
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1993-03-12

Dynamic Factorization in Large-Scale Optimization

Brown, Gerald G.; Olson, Michael P.
Naval Postgraduate School, Monterey, CA

https://hdl.handle.net/10945/62449

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

r
NPSOR-93-008

NAVAL POSTGRADUATE SCHOOL

Monterey, California

DYNAMIC FACTORIZATION IN
LARGE-SCALE OPTIMIZATION

Gerald G. Brown

Michael P. Olson

March 15, 1990

(Revised March 12, 1993)

Approved for public release; distribution is unlimited.

FedDocs
D 208.14/2
NPS-OR-93-008

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

Rear Admiral T. A. Mercer Harrison Shull

Superintendent Provost

This report was prepared in conjunction with research funded by the Air

Force Office of Scientific Research and the Chief of Naval Research, Washington,

D.C.

This report was prepared by:

UNCLASSIFIED
5ECUH I I V CLASSIHCA I ION OH H IS PAGb

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943-5101

REPORT DOCUMENTATION PAGE
la HbMOH I SbCUHl I V CLASS IHCA I ION

UNCLASSIFIED

Form Approved
OMB No. 0704-0188

2a 5ECUMI I V CLA5SIHCAHON AUTHORITY

lb. HbiJ IHIC I IVb MARKINGS

"3—DISIRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution is

unlimited.2b. UfcCLAi& ll-ICA I ION/DOWNGRADING SCHbUULb

PERI-OUMINGOHGANIZMION HbPOHl NUMULR(S)

NPSOR-93-008
MONIIOHINGOHGANIZAIION REPORT NUMBER(S)

6a NAMb Ob PbHbORM ING ORGAN I2A T ION

Naval Postgraduate School

6b. OFFICE SYMBOL
(If applicable)

OR/BW

7a NAMbOF-MONIIOUINGOHGANIZMION

'5c. ADDRbSS (
City, State, and ZIP Code)

Monterey, CA 93943

7b" AUUHhSS {City, State, andZIP Code)

NAME OP FUND ING/SPONSORING
ORGANIZATION

Air Force Office of Scientific

Research

Chief of Naval Research

Sb. OFFICE SYMBOL
(If applicable)

PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
AFOSR - MIPR-92-0007

CNR - N0007493WR24006

W

8c. ADDRbSS (
City, State, and ZIP Code)

Washington, DC
10. SOURCE Ob bUNU ING NUMBERS
PROGRAM
ELEMENT NO.

11. 1 1 1 Lb (Include Security Classification)

Dynamic Factorization in Large-Scale Optimization

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO

12. PbHSONALAUTHOR(S)

Gerald G. Brown and Michael P. Olson
5a T YPEOFRbPOR I

Technical
SUPPLEMENTARY NOIAIION

13b. TIME COVERED
FROM TO

14. DA I b Ob RbPOR I
(
Year, month day)

1993, March 12
16"

15 PAGbCOUNI
39

C05ATI CODES 15. SUBJECT TERMS (Continue on reverse it necessary and identity by block number)17

FIELD GROUP SUB-GROUP

19. ABSTRACT
(
Continue on reverse if necessary and identify by block number)

Factorization of linear programming (LP) models enables a large portion of the LP tableau to be

represented implicitly and generated from the remaining explicit part. Dynamic factorization admits

algebraic elements which change in dimension during the course of solution. A unifying mathematical

framework for dynamic row factorization is presented with three algorithms which derive from different

LP model row structures: generalized upper bound rows, pure network rows, and generalized network

rows. Each of these structures is a generalization of its predecessors, and each corresponding algorithm

exhibits just enough additional richness to accommodate the structure at hand within the unified

framework. Implementation and computational results are presented for a variety of real-world models.

These results suggest that each of these algorithms is superior to the traditional, non-factorized approach,

with the degree of improvement depending upon the size and quality of the row factorization identified.

21 ABSTRACT SECURITY CLASSICIATION

UNCLASSIFIED
20. DISTRIBUTION/AVAILABILITY OF AB51 MAC I

UNCLASSIFIED/UNLIMITED] SAME AS RPT.] DTIC USERS

22b. I bLLPHONE (Include Area Code)

(408) 656-2140
2c. OFFICE SYMBOL

OR/BW
22a NAMb Ob RbSPONSIBLL INDIVIDUAL

G. G. Brown
DD Form 1473, JUN 86 Previous editions are obsolete.

S/N 0102-LF-014-6603
SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Dynamic Factorization in Large-Scale Optimization

Gerald G. Brown
Michael P. Olson

Naval Postgraduate School, Monterey, California 93943

March 15, 1990 (revised March 12, 1993)

Abstract

Factorization of linear programming (LP) models enables a large portion of the LP
tableau to be represented implicitly and generated from the remaining explicit part. Dy-

namic factorization admits algebraic elements which change in dimension during the course

of solution. A unifying mathematical framework for dynamic row factorization is presented

with three algorithms which derive from different LP model row structures: generalized

upper bound rows, pure network rows, and generalized network rows. Each of these struc-

tures is a generalization of its predecessors, and each corresponding algorithm exhibits just

enough additional richness to accommodate the structure at hand within the unified frame-

work. Implementation and computational results are presented for a variety of real-world

models. These results suggest that each of these algorithms is superior to the traditional,

non-factorized approach, with the degree of improvement depending upon the size and qual-

ity of the row factorization identified.

1 Introduction

A recurring theme in the development of algorithms for linear programming has been the iden-

tification and exploitation of special problem structure. Ideas as apparently disparate as the

bounded- variable simplex method, primal and dual decomposition methods, pure and gener-

alized network primal simplex algorithms, primal partitioning and column generation schemes

may be unified to a degree with this view.

The factorization approach introduced by Graves and McBride [1976] isolates special struc-

ture in LP tableaus. We are interested in using factorization to reinterpret existing algorithms,

and to discover common principles and apply them to develop new algorithms. Although all

algorithms developed this way will, in theory, solve any LP, the efficiency of any particular fac-

torization approach will be influenced by the relative number of factored constraints and their

influence on the algorithm: the size and quality of the special structure isolated determines

the influence of any particular factorization applied to any particular LP.

Based on prior work by Brown and Graves [1975], in which generalized upper bound rows

were successfully incorporated in a large-scale optimization system, we are interested in pursuing

dynamic row factorization, where the dimension of the factored structure may vary (or even

fail to be present) as the solution progresses. In our setting, we require the row structure of

the model instance to be specified prior to solution, and that this structure remain fixed during

solution. An extension of this approach is to allow the row structure to vary as the model is

solved: this is a conceptually simple extension of the approach.

Each algorithm is developed by factoring the constraints of the LP model into two classes:

those that have the special structure {factored) and those that do not {explicit). This constraint

factorization induces a factored structure in the LP tableaus which is exploited computationally.

We demonstrate the dynamic factorization approach for three special structures:

generalized upper bound rows;

pure network rows; and

generalized network rows.

We implement each of the factorization algorithms by integrating it within the X-System
(Brown and Graves [1975]).

While the terms "partitioning" and "factorization" are frequently used interchangeably in

the literature, we observe a distinction between the two approaches. We consider partitioning

methods to be based on special structure in the original problem instance, which need not

induce special structure in the LP tableau—in fact, the method need not be tableau-based.

In contrast, factorization methods are based on special structure which occurs in bases and
thus in the basic tableau. Thus, we classify dual decomposition (Dantzig and Wolfe [I960]),

primal decomposition (Benders [1962]), and primal partitioning (Rosen [1964]) as examples of

partitioning methods.

Perhaps the earliest example of what we consider factorization is the treatment of simple

upper bounds by Dantzig [1954] and [1963] and, independently, by Charnes and Lemke [1954].

They observe that it is more efficient to enforce the "logical" upper bound constraints with

logical tests within the algorithm rather than treat them explicitly along with other "structural"

constraints. While not originally presented in the context of a formal tableau factorization, the

approach is easily viewed as such.

The mutual primal-dual method of Graves [1965] focuses attention on the special role of

nonnegativity constraints in linear programming. A clear distinction is drawn between the

computational convenience of treating nonnegativity constraints implicitly rather than explic-

itly and the unambiguous mathematical equivalence of all problem constraints, structural or

nonnegativity. Emphasizing the special importance of inequality constraints, the approach
yields an elegant theory and, as we will see, efficient implementations. We view this algorithm
as the first formal example of factorization.

A similar primal-dual algorithm is presented by Balinski and Gomory [1965]. Related work,
in which efforts are made to exclude slacks from the product-form representation of the primal
basis, includes that of Zoutendijk [1970] and Powell [1975].

Dantzig and Van Slyke [1967] extend the earlier work for simple upper bounds and lend
a more structured treatment to generalized upper bounds (GUB). In a problem with p GUB
constraints and m structural constraints, their approach requires a working basis of dimension
(m -f 1), a considerable savings when p is large.

Hartman and Lasdon [1972] specialize this approach to the multicommodity capacitated

transshipment problem. In this case, the structure of the basic pure network columns in-

troduces additional structure into the working basis, allowing further simplifications in basis

representation and update techniques. Helgason and Kennington [1977] develop techniques for

representing the working basis in product form and provide graphic interpretation of the basis

updates. Kennington [1977] reports an implementation of the algorithm.

Mc Bride [1972] and Graves and McBride [1976] formalize and generalize the factorization

approach. They view factorization as a unifying framework for tableau- based simplex special-

izations and illustrate this by developing a variation of the GUB algorithm of Dantzig and Van
Slyke and a GUB algorithm for the doubly-coupled linear programs of Hartman and Lasdon
[1970]. They present a new algorithm for the set partitioning LP and an equality-constrained

form of the pure network with side constraints model. Brown and Graves [1975] report an
implementation of inequality-form, dynamic GUB row factorization for large-scale problems.

Schrage [1975] extends the succession of simple and generalized upper bounds by introducing

variable upper bounds (VUB), which are constraints of the form x
3
< x^, where x^ is said to be

the variable upper bound of xy Schrage implicitly represents the VUB constraints by expressing

VUB variables in terms of other variables. This permits the basis representation to be treated in

two parts, one a large matrix which changes infrequently and thus needs only occasional update,

and the other a small working basis which requires regular attention. Thus, computation and
storage savings may be realized. Schrage [1978] extends these ideas to what he calls generalized

VUB (GVUB) constraints, which arise frequently in models with fixed charges.

Klingman and Russell [1975] sketch a factorization method for solving transportation prob-

lems with side constraints. They suggest techniques for performing simplex iterations and
updating the problem representation. Chen and Saigal [1977] present a similar approach for

solving capacitated network flow problems with additional linear constraints. Both of these pre-

sentations employ a graphical description of the basis update and treat the basis in two parts:

one corresponding to a rooted spanning tree defined on the underlying graph, and the other

a general working basis. Glover, et al. [1978] report an implementation of the Klingman and

Russell design, but one which (curiously) only accommodates a single side constraint. McBride

[1989] reports an implementation which requires the pure network rows to be equalities and

allows more than one side constraint.

Generalized networks with side constraints are addressed by Hultz and Klingman [1976],

who present details for the simplex priceout, column generation, and basis update. Hultz and

Klingman [1978] report an implementation that (curiously) solves the "singularly constrained"

generalized network problem. McBride [1989] reports an implementation that is not restricted

to a single side constraint.

The factorization approach has been extended by consideration of embedded structures.

Glover and Klingman [1981] consider an LP with embedded pure network structure, i.e., the

pure network structure appears in only a subset of the rows and columns of the technological

coefficient matrix. They give an algorithm similar in spirit to their pure network with side

constraint model, but the presence of the "side variables" significantly complicates the basis

representation and update. They report an implementation of the algorithm but (curiously)

restrict test problems to have no complicating variables.

McBride [1985] solves an LP with embedded generalized network structure, presenting meth-

ods for pricing, column generation, basis representation update and data structures. A success-

ful implementation is reported to be about five times faster than MINOS (ca. 1977: Murtagh

and Saunders [1977]) for the models tested.

Algorithms to solve problems with special substructures have motivated research to effi-

ciently identify such substructures. Brearley, Mitra and Williams [1975] describe algorithms

for detecting GUB row sets and exclusive-row structure sets (a set of rows whose structure

may be transformed to GUB by column scaling). Greenberg and Rarick [1974] and Brown and

Thomen [1980] develop algorithms to identify GUB sets. Brown and Wright [1984] identify

pure network constraint substructures. Brown, McBride and Wood [1985] present a method for

locating embedded and row-only generalized network structures.

Todd [1983] develops a geometric interpretation of factorization which is for our purposes

equivalent to the algebraic development of Graves and McBride [1976].

In the following sections we establish notational conventions, develop the mathematical

foundation of a primal-dual simplex method and show the effects of row- factorization. Next,

a general row- factorization algorithm is developed, specialized to GUB, pure network, and

generalized network rows, and tested on a suite of real-world problems. Finally, we discuss how
the methods can be generalized further and how they can be applied more effectively.

2 Mathematical Preliminaries

The traditional statement of the linear programming (LP) problem is

run :

y

wy

s.t. a,y < n , i = 1,.. . ,m

e,y>0 ,; = !,. . .,n

(LP)

where y is an n- vector of decision variables, w a vector of cost coefficients, each a* an n-vector

of technological transformation coefficients, each r; a scalar right-hand side coefficient, and e
;

the j
th

unit vector. While this statement of the problem is clear and unambiguous, there are

reasons for preferring an alternative. The insistence upon drawing a formal distinction between

the "structural" constraints any < r% and the "nonnegativity" constraints e
; y > obscures

the mathematical structure of the problem by suggesting that the two types of constraints are

inherently different. Certainly the exploitation of the special structure of the e^y > constraints

leads to computational efficiencies; however, in our theoretical development of the algorithm,

we prefer to treat them simply as general inequality constraints.

In order to achieve a consistent form, we rewrite the nonnegativity constraints as —e
7
-y <

and group them with the structural constraints. The problem statement then becomes

(PLP) min : wy

s.t. : diy < Ti i = 1,. ..,m + n,

where wy is called the extremal function.

From the standpoint of a primal algorithm, a matrix partitioned form of the primal tableau

is derived. Let {al} , at2 , . .
.

, a,n } be a basis for Rn
at y . For notational convenience we will

partition the constraints into two sets, those that are basic (binding) at y° and those that are

nonbasic (not necessarily binding) at y°

B =

'

6,

'

o»,

r

/i

"

7 M
b2

=
Oj

2

; / =
h =

Ti2

.
bn

. n ./». . ^n .

D =

'

di a
»n+ l

d2
=

a
»n+ 2

U-m
.
a»n+m

9\ rtn+l

92
=

7
'»n+2

.
9m

_ .
rWm .

Using this notation, the current basic solution y° may be expressed as By — f, and since

the rows of B are by definition linearly independent, y° exists.

To isolate the important algebraic components let us assume that at the current basic

solution the basis consists of h structural constraints and (n — h) nonnegativity constraints.

Then

B =

"

6,

62

h
bh+i

—

bh+2

_
bn

au

—

e

—

e

jh+7

Jn

and /

/] r
»!

h ^2

fh

fh+\
=

fh+2

./«

In partitioned matrix form,

B =

h n—h

r ^\
A\\ An

V -I)

}h

} n — h
,

and thus

P= -B~ x =

\ °

i-h

(\
-A~

x { -ArfAn

1 J

}h

}n — h

Similarly, D can be written as

D

di
' ~ e

;> 9\
'

d2 ~ en 92

dh

dh+\
= and g —

9h

9h+i
=

r
»/l+l

dh+2 au+2 9h+2 r
»/.+2

dm atn+m .
9m

.
7'Wm .

and in partitioned matrix form

n— h

/

D =

\
-I

V a 2 i
a22 J

}h

}m — h

Then

n—h

DP = -DB~' = AT'

A

12 }h

^-^i^h1 A22 - A2iAu
1

Ai 2) }m-h ,

and we shall call DP the principal part of the tableau. By partitioning w = (w\,W2), g =

(<?i> <?2)
T and y° = (y®, y®), the complete tableau may be written in partitioned matrix form as

/

n— h

A7}A, rf

\

-yl2i^n A22 - A2\ATl A\ 2 g2 - A 2 \y\ - A 22V2

\ -w\A n
l w2 - w\Au A\2 -wy /

}fc

} m — h

}1 •

Note that yj is displayed explicitly in this tableau. Also, y\ — since the corresponding

nonnegativity constraints are basic and thus binding.

The corresponding dual problem is

(DLP) max : xr
X

s.t. xaJ < w3

xei <
, j = 1 , . . . ,n

, i = 1, . . . ,m

To develop a matrix partitioned form of the dual tableau, we proceed as before. Assuming
the dual basis consists of h structural constraints and m — h nonnegativity constraints, we have

T =(t\t2 ,...,tm)
= (ajl ,aj*,...,ajh ,eik+\...,eim

)

u =(u l ,v?,...,um
)
=(wj\wh ,...,wjh ,0 0),

so

u- (u\u2
) = (w\0).

The nonbasic constraints are then

K = (k
]

, A:
2

, . .
.

, k
n

) = (e
11

, e
x

\ . .

.

, e\ ajh» ,...,aj»)

v = (v\v%...,vn) = (0,0, ...,0,iu'ft+\..., «>>»),

SO D= (v 1

, V
2
) = (0, w2

) .

The matrix partitioned form of the basis is then

T =

and with the choice of Q = T~

I \
A u

\A 2] I)

}h
,

} m — h

Q

/

A;

\-A 2l A u
l

with the remaining constraints forming

m— h

\

1)

}h
,

}m — h
,

K =

The principal part of the dual tableau is

/ An
A22

QK *n 1
'

I A X2

'

-A 2]AU
]

I
_

o yl22

A u
l A n

1 A i2

^2Mii ^22 - A 2\AU A\ 2

which we find to be exactly the principal part of the primal tableau, so

DP = QK .

Thus a single tableau representation supports both primal and dual algorithms.

3 Interpretation of Primal and Dual Forms

We may interpret a primal or dual algorithm as simply different perspectives of this same
tableau, wherein a primal algorithm basis change is viewed as exchanging primal constraints and
a dual basis change exchanges dual constraints. The classical Simplex Method may then
be interpreted as solving (PLP) using the dual perspective. That the classical Simplex

Method is naturally interpreted as a dual algorithm comes as a surprise to the conventionally

trained. However, the consequent mathematical insight is compelling, especially in light of

the notational simplification and apparent underlying role of A^ , which we refer to as the

transformation kernel.

There are several reasons for preferring a Primal-Dual algorithm to the Simplex Method.

From a computational standpoint, because slack variables are carried logically rather than

introduced explicitly, we are able to clearly identify the essential information needed to execute

the algorithm. The matrix A\l plays a key role in the calculation of the tableau, and the entire

tableau can be constructed from A\^ and original problem data. Since A^^ is a submatrix

of the inverse, T_1
, used by the Simplex Method, it is smaller and requires fewer arithmetic

operations to update than does T_1
.

A second advantage of a Primal-Dual Algorithm lies in the flexibility it offers for special-

ization to particular problem classes or structures. Indeed, it is the special structure and
simplicity of the nonnegativity constraints that motivate the development of the algorithm in

the first place. It is frequently the case that other special structures can be identified in classes

of (PLP). Examples of such structures include simple upper bounds, generalized upper bounds,

variable upper bounds, pure and generalized network substructures, etc. Such structure may be
"static" in that its nature and dimension remains fixed throughout the solution process, or the

structure may be "dynamic" in which case its precise nature and/or dimension may vary as the

problem is solved. Some special structures may be more strongly characterized by their column
structure and others by their row structure. The Primal-Dual perspective leads naturally to

explanations of the implications of virtually any such problem structure and greatly simplifies

the implementation of such a specialization.

When an LP appears as a subproblem in a more sophisticated solution setting (for example,

in a mixed integer programming problem or a nonlinear programming problem), the row/column
symmetry of a Primal-Dual Algorithm is of critical importance in specializing the solution

approach. The inherent symmetry of such an algorithm permits easy adaptation to branch-

and-bound and cutting-plane approaches to mixed integer programming, to column generation

settings, as well as to primal and dual decomposition techniques.

We believe the reason for this flexibility offered by the algorithm lies in its more complete
mathematical foundation. There is a natural consistency that arises from the choice of
a vector space having the same dimension as the problem variables that is lacking
in other approaches. A natural geometric interpretation of the solution trajectory follows di-

rectly from this development. Incidental issues such as finding an initial basic feasible

solution and dealing with degeneracy are resolved constructively in this math-
ematical framework [Graves 1965]. Other approaches resort to unnecessarily complicated

tangential efforts.

All the research results reported here can be developed, with some effort, in the framework
of the classical Simplex Method. However, we choose to present these results in the manner of

their development — the mutual Primal-Dual view presented by Graves.

4 Column and Row Generation

Rather than maintain a complete tableau DP, now consider the generation of just column c

of this tableau. Rewriting in a manner that highlights our intentions, and labelling row and
column partitions for identification

DP _ w

U) Uj)

(ii) \-A 2 i[A u
l

] A22 - A2i [Au
l

An] J

By properly sequencing our computations we will exploit the fact that region (ii) of a given

column is simply a linear combination of terms in region (i) of the same column.
Assume we want to place the current representation of column c into a work array z, which

we partition as z
T = (z{ , zj) to correspond to regions (i) and (ii). Expressed in terms of the

transformation kernel A^ , we compute column c as

if c is in (j),

and then

or, if c is in (jj),

and then

-2 = -A21 [z\]
;

z, = [Au\A12y] ,

z2 = (A22)

c - A2 \[zi]

Then the current representation of column c is available in zT — (zf,z%).
The computation of row r of the tableau proceeds in a similar manner. We now view the

principal part of the tableau as

0) Uj)

DP =

(«)

/ \

\[-^21^n] ^22+[-^21^nMl2^

If we want to place the current representation of row r in a work array 5 partitioned

conformably with (j) and (jj) as £ = (53,24), we compute
if row r is in (i),

h = [^i/lr ,

and then

or, if row r is in («),

and

= \zx\A 12

:3 = [(-^2iMn
1

]

^4 = (^22)r + foMu .

and the current representation of row r is available in 5 = (z.3,54).

We see that in each case calculations proceed by first using a representation of A^ to

compute a portion of the row or column and then using this initial computation and original

problem data to compute the remaining part. We will discover that our specializations ex-

tend this approach by introducing additional tableau partitions which allow this computational

strategy to be applied on a larger scale.

5 Transformation Kernel Update

The dynamic behavior of A^ is important. We see from the primal row basis B and nonbasic

rows D that the dimension of ^l^
1 corresponds to the number of basic structural constraints,

or, equivalently, to the number of nonbasic nonnegativity constraints (recall that if a nonnega-

tivity constraint is nonbasic and thus nonbinding, the corresponding variable may possibly be

nonzero). Recalling that our primal view of a basis exchange is as an exchange of constraints

between B and D, we see that one of four cases may occur during a pivot

A structural constraint enters the basis B and a structural constraint leaves the basis and
enters D. Since the number of basic structural constraints (and the number of nonbasic

nonnegativity constraints) remains unchanged, the dimension of A^ is unchanged. A
pivot of this type involves a row in region (j) of B and a row in region (ii) of D, and thus

it corresponds to a pivot coordinate in the location ((ii), (j)) of the tableau DP.

A nonnegativity constraint enters the basis and a nonnegativity constraint leaves the

basis. Again, the dimension of A^l remains unchanged. Since this pivot involves a row

in region (jj) of B and a row in region (i) of D, the corresponding tableau DP pivot

coordinate lies in ((i), (ji))-

A structural constraint enters the basis and a nonnegativity constraint leaves the basis,

and thus the number of basic structural constraints (equivalently, the number of nonbasic

nonnegativity constraints) increases by one. The dimension of A^ is increased by one.

This corresponds to a pivot coordinate in region ((H), (jj)) of the tableau DP.

A nonnegativity constraint enters the basis and a structural constraint leaves the basis,

and thus the dimension of A^ 1 decreases by one. The corresponding pivot coordinate in

DP is ((i), (;)).

We see that we may exert some influence on the behavior of the dimension of A^] by our

strategy for selecting target exchanges for primal and dual constraints (i.e., our pricing strategy)

and through our tie-breaking rules for choosing pivot row/column, and that this dynamism is

an inherent feature of an effective algorithm. We have already seen the fundamental importance
of the kernel (An) in our computations. Thus, a successful implementation must manage this

dynamic behavior efficiently and reliably.

6 Factorization

The row-jactorized problem to be considered is

(FLP) min : wy

s.t. : Ey < r } explicit constraints

Fy < b } factored constraints

— Iy < } nonnegativity constraints ,

where y is an n-vector of decision variables, w a vector of cost coefficients, F a matrix of con-

straint coefficients for "explicit" constraints with right-hand side m-vector r, F a matrix of

constraint coefficients for "factored" constraints with right-hand side p- vector 6, and -/ the

negative of the identity matrix. In this general development, we refer to the F-type constraints

as "factored" only to distinguish them from the "explicit" F-type constraints, and assume noth-
ing about their structure. Not until our specializations later will we impose special structure on
F, and the structures we will consider may permit the representation of the F-type constraints

10

without the inversion of a matrix. We will see that this approach is centered around handling

the part of the basis corresponding to the F-type constraints explicitly while factoring the por-

tion of the basis corresponding to the F-type constraints. The notation is chosen to suggest

this idea.

Recall that a basis for the primal algorithm consists of n linearly independent rows from

the constraint matrix when it is assumed to include both structural (explicit and factored) and
nonnegativity constraints. Assume that the current row basis consists of k rows from F, I rows

from F and (n — (A: -I- /)) rows from — /. Repeating our notation

k+l n-(k+l)

B = A
}

\

An

-I J

}k + l

}n-(k + l)

where [An An] includes all basic structural rows, from both E and F.

We will ultimately be interested in isolating the effect of each type of structural constraint

algebraically in the factored tableau, and thus we require greater resolution in our factored

basis. Introducing obvious notation, we have

/

[Au An]
=

l n-(k+l)

E\\ En E\3

V F21 F22 E23

where the kernel of dimension (k + I) is given by

}k

[An] = En
F2 ,

E\2

F>2

Because A\\ is a basis for Rk+l
it follows that, it is always possible to identify among the

columns of [F2 \ F22] a nonsingular submatrix F22 of dimension /, since otherwise the rank of

[F2 \ F22] is at most (/ - 1) and thus the rank of A n is at most (k + I - 1), or equivalently

the rank of B is at most (n - 1). We will later see that one of the important implementation

challenges is the task of efficiently managing the structure and nonsingularity of i7^-

The full factored row basis is then

H

n-(k+l)

(J) En E\2 F13 }k

(jj) F21 F22 F23 }l

{jjj) { -I
)

}n--(k + l)

Introducing the notation

11

Au = E\ 1
- EnF22 F'2\

An = E\z — E\2F2
~
2 -^23

where A\\ is the Schur complement, or Gauss transform, of F22 in A\\ (e.g., Golub and Van
Loan [1983]), we can write its inverse as

B-' =

Au EuF22 ATM11 ^13

-F^F^ATl (I + F^FvA^E^F^ Fn l {Fn-F2iAu
l

Ai3)

-/

Grouping the coefficients of the nonbasic constraints and applying the same column ordering

yields

/ n-(k+l)

D =

(i) -I }k

(ii) -/ }l

(Hi) F31 F32 £33 } m — k

(iv) ^F4] F42 F43
)

}p-l

The principal part of the factored tableau is DP, where P = —B Ms the conjugate row
basis. With the additional notation

131 E31 EwFnn Fo

-^33 = £33 — £32^22 Ex

^32-r
22

r 21

7

22
ljP

23

F41 = F41 - F^F22 F21

F43 = F43 — F42F2̂ F23
,

the principal part of the factored tableau is

DP =

(0

(ii)

(Hi)

(iv)

0) Ui) ijjj)

i4n -Ajj Fi 2F22 An A13

-F^Fajin3

(/ + F22
1 F21in

1

^i2)F22
1 F22

1 (F23 - F21 i H
1 i 13)

[-1-A*\A[{ (Az\A[lEn - E32)F22
l

A33 - Asi^Mkj

Aiiifi
1 (F4 ,iri

1 ^i2-F42)F22 F43-F4 ,A7,M41/ln -4i3 /

12

Partitioning w = (w), w2 , io3 , u;4), rT = (rj\r%) and b
T = (bj,b%) and introducing the

notation

W2 = w2 - vo\F22 F21

W3 = W3 - W2F22 F23

h2
= b2 — F4XF22 b]

f] = n-EuFn%
h = r2 - E2xF22

]

b
x

the complete factored tableau is

1-1 - 1F22 F2XAU
-isiifi

1

-F41AT1

-w2Au
x

-An E\ 2F22

{I+F22'F2X A-x lEn)Fi2
x

{A^A^En -EZ2)F22
x

(F4XAU E\ 2 - F42)F22
(w2Au

lE x2 -w x
)F22

l

AT?A l3

^22 (-^23 -F2ii4nMi3)

A3XA^A X3A33

F43 -FiX A n
l A x3

AXih
F22\b x

-F2X A u
x

f
x)

f2 - A\\AX\f\

b2 - F4XAjl

l
r

1

h
103 - w2A n i4i3 w

x
F

22
b

x + w2A u r
x

We see that with knowledge of the current factorization, we can construct the entire tableau

from F22 , A^ and the original problem data. The dimension of F22
is equal to the number of

F-type constraints that are currently basic, and thus can be at most p. The dimension of A
xx

is equal to the number of F-type constraints that are currently basic, and thus cannot exceed

m. We call A^ the explicit transformation kernel and F
22

the factored transformation
kernel.

7 Factored Column and Row Generation

Consider generation of column c from the principal part of the tableau DP. Rewriting in a

manner that highlights our intentions

(7) Uj)

(0

DP = (i?)

{Hi)

(iv)

[A] [-Au E X2F22 }

Uii)

1

[An
1An

{-F22
] F2X []} {F2

-
2

1 -F22
1F21 []} {F22

1 F23 -F22
1F21 []}

-F3J]
- F32 { } — F3i[]

- F32 { } F33 - F3] []
- F32 { }

V-F41 [
]-F42 { } -F4] [

]-F42 { } F43 -F4 i[]-F42 { })

where A x3 is defined as before, and the brackets "[]" and "{ }" contain terms common to but

displayed only once for each column.

Assume we want to place column c into work array z. We partition z conformably as

zT — (zj^.z^z^zj), refer similarly to components of unit vector e
c

, and employ a (m + p)-

vector work array z. The notation "<—" denotes simple assignment, "=" indicates that a set of

factored equations must be solved, and "=*•" explains the corresponding result.

If column c is in (j),

13

Z\ K,'l
c

,

and then

S<--F2i[zi]

F22Z2 = z Z2+-{-F22
1F21 [z1}},

then

and finally

if c is in (jj), solve

z3 < £31 [^i] - -^32(22},

z4 *--Fu[z1]-F42 {z2h

F22Z2 = ~(e2) c

Z <— E\2Z2 z < (EpF
22)

c

z\ *- [-Afj EUF22]

c
,

then

z <- (e2)

c - F2 i[zi]

F22z2 = z ^-{(F
22

l

)

c -F22
l F2

1
[z

l }},

and finally

if c is in (jjj),

Z3 < £31 [zi] - -£^32 {^2}

Z4 < F41 [Z\] - -f42{-2}',

* «- (^23)
C

F22Z2 = Z

z <— (Em) - E12Z2

Zi 4- 4 _1 -

z2 ^F22
1 (F23)

c

^-(il3)

C

zi - [irMiais

then

- — (^23)° - F21Z1

F22Z2 = z ^-{^'(^r-F^^.u-,]},

and finally

14

~3 +— (-^33)
C - ^31 [*l] - E32 {z2 }

Similarly, row r can be generated. The principal part of the tableau is now viewed as

DP = («)

(iii)

(iv)

/

0)

Mtf]

Ujj)

\

[
]J5 13 + { }F23

h-P^Faiiin1

] {!# -
[
\El3Fg) [

]£713 + { }F23

[-iisiiiFl
1

] {("^32 -[l^)^} £33 + []£l3 + { 1^23

V [-AiiFi
1

]
{(-F42 -[JJSw)^ 1

} F43 + []£i3 + { }F2sJ

where ^31 and F41 are defined as before, and the brackets "[]" and "{ }" contain terms common
to but displayed only once for each row.

Assume we want to place row r into work array z. We partition z conformably as z —
(25,26,2:7), refer similarly to components of unit vector er , and employ a (m + p)-vector work

array z .

If row r is in (i),

l-^n J')

then

z <

—

hEn
z%F22 = z ^^{-[An^rEuFv1

},

and finally

27 <— [^5]Fi3 + {z6 }F2^;

if r is in (ii), solve

•=6-^22 = "Mr
Z <— 56-^21

h - -zAu
l

~{F22\
-(F22

]

)rF2l
i

then

(e6)r - [h]En
z&F22 z6*-{(F22

l)r-[zs)E l2F22
1

},

and finally

15

if r is in (Hi),

then

and finally

if r is in (it>),

then

and finally

£7 «- [h\E\z + {ie}^;

2 «- ~(^32)r

^6-^22 = 2 => Z6 < (E32)rir22

2 «- (jRsi)r + *B*21 => 2 <- (Al)r

5 < (i?32)r - [25] -^12

56F22 = z =» f6 - {(-(£32) r - N^)^ 1

}

*r <- (^33)r + [5s]Ei3 + {i6 }^23;

S<--(*42)r

^6-^22 = - =*• h < -(-f42)r^22'

Z *- (F4 l_) r - i6*21 => Z *- (Al)r

- < (-^42)r - [-5] -El

2

Z6F22 = Z =* =6 - {(-(E42)r - [^fi^)^'}'

57^(i?
43) r + [i5]Ei3+{£6}E:23 •

8 The Complete Algorithm

The complete algorithm is described in terms of abstract functions which operate on funda-

mental data structures.

Tableau management requires two index maps: one yielding the intrinsic coordinate in the

principal part of the tableau for each original, extrinsic problem row or column, and the other

its inverse map. Intrinsic arguments are shown in lower case, and extrinsic in upper case.

Index_Exchange(indexl,index2) updates these maps for the exchange of a pair of tableau

coordinates indexl and index2.

The tableau regions are successive partitions of indices

16

TABLEAU ENDING
REGION INDEX

(») MEC
(«) MFC
(m) MER
(w) r//

0) NER
0j) NFR

(jjj) m + n

CONTENTS OF REGION

basic Columns solving Explicit rows

basic Columns solving Factored rows

nonbasic Explicit Rows
nonbasic Factored Rows
basic Explicit Rows
basic Factored Rows
nonbasic Columns.

Increment (endingJndex) and Decrement(endingJndex) are functions to modify these

ending indices.

Generate_Row(row) and Generate_Column(column) place numeric values of a tableau

row or column in ROWCOL0, which is commensurate with the tableau dimensions.

Using ROWCOL(), Update_Rim(row,col) maintains current numeric values of the right-

hand-side and bottom row of the tableau in RIM().

The explicit transformation kernel, A^i , is operated on by functions using ROWCOLQ:

Add_E-Kernel_Row(ROW),
Add_E-Kernel_Column(COLUMN)

,

Delete_E-Kernel_Row(ROW),
Delete_E-Kernel_Column(COLUMN),
Replace_E-Kernel_Row(REPLACED_ROW,REPLACING _ROW), and

Update_Explicit _Transforrnation_Kernel, the pivotal update.

A^ can be represented in any way that suits the implementer and efficiently supports these

functions. Generally, we find .AT,
1

to be relatively sparse, and report here results using an array

with an entry-point for each inverse row and column which accesses a stack of orthogonally-

linked nonzero inverse elements. We have also implemented a dense vector-processor version,

and the design issues for LU-based schemes are given by Olson [1989].

The factored kernel, F22, is manipulated with:

Factored_Kernel_Singular(ROW,COLUMN), a Boolean function,

Find_E-Kernel_Column_for_Key(ROW,COLUMN), a column from region (i),

Find_F-Kernel_Column_to_Remove(ROW,COLUMN), a column from region (ii), and

Update_Factored_Kernel(ROW,COLUMN), the pivotal update.

17

The complete abstract algorithm is:

0. Initialize;

1. select primal or dual algorithm;

2. Select a primal (col) or dual (row) violation;

STOP if current solution is terminal, or

Generate_Column(col) or Generate_Row(row);

3. By ratio test with RIM() and ROWCOL(),
select a (row) or (col) pivot coordinate;

STOP if current solution is terminal, or

Generate_Row(row) or Generate_Column(col);

4. Update_Rim(row,col),

primary Index_Exchange(row,col)
,

perform secondary and tertiary exchanges (Table 8-1),

Update_Factored_Kernel(ROW,COL)
Update_Explicit_Transformation_Kernel,

Go to step 1.

18

;=;<

s-
o
•at

-i
O
O
• 3
a o
a *
I £ ~4 o „«

i^n 2 2s
J "5 >--^-' <

=-f---s-' q 9 9 « y
, E M M k±

- a -
L?H

i 3

£

o
£?
4*

Ml

isgl
<i 84

LI 111

2?g

o ao -

il» a

I 3
1 o

ST

z

Ti 2

1 £ z-2

! s'z *
1 ^ •£.& o

!
a: a? • • "J

! CiJ u !f !f —
1 Z 2 S 9 *
1 C-O ! _• a
! «• «• *g t» «
' a a x m ^
1 • 9 fj ul

u u • «

S5. S 3

* « •
C -o -a

5
o

o
u

— ! O Q »

« S' Sa.« • 9 S G *

I °4
a „ -o

2,2 5

• 4 (i u
id • 4 *

5 • • 5 S£os:.2g
u

ssss
J -c _ _
« . fl °

44 s 1

o 4 _
5 So
1 oSJ
3
**

.2 3 2'? *

4

s-s g

Oa?

HI
^ e x

4§3
<.35

— 3 * S «

s fl-. -fl -a —
^ » v « a k :

4i^n' a -a S S • £

2

»1
Hi^3 -

i n §ii 84

* a:

IS

1 '*" s

1
wi* a: - 2 5

!^

2 f3J O

oB
J*-J

o aO v

X«l

la
H a
s i-

4s
12

£s

q o — Oiri •

« • a
-1 - . * _a a * 1A = 7 5
*i!ti u

» as • ss («

o "O a "9 a. • fe

u.
Id

a
03

u
X
U
3
03

6

1-

-a
c
03

03

-a
c
o
u
1)

3<

iMl
o-o i

a *-f f

* S ° 3 a s s— a i, « « ——
- : v -o j - -

llS^44li
* 4' 1 — * X * *
^ St • • • t 5

* 3 9 "2 "2 5 *2u3i:oa

Bos

31

Mi
g a z
air
^4 i
- * £

• 1 8

O a?"
a -1 "= 1

i s ISg

s

A x x J a k

- «* *3 i 1^J j k t ; «
* *C g Z 9
» J"s * a "g

00

W
-J

ffl

u a>

.a s

19

Functions for maintaining the factored kernel vary with the factorization, and a good im-

plementation will exploit these differences. However, a general specification will suffice for all

factorizations here.

We are exclusively interested in performing two fundamental operations:

1. Solving factored equations of the form:

F22Z2 — t>2

and

^2 F22 = b2

where Z2 and Z2 are unknown and 62 and 62 are rational (not necessarily integer), and

2. Restoring F22 to the desired form of F22 which makes the factored equations above easy

to solve, where F22 results from inflicting F22 with a column exchange, a column and row

deletion, a column and row addition, or a row exchange.

Factored_Kernel_Singular(LABELl,LABEL2) predicts whether F22 will be singular if:

1. LABEL1 gives a basic column in a basic factored ROW for which COL=LABEL2 would

be exchanged;

2. LABEL1 is a basic factored ROW solved by basic column COL=LABEL2, both of which

would be removed from the factored kernel;

3. LABEL1 is a nonbasic factored ROW, which would be added to the factored kernel with

column COL=LABEL2, or

4. LABEL1 is a basic factored ROW which would be replaced by some other row LABEL2.

The first case, a column exchange, is equivalent to asking whether solving F22Z2 — ^2 with 62

equal to region (ii) of the proposed entering column COL, yields a nonzero term associated with

the basic factored row in Z2(row). This is easy to answer for the factorizations we discuss. For

instance, Brown and McBride [1984] show that back-solving a "nearly-triangulated generalized

network" basis F22 only as far as ROW will suffice, and that this can be implemented as a

traversal of the "backpaths" of the (zero, one, or two) coefficients in 62 for the column now
basic in ROW. If numerical precision is an issue, Z2(row) can be computed during this search

and tested for significance.

The second case, a row and column deletion, is trivial because the resulting F22 will always

be nonsingular.

The third case, a row and column addition, can be answered by adding ROW and COL to

F22 without disturbing its desirable special structure, thus creating an instance of case one. For

instance, placing ROW first, and COL last in F22 suffices for all factorizations discussed here.

The fourth case, a row exchange, can be answered by applying the second case, deleting

ROW and its basic column, and then (perhaps repeatedly) applying the third case, adding the

row with index COL and any column which would yield a nonsingular F22-

Find_F-Kernel_Column_to_Remove(ROW,COL) given basic factored row ROW, re-

turns its basic, or "key" column COL.
Find_E-Kernel_Column_for_Key(LABEL,COL), given either a nonbasic factored ROW=

LABEL, or a basic column LABEL solving a basic factored ROW, searches for an acceptable ba-

sic column COL in Explicit Rows (region (i)) using Factored_Kernel_Singular(ROW,COL).

Update_Factored_Kernel(LABELl,LABEL2) restores F22 to the desired form of F22,

with a possible increase or decrease in dimension. Following the case-by-case scheme of Fac-
tored_Kernel_Singular, we pre- and post-process the factored basis representation to permit
use of a single, static factorization update of conventional design. Olson [1989] pursues this in

considerable detail.

Table 8-2 displays supporting data structures for these functions.

20

TABLE 8-2 Factorization Algorithm Data Structures

DATA
FACTORIZATIONS STRUCTURE SIZE USE

GUB,PN,GN RIMQ m + n

ROWCOL()
MSKRC()

m + n

m + n

LQRC() m + n

KEY() m + n

PN,GN WORK() P

MSKWK() V

LQWK() V

PO()

P()

V

V

D()

current tableau right-hand side,

bottom row

current tableau row and column

logical mask true for corresponding

nonzero in ROWCOL(), false otherwise

LIFO queues of nonzero row and

column coordinates in ROWCOLQ
basic column in basic factored row,

and vice versa

values for 62 or 62

in basic factored equations

logical mask for nonzero row and

column coordinates in WORK()
LIFO queue of nonzero coordinates

in WORK()
next basic factored row in pre-order

off-diagonal row with

nonzero factored coefficient

depth, remaining back-substitution

path length in factored component

GN VGN()
JMULQ

p generalized network cycle factors

n ratio of generalized network

coefficients in each column

Generalized upper bound (GUB), pure network (PN), and generalized network

(GN) factorizations respectively require more data structures to support kernel

factorization. For each factorization, F22 is maintained in some partial ordering

of rows, and of columns — a signed identity for GUB, upper-triangular for PN

(e.g., Bradley,Brown, and Graves [1977]), and nearly-upper-triangular for GN (e.g.,

Brown and McBride [1984]). Direct solution of factored kernel equations F22Z2 = ^2

and z%F22 — by ls performed alternately using the data structures shown.

21

9 Computational Experience

The factorization methods introduced here have been implemented and used to solve a variety

of existing models provided by our colleagues. With their help, we have extracted suggested

problem instances from a diversity of decision support systems on host computers ranging

from mainframes to micro-computers. Because our goal is to test factorization technology in

isolation, the results reported here are achieved without benefit of any model-specific knowledge

or tuning.

However, we also seek to develop effective modeling tools for customized use in developing

and refining new models. To this end, we have greatly benefited from the experience and advice

of our colleagues, and we include some discussion of modeler guidance and insight along with

the numerical results.

Each model is introduced below by a short synopsis. Multiple instances of some models
are reported where diversity of size, structure, and taxonomy have proven interesting to the

modelers. For those models that employ nonlinear, mixed integer, or decomposition features,

we report solution statistics for the initial linear program.

• GTE The seven Telephone Operating Companies within GTE have adopted an integrated business system

called Capital Program Management System (CPMS) to guide their 3 billion dollar per year capital planning.

The system includes a large scale mixed integer programming optimization system that optimizes the critical

economic tradeoffs between maximizing the long-term budget value of the firm's equity and satisfying shorter-

term financial constraints, resource limitations and service objectives. Investment opportunities for the next

5 years are modeled as 0-1 variables with alternative implementations for each. The objective is to maximize

the net present value of the capital portfolio. There are financial constraints on capital, internally generated

funds, net income to common, and limits on resources such as labor hours, lines installed, etc. There are also

constraints that enforce logical relationships among opportunities (such as, if choose A then must choose B).

See Bradley [1986].

• INVEST Capital allocation and project selection for Mobil Oil Corporation are modeled as a two-stage

multi-year nonlinear capital budgeting problem with over 40,000 integer variables. A master problem allo-

cates capital among markets over a multi-year horizon considering the estimated nonlinear effects on sales

of concentrated marketing investments. The instance reported here is a mixed-integer linear program sub-

problem of the two-stage model which, given these annual capital expenditure limits for a market, selects

particular alternate investments. Such subproblems are easy to solve, and optimality is achieved with a single

iteration of the nonlinear master problem. See Harrison, Bradley and Brown [1989].

• TANKER A crude oil tanker scheduling problem faced by a major oil company is solved using an elastic

set partitioning model. The model takes into account all fleet cost components, including the opportunity

cost of ship time, port and canal charges, demurrage and bunker fuel. The model determines optimal speeds

for the ships and the best routing of ballast (empty) legs, as well as which cargoes to load on controlled ships

and which to spot charter. All feasible schedules are generated, the cost of each is accurately determined

and the best set of schedules is selected. See Brown, Graves and Ronen [1987).

• HFDF A large-scale elastic set partitioning model used to assign frequencies for a network of high frequency

direction finding receivers. See Brown, Drake, Marsh, and Washburn [1990].

• GAS A multi-time period strategic model for use by natural gas utilities for determining optimal contract

levels for gas purchase, storage and transmission. An underlying generalized network flow model represents

gas being bought, stored, shipped and consumed over a multi-year time horizon, typically at a monthly level

of detail. Constraints and variables are added to handle variable maximum and minimum purchase levels,

variable leased or constructed storage and variable transmission capacities. An integrated parallel model

incorporates the peak requirements necessary on some days during cold winter months. This model has been

used by a number of utilities including Southwest Gas Corporation and Questar Pipeline Corporation to plan

operations and to justify such plans to regulatory agencies. See Avery, Brown, Rosenkranz and Wood [1992].

• KELLOGG A multi-time period, multi-plant production/inventory/transshipment linear program for Kellogg

cereals. The model guides weekly processing, packaging and shipping decisions. Production consists of two

stages: processing lines produce basic products which are then packaged on packaging lines into different-

sized containers to yield finished products. Processing lines produce a subset of the basic products and have

limited capacity with overtime charges for weekend shifts. Packaging lines are analogous. In-house inventory

capacity is limited although outside storage is available at additional cost. Inter-plant shipments of finished

products are made by rail or truck. See Wood [1989].

22

• ODS A commonly occurring problem in distribution system design is the optimal location of intermediate

distribution facilities between plants and customers. A multicommodity capacitated single-period version

of this problem is formulated as a mixed integer linear program. A solution technique based on Benders
Decomposition is developed. ... An essentially optimal solution is found and proven with a surprisingly small

number of Benders cuts. See Geoffrion and Graves [1974]. The instances reported here are decomposition

master problems.

• TAM The annual decision on how much the Air Force should spend on aircraft and on munitions is of great

interest to many people. How the Air Force staff develops information to support the decision has changed
over the years. Currently, a linear program is being used by the Air Force Center for Studies and Analysis

and is being tested by the Munitions Division of the Plans and Operations Directorate (AF/XOXFM) for

municions tradeoff analysis. The LP uses existing data and estimates of (1) aircraft and munition effectiveness,

(2) target value, (3) attrition, (4) aircraft and munition costs, and (5) existing inventories of aircraft and

munitions. Other factors considered are weather and length of the conflict. See Might [1987] and Jackson

[1989].

• PHOENIX A planning model for the multi-year, multi-billion dollar modernization of the U. S. Army's aging

helicopter fleet. The mixed integer linear program employs a multi-product production/inventory formulation

with aged inventory. Goal constraints attempt to enforce fleet size, maximum age, and technology goals for

each year and each of four aircraft missions, while also keeping expenditures within upper and lower limits.

Additionally, combinatorial constraints and variables handle production line startup and shutdown costs,

minimum and maximum production levels and requirements linking certain production lines. See Clemence,

Teufert, Brown and Wood [1988] and Brown, Clemence, Teufert, and Wood [1990].

• EA6B Configures jammers of hostile radar on an EA-6B "Prowler" Naval electronic warfare aircraft. See

Sterling [1990].

• DEC Digital Equipment Corporation uses this model to determine worldwide manufacturing and distribution

strategy for new products. This mixed integer, linear program suggests a production, distribution, and vendor

network which minimizes cost and/or cumulative cycle times subject to constraints on estimated demand,

local content, and joint capacity, over multiple products, echelons, and time periods. Cost factors include

fixed and variable production charges, distribution via multiple modes, taxes, duties and duty drawback, and

inventory charges. See Harrison, Arntzen, and Brown [1992].

• AMMO 4H A four-commodity transshipment model for delivery over time of military products from pro-

duction and storage locations to overseas locations to support theater operations is developed. The model

covers five physical echelons, including production plants, storage depots, ports of embarkation, ports of

debarkation and geographic field locations. Road, rail, sea and air transportation are modeled, and product

demands are time-phased. Capacitation occurs primarily on sea and air links, and as throughput capacities

on transfer points, requiring replication of some echelons. The objective of the model is to minimize deviation

from on-time deliveries. See Staniec [1984].

• BUSCH A model of brewery-to-wholesaler movements of beer for Anheuser-Busch. The model also includes

some packaging decisions and is essentially a multicommodity flow model with joint capacity constraints

arising from loading dock and inventory capacities as well as some managerial requirements. See Brown,

Mamer, McBride and Wood [1992]. The instance reported here is a small pilot model for the full-scale

system with millions of variables which is solved directly, or by decomposition.

• BAR A linear, mixed-integer multi-period production-inventory master planning model. See Harrison [1992].

Four implementations are compared: "XS" is an unadorned version of the X-System, an

implementation of the Graves mutual primal-dual method with its GUB factorization disabled,

while "XS(GUB)", "XS(PN)", and "XS(GN)" each employ the respective factorizations dis-

cussed here. To estlablish a frame of reference, performance of these implementations is com-

pared with two well-known commercial solvers: IBM's Optimization Subroutine Library "OSL"

(Release 2 [1991]), and two versions of "CPLEX" (Version 1.2 [1990] and Version 2.0 [1992]).

Ideally, one would develop four equivalent formulations of each model, each customized for

its particular solver with the goal of inducing a large factored row set of the appropriate type.

This approach is a consistent theme in the literature dealing with specialized algorithms and

one that we strongly endorse. Alternate formulations of a model are often available, and it

seems sensible to choose one that exploits as much as possible the strengths of the solver.

23

However, all of the models used here are "off-the-shelf" in the sense that they were developed

at various times by various modelers, and alternate formulations are impracticable. Thus, the

approach is to preserve a single, unfactored representation of each model, and attempt to

identify favorable row structures through the use of heuristics. The procedure is based on

the work of Brown and Thomen [1980], Brown and Wright [1983] and Brown, McBride and

Wood [1985]. The heuristics are greedy and myopic in the sense that they initially consider the

entire row set of the problem, and discard one row at a time without backtracking until the

remaining set satisfies the desired row factorization. This can be expected to confound or destroy

structure introduced by the modeler. Although the automatic factorization implementation has

options to accept modeler guidance, the methods are compared here without this subjective

complication. While these model-naive experiments yield interesting and useful observations

about the implementations, they suffer for lack of guidance by a skilled modeler.

24

Table 9-1 shows the important structural information concerning the model instances to be

solved.

TABLE 9-1 Problem Dimensions

n m Pgub/% Ppn/% Pgn/% NZEL

GTE 6,624 960 909/95 909/95 922/96 58

INVEST 11,989 1,338 941/70 1,101/82 1,168/87 33

TANKER 7,598 83 32/39 32/39 66/80 31

HFDF 10,548 61 31/51 31/51 32/52 189

GAS PN A 27,884 6,848 4,345/63 5,934/87 5,976/87 37

GAS PN C 15,362 3,794 2,658/70 3,418/90 3,420/90 20

GAS PN E 5,102 1,184 434/37 877/74 883/75 7

GAS GN A 27,884 6,848 4,484/65 5,142/75 5,976/87 37

GAS GN C 15,362 3,794 2,664/70 3,084/81 3,420/90 20

KELLOGG 2 17,841 3,818 1,265/33 2,578/68 2,596/68 35

KELLOGG 3 27,490 5,727 2,295/40 3,867/68 3,892/68 54

KELLOGG 4 37,139 7,636 2,428/32 5,156/68 5,188/68 71

KELLOGG 5 46,788 9,545 3,388/36 6,445/68 6,484/68 93

ODS 1 11,568 3,023 528/17 540/18 558/18 21

ODS 3 23,993 594 490/82 490/82 490/82 68

TAM 5 10,531 438 102/23 132/30 162/37 94

TAM 8 6,104 420 118/28 154/37 196/47 49

TAM 12 17,793 629 177/28 231/37 294/47 165

PHOENIX 10 6,884 1,618 206/13 220/14 1,153/71 14

PHOENIX 30 17,212 4,305 293/07 303/07 3,604/84 48

EA6B 12,247 2,978 1,610/54 2,921/98 2,921/98 16

DEC 14,518 2,171 677/31 677/31 1,088/50 24

AMMO 4H 83,497 13,963 6,874/49 12,892/92 12,892/92 129

BUSCH 4 7,997 1,248 649/52 1,140/91 1,148/92 15

BAR 49,032 7,446 2,712/36 4,575/61 5,134/69 102

For each problem, the total number of structural variables is n, structural con-

straints m, GUB rows found by the identification heuristic pcan, pure network

rows ppn, generalized network rows Pcn, aQd thousands of nonzero technological

coefficients NZEL. For example, GTE has 58 thousand nonzero technological co-

efficients for 6, 624 variables; GTE can be viewed as having 960 explicit and no

factored rows, or as 909/95% GUB-factored and 960 - 909 = 51 explicit rows, as

909 PN-factored rows, or as 922 GN-factored and 38 explicit rows.

25

Table 9-2 displays solution times for the sample problems. These CPU times exclude initial

problem input, factored row identification, and final output — on average about 0.2 second per

problem.

TABLE 9-2 Solution Seconds

GTE
INVEST
TANKER
HFDF
GAS PN A
GAS PN C
GAS PN E
GAS GN A
GAS GN C
KELLOGG 2

KELLOGG 3

KELLOGG 4

KELLOGG 5

ODS 1

ODS 3

TAM 5

TAM 8

TAM 12

PHOENIX 10

PHOENIX 30

EA6B
DEC
AMMO 4H
BUSCH 4

BAR

AMDAHL 5995-700 486/33MH2 : PC
X-Syst

GUB
em
PN GN

IBM
OSL

XS
GN

CPLEX
none 1.2 2.0

9 8 8 8 43 41 65 58

4 5 4 4 23 24 52 49

8 10 10 8 6 48 8 9

100 101 101 111 40 462 581 542

2,376 778 50 57 291 321 1,714 1,221

4 4 3 3 79 26 185 245

72 33 4 6 13 33 165 50

1,115 542 294 72 312 385 3,532 2,262

4 4 3 3 71 26 186 236

3 2 2 2 69 5 219 194

5 5 5 5 144 9 513 440

48 36 26 24 500 115 1,274 1,111

1,122 1,459 320 248 1,210 926 2,615 2,243

6 3 2 5 125 22 1,042 414

6 6 6 6 23 38 58 56

55 60 45 40 44 231 151 86

24 14 14 17 21 69 77 71

108 112 88 106 101 312 416 378

4 2 2 2 20 10 84 73

41 25 26 9 335 69 1,171 1,239

75 33 9 9 45 44 177 244

189 32 42 80 71 93 317 293

42 41 35 46 1,000 277 1,762 1,597

5 5 4 4 26 34 55 46

290 212 106 114 382 480 1,366 1,222

An AMDAHL 5995-700 running under IBM VM/CMS/XA with IBM VS FOR-
TRAN 2.3.0 is used to render performance in CPU-seconds accurate to the precision

shown for the basic "XS"-system using no factorization, compared with dynamic

factorizations of "XS(GUB)", pure network "XS(PN)", and generalized network

"XS(GN)" rows. "IBM-OSL" shows primal simplex performance on the same com-

puter of the IBM Optimization Subroutine Library, Release 2 [1991]. "486/33"

shows the clock-time performance of "XS(GN)" on a microcomputer (33 MHz Intel

486 with 32 MB RAM) followed by that of "CPLEX" (Version 1.2) [1990] and of

"CPLEX" (Version 2.0) [1992] on the same microcomputer.

The original formulations of most of the test problems are strongly influenced by the mod-

eler's solution strategy. For instance, TANKER is endowed with a GUB structure which places

26

every binary variable in an associated set from which only one member can be chosen; this

maximal GUB set is also sought for its tendency to yield nearly-integer solutions to the linear

program. AMMO 4H is a multicommodity capacitated transshipment problem and thus is best

suited to a pure network factorization; it was originally solved by dual decomposition rendering

pure network sub-problems. PHOENIX is a multicommodity equipment replacement model
closely following the generalized network factorization paradigm.

The row structures in Table 9-2 have been found without modeler help by our automatic
identification heuristic, yet they corroborate the modelers' intentions. TANKER reveals the

same pure network rows as the GUB rows, or a generalized network constructed by identifying

one additional row to be paired with each GUB row. PHOENIX exhibits a dominant structure

that is clearly a generalized network.

One would anticipate the factorization exploiting the dominant row structure to win com-
putation tests. This is wrong more often than right. Table 9-2 shows that the more general

factorization dominates the less general, with few exceptions: GTE's relatively large GUB set,

and the large pure networks in GAS PN A, GAS PN E, and AMMO 4H seem to satisfy our

prior bias toward model-dictated factorizations.

Table 9-2 also suggests that our myopic use of heuristics to automatically identify factored

structure has its pitfalls. In a number of problem instances, we identify significantly larger fac-

tored sets with the more general factorizations, yet we enjoy little improvement in computation

times (e.g., INVEST, ODS 3, TAM 8). This suggests that the "quality" of a row factorization

is not completely specified by its size.

We have pursued this notion by inviting some of the modelers to guide our identification

heuristic to precisely the row sets they intended. Some of the results have been striking: Wood
[1989] reports significant improvements for problems in the GAS system.

A few of our corresponding modelers have had the opportunity to build models from scratch

with a particular factorization in mind. This admits model coercion and a wide range of well-

known reformulation methods which we think can materially change both the size and quality

of the result. Their early reports show promise. Among the models discussed here, the GAS
and KELLOGG systems have been subsequently reformulated to enhance generalized networks,

GTE has been re-engineered to further accentuate its dominant GUB set, and TANKER-like

and many ODS models have been moved to a micro-computer; all these models are now larger,

but much easier to solve.

It is surprising and encouraging that the transition to more general factorizations seldom

degrades performance much, even when few additional factored rows are won by the increased

generality. This contradicts popular folklore that the more general factorizations demand sub-

stantial, if not overwhelming increases in the resulting sizes of the factored structures. In

fact, computational testing reported by others has usually been limited to models in which

the number of explicit rows is in the range of one to twenty (e.g., Chen and Saigal [1977],

Glover, Karney, Klingman and Russell [1978], Glover and Klingman [1981]). Our results are

all the more remarkable given the lack of guidance from the modeler for the "intended" row

factorization.

27

Table 9-3 shows the maximum size of the A n in terms of its nonzero elements.

TABLE 9-3 Maximum Number of Elements in Explicit Transformation Kernel

XS XS(CUB) XS(PN) XS(GN)

GTE 13

INVEST 9 1 1

TANKER 1 1

HFDF 3 1 1

GAS PN A 1,550 891 30 54

GAS PN C 18 5

GAS PN E 263 110 7 5

GAS GN A 1,470 758 340 59

GAS GN C 19 7 1

KELLOGG 2 6 2

KELLOGG 3 9 4

KELLOGG 4 79 41 10 11

KELLOGG 5 1,299 1,015 138 128

ODS 1 9 1 1 5

ODS 3

TAM 5 28 22 15 18

TAM 8 20 15 8 10

TAM 12 38 42 16 21

PHOENIX 10 32 21 21 1

PHOENIX 30 169 157 185 1

EA6B 1,155 270

DEC 218 39 49 46

AMMO 4H 235 92

BUSCH 4 10 5

BAR 290 163 70 41

The number of nonzero elements (in nearest thousands) in the explicit transforma-

tion kernel A^ gives some indication of how much information is not captured by

factorization, as well as an idea of relative storage requirements.

We see that the maximum size of the explicit transformation kernel tends to decrease as the

generality of the factorization increases. Recalling the definition of the explicit transformation

kernel.

[-1 — {En - E\ 2F22 F2 \)

this trend is as we would expect. Each potentially binding explicit row which can be converted

to a factored row reduces the likely size of A n
]

. Also, the density of the term -E\ 2F22 F2 \

generally increases with the density of F
2̂

For F22 fc-by-fc, the number of nonzeros in F
2̂

1

for the GUB factorization is fc, for pure networks perhaps as large ^-, and for generalized

28

networks as large as k2
. There are some exceptions to this trend in Table 9-3, especially in

model instances in which the size of the (GN) factored row set is not significantly larger than

that of (PN). This is because for a given factored kernel F22, the exact (PN) representation of

F22 is generally more sparse than that of the less exact floating-point representation of (CN).

29

It is usually the case that many constraints are not binding at optimality, as can be seen in

Table 9-4.

TABLE 9-4 Binding Explicit Constraints at Optimality

Binding/% GUB/% PN/% GN/%

GTE 554/58 20/02 20/02 18/02

INVEST 763/57 201/15 195/15 162/12

TANKER 51/61 60/72 39/47 9/11

HFDF 58/95 29/48 29/48 28/46

GAS PN A 3,068/45 1,953/29 299/04 349/05

GAS PN C 2,324/61 850/22 68/02 90/02

GAS PN E 901/76 573/48 90/08 79/07

GAS GN A 3,064/45 1,854/27 1,155/17 359/05

GAS GN C 2,323/61 861/23 402/11 89/02

KELLOGG 2 1,950/51 1,015/27 92/02 118/03

KELLOGG 3 2,942/51 1,368/24 148/03 183/03

KELLOGG 4 4,136/54 2,491/33 391/05 452/06

KELLOGG 5 5,270/55 2,305/24 592/06 617/06

ODS 1 361/12 83/03 76/03 117/04

ODS 3 410/69 0/00 0/00 0/00

TAM 5 264/60 227/52 168/38 186/42

TAM 8 279/66 240/57 142/34 175/42

TAM 12 412/66 352/53 205/33 251/40

PHOENIX 10 1,098/68 1,096/68 1,090/67 80/05

PHOENIX 30 3,298/77 3,236/75 3,239/75 110/03

EA6B 2,939/99 1,334/45 26/01 27/01

DEC 1,328/61 736/34 726/33 421/19

AMMO 4H 6,686/46 3,153/22 13/00 14/00

BUSCH 4 840/67 481/39 5/00 8/01

BAR 4,687/63 3,250/44 1,895/25 1,450/19

Not all constraints are binding at optimality. The first column lists the number

of binding explicit constraints and expresses this as a percentage of all constraints;

the following columns display the number of binding explicit constraints and their

corresponding percentages under the alternate factorizations.

A distinguishing feature of dynamic factorization is the ability to limit attention to binding

constraints, handling binding factored constraints with great efficiency, and working with a

relatively small number of binding explicit constraints. Explicit binding constraints on the

order of a few thousand, or less, are quite manageable. This is well beyond the size of previously

reported implementations.

30

10 Conclusions

Previous research by others generally suggests that specialized algorithms such as those pre-

sented here are useful only when the factored structure completely dominates. There are even

reports of algorithms for solving problems having a single unfactored (explicit) constraint (Hultz

and Klingman [1978], Klingman and Russell [1978]). When implementations have been re-

ported, problem suites have been limited to instances having a very small number of explicit

constraints, typically in the range from one to twenty (Chen and Saigal [1977], Glover, Karney,

Klingman and Russell [1978], Glover and Klingman [1981]). The consensus seems to be that

such algorithms are quite delicate, and deserve to be viewed as specialized algorithms, useful

only for solving very special problem instances.

We refute this view. Dynamic factorization is competitive with commercial-quality opti-

mization systems on every model instance we have tested.

The development here stresses the similarities among the algorithms and the natural exten-

sions leading from one to the next. This is in contrast to the development reported for similar,

non-dynamic algorithms (e.g., Dantzig and Van Slyke [1967], Klingman and Russell [1978],

and Hultz and Klingman [1978]) in which the specifics of the individual algorithm obscure the

generality of the approach. The conceptual difference between our algorithms is seen to be

largely isolated to the structure of a single algebraic entity, the factored kernel. By abstracting

the structure of the factored kernel and concentrating on the general algorithm design, the

versatility and flexibility of this approach is clarified.

The algorithmic development leads directly to an implementation. The resulting software

suite exhibits a "single system image". The modularity of the algorithm allows the definition

of an "abstract data type" (see, e.g., Aho, Hopcroft and Ullman [1974]) which isolates the data

structures and update procedures for the factored kernel from the rest of the implementation.

Each factorization is seamlessly integrated within the system design.

The early 1980s produced a great deal of research on automatic identification of special

structure in LP models (see, e.g., Gunawardane and Schrage [1977], Glover [1980], Schrage

[1981], Brown, McBride and Wood [1985], and Bixby and Fourer [1986]). We have incorporated

the most useful of these ideas into our implementation, and we have what we believe to be the

first complete implementation which supports automatic identification of factored row sets. This

capability may be used to identify new factored structure or to validate or augment a modeler-

provided recommendation. When faced with the choice of either solving an unfactored model

instance or automatically identifying a factored structure and then using the corresponding

solver, our results show that the latter is nearly always to be preferred. Modelers have conducted

extensive additional computational experimentation with the X-System not reported in this

paper. These results suggest that in addition to the quantity of factored rows, the quality of

these rows influences the performance of factorization algorithms. While not well understood,

it is clear that the myopic approach of our heuristics is no substitute for the modeler's guidance

in identifying factored structure.

Processing networks (Koene [1982]) are network models which allow proportional flow re-

strictions on the arcs entering or leaving some nodes. One formulation of such a model results

in a pure or generalized network structure with a set of complicating columns. Chen and En-

gquist [1986] propose a primal partitioning algorithm for solving processing network problems.

An alternate formulation yields a pure or generalized network structure with complicating rows:

this is precisely the structure dealt with here.

The multicommodity capacitated transshipment problem (MCTP) has been the subject of

much research over the years, and a number of specialized algorithms have been proposed to

31

solve it (see, e.g., Assad [1978] or Kennington [1978]). The usual MCTP formulation is a pure

network which each commodity uses independently in its own flow model, but with side con-

straints on the total common flow of all commodities over some of the network arcs. The side

constraints form a CUB row set, while the rest of MCTP forms a pure network; either view

might be preferred depending upon size of the common network, the number of side constraints,

and the number of commodities. In our experience, the network factorization usually domi-

nates the GUB factorization, and the pure network factorization presented here is a powerful

technique for solving MCTPs. As an experiment, we customized our (PN) implementation for

MCTP to exploit the special structure of the explicit side constraints. This highly-specialized

implementation performed no better on AMMO 4H, and we now believe that this would be

true for most MCTPs.
There are problems which would exhibit a large factored row structure if not for a set of

complicating columns (e.g., see Brown, McBride and Wood [1985]). One would expect the

structure of the factored kernel to be dominated by that of the predominant row structure,

with only occasional complications due to the exceptional columns. One might allow for this

exceptional structure in the factored kernel by identifying it "on-the-fly" as the algorithm

progresses, and preserving the sanctity of the core factorization. Though conceptually simple,

some iterations of this algorithm would border on the spectacular. This approach may be

thought of as a hybrid between the dynamic factorization developed here and dynamic basis

triangulation methods (see, e.g., Hellerman and Rarick [1971] and [1972], Saunders [1976] and

McBride [1980]).

Dynamic extrinsic factorization is subsumed by the algorithms presented in this paper if

we activate functions in the update analogous to the secondary exchanges now employed. Es-

sentially all that has to be done is ensure that successive factored components retain their

stipulated special structure. We speculate that this will work best in cases where model struc-

ture is amenable, and quite likely will require some model-specific customization to perform

well on difficult models. We have limited our experimentation to those static extrinsic cases

which we believe to be most generally useful.

32

1 1 References

Aho, A. V., Hopcroft, J. E. and Ullman, J. D. 1974, The Design and Analysis of Computer
Algorithms, Addison-Wesley Publishing Co., Menlo Park, California.

Assad, A. 1978, "Multicommodity Network Flows-A Survey," Networks, 8, pp. 37-91.

Avery, W., Brown, G. G., Rosenkranz, J. A. and Wood, R. K. 1992, "Optimization of Purchase,

Storage and Transmission Contracts for Natural Gas Utilities," Operations Research,
40-3 pp. 446-462.

Balinski, M. L. and Gomory, R. L. 1963, "A Mutual Primal-Dual Simplex Method," Recent
Advances in Mathematical Programming, McGraw-Hill Book Co., Inc., New York.

Benders, J. F. 1962, "Partitioning Procedure for Solving Mixed- Variables Programming Prob-

lems," Numerische Mathematik, 4, pp. 238-252.

Bixby, R. E. and Fourer, R. 1986, Finding Embedded Network Rows in Linear Programs I:

Extraction Heuristics, Bonn University, Oekonometrie und Operations Research, Report

No. 86437-OR, July.

Bradley, G. H. 1986, "Optimization of Capital Portfolios," Proceedings of the National

Communications Forum 86, pp. 11-17.

Bradley, G. H., Brown, G. G. and Graves, G. W. 1977, "Design and Implementation of Large-

Scale Primal Transshipment Algorithms," Management Science, 24-1, pp. 1-34.

Brearley, A. L., Mitra, G. and Williams, H. P. 1978, "Analysis of Mathematical Programming

Problems Prior to Applying the Simplex Algorithm," Mathematical Programming, 8,

pp. 54-83.

Brown, G. G., Clemence, R. D. Jr., Teufert, W. R. and Wood, R. K. 1990, "An Optimization

Model for Modernizing the Army's Helicopter Fleet," Interfaces, 21-4, pp. 39-52.

Brown, G. G., Drake, D. A., Marsh, A. B., and Washburn, A. 1990, "Mathematical Meth-

ods Applied to Managing a System of Direction-Finding Receivers," Military Operations

Research Society, Annapolis, Maryland (June).

Brown, G. G. and Graves, G. W. 1975, "Elastic Programming: A New Approach to Large-Scale

Mixed-Integer Optimization", presented at ORSA/TIMS meeting, Las Vegas, Nevada,

November.

Brown, G. G., Graves, G. W. and Ronen, D. 1987, "Scheduling Ocean Transportation of Crude

Oil," Management Science, 33-3, pp. 335-346.

Brown, G.G., Mamer, J.W., McBride, R.D., and Wood, R.K. (1992), "Solving a Large-Scale

Generalized Multi-Commodity Flow Problem," ORSA/TIMS, San Francisco, California

(November).

Brown, G. G. and McBride, R. D. 1984, "Solving Generalized Networks," Management Sci-

ence, 30-12, pp. 1497-1523.

Brown, G. G., McBride, R. D. and Wood, R. K. 1985, "Extracting Embedded Generalized

Networks from Linear Programming Problems," Mathematical Programming Study, 32,

pp. 11-31.

Brown, G. G. and Thomen, D. 1980, "Automatic Identification of Generalized Upper Bounds

in Large-Scale Optimization Models," Management Science, No. 26-11, pp. 1166-1184.

Brown, G. G. and Wright, W. 1984, "Automatic Identification of Embedded Network Rows

in Large-Scale Optimization Models," Mathematical Programming, pp. 41-56.

33

Charnes, A. and Lemke, C. E. 1952, Computational Theory of Linear Programming, I: The

Bounded Variables Problem, ONR Research Memorandum 10, Graduate School of

Industrial Administration, Carnegie Institute of Technology, Pittsburgh, Pennsylvania.

Chen, C. and Engquist, M. 1986, "A Primal Simplex Approach to Pure Processing Networks,"

Management Science, 32-12, pp. 1582-1598.

Chen, S. and Saigal, R. 1977, "A Primal Algorithm for Solving a Capacitated Network Flow

Problem with Additional Linear Constraints," Networks, 7, pp. 59-79.

Clemence, R. D. Jr., Teufert, W. R., Brown, G. G. and Wood, R. K. 1988, "Phoenix: Devel-

oping and Evaluating Army Aviation Modernization Policies Using Mixed Integer Linear

Programming," 27th U. S. Army Operations Research Symposium, Fort Lee, Virginia,

October 12-13.

CPLEX Optimization, Inc. [1990], "Using the CPLEX(TM) Linear Optimizer (Version 1.2),"

Incline Village, Nevada.

CPLEX Optimization, Inc. [1992], "Using the CPLEX(TM) Linear Optimizer and CPLEX(TM)
Mixed Integer Optimizer (Version 2.0)," Incline Village, Nevada.

Dantzig, G. B. 1954, Notes on Linear Programming: Parts VIII, IX, X-Upper Bounds, Sec-

ondary Constraints, and Block Triangularity in Linear Programming, Research Memo-
randum RM-1367, The Rand Corporation, Santa Monica, California, October.

Dantzig, G. B. 1963, Linear Programming and Extensions, Princeton University Press,

Princeton, New Jersey.

Dantzig, G. B. and Van Slyke, R. M. 1967, "Generalized Upper Bounding Techniques," Jour-

nal of Computer and System Sciences, 1, pp. 213-226.

Dantzig, G. B. and Wolfe, P. 1960, "Decomposition Principal for Linear Programming," Op-

erations Research, 8-1, pp. 101-111.

Geoffrion, A. M. and Graves, G. W. 1974, "Multicommodity Distribution System Design by

Benders Decomposition," Management Science, 29-5, January, pp. 822-844.

Glover, F. 1980, "Transformations Enlarging the Network Portion of a Class of LP/Embedded
Generalized Networks," MSRS 80-1, University of Colorado, Boulder, Colorado, April.

Glover, F., Hultz, J., Klingman, D. and Stutz, J. 1978, "Generalized Networks: A Fundamental

Computer- Based Planning Tool," Management Science, 24-12, pp. 1209-1220.

Glover, F., Karney, D., Klingman, D. and Russell, R. 1978, "Solving Singly Constrained

Transshipment Problems," Transportation Science, 12-4, pp. 277-297.

Glover, F. and Klingman, D. 1981, "The Simplex SON Algorithm for LP/Embedded Network

Problems," Mathematical Programming Study, 15, pp. 148-176.

Golub, G. H. and Van Loan, C. F. 1983, Matrix Compilations, The Johns Hopkins University

Press, Baltimore, Maryland.

Graves, G. W. 1965, "A Complete Constructive Algorithm for the General Mixed Linear

Programming Problem," Naval Research Logistics Quarterly, 12-1, pp. 1-14.

Graves, G. W. and McBride, R. D. 1976, "The Factorization Approach to Large-Scale Linear

Programming," Mathematical Programming, 10, pp. 91-110.

Greenberg, H. J. and Rarick, D. C. 1974, "Determining GUB Sets Via a Invert Agenda Algo-

rithm," Mathematical Pi-ogramming, 7, pp. 240-244.

34

Gunawardane, G. and Schrage, L. 1977, "Identification of Special Structure Constraints in

Linear Programs," University of Chicago, Chicago, Illinois.,

Harrison, T. P., Bradley, G. H. and Brown, G. G. 1989, "Capital Allocation and Project

Selection Via Decomposition," presented at CORS/TIMS/ORSA meeting, Vancouver,

British Columbia, Canada, May.

Harrison, T. P., Arntzen, B. C, and Brown, G. G. 1992, "Global Manufacturing Strategy

Analysis," presented at ORSA/TIMS meeting, Orlando, Florida, April.

Harrison, T. P. 1992, Private Communication.

Hartman, J. K. and Lasdon, L. S. 1970, "A Generalized Upper Bounding Method for Doubly

Coupled Linear Programs," Technical Memorandum No. 140, June.

Hartman, J. K. and Lasdon, L. S. 1972, "A Generalized Upper Bounding Algorithm for Mul-

ticommodity Network Flow Problems," Networks, 1, pp. 333-354.

Helgason, R. V. and Kennington, J. L. 1977, "A Product Form Representation of the Inverse

of a Multicommodity Cycle Matrix," Networks, 7, pp. 297-322.

Hellerman, E. and Rarick, D. 1971, "Reinversion and the Preassigned Pivot Procedure," Math-

ematical Programming, 1, pp. 195-216.

Hellerman, E. and Rarick, D. 1972, "The Partitioned Preassigned Pivot Procedure (P4
),"

in: Rose, D. J. and Willoughby, P. A., eds., Sparse Matrices and their Applications,

Plenum Press, New York, New York, pp. 67-76.

Hultz, J, and Klingman, D. 1976, " Solving Constrained Generalized Network Problems,"

Research Report CCS 257, Center for Cybernetic Studies, University of Texas at Austin,

Austin, Texas.

Hultz, J. and Klingman, D. 1978, "Solving Singularly Constrained Generalized Network Prob-

lems," Applied Mathematics and Optimization, 4, pp. 103-119.

IBM Corporation 1991, Optimization Subroutine Library Guide and Reference Release

2, Kingston, New York.

Jackson, J. A. 1989, A Taxonomy of Advanced Linear Programming Techniques and the

Theater Attack Model, Master's Thesis, Air Force Institute of Technology, Air Univer-

sity, Wright- Patterson Air Force Base, Ohio.

Kennington, J. L. 1977, "Solving Multicommodity Transportation Problems Using a Primal

Partitioning Simplex Technique," Naval Research Logistics Quarterly, 24-2, pp. 309-

325.

Kennington, J. L. 1978, "A Survey of Linear Cost Multicommodity Network Flows," Opera-

tions Research, 26, pp. 209-236.

Klingman, D. and Russell, R. 1975, "On Solving Constrained Transportation Problems," Op-

erations Research, 23-1, pp. 91-107.

Klingman, D. and Russell, R. 1978, "A Streamlined Simplex Approach to the Singly Con-

strained Transportation Problem," Naval Research Logistics Quarterly, 25-4, pp. 681-

696.

Koene, J. 1982, Minimal Cost Flow in Processing Networks, a Primal Approach, Ph.D.

Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.

McBride, R. D. 1972, "Factorization in Large-Scale Linear Programming," Working Paper

No. 22, University of California, Los Angeles, California.

35

McBride, R. D. 1980, "A Bump Triangular Dynamic Factorization Algorithm for the simplex

method," Mathematical Programming, 18, pp. 49-61.

McBride, R. D. 1985, "Solving Embedded Generalized Network Problems," European Journal

of Operational Research, 21, pp. 82-92.

McBride, R. D. 1989, Private Communication.

Might, R. J. 1987, "Decision Support for Aircraft and Munitions Procurement," Interfaces,

17-5, September-October, pp. 55-63.

Murtagh, B. A. and Saunders, M. A. 1977, "MINOS User's Guide," Technical Report SOL
77-9, Systems Optimization Laboratory, Department of Operations Research, Stanford

University, Stanford, California.

Olson, M. P. 1989, Dynamic Factorization in Large-Scale Optimization, Doctoral Disser-

tation, Naval Postgraduate School, Monterey, California.

Powell, S. 1975, "A Development of the Product Form Algorithm for the Simplex Method

Using Reduced Transformation Vectors," Mathematical Programming, 9, pp.93- 107.

Rosen, J. B. 1964, "Primal Partition Programming for Block Diagonal Matrices," Numerical

Mathematics, 6, pp. 250-260.

Saunders, M. A. 1976, "A Fast, Stable Implementation of the Simplex Method Using Bartels-

Golub Updating," in: Bunch, J. R. and Rose, D. J., eds., Sparse Matrix Computations,

Academic Press, New York, New York, pp. 213-226.

Schrage, L. 1975, "Implicit Representation of Variable Upper Bounds in Linear Programming,"

Mathematical Programming, 4, pp. 118-132.

Schrage, L. 1978, "Implicit Representation of Generalized Variable Upper Bounds in Linear

Programming," Mathematical Programming, 14, pp. 11-20.

Schrage, L. 1981, "Some Comments on Hidden Structure in Linear Programs," in: Greenberg,

H. J. and Maybee, I., eds., Computer- assisted Analysis and Model Simplification,

Academic Press, New York, New York, pp. 389-395.

Staniec, C. J. 1984, Design and Solution of an Ammunition Distribution Model by a

Resource- Directive Multicommodity Network Flow Algorithm, Master's Thesis, Naval

Postgraduate School, Monterey, California.

Sterling, J. 1990, An EA-6B Transmitter Loading and Assignment Model, Master's Thesis,

Naval Postgraduate School, Monterey, California.

Todd, M. J. 1983, "Large-scale Linear Programming: Geometry, Working Bases and Factor-

ization," Mathematical Programming, 26-1, pp. 1-20.

Wood, R. K. 1989, Private Communication.

Zoutendijk, G. 1970, "A Product-Form Algorithm Using Contracted Transformation Vectors,"

in: Abadie, J., ed., Integer and Nonlinear Programming, North Holland, Amsterdam.

36

DUDLEY KNOX LIBRARY

3 2768 00327570 2

