particularly useful in section 5b for un
derstanding how a barotropic vortex achieves a quasi
steady asymmetric structure in the presence of steady 
asymmetric forcing. 

The availability of exact solutions to this model per
mits valuable insights into the local dynamics of the 
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FIG. 6. Change in symmetric vortex windspeed with time ( see legend) as a"function 
of radius due to a convergence of momentum flux associated with a /1-induced asym
metry. The windspeed of the mean symmetric vortex is 50 m s- 1 at the radius of 
maximum winds and decreases with inverse dependence on radius to 5 m s- 1 at 10 
times the radius of maximum winds. 
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stability process that are not readily evident from the 
domain-averaged analysis conducted above. Note that 
by virtue of the identity 

(37) 

the first and third terms on the right side of ( 30) and 
(31) have no vorticity, and thus are necessary solely 
to satisfy the boundary conditions. Therefore, substi
tuting either of the exact solutions into (14b) results 
in a form 

fA(r, 0, t) == v'2 Re{A(r, t)eik(&-ws1l}, (38) 

where A(r, t) is an appropriate amplitude function 
based on the second term on the right side of either 
( 30) or ( 31). Since ws is a function of radius, ( 38) will 
include an explicit time dependence in some of the 
terms associated with radial derivatives of the Lapla
cian. For sufficiently large t, only the term possessing 
the highest order explicit dependence on t needs to be 
retained, which produces 

tA(r, 0, t) 

= -Re{[ ( kta;,sr + (;r]A(r, t)eik(&-wstl}, 

(39) 

iri which the term generated by the azimuthal deriva
tives in the Laplacian has been retained for comparison. 
Note that the expression k/r inside the brackets rep
resents the inverse of the perturbation azimuthal length 
scale at radius r. If the first term in brackets is treated 
similarly, and the length scales are defined as 

Lo==- LR=l kt-r I aws 
k' ar ' (40a,b) 

then ( 39) may be expressed as 

fA(r, 0, t) = -Re{[ Af;/) + At•/)]eik(&-wst)}. 

(41) 

4 a 
~ 3 ~ es 2 

~ u z 0 

~ -1 if.) 

s -2 
I 
>- -3 

-4 

The local dynamics of the damping process may be 
explained in terms of( 41) as follows. Under the influ
ence of the radial shear of ws, the radial length scale 
of the perturbation at any point in the domain exhibits 
an inverse dependence on t, while the azimuthal length 
scale remains unaltered. Since this model conserves 
perturbation vorticity, the left side of ( 41 ) maintains 
a constant magnitude. A continuing decrease in LR 
thus requires the amplitude of the perturbation 
streamfunction to decrease proportional to t- 2 so that 
the right side of ( 41 ) maintains a constant magnitude. 
This constraint may also be argued conceptually from 
the viewpoint that vorticity is a velocity change over 
some length scale. If the length scale is decreasing, then 
the velocity change must also decrease to conserve vor
ticity. This process, which is a time sequence of per
turbation vorticity using ( 32) with a ~-induced initial 
asymmetry, is shown in Fig. 7. The reduction in the 
radial length scale due to the shearing process is clearly 
illustrated by the decreasing radial spacing of the iso
lines of vorticity with time. 

The results in section 3 show that vortex stability to 
asymmetric perturbations is strongly dependent on the 
spatial structure of the initial perturbation. From ( 40b ), 
this behavior can be associated with two factors that 
influence LR 's inverse dependence on t. The first is the 
perturbation wavenumber k, which results in pertur
bations with a higher wavenumber damping faster than 
those with a low wavenumber, if the radial structures 
are similar. This is the case for the wavenumber 1 and 
2 convection-induced asymmetries ( Fig. 3), which dif
fer little in radial dependence ( Fig. 2). The second fac
tor in ( 40b) is the racjial shear of the symmetric angular 
wind, which is strongly dependent on radius. Thus, the 
shearing process reduces LR much more rapidly in the 
inner part of the vortex relative to the outer regions, 
which explains why the perturbed vortex in Fig. 5b has 
achieved an essentially axisymmetric state in the inner 
region while the outer region remains distorted. This 
shearing distribution also explains why the speed of 
the damping process depends on the radial structure 
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FIG. 7. (a)-(c) Perturbation vorticity (solid, cyclonic; dashed, anticyclonic) for a /3-induced 
asymmetry at t = 0, I and 2 hours, respectively. Contour interval is 9.1 X 10- 6 s- 1• 
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of the perturbation vorticity. An initial perturbation 
that decreases in magnitude more slowly with increas
ing radius has a greater fraction of its kinetic energy at 
larger radii than does a perturbation that decreases 
rapidly with radius. Since the radial shear of ws de
creases rapidly with radius, it will take longer to transfer 
the same amount of kinetic energy from the first per
turbation. Nevertheless, energy transfer still takes place 
rapidly near the inner boundary. This is illustrated in 
Fig. 6 since the symmetric vortex windspeed increases 
almost immediately near the inner boundary and is 
followed by speed increases at larger radii with increas
ing time. 

b. Verification with independent numerical results 

Insight into the impact of using a Rankine basic state 
vortex in this model can be gained by comparing the 
present results with a similar· model that uses a non
Rankine vortex. McCalpin 's ( 1987) quasi-geostrophic 
reduced-gravity numerical model of an initially per
turbed ocean eddy will be used for this purpose. The 
difference between the dynamical frameworks of the 
two models is not a significant issue since this NDBT 
model can be readily reformulated as a quasi-geo
strophic reduced-gravity model. The result is that SA is 
replaced by perturbation potential vorticity in ( 12a) 
and that Vs becomes a K 1 exponential Bessel function 
having zero potential vorticity. 

The main difficulty in comparing the two models. is 
McCalpin 's choice of Gaussian radial dependence for 
both the symmetric and asymmetric components of 
the eddy. Additionally, McCalpin characterized the 
damping of perturbation energy in terms of an expo
nential decay time scale, whereas the continuous spec
trum response in this model is algebraic in time. Nev
ertheless, if the convection-induced asymmetries used 
here are considered to be roughly equivalent to Gaus
sian perturbations, then McCalpin 's wavenumber 2 
decay tim~ scale of .1.5 times the symmetric flow cir
culation time ( at the radius of maximum velocity) may 
be compared to the 0.8 h "exponential" time scale g1ven 
by Fig. 4a for a wavenumber 2 convection-induced 
asymmetry. Using the 1.75 h circulation time for Vs• 

at r * = RM• in this model, the damping rate here is 
approximately 3 times faster than in McCalpin's model. 
This difference is not surprising since a Gaussian vortex 
has an extremely strong and rapidly decreasing radial 
gradient of symmetric vorticity just outside RM•, that 
should cause a significant, radially variable retrogres
sion that can substantially reduce . the rate of pertur
bation tilting by the symmetric flow. This assertion is 
supported by McCalpin 's observation that perturba
tions were advected around the eddy at only 20% of 
tlie maximum tangential velocity. Tangential winds in 
a TC decay much more slowly with increasing radius 
than a Gaussian vortex, and thus will have a symmetric 
vorticity gradient that is comparatively much smaller 

and decreases more slowly with radius .. Thus, it may 
be reasonably argued that the damping rates of this 
model better represent those associated with typical 
TC wind profiles. This argument is also supported by 
the good agreement between the 24 h adjustment pe
riod cited in NDBT numerical studies of TC motion 
on a /j-plane and the kinetic energy transfer rates in 
Figs. 4b and 6. With regard to the influence of pertur
bation wavenumber, McCalpin's wavenumber 3 decay 
time scale is 2.6 times shorter than the wavenumber 2 
time scale, which indicates a wavenumber dependence 
similar to that above. 

Earlier it was noted that choosing Rankine sym
metric vortex excludes potentially important discrete 
normal modes. When McCalpin 's model was run on 
an f plane, approximately 99% of the energy initially 
present in the imposed perturbation was transferred to 
the symmetric component. Such a response indicates 
that virtually no perturbation energy was projected 
onto any discrete normal modes that might exist due 
to the presence of a symmetric vorticity gradient. Thus, 
the exclusion of discrete mode processes by the choice 
of a Rankine vortex for this model appears justifiable 
for transient perturbation analysis. However, this does· 
not rule out the potential importance of discrete modes 
in the steady-state component of a forc:ed perturbation 
response. 

5. Model application 

a. Free versus forced system relationships 

The motivation for the present modeling approach 
has been to exploit the analytical tractability of an un
forced model for analyzing transient responses. The 
closed-form solutions obtained via this technique have 
permitted a rigorous and illuminating analysis of the 
perturbation damping process. To apply these results 
to the forced problem, it is necessary to establish what 
aspects of a forced-perturbation response can be rea
sonably inferred from the free-perturbation response. 

First, it can be shown by superposition that the full 
solution of a linear partial differential equation with 
steady forcing and nonhomogeneous boundary con
ditions can be represented as a sum ofa steady-state 
part that' satisfies the original equation with forcing 
and boundary conditions, and a transient part that sat
isfies the homogeneous equation and that results from 
an initial condition that is different from the steady
state solution. Implicit in such a partitioning of the full 
solution is the assumption that the dynamical system 
actually supports a nontrivial steady-state condition. 
In the case of /j-induced asymmetries, the NDBT nu
merical study of FE indicates that . the asymmetric 
component of the vortex does tend toward a steady
state condition over the region where the symmetric 
vortex is significantly stronger than · the asymmetric 
component ( i.e., over the region where the present lin
ear model is valid). Although·DM did not comment 
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on vortex asymmetries, his illustration of a slowly 
varying TC motion track after 24 h indicates that vortex 
asymmetries associated with steady, spatially variable 
environmental winds also tend toward. a quasi-steady 
state. Thus, the properties ( e.g., damping time scales, 
azimuthal wavenumber dependence, etc.) of the un
forced transient responses shown here may be expected 
to be relevant to the initial adjustment phase of a sym
metric NDBT vortex on a /)-plane with steady envi
ronmental winds. 

Second, in a linear dynamical system that is first 
order in time and exhibits a damped transient response 
to steady forcing, the magnitude of the steady-state 
condition can be expected to be proportional to the 
magnitude of the forcing, but inversely proportional 
to the magnitude of any parameter that acts to increase 
the rate of transient damping. Such an assertion is for
mally verifiable in the case of a constant coefficient 
ordinary differential equation, and may be reasonably 
extended to NDBT vortex dynamics for situations 
where numerical evidence (i.e., FE; OM) confirms a 
damped transient response to steady asymmetric forc
ing. Thus, the impact of perturbation azimuthal and 
radial structure on the damping process in this model 
can be expected to influence the steady-state response 
to asymmetric forcing. 

b. Barotropic vortex adjustment to steady forcing 

The process by which vortex adjustment to steady 
asymmetric forcing occurs in the various NDBT sim
ulations of TC motion (Anthes and Hoke 1975; Kitade 
198 I; DM; Chan and Williams 1987; FE) may be ex
plained as follows. As the initially symmetric vortex 
advects planetary and envirqnmental vorticity or is 
distorted by environmental wind shear and vortex mo
tion, an asymmetric component of vortex vorticity is 
generated from the symmetric component as indicated 
in ( 21 ) . This process is a transfer of kinetic energy 
from the symmetric vortex to the growing asymmetry. 
If "self-advection" ( i.e., vortex flow advecting vortex 
vorticity) is omitted as in Chan and Williams, then the 
energy transfer continues unchecked and causes rapid 
dispersion of the vortex. The analysis in section 4a 
showed, however, that advection of the asymmetric 
vortex vorticity by the radially sheared symmetric an
gular wind acts to transfer perturbation energy to the 
symmetric vortex ( Fig. 6) in this model. In the NDBT 
models just cited, the rate of energy transfer to the 
symmetric vortex apparently grows as the forced 
asymmetry grows until a quasi-steady balance is 
achieved over the region in which the symmetric vor
ticity is significantly greater than the asymmetric vor
ticity. This balance is in large measure achieved by 
about 24 h for asymmetries associated with vortex ad
vection of environmental absolute vorticity ( Fig. 4b), 
and occurs much faster for asymmetries associated with 
distortion of the vortex by the environment, vortex 

motion, or asymmetric convection (Fig. 4a). This 
variability in adjustment time scale for different asym
metries is due primarily to the difference in radial de
pendence between Vs(r- 1) and the radial gradient of 
.i"s(r- 3) from which the asymmetries are generated. Al
though these particular dependences are specific to a 
near-Rankine vortex, the principal applies generally 
since the symmetric vorticity gradient must decrease 
faster than the symmetric wind for all vortical flows 
that tend toward zero with increasing radius. 

The steady-state phase and amplitude toward which 
the asymmetric structure tends clearly cannot be ad
dressed with a homogeneous model that also excludes 
the potentially important influence of discrete normal 
modes. However, two aspects of the steady state may 
reasonably be inferred. First, the steady-state asym
metry will likely retain a down-shear tilt to maintain 
the vortex against the continuous dispersive effect of 
the asymmetric forcing. Such a feature was noted by 
FE in the structure of a /3-induced asymmetry. The 
second inference concerns the combination of radial 
and azimuthal dependence that is likely to be present 
in the steady-state asymmetry. In the absence of en
vironmental winds, the /)-effect results in a quasi-steady 
vortex asymmetry that is essentially wavenumber I in 
structure (FE). As shown in section 2c, however, a 
horizontally variable environmental windfield will act 
to induce higher wavenumbers through distortion of 
the symmetric vortex. The spatial structure of the re
sultant asymmetry will depend on both the spatial 
structure of the environmental forcing and the depen
dence of the damping mechanism on perturbation 
structure. The authors are not aware of any detailed 
analyses of the wavenumber distribution and radial 
structure of TC asymmetries in either composite ob
servations or model runs using realistic windfields. 
Thus, it is merely noted that the wavenumber and ra
dial dependences of the stabilization mechanism shown 
here should contribute to the predominance of low 
wavenumbers and increasing axisymmetry toward the 
vortex center respectively. 

6. Discussion and conclusion 

The principal contribution of this paper has been to 
identify the asymmetry-damping influence of sym
metric angular windshear as the mechanism by which 
a NDBT vortex counters dispersive and distorting in
fluences over the region dominated by nonlinear self
advection. The present "linear" model captures the 
essence of the self-advection process by linearizing with 
respect to a nonzero symmetric basic state. In the 
NDBT models cited in section 5b, the asymmetry
damping mechanism acts as a negative feedback pro
cess in which a kinetic energy transfer from the asym
metric to the symmetric component of the vortex oc
curs as a result of, but in opposition to, the kinetic 
energy transfer from symmetric to asymmetric com 0 

ponent induced by external forcing. 
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In the previous subsection, the stabilization mech
anism was applied to the initial adjustment of a sym
metric NDBT model vortex subjected to steady asym
metric forcing; however, the principle can also explain· 
NDBT vortex adjustment to changes in the external 
forcing with time. For example, assume that a quasi
steady vortex asymmetry exists due to previously steady 
asymmetric forcing, and that a change now occurs in 
the environmental windfield, e.g., in {Jp (24) or Sp 
(26 ). If the change is such that the magnitude of asym
metric forcing at a particular wavenumber is reduced 
(increased), then the shear-induced feedback of energy 
from the existing asymmetry to the symmetric vortex 
will be greater (less) than the environmentally forced 
transfer of energy from the symmetric vortex to the 
asymmetry. As a result, the vortex will adjust toward 
a less (more) asymmetric state at that particular wave
number until a quasi-steady balance is reestablished. 
A similar adjustment process would take place if the 
radial distribution of the forcing at any wavenumber 
is altered by changes in symmetric vortex structure. If 
the duration of the external forcing change is brief 
compared to the time scale of the stabilization mech
anism (i.e., approximating a step function), then the 
adjustment time should be on the order of the stabi
lization time scale. Conversely, if the forcing is slowly 
varying in time compared to the stabilization time scale 
( e.g., a vortex slowly moving through a steady, but 
spatially variable windfield as in OM), then the ad
justment process should have a time scale appropriate 
to the "apparent variability" of the environment from 
a reference frame moving with the vortex. Such a sce
nario is not intended to be all inclusive, since dynamical 
situations may exist in which the vortex might be bar
otropically unstable to asymmetric forcing, or in which 
temporary continuous spectum growth might occur 
analogous to the temporary baroclinic growth mech
anism studied by Farrell ( 1982). 

Symmetric angular windshear outside the radius of 
maximum winds can be expected to exert a dominant 
influence on the stability of any barotropic vortex. 
Variation between TC motion tracks in NDBT and 
divergent barotropic numerical models ( Anthes and 
Hoke 1975; Kitade 1981) may suggest that the role of 
the present stabilization mechanism will be quantita
tively modified to the extent that divergence is included. 
In baroclinic model vortices or in a TC, the role of a 
barotropic stability mechanism in influencing vortex 
asymmetries will depend on the competing influence 
of the inertial stability/ instability made possible by the 
introduction of a secondary circulation into the dy
namics. Modeling studies of ocean eddies indicate that 
coupling between vertical modes can also be expected 
to alter vortex stability and associated motion 
( Mc Williams and Flierl 1979). Significant radial shear 
in the tangential winds exists to large heights in a ma
ture TC ( e.g., Hawkins and lmbembo 1976, Fig. 13; 
Frank 1977, Fig. 9). Thus, the essential element that 

enables the barotropic vortex stability mechanism to 
operate is certainly present in TCs. In addition, the 
qualitative similarity of TC motion tracks in baroclinic 
models (Madala and Piascek 1975; Kitade 1980) to 
barotropic results provides at least circumstantial ev
idence suggesting that baroclinic vortex stability is a 
modification to, rather than being fundamentally dif
ferent from, barotropic vortex stability. Since the mag
nitude of TC tangential windshear decreases with height 
above the boundary layer and with increasing radius 
outside the radius of maximum winds, a barotropic 
stability mechanism should be most influential in the 
region where the TCs convective forcing is initiated. 

The present model is being extended to investigate 
steady-state NDBT vortex asymmetric structure and 
associated motion of the vortex center in response to 
explicit forcing. The new model will include variable 
non-Rankine symmetric vortex structure to retain the 
potential influence of discrete asymmetric normal 
modes as well as to facilitate further analysis of the 
dependence of vortex asymmetries and motion on the 
structure of the symmetric vortex as recently identified 
by Chan and Williams ( 1987) and FE. In principle, 
the analytical method can be extended to a multilayer 
quasi-geostrophic dynamical system, which may pro
vide some insights into the influence ofbaroclinity on 
TC stability and motion. 

Acknowledgments. The authors would like to thank 
Prof. Russell Elsberry, Dr. Greg Holland and Dr. Lee
Or Merkine for many helpful discussions. This research 
was in part conducted for the Office of Naval Research 
(Marine Meteorology Program) and was funded by 
the Naval Postgraduate School. The numerical calcu
lations were carried out at the W. R. Church Computer 
Center of the Naval Postgraduate School. 

REFERENCES 

Adem, J ., 1956: A series solution for the barotropic vorticity equation 
and its application in the study of atmospheric vortices. Tel/us, 
8, 364-372. 

Anthes, R. A., and J. E. Hoke, I 97 5: The effect of horizontal diver
gence and the latitudinal variation of the Coriolis parameter of 
the drift ofa model hurricane. Mon. Wea. Rev., 9, 757-763. 

Anthes, R. A., 1982: Tropical cyclones: their evolution, structure 
and effects. Meteor. Monogr., Vol. 19, No. 41, Amer. Meteor. 
Soc., 208 pp. 

Boyd, J.P., 1983: The continuous spectrum of linear Couette flow 
with the Beta effect. J. Atmos. Sci., 40, 2394-2308. 

Case, K. M., I 960: Stability of plane couette flow. Phys. Fluids, 8, 
143-148. 

Chan, J. C.-L., 1986: Supertyphoon Abby-An example of present 
track forecast inadequacies. Wea. Forecasting, 1, 113-126. 

--, and W. M. Gray, 1982: Tropical cyclot1e movement and sur
rounding flow relationship. Mon. Wea. Rev., 110, 1354-1374. 

--, and R. T. Williams, 1987: Analytical and numerical studies 
of the Beta-effect in tropical cyclone motion. Part I: Zero mean 
flow. J. Atmos. Sci., 44, 1257-1265. 

Cheney, R. E., and P. L. Richardson, 1976: Observed decay of a 
cyclonic Gulf Stream ring. Deep-Sea Res., 23, 143-155. 



I 5 OCTOBER I 989 L. E. CARR III AND R. T. WILLIAMS 3191 

DeMaria, M., I 985: Tropical cyclone motion in a nondivergent 
barotropic model. Mon. Wea. Rev., 113, I 199-1210. 

Farrell, B. F., 1982: The initial growth of disturbances in a baroclinic 
flow. J. Atmos. Sci., 39, 1663-1686. 

--, 1987: On developing disturbances in shear. J. Atmos. Sci., 44, 
2718-2727. 

Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure 
related to tropical cyclone motion. J. Atmos. Sci., 46, 975-990. 

Flierl, G. R., V. D. Larichev, J. C. McWilliams and G. M. Reznik, 
1980: The dynamics ofbaroclinic and barotropic solitary eddies. 
Dyn. Atmos. Oceans, 5, 1-41. 

Frank, W. M., 1977: The structure and energetics of the tropical 
cyclone. I: Storm structure. Mon. Wea. Rev., 105, 1119-1135. 

Hawkins, H.F., and S. M. Imbembo, 1976: The structure ofa small, 
intense hurricane, Inez 1966. Mon. Wea. Rev., 104, 418-442. 

Holland, G. J., l 983: Tropical cyclone motion: Environmental in
teraction plus a Beta effect. J. Atmos. Sci .. 40, 328-342. 

--, 1984: Tropical cyclone motion: A comparison of theory and 
observation. J. Atmos. Sci., 41, 68-75. 

JTWC Staff, 1987: Tropical cyclones of the Western North Pacific, 
1986. Mar. Wea. Log. 31, No. 4, 11-18. 

Kao, S. K., 1955: Wave motion in a rotating Couette flow of a viscous 
fluid. Tel/us, 7, 372-380. 

Kasahara, A., 1957: The numerical prediction of hurricane movement 
with the barotropic model. J. Meteor., 14, 386-402. 

K.itade, T., 1980: Numerical experiments of tropical cyclones on a 
plane with variable Coriolis parameter. J. Meteor. Soc. Japan 
58, 471-488. 

--, I 981: A numerical study of the vortex motion with barotropic 
mod.els. J. Meteor. Soc. Japan, 59, 801-807. 

Madala, R. V., and S. A. Piacsek, 1975: Numerical simulation of 
asymmetric hurricanes on a ,6-plane with vertical shear. Tellus, 
27, 453-467. 

McCalpin, J. D., 1987: On the adjustment of azimuthally perturbed 
vortices. J. Geophys. Res., 92, 82 I 3-8225. 

McWilliams, J.C., and G. R. Flierl, 1979: On the evolution of isolated 
nonlinear vortices. J. Phys. Oceanogr., 9, I 155-1182. 

Merrill, R. T., 1984: A comparison of large and small tropical cy
clones. Mon. Wea. Rev., 112, 1408-1418. 

Mied, R. P., and G. J. Lindemann, 1979: The propagation and evo
lution of cyclonic Gulf Stream rings. J. Phys. Oceanogr., 9, I I 83-
1206. 

Pedlosky, J., 1964: An initial value problem in the theory ofbaroclinic 
instability. Tellus, 16, 12-17. 

Willoughby, H. E., 1988: Linear motion of a shallow-water, barotropic 
vortex. J. Atmos. Sci., 45, 1906-1928. 


