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ABSTRACT 

 Network flow problems can be used to address any of the phases of the military 

joint operation model, but they do a poor job with the transition from interdiction to 

restoration activities. Previous research identifies methods to find the best- and 

worst-case scenarios for a given network, but do not show how interdiction activities 

affect restoration activities (or vice versa) and/or how we can make sense of these 

interactions in military planning. We develop a method of metagraph analysis to study 

various performance thresholds in a flow network and identify ways to interdict and 

restore systems not previously discussed in the literature. The presence of states not 

identified by traditional network flow problems indicates that, from an operational 

planning perspective, alternatives exist that may improve the attack and defense of a flow 

network. This result suggests that traditional interdiction and restoration methods 

prescribe only a subset of joint operational activities, and military operations would 

benefit from expanding analysis to consider more options. We define at least two ways to 

identify these options and conclude that there are system states not identified by 

traditional methods that can inform new ways to shape flow networks for military 

operations. 
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Executive Summary

One of the most prevalent models in the study of military operations is the network flow
problem. Network flow problems encompass a wide array of military applicability, from
force projection and operational planning to supply chain logistics and resource scheduling.
Traditional network interdiction techniques (i.e., attacker-defender models) have focused on
identifying the set of nodes and/or arcs whose removal hurts to the performance of a system
in the worst possible manner. The implementation of that worst-case scenario represents
the overall success or failure of a strategy.

However, the military is responsible for not only the domination of the network, but also 
the repair, recovery, and transition of it back to civil authorities. The military develops and 
conducts operational planning to execute six joint operational phases – (I) shaping, (II) 
deterring, (III) seizing initiative, (IV) dominating, (V) stabilizing, and (VI) enabling civil 
authority. While Phases II and III focus on interdicting flow networks to break system 
components and minimize the performance of the system, Phases IV and V focus on the 
opposite: the restoration of the flow network back to a  functioning state that maximizes 
performance on the system. Successful military operations depend on the “operational 
art” to effectively plan and execute interdiction activities and then transition to restoration 
activities that enable civil stability and governance.

Unfortunately, a lack of knowledge about the relationship between network interdiction
and restoration currently hinders joint operations. Traditional interdiction and restoration
methods identify the way to interdict a flow network that inflicts the most damage and the
best possible way to restore it, but provide no decision-support for managing the transitions
between interdiction to restoration activities. Instead, there may be other options than just
the best- or worst-case to achieve a desired operational result. In particular, Phase I shaping
activities would benefit from a greater number of interdiction and restoration options to
determine the best course of action to execute military operations if and when plans need
to change. Identifying whether there are flow network states that provide additional options
not offered by interdiction and restoration models is critical to military operational art.

This thesis focuses on answering a single motivating question to inform network shap-
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ing activities: Are there system states not normally identified via traditional [interdic-
tion/restoration] methods that are operationally relevant and inform new approaches to
joint operations?

Our approach to answer this question starts with creating and analyzing a metagraph for
a given flow network. A metagraph is a network representation of system states, where
metagraph vertices encode which arcs are functioning or failed in a flow network and edges
represent the interdiction and restoration activities relating one state to another (e.g., by
failure or repair of an arc). Constructing a metagraph allows us to define a performance
threshold, τ, for the flow network and color every vertex in the metagraph as either Green
(i.e., meeting the performance threshold) or Red (i.e., not meeting the performance thresh-
old). Using a colored metagraph, we are able to show how any interdiction or restoration
may transition a flow network into a failed or functioning state. We demonstrate the creation
of a metagraph by enumerating every state in a four-edge and nine-edge flow network.

We define two new measures to analyze a colored metagraph and identify system states
relevant for military operations. The first is performance distance, δ, which measures the
difference between flow network performance and the performance threshold τ. The second
is Threshold Hamming Distance, θ, which measures how many interdictions or restorations
are needed for a given flow network to cross the performance boundary. We use these two
measures to identify two system states and their corresponding interdiction and restoration
sets that would otherwise not be identified by traditional methods. The first type of states
are those which only one of their interdiction-related or restoration-related edges cross the
performance boundary. These states help identify which arcs in the original flow network
are the most critical to ensure the system retains or loses nominal performance. The second
kind of states are those which all of the interdiction-related edges (for Green) or all of
the restoration-related edges (for Red) cross the performance boundary. These states help
identify groups of nodes and arcs in the original flow network that are most important for
quick system failure or recovery, respectively.

We demonstrate the importance of metagraph analysis using δ and θ by identifying critical
system states for a notional 18-Edge Infrastructure Flow Network. Traditionally, a military
analyst might use interdiction methods to find critical sets of arcs that, if interdicted si-
multaneously, would produce worst-case failure for the 18-Edge Flow Network. Using the
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methods developed herein, we are able to expand upon previous analysis to provide more
depth of knowledge about how to interdict and restore network performance. Specifically, by
identifying Green and Red states that share a single transition edge across the performance
boundary, we are able to pinpoint which arc in the 18-Edge Flow Network is most important
for interdiction. Second, by identifying Red states where any restoration allows the flow
network to regain nominal performance, we identify clusters of nodes and arcs that are
most relevant for network recovery. Together, our metagraph analysis pinpoints new ways
to interdict and restore network performance not previously discussed in the literature, and
provides new options for military operations that seek to produce a particular operational
effect.

Overall, the methods and analysis presented herein provide an answer to our guiding
question: Yes, there are system states not normally identified via traditional [interdic-
tion/restoration] methods that are operationally relevant to joint operations. These states
include, but are not limited to, those identified using δ and θ with respect to a performance
boundary τ. The new methods and the identification of alternative network states for the
18-Edge Infrastructure Flow Network provide a basis for redefining network shaping in
military operational planning. Our conclusions suggest that traditional interdiction and
restoration methods represent only a subset of network shaping activities. We more broadly
define network shaping as real operational activities to interdict and restore a flow network
supported by understanding how to traverse through the metagraph via combinations of in-
terdictions and restorations. This broader definition implies that there may be a significant
number of ways to shape networks that remain undiscovered.
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CHAPTER 1:
Introduction

Mathematical models are fundamental in the study of military operations research. As 
discussed by Dantzig (1963) in his seminal work, Linear Programming and Extensions, 
military operations became too complicated for a single commander to effectively plan and 
account for every variable. Algorithms that could quickly solve these types of problems 
became necessary for leaders and commanders to fight and win the nation’s wars. Com-
manders required solutions that showed them the best way to complete an objective and the 
way to most impede the enemy.

1.1 Network Flows in Military Applications
One of the most prevalent models in the study of military operations is the network flow
problem. Network flow problems encompass a wide array of military applicability, from
force projection and operational planning to supply chain logistics and resource scheduling.
In general, Ahuja et al. (1993) break network flow problems into three categories: shortest
path problems that focus on identifying particular paths through flow networks, maximum
flow problems that focus on maximizing a desired kind of flow over a network from sources
of production to demand (e.g., fuel access), and minimum cost problems that focus on
minimizing the difficulty of getting resources from points of production to demand (e.g.,
electric power flow). Each of these problems apply to a diversity of military operations,
such as finding the fastest way to reach an objective, the best application of combat power,
or the most efficient way to distribute supplies.

Two important military applications arose from the study of network flow problems: at-
tacking networks and defending networks. These network flow applications develop when
combined with the basic nature of military operations, specifically offense and defense. At-
tacking a network seeks to “deliberately damage the system" (Alderson et al. 2015) whereas
defending a network protects the system. The military uses both of these applications to
decide how and where to strike but also how and where to protect its own assets. But the
use of only an attacker or only a defender model neglects that planning is not conducted in
a vacuum and, colloquially speaking, the enemy gets a vote.
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1.1.1 Network Interdiction
The goal of attacking a network is often network interdiction, for example to minimize
the performance of a network. It can be accomplished by the degradation or complete
elimination of part of the network. Cochran et al. (2011) succinctly write:

The mathematical study of interdiction has focused primarily on network in-
terdiction, in which an enemy’s activities are modeled using the constructs of
network optimization (e.g., maximum flows, multicommodity flows, and short-
est paths), and in which attacks target the network’s components to disrupt the
network’s functionality.

The study of the effects of an attack lead to the discovery of the worst-case disruption
(i.e., the attack that most negatively affects the network as a whole). The formulation of
attacker models allows the user to “assess the extent to which system operation is resilient”
and enables the identification of the events that “reduce the capacity of the system to the
lowest possible point” (Alderson et al. 2014). From a military perspective, the worst-case
disruption represents the best case for the attacker and the worst case for the defender.

Traditional network interdiction techniques (i.e., attacker-defender models) have focused on
identifying the set of nodes and/or arcs whose removal hurts the performance of a system
in the worst possible manner. The implementation of that worst-case scenario represents
the overall success or failure of a strategy. However, the military is responsible for not only
the domination of the network, but also the repair, recovery, and transition of it back to civil
authorities.

1.1.2 Network Defense and Restoration
Network defense refers to the variety of measures taken to prevent the degradation or
disruption of a flow network. The defense of a network sometimes revolves around the
prevention of the attacks. However, the defender can also limit the damage to the network
by fortifying (or “hardening”) parts of the system so as to maximize its performance in spite
of an attack. A defender model is the converse of an attacker model as it maximizes the flow
through the system. The combination of the models is often known as an attacker-defender
model (Brown et al. 2006).
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Network restoration involves the repair of components that have stoppedworking or declined
in performance. The goal of restoration is to return the system as a whole to the state of
optimal performance, given problem-specific constraints. If network interdiction is about
breaking system components to minimize the performance of the system, then network
restoration is the opposite: deciding what components to restore to maximize performance
on the system.

1.2 Attack and Restoration in Military Operations
Modernmilitary doctrine describes a notional joint operationmodel comprised of six phases
(Joint Chiefs of Staff 2017); see Figure 1.1.

Phase 0: Shaping Activities is used to “help identify, deter, counter, and/or mitigate
competitor and adversary actions that challenge country and regional stability." This is the
planning step for an attacker or defender.

Phase I: Deter “prevents an adversary’s undesirable actions, because the adversary per-
ceives an unacceptable risk or cost of acting." This is the second stage of a bi-level problem
when the attacker or defender prepares for a response to the action the other has taken.

Phase II: Seize the Initiative is the “rapid application of joint combat power" and “may be
required to delay, impede, or halt the enemy’s initial aggression and to deny the enemy its
initial objectives." During this phase the attacker “seeks to degrade enemy capabilities."

Phase III: Domination occurs when the attacker is successful at “overmatching enemy
capabilities at critical times and places."

Phase IV: Stabilize is “characterized by a shift in focus from sustained combat operations
to stability activities."

Phase V: Enable Civil Authority is “to help the civil authority regain its ability to govern
and administer the services and other needs of the population."

What happens in one phase affects what happens in a later phase. As noted by Hart et al.
(2014):

3



Figure 1.1. Notional Phases of a Joint Operational Plan (Hart et al. 2014).
This figure “depicts six general groups of military activities that typically
comprise a single joint combat operation. The model applies to large-scale
combat operation as well as to a combat operation relatively limited in scope
and duration. It shows that emphasis on activity types shifts as an operation
progresses” (Joint Chiefs of Staff 2017).

It is the operational art that links a Phase II decision to destroy a bridge so that
the enemy cannot use it for a counter attack to a Phase IV decision to rebuild
the bridge so that commerce can use it. When practiced well, operational art
never results in someone coming up to a piece of destroyed infrastructure and
saying, “Dang, I sure wish we hadn’t done this!” or “Boy, was that an expensive
decision for a marginal gain.”
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Using the Notional Operation Plan Phases for reference, network interdiction begins during
Phase 0: Shape. That is when the planning occurs for the operation. The transition to Phase
I: Deter happens when movement begins to address the expected actions of the adversary.
For example, you prepare for the enemy’s most likely or most dangerous courses of action
by rearranging your own forces. The attacks planned during Phase 0 are conducted in Phase
II: Seize the Initiative.

Network restoration takes place during the later phases. Phase IV: Stabilize is the planning
phase for restoration. It is the identification of the non-functional components of the
networks and developing a strategy to return them to functional. Phase V: Enable Civil
Authorities is the action phase for network restoration. The plans outlined in Phase IV are
enacted and once functionality is restored to pre-determined threshold, control is returned
to the local populace.

Network flow problems can be used to address any of the phases of the joint operation
model, but they do a poor job with the transitions. Phases 0 and I represent the exhaustive
enumeration of possible actions. Phases II and III directly refer to minimizing performance
through worst-case targeting. During those phases, commanders seek to cause the greatest
impact for minimal cost. Phases IV and V require commanders to recover the functionality
lost by their own actions in the previous phases. This process of “break it bad” then “fix it
fast” is inherently inefficient (Hart et al. 2014).

Previous research identifies methods to find the best- and worst-case scenarios for a given
network, but does little to link these studies together into what Hart calls the, “operational
art" (Hart et al. 2014). In other words, we understand how to interdict networks and how to
restore them, but we do not know how interdiction activities affect restoration activities (or
vice versa) and/or how we can make sense of these interactions in military planning, i.e., in
Phase 0: Shaping. For example, previous research does not address whether it is necessary
to maximize damage to a network when the ultimate result may be a need to restore its
function. Moreover, there is no research on how the loss of specific nodes and/or arcs may
push systems near, but not past, their critical threshold for operational failure. This lack of
knowledge leaves planners with limited options and may be constraining shaping activities
in unforeseen ways. Gaining new knowledge on the interactions between interdiction and
restoration has the potential to expand the options for operational planners to develop
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improved actions that “set conditions for successful theater operations" (Joint Chiefs of
Staff 2017).

1.3 Thesis Goals
This thesis explores the concept of “network shaping", that is, identifying ways to [inter-
dict/restore] network components to move a network [toward/away from] an operationally
relevant performance threshold. This thesis focuses on identifying operational states asso-
ciated with military network flow problems and how these states correspond to potential
interdiction and restoration activities. A core question answered by this thesis is: Are there
system states not normally identified via traditional [interdiction/restoration] methods
that are operationally relevant and inform new approaches to joint operations? Answer-
ing this question will identify whether current research provides a comprehensive view of
operational planning or if there are additional ways to “shape” networks not considered in
the literature. Moreover, answering this question will “provide a deeper, and common, (sic)
understanding" of military operations, which the Joint Chiefs of Staff (2017) states is the
minimum expectation for the OPLAN Shape phase.

The primary contributions of this thesis are (i) formalization of the concept of “network
shaping", (ii) developing corresponding mathematical models and solution techniques, (iii)
demonstration of the technique and its benefits through illustrative examples.

6



CHAPTER 2:
Literature Review

2.1 Network Interdiction: An Abbreviated Review
Alderson et al. (2014) and Schrijver (2002) thoroughly detail the history of network inter-
diction problems beginning in 1954. Some of the most important early work was completed
by Ford and Fulkerson (1954), Fulkerson and Dantzig (1954), and Dantzig and Fulkerson
(1955) of the RAND Corporation, who defined the maximum-flow, minimum-cut theorem.
Their work led to finding what was termed the most-vital arc that Wollmer (1963) called
“the link, which if removed, would reduce the capacity of the network the most" (Wollmer
1963). Wollmer (1964) generalized his findings to identify the n most-vital arcs. He
postulated

given a maximum flow network from which n links are to be removed, which
n arcs, if removed, would reduce the maximum flow from source to sink the
most and what would be the maximum flow?

and discovered that the minimum cut is also the shortest path through the dual of the original
maximum-flow problem (Alderson et al. 2013). Wollmer (1968) further contributed a
stochastic nature to the maximum-flow interdiction problem.

McMasters and Mastin (1970) introduced a variation of the Wollmer (1963) algorithm that
directly addressed the nature of limited resources available to combatant commanders by
imposing a cost for the interdiction. Then, Ratliff et al. (1975) improved the efficiency of
the Wollmer (1963) algorithm by identifying the cuts that damaged the system the most.
That process“involves sequentially modifying the network so as to make this cut eventually
become the cut with the smallest capacity." Ratliff et al. (1975) identified

those n arcs whose simultaneous removal from the network causes the great-
est decrease in the throughput capability of the remaining system between a
specified pair of nodes.

7



Corley and Chang (1974) similarly found the method that identified most-vital nodes by
altering the original Wollmer (1963) algorithm so that each node was represented by two
different nodes, connected by a single arc, that acted as a node in the network and solved
using the Ratliff et al. (1975) most-vital arcs algorithm.

2.1.1 Resurgence of Network Interdiction
Interest in network interdiction continued into the 1980s and 1990s as the methods were 
used to support United States’ War on Drugs activities to interdict the illicit movement of 
cocaine from Latin America (Washburn and Wood 1995). Wood (1993) studied network 
interdiction to help quell “the flow of drugs and precursor chemical moving through river 
and road networks in South America" by reviewing "deterministic network interdiction 
models, devise new solution techniques for these models, and develop new models and 
solution techniques." Beginning with the the ‘well-known max flow-min cut theorem’ that 
he calls "the simplest network interdiction problem," Wood (1993) generalized the problem 
that “is shown to be easily modified and extended to handle variants." Washburn and Wood 
(1995) recognized that the essence of the “evader" and “interdictor" problem fit "into the 
form of a two-person zero-sum game (Washburn and Wood 1995). They realized that “drug 
smugglers must be considered to be intelligent adversaries who know or can learn about 
an interdictor’s strategy" (Washburn and Wood 1995). Cormican et al. (1998) solved a 
stochastic version of the problem and Israeli and Wood (2002) developed a new method for 
"interdicting a transportation network in order to maximize the shortest path length between 
two specified nodes." Lim and Smith (2007) expands Wood (1993) “in the specific context 
of multicommodity flow networks."

2.1.2 Application to Critical Infrastructure
Network interdiction problems are now used to solve problems that arise within infrastruc-
ture systems. Brown et al. (2005) points out that “infrastructure that resists single points
of random failure, or whose cutsets have low occurrence probabilities, may not survive a
malicious, intelligent attack" and identifies a series of lessons learned:

• The attacker has the advantage.
• Some systems are naturally robust, while others are not.
• Hardening an infrastructure system from attack can be expensive.
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• The data are out there, and if we can get them, anybody can.
• The answers are not always obvious.
• Malicious, coordinated attacks can be much more damaging than random acts of
nature.

• Reliability is not the answer.
• The right redundancy may be the answer.
• Secrecy and deception may be valuable.
• Worst-case analysis using optimization is key to a credible assessment of infrastruc-
ture vulnerability, and to reducing that vulnerability.

Brown et al. (2006) adds the following lessons to the aforementioned:

• High-fidelity models are achievable.
• Heuristics and rules of thumb are useful, but not for identifying vulnerability.
• An appropriate level of redundancy or reorganization could be inexpensive.

These lessons have been applied to a variety of infrastructure systems. Salmerón et al. (2004)
developed a model that identifies critical system components for power grids and Salmerón
et al. (2009) solved a large, real-world version of the power grid problem. Church et al.
(2004) applied the lessons to “identify the most critical facility assets in a service/supply
system" andChurch and Scaparra (2006) “identifies themost cost-effectiveway of allocating
protective resources among the facilities of an existing but vulnerable system."

Snyder et al. (2006) addresses the idea of supply chain disruption and shows that “these
systems can often bemade substantiallymore reliablewith only small additional investments
in infrastructure." Murray et al. (2007) applies an optimization approach towards network
interdiction of a telecommunications system. Alderson et al. (2011) uses a three-tiered
approach (Defender-Attacker-Defender) to a transportation network.

2.2 A State-Space View of System Operation
Recent research taking a state-space view on how the availability of arcs in a flow net-
work impact system performance suggest that interdiction studies may provide only narrow
recommendations for military operational planning. In general, the operation of an infras-
tructure network can be represented both by its performance (e.g., objective value) and by
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the operational state of its components to achieve a given performance. Each infrastructure
system has many operational states, where each state represents a combination of available
or interdicted nodes and/or edges. For example, when one assumes that interdiction only
affects network edges and edges are either available or unavailable (i.e., take on a binary
value), the infrastructure network operational state can be represented by “a binary vector
of length k, where k is the number of [edges] in the infrastructure system” Schulze (2014).
Here, the given infrastructure system posses 2k possible operating states (Schulze 2014)
representing all combinations of available and unavailable edges, which is a very large num-
ber for even small networks. Solving network interdiction problems like those described
in Section 2.1 identifies particular operational states that correspond to the worst-case loss
of system performance, and thus find a proverbial worst-case needle-in-the-haystack of
system states. Despite the practical importance of identifying these system states for both
offensive and defensive military actions, optimization-based techniques provide little infor-
mation about the many other system states that may achieve similar or identical operational
results. Instead, taking a “state-space view” of infrastructure operations requires forgoing
optimization-based methods for those that focus on directly on analyzing system states and
their relationships.

Schulze (2014) examined the differences in results for restoration of a damaged infrastructure
system using both a mixed-integer linear program (MILP) and a graph-based approach for
representing and analyzing the systems’ operational state space. Schulze determined that
both algorithms found optimal solutions to a deterministic model, but each had different
shortcomings. Specifically, the MILP solved the problem much faster than the graph-based
approach, but failed to respond to dynamic changes. The graph-based approach, while
slower, was able to solve a problem given dynamic changes (Schulze 2014).

Brendecke (2016) advanced research on infrastructure operational state space by adding
a stochastic element to the restoration model and including components in new, repaired,
and broken states. The Brendecke model allows nodes/arcs to degrade and fail and then
optimizes the system based upon the failure/degradation. Using Markovian principles, the
network only exists in a single state at a given time and future states depend only upon the
current state. Each state then can be classified as a success or failure, as can subsequent
states. Brendecke demonstrated that considering the state of multiple arcs in a network flow
system is a difficult task. Arcs can take on more than two states and those states have a
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probabilistic failure rate. The use of non-binary edges makes the process very complicated
and computationally difficult.

Clark (2017) built upon the work of Schulze (2014) by developing a model and algorithm
that produced a parametric view of resilience Clark (2017) using graph-based approaches
to studying an operational state space. This work linked network flow performance to
operational state, where results present a range of outcomes for a given system based on
the availability of network components. This ‘state space view’ permits decision makers to
see a “range of possible attacks or failures" Clark (2017) that expands beyond the limited
view provided by optimization-based methods. Clark also demonstrated the impact of
redundancy on an infrastructure network by showing that systems with a high number
of redundant paths require more attacks to cause system failure. Likewise, systems with
“highly connected areas" require more attacks to cause failure.

The tradeoffs between optimization and state space methods revealed by Schulze (2014),
Brendecke (2016), and Clark (2017) signify that there is an opportunity to develop novel
network shaping techniques for military operations such as Augmented Target Systems
Analysis. Schulze (2014) suggests that established interdiction techniques may be in-
appropriate for dynamic infrastructure environments, where a state-space view is more
appropriate. Brendecke (2016) shows that optimal infrastructure repair and replace poli-
cies are computationally difficult to achieve and may not be assumed in practice. Clark
(2017) shows that considering network performance and operational state together reveals
a greater range of possible attacks and helps identify where infrastructure redundancies and
clustering may impede military goals. In all cases, each study suggests that a state space
view of infrastructure networks reveals new information that is otherwise lost when using
established interdiction methods. Moreover, they reveal the potential to consider different
kinds of shaping activities that remain otherwise unstudied, such as determining ways to
interdict adversarial systems into operating states that have good network performance, but
are vulnerable to few, targeted losses. Determining the breadth of possible network shap-
ing techniques will improve our understanding of Network Interactions, Vulnerabilities,
Robustness & Resilience, particularly as they pertain to critical infrastructure systems and
campaign analysis.

11



2.3 Contributions of this Thesis
Previously studied work focused on identifying worst-case interdiction or fastest possi-
ble restoration, but these may be narrow network shaping goals for military operations.
Complete interdiction, the best-case scenario for an attacker, creates issues in restoration
activities required for Phase IV and V military operations and may be detrimental to the
success of military operational plans. The current literature does not account for this re-
lationship between interdicting and restoring a system, more specifically it is missing the
relationship between the objective of operator models and their operational effects across
an OPLAN. We seek to find new ways to consider interdiction or restoration activities that
suit a broader range of military operations that require both interdiction and restoration.
Furthermore, we seek to characterize the breadth of operational effects that can be studied
with network flow problems to understand the full spectrum of possible military operations.

This thesis tackles these goals by linking network performance with an operational state
space view of component availability. Specifically, we identify how different state transi-
tions via network interdiction and network restoration relate to different network shaping
activities and goals. We demonstrate that network shaping activities must consider both
how to traverse a state space (via interdiction and restoration) and what boundaries between
functional performance states and non-functional performance states matter. Whereas past
research implicitly assumed that worst-case interdiction or best-case restoration was the
primary operational goal, we identify at least two types of system states that are important
for military operations and would be overlooked by established interdiction and restoration
methods. We conclude that the goal of network shaping activities, then, is to ensure that
interdiction and restoration activities help transition infrastructure networks effectively and
efficiently from undesired to desired operational states. Established network interdiction
and restoration literature only considers narrow subset of possible network flow problems
relevant to network shaping activities.
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CHAPTER 3:
Model

In this thesis, we focus on the study of network flow problems relevant for the modeling and
analysis of critical infrastructure systems, called operator models. The operator is the one
who makes decisions about how to manage flows (Alderson et al. 2015). The operator must
route commodities through the system while taking into account the constraints within the
network. Thus the operator model is the constrained optimization problem for a specific
network flow model.

3.1 Flow Network
As a starting point, we consider the Operator Model from Alderson et al. (2015) to solve a
minimum cost network flow problem that is formulated as follows.

Indices and Sets
n ∈ N nodes (alias i,j)
[i, j] ∈ E undirected edge between nodes i and j where i< j
(i, j) ∈ A directed arc from i to node j;

[i, j] ∈ E ↔ (i < j) ∧ ((i, j) ∈ A ∧ ( j, i) ∈ A)

Data [ units ]
ci j per unit cost of traversing edge [i, j] ∈ E [cost-units]
ui j upper bound on total (undirected) flow on edge [i, j] ∈ E [cost-units]
x̂i j 1 if edge [i, j] ∈ E is damaged, 0 otherwise [binary]
qi j per unit penalty cost of traversing arc (i, j) ∈ A if damaged [cost-units]
dn supply at node n ∈ N (-demand for dn < 0) [flow-units]
pn per unit penalty cost for demand shortfall n ∈ N [cost-units]

Decision variables [ units ]
Yi j directional flow on arc (i, j) ∈ A [flow-units]
Sn unit shortfall at node n ∈ N [flow-units]
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Formulation

min
Y,S

∑
[i, j]∈E

[ (
ci j + qi j x̂i j

)
Yi j +

(
c ji + q ji x̂ ji

)
Yji

]
+

∑
n∈N

pnSn (3.1)

s.t.
∑
(n, j)∈A

Ynj −
∑
(i,n)∈A

Yin − Sn ≤ dn ∀ n ∈ N (3.2)

0 ≤ Yi j + Yji ≤ ui j ∀ [i, j] ∈ E (3.3)

Sn ≥ 0 ∀ n ∈ N (3.4)

Discussion

The objective function (3.1) represents the total cost of sending flow over the network plus
any penalties for demand shortfall. Constraint (3.2) is a balance-of-flow constraint, and
constraint (3.3) defines the upper bound for flow on each edge. Stipulation (3.4) provides
non-negativity for the shortfall variables.

3.2 A Four-Edge Flow Network
Consider the simple four-edge network in Figure 3.1, with behavior governed by the mini-
mum cost network flow problem from Section 3.1. As supply enters the network, it flows
through k = 4 undirected edges based upon the demands that are present and in a manner
that minimizes the total system cost. We assume that each edge has a per-unit traversal cost
ci j = 1, an upper bound on undirected flow ui j = 15, and per-unit penalty cost qi j = 10.

The cost of sending flow over an edge [i, j] is dictated by the value x̂i, j , which represents
whether the edge is damaged (x̂i j = 1) or undamaged (x̂i j = 0). We say that the state of the
network as a whole is given by the sequence of individual x̂i j values for all the edges in the
network. We refer to this sequences of values as a bitstring of length k. For example, the
bitstring ’0000’ refers to the state where all four edges are undamaged, whereas the bitstring
’1111’ refers to the state where all four edges are damaged.
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Figure 3.1. Four-Edge Flow Network. This figure shows the basic function-
ality of our flow network. There are four nodes connected by four edges.
Supply enters at Node 1 and Nodes 2, 3, and 4 have demands that must be
met.

When an edge in the network becomes damaged (i.e., interdicted) the state in the network 
changes. We use the bitstring to record changes to the system state. If, for example, starting 
with all edges unbroken, the second edge, [1,3] is interdicted, the system state changes from 
‘0000’ to ‘0100’. Equivalently, we say that the system has transitioned from state ‘0000’ 
to state ‘0100’. Similarly, if we repair the interdicted edge, then the system transitions 
from ‘0100’ back to ‘0000’. We assume damage or repair happens to only one edge at a 
time, so each transition involves a change in only a single element of the bitstring.

Given that each edge is either broken or unbroken there are 2k different system states for a
network. There are 24 = 16 total system states for the four-edge network. We refer to the
collection of possible state values as the state space, denoted S, for the system. Thus, in
general |S | = 2k . We index individual states as s ∈ S.

Let p(s) denote the performance of the system in state s, assumed to be the minimum
operating cost given the state of individual network edges. Solving the operator model
(3.1)-(3.4) for the system in Figure 3.1 using the parameters in Table 3.1 and Table 3.2 for
each possible state yields the performance values in Table 3.3.
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Node (n) Supply (dn) Penalty (pn)
1 3 10
2 -1 10
3 -1 10
4 -1 10

Table 3.1. Node Data for the Four-Edge Flow Network. This table identifies
the parameters for the nodes in our Four-Edge Flow Network. The origin
node, node 1, has the initial supply which must flow through the network
to meet the demand of the other nodes which each require 1 unit of supply.
For each node, there is a penalty of 10 if the demand is unmet.

Edge [i, j] Cost (ci j) Capacity (ui j) Penalty (qi j)

[1, 2] 1 15 10
[1, 3] 1 15 10
[2, 4] 1 15 10
[3, 4] 1 15 10

Table 3.2. Edge Data for the Four-Edge Flow Network. This table identifies
the edge parameters for our Four-Edge Flow Network. Every edge in this
network has a per-unit flow cost of 1 and has a capacity of 15.
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State p(s)

0000 4
0001 4
0010 4
0011 12
0100 6
0101 13
0110 21
0111 21
1000 6
1001 21
1010 13
1011 21
1100 30
1101 30
1110 30
1111 30

Table 3.3. Performance of Four-Edge Flow Network for Each State. This
table shows the performance values for all 2k possible states in the system.
The best case (lowest cost) performance value, 4, reflects the cost for all
four nodes to meet demand requirements. The worst-case (largest cost)
performance value, 30, occurs whenever both the edges out of node 1 are
blocked resulting in unmet demand (and a penalty of 10) for the other three
nodes.
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3.3 Metagraph of System States
The set of system states and possible transitions between them can be represented as a
metagraph of vertices (states) and edges (transitions between states). Figure 3.2 is a visual
representation of the metgraph for the four-edge system, showing all 24 = 16 possible states
for the flow network in Figure 3.1. The vertices in the metagraph are the individual system
states s ∈ S, and the edges are the transitions between them. Transitions from 0s to 1s occur
when edges are interdicted (resulting in movement from top to bottom of the metagraph in
Figure 3.2). Transitions from 1s to 0s occur when edges are restored (resulting in movement
from bottom to top of the metagraph in Figure 3.2).

Figure 3.2. Metagraph for Four-Edge Flow Network. This figure shows every
possible state in which a four-edge flow network could exist. Each row, or
level, corresponds to the number of interdicted edges, zero interdictions at
the top and four at the bottom.

The values in Table 3.3 allowus to associate each state in themetagraphwith a corresponding
performance of the underlying flow network. In general, we assume that the performance
of some states is acceptable, while the performance of other states is unacceptable. For
example, for a minimum cost flow problem, we might consider a cost above a particular
threshold to be too high.

Let τ represent the threshold parameter used to categorize states based on their performance.
Since we are minimizing cost, we consider a vertex "Green" if p(s) ≤ τ and color it "Red"
if p(s) > τ (see Figure 3.3). Operationally, we can think of each Green vertex as a state
for which the underlying flow network achieves mission success, whereas each Red vertex
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represents a state for which the underlying flow network has mission failure. In this simple
example of a four-edge flow network, we can establish a clear line separating SUCCESS
and FAILURE; we refer to this line as the boundary (see Figure 3.3).

Figure 3.3. Colored Metagraph with Performance Boundary. We label each
vertex in the metagraph with its performance from from Table 3.3 and color it
accordingly. Green vertices have performance values less than the threshold,
τ=20, and Red vertices have performance values that are higher. The blue
line in this figure shows τ=20, the boundary between success and failure.

3.4 Distance to the Boundary
The inclusion of a performance threshold creates a strict boundary between operating states
that achieve mission success and those that suffer mission failure. A natural question
becomes: how “close” to the boundary is a given vertex in the metagraph? For a Green
state, how close is it to becoming Red? For a Red state, how close is it to becoming Green?

We use two notions of distance to characterize how “close” ametagraph state is to transition-
ing across the performance boundary. The first is is based on the difference in performance
of their states, and the second is based on the number of transitions that separate them in
the metagraph.

3.4.1 Performance Distance
Weuse the term performance distance to represent the difference in overall performance that
a given vertex is from the threshold. Specifically, for each state s we define δ(s) = |p(s) − τ |.
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This provides one measure how “close” the vertex corresponding to state s is to switching
from success to failure or vice versa. For a performance threshold τ = 20, Table 3.4 lists
the performance distance δ(s) for each state s ∈ S.

Figure 3.4 shows the metagraph with each vertex labelled with its corresponding perfor-
mance distance. We observe that different vertices in the metagraph that are adjacent to the
performance boundary can have considerably different δ(s) values. This suggests the need
for an additional measure of distance.

Figure 3.4. Colored Metagraph with Performance Distance. This figure
replaces the performance values with performance distances, δ, for each
vertex in the system. The performance distance is the difference between
the performance value and the boundary threshold, τ=20 in this case.

3.4.2 Threshold Hamming Distance
Movement along the links of the metagraph correspond to transitions between states. The
shortest path between two states in the metagraph is known as the Hamming Distance
as first introduced by Hamming (1950). We denote the Threshold Hamming Distance as
the minimum number of transitions from a given vertex (corresponding to interdictions or
restorations in the underlying flow network) for the system state to transition across the
boundary. A vertex in the metagraph adjacent to the boundary has a Threshold Hamming
Distance of one, meaning that only one interdiction or restoration is necessary to cause the
system state to transition from a Green state to/from a Red state. A vertex with a Threshold
Hamming Distance of two requires two restorations or interdictions to transition across the
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boundary. We use θ(s) to represent the Hamming distance to the boundary for state s. Table
3.4 lists the θ(s) values for the states in the metagraph corresponding to the four-edge flow
system.

State p(s) δ(s) θ(s)

0000 4 16 2
0001 4 16 1
0010 4 16 1
0011 12 8 1
0100 6 14 1
0101 13 7 1
0110 21 1 1
0111 21 1 1
1000 6 14 1
1001 21 1 1
1010 13 7 1
1011 21 1 1
1100 30 10 1
1101 30 10 1
1110 30 10 1
1111 30 10 2

Table 3.4. Performance Value, Performance Distance, and Threshold Ham-
ming Distance for each Vertex in the metagraph of the Four-Edge Flow
Network. Given a performance threshold τ = 20, the performance distance
δ(s) = |τ − p(s)| does not tell a complete story for how “close” a vertex is to
crossing the threshold. For example, both states ‘0000’ and ‘0001’ have the
same performance value and performance distance but a different Threshold
Hamming Distance θ(s), which implies that they are not equivalent states.
State ‘0001’ is one transition closer to crossing the boundary.

The metagraph in Figure 3.5 illustrates the Threshold Hamming Distance for each vertex.
We see that all but two vertices, ’0000’ (all links restored/available) and ’1111’ (all links in-
terdicted), are just one transition from crossing the threshold. These vertices have Threshold
Hamming Distances of two as they are two transitions from crossing the boundary,τ=20.
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Figure 3.5. Colored Metagraph with Hamming Distance to Boundary. This
figure shows the Hamming Distance for each vertex in the system. All nodes
except ‘0000’ and ‘1111’ are adjacent to the boundary, τ=20, and have
Hamming Distances of 1, which means that they are all one transition away
from crossing the boundary.

3.5 A Nine-Edge Flow Network
Consider the slightly larger, nine-edge flow network in Figure 3.6, with node data defined
in Table 3.5. We assume that each edge has a per-unit traversal cost ci j = 1, an upper bound
on undirected flow ui j = 15, and per-unit penalty cost qi j = 10.

Figure 3.6. Nine-Edge Flow Network. This network has six nodes and nine
edges. Like the smaller flow network in Figure 3.1, supply enters at Node 1
and Nodes 2, 3, 4, 5, and 6 have demands that must be met.

This system has a total of 29 = 512 states. For each state, we run the Operator Model from
Alderson et al. (2014) to solve the minimum cost network flow problem. The resulting
performance values range from 9 (the optimal min-cost performance) to 50 (worst-case
performance). We assume τ = 22.5, which is the median performance value, represents a
performance threshold that separates mission success from mission failure.
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Node (n) Supply (dn) Penalty (pn)
1 5 10
2 -1 10
3 -1 10
4 -1 10
5 -1 10
6 -1 10

Table 3.5. Nine-Edge Flow Network Node List. These are the node param-
eters used to evaluate the Metagraph for the Nine-Edge Flow Network. The
origination node, node, has the initial supply which must flow through the
network to meet the demand of the other nodes which all require 1 unit of
supply. For each node, there is a penalty of 10 if the demand is unmet.

We build the metagraph and calculate both the Performance Distance and the Threshold
Hamming Distance for each state. With τ = 22.5, we observe δ(s) ∈ [1.5, 27.5] for s ∈ S.
However, we observe the Hamming Distances, θ(s) ∈ [1, 3], meaning that every vertex
is within three transitions of the boundary. Figure 3.7 illustrates the metagraph for our
nine-edge flow system using the application gephi (Bastian et al. 2018). We color each
vertex green or red as appropriate, and we manipulate the size of each vertex to correspond
with its theta value. Larger vertices correspond to larger θ values.

The nine-edge flow network is not particularly large, but its metagraph is too complicated
to visually identify important structural features. The histogram in Figure 3.8 provides a
different view of key features.

The bottom row of Figure 3.8 shows the distribution of performance values p(s) for all
s ∈ S. Each of the plots above it shows the distribution of p(s) partitioned for the values
θ(s) = 1, 2, 3. The blue dotted line is the boundary threshold, τ = 22.5, and we therefore
color the different halves of each distribution green or red, accordingly.

Figure 3.8 shows that although there are vertices in the metagraph that have both relatively
large δ and large θ, as well as those that have both relatively small δ and large θ, these
two measures need not be correlated. That is, there exist vertices in the metagraph that
have relatively large δ but relatively small θ. This means that there are some states that
appear “far from the boundary” in terms of their performance (i.e., they would need their
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Figure 3.7. Metagraph for Nine-Edge Flow Network. Vertex color indicates
which states of the 512 states are above or below the performance threshold.
Vertex size shows Threshold Hamming Distance (larger circles are farther
from the boundary). In general, visual inspection is insufficient for any flow
network of considerable size.

performance to change considerably before they crossed the threshold), but in fact require
only a small number of transitions to cross the threshold (and are therefore quite “close”
based on Hamming distance). For example, there exist vertices in the metagraph that have
performance p(s) = 9 (which is the lowest possible operating cost) with corresponding
performance distance δ(s) = 13.5 (the largest possible margin for a Green state), but also
have θ(s) = 1, meaning that they are adjacent to the boundary and require only a single
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Figure 3.8. Histograms of Metagraph Vertices by Threshold Hamming Dis-
tance (τ = 22.5). This collection of histograms shows the total counts of
vertices in the metagraph with a given performance value (bottom row),
as well as separating them by Threshold Hamming Distances θ = 1, 2, or
3 (top three rows, as indicated). The histogram labeled θ = 1 shows the
distribution of vertices by performance value for all vertices that are only one
transition from crossing the performance boundary. The histograms labeled
θ = 2 and θ = 3 show the distribution of vertices by performance value that
are two or three transitions away from crossing the performance boundary,
respectively.

transition to change from Green (success) to Red (failed).

The existence of such vertices in the metagraph confirms that (1) this view of the state space
can yield novel insights into how we think of individual system states as being desirable or
not, and (2) analysis of the metagraph can potentially reveal new ways to perform shaping
activities in network flow systems.
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3.5.1 Analysis of the Metagraph to Identify Important System States
Our analysis of the metagraph begins with an investigation of individual vertices. Each
vertex in the metagraph is connected to k other vertices, these connections represent the
possible interdictions and/or restorations for a given system state. We call the number of
interdictions (i.e., number of failed edges) at a given vertex the level (denoted λ) of the
vertex. For example, vertex ‘011000000’ has λ = 2. Of the k possible transitions out of
each vertex, there are λ that correspond to a restoration and k − λ that correspond to an
interdiction. In general, there are k + 1 total levels in a given metagraph, and the number
of vertices per level is

(k
λ

)
. Figure 3.9 shows the distribution of states by level, with each

colored according to whether they are above or below the threshold (τ = 22.5).

Figure 3.9. Histogram of States in Metagraph for Nine-Edge Flow Network,
by Level and Color. The 2k = 512 states of the metagraph are distributed
across (k + 1) levels, with the height of each color representing the relative
number of states that are above or below the threshold (τ = 22.5). This
figure shows the symmetrical nature of a metagraph.

To identify important vertices for intediction and restoration activities, we are interested in
the relationship between system performance and the transition edges of each vertex.

3.5.2 State Transitions Across the Boundary
Vertices in the metagraph that are adjacent to the boundary are of particular interest because
they represent states for which action on a single edge (interdiction for a Green vertex or
restoration for a Red vertex) can cause the system to transition across the performance
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threshold. Although these boundary-adjacent states are easily identified by their Threshold
Hamming Distance, θ = 1, this distance metric does not indicate how many edges represent
potential transitions across the boundary. Although some vertices have only a single way
to transition across the performance boundary, many have multiple ways of doing so.

Figure 3.10. Histogram of Transition Edges that Cross the Boundary (τ =
22.5) for Metagraph Vertices with θ(s) = 1. Of the 512 metagraph states
for the Nine-Edge Flow Network, only 417 have θ = 1, (i.e., are adjacent
to the performance boundary). Each histogram shows the number of po-
tential transitions that cross the performance boundary for Green vertices
(217 states) and Red vertices (200 states). Although some vertices have
only a single way to transition across the performance boundary, many have
multiple ways of doing so.

In the metagraph for the Nine-Edge Flow Network, 417 of 512 states are adjacent to the
boundary. Of these, there are 217 Green vertices and 200 Red vertices. Figure 3.10 shows
the counts according to the number of transition edges that each has crossing the boundary.
We observe that although some vertices only have a single potential transition across the
boundary, many vertices have multiple edges that cross the boundary. Both are important
from a network shaping perspective.

Vertices With a Single Transition Edge Across the Boundary
A Green vertex in the metagraph with only a single edge that crosses the boundary is
important from a network shaping perspective because it is boundary-adjacent (and therefore
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vulnerable to targeted interdiction) while having the fewest possible ways to transition across
the boundary (and is therefore relatively robust to non-targeted interdiction). Preventing
the system from transitioning across this edge will keep the system in a Green state. In the
metagraph for the Nine-Edge Flow Network, there are 62 Green vertices with only a single
edge that crosses the boundary.

Conversely, a Red vertex in the metagraph with only a single edge that crosses the boundary
is important from a network shaping perspective, because it requires targeted restoration to
improve system performance to reach mission success (a single, non-targeted restoration is
unlikely to suffice). Preventing the system from transitioning across this edge will keep the
system in a Red state. In the metagraph for the Nine-Edge Flow Network, there are 26 Red
vertices with only a single edge that crosses the boundary.

Interestingly, there are only two places in this particular metagraph where vertices on
opposite sides of the performance boundary share their only connection across the boundary.
Figure 3.11 illustrates one of these. The Green vertex with state ‘101100000’ (performance
p(s) =18.0) has only a single transition across the boundary to Red vertex with state
‘111100000’ (performance p(s) =50.0), and vice versa. Denying an adversary the ability
to ‘move’ along edge [101100000, 111100000] means that the path across the performance
boundary will require at least two transitions instead of one. Deliberate actions that ‘move’
the system state in the metagraph (or deny the adversary the ability to do so) demonstrate
an important idea for network shaping not discussed in the interdiction and restoration
literature.
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Figure 3.11. Connected Vertex Pair with Only One Transition Across the
Boundary. These vertices have just one transition that crosses the thresh-
old AND that connection also has only one transition across the boundary.
Preventing ‘movement’ along edge [101100000, 111100000] means that the
path across the performance boundary will require at least two transitions
instead of one.

Vertices With Multiple Transition Edges Across the Boundary
Metagraph states that have many transition edges that cross the performance boundary are
also important to identify for network interdiction and restoration because there are multiple
ways in which a single action (interdiction for a Green vertex or restoration for a Red vertex)
can cause the system to transition across the performance threshold. However, of special
interest are vertices for which all of the interdiction-related edges (for Green) or all of the
restoration-related edges (for Red) cross the performance boundary. For a vertex at level
λ, if all k − λ interdiction-related edges cross the performance boundary, then any single
interdiction will cause the system to transition from Green to Red. Conversely for a vertex
at level λ, if all of the restoration-related edges cross the performance boundary, then any
single restoration will cause the system to transition from Red to Green.

Figure 3.12 illustrates the case of vertex ‘011011011’ whose performance p(s) = 26 > τ

and therefore represents mission failure. Figure 3.12 also shows local connectivity from
this vertex in the metagraph, where the optimal solution for the original Nine-Edge Flow
Network is also shown for each state. We observe that restoring any of the broken edges
from state ‘011011011’ improves the performance of the system sufficient for the system
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Figure 3.12. Vertex ‘011011011’ with all Transitions. Each state is shown
with its metagraph representation. Blue lines show the flow through the
network amd blue filled nodes have their demand met. Dashed black lines
show interdicted edges and solid black lines show edges that are intact but
cannot be reached and do not have flow traversing the edge. Empty black
circles show nodes that have unmet demand.

to transition from mission failure to mission success. Thus, although vertex ‘011011011’
corresponds to mission failure, its required performance is easily restored. Thus, this state
might be an attractive goal for an operation that requires to “break it bad” but later must
“fix it fast.”

In the metagraph for the Nine-Edge Flow Network, there are 43 Green vertices for which
any additional interdiction results in a transition across the performance boundary. These
vertices correspond to states where system performance meets mission requirements but is
fragile to any additional loss in the original flow network. In contrast, the metagraph has
only 13 Red vertices where restoration of any single broken component in the flow network
returns the system to a state where performance meets mission requirements (e.g., Figure
3.12). When the system is in one of these states, it can be more easily repaired. Taken
together, this suggests potential benefit from focusing on state transitions and operational
art for guiding network shaping activities, rather than simply network performance.
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CHAPTER 4:
Analysis

4.1 Notional Eighteen-Edge Infrastructure Flow Network
In this chapter, we apply the metagraph and its measures of distance to the notional fuel
network from Alderson et al. (2015).

Figure 4.1. The Eighteen-Edge Flow Network. This network has 16 nodes
and 18 edges. Supply, fuel in this case, enters at nodes 8 and 10. Each
demand node requires 1 barrel of fuel.

The notional fuel network delivers fuel from two supply locations, colored in black, to
fourteen demand locations, colored in white. In this system, fuel can travel in either
direction through the links that connect the supply and demand nodes but each link has a
limited capacity. The scenario has each demand location requiring a single barrel of fuel,
each supply location has 10 barrels, and each link can carry a maximum of 15 barrels. Each
demand node carries a penalty of $10 if demand is unmet and the cost to send fuel across a
link is $1. We assume that each edge has a per-unit traversal cost ci j = 1, an upper bound
on undirected flow ui j = 15, and per-unit penalty cost qi j = 10. This operator problem
includes the additional constraints that certain links are interdicted and cannot be restored.

This system has a total of 218 = 262, 144 states. For each state, we run the Operator Model
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Node (n) Supply (dn) Penalty (pn)
1 -1 10
2 -1 10
3 -1 10
4 -1 10
5 -1 10
6 -1 10
7 -1 10
8 10 10
9 -1 10
10 10 10
11 -1 10
12 -1 10
13 -1 10
14 -1 10
15 -1 10
16 -1 10

Table 4.1. Eighteen-Edge Flow Network Node List. These are the node
parameters used to evaluate the metagraph for the Eighteen-Edge Flow Net-
work. The origination nodes, node 8 and node 10, have the initial supply
which must flow through the network to meet the demand of the other nodes
which all require 1 unit of supply. For each node, there is a penalty of 10 if
the demand is unmet.

# Interdictions Edges p(s) Bitstring
1 [4,8] 34 000010000000000000
2 [2,7],[10,13] 62 000100000010000000
3 [2,7],[10,13],[11,15] 87 000100000000101000
4 [2,7],[8,12],[10,11],[10,13] 113 000100000101100000
5 [6,10],[7,8],[8,12],[10,11],[10,13] 131 000000011101100000

Table 4.2. Worst-case Interdictions. Each row shows the optimal interdic-
tion for the respective number of interdicitons. The Edges column shows
the specific interdicted edges, the performance value is for the specific state
represented by the interdicted edges, and the Bitstring column is the corre-
sponding bitstring for the specific state.

from Alderson et al. (2015) to solve the minimum cost network flow problem. The resulting
performance values range from 25 (the optimal min-cost performance) to 140 (worst-case
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performance).

We enumerate all states in the metagraph and identify the worst possible performance for a
given number of interdictions to the network (See: Table 4.2), validating against the results
in Alderson et al. (2015). Specifically, the lowest performance values for [1, 2, 3, 4, 5]
interdictions to the network are [34, 62, 87, 113, 131] which correspond to system state
represented by the bitstrings presented in Table 4.2.

Figure 4.2. Vertex ‘000100000000101000’: The Worst-Case Performance
Value for Three Interdictions. This is the flow network for the worst-case
performance value with three interdictions. The blue lines indicate flow
through the network and blue-filled nodes have their demand met. The
dashed black lines show interdicted edges and solid black lines are intact
edges that do not have flow traversing the edge. Empty black circles show
nodes that have unmet demand.

Figure 4.2 presents the flow situation for the worst-case interdiction of three arcs in the
Eighteen-Edge Flow Network. Figure 4.2 shows the vertex ‘000100000000101000’ which
contains the simultaneous interdiction of edges [2,7], [10,13], and [11,15]. These three
interdictions result in the system performance p(s) = 87, where nodes [1, 2, 3, 5, 9, 13, 14,
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15] have unmet demand.

Despite attacker-defender analysis identifying three edges for worst-case interdiction, the
analysis provides no information regarding how to achieve a similar operational result of
p(s) = 87 when it is not possible to simultaneously interdict [2,7], [10,13], and [11,15].
Specifically, interdiction analysis provides limited insight for other metagraph states that
have achieve similar operational effects, whether [2,7], [10,13], and [11,15] are all equally
critical to achieve the operational effects depicted in Figure 4.2, or in what way an attacker or
defender may want to interdict or restore arcs in response this interdiction. Instead, network
shaping methods give us a toolkit to help identify this information that is not considered
during normal interdiction analysis and identify more options for network interdiction and
restoration.

4.2 Network Shaping Analysis

4.2.1 Analysis of the Metagraph
We begin our analysis assuming a performance threshold τ = 87, which is equal to the
worst-case performance value for three interdictions, we assume this is a critical threshold
for a military option, specifically, if we can achieve τ = 87, we have imposed a significant
cost on the adversary. We build the metagraph and calculate both the corresponding
Performance Distance and the Threshold Hamming Distance for each state. We observe
δ(s) ∈ [0, 62] for s ∈ S. We also observe the Threshold Hamming Distances, θ(s) ∈ [1, 6],
meaning that every vertex is within six transitions of the boundary. The histogram in Figure
4.3 provides a different view of key features. The bottom row of Figure 4.3 shows the
distribution of performance values p(s) for all s ∈ S. Each of the plots above it show
the similar distribution, but partitioned for different values θ(s) = 1, 2, 3, 4, 5, 6. The blue
line is the boundary threshold, τ = 87, and we therefore color values below and above the
threshold green and red, respectively.

Figure 4.3 shows the existence of vertices in the metagraph that have relatively large δ and
large θ as well as those that have both relatively small δ and large θ. Like Figure 3.8 in
Section 3.5, we observe vertices in the metagraph that have performance p(s) = 25 (which
is the lowest possible operating cost) with corresponding performance distance δ(s) = 53
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Figure 4.3. Histograms of Metagraph Vertices by Hamming Distance
(τ=87). This collection of histograms shows the total counts of vertices
in the metagraph with a given performance value (bottom row), as well as
separated by Hamming Distances θ = 1, 2, 3, 4, 5 (top five rows, as indi-
cated). The histogram labeled θ = 1 shows the distribution of vertices by
performance value for all vertices that are only one transition from crossing
the performance boundary. The histograms labeled θ = 2, 3, 4, 5 show the
distribution of vertices by performance value that are two, three, four, or
five transitions away from crossing the performance boundary, respectively.

(the largest possible margin for a Green state is δ(s) = 62), but also have θ(s) = 1, meaning
that they are adjacent to the boundary and require only a single transition to change from
Green (success) to Red (failed).

Figure 4.4 shows the distribution of states by level, with each colored according to whether
they are above or below the threshold (τ = 87).
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Figure 4.4. Histogram of States in Metagraph for Eighteen-Edge Flow Net-
work, by Level and Color. The 218 = 262, 144 states of the metagraph are
distributed across 19 (k+1) levels, with the height of each color representing
the relative number of states that are above or below the threshold (τ = 87).
This Figure shows the symmetrical nature of a metagraph.

4.2.2 State Transitions Across the Boundary

Vertices With a Single Transition Edge Across the Boundary
The metagraph for Eighteen-Edge Flow Network (τ=87) has 262,144 total vertices and
190,861 states are adjacent to the boundary (i.e., 89,086 Green vertices and 101,775 Red
vertices have Threshold Hamming Distance, θ = 1). Figure 4.5 shows the counts of all
Green and Red vertices adjacent to the boundary by their number of transition edges that
cross the boundary. There are only 253 pairs in which a Green vertex has exactly one Red
neighbor and the Red vertex has exactly one Green neighbor. Just like the example shown
in Figure 3.11 in Section 3.5.2, these pairs exist at varying levels of the metagraph. The
253 paired Green vertices with only a single transition across the boundary exist at levels
[6, 7, 8, 9, 10]. The corresponding 253 Red vertices exist at [7, 8, 9, 10, 11].

The threshold τ = 87 represents the worst case outcome for three interdictions and cor-
responds to interdicting edges [2,7], [10,13], and [11,15]. The adversary is likely to have
realized these edges are critical and fortified their defenses. Interdicting any one of them
may require a special type of military operation, such as a special forces raid. Suppose we
want to make the network brittle, but still functional, and find a single edge that we can
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Figure 4.5. Histogram of Transitions Across the Boundary (τ = 87) for
Metagraph Vertices with θ(s) = 1. Of the 262,144 metagraph states for the
Eighteen-Edge Flow Network, only 190,861 have θ = 1, (i.e., are adjacent to
the performance boundary). Each histogram shows the number of potential
transitions that cross the performance boundary for Green vertices (89,086
states) and Red vertices (101,775 states). Although some vertices have
only a single way to transition across the performance boundary, many have
multiple ways of doing so.

interdict at a time and place of our choosing to cause major disruption. Two important
questions to answer are: which of critical edge do we need to interdict to achieve this result,
and, is the critical edge one of the three fortified edges?

Figure 4.6 shows how using δ(s) and θ(s) help identify system states that answer these
questions. Figure 4.6 depicts the Eighteen-Edge Flow Network for three different Green
vertices [A, B, C] found by first identifying states on the adjacent to boundary with only a
single transition edge across the boundary, and then finding neighboring vertices with large
δ(s). These three vertices all have three interdictions (λ = 3) and p(s) < τ, meaning they
are operational (i.e., Green) with performance values of p(s) = [38, 39, 41], respectively.
Moreover, the vertices [A, B, C] in Figure 4.6 do not share neighbors with the vertex state
in Figure 4.2 in the metagraph, meaning there is no obvious way to transition from any of
these states to the worst-case disruption. We find that when we interdict [10,13] for the
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Figure 4.6. Demonstrating the Importance of Edge [10,13] on Flow Network
Performance for Situations with More than Three Interdictions. Vertices [A,
B, C] have been interdicted three times to have the nominal performance
p(s) = [38, 39, 41], respectively. When [A, B, C] have edge [10,13] from
the worst-case attack set also interdicted, they produce states [D, E, F] with
failed performance of performance p(s) = [88, 96, 88], respectively. Even
though edges [2, 7] and/or [11, 15] are also from the worst-case attack set,
states [D, E, F] have some combination of these edges still available. This
result means that [10,13] may be more important to interdict the 18-Edge
Flow Network than other edges. In the figure, blue lines indicate edges that
can support flow, dashed black lines indicate interdicted edges, black nodes
are supply, blue nodes are met demand, white nodes are unmet demand.

three vertices [A, B, C] producing the three states [D, E, F] also depicted in Figure 4.6, the
performance values for each state become p(s) = [88, 96, 88] and now exceed the threshold
and become Red vertices. In other words, if the attack budget is increased from three to
four interdictions, then it is possible to make the network brittle, but still functional, such
that the interdiction of the single edge [10,13] causes major disruption.
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Notably, identifying these states in the metagraph provide information regarding the impor-
tance of each arc identified in attacker-defender analysis. The original interdiction analysis
provided no information regarding which edge of the attack set [2,7], [10,13], and [11,15]
affects the flow the most. The states depicted in Figures 4.6 help answer this question.
Specifically, the state depicted in Figure 4.6 (D) achieves the desired system performance
without interdicting edges [2,7] and [11,15] and instead by interdicting edges [6,7], [7,8],
and [14,15]. In contrast, if we are able to interdict [11,15] but not [2,7], Figure 4.6 (E)
shows that we can get the same operational effect by interdicting [6,7] and [7,8]. If we can
interdict [2,7] but not [11,15], the state depicted in Figure 4.6 (F) shows we can get the
same operational effect by interdicting [4,8] and [14,15]. Overall, there are no system states
that achieve the operational result of crossing the threshold p(s) > τ without interdicting
[10,13], but several options to achieve that result without interdicting [2,7] or [11,15].

Thus, we can claim that [10,13] is possibly more important than [2,7] or [11,15], despite
all three arcs being part of the worst-case interdiction set. Moreover, we can determine
that achieving the desired network disruption requires interdiction of the fortified edge
[10,13], but not necessarily the other two edges. Figure 4.6 pinpoints how to achieve these
operational effects when there are not enough resources for multiple special operations or
[2,7] and [11,15] are not available for attack.

Vertices With Multiple Transition Edges Across the Boundary
Of the 89,086 Green vertices with Threshold Hamming Distance, θ = 1, there are 1,252
states in which the number of possible interdiction transition edges exactly matches the
number of transitions across the boundary (i.e., number of transition edges is δ − k). The
1,252 vertices exist at Levels [8, 9, 10, 11, 12]. These states, while currently operational
(i.e., Green) exist in a precarious situation as the next interdiction will cause system failure.

Likewise, of the 101,775 Red vertices with Hamming Distance, θ = 1, there are 486 states
in which the number of possible transitions across the boundary is λ. These Red states
exist over 7 different levels, [4, 5, 6, 7, 8, 9, 10]. The Red vertex ‘001011110110011010’
whose performance p(s) = 92 occurs at level 10. That vertex has ten interdictions at edges:
[2,3], [4,8], [5,9], [6,7], [6,10], [8,12], [9,13], [11,12], [11,15], and [13,14]. A restoration
on any of those edges switches the state from Red to Green. For example the Green vertex
‘001011110010011010’ whose performance p(s) = 75 is best possible restored performance
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Figure 4.7. Red Vertex with All Interdiction Transitions Crossing the
Boundary. This Red vertex ‘001011110110011010’ has been interdicted
ten times, yet if any of the ten interdictions were restored, the system
would change to Green. The two Green vertices, ‘001011110010011010’
and ‘001010110110011010’, represent the upper and lower bounds for the
performance values of those restorations.

value and the Green vertex ‘001010110110011010’ whose performance p(s) = 87 shows the
worst restored performance value for the Red vertex ‘001011110110011010’. Both bounds
of performance values cause the system to change from failure to success.

The Red vertex ‘001011110110011010’ in Figure 4.7 is very useful if an operator needs
to ‘fix it fast’ as any single restoration changes the state to Green. The Green vertex
‘001010110110011010’ with p(s)=87 in Figure 4.7 has the same performance value as
the original, three-interdiction vertex in Figure 4.2 but with seven additional interdictions.
The two states share only one interdicted edge, [11,15]. This matters when we consider
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the practical applications of these interdictions. Various factors determine how many
interdictions an attacker can impose, especially cost. We do not know the costs associated
with imposing these interdictions but we know that the results are the same, in terms
of performance value. Traditional methods find the efficient means to reach an outcome
but military operations planning cannot assume that efficient is feasible. Alternatives are
necessary and finding states like those in Figures 4.6 and 4.7 is not possible using only
traditional interdiction/restoration methods.
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CHAPTER 5:
Conclusion and Future Work

5.1 Conclusions
This thesis addresses the relationship between network interdiction and network restoration
in the military “operational art” to inform network shaping activities. Operational art is the
way the military develops and conducts planning to execute six joint operational phases –
shaping, deterring, seizing initiative, dominating, stabilizing, and enabling civil authority
(Hart et al. 2014). Operational plans focus on the process of interdicting flow networks (i.e.,
Phases II and III) to eventually restore them (i.e., Phases IV and V). Traditional interdiction
and restoration methods provide important options to achieve these goals by identifying the
worst possible way to interdict a flow network and the best possible to restore it.

However, more options might be needed than just the best- or worst-case situation for
military operations. Shaping activities that occur before Phases II, III, IV, and V that help
operational planners “set conditions for successful theater operations," (Joint Chiefs of
Staff 2017) would benefit from a broader range of options, especially when the worst-case
interdiction or best-case restoration are not available due to lack of resources or strong enemy
defenses. Identifying flow network states that provide additional options than traditional
interdiction and restoration models is critical to military operational art. Thus, this thesis
focused on answering a single motivation question to inform network shaping activities:
Are there system states not normally identified via traditional [interdiction/restoration]
methods that are operationally relevant and inform new approaches to joint operations?

Our approach to answer this question focuses on creating and analyzing the metagraph
of system states for a flow network. We demonstrate the creation of a metagraph by
enumerating every state in a four-edge and nine-edge flow network. Furthermore, we use
methods originally implemented in Alderson and Carlyle (2017) to identify a performance
threshold and color every vertex in the metagraph as either Green (i.e., functioning) or Red
(i.e., non-functioning) with respect to the threshold. We define two newmeasures to analyze
the metagraph to identify states that were adjacent to the performance threshold boundary
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between Green and Red states: performance distance, δ, and Threshold Hamming Distance,
θ. We then use these two measures to identify attack and defense sets corresponding
to system states not identified by traditional methods: vertices on opposite sides of the
performance boundary share their only connection across the boundary and vertices for
which all of the interdiction-related edges (for Green) or all of the restoration-related edges
(for Red) cross the performance boundary.

These two kinds of metagraph states are relevant for informing military operations. The first
state provides an important way to identify critical edges in the flow network that provide
more detail on which interdictions and restorations may be more important to achieving a
particular operational result. The second provides an target state for military operations
during interdiction and restoration, as any single additional change to the flow network will
result in a dramatic change in system performance.

To establish the existence and importance of these two states in more realistic systems, we
analyze and observe these states in the eighteen-edge notional fuel network. Using the
same methods for smaller systems, we are able to pinpoint similar flow network states that
achieve similar military operational results. Moreover, we find that these flow network states
recommend interdictions and restoration activities that are not necessarily correlated with
theworst-case set identified by traditional network interdiction and restorationmethods. The
presence of these states indicates that, from an operational planning perspective, alternatives
exist that may improve the transition from “break it bad” to “fix it fast”. Thus, the answer to
our guiding question is: Yes, there are system states not identified by traditional interdiction
and restoration methods that can inform new ways to shape flow networks.

Both the creation of new analysis methods and the identification of alternative network states
for interdiction and restoration provide a basis for better defining network shaping inmilitary
operational planning. In general, our conclusions suggest that traditional interdiction and
restoration methods represent only a subset of network shaping activities. We more broadly
define network shaping as real operational activities to interdict and restore a flow network
supported by understanding how to traverse through the metagraph via combinations of
interdictions and restorations. Traversing the metagraph is akin to the operational function
of Movement and Maneuver which “encompasses the disposition of joint forces to conduct
operations by securing positional advantages before or during combat operations” (Joint

44



Chiefs of Staff 2017). Network shaping, much like maneuvering, is about trying “to achieve
a position of advantage in respect to the enemy” (Joint Chiefs of Staff 2017) in the state
space for a flow network. Achieving those positions of advantage within the metagraph
depends upon the goal. Defenders must find positions that allow freedom of maneuver to
successful states whereas attackers seek to impede that same movement from an adversary.
Network shaping, like maneuver, “requires designating and then, if necessary, shifting the
main effort and applying the principles of mass and economy of force” (Joint Chiefs of Staff
2017). Network shaping uses performance distance and Threshold Hamming Distance in
addition to performance value to understand the network.

5.2 Future Work
There are several aspects of this problem that merit further attention.

5.2.1 Effects of the Operational Environment
Weconsider our flownetworks in themost objectivemeans possible. However, the condition
of the operational environment would affect the way certain states might be interpreted. For
example, a Green vertex in the metagraph with only a single edge that crosses the boundary
might be considered ‘robust’ by a planner. In contrast, a Green vertex for which any
interdiction results in a transition across the performance boundary might be considered
‘fragile’. This interpretation would impact the the type of state an operational planner might
seek.

5.2.2 Enumeration
Our methods for identifying system states require the complete enumeration of a network.
The Eighteen-Edge Flow Network demands that we solve the underlying min-cost flow
problem 262,144 times to determine the performance for each state, and larger networks
grow exponentially making this process time consuming and inefficient. Discovery of
a means to find important states without complete enumeration would assist operational
planners.
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