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1. Introduction and Motivation

1.1. Motivation

The Space Systems Academic Group (SSAG) of the Naval Postgraduate School (NPS) in
Monterey, CA, is a pioneer in the development nanosatellites. So far, three satellites
built to CubeSat specifications have been launched: Flora, Fauna and Merryweather.
Those satellites are referred to as PropCubes, which is the SSAG CubeSat implementa-
tion.

The miniature size of those nanosatellites promises great possibilities for applica-
tions and research but also poses severe challenges on all fields of engineering. For ex-
ample in communication engineering, the small satellite size implies tiny solar panels,
which lead to little transmit power. The Signal-to-Noise ratio (SNR) was estimated to
be in a range from −2dB to 13dBwhen no additional interference is present, depending
on the distance to the ground station, which varies greatly in the course of an overflight.
This change of distance also causes the well known phenomena of Doppler shift in fre-
quency, and the change of Doppler shift over time introduces the so called Doppler rate.
For CubeSats transmitting at 914MHz, which are usually in a low-earth orbit (LEO),
the Doppler shift causes a frequency deviation up to 24KHz and the Doppler rate is as
high as 310Hzs at its peak. The already difficult communication task is complicated by
design decisions of PropCube: Following the CubeSat philosophy, the communication
link was chosen to be in an industrial, scientific and medical (ISM) band. The benefit
that the ISM band is allowed to be used for free is countered by the fact that strong
interference occurs. For example, there are radars, remote controlled drones and car-
openers operating at the same frequency. Despite the directional characteristics of the
ground station’s antenna, interference exceeding the satellite’s signal by over 37dB is
present in signal recordings. This might happen for example at an early stage in an
overflight when the antenna is pointed almost horizontally and a CubeSat has to com-
pete with a car-opener at a parking lot nearby or if an airborne radar is pointed towards
the antennas main lobe. Appendix A provides an overview of spectrograms of typical
bursts, which illustrates the interfering environment, and the method used for estimat-
ing the SNR values is explained.

Often, the satellite’s signal can not be demodulated and decoded successfully. In that
case, it is useful to have the more general information whether the satellite is still trans-
mitting or not. Prior projects focused on implementing an energy-based signal detector,
known as radiometer. Gardner [2] showed that the radiometer is an optimum detector,
following a Maximum-Likelihood approach, assuming a stationary noise level. Due to

7



1.2. Thesis Structure

the vast variations of noise- and signal-power, as well as strong interference discussed
in the previous paragraph, it is hard to find a suitable energy threshold which yields an
acceptable trade-off between detection probability and false alarm probability, known
as Receiver Operating Characteristics (ROC). This dilemma is discussed in more detail
in Appendix B. Since the radiometer is only an energy-detector, any interference with
a sufficient amount of energy could raise a false alarm. In a challenging environment
like the ISM band, another class of detectors can outperform the radiometer by far: Cy-
cle detectors, originally proposed by Gardner in [2], exploit cyclostationary features of
communications signals and are considered to be tolerant against interference. More-
over, Gardner and Spooner [3] show performance advantages of cycle detectors over
radiometers.

The novelty of this thesis lies in the application of cycle detectors to signals that are
corrupted by a high Doppler rate. Since the measurement of cyclic features relies on
the signal’s consistency in the frequency domain, the Doppler rate tends to make cyclic
spectral analysis a less promising approach. However, in this thesis it is demonstrated
that such methods, which are well known to perform great for terrestrial blind signal
detection and classification, can successfully be applied to LEO satellites and perform
reliably under strong interference. An algorithm is proposed that uses an adaptive
decision statistic and best-performing parameter settings are discussed.

1.2. Thesis Structure

In order to properly discuss cycle detectors, Chapter 2 introduces the fundamentals of
cyclic spectral analysis. The author paid great attention to start the development of
the theory at points that are assumed to be well known to the readership. To present
this mathematical part as vividly as possible, many simple examples are presented.
Throughout the entire chapter, parallels from the so called conventional world, refer-
ring to conventional spectral analysis, to the cyclostationary world are drawn. At this
point, advantages of cyclic spectral analysis become clear, which are then discussed
in Section 2.1.4. While the analytical derivation of cyclic functions is a theoretical
construct, Section 2.2 briefly introduces a practical estimation method and its imple-
mentational aspects. Eventually, Section 2.3 summarizes the detection statistic of cycle
detectors.

Chapter 3 is the most mathematically rigorous part of this thesis. The ideal spectral
correlation function for Procube’s communication design is derived by the application
of a paper by Napolitano and Spooner [4]. This effort is taken to justify estimation
results by analytical means and to develop a modified cycle detector for this specific
signal type.

The theoretical foundation is used in Chapter 4 to design a detection statistic more
suitable for the ISM environment. Different approaches are discussed and explanations

8



1.2. Thesis Structure

for the final design decision are provided. Moreover, Chapter 4 contains a key element
necessary for the application of cyclic spectral analysis to Doppler rate corrupted sig-
nals: The adequate choice of observation time (later on referred to as block length), to
avoid smearing of cyclic features. To guarantee residual smearing to be within certain
bounds, design parameters are introduced in Section 4.2.3. Eventually, the detector,
which operates on a single observation time must be applied to a continuous stream
of samples. A strategy, that meets a trade-off between computational tractability and
resolution in the time domain, is presented in Section 4.4.1 and its result is used in
Section 4.4.2 to correct frequency offsets.

Equipped with this algorithm, Chapter 5 evaluates its performance in different sce-
narios: A simulator was implemented to determine the probability of detection in WGN
and an approach is presented to estimate the ROC in the ISM environment. Finally, the
detectors performance is tested in Section 5.4 on real-world data from a PropCube over-
flight.

9



2. Introduction to Second Order Cyclic

Spectral Analysis

In this chapter, fundamental ideas of the theory of cyclic spectral analysis are intro-
duced. Without loss of generality, the term stationary refers to stationarity in the wide
sense. If stationarity in the strict sense is considered, it is specifically mentioned. Defi-
nitions for both, strict- and wide-sense stationarity are provided in [5].

2.1. Theory of Cyclostationarity

2.1.1. Cyclic Autocorrelation Function

The starting point for the development of the cyclostationary framework in this the-
sis is the conventional autocorrelation function (ACF) for stationary signals, which is
assumed to be well known to the readership:

Rx(τ) = lim
T→∞

1
T

T /2∫
−T /2

x(t + τ/2)x∗(t − τ/2)dt, (2.1)

where the star-operator * denotes the complex conjugate. A stationary signal model is
adequate for most communication signals if the observation time exceeds many sym-
bols and if the signal is considered to be sampled at the symbol rate after a matched
filter. If the observation time decreases to the magnitude of a few symbols and an over-
sampled signal is considered, it becomes obvious that the stationary model no longer
holds, as the following example illustrates.

10



2.1. Theory of Cyclostationarity

Considering a simple Pulse-Amplitude-Modulated Signal, where the pulse shaping is a
half-sine wave, a possible pulse train could look like s(t) in Figure 2.1.

Figure 2.1.: PAM Pulsetrain with half-sine Pulse Shaping

If the sampling points are only at the red marks, which corresponds to an ideal sampling at
Nyquist frequency, the sample sequence is stationary, assuming the data symbols are inde-
pendent and identically distributed. In this case, it is easy to see that the expectation value
of the sampling sequence is 0 and the variance is 1. If the sampling changes and the green
marks are also considered to be sampling points, the sampling sequence can no longer be seen
as stationary, since the variance of the green sampling points is 0. However, the sampling
sequence can be seen as cyclostationary, since the variance changes periodically from sample
to sample. To calculate the autocorrelation function of such a sequence, it is necessary to use
a different approach.

The general form of the conventional ACF, applying to all non-stationary signals, is
given by

Rx(t,τ) = E{x(t + τ/2)x∗(t − τ/2)}, (2.2)

where E[.] is the expectation operator. Assuming that 2.2 contains a periodic behaviour,
for example due to pulse-shaping effects like in the above example, Fourier coefficients
can be determined by calculating

Rαx (τ) = lim
T→∞

1
T

T /2∫
−T /2

Rx(t,τ)e−i2παt dt, (2.3)

where α represents one Fourier frequency, which is referred to as cycle frequency in the
cyclostationary context. If a specific cycle frequency is present in equation 2.2, then the
Fourier coefficient 2.3 will differ from zero. By taking all cycle frequencies into account,
equation 2.2 can be expressed as a Fourier series

11



2.1. Theory of Cyclostationarity

Rx(t,τ) =
∑
α

Rαx (τ)ei2παt . (2.4)

This shows the relationship between the conventional ACF Rx(t,τ) and the cyclic
autocorrelation function Rαx (τ) (CACF). Moreover, the conventional ACF for stationary
signals, equation 2.1, can be seen as a special case of the CACF, evaluted for α = 0:

R0
x(τ) = lim

T→∞

1
T

T /2∫
−T /2

Rx(t,τ)e−i2π0t dt = Rx(τ). (2.5)

The fact that conventional formulas turn out to be special cases of cyclostationary
approaches continues throughout this chapter.

A signal exhibits second-order cyclostationarity if there exist at at least one cycle fre-
quencies α , 0 with Rαx (τ) , 0 [6]. This is related to the fact that the ACF and CACF are
lag products of second order.

2.1.2. Spectral Correlation Function

The Wiener relation, which is again assumed to be well known to the readership, states
that the Fourier transform of the conventional ACF of a stationary signal yields its
power spectral density (PSD):

S(f ) = lim
T→∞

+ T
2∫

− T2

Rx(τ)e−i2πf τdτ. (2.6)

Analogous, the cyclic Wiener relation states that the Fourier transform of the CACF
yields a function known as the spectral correlation function SCF [7], which is of great
importance to this thesis:

Sαx (f ) = lim
T→∞

+ T
2∫

− T2

Rαx (τ)e−i2πf τdτ. (2.7)

Additionally, the PSD can also be calculated by evaluation of

Sx(f ) = lim
T→∞

lim
U→∞

1
U

U/2∫
−U/2

IT (t, f )dt, (2.8)

where

IT (t, f ) =
1
T
|XT (t, f )|2 (2.9)
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2.1. Theory of Cyclostationarity

is known as the conventional periodogram, hence XT (t, f ) is the Fourier transform of
the signal defined by

XT (t, f ) =

t+T /2∫
t−T /2

x(v)e−i2πf vdv. (2.10)

In strong analogy to the definition of the PSD via the periodogram, it is shown in [7]
that the SCF is also defined by

Sαx (f ) = lim
T→∞

lim
U→∞

1
U

U/2∫
−U/2

IαT (t, f )dt (2.11)

where

IαT (t, f ) =
1
T
XT (t, f +α/2)X∗T (t, f −α/2) (2.12)

is known as the cyclic periodogram. It follows, that the conventional periodogram
turns out to be a special case of the cyclic periodogram for α = 0

I0
T (t, f ) =

1
T
XT (t, f )X∗T (t, f ) =

1
T
|XT (t, f )|2 = IT (t, f ) (2.13)

and consequently the PSD is a special case of the SCF for α = 0

S0
x (f ) = lim

T→∞
lim
U→∞

1
U

U/2∫
−U/2

I0
T (t, f )dt = lim

T→∞
lim
U→∞

1
U

U/2∫
−U/2

IT (t, f )dt = Sx(f ). (2.14)

The multiplication operation in equation 2.12, which defines the cyclic periodogram,
can simply be interpreted as a correlation of two frequency components f + α/2 and
f − α/2 for a snapshot of time T. Therefore, the SCF can be interpreted as the correla-
tion function of those frequency components over time t. The link between cyclosta-
tionarity in the time-domain signal and spectral correlation in the frequency domain
is given in equation 2.7: If cycle frequencies other than α = 0 are present in the CACF
Rαx (τ) due to cyclostationarity in the time domain, then there exist values Sαx (f ) , 0, for
α , 0. This means, there are contributions in the SCF besides the PSD, which can be
interpreted as correlation of spectral components due to equation 2.11.

The importance of the SCF and the cyclostationary framework in general arises from
the fact that most man-made communication signals exhibit cyclostationarity. The ex-
ploitation of it yields significant advantages over conventional spectral analysis for sig-
nal detection and classification, as well as for many other applications. A brief discus-
sion of those is given in Section 2.1.4.
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2.1. Theory of Cyclostationarity

Great effort has been put in the determination of analytic expressions for SCFs for
various types of modulations. Gardner et. al. focus in [8] on real signals only and pro-
vide those for a selection of common communication signals. Nevertheless, for most
modulation types, especially in the complex baseband representation, an analytic ex-
pression for the exact SCF is often unknown. An interesting approach was taken by
Napolitano and Spooner in [4]. It is shown that close approximations or even the exact
SCF, depending on the type of continuous-phase modulation (CPM), can be calculated
by using the Laurent representation of CPM signals. Chapter 3 is dedicated to the ap-
plication of this paper to the GFSK signal of PropCube.

In the following, the term α-slice refers to a slice of the SCF for a fixed value of cycle
frequency α and a variable center frequency f . For example, the α-slice for α = 0 coin-
cides with the PSD.

Example: Figure 2.2 shows the SCF for PropCube’s GFSK signal, which will be derived
in detail in Chapter 3. With a modulation index of h = 1 and a symbol rate of 9600 symbols

s ,
the signal contains two tones at ±4.8kHz, which can be observed clearly in the PSD at α =
0. Moreover, strong cyclic features can be observed at the discrete cycle frequencies α =
±9.6kHz, consisting of a tone and a lobe-like component, and much weaker ones at α =
±19.2kHz, consisting only of a lobe-like component.
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2.1. Theory of Cyclostationarity

Figure 2.2.: SCF of a GFSK Signal

2.1.3. Spectral Coherence Function

The SCF yields the amount of spectral correlation present in a signal. As the signal
power changes, the level of the SCF is affected. This implies complications on thresh-
olding problems. One possible solution is to use the Spectral Coherence Function (COF)
instead:

Cαx (f ) =
Sαx (f )[

S0
x (f +α/2)S0

x (f −α/2)
]1/2 . (2.15)

The COF normalizes each point of the SCF with the power present in the frequency
bands that are correlated for this specific point. Therefore, the range of possible values
of the magnitude of the COF is bound to the interval [0,1]. The entire α-slice at C0

x (f )
is consequently normalized to one and referred to as noise wall.

A noiseless signal has in general lower energy, the further the frequency is separated
from the center frequency. But this little energy still exhibits spectral correlation and
is greatly upscaled in the COF, so that it leads to values close to one. Hence, the COF is
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2.1. Theory of Cyclostationarity

a useful tool when a substantial amount of noise is present, but a less favorable option
for signals at very high SNR.

Example: Figure 2.3 shows the estimated COF of a simulated GFSK signal at an SNR
of 3dB. The noise wall as well as cyclic features are clearly visible. When comparing this
Figure to Figure 2.2, it is important to notice that the ideal SCF was calculated as an an-
alytic expression, whereas the COF was estimated for a simulated GFSK signal with noise
introduced. The signals contains 5 samples per symbol, the block length is 30.000 samples
and the DFT-length is set to 250. Since this Figure is the result of a practical estimation, the
(f ,α)-parameterization is changed to the (f1, f2)-notation, as explained in Section 2.2.

Figure 2.3.: COF Estimation for a simulated GFSK Signal

2.1.4. Advantages of Cyclic Spectral Analysis over Conventional Spectral

Analysis

This thesis only uses a fraction of the giant field of cyclic spectral analysis. For com-
pleteness, it should be mentioned that various other methods exist, like cyclic moments,
cyclic cumulants and cyclic polyspectra of higher order, which can also be used for sig-
nal detection and parameter estimation. This Section discusses only the benefits rele-
vant for this thesis.

Cyclic spectral analysis is considered to be noise and interference tolerant. It might
be impossible to detect the presence of multiple, overlapping signals in a conventional
PSD, whereas the SCF provides clearly distinguishable indicators. Since it is highly
likely that multiple, overlapping signals consist of different modulations or contain
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2.1. Theory of Cyclostationarity

different symbol rates, their cyclic features will have different shapes and appear at
different positions in the SCF. Moreover, in an AWGN channel the PSD is an additive
representation of the PSD of WGN and the PSD of a signal. Regardless how long the
observation time is, there is always an uncertainty due to the influence on the PSD by
noise. In the SCF, this corruption is only present at the α-slice at α = 0. All other values
of α are uncorrupted, since the behaviour of different frequencies of WGN is uncorre-
lated as the observation time approaches infinity.

Example: Figure 2.4 shows the estimated PSD of two directly overlapping BPSK signals,
both without frequency offsets. Both signals are simulated with a square-root raised cosine
pulse shaping with a roll-off factor of β = 0.5. The two BPSK signals vary only in their
symbol rate: One has f1 = 4 samples

symbol , while the other one has f2 = 6 samples
symbol . By inspecting the

PSD, it is difficult to determine, whether one or multiple signals are present.

Figure 2.4.: Periodogram Estimation of two directly overlapping BPSK Signals

In comparison, Figure 2.5 shows the estimated SCF for the same sample sequence. While
on the diagonal axis yields the PSD, it can be observed that distinct cyclic features, caused
by distinct symbol rates, reveal the presence of two signals. The shape of each cyclic feature
can be used to classify the modulation type. The (f ,α)-parameterization is changed to the
(f1, f2)-notation, as explained in Section 2.2.
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Figure 2.5.: SCF Estimation of two directly overlapping BPSK Signals

The shape of the features in the SCF depend strongly on the type of modulation. By
comparing the estimated feature to a known feature, modulation recognition can be
performed. A great overview of common communication signals and their highly dis-
tinct SCFs can be found in the Gallery of Spectral Correlation [1].

Cycle frequencies of a signal are influenced by its parameters. For many modula-
tion types, cyclic features can be found at multiples of the symbol rate and frequency
offsets would lead to offsets in the α-slice. Therefore, those parameters can easily be
estimated by evaluation of the SCF. Many other practical problems, like system iden-
tification, time difference of arrival estimation and many synchronisations tasks, can
be encountered by the exploitation of cyclostationarity. Those are not discussed in this
thesis and the reader is referred to [7] for a detailed discussion.

2.2. Estimation of Spectral Correlation

The definitions of the previous section include limiting operations, where for example
the observation time approaches infinity. Since this thesis copes with practical prob-
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2.2. Estimation of Spectral Correlation

lems, it is necessary to introduce at least one method for the measurement of spectral
correlation.

2.2.1. Time Smoothing Method

The Time Smoothing Method (TSM) is a consistent estimator for the SCF and conse-
quently for the COF. For proof and a detailed derivation of the method, the reader is
referred to [9] and [10]. The TSM can again be explained in strong analogy to a conven-
tional algorithm, namely the Bartlett-method for the estimation of the PSD. Whereas
the Bartlett-method computes multiple periodograms and averages eventually to pro-
vide consistency, the TSM computes multiple cyclic periodograms and then applies
averaging. The algorithm can be summarized in the following steps:

• Divide all samples, collected in the observation time T, in M sub-blocks, each of
length N,

• apply a DFT of length N to each sub-block,

• calculate a cyclic periodogram of each DFT output,

• multiply a phase compensation factor to each cyclic periodogram,

• average over all cyclic periodograms to obtain the SCF estimation.

Since the phase compensation factor finds little attention in the literature, an expla-
nation of its importance is given in Appendix C.

The effectiveness of this method can be observed clearly, assuming interference and
noise causing frequency components fk and fj to have a power of σ2

k and σ2
j . Us-

ing conventional spectral analysis, like a radiometer based approach, the detection of
PropCube’s signal has to cope with the full power σ2

k and σ2
j . In comparison, equation

2.12 defines the cyclic periodogram to be a multiplication of two frequency compo-
nents, leading to a variance of σkσj at the corresponding position, assuming uncorrelat-
edness of fk and fj . Again, it can be noticed that for α = 0, i.e. k = j, it results in the
conventional periodogram with power σ2

k . Averaging over multiple sub-blocks allows
the application of the central-limit-theorem, which leads to a variance reduction by a
factor of 1

M . Therefore, the influence of noise and interference, that does not exhibit
particular cycle frequencies, can greatly be decreased, approaching zero for observa-
tion times approaching infinity.

For the TSM, the spectral resolution is ∆f = 1
N [9]. Therefore, an increase in the sub-

block length N yields a finer resolution, but also causes the estimate to have a greater
variance as the observation time stays constant, because the number of sub-blocks M
decreases. This relation is derived in [2] and expressed in terms of a coefficient of
variation C, defined by
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2.2. Estimation of Spectral Correlation

C ≈ C0

∆T∆F | Cαx (f ) |2
, (2.16)

where Cα(f ) is the spectral coherence function introduced in 2.15 and C0 is a constant
in the order of unity. In [2], C0 is derived in detail, here 2.16 is presented to provide
an insight into the interactions of various design parameters. In general, an estimation
is said to be statistically reliable, if the time-resolution-product fulfills the following
condition:

∆T∆F� 1. (2.17)

Relations 2.16 and 2.17 point out the trade-offs which must be taken for a practi-
cal implementation. High statistical reliability opposes a fine spectral resolution. The
length of the observation time T might be limited by practical circumstances, like the
Doppler rate in this thesis. Eventually, all of those factors must match under the re-
quirement of computational tractability. For an in-depth discussion of the resolution
parameters, the reader is referred to [9] and [2].

The TSM is a straightforward method to estimate the SCF. There exist various alterna-
tive algorithms, like the frequency smoothing method, the FFT accumulation method
and the strip spectral correlation analyzer to name the most important. Those algo-
rithms are derived in detail in [9].

2.2.2. Implementational Aspects

In the literature of cyclic spectral analysis, the variables α and f are common to repre-
sent the frequency separation and the center frequency, as described earlier in Section
2.1.2. However, this raises complications in the practical implementation with discrete
frequency bins. Therefore, in the following the parameterization will be changed to a
equivalent notation with f 1 and f 2 where:

f 1 = f −
alpha

2
, (2.18)

f 2 = f +
alpha

2
. (2.19)

In that manner, it is more convenient to compute the SCF as a two dimensional array,
where one dimension corresponds to f 1 and the other one to f 2.

Additionally, it might seem intuitive to use a power of 2 for the DFT-length N for
each subblock in the TSM. However, it is useful to choose the combination of all pa-
rameters so that cyclic features, like peaks in the SCF, correspond to an integer tuple
(f 1, f 2) of array indices, so that no leakage across multiple indices occurs. Also, for
example for synchronization tasks, it is beneficial if the number of samples per symbol
is an integer value. Choosing a DFT-length N other than a power of 2 might be the
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easiest way to fulfill these conditions.

Example: The GFSK-signal used for Propcube has a symbol rate of fsymb = 9.6kHz. If a

sampling frequency of fsamp = 48kHz is chosen, the number of samples per symbol is
fsamp
fsymb

= 5.
The most important second-order cyclic feature of this signal arises at the cycle frequency
α = fsymb. To avoid leakage, it is therefore useful to choose the DFT-length N so that the
α-slice at α = 9.6kHz falls into integer array indices. This is satisfied for example, when N

is chosen to be 500:
fsymb
fsamp
×N = 9.6kHz

48kHz × 500 = 100. With this value of N , the α-slice can be
found at array index tuples (f 1, f 2) where the condition | f 1− f 2 |= 100 is fulfilled.

2.3. Cycle Detectors

Cycle detectors were originally proposed by Gardner in [11]. The main benefit of cycle
detectors is that cyclostationary characteristics of communication signals are exploited.
Ideally, estimated cyclic features at all cycle frequencies exhibited by the signal are
weighted by the known, true cyclic features. The multi-cycle detector is therefore de-
fined by

γ =
∑
α

+∞∫
−∞

ŜαxT (f )∗Sαs (f )df , (2.20)

where Sαs (f ) is the ideal SCF of the sent signal s(t). ŜαxT (f ) is the estimated SCF of the
received signal x(t) = s(t)n(t) with observation time T . Hence, n(t) represents a noise
process. If the detection statistic γ is above a defined threshold, a signal is detected.
The multi-cycle detector uses all cycle-frequencies, which is superior to using only a
subset. However, for practical implementations, it is necessary to obtain the timing
information of the signal, since the phase of cyclic features depend on both, timing and
cycle frequency, as expressed by [11]:

Sαs′ (f ) = Sαs (f )e−i2παt0 , (2.21)

where s′(t) = s(t − t0) is a time-shifted version of s(t). If t0 is unknown, it is possible
that the superposition of many cyclic features is destructive for the overall detection
statistic γ . Since the need of a signal detector arises from the fact that it is unknown,
if a signal is present or not, it is unrealistic to assume knowledge about the signal’s
timing. This destructive behaviour can be avoided by using only one cycle frequency.
The resulting detector is called single-cycle detector and defined by

γ =

+∞∫
−∞

ŜαxT (f )∗Sαs (f )df . (2.22)

In many applications, the performance of a single cycle detector is similar to the
performance of a multi-cycle detector. This is due to the fact that, like for GFSK, the
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magnitude of one cyclic feature is much stronger than the magnitude of all other cyclic
features. Considering implementational aspects, a single-cycle detector is far more
computationally efficient, since only one α-slice is computed. However, the phase of
estimated cyclic features is still unknown due to equation 2.21. Therefore, a practi-
cal approach is to use the magnitude of the estimated α-slice and weight it with the
magnitude of the ideal α-slice:

γ =

+∞∫
−∞

| ŜαxT (f )∗ || Sαs (f ) | df , (2.23)

which can be considered to be a sub-optimal single-cycle detector.
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3. SCF Approximation of a GFSK Signal

with h = 1

Napolitano and Spooner [4] derive approximations for the SCF of CPM signals. By
expressing a CPM signal with its Laurent representation, closed form expressions for
cyclic features can be given. The results of this work are used in this chapter to derive
the SCF for a special case of CPM, namely PropCube’s GFSK signal. It will be shown
in Section 3.2 that the expressions for SCFs of a GFSK signals can only be evaluated
numerically. Figures of the relevant steps and the final results are provided.

3.1. Analytical Expression

Section C in [4] is dedicated to Cyclic Parameters for Integer Modulation Index, which
applies to Propcube’s GFSK with modulation index h = 1. First, it is shown in (47) that,
for an integer modulation index, the CPM signal contains tones. In this case, the signal
can be decomposed as in equation (48):

sCPM(t) = E{α}{sCPM(t)}+ z(t) (3.1)

where E{α} is the periodic-component extraction operation and therefore contains the
periodic component of sCPM(t), whereas z(t) is defined to contain the non-periodic com-
ponent. In general, the SCF is a special case of cyclic polyspectra of order two [2]. For
those it holds that the SCF of the periodic and non-periodic components are additive.
This can be exploited to achieve the SCF for the entire CPM signal:

SαCPM(f ) = Sα
E{α}{sCPM (t)}(f ) + Sαz (f ). (3.2)

Most cyclic parameters only depend on z(t), therefore the periodic term is not taken
into consideration in the further derivation in the original paper. Eventually, in (58)
the equation for second-order cyclic polyspectra for the non-periodic component z(t) is
presented as

Sαz (f ) = i1
(−)r1 1

T
B
α
1 (f )Ũα

a (ν′)
∣∣∣∣∣
α̃=αT ,ν=f T

, (3.3)

The term 1(−)r1 describes the conjugation configuration of the polyspectrum. In the
non-conjugate case, which is used throughout this thesis, it can be simplified further to

Sαz (f ) =
1
T
B
α
1 (f )Ũα

a (ν)
∣∣∣∣∣
α̃=αT ,ν=f T

, (3.4)
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3.1. Analytical Expression

where

Ũα
a (ν) =

∑
m∈Z

(−1)mR̃α̃a (m)e−j2πνm (3.5)

and

B
α
1 (f ) =Q1(

α
2
− f )Q1(

α
2

+ f ). (3.6)

It can be observed that Sαz (f ) depends on two factors: The CACF of the data symbols
R̃α̃a (m) and the Fourier transform of the real-valued pulse q1(t), which is expressed by
Q1(f ) and derived from the Laurent representation of the CPM signal. Equation 3.6
is modified in this thesis to the symmetric version of (60) in [4]. In the original paper,
an asymmetric representation is chosen, since it is more convenient to use for orders
higher than 2. However, in this application a symmetric representation fits best.

As mentioned in the previous paragraph, Ũα
a (ν) in 3.5 is influenced by the CACF of

the data symbols in the modulation sequence. Since those are assumed to be indepen-
dent and identically distributed due to scrambling applied in PropCube, 3.5 simplifies
greatly. The CACF can then be expressed as

R̃α̃a (m) =

δ(m), if α = 0 mod ( 1
T )

0, other,
(3.7)

where δ(m) is Kronecker’s Delta. Consequently, 3.5 is simply expressed by

Ũα
a (ν) =

1, if α = k
T ;k ∈ Z

0, other.
(3.8)

The SCF of the non-periodic component Sαz (f ) can therefore be expressed as

Sαz (f ) =

 1
T Q1(α2 − f )Q1(α2 + f ), if α = k

T ;k ∈ Z
0, other.

(3.9)

In order to obtain SαCPM(f ), also the SCF of the periodic component Sα
E{α}{sCPM (t)}(f )

must be calculated. This is considered to be trivial, once the periodicities are known. In
[4] it is shown in equation (48) that for h = 1, the periodic component can be expressed
by

E{α}{sCPM(t)} = c∞
+∞∑
k=−∞

(−1)kq0(t − kT ), (3.10)

where c∞ is a either +1 or −1 and q0(t − kT ) is, for a second-order cyclic polyspectrum,
defined by
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3.2. Numerical Evaluation

q0(t) = cos[ϕ(t)]rect
(
t − T /2
T

)
, (3.11)

where ϕ(t) is known as the phase response to the pulse g(t) used in the CPM modu-
lation. By inserting this function, which will later be introduced in 3.15, into 3.11, it
results that the period contained in 3.10 is 2T and therefore tones at the frequencies
+ 1

2T and− 1
2T are present. This might seem intuitive, since a modulation index of h = 1

implies a frequency separation by 1
T . It follows that Sα

E{α}{sCPM (t)}(f ) is defined by

Sα
E{α}{sCPM (t)}(f ) =


δ(f − 1

2T ) + δ(f + 1
2T ), if α = 0

δ(f ), if α = 1
T

0 other.

(3.12)

By adding the periodic component 3.12 and non-periodic component 3.9 according
to equation 3.2, it eventually follows for the SCF as final result:

SαsCPM(f ) =


δ(f − 1

2T ) + δ(f + 1
2T ) + 1

T Q1(f )2, if α = 0

δ(f ) + 1
T Q1( 1

2T − f )Q1( 1
2T + f ), if α = 1

T
1
T Q1(α2 − f )Q1(α2 + f ) if α = k

T ; k ∈ Z and k , 1

0 other.

(3.13)

3.2. Numerical Evaluation

The real-valued pulse, which is used in 3.6, is defined for a full response system by

q1(t) = sin[ϕ(t)]rect
(
t − T /2
T

)
, (3.14)

where

ϕ(t) =

t∫
0

g(u)du (3.15)

is known as phase response to the pulse used in the CPM signal. Full response refers
to the fact that ϕ(t) = hπ for t ≥ T .Due to the Laurent representation, PropCube’s GFSK
signal is approximated as a full-response system. In general, for h = 1, g(t) is a Gaussian
pulse defined by

g(t) =
π

2T

[
erf c

(
t/T − 1/2

δ̃
√

2

)
− erf c

(
t/T + 1/2

δ̃
√

2

)]
, (3.16)

where
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δ̃ =

√
ln2

2πBT
. (3.17)

Since it is impossible to determine an analytical expression for the integral over a
Gaussian function, 3.15, 3.14, 3.6 and eventually the SCF have to be determined nu-
merically. The following Figures illustrate the steps to calculate Q1(f ) for T = 1

9600s,
BT = 0.5 and h = 1:

Figure 3.1.: Gaussian pulse g(t) windowed in time domain to be full-response system
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3.2. Numerical Evaluation

Figure 3.2.: φ(t) is Phase response function

Figure 3.3.: q1(t) is Laurent pulse approximation
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3.2. Numerical Evaluation

Figure 3.4.: Q1(f ) is Fourier transform of q1(t)

The final result for the SCF is depicted in Figure 2.2. It is important to notice that
the sharp peaks pictured with height 1 are ideally of infinite height.
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4. Detector Design

In this chapter, the design of the proposed signal detection algorithm is developed.
First, the current communication environment is explained and requirements for the
detector are determined. This thesis is meant to provide a general solution for signal
detection under high Doppler rate and high interference. Nevertheless, it is motivated
by the practical application in the SSAG’s CubeSat program. Step by step, the detec-
tion algorithm is built in the following sections. The most important part of the final
algorithm is the detection statistic, its development is the core achievement of this the-
sis. While Section 4.2.1 discusses the benefits of SCF- and COF-based statistics, Section
4.2.2 is determined to evaluate various SCF-based approaches before the development
of an adaptive detection statistic is motivated. As briefly mentioned in Chapter 1, the
influence of the Doppler rate complicates the measurement of cyclic features. To be
able to cope with that, this thesis introduces design parameters which limit the amount
of possible smearing by exploitation of a finite DFT resolution and a known upper
bound for the Doppler rate. At this point, where it is possible to estimate the α-slice
and to apply a detection statistic, an algorithm is proposed in Section 4.4.1, which
performs on an incoming stream of sampling data. Since the detection statistic pro-
vides not only information about the presence of a signal, but also the instantaneous
Doppler shift, a method, which takes multiple detection points into account to correct
time-varying frequency offsets, is developed in Section 4.4.2.

Signal detection is often described as a hypothesis-testing problem. Depending on a
detection statistic, the detector yields hypothesis H0 or H1, defined as

H0 : y(t) = w(t),

H1 : y(t) = s(t) +w(t),
(4.1)

where y(t) is the received signal, s(t) is the signal to be detected and w(t) represents
WGN. While this model may be adequate for many applications, it obviously fails to
hold for signal detection in the ISM band. The more challenging hypothesis testing
problem can be formulated as

H0 : y(t) = i(t) +w(t),

H1 : y(t) = s(t) + i(t) +w(t),
(4.2)

where i(t) is interference with arbitrary characteristics like signal strength, center fre-
quency, modulation scheme, pulse-shaping and data rate, to name the most important.
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Methods, which work reliably for example for problems as 4.1, might not be applicable
to problem 4.2 since they could raise false alarms, when an interferer exceeds an energy
threshold. As discussed in the course of this thesis, cycle detectors are a promising ap-
proach for signal detection in problems similar to problem 4.2. Nevertheless, problem
4.1 can be used as a performance benchmark as presented in Section 5.1.

Again, it is to be mentioned that this thesis does not focus on the derivation of a
maximum-likelihood based detection statistic, since this would be only possible for
problems posed similar to 4.1. Rather, this thesis focuses on the development of a
detection statistic that performs reliably in the ISM environment, as posed in problem
4.2.

4.1. Current Communication System

PropCube satellites are operated by ground stations via a communication uplink not
further described in this thesis. To be able to react on information received from the
satellite, the signal detector must be able to perform close to real time. If this restriction
would not apply, the detector could use all data of one overflight and perform signal
detection and frequency correction as post processing. In such a manner, the reliability
of the algorithm’s output could be increased. False alarms could easily be marked as an
outlier and the interpolation of all detection points would yield a frequency correction
curve very close to the true S-curve caused by Doppler rate. This approach was tested
in the course of the development of the final detector, but no practical difference was
noted, since the amount of false alarms was negligible. In fact, for the final parame-
ter settings no false alarms occurred. Moreover, the deviation of a linear interpolation
of detection points for frequency correction, as proposed in Section 4.4.2, to the true
S-curve lies below the DFT’s resolution and is assumed to be managable for a demodu-
lator in the next processing step.

As described in Section 3, PropCube satellites use a GFSK modulation with a symbol
rate of 9600 symbols

second and a modulation index of h = 1. The carrier frequency is set to
914MHz. The data is transmitted according to an amateur radio protocol known as
AX.25. One burst is composed of a 400 byte synchronization preamble and 3 AX.25
packages. Each AX.25 package begins with a one byte start flag, followed by a 16 byte
header and a data frame. Eventually, a CRC code is appended before a stop byte termi-
nates the package. Since the start and stop bytes are not allowed to be used anywhere
else in the package, bit stuffing is applied, which results in a variable package length.
The NRZI encoded package is scrambled before the data is finally transmitted. After
each burst, which lasts usually for around 1 second, a break of 3 to 10 seconds leads
to an overall duty cycle below 25% during one overflight. Figure 4.1 shows the spec-
trogram of a typical PropCube signal with low interference. It can be seen that the
Doppler shift occurring in 15 seconds causes a frequency deviation in the order of a
few kHz.
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Figure 4.1.: Spectrogram of a typical PropCube Signal

4.2. Design Considerations

4.2.1. Comparison of SCF or COF based Detection Statistic

Often it is beneficial to use a detection statistic based on the COF, since it can cope
with changes in the SNR better than the SCF. This would be the case, if only the trans-
mit power varies due to the movement relative to the ground station and the detection
problem was posed in a WGN-only environment, as defined in 4.1. However, problems
arise due to interference, for which the time-resolution-product condition ∆T∆F� 1 is
not fulfilled. Such an interferer only appears for a short time and has therefore a highly
erratic SCF α-slice estimation. Calculating the COF might upscale the contribution of
interference since its energy could be very low due to its short presence. Hence, the
erraticity is amplified.

Example: Figure 4.2 shows the spectrogram of a 200ms segment of a PropCube burst,
sampled at 48kHz. The lower and the upper tone of the GFSK modulation are clearly visible
at −2.4kHz and 7.2kHz as thin, continuous lines, resulting in a center frequency of 2.4 kHz.

Figure 4.2.: Spectrogram of a burst part with a moderate interferer

The corresponding COF estimated with the TSM for a cycle frequency of α = 9.6kHz and a
DFT length of N = 500 is shown in Figure 4.3. The interferer, that occurs around t = 130ms
only appears for a fraction of the overall observation time, which leads to a highly erratic COF
estimation. In comparison, the estimated SCF at α = 9.6kHz for the same sample sequence
is depicted in Figure 4.4.

31



4.2. Design Considerations

Figure 4.3.: Estimated COF Figure 4.4.: Estimated SCF

To avoid the amplification of erraticity in the cyclic feature estimation of short, low-
energy interference, it is beneficial to use a SCF-based detection statistic. To cope with
the power dependency of the SCF, an adaptive approach is developed in Section 4.2.2.

4.2.2. Adaptive Detection Statistic

When implementing a single-cycle detector, as described in Section 2.3, the detection
statistic γ is calculated by evaluation of

γ =

+∞∫
−∞

| ŜαxT (f )∗ || Sαs (f ) | df , (4.3)

where T is the block length and Sαs (f ) is the ideal SCF, which can be interpreted as a
weighting function. Due to the derivation of the ideal SCF of PropCube’s GFSK signal
in Chapter 3, it is known that the ideal α-slice for the strongest cyclic feature at α =
±9.6kHz can be expressed by

S9.6kHz
SCPM

(f ) = δ(f ) +
1
Ts
Q1(

1
2Ts
− f )Q1(

1
2Ts

+ f ), (4.4)

where Ts is the symbol period. The theoretical infinite height of the Dirac delta δ(f )
is limited by the resolution of the Fourier-transform and scaled by the signal power.
The shape of the ideal α-slice is depicted in Figure 4.5 in comparison to the estimated
α-slice of a simulated GFSK signal.

32



4.2. Design Considerations

Figure 4.5.: Analytic α-slice compared to a Simulation, both normalized to unity at α =
9.6kHz

It is easy to see that the peak has a sharp, striking form whereas the lobe-like com-
ponent is close to zero. Using this shape as a weighting function under interference
leads to false alarms, since it only weights the amount of spectral correlation in the
α-slice. Assuming there is an interferer, which exhibits a cyclic feature at α = 9.6kHz
of sufficient magnitude, the threshold might still be exceeded after application of the
weighting function. In other words, the cycle-detector fails to put hard restrains on
the shape of the α-slice. Moreover, the imbalance of signal power between interferers
and PropCube’s signal additionally mitigates the effectiveness of a weighting function.
In Figure 4.6, this issue is addressed: A strong BPSK interferer with a symbol-rate of
9.6kHz causes a strong lobe-like cyclic feature in the α-slice, illustrated in blue. Every
shift of the weighting function in between the two illustrated positions would lead to a
detection statistic γ that exceeds the threshold.
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Figure 4.6.: Two possible positions of the GFSK weighting function, which would raise
false alarms when an interferer like the illustrated BPSK signal is present

Although the presence of an interferer like in Figure 4.6 is unlikely, it demonstrates
the susceptibility of the weighting function to raise false alarms for any kind of interference-
caused contribution in the α-slice. This matter is complicated by a limited observation
time: If the observation time could approach infinity and no Doppler rate would cause
a continuous frequency shift, the shape of the analytically derived α-slice would be
identical to the estimated α-slice in a WGN environment, neglecting minor distortions
resulting from a finite spectral resolution ∆f . However, a limited observation time in-
troduces noise in the α-slice, which leads to an erratic shape. For short observation
times, the lobe-like component seems to be indistinguishable from this noise. Hereby
is the significance of the weighting function drastically reduced, since it relies on the
presence of the peak only. Hence, it is reasonable to develop a modification of the stan-
dard single-cycle detector when an operation under interference is desired.

Another approach to define a detection statistic could by via a metric. Instead of
weighting the estimated α-slice with the ideal one, a distance between both can be cal-
culated. If the distance is below a certain threshold, the detector yields a detection.
While this might be a promising approach for other types of modulation, like BPSK
where the cyclic feature consists only of one strong and wide lobe-like component, it is
again prone to raise false alarms for PropCube’s GFSK signal in the ISM environment.
Due to the fact that the estimated α-slice differs from the ideal α-slice by noise, a stan-
dard distance is introduced. In combination with a high variance, a metric was tested
to be a less significant detection statistic. This method could be improved by first es-
timating the WGN power and then defining the ideal α-slice under consideration of
the noise-floor. It was not pursued further, since the WGN estimation in the ISM band
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leads to great complications and exceeds the tractability in this thesis.

Both methods, weighting with the ideal α-slice and distance calculation to the ideal
α-slice, are required to be combined with an exhaustive search since the position of the
signal in the frequency domain is unknown due to the Doppler shift. The detection
statistic must therefore be computed for every possible frequency shift of the α-slice.

Clearly, the sharp peak in the α-slice is the most promising detection feature. Based
on that, the approach proposed in this thesis is an adaptive peak detection. The max-
imum magnitude of the α-slice is determined and all other values are checked to be
below a certain threshold relative to the peak height. Therefore, this method can be
interpreted as drawing an upper bound for the expected α-slice, which is scaled by
its maximum. If no point violates the upper bound condition, the detector yields a
detection and the position of the maximum height reveals the Doppler shift. Hence,
it is not required to compute a distance or statistic for every possible frequency shift
of the α-slice. The trade-off taken here is the following: If a cyclic feature exists at
α = 9.6kHz and the shape differs significantly from a single peak, the measurement
is discarded even if PropCube’s GFSK signal is also present. The metric- or weighting-
based approaches would indeed raise a detection, but are very likely to also raise a false
alarm in the absence of PropCube’s GFSK signal. Significance of a peak is defined as a
design parameter in terms of the adaptive threshold parameter κ. Consequently, it can
be claimed that this method reduces the false alarm rate on the expense of false neg-
atives. However, since the observation time for one TSM estimation is much smaller
than the duration of one burst and those observation times are chosen with an overlap,
it is highly unlikely that an entire burst is missed because of interference at the same
cycle frequency. The threshold value κ defines the threshold TAS by

TAS(f ) = κ ×Hmax + ι(f )×Hmax, (4.5)

where Hmax is the maximum value in the estimated α-slice and ι(f ) is the lobe-like
component of the ideal α-slice. Multiplication of ι(f ) with Hmax scales the lobe-like
component according to the signal power. Due to residual smearing, this threshold is
then applied to all points in the α-slice besides the peaks and its neighbors. If a detec-
tion is made, the instantaneous Doppler shift is simply revealed by the position of the
maximum value in the α-slice.
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Example: Figure 4.7 demonstrates the threshold TAS(f ) for the ideal α-slice without frequency-
offset. In comparison, Figure 4.8 demonstrates the threshold TAS(f ) for the α-slice shown in
Figure 4.4, corresponding to real-world data presented in Figure 4.2. The maximum in the
α-slice is detected at f0 = 2496Hz, which represents the Doppler shift. The threshold TAS(f )
can therefore easily be centered around it. Both Figures use κ = 0.12.

Figure 4.7.: Threshold applied to Ideal α-Slice Figure 4.8.: Threshold applied to Real-World Data

4.2.3. Choice of Block Length due to Doppler rate

The expression observation time, denoted as T , is closely related to block length, repre-
sented by the letter B: While the former is usually given in in seconds, the latter is
given in units of samples.

In Section 2.1.2, it is explained that the SCF can be interpreted as a correlation of
frequency components over time. The Doppler rate causes a frequency shift ∆fDR of
the signal within time ∆tDR. Fig 4.9 illustrates the effect of a constant Doppler rate of
∆fDR
∆tDR

= 8 kHzs on two tones similar to PropCube’s GFSK signal. Consequently, the correla-
tion of frequency components smears and the estimation of cyclostationary features is
complicated. In practice, the measurement of the Doppler rate is limited by the DFT’s
resolution. For a short observation time and a sufficiently low DFT resolution, the sig-
nal seems to have a constant center frequency, since the Doppler rate causes frequency
deviations mainly within the same DFT bin. For the sake of a clear demonstration, a
DFT length as low as 20 bins was chosen in Figure 4.10. Therefore, the finite resolution
of the DFT and a limited observation time can be exploited to apply cyclostationary
concepts to signals corrupted by continuous frequency changes.

36



4.2. Design Considerations

Figure 4.9.: Effect of Doppler Rate 8 kHzs Figure 4.10.: Doppler Rate at low DFT Resolution

By analysis of the orbital mechanics, the maximum value of the Doppler rate δDR can
be determined. Using the simulation capabilities of the Systems Toolkit (STK) Software,
δDR = 310Hzs was estimated to be a solid upper bound for LEO satellites transmitting
at 914MHz.

A design parameter ε is introduced, which limits the block length B for a given DFT
resolution under the condition that the maximum possible Doppler shift over one block
must be less than ε DFT bins. Consequently, the block length B can be determined by
evaluation of

B = ε ×
fsamp
N
× 1
δDR
× fsamp, (4.6)

where
fsamp
N is the resolution of a DFT of length N applied to a signal sampled with sam-

pling frequency fsamp. Therefore, ε × fsamp
N can be interpreted as the allowed frequency

shift in units of DFT bins. Division by δDR yields the minimum time needed for such
a frequency change, multiplication by fsamp eventually gives the maximum number of
samples, which may be included in one block length.

By empirical studies, a suitable value for ε was determined to be ε = 0.5. While this
value limits the smearing of cyclic features, it can not prevent it completely. It occurs,
that one frequency bin is crossed, which leads to two neighboring peaks in the α-slice.
However, the minimum possible peak height is at least 1−ε = 0.5 times the height com-
pared to a case without smearing, which is shown in Chapter 5 to perform sufficiently.
The following example illustrates the influence of the block length parameter ε.
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Example: Using ε = 0.5 in addition to the values used for Figure 4.10, i.e. a Doppler
rate of 8 kHzs and a DFT length as low as 20 bins, yields a block length of B = 7200 samples,
which corresponds to a observation time of 150ms at a sampling frequency of fsamp = 48kHz.
The interval between the two red lines in Figure 4.11 mark the bounds of the resulting block
length B, centered at an arbitrary position within the burst.

Figure 4.11.: Block Length B for ε = 0.5

4.3. Statistics at the TSM Estimator’s Output if a white

Gaussian Process is applied

Via a step-by-step analysis of the statistics at every stage of the TSM estimator, the dis-
tribution at its output can be derived. In that way, it can be seen easily how the choice
of design parameters influences the α-slice and how the power of interferers is miti-
gated.

Assuming that all samples in the observation time solely belong to one Gaussian
process with variance σ2

n , which can be seen as WGN or interference, the time-domain
variance is

σ2
TR = σ2

T I =
σ2
n

2
(4.7)

in the real and imaginary part of each sample. It is well known that the statistics after
applying a DFT, which is defined by

X(k) =
1
N

N−1∑
n=0

x(n)e−i2πk
n
N , (4.8)
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to only the real time-domain data is also Gaussian with zero mean and a variance σ2
n

4N
in both real and imaginary parts. Applying the DFT to both, real and imaginary time-
domain data, yields a frequency-domain variance of

σ2
FR = σ2

FI =
σ2
n

2N
(4.9)

in real and imaginary parts. In Appendix D it is shown that two frequency components
of WGN X(ki) and X(kj ) are uncorrelated for i , j. Therefore, the variance of Y (kl) =
X(ki)X(kj ) is simply

var{X(ki)X(kj )} = E{(X(ki)X(kj ))
2} = E{X(ki)

2)E(X(kj )
2} = var{X(ki)}var{X(kj )}, (4.10)

but the statistics of Y does not follow a Gaussian distribution anymore. Instead, the
probability density function can be described by a modified Bessel function of second
kind [12]. However, equation 4.10 can be exploited in the next processing step: Cyclic
periodograms are calculated by the multiplication of two points of the DFT’s output.
The variance of a cyclic periodogram for α , 0 is

σ2
CR = σ2

CI = 2
(
σ2
n

2N

)2

(4.11)

in real and imaginary parts. The various cyclic periodograms are uncorrelated, since
they are computed from non-overlapping sub-blocks. Averaging over M sub-blocks
allows the application of the central limit theorem, assuming M � 1, which results
again in a zero mean Gaussian distribution and a variance of

σ2
AR = σ2

AI =
1
M

2
(
σ2
n

2N

)2

(4.12)

in real and imaginary parts. Eventually, the statistics of the magnitude of such a com-
plex variable can be described by a Rayleigh distribution [13] with mean

µM =

√
π
M

σ2
n

2N
(4.13)

and variance

σ2
M =

(
1− π

4

)
1
M

(
σ2
n

N

)2

. (4.14)

Now it can easily be seen how the choice of the observation time, which directly in-
fluences the number of sub-blocks M and the DFT length N , effects mean and variance
of the noise floor. In the discussion of advantages of cyclic spectral analysis in Section
2.1.4, the tolerance against interference is highlighted: While a conventional detector
has to cope with the full power of interferers, their power is reduced by an factor of 1

M
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in the α-slice.

Gardner [2] introduces a SNR-relationship for signal detectors: A detector is de-
scribed to generate a signal decision under H1 or a noise decision under H0, given by
the detection statistic γ in either case. It is desirable to have a high SNR, which can
be interpreted as a significantly differing detection statistic γ under H0 and H1. It is
shown that the standard radiometer maximizes this SNR in a stationary WGN environ-
ment. This follows the intuition: For example, if a sine-wave is to be detected in WGN,
there is no better approach than a conventional Fourier transform, which corresponds
to an energy detection in frequency domain. However, in [2] it is also derived that
cycle-detectors outperform the radiometer when the signal power varies or interfer-
ence is present, which is often applicable to real-world problems as posed in this thesis.
In practice, a trade-off between a high-resolution ∆F = 1

N and a sufficiently large value
of M, which guarantees statistical reliability, must be chosen.

4.4. The Algorithm

4.4.1. Shift of Observation Time

The most accurate results in terms of time resolution can be achieved by applying the
detector to every new sample that is collected from the ground station’s antenna, which
corresponds to a shift of observation time by θshif t = 1 sample. In this case, the time
resolution is considered to be the observation time T . This results from the fact that the
cyclic feature estimation applies averaging over one observation time, the exact timing
of events happening within one observation time can not be recovered. However, this
is not feasible to compute on common hardware in real time. A shift parameter θshif t
must be introduced, which defines a trade-off between time resolution and computa-
tional tractability. For the final detector, a choice of θshif t = T

8 was found to perform
well.

Example: In correspondence to the block length example in Section 4.2.3, the Doppler rate
is chosen to be 8 kHzs for this demonstration. Also, the block length parameter is set to be
ε = 0.5. Figure 4.12 shows only a part of Figure 4.11, where multiple blocks are marked as
Bi ,Bj ,Bk , each shifted by δshif t = T

8 .
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Figure 4.12.: Graphical Illustration of δshif t

The block length is limited by the Doppler rate. For the actual PropCube signal, a
choice of ε = 0.5 and δDR = 310Hzs results in a observation time of around T = 0.155s.
With overlapping due to θshif t = ∆T

8 , there are 43 observation times for each burst of
length 1s, where the burst is fully present.

Hence, it is highly likely to achieve multiple detections for each burst. Various strate-
gies can be construed to increase the overall reliability, for example by assuming the
presence of a burst only if more detections are yielded than a defined threshold. There-
fore, a single false alarm would be discarded. Moreover, false-positives can easily be
spotted as outliers, when a frequency change greater than physically possible is mea-
sured. However, as demonstrated in Chapter 5, it is possible to chose the parameter
settings in a way that no false-positives occurred in all the testing done for this thesis,
while detections in multiple neighboring observation times guarantee a reliable detec-
tion of each burst. Therefore, it was not necessary to remove outliers by post processing
or introduce a new thresholds. Figure 4.15 depicts multiple detection points, each cor-
responding to one observation time, which belong all together to the same burst.

The overall execution for a data recording of 227 seconds can be managed on a stan-
dard desktop computer, which was used for the development in this thesis, in as little
as 10 seconds. Of course, this is not a proper execution time analysis, but it is men-
tioned to imply that real-time applications are possible. However, a short time delay
is introduced by applying frequency corrections after receiving entire bursts only, as
described in the next Section.

4.4.2. Frequency Correction

As described in Section 4.4.1, there are multiple observation times for each burst, lead-
ing to multiple possible detection points. For each detection point, the position of
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the cyclic feature in the α-slice yields the Doppler shift. The change of Doppler shift
from detection point to detection point reveals the Doppler rate. In this thesis, a linear
interpolation of those points is proposed to be used as a frequency correction curve. Al-
though the Doppler rate is rarely as high as 310Hzs and changes continuously, a constant
value was found to be a sufficient approximation for the Doppler rate for intervals as
short as one second. After isolating a burst in time domain, the frequency correction is
performed. Afterwards, out of band noise is filtered to improve the SNR. The processed
burst is then passed on to the demodulator. Figure 4.13 illustrates the processing flow-
graph, whereas the following example demonstrates the processing steps on real-world
data.

Figure 4.13.: Processing Flowgraph

Example: Figure 4.14 shows a burst in the ISM band. For the sake of a clear demon-
stration, a burst was chosen, which was received when the satellite was close to the ground
station, resulting in a relatively high SNR and a high Doppler rate. The detections points and
their corresponding Doppler shift estimation are presented in Figure 4.15. After one burst
is received, the detection points are interpolated linearly, which is depicted by the red line in
Figure 4.15.
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Figure 4.14.: Burst as received at Ground Station
SDR Figure 4.15.: Interpolated Detection Points

In the further processing, the burst is cut out in time domain with a slight tolerance before
the first and after the last detection point. The final product after frequency correction and
filtering is shown in Figure 4.16.

Figure 4.16.: Isolated, frequency-corrected and filtered burst
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5. Detector Performance

The performance analysis was conducted with the parameter settings proposed in Ta-
ble 5.1 and 5.2.

As a performance benchmark, it is desirable to determine the performance in a WGN
environment. Since it is not tractable to give analytic expressions, exhaustive simula-
tions were performed in Section 5.2. Moreover, it is interesting to evaluate how the
detector’s performance degrades in the ISM environment. Obviously, it is impossible to
model ISM bands, because those are highly non-stationary and unpredictable. There-
fore, simulations are complicated. However, in Section 5.3 an approach was taken,
which uses a recorded ISM background to perform simulations and provide a ROC.
Most importantly, the effectiveness of the detector is eventually tested on real-world
data of a PropCube overflight in Section 5.4.

5.1. Parameter Settings

While some parameters are defined by the system design or physical circumstances
(Table 5.1), there is a variety of parameters free to be determined (Table 5.2). Many
justifications for those parameter choices were given in the previous chapters.

5.1.1. Given Parameters

Table 5.1 presents the parameters given by the system design or physical circumstances.

Description Parameter Value
Symbol-Rate [ symbolss ] fsymb 9600

Maximum Doppler Rate [Hzs ] δDR 310
Center Frequency [MHz] f0 914
Bandwidth-Time-Product BT 0.5

Modulation-Index h 1

Table 5.1.: Parameters given by system design

5.1.2. Proposed Parameters

Table 5.2 presents the parameter settings proposed in this thesis. By empirical studies,
those were found to perform best, coping with all the implications arising from the
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thesis’ application, like a variable SNR-range and interference in the ISM environment.
For a detailed discussion of each parameter, the reader is referred to Chapter 4.

A threshold-parameter of κ = 0.12 is very conservative, because it leads to a false-
positive probability very close to zero. No false-positives were detected with κ = 0.12
in all the testing conducted for this thesis. However, the probability of detection is
still sufficient to achieve multiple detections for each burst. An overall proof for the
detectors reliability and a detailed performance analysis is provided in Section 5.4.

Description Parameter Value
Sampling-Rate [kHz] fsample 48

DFT Length [bins] N 500
Block length [samples] B 7432
Number of Sub-blocks M 15

Threshold κ 0.12
Max. Doppler Smearing per B [DFT bin width] ε 0.5

Shift of Observation Times θshif t
B
8

Table 5.2.: Parameter settings proposed in this thesis

5.2. Performance in WGN

In a WGN environment, no false-positives were detected for threshold parameters as
high κ = 0.5. In a more vivid manner, this can be interpreted that no frequency com-
ponents separated by α = 9.6kHz could be found in WGN, which exhibit 1

κ times the
spectral correlation than combinations of all other components. While zero is a true
result for the false-positive probability for observation times approaching infinity, the
false-positive probability in this application can not be equal to zero, since the observa-
tion time is limited. However, despite exhaustive simulations, no false-positives were
detected in a WGN environment for values of κ, which are reasonable to use in an ISM
environment, i.e. κ ≤ 0.5. Often, the ROC is presented as a plot of the true-positive
probability over the false-positive probability. Due to the low false-positive probabil-
ity, this would appear to be very close to an optimum ROC. A more meaningful plot
can be provided by depicting the true-positive probability for a range of SNRs.

A simulator was built, which inserts GFSK bursts similar to PropCube’s signal into
a stationary WGN environment of variance σn = 1. The signal power σs can be chosen
arbitrarily, to simulate the detection behaviour at any SNR. Consequently, the SNR is
defined by

SNR = 10× log10

(
σs
σn

)
. (5.1)
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A burst has a length of one second, corresponding to 48 × 103 samples at a sam-
pling rate of 48kHz. Additionally, each burst was manipulated to have the worst-case
Doppler rate of 310Hzs . Then, the algorithm described in Section 4.4 was used to detect
the bursts. A detection is only considered to be possible, if the burst is present in the
entire observation time. After a run of 105 possible detections per SNR, it was validated
that no false-positives were present. Hence, the true-positive rate could be calculated
by evaluating the ratio of true-positives to all possible detections. The results are de-
picted in Figure 5.1. Again, it is mentioned that the probability of detection reflects
the probability of detection in one observation time, whereas 43 observation times are
contained in each PropCube burst.

Figure 5.1.: Detector Performance in WGN Environment

5.3. ISM-Band Simulation

The ISM band is a highly non-stationary environment: Depending on location, time,
weather and multiple other factors, the appearance of interference changes drastically.
When testing the detector in practice, the only chance to obtain the receiver operat-
ing characteristic would be to mark missed detections and false-positives by hand, as-
suming the signal can be recognized by humans, for example in a spectrogram plot.
Since this is not traceable, another approach was taken: The 914MHz ISM band was
recorded when it was known that no PropCube satellite was over the NPS ground sta-
tion in Monterey, CA. Then, the algorithm was used to obtain false-positives for various
thresholds: Since the absence of PropCube’s signal is guaranteed, any detection corre-
sponds to a false-positive. The false-positive rate was determined later by the ratio of
false-positives to possible detections. The recording is modeled to contain two com-
ponents: White Gaussian noise with power σn and interference with power σI . Figure
5.2 shows a time series of the magnitude of the first 4 seconds of the recorded ISM
background.
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Figure 5.2.: Magnitude of recorded ISM background

The SNR values in Figure 5.3 take only σn into account, since σI is highly non-
stationary. The power of the WGN background was measured with methods presented
in Appendix A, when interference appeared to be absent. Then, analog to Section 5.2,
GFSK bursts could be inserted and the performance could be evaluated. Again, the
true-positive rate was determined by the ratio of true-positives to all possible detec-
tions. The results are depicted in Figure 5.3.

Figure 5.3.: Detector Performance in ISM Environment

Since the power of interference σI is not considered in the SNR values, a degradation
of performance compared to Figure 5.1 can be observed. Moreover, Figure 5.3 shows an
asymptotic behaviour of the probability of detection, which slowly approaches 1. This
leads to the interpretation that even at high choices of σs few interferers cause an errati-
cism in the α-slice exceeding the threshold TAS . This is reasonable since occasionally
σI exceeds σs greatly and the observation time is limited by the Doppler rate and the
block length parameter ε. Additionally, interference, that actually exhibits cyclic fea-
tures at a cycle frequency of α = 9.6kHz could cause missed detections of PropCube’s
signal. However, since 43 observation times fall into the length of each burst, the detec-
tion probability of a burst is much higher, so that the presence of every burst could be
detected.
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The false-positive rates for each threshold, which were estimated with the previously
described method, are presented in table 5.3.

κ-Value False-Positive Rate
0.12 0
0.24 3.7× 10−4

0.37 3.3× 10−3

0.5 1.4× 10−2

Table 5.3.: Estimated False-Positive Rates for various Threshold Parameters κ

Again, it is to be mentioned that this approach is not representative and the receiver
operating characteristic in the ISM band heavily relies on multiple factors, which are
difficult to model.

5.4. Real-World Performance

After all, the detector’s performance must be evaluated in the practical application.
Figure 5.4 shows the detection results for an overflight by a PropCube satellite. It can
easily be seen that no outliers are present, which leads to the conclusion that the false-
positive rate can assumed to be zero for this overflight. By detecting bursts at various
SNRs during this overflight, the effectiveness of the adaptive decision statistic is demon-
strated.

In Figure 5.4, a total of 1336 detections was made for 36 transmitted bursts, result-
ing in an average of 37.1 detection points per burst out of a maximum of 43 possible
detections. The overall effectiveness of the proposed detector can also be stated by
comparing it to a radiometer based approach as presented in Appendix B, which was
conducted with the same data.
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5.4. Real-World Performance

Figure 5.4.: Detectors Real-World Performance during a PropCube Overflight
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6. Conclusions

This thesis successfully demonstrates that cyclic spectral analysis can be applied to
signals corrupted by Doppler rate as high as 310Hzs . The benefits of this framework,
namely its tolerance against interference, can be exploited to reliably detect the pres-
ence of LEO satellite signals operating in the ISM band. Compared to conventional
methods, like a radiometer as presented in Appendix B, the false-positive rate could be
lowered significantly. In fact, it could be achieved to detect every burst multiple times
while no false-positives occurred. Moreover, frequency correction can be performed
with an accuracy at least as high as the DFT resolution because the positions of cyclic
features shift slowly as the algorithm is applied to a stream of incoming sampling data.
Each detection point reveals the instantaneous Doppler shift, whereas an interpolation
of many detection points is shown to be an effective tool to estimate and correct the
Doppler rate. Eventually, each burst is separated in time domain, filtered to remove
out-of-band noise and passed on to the demodulator.

Additionally, this thesis demonstrates that a standard single-cycle detector needs to
be modified to work reliably in the ISM environment. Multiple detection statistics are
discussed before an adaptive detection statistic, which is able to cope with variations
in the signal power, is proposed. The design of the detection statistic is motivated by
the shape of the ideal α-slice, which is derived in this thesis from [4].

Eventually, a performance analysis is conducted, which presents the probability of
detection for different scenarios. The ultimate test, the real-world performance, proves
the effectiveness of the proposed detection algorithm.
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A. Example Spectrograms and SNR

Estimation

A.1. Example Spectrograms of typical Bursts

Figures A.1 and A.2 illustrate the challenging environment, which the ISM band poses
on the communication link of PropCube. The two straight tones in each figure, lasting
for about one second, represent the upper and the lower frequency of PropCube’s GFSK
signal. Various, much stronger interferers can be observed across the spectrogram. The
different center frequencies are a result of the Doppler shift, and also the Doppler rate
can be observed, especially in Figure A.1 as a slight frequency shift happening within
the signal. The sampling rate was set to 48kHz and a DFT of length 1024 was used to
calculate the spectrograms.

Figure A.1.: PropCube Burst centered around 5kHz from 0.4s to 1.4s
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A.2. SNR Estimation

Figure A.2.: PropCube Burst centered around 17kHz from 0.7s to 1.7s

A.2. SNR Estimation

In this section, a coarse estimation of SNR is conducted. Since the satellite’s signal
consists not only of the two tones, which are clearly visible, but also of a lobe-like com-
ponent, it is difficult to apply a histogram based method. The estimation used here is a
simple comparison of energies when there is signal present or when not. It is assumed
that the noise floor can be modeled as stationary additive WGN and interference, which
significantly influences the SNR estimation, can be identified in the spectrogram plot.
For example, Figure A.3 is considered to be free of interference and therefore represent
a burst in WGN environment, whereas the obvious interferer in Figure A.4 could be
used in Section A.2.2 to estimate the SNR when interferers are present.

Figure A.3.: Part of Signal Burst, which is assumed to be in WGN environment
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A.2. SNR Estimation

Figure A.4.: Strong Interferer in Burst Part

A.2.1. SNR Estimation in AWGN Background

Since the signal power varies greatly due to the difference in range from the satellite
to the ground station, this SNR estimation is performed for two different scenarios.
First, to estimate the lower bound of the SNR range, a burst in the very beginning of
an overflight was chosen and secondly, to get an upper bound, a burst transmitted
very close to the ground station was chosen. The following steps were performed on a
sampling sequence like Figure A.3, where interference seems to be absent:

• The total energy Es,n of the 5000 samples, where satellite signal is embedded in
an AWGN background, is computed

• The total energy En in the 5000 samples, where no satellite signal but only the
AWGN background is present, is computed

• The difference of both yields the Signal Power Es = Es,n −En

• The logarithmic representation of Es
En

yields the SNR

The range for the SNR in an AWGN background was determined to be from −2dB to
13dB.

A.2.2. SNR Estimation with strong Interference

To estimate the SNR, which can occur when strong interference is present, a burst part
was chosen where a very strong interferer overlaps with the satellites signal. Then the
following calculations are performed:

• 1250 samples, which contain the interferer, are separated

• The energy Es,n,inf , which consists of the energy of the interferer, the satellite
signal and AWGN, is computed and multiplied by a factor 5000

1250

• The energy of the Interferer Einf is calculated by subtraction of the energies pre-
viously estimated in Section A.2.1: Einf = Es,n,inf −Es −En

• The logarithmic representation of Es
En+Einf

yields the SNR

Multiple estimations of various, strong interferes yield SNR values as low as −37dB.
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B. Radiometer

To evaluate the possibilities of conventional spectral analysis and further to motivate
cyclostationary methods, a radiometer was implemented. This appendix is not meant
to provide a detailed radiometer evaluation and its thresholds, but is rather designed
to show the qualitative differences in comparison to Figure 5.4 and Section 5.4 of the
detector proposed in this thesis. Analog to the final algorithm described in Section 4,
the same block length of B = 7432 samples was used to avoid smearing in the frequency
domain, as well as a shift of observation-times by θ = B

8 . Instead of using multiple es-
timations of cyclic periodograms to calculate an α-slice, the radiometer estimates one
conventional periodogram for each block length. Then, it searches for frequency com-
ponents separated by 9600kHz, which contain energy above a certain threshold. The
frequency components were defined as small frequency ranges of width δDR×ε, to take
residual smearing into account. The same data used for the real-world performance
evaluation in Section 5.4 was used to test the radiometer. Figures B.2 and B.1 show the
dilemma of energy detection: If the energy threshold is chosen low enough to make
at least two detections per burst (Figure B.1), the false-positive rate was approximated
to be Pf p = 0.6, whereas a higher threshold, corresponding to a false-positive rate of
Pf p = 0.23, already misses many bursts (Figure B.2).

Figure B.1.: Detection Points for a low threshold Figure B.2.: Detection Points for a high threshold

Of course, many modifications can be taken to improve the performance of conven-
tional radiometers. However, its basic functional principle to solely rely on the pres-
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Radiometer

ence of energy in certain frequency bands can not be changed. Therefore, other detec-
tion strategies, like cycle-detectors, are a more promising approach in the context of
this thesis.
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C. Phase Compensation Factor

The SCF estimate of the TSM can be expressed as

Ŝαx (f ) =
1
M

M−1∑
m=0

[
ÎαN (k +mN,f )

]
(C.1)

and thus can be interpreted as the average over all cyclic periodogram estimates ÎαN (k +
mN,f ). The parameter k is the time discrete representation of t in 2.12 and mN is
the shift of the mth cyclic periodogram as the algorithm slides through the entire
sample data. Since each cyclic periodogram is calculated by using a single, indepen-
dent Fourier transform, the information of the shift by mN samples of the cyclic peri-
odograms relative to each other is lost. By inspecting the formulas, it can be seen most
clearly when inserting the definition of the cyclic periodogram in discrete time

ÎαN (k +mN,f ) =
1
N
X̂N (k +mN,f +α/2)X̂∗N (k +mN,f −α/2) (C.2)

where X̂N (k+mN,f +α/2) is N-point discrete Fourier transform of x(k+mN ). Assuming
that f and α are provided in a normalized manner, i.e. f N ∈ Z and αT ∈ Z correspond-
ing to the TSM’s spectral and cyclic resolution [9], the calculation can be performed by
evaluation of

X̂N

(
k +mN,f +

α
2

)
=
N−1∑
n=0

x(n+mN )e−i2π(f + α
2 )(n+mN ). (C.3)

Simply applying a N-point Fourier transform to the shifted data blocks only yields

N−1∑
n=0

x(n+mN )e−i2π(f + α
2 )n, (C.4)

which makes it obvious that a phase error is introduced. In order to still obtain a correct
estimation, it is necessary to compensate for the neglected shift by multiplying a phase
compensation factor. This can be done for each point of the discrete Fourier transform,
by multiplying

e(−i2π(f + α
2 )mN ). (C.5)

Alternatively, the phase compensation can be performed at a later step by multiply-
ing the phase compensation factor
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Phase Compensation Factor

e(−i2παmN ). (C.6)

to each cyclic periodogram.

In the special case, when α = k
N , k ∈ Z, the phase compensation factor is always equal

to unity and can therefore be ignored. In this thesis, the desired cycle frequency was
known a-priori and all parameters were eventually chosen in a way that the phase
compensation factor is not necessary. However, if the cycle frequencies are not known
a-priori and a full spectral analysis, i.e. for all cycle frequencies α = k

T , k ∈ Z, must be
conducted, the application of the phase compensation factor is crucial.
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D. Pairwise Uncorrelatedness of DFT Bins

of WGN

For the derivation of the output statistics of a TSM estimator, it is necessary to show
that output DFT bins X(ki) and X(kj ) are uncorrelated for i , j if only WGN is applied.

Two random variables X and Y are uncorrelated, if

cov{X,Y } = E{XY } −E{X}E{Y } = 0 (D.1)

holds. Using the definition of the DFT, X and Y are defined by

X =
N−1∑
n=0

x(n)e−i2πki
n
N (D.2)

and

Y =
N−1∑
n=0

x(n)e−i2πkj
n
N . (D.3)

It can be shown easily that

E{X} = E{Y } = 0. (D.4)

Therefore, equation D.1 simplifies to

cov{X,Y } = E{XY } = 0. (D.5)

Inserting the definition of X and Y , it follows that

E{XY } = E
{N−1∑
n=0

x(n)e−i2πki
n
N

N−1∑
n=0

x(n)e−i2πkj
n
N

}
, (D.6)

which can be expanded to

E{XY } = E{x(0)x(0)e−i2pi(ki+kj )
0
N }+E{x(0)x(1)e−i2pi(ki+kj )

1
N }+...+E{x(N−1)x(N−1)e−i2pi(ki+kj )

N−1
N )}.

(D.7)
Now, the expression is a sum, which allows to pull the expectation operator inside.

The complex exponential is a deterministic factor and can be written in front of the
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Pairwise Uncorrelatedness of DFT Bins of WGN

expectation operator. The right side of equation D.7 is composed of two different kinds
of terms:

I. : εe,f E{x(e)x(f )}, e , f , (D.8)

where εe,f is a complex exponential and

II. : e−i2πk
′ e
N E{x(e)x(e)}, (D.9)

where k′ = ki + kj . For I. it holds that

εe,f E{x(e)x(f )} = εe,f E{x(e)}E{x(f )} = 0 (D.10)

since x(e) and x(f) are uncorrelated and zero-mean by definition of WGN. Taking all
terms of II. into account, the equation D.1 can be expressed as

cov{X,Y } =
N−1∑
e=0

e−i2πk
′ e
N E{x(e)x(e)} =

N−1∑
e=0

e−i2πk
′ e
N E{x(e)2} =

N−1∑
e=0

e−i2πk
′ e
N σ2

n , (D.11)

which can be interpreted as the Fourier transform of a constant, namely the variance
of WGN. It is well known that the DFT of a constant for k′ , 0 yields zero:

N−1∑
e=0

e−i2πk
′ e
N σ2

n = 0, k′ , 0. (D.12)

Eventually, it follows that

cov{X,Y } = E{XY } = 0. (D.13)

Hence, distinct output bins of a DFT are pairwise uncorrelated.
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