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ABSTRACT 

 Implementation of isolated energy production facilities could enhance Department 

of Defense (DoD) capability in forward-operating bases, ships, vehicles, and even 

permanent stations. This technology may also benefit the U.S. economy with a new 

renewable-energy storage alternative. This capability not only reduces dependence on 

fossil fuels but also reduces environmental impact as combustion products of hydrogen 

are much cleaner and minimizes CO2 byproducts. To make this hydrogen generation 

plant completely isolated with no additional power and operator involvement, there are 

few steps left in this ongoing Office of Naval Research–funded project. 

 A major problem facing renewable, sustainable energy sources is the storage issue 

with current limitations on batteries and supercapacitors. Compressed hydrogen gas 

presents a potential solution to this problem as hydrogen gas can be stored in tanks for 

future uses in fuel cells or even gas turbine generators. An entirely autonomous, isolated 

production and storage system is within grasp at the Naval Postgraduate School. The 

system in place now has the capability to generate and store compressed hydrogen gas 

produced through solar power with minimal operator interference. 
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I. INTRODUCTION 

As an ongoing Naval Postgraduate School (NPS) project, this research furthers the 

development of a renewable-powered, hydrogen gas compression and storage station. The 

specific task of this research is to automate a new, electrochemical hydrogen compressor 

(EHC) and storage station and connect it to an existing hydrogen production system. Funded 

by the Office of Naval Research (ONR) Engineering Systems Technology Evaluation 

Program (ESTEP), the purpose of this renewable energy system is to develop a hydrogen 

production and storage facility that could be implemented in shore installations, forward 

operating bases, and possibly even at sea. 

A. MOTIVATION 

Within the federal government, the Department of Defense (DoD) consumes 78 

percent of the total government energy consumption, according to the U.S. Energy 

Information Administration, and is looking to increase its use of renewable energy. Although 

DoD energy use has been falling in recent years to 791 PJ (0.75 quadrillion Btu), there is a 

potential security threat because of dependence on foreign energy sources consisting mostly 

of crude oil and liquid fuels [1]. There are two categories of energy consumption within the 

DoD: installation and operational energy consumption. Operational energy makes 70 percent 

of the total energy needs and consists of “transporting, training, and sustaining personnel and 

weapons specifically for military operations,” while the installation energy includes powering 

military installations and vehicles not used on combat missions [1]. Of the DoD’s 300,000 

buildings across more than 500 installations, the Navy and Marine Corps uses 28 percent of 

the installation energy and 32 percent of the operational energy consumption. Rather than 

transporting fuel across the world to bases, the DoD would rather shift to energy production 

capabilities that deploy or generate in the area of operation [1].  

The Secretary of the Navy in the Strategy for Renewable Energy in 2012, set to 

accomplish the goal of obtaining at least half of the shore-based energy requirements from 

renewable energy sources, including solar, wind, and geothermal. This program, as part of the 

1 GW initiative for shore-based power generation, projects the current goal to be met by 2020. 
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As of 2012, 18.6 percent of shore-based energy comes from renewable sources [2]. The Navy 

met its goal ahead of schedule largely because of the 210 MW solar facility in Arizona and 

other contracted projects completed before 2017. Having independent sources of power 

greatly decreases the vulnerability of U.S. bases if physical attackers, cyber attackers, or even 

natural disasters shut down the public grid [3]. There are other reasons for the dramatic 

investment in renewable sources, including reduction of energy imports and environmental 

impact. As stated by the former secretary of the Navy, the Honorable Ray Maybus in the 

Strategy for Renewable Energy, focus on the “unprecedented capacity for continuity of 

operations when the regional grid becomes unstable … alleviating increasing grid congestion 

and consumer demand” in accordance to national energy goals [2].  

Although hydrogen as a fuel does not fit into the current renewable energy strategy, 

beyond 2020 there will be increased demand for renewable sources, and hydrogen has the 

potential to fulfill a vital role in the renewable energy mission of the DoD and the U.S. Navy. 

Renewably sourced energy is not always needed at the time that it is produced and hydrogen 

is a useful energy medium that can also dramatically reduce pollution output. Although 

hydrogen is the most abundant element in the universe, hydrogen requires energy to be 

collected in a useful form. Currently, 95 percent of hydrogen is produced from either wood or 

fossil fuels in a process called natural gas reforming according to the Department of Energy’s 

(DOE) Office of Energy Efficiency and Renewable Energy [4]. These methods have 

byproducts of carbon dioxide (CO2) along with other pollutant gasses. The hydrogen made 

from these methods is not considered “green” because of the byproducts associated. A 

significantly cleaner method to produce hydrogen is electrolysis of water powered by a 

renewable source, but only about four percent is produced via electrolysis as of 2015 [4].  

Hydrogen produced using electrolysis (hydrolysis) requires a large amount of energy 

to split water into its constituents of hydrogen and oxygen gases at atmospheric pressure. In 

Dincer’s paper, “Green Methods for Hydrogen Production,” green hydrogen production is 

defined as hydrogen that comes from a renewable source. Dincer notes that hydrolysis using 

off-the-shelf components for hydrolysis can be both inefficient and costly, but has potential 

as a commercially available system. With improved efficiencies, it will continue to become 

more viable [5]. Compared to gasoline, diesel, and other liquid fuels, hydrogen, since it has a 
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very low energy density at atmospheric pressure, has a significantly lower volumetric density, 

but more than double the gravimetric density. Furthermore, with current limitations on 

batteries and super capacitors, at high pressure, hydrogen can outperform on the volumetric 

basis for storing electrical energy [6]. Hydrogen gas has been proven as an attractive 

alternative fuel that burns significantly cleaner than hydrocarbon products. It can also be used 

in fuel cells that are pollution free with only water as the byproduct [7]. 

Active research of hydrogen gas turbines and fuel cells is ongoing at NPS. 

Combustion of hydrogen in turbines is difficult, primarily due to its high flame temperature 

and laminar burning velocity causing flashback and subsequent damage to the turbine [8]. 

Concurrent work at NPS is adapting the Capstone Microturbine Model C30 to run on 

hydrogen gas instead of natural gas [8]. According to the DOE, fuel cells have been used 

successfully in notable cases including NASA space shuttles, prototype cars, and other small 

portable devices, but fuel cells have not been widely implemented because of cost, 

performance, and durability. The DOE notes that the lack of hydrogen fuel cells is mostly due 

to the prevalence of cheaper conventional fuels and matured battery technology. At this time, 

hydrogen is not cost effective to compete with gasolines prices. Plus, the efficiency of 

hydrogen production, which includes equipment, operations, and maintenance remains the 

greatest challenge for full scale implementation of hydrogen [4] [6]. However, the 

development of hydrogen technologies and improved system efficiencies are critical to 

reducing the demand for conventional fuels to pursue a significantly cleaner alternative. As 

regulation or availability will lead to the replacement of conventional energy, many policy 

makers and researchers predict hydrogen will be a premier fuel alternative in what has been 

hailed as the “Hydrogen Economy” [9]. 

B. OBJECTIVES 

The objective of this research is to further the design of the NPS hydrogen production 

and storage facility as a proof of concept system. From the previous work of Aviles [10] and 

Yu [11], the system utilizes solar photovoltaic (PV) electricity to extract water from ambient 

air splitting water into hydrogen and oxygen using electrolysis also demonstrating a 100 W 

fuel cell. Birkemeier [12] implemented control and automation of the production system. 
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Fosson [13] developed the storage facility and evaluated different ranges of hydrogen 

electrochemical (EHC) compressors and mechanical compressors. The next step was to 

combine the generation and storage system with a new EHC and demonstrate the ability to 

autonomously store renewably sourced hydrogen at high pressure. The hydrogen must exhibit 

acceptable levels of purity through proper purging procedures before use and filtration of 

contaminants and moisture before entering storage tanks. This work combines the elements 

of renewable production and efficient energy storage. Continuing work will be focused on the 

complete automation of the entire system and isolation from grid power.  

Accomplishing these objectives will help pave the way for future work of increasing 

the overall efficiency of the NPS system as a competitive renewable energy storage system. 

In the future, it can be scaled and modified to become a portable and scalable autonomous 

energy production and storage system that will increase DoD capabilities and range of 

operations around the world. This system can also aid in reaching the DoD renewable energy 

production goals by ensuring that excess renewable energy is stored in a useful medium as 

high-pressure hydrogen gas for future use. This type of system will provide sustainable energy 

storage solutions for shore installations where renewable energy is already implemented. 

Additionally, it can be used for the power requirements of forward operating bases (FOB) and 

mobile hospitals. Another benefactor could be the Navy’s future fleet of aerial unmanned 

vehicles (UAV) and underwater unmanned vehicles (UUV), which already serve mission 

critical roles in combat. A deployed fuel production facility in the size of a standard shipping 

container could sustain drone operations and FOB power requirements. This energy 

independent system will potentially extend operational range while decreasing logistical 

support. 

C. HYDROGEN PRODUCTION SYSTEM IMPLEMENTATION 

1. Storage Method 

The hydrogen economy is a novel idea stemming from John Bockris’s talk at General 

Motors Technical Center in 1970 [14]. Hydrogen is very attractive due to its cleaner 

combustion compared to conventional fuels while it also has a very high energy density per 

mass [14]. However, at atmospheric conditions, its energy density per volume is extremely 
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low and thus requires a densification method to store any useful amount of energy. Options 

for storing hydrogen can be summarized into physical-based and material-based methods as 

shown in Figure 1, according to the DOE. The most straightforward method to store hydrogen 

is in a compressed gas form. Compressed gas does not require extraction or extra treatment 

once stored. Comparatively, liquid hydrogen requires cryogenic temperature conditions 

because it will boil at atmospheric pressure at - 258°C (- 423°F). Cold/cryogenic compressed 

hydrogen, another physical-based form, is also difficult because it requires additional energy 

to maintain the extreme cold temperatures and pressures making it less cost effective for 

storage. In addition, the material-based hydrogen technologies are still an active area of 

research requiring additional treatments to be made usable once stored [6].  

 

Figure 1. Types of Storage Methods. Source: [4]. 

In Sarkar and Banerjee’s analysis on hydrogen storage options, they concluded that 

hydrogen gas “seems to be the most favorable for long term viability” and “the total energy 

required for compressed gas option is the lowest” [15]. Compressing hydrogen (at 345 bar 
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or about 5000 psi) greatly increases its energy density per volume, making it a good option 

for immediate use in fuel cells or turbines simply requiring a pressure regulator to convert 

the high pressure hydrogen to the working inlet pressure. Sarkar and Banerjee performed 

an energy comparison of the mainstream storage techniques to store hydrogen. Table 1 

shows a summary of the results of Sarkar and Banerjee’s results for the energy required for 

producing 1 kg of hydrogen and transporting 1 km.  

Table 1. Energy Comparison of Proven Storage Options for Hydrogen. 
Adapted from [15]. 

 Compressed 
Gas Tank 

Cryogenic 
Compressed 

Tank 

FeTi Hydride 
Sorbent 

Mg Hydride 
Sorbent 

Direct energy 
Required to 
Travel (kJ) 

749 (base) 768 965.4 1164 

Energy 
required to 

produce and 
store (kJ) 

1260.7 2172.7 1473.7 1777 

Energy 
required to 

produce tank 
(kJ) 

34.2 15.6 177.3 60 

Total energy 
required (kJ) 

2043.9 2956.3 2616.4 3001.5 

 

According to Stetson in the DOE’s evaluation of Hydrogen Storage Program Overview, 

the projected goal cost of hydrogen per kilogram should be $333 by 2020, and currently 

700 bar (10,000 psi) compressed hydrogen costs $500 per kilogram. Its gravimetric density 

and volumetric density of 1.4 kWh/kg and 0.8 kWh/L, respectively, means that at this 

pressure, hydrogen is very competitive with any other current storage capability. However, 

at $15 per kWh, the ultimate DOE target of $8 per kWh will require improved methods of 

production in the future. The other leading sorbents, iron-titanium hydride and magnesium 

hydride are similar on a price comparison scale, but compressed hydrogen is still the most 
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attractive storage option when considering the additional processes necessary to extract 

hydrogen from a sorbent to become usable [16].  

2. Compression Method 

Since compressed gas is the desirable storage mode, compression of hydrogen is 

done primarily in two methods: mechanical compressors or solid-state electrochemical 

hydrogen compressors (EHC). Research and comparison completed at NPS by Fosson [13] 

concluded that EHCs are better suited for this application, but EHCs may be prone to 

developing leaks and have not yet been reliable for long term use at the Naval Postgraduate 

School’s hydrogen compression system. EHCs follow an isothermal compression process 

while mechanical compressors follow adiabatic compression processes. Significantly less 

energy is required for EHCs compared to hydrogen mechanical compressors to achieve the 

same pressure ratio in a single stage [13]. Additionally, EHCs have no moving parts, no 

frictional losses, and few heat losses. Another major advantage is hydrogen is purified with 

the reaction through the EHC’s membrane with no additional hazardous chemicals required 

[13]. Because the hydrogen is humidified, the water should be removed before storage to 

avoid corrosion. 

Figure 2 shows the basic process of how low-pressure hydrogen oxidizes on the 

anode. The proton exchange membrane carries the split hydrogen proton across the 

membrane to reform with the electron at the cathode in its reduction reaction. Over time, 

the amount of reformation reactions will cause the pressure to increase as more hydrogen 

reforms on the opposite side of the membrane. A DC power supply is required across the 

membrane to facilitate the reaction. The oxidation and reduction reactions are as follows: 

H2→2H++2e- and 2H++2e- →H2 respectively.  
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Figure 2. Electrochemical Hydrogen Compression Diagram. 
Source: [13]. 

EHCs are able to achieve much higher compression ratios than mechanical 

compressors. They also have the potential to last much longer than mechanical 

compressors, which have a mean time before failure of 900 hrs according to results 

published by the National Renewable Energy Lab [17]. Since there is no need for integrated 

cooling or lubrication, there are limited maintenance requirements. Lipp’s research has 

shown EHCs can perform without reduction in performance in excess of 10,000 hrs [18]. 

Mechanical compressors will require oil lubrication and cooling fluid that will inevitably 

contaminate the hydrogen. Mechanical hydrogen compressors also typically have higher 

flow rates and will not start and stop as easily as an EHC [13].  

The main problem with EHCs deals with their vulnerability to internal leaks in the 

membrane and degradation of the membrane when in contact with contaminants. EHC 

reliability has not been widely established prior to this research at NPS in Fosson’s research 

[13], and the development of EHC at has not matured in comparison to the other 

commercially available subsystems. However, like any new technology, these devices will 
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continue to improve with advancements mainly in the proton exchange membrane for 

efficiency and higher outlet pressures. Currently, there are only a few options for 

commercially available EHC manufacturers including HyET, Xergy, Nuvera, and Sintef.  

3. Hydrogen Production Method 

There are a few different ways that hydrogen can be produced. According to DOE 

estimates, 95 percent of hydrogen is produced from either wood or fossil fuels in natural 

gas reformation. These methods do not contribute to an energy independent model because 

they require non-renewable fuels. Hydrogen produced using electrolysis requires a large 

amount of energy to separate water into hydrogen and oxygen gasses. This method 

produces relatively pure hydrogen gas. If electrolysis is accomplished by renewable energy 

technology, it can be an effective and clean method of hydrogen production that increases 

energy resilience [4]. In order to maintain production of high-quality hydrogen, electrolysis 

is the clear choice for implementation on an isolated, renewable energy production system.  

Electrolysis by means of an electrolyzer consists of an anode and cathode in an 

electrolytic cell that operates using DC voltage and current. The reaction must be facilitated 

using an alkaline electrolyte within the solution, a polymer electrolyte membrane, or a solid 

ceramic material [5]. Adding an electrolyte to distilled water is the simplest way to 

facilitate the splitting reaction shown in Figure 3. This is where hydrogen and oxygen 

atoms split and reform at the anode and cathode, respectively, as gas bubbles. The proton 

exchange membrane with an electrolytic solution works similarly with higher efficiencies, 

but the device is very sensitive to the water purity. Solid electrolyzers are another possible 

way to facilitate the disassociation reaction but require a larger power input to achieve 

temperatures between 700–800°C (371-427°F). This is not practical for a renewably 

powered system with limited power [4]. 

Figure 3 shows the diagram of an electrolyzer that utilizes an electrolyte and 

membrane to separate the anodic and cathodic reaction region to collect the byproduct 

gasses of hydrogen and oxygen. The power supply promotes hydrogen and oxygen 

breaking its molecular form to form oxygen at the anode and hydrogen at the cathode. The 

hydrogen protons move through the electrolyte solution and membrane to reform as 
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hydrogen gas at the cathode. The electrolyte solution contains hydroxide ions (OH-) usually 

supplied by potassium hydroxide (KOH) solution or another electrolyte in distilled water 

[4]. A concentration of 20 to 30 percent is required for operation. Electrolyzers of this type 

are typically very reliable and capable of achieving up to 99.99 percent pure hydrogen [5]. 

Coupled with a renewable energy source, this makes hydrogen produced via electrolysis a 

worthwhile investment for the fuel of the future. Such devices are between 50 and 65 

percent efficient [5].  

 

Figure 3. Electrolyzer Diagram. Source: [4]. 

4. Water Production 

For a self-sufficient plant, water collection is a necessity for electrolysis. There are 

a few ways to harvest distilled water from natural sources. The first method is by 

dehumidification. Dehumidification involves a refrigeration cycle that reduces the air’s 
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ability to hold moisture. The air passes through cold coils where moisture in the air 

condenses and is collected in the reservoir. Another option for sourcing distilled water is 

solar distillation, which would require a water source and area for panels. Solar energy 

transmits through a clear material. This causes water to evaporate onto a cover material. 

The water is then collected in a reservoir. Solar distillation may be more suitable where 

water is already available, but dehumidification has wider applicability for an isolated 

FOB. Humidity levels will vary from place to place, but at NPS in Monterey, CA the 

average relative humidity is 75% [19]. Dehumidification technology has been proven 

effective even in climates with humidity as low as 40 percent. Research by Kim has shown 

that even at 10 percent relative humidity, a maximum of 0.25 liters of water per kilogram 

of air can be produced [20].  

5. Renewable Energy Source 

There are many options available for renewable energy today, but few have as much 

versatility for location and maturation as solar energy. Photovoltaic (PV) systems are 

primarily used for electrical power and are only 15 percent efficient on average. However, 

new innovations in material science have enabled at least five mainstream manufacturers 

to break the 20 percent threshold with some researchers attaining even higher results [21]. 

Solar energy is the third most common renewable energy power source behind hydropower 

dams and wind turbines. In cases where power demand is low and the supply of grid-tied 

solar power is high such as the middle of the day, the excess solar power can flood the grid 

causing potential blackouts or be underutilized. In California, where solar energy has 

quickly risen from 0.5 to 10 percent of its renewable energy from 2010 to 2016, the 

neighboring state of Arizona was paid to take the excess production to avoid blackout by 

over-flooding the grid [22]. As PV power continues to expand as a viable option for 

renewable power generation, there will be significant challenges to restructuring the grid 

for storage capability and stability to avoid solar overload. 

The answer to the excess solar energy is obviously storage, and the answer will 

come from a combination of energy storage solutions that will feature batteries, super-

capacitors, and hydrogen fuel. Batteries are a mature energy storage technology compared 
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to the others and have sufficient capability for most applications. One area that showcases 

the energy density advantages of stored hydrogen is hydrogen cars over battery-powered 

electric vehicles. Thomas has shown that “for any vehicle range greater than 160 km (100 

miles) fuel cells are superior to batteries in terms of mass, volume, cost, initial greenhouse 

gas reductions, refueling time and … energy efficiency” [23]. Supercapacitors can also be 

used for storing electrical energy and can be cycled at faster rates compared to lithium-ion 

batteries. Nevertheless, they are still in the developmental phase with similar energy 

density issues as batteries [24]. For expanded DoD capability, the use of an energy dense 

medium is critical for storing energy in a FOB or remote outposts with limited payload 

capabilities. 

D. IMPLEMENTATION OF HYDROGEN SYSTEMS 

The first wind-powered hydrogen micro-economy was built on the small remote 

Norwegian island of Utsira in 2004. In a pilot project by Norsk Hydro and Enercon, wind 

turbines powered a miniature, autonomous hydrogen economy [25]. When excess wind 

power was generated on the power grid, electrolyzers produced hydrogen. Ulleberg notes 

in his summary journal article of the project that hydrogen generation was particularly 

needed when consumer demand was low and power generation was high in order to help 

stabilize their power grid. When wind power was not utilized, a 10 kW hydrogen fuel cell 

and 55 kW hydrogen engine met the real energy demands of the 10 households tested 

within the pilot project. At 200 bar (2900 psi) storage capability and with no wind power, 

the system could provide customers energy for up to three days. However, the main 

problems with the system during its four-year test cycle focused on longevity and 

inefficiencies of the electrolyzer, fuel cell, and hydrogen engine, which contributed to an 

overall system efficiency of only 20 percent of the wind energy utilization [25]. Ulleberg 

also notes other demonstration plants that have accomplished similar systems with 

alternative sources in the U.S., Argentina, Greece, and the United Kingdom [25].  

The question remaining is, how can hydrogen energy be scaled to meet future 

energy needs of transportation which primarily consumes non-renewable fuels? In Ball and 

Weeda’s paper, “The Hydrogen Economy – Vision or Reality?” the scalability is evaluated 
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based on current development initiatives. About 16,000 km of hydrogen pipelines exist in 

Europe, Asia, and the U.S. However, only 300 hydrogen refueling stations exist compared 

to 400,000 conventional refueling stations globally. Although in its infancy, the 

development of prototype stations and standardized pressures at 350 bar for buses and 

equipment and at 700 bar for automobiles will lead to an expedited infrastructure starting 

with metropolitan areas as networks gradually expand. However, the authors note that 

development initiatives by the government are the key to incentivizing both consumers and 

manufacturers to convert to fuel cell vehicles. The development of green hydrogen through 

hydrolysis must also be scaled through government incentives to develop a low-cost 

infrastructure that can compete against non-renewable hydrogen production. This will 

eventually require a more extensive pipeline to connect with a growing refueling station 

network [26]. 

The DoD has already made significant investments using hydrogen. Hickam Air 

Force Base and Marine Corps Base in Hawaii, in conjunction with the State of Hawaii, 

have functional hydrogen fuel station projects that utilize PV arrays. These projects show 

a potential energy independent model for isolated installations with hydrogen-fueled 

government vehicles [27]. General Motors is currently working on projects for the Navy 

to create a hydrogen powered UUV that will increase the capability and awareness of 

submarines and surface ships [28]. The U.S. Naval Research Laboratory has awarded a 

contract for further development of the Hybrid Tiger UAV as a flexible solar cell and 

hydrogen fuel cell powered drone for long range missions. It has already demonstrated 

flight times of over 26 hours with a compressed hydrogen tank [29]. These projects are 

certainly only the beginning of hydrogen capabilities in the DoD. Hydrogen fuel will 

continue to be an integral part of powering installations and military operations. 
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II. DESIGN STRATEGY AND SAFETY 

For combining an autonomous renewable hydrogen production plant with an existing 

storage facility, a variety of EHC compressors were used for testing and evaluation. An 

operator is required for start-up to execute the purge cycle, but the system has capabilities to 

shut down without user interference if desired. Modifications were made to the existing 

systems in order to accomplish compression and storage of renewably sourced hydrogen 

which has not been demonstrated previously. The existing storage system is rated up to 206 

bar (3000 psi) and maintains adherence to the safety regulations specified through by the 

Compressed Gas Association’s (CGA) guidelines for Hydrogen storage [30] which references 

National Fire Protection Association [31], International Codes, International Fire Code, 

International Fuel Gas Code, end user piping systems regulations [32], and American Society 

of Mechanical Engineers (ASME) standards for piping and pressure vessels [33].  

This research focuses on giving insight into the remaining processes that require 

automation in the system. There are two primary means of controlling hydrogen purity being 

stored in the storage tanks. The first method utilizes purge cycles to reduce the concentration 

of other gasses within the system. The second utilizes high pressure filters to reduce moisture 

content and possible particulates from entering the pressure vessels. The system must have 

measurements and data capture ability for characterization and further optimization or 

component upgrades. Safety measures of passive and active autonomous controls were 

implemented to the compressor and storage station. A demonstration of system must first be 

accomplished before system can be completely independent and autonomous. 

A. CHARACTERISTICS OF GASEOUS HYDROGEN 

Hydrogen is a colorless, odorless, non-toxic, and flammable gas that exists in 

atmospheric air at 0.5 ppm [30]. A hydrogen flame exhibits a faint bluish color that makes it 

difficult to detect even when burning. According to the Compressed Gas Association (CGA), 

hydrogen can burn in air at atmospheric temperature and pressure between 4 and 75 percent 

concentration with an auto ignition temperature of 566°C (1050°F). The minimum ignition 

energy is 0.02 mJ which means that static electricity discharge and stray sparks will be safety 



16 

considerations to the electrical system design. Other characteristics of hydrogen gas include 

its small molecular size which cause a high diffusivity in porous materials [30]. This means 

that hydrogen may leak out of a system that may be completely sealed for gasses of larger 

molecular size at equivalent pressure.  

For the purposes of this system’s design, it cannot be assumed that only hydrogen is 

within the system when idle for long durations. A purging process of inert gas (i.e., nitrogen) 

is necessary to achieve high quality hydrogen within the storage tanks and to avoid 

flammability limits at atmospheric pressure. This will ensure that the concentration limit for 

hydrogen flammability is never achieved within the system. 

Other considerations suggested by the CGA to structural safety include hydrogen 

embrittlement. This can occur in metals and alloys. The three common means of metal 

embrittlement include environment hydrogen embrittlement by contact with high pressure 

hydrogen, internal hydrogen embrittlement due to absorbed hydrogen, and hydrogen reaction 

embrittlement. For these cases, hydrogen embrittlement will result in a loss of ductility, 

increase in surface cracks, and lower fracture toughness. For this reason, material selection is 

another important step for this system [30]. According to ASME B31.12, austenitic steels are 

strongly recommended as the most resilient type of stainless steel for avoiding hydrogen 

embrittlement in hydrogen gas piping and pressure vessels [33]. 

Hydrogen is primarily a flammability hazard. The flammability limit concentration is 

much lower than a hazardous asphyxiator concentration. A purge process will be completed 

every time the compressor is operated to further minimize the flammability limit of hydrogen 

gas for this system. The doors to the facilities will be open to atmosphere during any operation 

to allow ventilation as an added precaution.  

B. APPLICABLE CODES AND SAFETY PROCEDURE 

Because of the temporary nature of the system, many codes do not directly apply, but 

were taken into account in the design phase for the purpose of future scaling and added safety 

precaution. Title 29 of the U.S. Code of Federal Regulations (CFR) does not apply since 

station design was below of 11.3 m3 (400 cubic feet) and 4536 kg (10,000 lbs.), but safety 

recommendations are followed for design purposes as per CFR 1910.103 for hydrogen storage 
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facilities. The Navy has its own standards that include Navy Occupational Safety and Health 

Program and Operational Risk Management. The design strategy followed Process Risk 

Management which incorporated removal of hazardous conditions, passive risk mitigation 

(not requiring operator action), continuously operated alarms and safety devices, and lastly, 

the use of standard operating procedures, inspections, and training to mitigate risk [13] [34]. 

Appropriate personnel must conduct these inspections to make the system permanent. 

A purge process is used to expel contaminants from the lines to be within at least 99 

percent hydrogen. This is well under the flammability limit which is four percent oxygen at 

atmospheric pressure. At atmospheric conditions, air consists mainly of oxygen and nitrogen 

at 21 and 78 percent respectively with traces of other gases amounting to the remaining 

percentage. The combustible region as shown in Figure 4 as the shaded region is defined by 

Crowl in Understanding Explosions as conditions that will support combustion [35]. The three 

sides of the triangle represent the main constituents of gasses as the residual gasses are 

assumed to be negligible. At any time within the triangle, the sum of the gasses will be at 100 

percent within the triangle. There are a few options for the purge sequence to get from point 

F to point A described. The initial starting point of air is at point F with the goal of getting 

close to point A, pure hydrogen. CGA standards specifies that residual oxygen levels should 

be below 1 percent [32].  
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Figure 4. Composition Triangle Showing Purge Process for 
Oxygen, Nitrogen, and Hydrogen. Source: [13]. 

From the CGA, there are three purging methods that include sweeping of purge gas 

using inert gas, vacuum purging, or pressure purging with inert gas. A sweeping method was 

not used because there are portions of the facility, namely the containers that only have one 

inlet. Thus trapped contaminants will likely remain within the system. A combination of 

evacuation and pressure purging is equipped on the system to lessen the amount of purge gas 

required. Additionally, the EHC manufacturing company, Xergy, recommends this 

combination of purges to avoid degradation of the EHC cell membranes due to contaminants 

within the EHC operating manual. Crowl developed a formula in Equation 1 for the number 

of purge cycles required, N, which is related to the natural log of the ratio of concentrations 
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of oxygen, Csafe and Cair, divided by the natural log of the ratio of pressures within the system, 

Plow and Phigh. Csafe was defined previously by the CGA as one percent and Cair is 21 percent 

for standard atmospheric conditions. Plow is the pressure achieved by vacuuming the system, 

and Phigh is the pressure of the nitrogen purge gas. The purge procedure is discussed later in 

this chapter. 
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The design strategy addresses multiple features that reduce the flammability risk of 

the system. There are several continuously active measures including a low pressure relief 

valve, high pressure relief valve, and rupture disk for overpressure conditions. Additionally, 

all pressure releases that vent gas under normal operation will do so outside of the facility to 

reduce the chances of a combustible mixture. For automation and safety, a programmable 

logic controller is used to manage the facility. The programmed logic has an automatic 

shutdown procedure in the event of smoke detection or maximum pressure that is measured 

by sensors connected to the PLC. Lastly, there is manual control for shutdown of the 

compressor in both facilities. 

Other practices of safety include proper grounding of the system to ensure no static 

charge builds on the piping system. Wiring is bonded and covered with electrical tape and 

heat shrink wrap or covered to prevent exposed contact with operator or piping system. The 

NFPA 2 is the applicable guidelines to wiring hydrogen systems. The current system abides 

by electrical area classifications for Class I Division 1, which states that electrical components 

should be beyond 1 m (3 ft.) of any vent outlet that is operated under normal conditions. 

However, due to the data collection and power leads to the compressor being exposed by 

design, a Class I Division 2 deficiency still exists as the vent outlet is within 4.6 m (15 ft.) of 

a hydrogen outlet. Because it is a Division 2 deficiency, the system must abide by NFPA 70 

Article 501 which has additional rules that there should be “no uninsulated exposed parts 

operating over 30 V” that are exposed to hydrogen under normal operations [31] [36]. This 

system does not expose gas to the wiring under any normal operations, and there are no 

uninsulated parts operating over 30 V DC.  
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C. COMPONENT SELECTION AND IMPLEMENTATION 

The following chapter will detail the systems used for the hydrogen production and 

storage facilities. The system is located at the NPS at the Turbopropulsion Laboratory. Solar 

panels were installed on the roof to maximize exposure to the sun in Monterey, CA. Outdoor 

sheds were chosen to house the components to maximize safety over an indoor installation. 

In the future, these sheds can be consolidated to a single Conex type shipping container that 

would possess the full operation and be easily transportable wherever energy generation and 

storage is necessary. The existing system is located at the outside building 216 as shown in 

Figure 5. Appendix A, B, C, and D respectively show the mechanical and electrical diagrams 

for the PV array, production shed, compression and storage shed, and control wire diagram. 

 

Figure 5. NPS Hydrogen Compression and Storage Shed (left), 
Production and Control Shed (middle), and Capstone C30 Microturbine 

Shed (right) 
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1. Photovoltaic Array 

The photo voltaic (PV) array is the power source of the entire operation. Previous 

work by Aviles [10] began this research effort by installation of solar panels and was furthered 

by Yu [11] with installation of panels on the roof of building 216 as shown in Figure 6. This 

was done to maximize solar energy production for the greatest amount of time to be exposed 

to the sun. A total of nine panels, as shown in Figure 6, were installed at this location. The 

total power output achieved was 2430 W at peak performance with three parallel strings of 

three solar panels in series as shown in Appendix A [11]. This power output is more than 

adequate at peak daylight times for all components presently to be integrated onto PV supplied 

power [11].  

 

Figure 6. Solar Panel Array at NPS Turbopropulsion Lab, 
Building 216. Source: [11]. 

A Magnum PT100 charge controller, shown in Figure 7, is rated at 6600 W (well 

above maximum power output of solar panels) and has a maximum voltage of 187 VDC. The 
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magnum charge controller provides 12–13.6 VDC to the production system comprising of an 

electrolyzer and four dehumidifiers. A current transducer was added to the charge controller 

to track the power demand of the production shed at the charge controller input.  

 

Figure 7. Magnum PT100 Charge Controller 

2. Production System 

The groundwork for the production system was completed by Aviles and Yu [10] 

[11]. There are four Ivation Peltier dehumidifiers that are used to collect moisture from the 

ambient air and drained into two storage tanks beneath them. The production rate was between 

3 and 9 g/hr for each humidifier, and they consume about 77 W each [10]. Below the storage 

tanks are the process tanks containing a solution consisting of 15% potassium hydroxide 

(KOH) as the electrolyte. The process tanks are connected to the electrolyzer with two inlets 

and two outlets for both process tanks (Appendix B). The electrolyzer has an input for the 

KOH solution and separate outlets for hydrogen and oxygen. Hydrogen is pumped to the left 

side tank and oxygen is pumped to the right as shown in Figure 8. Its efficiency ranged 
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between 50 and 63 percent from Yu [11]. The system is gravity fed and the process tanks have 

exhaust hoses that will be led to the compressor for hydrogen and to atmosphere outside of 

the shed for oxygen. Work by Birkemeier has allowed for the initial production systems 

automation, but not integration with the compression and storage shed [12]. Piping has been 

installed to feed hydrogen to the compression and storage shed. Based on recommendations 

from Birkemeier, the original tank level indicators have been switched with a float type sensor 

that is integrated into the systems automation. Concurrent work is being done to replace the 

humidifiers with a 40 W units, but has not been tested for production rate at the time of this 

work’s completion. 

 

Figure 8. Production Plant. Source: [12]. 
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3. Compressor, Piping, and Filters 

Figure 9 shows the Xergy EHC devices that were tested in this work. The 

compressors have variable amounts of proton exchange membranes that correlate to 

increases in flow rate and required power. The first compressor has 16 cells and was rated 

to 10 bar by Xergy. The second compressor has 120 cells and was rated up to 34.5 bar. The 

last compressor had a single cell and was rated up to 103 bar. The devices have a circular 

cell pattern, and the voltage was monitored in testing to never exceed 500 mV per cell in 

the stack. The single cell compressor was recommended to run at 250 mV, per 

manufacturer’s recommendations. 

 

Figure 9. Xergy EHC 10 Bar Compressor (left), 34.5 Bar 
Compressor (middle), 103 Bar Compressor (right) 

The EHC’s performance can be evaluated by using the Nernst equation to 

determine the theoretical voltage across the cell that would give the output pressure based 
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on the input pressure. Using data collected for the cell temperature in Kelvin, T, and 

pressure ratio, p2 and p1, the theoretical voltage, and 𝑉𝑉𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 can be determined with the 

following constants in Equation 2: 𝑅𝑅� as the universal gas constant (8.314 J/K.mol), n 

number reaction sites (two for diatomic hydrogen splitting), and F as the Faraday Constant 

(9649 C/mol). However, the cell temperature is approximated the average of the inlet and 

outlet gas since there is no internal thermocouple within it to measure the cell temperature. 

 𝑉𝑉𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑅𝑅�∙𝑇𝑇
𝑛𝑛∙𝐹𝐹
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Nernst efficiency is calculated as this theoretical voltage multiplied by the number of 

cells, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, in the stack and divided by the actual voltage measured becoming: 

 𝜂𝜂𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑉𝑉𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∙𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
. (3) 

For comparison to Fosson’s EHC models [13] and research done by Lipp, [18] 

calculations for the adiabatic and isothermal efficiency are included. EHC compressors 

follow an isothermal process, while mechanical compressors ideally track an adiabatic 

process. The next equation has the isothermal compression process efficiency. This is the 

ratio of ideal to actual specific work output, wideal over wactual, which uses the temperature 

and pressure ratio as before with R as the hydrogen specific gas constant (4124.5 J/Kg-K) 

and γ as the hydrogen specific heat ratio (1.4065) [13]. The Also, included for the actual 

work is the compressor power,𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and the mass flow rate, 𝑚̇𝑚 (kg/s) are also included 

for actual work in the next equation: 

 𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
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Next, the ideal isothermal efficiency can be calculated by using the hydrogen gas 

constant, inlet temperature, and pressure ratio again compared to the actual work as 

 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
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. (5) 

The electrochemical compressors require that the hydrogen fed by the production 

plant is humidified. This was accomplished by passing the hydrogen through a bubbler as 
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shown in Figure 10. This, which also prevents particle contaminants from seeping into the 

compressor. The bubbler has a spring actuated overpressure relief opening that will activate 

at approximately 2 bar (30 psi). 

 

Figure 10. Bubbler for Humidification of the Hydrogen Working 
Fluid with a Low-Pressure Release Valve 

The low pressure lines feature a plastic-clear line with a diameter of 9 mm (0.375 

in.) and was sufficient for the production plant flow rate. This line runs from the production 

shed to the compression and storage shed. There are two external events that are manually 

operated to drain moisture from the line if necessary. When inactive for periods of more 

than a few hours, the lines should be purged with the hydrogen working fluid, or gaps will 
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inevitably allow hydrogen to escape and oxygen to enter. The distance between the sheds 

is not optimal in this regard. The current design would only allow for a sweep purge of 

hydrogen to purify the line. This requires a substantial amount of hydrogen to flow through 

the line to reduce the residual air to the desired concentration. 

Swagelok parts were chosen for the supply of high pressure piping and valve 

equipment. They offer mechanical compression fittings that allow for the system to be 

modified and refit to accommodate changes in the design of the system. Swagelok parts 

conform to ASTM A213, which means that it meets the standardized processes for stainless 

steel pressure tubing. The equipment used in this project consists of needle valves, ball 

valves, fittings, joints, 6.35 and 12.7 mm (0.25 and 0.5 in.) piping with a system rated 

pressure of 207 bar (3000 psi). The check valve previously installed by Fosson was 

removed to allow for the purge cycle to effectively purge the entire system. A rupture disk, 

a passive pressure safety device, was previously installed to break at a pressure of 207 bar 

(3000 psi). A proportional relief valve (PRV) adds redundancy as another passive measure 

to prevent overpressure. It was modified by changing a setscrew to the desired pressure of 

150 bar (2175 psi), which prevents overstressing any high-pressure components. The 

setscrews are interchangeable for further system refinements. These valves are shown in 

Figure 11. The pressure differential between the inlet and outlet of the compressor should 

not exceed the manufacturer’s recommendation to avoid leaks forming within the cell of 

the membrane. Another precaution is that the compressor membrane will not be exposed 

to high pressure when the compressor is not running. This will require operator 

involvement to vent the high pressure lines until automatic control valves are implemented. 
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Figure 11. Rupture Disc (left) and Proportional Relief Valve (right) 
Overpressure Safety Systems 

4. Storage Station  

Once the hydrogen exits the EHC, it passes through a bulk fluid separator for the 

water particles (media type 100 W) to be separated from the high-pressure hydrogen gas. 

This must be periodically drained through the bottom, as the element eventually fills up. 

The device consists of metal retainer with a rolled mesh screen to separate the liquid all 

within the 414 bar (6000 psig) rated stainless steel housing. The second device is the Parker 

SJ-Series filter which is also rated up to 414 bar (6000 psi) with a 316 stainless steel 

construction. It has similar construction to the separator but has a fine filter for media grade 

A, which removes hydrocarbon vapors or other particles with a Micron rating of 3. These 

filters shown in series in Figure 12 may require ongoing maintenance over time to drain 

with an accessible port at the bottom of the housing [37]. 
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Figure 12. Parker High Pressure Filters 

From Fosson’s work, six hydrogen (red) and four nitrogen tanks (black) were 

installed as shown in Figure 13. The maximum pressure to transport the cylinders is 

dictated by the Department of Transportation at 156.2 bar (2265 psi). The 32.2 L cylinders 

are placed in parallel service with a common manifold to enable simultaneous filling or 

discharge if desired [13]. Further additions for piping line to a turbine or fuel cell are 

available at either side of the tanks. The capacity of the hydrogen station is shown on Table 

2 for single cylinder and six-cylinder use. The pressures compare to EHC values or the 

maximum DOT tank pressure. The nitrogen storage tanks supply the inert purge gas used 

to reduce the atmospheric oxygen concentration to below flammability limits. A pressure 

regulator is available to change the high pressure of the purge process according to the 

desired purge process from Equation 1. 
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Figure 13. High Pressure Hydrogen Storage Tanks (left) and 
Nitrogen Storage Tanks (right) 

Table 2. Hydrogen Capacity at Various Pressures 

Pressure, bar (psig) H2 single-cylinder, kg H2 six-cylinder, kg 
4.62 (67) 0.015 0.092 
10.3 (150) 0.034 0.207 
34.5 (500) 0.115 0.690 
103 (1500) 0.344 2.064 

156.16 (2265) 0.520 3.123 

 

A vacuum pump is attached to the high-pressure side as a part of the purge cycle. 

The vacuum is located after the water separator to prevent degradation of the pump due to 

moisture. A vacuum pump will save on purge gas by reducing the number of cycles 

required through the purge process especially when multiple cylinders are used. The 

sacrifice of power to drive the vacuum device will be dependent on the availability of purge 

gas. Utilization of both purge gas and vacuum pump or either of the two could be used to 

achieve the same result. Sensors and Data Collection 
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A summary of the sensors used is shown in Table 3. A combination of analog 

pressure transducers and pressure gauges are used in the compression shed. The production 

shed utilizes the Allen Bradley Micro 850 Programmable Logic Controller (PLC), as 

shown in Figure 14, and is programmed through Connected Components Workbench 

(CCW) software. Updates to the PLC can be accomplished on location using an Ethernet 

connection to a PC. The Micro 850 has a 24 point input output interface with lead options 

for additional modules. The PLC’s code from CCW software is shown in Appendix D. 

This software is programmed directly to the controller using an Ethernet connection to a 

PC. Add-ons are available to the Micro 850 that allow for conversion of analog input ports 

within the PLC program. These modules include two 2080-IF4 modules (four analog input 

ports) and one 2080-OF2 (two variable analog voltage outputs). Other expansions include 

the OF4 and OB16 which have 4 analog outputs and 16 digital output ports, respectively. 

Any further automation beyond this thesis may require a separate controller or additional 

plug-in modules for the compression and storage shed. 

Table 3. Summary of Sensors Used 

Sensor Value(s) Measured (Range) Output 

Alicat M-series Flow 
Meter 

Flow rate (0.001- 1.600 slpm), Pressure (0-
13.8 bar), Temperature (-20-70 °C) 

USB serial 

Honeywell MLH Series 
500 psi Pressure 

Transducers 

Pressure (0-34.37 bar) 0.5-4.5 V 

Honeywell Pressure 
MLH Series 3000 psi 

Transducers 

Pressure (0-206.84 bar) 0.5-4.5 V 

HYME Hydrogen Gas 
Analyzer 

Hydrogen Purity (80-99.99%) 4-20 mA 

Current Transducers DC Current (0-50 A) 0-10 V 

Tank Level Sensors Tank Level (0-4.5 in.) 0-5 V 
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Figure 14. Allen Bradley 850 Microcontroller. Source: [12]. 

Solid State Relays (SSR) were used to control the power to essential functions of 

the system including the dehumidifiers, electrolyzer, and compressor. The complete 

electrical diagram from Birkemeier’s work [12] on the system is shown in Appendix E. 

SSR’s will not spark when activated and are very reliable with no moving parts. In this 

work, a DC SSR was integrated into the EHC as a shutoff from the production shed. This 

also prevents exposure to hydrogen in the event of a gas leak. Another DC SSR was used 

for the EHC.  

Data acquisition (DAQ) for the storage facility was accomplished using the 

National Instruments Compact DAQ Model cDAQ-9184 with two analog voltage inputs 

for temperature, two analog voltage inputs for pressure, voltage sensor across compressor 

stack, a current transducer, and a voltage sensor scaled for PV power from the PLC. The 

Alicat M-Series mass flow meter for hydrogen recorded the flow rate. This was integrated 

with the DAQ through a universal serial bus (USB) serial connection to a PC running a 

MATLAB script that records both the DAQ and USB serial connection from the flowmeter. 

The data capture and subsequent data reduction are shown in Appendix F and H, 

respectively.  
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5. Controllable Valves 

Controllable valves are implemented in this research for the operation of the 

hydrogen production unit. These have normally closed logic and are electrically operated 

with the PLC microcontroller. A proportional integral derivative (PID) controlled valve 

was also programmed to open and close the oxygen exhaust valve to keep the process tank 

liquid levels approximately even. An additional controllable valve was added to vent 

excess hydrogen on the production side to prevent over pressurization of the tank since 

EHC compressors can have a significantly low flow rates compared to the minimum 

electrolyzer output. 

D. SYSTEM OPERATION 

1. Start-up 

A procedure was developed to ensure the high quality hydrogen is stored while 

maximizing the lifespan of the EHC. The standard operating procedure given by Xergy 

was modified for the NPS system to follow the calculated purge cycle. The controller uses 

logical statements (Appendix E) based on available PV voltage to control how many 

humidifiers are operating and is programmed to maintain level tanks through opening 

valves. The electrolyzer current can be set to match the expected flow rate of the 

compressor. When there is sufficient solar power to start the electrolyzer, the hydrogen will 

flush the low-pressure hydrogen line. This takes approximately 45 minutes for the 

electrolyzer to flush the low-pressure line and attain hydrogen purity above 94–96 percent 

according to the gas analyzer. Since the gas is humidified by passing through water, the 

remaining percentage is due to the concentration of water vapor that is a function of the 

temperature.  

Once the production system is purging the line, the high-pressure lines must be 

purged in accordance with the CGA guidelines to avoid the flammable region. The chosen 

method for purging is a combination of pressure and vacuum purging from Equation 1 

where the high pressure is given as 2.06 bar (30 psig) supplied nitrogen. To minimize the 

cycles to one, a vacuum is chosen to lower the absolute pressure to 0.04 bar (or measured 

relative pressure of 28.5 inHg). The primary method of reducing the oxygen concentration 
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required the following steps: vacuuming the entire compression station, opening nitrogen 

regulator valve to 2.06 bar (30 psig), vacuuming again to 0.04 bar (28.5 in Hg), and filling 

with hydrogen to at least atmospheric pressure. Other practical combinations with and 

without the vacuum pump and purge gas are shown in Table 4. These three options are 

optimized to reduce the number of cycles and amount of purge gas. Once the system is 

purged and the gas analyzer shows that 94 percent pure hydrogen is at the inlet to the 

system, hydrogen fills the system to atmospheric conditions of at least 1.01 bar (0 psig). 

The bypass of the compressor must be shut off, and the EHC button safety switch pressed 

to change the relay for the compressor, which is set for constant voltage mode, not 

exceeding the maximum stack voltage as dictated by the operating manual. At this point, 

data collection was started manually for a designated time as shown within the MATLAB 

Code from Appendix F. A simplified version of the compression system from Appendix C 

is shown in Figure 15 with gas analyzer, flowmeter, relay, filter, separator, and vacuum 

pump. 

 

Figure 15. Compression System Diagram 
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Table 4. Purge Pressure Combinations 

Method Plow, bar (inHg relative) Phigh , bar 

(psig) 

Cycles, N N2 Purge Gas, kg 

Purge Gas and Vacuum 0.04 (28.5) 2.06 (30) 1 0.6 

Purge Gas Only 1.01 (0.00) 3.03 (44)* 3 1.8 

Vacuum Only 0.04 (28.5) 1.03 (14.7)** 2 0 

*~99% Nitrogen at system start (lower hydrogen quality) 

**Must be hydrogen supplied for the high pressure  

2. Steady-State Operation 

At steady state conditions, the only necessary modifications to be made to the 

compressor voltage will be if the compressor inlet vacuum pressure is too high on the process 

hydrogen tank by raising the fluid level to exceed the tank limits. This will need to be 

addressed by the design of the buck converter for integrating the compressor under the PV 

array power. The tank levels are regulated by PID valve on the oxygen side and a blow off 

valve on the hydrogen side if excess hydrogen is being produced. An alternative design would 

be to stop and restart the electrolyzer or compressor, but the effects on hydrogen purity should 

be evaluated before changing the code.  

3. Shut-down 

An operator is not required to shut-down when there is insufficient solar power for the 

electrolyzer. As an added precaution for EHC durability, the tanks were manually closed and 

the high-pressure lines were vented to outside air before the EHC power was shut off. This 

was done to prevent leaks from forming within the membrane when there was no power 

supplied. There are several automatic shutoffs contained within the PLC operation. If the 

pressure on the system reaches the set pressure as measured by the transducers, the relay for 

the compressor will be shut-off. Once below the threshold of power available to the 

electrolyzer, the relay will be shut-off. The manual switch for the compressor may also be 

depressed to disengage the relay. In addition to these, the PRV valve and the rupture disk also 
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provide mechanical redundancy to release the pressure if it goes beyond their respective 

thresholds.  

THIS PAGE INTENTIONALLY LEFT BLANK  
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III. TESTING AND ANALYSIS 

A. PRODUCTION TESTING AND DISCUSSION 

Tests were conducted to analyze the performance of the production facility. The 

first test was to characterize the flow rate of the electrolyzer by varying the current. The 

electrolyzer must produce hydrogen at a higher rate than the compressor to avoid a vacuum 

within the system. This may allow contaminants from the air to enter the low pressure line 

and cause the process tanks to be uneven. Since the electorlyzer’s installation, there is a 

performance drop of about 0.1 slpm across the power band compared to Yu after two years 

of operation [11]. The relationship between the production flow rate in slpm and power in 

watts is shown in Figure 16. Measurements were taken using the display screens of the 

charge controller and electrolyzer current with verification using a voltmeter. The 

maximum pressure of the process tanks was measured to be approximately 1.2 bar before 

leaks would form in the seals. 

 

Figure 16. Electrolyzer Power vs. Flow Rate  
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The next test completed was a power consumption analysis of the humidifiers, 

which make up the other elements that consume power in the system. They consume about 

77 W each, but a replacement upgrade will be 40 W dehumidifiers that have higher 

projected water output. Small openings near the top of the shed may also increase the 

effectiveness of the humidifiers to maintain the ambient relative humidity within the shed. 

From Yu’s testing, the average production rate was 5.6 grams per hour [11]. 

PV max power performance without the compressor was already completed by Yu 

[11]. With limited PV power there are occasional sudden drops in power recorded by the 

PLC that may cause the system to malfunction if the system is fully isolated from the grid. 

A characteristic PV power drop that could lead could lead to loss of control in the system 

is shown in Figure 17 when PV power drops significantly over a 12 second window.  

 

Figure 17. PV Power vs. Time of Run 
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B. COMPRESSOR TESTING AND ANALYSIS 

In previous work by Fosson [13], two EHC compressors manufactured by Xergy 

were tested. This included a small 15 cell compressor consuming 5–15 Watts and a 4.0 

slpm, 120 cell compressor which had a higher power rating. During initial testing, the 0.4 

slpm compressor achieved pressures as high as 34 bar (500 psi) in testing before a 

catastrophic failure due to an internal leak. The 120 cell compressor also failed during its 

initial testing around 4.5-5 bar. Though both devices failed, the relatively low power 

consumption and projected pressure ratings made them viable for further testing with this 

work. The reason for failure may have been caused by a design flaw or a faulty procedure 

that allows the membrane to be exposed to high pressure when no power is supplied. For 

this research, three compressors were tested shown in Figure 9 from the previous chapter. 

The first compressor was also a 16 cell compressor rated up to 10.3 bar. This compressor 

failed on its initial testing phase before data could be collected. It was over-pressurized 

causing a massive internal leak within the system similar to previous failures. The second 

compressor tested was the rebuilt 120 cell compressor from Fosson’s work and achieved a 

maximum pressure of 5.17 bar (75 psi) consistently with an average power consumption 

of 31.7 W. However, this compressor only achieved a fraction of the original rated 

pressure, which is between 21–34 bar (300-500 psi). The last compressor tested had a 

single cell and average power consumption of 1.38 W. This EHC was only tested up to 

34.5 bar, but is expected to deliver a 103 bar (1500 psi) at a very low flow of 0.01 slpm 

according to Xergy.  

1. 120 Cell, 21–34 Bar Rated Compressor Testing 

The use of EHCs will generally not accomplish a steady state pressure, but will 

continue to rise until the membrane ruptures or the current drops to zero. The first test on 

the rebuilt 4.0 SLPM compressor was to find the flow rate at specified constant voltage 

points as shown in Figure 18. Matching the flow rate of the production shed is critical to 

ensure no hydrogen is exhausted unnecessarily during operation. This will inevitably occur 

if production exceeds the compressor’s flow rate. The compressor was tested using 

constant voltage mode in contrast to Fosson’s research [13] that used constant current. 
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Figure 18. Flow Rate vs. Compressor Voltage 

The next tests were steady state tests to verify the behavior of the compressor over 

time as pressure builds within the storage system. A single 0.15L pressure tank was used 

for this test. A characteristic plot in Figure 19 shows how the pressure and flow rate behave 

as they reach steady state. The data was smoothed using the Savitzky-Golay filter with a 

frame length of 100 data points in the MATLAB post-processing script (Appendix G). The 

outlet pressure starts to asymptote at its maximum pressure of about 5.5 bar, and the flow 

rate drops as fewer protons pass through the exchange membrane. The compressor, since 

it was rebuilt, does not come close to its rated pressure which was originally 21–34 bar 

(300-500 psi). However, it has a much higher flow rate than the 103 bar compressor, which 

may make it more desirable to incorporate with other compressors to maintain the highest 

possible flow rate for the pressure in the tank. 
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Figure 19. Pressure and Flow rate vs. Time 

From equations 3, 4, and 5, the efficiency of the compressor was tested showing 

peak performance for the isentropic process and adiabatic process at 3.75 bar in Figure 20. 

The isothermal and adiabatic efficiency at this pressure are 13.4 and 16.1 percent, 

respectively. The Nernst Efficiency asymptotes as the pressure ratio stabilizes. Since there 

were 120 membranes, only a fraction of these cells had a significant voltage potential (>100 

mV) when individual cells were sampled with a voltmeter probe. Therefore, 50 cells are 

used to calculate Nernst efficiency. This behavior is typical of most EHCs in that the 

individual cells have more potential across them towards the negative lead to the power 

supply. 
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Figure 20. Efficiency vs. Outlet Pressure 

2. 1 Cell, 103 Bar Rated Compressor Testing 

The 103 bar compressor operates at an extremely low flow rate, current, and 

voltage. Reading data at this level was especially noisy as it was almost out of range for 

many of the sensors installed. As was the case with the 34.5 rated compressor, the start-up 

voltage has a characteristic flow rate. Even with a data smoothing function, there are still 

uncharacteristic drops recorded in the flow rate as shown in Figure 21. The flow meter is 

located 0.1 meters upstream of the inlet and is operating near the minimum limit for flow 

rate measurements. The maximum suggested voltage of 250 mV was used for this single 

cell compressor for further steady state testing. 
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Figure 21. Flow Rate vs. Compressor Voltage 

The next tests were steady state tests to see the behavior of the compressor over 

time as pressure builds within the storage system. Since the flow rate was very low, only a 

small pressure vessel was used (approximately 0.01 L). A characteristic plot in Figure 22 

shows just a small window into the compressor’s capability. The average flow rate at this 

operational pressure is approximately 0.004 slpm which is more than two orders of 

magnitude lower than the minimum production rate. Since the inlet process tank is only 

rated to 1.2 bar, the electrolyzer must shut-off in order to maintain constant process tank 

levels. The steady linear increase in pressure predicts a much higher capability for further 

tests. To put this into perspective, it would take about 7100 hours of operation to fill the 

32.2 L storage facility to 34.5 bar, storing only 0.69 kg of hydrogen. 
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Figure 22. Pressure and Flow Rate vs. Time 

Lastly, the adiabatic, isothermal, and Nernst efficiencies were evaluated. Similarly 

to Fosson [13], the adiabatic and isothermal efficiencies are extremely small. The 

maximum efficiency was not captured over this pressure range and will require further 

testing at higher pressures. Since all the efficiencies are functions of the pressure ratio, they 

are likely to continue to rise until the mass flow rate drops as the EHC reaches its maximum 

achievable pressure. The maximum pressure for the hydrogen storage tanks at 156.2 bar 

(2265 psi) is achievable if the EHCs are installed sequentially as long as the inlet and outlet 

differential is only 103 bar (1500 psi). The trade-off between high pressures and high flow 

rates is a major hurdle of the EHC design for a production and storage station. For storing 

the maximum amount of hydrogen in the least amount of time, it would be desirable to be 

able to switch between compressors that have different operating regimes. For example, 

the 120 cell EHC could operate until its maximum pressure is reached. Then a single cell 

could be powered to further increase the pressure but at a lower rate. Depending on the 
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demand frequency for the compressed hydrogen, pressurizing the storage system to its limit 

may not be necessary. However, the station should maximize the production rate by 

increasing the flow rate at each stage being careful not to exceed the electrolyzer output. 

 

Figure 23. Efficiency vs. Outlet Pressure 

  



46 

THIS PAGE INTENTIONALLY LEFT BLANK  



47 

IV. CONCLUSION 

A. SYSTEM PERFORMANCE 

The system in place produces renewably sourced hydrogen and is capable of storing 

the hydrogen in tanks for future use in a fuel cell or a gas turbine. The purge process is 

effective in ensuring proper safety within the facility. Many safety measures, both passive 

and active, are set in place for system operation without operator involvement. The 

compressors remain the most significant challenge to the system’s overall performance. 

With another step in automation, the process can effectively run autonomously making the 

low flow rates of EHC compressors an ideal choice for this system. Since the EHCs are the 

limiting step in the design loop, the system will improve significantly as the technology 

matures and evolves. 

Many improvements to the production facility are necessary to accommodate the 

compressor, which include more robust control logic for improved performance, updated 

tank level, improved dehumidifiers, high pressure filters, and purge processes. The system 

can operate autonomously once started and even stop itself if necessary using the PLC. 

The implications of this research will benefit shore installations that already have 

renewably sourced energy. At peak production times, instead of shutting down the 

renewable source, a system such as this could be powered up for future use as a primary 

source or even emergency power if there is a grid failure. The other potential benefactor 

will be DoD operations utilizing hydrogen fuel cell drones. With a forward deployed 

production facility in the size of a shipping container, UAV or UUV drones can have 

minimal logistical support once the system is in place and have extensive range once in 

theater. 

B. RECOMMENDATIONS FOR FUTURE WORK 

Based on the results of this work, there are a few steps necessary to improve and 

automate the entire renewable energy storage operation. It is recommended that another 

compressor of moderate flow rate of about 0.4 to 1.4 slpm and 34.5 bar pressure rating be 

added to the existing compressors. This configuration will optimize the production rate and 
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maximum pressure so that the inherent trade-off of flow rate and pressure rating has less 

of an effect in total hydrogen production. 

In the future it will be necessary to add high pressure actuated valves to automate 

the purging process, close the tanks, open/close the bypass valve, and exhaust residual gas 

in lines. Pneumatic-electric valves will require additional compressed gas to operate the 

valve and are not the primary choice for future design. Fully-electronically operated valves 

may require relays depending on the power consumption. The power requirement must be 

low so as to not exceed the maximum power of the controller, and these valves only require 

power when switching. In order to maintain a system rating at 206 bar (3000 psi), these 

valves tend to have high costs at this pressure. A suggestion for the minimum amount of 

controllable is shown in the mechanical diagram of Appendix C. With a second controller, 

the two PLC microcontrollers can act independently or together. If they were to act 

independently, the compressor and storage shed PLC would use a hydrogen purity sensor 

requirement as the conditional to start the operation. A satisfied pressure condition or 

minimum PV power will initialize the shut-down procedure. 

Data acquisition can also be replaced with the microcontrollers using the program, 

ControlLogix instead of the current DAQ that requires manual startup. By configuring the 

Micro 850 with additional modules, the current DAQ measurements can be read the analog 

voltage inputs. EHC data collection currently uses building power as its supply. 

Additionally, the compressor must use the power supplied by the PV array to accomplish 

the goal of self-sufficiency. The PV array has the capability to achieve the EHC power 

requirement, but it will require additional work to step down the voltage from the PV array 

voltage to the EHC desired voltage and controllers. 

To prolong operation and maintain a back-up supply of power for shut-down, a 

battery or capacitor could be used to capture excess PV power. This would prolong the 

production time at the end of a day and steady the system when heavy cloud cover can 

significantly reduce available power. The back-up supply will ensure that the system can 

safely shut down by closing the storage tanks and venting the lines using controllable 

valves for EHC shut-down. 
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Small holes in the production shed may improve dehumidifier performance as the 

relative humidity will remain constant through mixing with outside air. Another proposal 

would be to avoid dehumidifiers entirely by using solar distillation. Most areas where the 

Navy operates have available water sources which makes solar distillation a viable 

alternative for collecting distilled water for electrolysis.  

In order to prove this system as mobile in the future, this entire production and 

storage facility can be scaled to the confines of a Conex style shipping container. With PV 

panels installed on the roof, dehumidifiers or distillation panels, the rest of the production 

and compression operation could be confined within. Utilizing a hydrogen microturbine or 

fuel cells, the system can store and produce power on demand at nearly any location. A 

system such as this could be moved relatively easy by sea or land to wherever a self-

contained energy production facility is desired.  
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APPENDIX A. SOLAR PANEL CONFIGURATION 

 
 

Figure 24. PV Array Diagram: Source [11].
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APPENDIX B. PRODUCTION CONFIGURATION 

 

Figure 25. Production System Configuration. Adapted from [12]. 
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APPENDIX C. COMPRESSION AND STORAGE CONFIGURATION 

 

Figure 26. Compression and Storage Mechanical Diagram. 
Adapted from [13]. 
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APPENDIX D. ELECTRICAL WIRING CONFIGURATION 

 

Figure 27. Electrical Diagram: Source [12] 
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APPENDIX E. PLC CONNECTED COMPONENTS WORKBENCH 
CODE 

Note: Using CCW, the code can be modified to change values within the variables section 
and script. PLC must be set to “Program” on the device and CCW must establish 
connection to device in order to make changes. PLC will run independent of connection to 
PC when set to “Run” on the device.  
Further details on device operation and troubleshooting specific to the Allen Bradley Micro 
850 PLC can be shown at the following link from the manufacturing company:  
https://literature.rockwellautomation.com/idc/groups/literature/documents/um/2080-
um002_-en-e.pdf 
 
Controller.Micro850.Micro850.main 
(*Get PV voltage*) 
PV_Voltage:=mappingFunction(ANY_TO_REAL(_IO_P2_AI_01)); 
 
(*Check Solar Panels have at least 86V *) 
IF PV_Voltage>=PV_min_Voltage THEN 
 PVInput:=TRUE; 
 TON_1(PVInput,TIME_DELAY_1);(*Start Timer*) 
 IF TON_1.Q THEN 
   ELECTROLYZER_ON_MASTER:=TRUE; 
   turn_on_electrolyzer:=TRUE; 
   PVInput:=FALSE; 
   TON_1(PVInput,TIME_DELAY_1);(*Resetting and stopping timer*) 
 END_IF; 
 
END_IF; 
 
(*Get water level for storage tanks*) 
H2storageH2O:= tank_level_H2_Storage(ANY_TO_REAL(_IO_P1_AI_01)); 
O2storageH2O := tank_level_O2_Storage(ANY_TO_REAL(_IO_P1_AI_02)); 
 
IF H2storageH2O<storage_tank_min THEN 
 start_dehumid_H2:=TRUE; 
 storage_tank_low:=TRUE; 
ELSIF O2storageH2O < storage_tank_min THEN 
 start_dehumid_O2:=TRUE; 
 storage_tank_low:=TRUE; 
END_IF; 
 
dehumid_H2_1_on:=TRUE;(*For testing*) 
dehumid_H2_2_on:=TRUE;(*For testing*) 
dehumid_O2_1_on:=TRUE;(*For testing*) 
dehumid_O2_2_on:=TRUE;(*For testing*) 
 
(*Turns on or off dehumidifiers based on fluid levels of storage tanks and voltage level on 
electrolyzer*) 
IF turn_on_electrolyzer AND NOT(dehumids_off) THEN 
 IN_D:= TRUE; 

https://literature.rockwellautomation.com/idc/groups/literature/documents/um/2080-um002_-en-e.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/um/2080-um002_-en-e.pdf
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 TON_D(IN_D, T#15s); 
  
 _IO_EM_DO_07 := dehumidifiers_0(dehumid_O2_2_on, start_dehumid_O2, T#0s); 
 _IO_EM_DO_06 := dehumidifiers_0(dehumid_O2_1_on, start_dehumid_O2, T#5s); 
 _IO_EM_DO_05 := dehumidifiers_0(dehumid_H2_2_on, start_dehumid_H2, T#10s); 
 _IO_EM_DO_04 := dehumidifiers_0(dehumid_H2_1_on, start_dehumid_H2, T#15s); 
 
 IN_D:= FALSE; 
 TON_D(IN_D, T#15s); 
 
END_IF; 
 
(*Get process level measurements*) 
H2process_level := tank_level_H2_Pro(ANY_TO_REAL(_IO_P1_AI_00));(*Needs to get 
calibrated for sensor*) 
O2process_level := tank_level_O2_Pro(ANY_TO_REAL(_IO_P1_AI_03));(*Needs to get 
calibrated for sensor*) 
 
(*Checks to see if the process tank levels are too low. If they are then we want to fill them before 
starting electrolyzer*) 
IF (H2StorageH2O>lowest_storage_tank_level) AND 
(O2StorageH2O>lowest_storage_tank_level) AND ((H2process_level + O2process_level) 
<process_tank_sum_min) THEN 
 fill_process_tanks := TRUE; 
END_IF; 
 
(*If there is enough voltage to turn on electolyzer AND the water storage tanks are NOT empty  
ANT the fill process tanks are NOT full THEN turn on the electrolyzer pins*) 
IF ELECTROLYZER_ON_MASTER AND NOT(storage_tank_low) AND NOT(fill_process_tanks) 
THEN 
 _IO_EM_DO_09 := TRUE;  
 _IO_EM_DO_08 := TRUE; 
END_IF; 
 
(*Calculate electrolyzer voltage*)  
electrolyzer_voltage:=mappingFunction(ANY_TO_REAL(_IO_P2_AI_00)); 
 
(*If the electrolyzer voltage is too low we start the pulse timer. the pulse timer runs until the time 
elapses.  
The dehumids off variable will turn off the dehumidifiers for 10 minutes, then turn them back on .*) 
time_delay_2 := T#10M; 
IF electrolyzer_voltage <= electrolyzer_min_voltage THEN 
 ElectrolyzerInpout := TRUE; 
 TP_1(ElectrolyzerInpout,time_delay_2);  
 IF TP_1.ET <=  T#10M THEN 
    dehumids_off :=TRUE; 
    ElectrolyzerInpout := FALSE; 
    TP_1(ElectrolyzerInpout,time_delay_2); 
 END_IF;  
END_IF; 
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APPENDIX F. MATLAB DATA COLLECTION CODE 

Data Read Script 
Benjamin Anderson 
Ed Fosson 
clear;clc;close all 

Hydrogen Compression Station Data Acquisition Using NI CompactDAQ9184 
(1) Verify COM port for Alicat Flow Meter using Device Manager (2) Open NI MAX and 
test CompacDAQ Chasis to verify communications (3) Enter filename below (4) Specify 
Runtime Establish Communications with Alicat Flow Meter using Troubleshooter 
Filename and Runtime 
delete(instrfindall) % Deletes the instruments currently connected 

clear;clc;close all; 

filename=‘514 test3’ % filename 

runtime =10*30; %Define iterations approx. 1 second 

Establish NI DAQ connection 
daqreset 

devices = daq.getDevices 

s = daq.createSession(‘ni’) 

Establish Alicat Flowmeter connection 
flowMeter=serial(‘COM6’,’TimeOut’,2,’BaudRate’,19200,’Terminator’,’CR’); 

fopen(flowMeter); 

Preallocate Data Arrays 
type s.inputSingleScan in command bar to match size 
timeint = zeros(1,runtime); 

NIdata = zeros(9,runtime); 

timerecord=zeros(1,runtime); 

inletpressure=zeros(1,runtime); 

inlettemp=zeros(1,runtime); 

inletflow rate=zeros(1,runtime); 

Pressure Transducer Calibration 
Y1=500;     % 0–500psi 0.5-4.5V output 

Y2=0; 

X1=.5; 

X2=4.5; 

M1=500/4; 
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b1=-M1*.5; 

 

Y3=3000;    % 0–3000psi 0.5-4.5V output 

Y4=0; 

M2=3000/4; 

b2=-M2*.5; 

NI Thermocouples Setup 
addAnalogInputChannel(s,’1’,0:1, ‘Thermocouple’); 

tc1 = s.Channels(1); 

set(tc1); 

tc1.ThermocoupleType = ‘K’; 

tc1.Units = ‘Celsius’; 

 

tc2 = s.Channels(2); 

set(tc2); 

tc2.ThermocoupleType = ‘K’; 

tc2.Units = ‘Celsius’; 

% Option: Add cell thermocouple 

Analog Channel Setup 
Use Test Panels in NImax to configure correctly 
addAnalogInputChannel(s,’3’,0:3,’Voltage’) 

powersupply = s.Channels(1); 

CurrentChargeController= s.Channels(2); 

currenttransducer = s.Channels(3); 

addAnalogInputChannel(s,’4’,0:2,’Voltage’); 

previoustime=0; % initialize time counter 

Loop for data collection 
for i=1:runtime % # of samples to collect data for 

 tic % starts a stopwatch 

fprintf(flowMeter,’A’); 

IN=fscanf(flowMeter); 

[OUT.ID,OUT.pressure,OUT.temp,OUT.LPM,OUT.SLPM,OUT.gas]=strread(IN,... 

 ‘%s%f%f%f%f%s’, ‘delimiter’, ‘ ‘); %reads flowmeter 

inletpressure(i)=OUT.pressure; % psia 

inlettemp(i)=OUT.temp; % Celcius 

 NIdata(:,i) = s.inputSingleScan; 

 inletflow rate(i)=OUT.SLPM; % SLPM 

 timeint(i)=toc; % stops stopwatch to record data 

 time(i)=previoustime+timeint(i); % adds time interval 

 previoustime=time(i) % sets time for loop 

 % option to add a pause if desired to reduce # of samples 

end 

Clean up the serial object 



63 

fclose(flowMeter); 

delete(flowMeter); 

clear flowMeter; 

Data Reduction 
T1=NIdata(1,:);                                     % Temperature (C) 

T2=NIdata(2,:);                                     % Temperature (C) 

Vstack=NIdata(3,:);                                 % Voltage across stack 

PVpower=NIdata(4,:)*50-40;                          % PV current                            

\ 

CompressorCurrent=(NIdata(5,:)+.0171)*5;            % Compressor Current (A) 

CompPower=Vstack.*CompressorCurrent; 

Write data to file 
P1=(NIdata(7,:))*M1+b1;                               % Voltage to psia 

P2=NIdata(8,:)*M2+b2;                               % Voltage to psia 

P1=14.7+P1;                                         % psia to psig 

P2=14.7+P2;                                         % psia to psig 

CR=P2./P1;                                          % Compression Ratio 

P1pa=P1*6894.76;                                    % psi to kpa 

P1pa=P1*6894.76;                                    % psi to kpa 

R=4124.5;                                           % Hydrogen gas constant 

Tkel=T1+273;                                        % Kelvin 

Tkel=T1+273;                                        % Kelvin 

densityref=.08235/1000;                             % kg/m^3 

mdot=inletflow rate./60*densityref;                  % kg/s 

wactual=CompPower/mdot/1000;                        % KJ/Kg 

wisothermal=R.*Tkel.*log(CR);                       % KJ/Kg 

gamma=1.4065;                                       % nondim 

sigma=gamma./(gamma-1);                             % nondim 

wadiabatic=sigma.*R.*Tkel.*[CR-1].^sigma;           %KJ/Kg 

R=8.314;                                           % Universal Gas Constant 

Tcell=((T1+T2)/2)+273.15;                           % Kelvin 

n=50;                                           % number of cells (1 or 50) 

F=9649;                                             % Farraday Constant 

P1bar=P1*.0689;                                     % bar 

P2bar=P2*.0689;                                     % bar 

Vtheory=R.*Tcell./n./F.*log(CR);                    % Volts 

Write to File 
A=[time’,inletflow rate’,P1’,P2’,T1’,T2’,Vstack’,CompressorCurrent’,... 

    PVpower’,CompPower’,CR’,inlettemp’,inletpressure’,wactual’,wisothermal’,... 

    wadiabatic’,Vtheory’]; %17 Data Values 

xlswrite(filename,A) 

Plotting Data Collection 
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Rough Plots used onsite to assess runs 
Figure(1) 

plot(time, P2, time, P1) 

title(‘Inlet/Outlet Pressure vs time’) 

xlabel(‘time (s)’) 

ylabel(‘Pressure (psi)’) 

legend(‘Exit Pressure’,’Inlet Pressure’) 

 

Figure(2) 

plot(Vstack,CompressorCurrent) 

title(‘Polarization Plot’) 

ylabel(‘Current (A)’) 

xlabel(‘Voltage (V)’) 

 

Figure(3) 

plot(CompPower,inletflow rate) 

title(‘CompPower,inletflow rate’) 

xlabel(‘Compressor Power (W) ‘) 

ylabel(‘Flow Rate (SLPM)’) 

 

Figure(4) 

plot(time,PVpower) 

title(‘PV Power vs. Time’) 

xlabel(‘Time (s)’) 

ylabel(‘PV Power (W)’) 

 

Figure(5) 

plot(CompressorCurrent,P2) 

xlabel(‘Compressor Current (A)’) 

ylabel(‘Exit Pressure (psi)’) 

 

Figure(6) 

plot(time,wactual,time,wadiabatic,time,wisothermal) 

legend(‘w_(actual)’,’w_(adiabatic)’,’w(isothermal)’) 

 

Figure(7) 

plot(P2,Vtheory,P2,Vstack); 

xlabel(‘Pressure (bar)’); 

ylabel(‘Voltage (V)’); 
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APPENDIX G. MATLAB POST-PROCESSING SCRIPT 

 
Postprocessing Data Script 
Ben Anderson 
clear; clc; close all; % initialize workspace and closes opened Figures 

DataImport=xlsread(‘514 test2.xls’); % reads file 

smoother=100; % # surrounding data points for data smoothing 

% ‘sgolay’ Savitzky-Golay FIR smoothing filter for noisy data 

time=DataImport(:,1);                                   % sec 

inletflow rate=DataImport(:,2);                          % SLPM 

inletflow rate=smoothdata(inletflow rate); 

P1=DataImport(:,3);                                     % psia 

P2=DataImport(:,4);                                     % psia 

P1=smoothdata(P1,’sgolay’,smoother); 

P2=smoothdata(P2,’sgolay’,smoother); 

 

T1=DataImport(:,5);                                     % C 

T2=DataImport(:,6);                                     % C 

T1=smoothdata(T1,’sgolay’,smoother); 

T2=smoothdata(T2,’sgolay’,smoother); 

 

Vstack=DataImport(:,7);                                 % V 

Vstack=smoothdata(Vstack,’sgolay’,smoother); 

 

CompressorCurrent=DataImport(:,8);                      % V 

CompressorCurrent=smoothdata(CompressorCurrent,’sgolay’,smoother); 

 

PVpower=DataImport(:,9);                                % W 

PVpower=smoothdata(PVpower,’sgolay’,smoother); 

 

inlettemp=DataImport(:,12); 

inletpressure=DataImport(:,13); 

Recalculated values 
CR=P2./P1;                              % Compression Ratio 

R=4124.5/1000;                          % Hydrogen Gas Constant 

Tkel1=T1+273.15;                        % Kelvin 

Tkel2=T2+273.15;                        % Kelvin 

densityref=.08235;                      % kg/m^3 

mdot=inletflow rate./60*densityref;      % kg/s 

wactual=CompPower./mdot;                %KJ/kg 

wisothermal=R.*Tkel1.*log(CR);          %KJ/kg 

gamma=1.4065; 

sigma=gamma/(gamma-1); 

 

wadiabatic=sigma*R.*Tkel1.*((P2./P1).^((gamma-1)/(gamma))-1); %KJ/kg 
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Rbar=8.314;                             % ideal gas constant 

Tcell=((T1+T2)/2)+273.15;               % Kelvin (approximated value) 

cells=1;                                % 1 or 50 

n=2;                                    % reaction number 

F=9649;                                 % Faraday Constant 

P1bar=P1*.0689;                         % bar 

P2bar=P2*.0689;                         % bar 

Vtheory=Rbar.*Tcell./n./F.*log(CR);     % V 

Plotting Data 
Figure(1) 

yyaxis left 

plot(time, P2*.06894757, time, P1*.06894757) 

title(‘Inlet/Outlet Pressure and Flow rate vs time’) 

xlabel(‘time (s)’) 

ylabel(‘Pressure (bar)’) 

 

yyaxis right 

plot(time, inletflow rate,’r’) 

ylabel(‘Flow Rate (SLPM)’) 

legend(‘Exit Pressure’,’Inlet Pressure’,’Flow Rate’,’location’,’east’) 

Figure(2) 

plot(Vstack*3,inletflow rate) 

title(‘Flow Rate vs Compressor Voltage’) 

ylabel(‘Flow Rate (SLPM)’) 

xlabel(‘Voltage (V)’) 

Figure(3) 

plot(CompPower,inletflow rate) 

title(‘CompPower,inletflow rate’) 

xlabel(‘Compressor Power (W) ‘) 

ylabel(‘Flow Rate (SLPM)’) 

 

Figure(4) 

plot(time,PVpower) 

title(‘PV Power vs. Time’) 

xlabel(‘Time (s)’) 

ylabel(‘PV Power (W)’) 

 

Figure(5) 

plot(CompressorCurrent,P2) 

xlabel(‘Compressor Current (A)’) 

ylabel(‘Exit Pressure (psi)’) 

Figure(6) 

yyaxis left 

plot(P2bar,wisothermal./wactual*100,P2bar,wadiabatic./wactual*100) 

xlabel(‘Outlet Pressure (bar)’) 

ylabel(‘Adiabatic and Isothermal Efficiency (%)’) 

title(‘Efficiency vs Outlet Pressure’) 
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yyaxis right 

plot(P2bar,Vtheory*cells.*100/Vstack) 

ylabel(‘Nernst Efficiency (%)’) 

 

legend(‘isothermal efficiency’,’adiabatic efficiency’,’Nernst 

efficiency’,’location’,’south’)  
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